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CHAPTER! 

INTRODUCTION 

Covariance matrix estimation is a fundamental problem, and has applications in 

many areas. The sample covariance matrix is the most widely used covariance estimator. 

The sample covariance matrix has some appealing properties, such as being unbiased and 

asymptotically normally distributed. Maximum Likelihood Estimation (MLE) is another 

popular method for estimating the covariance matrix. It is similar to the sample covariance 

matrix, and is asymptotically normally distributed. However, it is biased. 

If the sample size is small, the estimation errors of both the sample covariance ma

trix and the MLE can be so large that the estimated covariance matrix is of little use. In ad

dition, many applications require the calculation of the inverse of the covariance matrix. If 

the sample size is too small, the estimated covariance matrix can be singular or close to sin

gular. For example, in mean-variance portfolio optimization (see Chapter 9), one needs the 

inverse of the covariance matrix to calculate the optimal portfolio weights. Often the sam

ple size can be much smaller than the number of stocks in the portfolio. In this case, the 

inverse of the covariance matrix cannot be calculated by the sample covariance matrix nor 

byMLE. 

There are generally two approaches to improve the covariance matrix estimation 

when the sample size is small. Both approaches assume some prior knowledge of the cova

riance matrix. The first approach is the shrinkage method, which shrinks the eigenvalues of 

the sample covariance matrix or shrinks the sample covariance matrix to some known 

structure. The second approach is based on Bayes' Theorem, which treats the covariance 
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matrix as a random variable with prior probability density function. By applying Bayes' 

theorem, the posterior density function of the covariance matrix can be found. The covari

ance matrix is then estimated by maximizing the posterior density function. 

In this work, two methods for estimating the covariance matrix are proposed ( espe

cially for small sample size). The first is the Ridge Covariance Matrix Estimator (RCME), 

and the second is the Hierarchical Bayesian Covariance Matrix Estimator (HBCME). The 

covariance matrix estimation methods are then applied to improve the Recursive Least 

Squares (RLS) algorithm and mean-variance portfolio optimization. 

The contributions of this work are as follows: 

1) Proposed the RCME. The RCME can be viewed as one of the shrinkage esti

mators which shrinks the eigenvalues of the sample covariance matrix. The 

RCME is a weighted average of the sample covariance matrix and the identity 

matrix. The weight on the identity matrix is the shrinkage intensity, which is 

the only parameter that needs to be estimated. For sufficiently small shrinkage 

intensity, the covariance matrix estimated by the RCME is guaranteed to have 

smaller Mean Square Error (MSE) than the sample covariance matrix. Three 

methods for estimating the shrinkage intensity are proposed. 

2) Proposed the HBCME. The HBCME is based on the Bayes' theorem. The 

HBCME applies Bayes's theorem hierarchically. Each element of the covari

ance matrix is assumed to be a random variable with normal distribution and 

unknown parameters. In the first level, Bayes' theorem is applied to find the 

posterior density function of the covariance matrix. The covariance matrix is 

then found by maximizing this posterior density function using the Broyden-
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Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm. In the second 

level, Bayes' theorem is-applied to find the posterior density function for the 

unknown parameters. By maximizing this posterior density function, the val

ues of the unknown parameters can be found. 

3) Proposed the Shrinkage Least Squares algorithm (SLS) and the Shrinkage 

Recursive Least Squares (SRLS) algorithm. The SRLS algorithm is the recur

sive form of the SLS algorithm. SLS is an improved version of James-Stein 

Least Squares (JSLS), in which the covariance matrix is estimated using the 

RCME. SRLS is an improved version of James-Stein Recursive Least Squares 

(JSRLS), in which the covariance matrix is estimated using the RCME. 

4) Proposed two methods for Portfolio Optimization: Shrinkage Portfolio Opti

mization and Bayesian Portfolio Optimization. In stock portfolio optimiza

tion, the covariance matrix and the mean of the stocks in a portfolio are 

parameters that require accurate estimation. The Shrinkage Portfolio Optimi

zation method estimates the covariance matrix by the RCME. The Bayesian 

Portfolio Optimization method estimates the covariance matrix by the 

HBCME. The estimated covariance matrix is also used in the James-Stein 

estimator to estimate the mean. The improved estimates of the covariance 

matrix and the mean lead to improved portfolio optimization results. 

This dissertation contains the following chapters: Chapter 2-5 are related to the RC

ME. Chapter 6-8 are related to the HBCME. Chapter 9 uses both the RCME and the HBC

ME. Chapter 10 concludes the current work. 

3 



Chapter 2 reviews various shrinkage covariance matrix estimators. There are gen

erally two approaches for shrinkage estimators. One approach shrinks the eigenvalues of 

the sample covariance matrix, the other shrinks the sample covariance matrix to some 

known structure. Both approaches are reviewed in detail. 

Chapter 3 describes the RCME. A detailed derivation of the estimator and interpre

tation of the results are presented. Three methods for estimating the shrinkage intensity -

Ledoit' s method, Filtering method and Constraint method, are also shown. 

Chapter 4 presents the SLS and SRLS algorithm. First, James-Stein estimation is 

reviewed. Then the JSLS algorithm is reviewed and the SLS algorithm is proposed. Later 

the RLS and JSRLS algorithms are reviewed and the SRLS is proposed. Finally, the James

Stein Ledoit Recursive Least Squares (JSLRLS) is also proposed. 

Chapter 5 presents two simulation results related to the RCME. The first is a Monte 

Carlo simulation for comparing different covariance matrix estimators. The second is a 

Monte Carlo simulation for comparing different RLS algorithms. 

Chapter 6 reviews the Bayesian methods related to the covariance matrix estima

tion. Bayes' theorem is first presented, then existing Bayesian methods used for covariance 

matrix are reviewed. Finally, the Bayesian regularization method used in neural network 

training is reviewed, since this is the basis for developing the HBCME. 

Chapter 7 presents the HBCME. The assumptions and the derivation of the estima

tor are given in detail. Two forms of the HBCME are proposed: The first form assumes the 

prior covariance matrix has two unknown parameters; The second form assumes the prior 

covariance matrix has p + 1 unknown parameters, where p is the dimension of the cova

riance matrix. 
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Chapter 8 contains the simul11tion results of the HBCME. Monte Carlo simulation 

results for both forms of the HBCME are presented. 

Chapter 9 proposes methods for performing portfolio optimization. Background in

formation on portfolio optimization is presented. Then two methods for performing portfo

lio optimization are proposed. Simulation results using both simulated stock return data and 

real stock return data are also presented. 

Chapter 10 concludes the current work. 
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CHAPTER2 

SHRINKAGE COVARIANCE ESTIMATION 

There are basically two classes of covariance estimation methods when the sample 

size is small. One class consists of the shrinkage methods, which shrink the eigenvalues of 

the sample covariance matrix, or shrink the sample covariance matrix to some structure. 

The other class is the Bayesian method, which applies Bayes' theorem to get the posterior 

mean of the covariance matrix by using prior information about the population covariance 

matrix. In this chapter, shrinkage methods will be reviewed. Bayesian methods will be dis-

cussed in Chapter 6. 

This chapter has three sections. Section one briefly introduces different types ofloss 

functions. Section two reviews methods for shrinking the eigenvalues of the sample cova-

riance matrix. Section three presents methods for shrinking the sample covariance to some 

structures. The main focus is on the ridge regression [32] and the Ledoit Covariance Matrix 

Estimator (LCME) [37], because both methods are the inspiration for developing the Ridge 

Covariance Matrix Estimator (RCME) in Chapter 3. 

1. Loss Functions 

There are generally three types of loss functions found in the literature. The most 

commonly used is the entropy loss function first introduced by Stein< [59] (see [63]) 

A A I I A 11 L1 (C, C) = tr(CC- )- log CC- -p, (2-1) 

A 

where C is the estimated covariance matrix, C is the true covariance matrix, and tr de-
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notes the trace of a square matrix. The second loss function is quadratic: 

A A -1 2 
Li(C, C) = tr(CC - I) , (2-2) 

where I is the identity matrix. The third loss function is also quadratic, but with the form 

(2-3) 

The norm 11·11 is defined as the Frobenius norm. 

The corresponding risk functions are defined by 

A A 

Ri(C, C) = E[Li(C, C)], i = 1, 2, 3 (2-4) 

where E is mathematical expectation. 

2. Shrinking the Eigenvalues 

Although the sample covariance matrix is an unbiased estimate of the covariance 

matrix, it is known (for example, [ 4] [37]) that the eigenvalues of the sample covariance 

matrix S are more spread out than those of the true covariance matrix C . This fact suggests 

that if the large eigenvalues of S are shrunk or the small eigenvalues are expanded, an im-

proved covariance matrix estimator may result. 

The idea of shrinking the eigenvalues was first proposed by James and Stein [34]. 

Based on the entropy loss shown in Eq. (2-1), a minimax estimator can be formulated as 

(2-5) 

where A is a lower triangular matrix with positive diagonal elements, and A satisfies 

AAT = (N-l)S.D isadiagonalmatrix,D = diag(d1,d2, •.• ,dp),where 
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1 
d. = ----

1 N+p-2i 
(2-6) 

for i = 1, 2, ... ,p. The risk, defined by Eq. (2-4) based on the entropy loss Eq. (2-1), is 

constant and uniformly smaller than that of S. Olkin and Selliah [51] also proposed a min-

imax covariance estimator similar to the decomposition of Eq. (2-5). 

Stein proposed another estimator with a decomposition structure similar to Eq. (2-

5). Dey and Srinivasan [12] reported that Stein [60] [61] [62] considered the estimator 

C = B/(L)BT, (2-7) 

where L = diag(l 1, 12, ... , lp), li is an eigenvalue of (N- 1 )S, 11 ~ 12 ~ ... ~ lP. B con-

tains the normalized eigenvectors of S, and /(L) is a diagonal matrix with 

/(L) = diag(f1 (L),f2(L), ... ,fpCL)), 

where 

z. 
ft(L) = 1 z. , i = 1, 2, ... ,p 

N-p+2I-I 
z. - l. 

j,t,i I J 

(2-8) 

(we also have the relationship (N - 1 )S = BLBT ). p in the denominator is to make the 

estimator approximately unbiased. 

In this estimator, the large eigenvalues are shrunk and the small eigenvalues are ex-

panded. For example, since l 1 ~ 12 ~- ... ~ lP, l 1 - lj is positive for all j -::f. 1 , it follows that 

l l I-1- is positive, and f 1 (L) < N_l.__ . The largest eigenvalue is shrunk. Similarly, since 
. .Z1 - lj - p 

J,/,1 
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l l 
l - /. is negative for all j -:f:. p , '°' ____:J!_ is negative, and fp ( L) > N____:J!_ • The smallest 
p J L.J/ -/. -p 

jif:i p J 

eigenvalue is then expanded. However, the relationship ft (L) ~fz(L) ~ ... ~fpCL) cannot 

be guaranteed. 

A further modification of this estimator was developed to ensure the relation 

f 1 (L) ~J2(L) ~ ... ~fpCL). If the o~der is not preserved, it can be shown [58] that the es-

timator may not be admissible. Stein provided a method to ensure the order of the eigen-

values in his lectures [60] [61] [62]. Perron [53] also proposed a family of minimax 

estimators to ensure the order. Haff [29] proposed an estimator that uses constrained opti-

mization and enforces the order relation by directly minimizing the entropy loss function, 

while Stein's method minimizes the entropy loss function in a heuristic way. However, it 

has not been proven that these estimators dominate S, i.e., the risks of the estimators are 

less than or equal to the risk of S , with the risks of the estimators are strictly less than that 

of S for at least one true covariance·matrix C. Nevertheless, simulation results [40] 

showed that Stein's ordered eigenvalue estimator not only dominates S, but also outper-

forms the estimator given in Eq. (2-6) for a wide range of covariance matrices. 

Dey and Srinivasan [12] [13] proposed an estimator which dominates S if p > 2. 

This estimator is in the form of Eq. (2-7), in which fi(L) is given by 

(2-9) 

p 2 

where u = L (log/)2 , d is a constant which satisfies d > l 44(p- 2)2 , and g(u) is a 
25(N- l) 

i = 1 
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monotone non-decreasing function satisfying O < g(u) < 12(p- 2~ and E[d~(u)J < oo. 

5(N-1) u 

This estimator shrinks or expands the eigenvalues toward or away from the origin. In fact, 

the origin can be replaced by a point determined by the positions of all the eigenvalues. An 

improved estimator that can adaptively find this point was also reported in [12]. The con-

ditions are similar to those given above and will not be reproduced here. 

Loh [42] [43] [44] extended Stein's method to the estimation of two covariance ma-

trices simultaneously. Let G 1 be a p x p matrix with Wishart distribution W(C 1, N1 - 1), 

and G2 be a p x p matrix with Wishart distribution W( C 2, N 2 - 1), where C 1 and C2 are 

the true covariance matrices for two.different processes, and G 1 , G 2 are independent. If 

prior information suggests that the eigenvalues of C 1 c;1 are close together, then Loh' s es-

timator can get substantial savings in the loss function, defined as the sum of the entropy 

loss function of the two estimated covariance matrices. The idea of estimating two covari-

ance matrices simultaneously was also proposed by Dey [14] almost at the same time. His 

method also estimated the eigenvalues of the covariance matrices simultaneously. 

Recent developments in covariance matrix estimation by shrinking the eigenvalues 

have included the Bayesian method. Leonard and Hsu [39] assume some prior density func-

tion for the true covariance matrix C. Yang and Berger [63] assume a reference prior for 

the parameter pair (B, L). Daniels and Kass [9] assume a prior distribution for the eigen-

values, and they concentrated on the estimation of the posterior mean of the eigenvalues. 

An extension of the eigenvalue shrinkage method is to shrink the correlation struc-

ture of the sample covariance matrix. Instead of decomposing the sample covariance matrix 
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S to eigenvector-eigenvalue-eigenvector structure, decomposing S to variance-correla-

tion-variance structure leads to the correlation shrinkage method with the form 

S = VPV, (2-10) 

' where P is the sample correlation matrix, V is a diagonal matrix with diagonal elements 

equal to the sample standard deviation of each variable, i.e., V = Jdiag(S). The idea was 

first proposed by Lin and Perlman [40]. They estimated V and P by the James-Stein type 

shrinkage method. Later, Daniels and Kass [8] [9] concentrated on the shrinkage of the cor-

relation matrix P . It was assumed that Fisher's z -transform [ 1] of the correlation is zero 

mean and normally distributed, thus forcing the off-diagonal elements of the covariance 

matrix toward zero. This is also equivalent to shrinking towards a diagonal matrix. This 

variance-correlation-variance decomposition method is not guaranteed to produce a posi-

tive definite matrix. Simulation results [9] suggested that if the prior structure is close to 

the true structure, the estimator did very well. When the structure is not close, it can do 

poorly on small samples. 

3. Shrinking towards Structures 

For small samples; the sample covariance matrix is not well conditioned. If some 

prior structural information about the true covariance matrix is available, and this structural 

information can be translated to a structural matrix, then we can shrink the sample covari-

ance matrix to this structure matrix. The resulting covariance matrix estimates would be the 

weighted average of the sample covariance matrix and this structural matrix. Ideally, the 

resulting estimates would be well conditioned and still have all the asymptotic properties 

of the sample covariance matrix. 

11 



In this section, we review some of the choices of the structural matrix and show how 

it can be weight-averaged to the sample covariance matrix. 

Shrinking toward Identity Matrix 

If little or no information is available about the true covariance matrix, a flat prior 

can be assumed: all variances are the same and all covariances are zero. The resulting struc

ture is a multiple of the identity matrix, This is the simplest structural assumption for the 

covariance matrix. The resulting covariance matrix is a weighted average of the sample co

variance and the identity matrix. 

Shrinking to the identity matrix can be traced back to ridge regression in the 1970' s, 

which was proposed by Hoerl and Kennard [32] in the context of multiple linear regression. 

Ledoit formally shrinks the sample covariance matrix to the identity matrix in covariance 

matrix estimation. Some details can be found in the following two subsections. 

Ridge Regression 

Assume there are N sample observations, x 1, x 2, ... , xN. Each observation is a p 

dimensional vector. Let X = [x1, x2, ... , xN{, z be the dependent variable, 8 be the p 

dimensional unknown vector, and E be the error term, then linear regression can be repre

sented by 

z = X8+E. 

Where E[E] = 0, and E[EET] = a21. The Least Square (LS) estimate of 8 is 

8 = (XTXf1XTz, 

12 

(2-11) 

(2-12) 



and the variance of 8 is cr2cxT X)-1. If the sample size is small, then XT X may not be well 

conditioned, and variance of e could be very large. The solution is to add a multiple of 

identity matrix, ul, to XT X, i.e., 

A xTx I -1xT e=( +u) z, (2-13) 

where u is the ridge perturbation factor. The resulting e is a biased estimate but with 

smaller Mean Square Error (MSE). 

Several methods have been proposed for estimating u during the past 30 years. 

Gruber [24] has a very good summary of the different methods. 

How is the ridge regression related to covariance matrix estimation? If the sample 

observations, x 1 , x2 , ... , xN, are zero mean, or the mean is removed from these observa-

tions, the sample covariance matrix can be expressed as 

. 1 T 
S=N_ 1xx. (2-14) 

For the ridge regression, we add ul to XT X, resulting in a better parameter estimation in 

terms of MSE. In a similar way, it is possible to get a better covariance matrix estimation 

method. In Chapter 3, we propose a new ridge covariance estimation method. 

Ledoit Covariance Matrix Estimator (LCME) 

Ledoit [37) formally proposed the idea of shrinking the sample covariance matrix 

to the identity matrix. The estimator is the optimal linear combination of the sample cova-

riance matrix and the identity matrix under the quadratic loss Eq. (2-3). This estimator can 

be used even when the dimension of the matrix p is smaller than the sample size N. How-
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ever, simulation studies [9] show it can over-shrink, resulting in poor performance. The de-

tails of the algorithm follow. 

Using the quadratic loss function of Eq. (2-3), the minimization of the correspond-

ing risk function can be formalized as follows, 

min J = E[ljCL -Cjj 2] 
k1, k2 

subject to CL = k11 + k2S 

(2-15) 

where the coefficients k 1 and k2 are deterministic, and the subscript L represents "Ledoit". 

The solution to Eq. (2-15) is 

(2-16) 

where µ, a.2, ~2 , and 32 are defined as follows, 

µ=Col (2-17) 

a 2 = IIC - µ111 2 (2-18) 

~ 2 = E[IIS - Cll 2] (2-19) 

32 = E[IIS - µ111 2 ] (2-20) 

The operator o is a matrix operation, defined as AoB = tr(ABT), for p x p matrices A 
, p 

and B. 

The minimum objective function J is given by 

(2-21) 
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The value ~2 is the shrinkage intensity, which asymptotically approaches zero as the num-
82 

ber of samples increases. This desirable, since as more samples are available, the covari-

ance matrix can be estimated more accurately, dependence on prior information is reduced, 

and the shrinkage intensity declines accordingly. 

The above solution can not be used in practice, since the parameters µ, a 2 , ~ 2 and 

82 are all computed from the unobservable C . The following method provides consistent 

estimates for these parameters: 

A tr((XTX)/N) 
m=µ= 

p 
(2-22) 

d2 = s2 = lls-µ111 2 (2-23) 

N 

(2-24) 

i = I 

(2-25) 

(2-26) 

Using these parameters, a consistent estimate of the covariance matrix is 

b2 a2 
- -ml+-S 

d2 d2 
(2-27) 

A 

Ledoit proved that, asymptotically, CL has uniformly minimum quadratic risk 

among all the linear combinations of the identity I with the sample covariance S. 

Neither ridge regression nor the LCME assumes any statistical distribution for any 

of the variables. However, there are some methods that do assume a normal distribution for 
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the observation data. Efron and Morris [17], Haff [25] [26] [27] estimated the inverse of the 

covariance matrix instead of the covariance matrix itself. All of the estimators have the fol-

lowing form, 

A -1 -1 
C = [c + f(S)]S + g(S)I, (2-28) 

where c is a non-negative constant, f(S) and g(S) are real functions of S. All of these 

types of estimators are minimax estimators which dominate the maximum likelihood esti-

mator of the covariance matrix. However, if the sample size is small, S may not be invert-

ible or the inversion may induce large errors. Therefore, this method is only good for large 

samples. 

Instead of shrinking toward the identity matrix, any other matrix can be used, if 

proper justification can be given. Ledoit [38] suggested a structure derived from the Capital 

Asset Pricing model [23]. The simulation results for portfolio optimization were reported 

to be successful. 

Chen [5] proposed shrinking toward the Wishart prior with an unknown number of 

degrees of freedom. It was assumed that the prior distribution of the true covariance matrix 

is of the Wishart form 

-1 
C - W((vG) , v), (2-29) 

where G is the prior mean of the true covariance matrix, and v is the degree of freedom of 

G . The estimator has following form, 

* N-1 V * 
C = ---*-S+ * G (2-30) 

N+v -1 N+v -1 

* * The unknown hyperparameters G and v in the Wishart distribution were estimated by 
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the EM algorithm [10] through iteration. However, the degree of freedom has a lower 

bound of p , and it is the only adjustable parameter in this formulation. Simulation results 

[8] indicate that using the Wishart prior is not a good choice. The estimation error can be 

very large in some cases. 

Based on the ridge regression [32] and the LCME [37], we have developed the ridge 

covariance matrix estimator (RCME) and it will be discussed in detail in the next chapter. 
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CHAPTER3 

RIDGE COVARIANCE MATRIX ESTIMATOR 

In order to improve the covariance estimate when the sample size is small, one pos-

sible solution is to shrink the sample covariance matrix to some structure. A Ridge Cova-

riance Matrix Estimator (RCME) is proposed in this chapter, which shrinks the sample 

covariance matrix to the identity matrix based on a quadratic loss function. The resulting 

estimate is biased and is a weighted average of the sample covariance matrix and the iden-

tity matrix. 

This chapter has two sections. Section one is the derivation and interpretation of the 

RCME. Section two suggests some methods for the estimation of the shrinkage intensity 

parameter. 

1. Derivation and Interpretation 

The RCME is inspired by ridge regression [32] and the Ledoit Covariance Matrix 

Estimator (LCME) [37]. Ridge regression adds a multiple of the identity matrix to the sam-

ple covariance matrix (See Chapter 2). The LCME tries to find the optimal weighted-aver-

age of the sample covariance matrix and the identity matrix, using two parameters. The 

RCME is also a weighted average of the sample covariance matrix and the identity matrix, 

but it uses only one parameter, as does ridge regression. 

The problem of shrinking the estimate to the identity matrix is stated as follows, 

(3-1) 
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subject to 

A 

CR = kl+ (1 - k)S (3-2) 

where the subscript R stands for "Ridge", and k is the shrinkage intensity. J is the risk 

A 

function of the estimate CR based on the quadratic loss, as in Eq. (2-3). 

From elementary statistics, we can show that 

(3-3) 

where the first term on the right hand side of the equation is the squared bias ( b iai) and 

the second term is the variance var. The bias term is 

bias2 = IIE[CR] -cll 2 

= IIE[kl+(l-k)S]-Cll 2 

= llk(I- C)ll 2 

= k2IIC-Ill 2 

= k2y 

where y = IIC- 111 2 . The variance terms can be decomposed to 

var= EdlcR-E[CR]ll 21 
= E[ll(kl + (1- k)S) -E[kl + (1- k)S]ll 2] 

= £[II( 1 -k)(S - C)ll 2] 

= (1 -k)2E[IIS- Cll 2] 

= (1 - k)2rt 

where 11 = E[IIS - Cll 2]. 

From Eq. (3-3), (3-4), and (3-5), 

(3-4) 

(3-5) 

(3-6) 

Take the derivative of J with respect to k, set the results to O, and solve the equation fork: 
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k =~ 
0 y+11 = IIC- 111 2 +E[IJS- CJl 2]. 

E[JJS- CJJ 2] (3-7) 

Here the subscript o indicates the optimal value. 

Notice that 

lim aa bias2 = lim 2ky = 0, 
k ---t Q+ k k ---t Q+ 

(3-8) 

and 

lim aavar = lim (-2)( 1 - k)ll = -211 < 0. 
k ---t Q+ k k ---t Q+ 

(3-9) 

~ 

Since CR = S fork = 0, and the derivative of J with respect to k at k = 0 is negative, 

there exists some k, 0 < k < 1 , such that the MSE of CR is smaller than that of S. 

Figure 3-1 illustrates bial and var as functions of k. Since bias2(k) is mono-

tonically increasing with zero slope at k = 0, and var(k) is monotonically decreasing 

with negative slope at k = 0, there must exist some k > 0 where the MSE reaches a min-

imum. Figure 3-1 is plotted for the special case where y = 5 and 11 = 2 . 

The RCME has several useful properties. First of all, since S is a consistent estima-

tor of C , when more samples are available, there should be less shrinkage toward I . In oth-

er words, k0 should approach zero as the number of samples approaches infinity. From the 

definition of 11 , we can see that 11 approaches zero as the number of samples approaches 

infinity. It follows from Eq. (3-7), that if y is a non zero constant, then k 0 approaches zero. 

If y is zero, which means the population covariance matrix is the identity matrix, then 

k0 = 1, and CR = I, a trivial case of covariance matrix estimation. 
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Figure 3-1 Errors of Ridge Covariance Matrix Estimator 

Secondly, instead of shrinking toward the identity matrix, we could use other ma-

trices if proper justification can be made. Let the prior mean for C be the matrix F, then 

y can be redefined to equal II C - Fii 2 . The closer the true covariance matrix C is to the 

prior mean matrix F, the larger,. k 0 will be and the more shrinkage can be made toward F. 

Third, the RCME can be viewed as a method of shrinking or expanding the eigen-

values of the sample covariance matrix toward 1 . In fact, the sample covariance matrix can 

be decomposed as 

S = BQBT, (3-10) 

where Q = diag(q 1, q2, ••. , qp), qi is an eigenvalue of S, and q1 :2:: q2 :2:: ••• :2:: qp. The 

columns of B are the normalized eigenvectors of S. Comparing with Eq. (2-7) in Chapter 

2, we can see that the relation Q = N ~ 1 holds. For the RCME in the form of Eq. (3-2), 
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A 

A 

CR = kl+ (1- k)S 

= B[kl]BT + B[(l -k)Q]BT · 

= B[kl + (1-k)Q]BT 

(3-11) 

If CR is rearranged in the form of 

A T 
CR= B/(Q)B , (3-12) 

with /(Q) = diag(f1 (Q),f2(Q), ... ,JpCQ)), then we can show that 

fi(Q) = qi+k(l-q),i = 1,2, ... ,p (3-13) 

For O < k < 1 , if qi > 1 , then f;( Q) < qi , and therefore the eigenvalues of the cova-

riance matrix estimated by the RCME shrink toward 1. If qi< 1, then fi(Q) >qi, and the 

eigenvalues of the covariance matrix estimated by the RCME expand toward 1 . Therefore, 

the RCME shrinks or expands the eigenvalues of the sample covariance matrix toward 1 . 

Fourth, the condition number of CR is smaller than that of S . The condition number 

of a covariance matrix can be defined as the ratio of the maximum eigenvalue to the mini-

• A q 1 + k(l - q 1) 
mum eigenvalue. From Eq. (3-12), the condition number of CR is . From 

qp + k(l -qp) 

Eq. (3-10), the condition number of S is q1 . It is not difficult to prove the following: 
qp 

q 1 + k(l - q 1) q 1 
----->-. 
qp + k(l - qp) qp 

(3-14) 

Lastly, the RCME preserves the order of the eigenvalues. From Eq. (3-13), if i <j 

(which means that qi< qj ), then fi(Q) <J/Q). Therefore, no additional step is needed to 
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maintain the order of the eigenvalues, as was required for Stein [60] [61] [62], Perron [53], 

and Half [29]. 

A 

From previous discussion, we can see that CR is a biased estimate of the true cova-

A 

riance matrix, but the MSE of CR is smaller than that of S . This is not an uncommon result. 

In fact, the mean estimated by the James-Stein estimator, which will be discussed in Chap-

ter 4, is also biased, but its MSE is smaller than that of the sample mean. This is the famous 

Stein's Paradox. For detailed discussion, see [16] [18]. 

Compared to the LCME, the RCME has two advantages. First, the covariance ma-

trix estimated by the RCME is guaranteed to have smaller MSE than the sample covariance 

matrix, provided that the parameter k is small enough. The LCME cannot make this guar-

antee. Secondly, the parameter estimation in the RCME is easier. There is only one param-

eter to be estimated in the RCME, while in LCME, two parameters are needed. 

2. Estimating Optimal Shrinkage Intensity 

Eq. (3-7) gives the optimal value for k. However, since Eq. (3-7) involves the un-

known true covariance matrix C, k0 cannot be computed in practice. In this section we 

propose three methods for estimating k. The first is Ledoit' s method, which is based on the 

asymptotic convergence theorems proposed by Ledoit [37]. The second is the filtering 

method, which filters the estimate of k from Ledoit' s method. The third is the constraint 

method, which is an extension of the Ledoit' s method that limits the maximum allowable 

value of k. 
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Ledoit's method 

The first method for estimating the shrinkage parameter k is based on Ledoit' s 

method [37] of covariance matrix estimation. Based on Ledoit' s theorem, we can prove the 

following lemmas: 

Lemma 1: !IS- 111 2 converges to E[IIS - 111 2] in a mean-squared sense, i.e., 

lim Var[IIS-111 2] = 0, (3-15) 
N~oo 

where Var is the variance and N is the number of sample points. 

i.e., 

Proof: Refer to the proof of Theorem 2.4 in Ledoit's paper [37]. Omitted here. D 

N 

Lemma 2: ~ L llxix; -sll 2 converges to E[IIS - Cll 2] in a mean-squared sense, 
N 

i = 1 

(3-16) 

and lim Var[~ i llxix; -sll 2
] = 0. 

N~oo N 
i = 1 

(3-17) 

Proof: Refer to the proof of Theorem 2.5 in Ledoit's paper [37]. Omitted here. D 

Based on Lemma 1 and Lemma 2, the estimation of k0 can be given by k~, which 

is defined by 
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(3-18) 

where the subscript L indicates Ledoit' s estimate. 

This Ledoit estimate of k 0 can be derived as follows. First, recall the formula for 

k = ~ = E[IIS-Cll.21 
0 y+ Tl . IIC-111 2 + E[IIS- Cll 2l° 

(3-19) 

We will first find an estimate for the denominator of k 0 , then we will estimate the numer-

ator. For the denominator, we can show 

E[IIS - 111 21 = E[IIS - C + C-111 21 
= E[IIS -Cll 2 + 2(S- C)o(C- I)+ IIC -111 21 
= E[IIS - c11 21 + IIC- 111 2 

= ('Y+TJ) 

(3-20) 

From Lemma 1, E[IIS - 111 21 can be estimated by IIS- 111 2 , therefore this will be our esti-

mate of the denominator of k O • 

Now we want to estimate the numerator of k 0 , TJ = E[IIS-Cll 2l. From Lemma 2, 

N 

we can use 1i L llxix; -sll 2
. 

N. 
I= 1 
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To complete the estimate of k 0 , we notice that in some cases, especially when the 

T 

sample size N is small, it is possible that~ L llxixr - s11 2 > IIS - 111 2 . However, k should 

i = 1 

N 

~ L llxixT - 8 ll 2 

be al ways less than 1 . Therefore, k~ is taken to be the minimum of i = II~ _ Ill 2 and 

1. 

In practice, k~ approaches its true value k 0 only as the sample size goes to infinity. 

However, the objective of the ridge covariance estimation is to improve the covariance es-

timation for small samples. Therefore, Ledoit's estimate of k0 is only of theoretical value. 

Filtering method 

Ledoit' s estimate k~ can fluctuate with relatively large amplitude, especially when 

the sample size is small. This is because in Eq. (3-18), both the denominator IIS- 111 2 and 

N 

the numerator ~ 2 L llxixr - s11 2 can have 1arge variances for small sample sizes. This fact 

i = 1 

has been demonstrated through extensive simulations. On the other hand, k 0 is a relatively 

stable value. k0 only becomes close _to zero when the ·sample size N gets large. Therefore, 

a filtering method is proposed to reduce the fluctuation in Ledoit's estimate of k 0 • 
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AF 
We will indicate the filtered estimate of k0 at time t by k0 (t). At time t + 1, one 

more sample is available. Based on all the available samples, Ledoit' s estimate k; can be 

computed. The updated filtered estimate k~ ( t + 1) can then be computed as the weighted 

AF AL 
average of k0 ( t) and k0 , 

(3-21) 

where co is the forgetting factor, 0 ~ co~ 1 . Larger co will produce less fluctuations in k~, 

while smaller co produces more fluctuation. If co = 0 , k~ = k;, and filtering method is 

equivalent to Ledoit's estimate. 

Later in Chapter 5, the filtering method will be demonstrated on the stock portfolio 

optimization problem. 

Constraint method 

The derivation of the RCME indicates that if k is small enough, it is guaranteed that 

the MSE of CR is smaller than that of S, because the derivative of J with respect to k at 

k = 0 is negative. Therefore, if we limit the maximum k to some small positive value less 

than 1, instead of 1 as in Eq. (3-18), we can obtain improved estimates. 

Later in Chapter 5, a constraint of 0.02 will be used in the shrinkage recursive least 

squares problem. 
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In practice, if the variables differ significantly in magnitude, it is best to normalize 

the data. In this case, we are actually estimating the correlation matrix. 

In Chapter 4, we will apply RCME to the least squares algorithm (both in the batch 

form and the recursive form). In chapter 5, we will provide simulation results for comparing 

the RCME with other covariance matrix estimators. As an application, the RCME will also 

be used in solving the stock portfolio optimization problem. 

28 



CHAPTER4 

SHRINKAGE LEAST SQUARES AND 

SHRINKAGE RECURSIVE LEAST SQUARES 

In this chapter, we apply the Ridge Covariance Matrix Estimator (RCME) devel

oped in Chapter 3 to the Least Squares (LS) algorithm, both in the batch form and the re

cursive form. Our development of the two algorithms are based on the James-Stein Least 

Squares (JSLS) algorithms, both in the batch form and the recursive form, proposed by 

Manton et.al. [46]. The JSLS algorithms improve the least squares estimate of the parame

ter by estimating the parameter mean using the James-Stein estimator [34]. We propose an 

improvement to the algorithm by applying the RCME. The covariance matrix estimated by 

the RCME is used to improve the estimate of the parameter mean, which is estimated by 

the James-Stein estimator. Since both the mean and the covariance matrix are estimated us

ing shrinkage, in the sequel, we will call the resulting batch estimator Shrinkage Least 

Squares (SLS), and the recursive estimator Shrinkage Recursive Least Squares (SRLS), re

spectively. 

This chapter has three sections. Section one briefly reviews the James-Stein Esti

mator. Section two presents the SLS algorithm. In this section, the JSLS algorithm is first 

reviewed and some proofs omitted in [ 46] are bridged. Then the SLS is developed. Section 

three presents the SRLS algorithm ap.d the James-Stein Ledoit Recursive Least Squares 

(JSLRLS) algorithm. In this section, standard Recursive Least Squares (RLS) is first re

viewed, then the James-Stein Recursive Least Squares (JSRLS) algorithm [46] is present-
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ed. Later, we develop the SRLS algorithm, which is the shrinkage version of the RLS 

algorithm and the recursive form of the SLS. Finally, we present the JSLRLS algorithm, 

which is proposed mainly for comparing to the SRLS algorithm. 

1. James-Stein Estimation (JS) 

Let y be a p x 1 random vector with p > 2 . y is normally distributed with mean 

µ and covariance matrix I, i.e., y - N(µ, I). Given the single observation y (we abuse the 

notation here by letting y represent both the random vector and an observation of this ran-

dom vector), the James-Stein (JS) estimate of the mean [15] is 

AJS ( p- 2) µy = 1--T- y 
y y 

(4-1) 

where the superscript JS stands for James-Stein and the subscript y denotes the random 

variable. In the sequel, if it is clear from the context, we may omit the subscript. 

A T A 

It has been proved that the risk (MSE, defined as E[ (µ - µ) (µ - µ)] ) of the 
p 

James-Stein estimator is smaller than the risk of the mean estimated by Maximum Likeli-

hood Estimation (MLE). However, the mean estimated by the James-Stein estimator is bi-

ased. 

If the covariance matrix of y is C, instead of I, i.e., y - N(µ, C), we can make the 

1 1 

transformation y 0 = C 2y. Since E[y 0 ] = C-2µ and Var[y 0 ] = I, it follows 

y 0 -N(µ 0 , I), whereµ 0 

1 
-2 = C µ. Apply Eq. (4-1) to y 0 , 
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1 

where µ:§ is the James-Stein estimate of the mean of y 0 • Substitute y 0 = C 2y into Eq. 

1 

(4-2) and notice that µ;s = C 2µt§. The resulting James-Stein estimator would be 

AJS ( p-2~ µy = l - T -1 y. 
y C 

(4-3) 

There have been many improvements to James-Stein estimation. One of the im-

provements is from [22]. Define ( · )+ = max(O, ·), denote the maximum eigenvalue of the 

covariance matrix C as "-ma/C), and define pe to be the effective dimension of y, 

pe = A tr(~ b) . The James-Stein estimate of the mean can then be written as 
max 

AJS = (1 _(min{(p-2),2(pe-2)})"+')+ 
µy -1 y' 

yTC y 
(4-4) 

where (min{ (p- 2), 2(pe - 2)} )+ replaces p- 2 inEq. (4-3). The inside (.)+ensures that 

if p ~ 2, no shrinkage is given. The outside ( · )+ ensures that the shrinkage is always in the 

same direction as y. 

The mean estimated by the James-Stein estimator is biased. However, its MSE is 

smaller than that of the sample mean. This is the famous Stein's Paradox. In fact, according 

to Efron and Morris [18], "The rationale of the method is to reduce the overall risk by as-

suming that the true means are more similar to one another than the observed data." 
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2. Shrinkage Least Squares (SLS) 

In this section, first the linear model for the least squares estimate is given, then the 

James-Stein least squares algorithm developed by Manton et.al. [46] is presented. Finally, 

we develop the shrinkage least squares algorithm. 

The Model 

We consider the following linear model, 

z = Ry+Tw, (4-5) 

where y is the parameter vector with dimension p x 1 , z is the measurement vector with 

dimension N x 1 , w is the measurement noise vector with dimension N x 1 , R is the ob

servation matrix with dimension N x p, and T is the measurement noise matrix with di

mension N x N. Both R and T are known matrices with rank equal to the number of 

columns. Itis assumed that the elements of w, w(l), w(2), ... , w(N), are independent and 

identically distributed (i.i.d.) with Gaussian distribution. It follows that w - N(O, cr21). We 

assume that cr2 is unknown and n > p . Therefore, it is possible that cr2 can be estimated 

from observation data. 

James-Stein Least Squares (JSLS) 

Manton et.al. [46] applied James-Stein's estimator [34] to the least squares regres

sion problem. The strategy is to obtain the maximum likelihood estimate of the parameter 

vector y, and then apply James-Stein's estimator to reduce the risk of the maximum like

lihood estimate. 

32 



First we derive the maximum likelihood estimate of y . The derivation was omitted 

in [ 46], therefore we bridge the gap here. From the distribution of w, we get the distribution 

of Tw and z 

(4-6) 

z - N(Ry, cr20-1) (4-7) 

where O = (TTT)-1 . The likelihood function l(y) is 

l(y) = f(zly) 

(4-8) 

Take the log of l(y): 

(4-9) 

Take the derivative of logl(y) and set it to zero: 

(4-10) 

Therefore 

(4-11) 

where the superscript ML denotes Maximum Likelihood. Let A O = (RTQR)-lRTQ, and 

combine with Eq. (4-7) 

(4-12) 
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AML 
Simplify y to 

AML 
y -N(y, C), (4-13) 

where 

(4-14) 

The unknown cr2 can be estimated by 

(4-15) 

Now we are ready to relate the maximum likelihood estimate to the James-Stein es-

timate. The James-Stein estimate of y can then be written as 

AJSLS = (1_(min{(p-2),2(pe-2)})+J+AML 
y AML T -I AML y ' 

(y ) C (y ) 
(4-16) 

where the superscript JSLS denotes James-Stein Least Squares. 

The JSLS estimation can be summarized as follows: 

1) Calculate the maximum likelihood estimate of y, using Eq. (4-11). 

2) Estimate cr2 usingEq. (4-15), then estimate C, usingEq. (4-14). 

3) Calculate the James-Stein least squares estimate of y, using Eq. (4-16). 

Shrinkage Least Squares (SLS) 

In JSLS, since cr2 is unknown and has to be estimated from observation data. It fol-

lows that the covariance matrix C is indirectly calculated from observation data contami-

nated by noise. Meanwhile, it is possible that both R and T are estimated from observation 

data with uncertainty. Therefore, the estimation of C from Eq. (4-14) can be quite inaccu-
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rate. The RCME can be applied to reduce the estimation error. The estimated C in JSLS, 

Eq. (4-16), can be viewed as the sample estimate of the covariance matrix, and therefore 

the C estimated by the RCME is 

(4-17) 

where the shrinkage intensity k can be estimated from methods introduced in Chapter 3. y 

is estimated by 

ASLS = (1 _(min{(p-2),2(pe-2)})+J+AML 
y AML T -1 AML y ' 

(y ) CR (y ) 
(4-18) 

where the superscript SLS denotes Shrinkage Least Squares. 

The SLS estimation can be summarized as follows: 

1) Calculate the maximum likelihood estimate of y, using Eq. (4-11), 

2) Estimate C, using Eq. (4-17). 

3) Calculate the shrinkage least square estimate of y, using Eq. (4-18). 

We call this improved least squares algorithm Shrinkage Least Squares (SLS), be-

cause both of the improvements are based on shrinkage: the shrinkage of the covariance 

matrix by the RCME, and the shrinkage of the mean vector by the James-Stein estimator. 

3. Shrinkage Recursive Least Squares (SRLS) 

In this section, we first present the model, then we summarize recursive least 

squares and James-Stein recursive least squares. Later, we develop the shrinkage recursive 

least squares algorithm. Finally, the James-Stein Ledoit Recursive Least Squares algorithm 

is developed. 
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The Model 

In this section we consider the ARX model (Auto Regressive with eXogenous in-

put). At time instant n, 

z(n) = Li aiz(n- i) + Li biu(n- i) + w(n) (4-19) 
i=l i=l 

where z(n) is the observed output, u(n) is the known exogenous input, and w(n) is Gaus-

sian white noise, w(n) - N(O, cr2). The model can be rearranged as follows: 

T 
z(n) = r (n)y(n)+w(n), (4-20) 

where r ( n) is defined as 

T 
r ( n) = [ z ( n - 1 ) , z ( n - 2), ... , z ( n - n a), u ( n - 1 ) , u ( n - 2), ... , u ( n - n b)] , ( 4-21) 

and y(n) contains the parameters estimated at n, 

(4-22) 

At time instant n, we seek the estimate of y(n) based on all available observations 

z(l),z(2), ... ,z(n) andinputs u(l),u(2), ... ,u(n).Itisassumedthatz(i) = 0 and 

u ( i) = 0 for i :5 0 . 

Rewrite Eq. ( 4-20) in the form of Eq. ( 4-5), 

z(n) = R(n)y(n) + T(n)w(n). 

Each term in Eq. (4-23) is defined as follows 

. T 
z(n) = [z(l), z(2), ... , z(n)] , 

T 
R(n) = [r(l), r(2), ... , r(n)] , 
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T(n) = I. 

If the forgetting factor A is considered, then 

T(n) = [O(n)f112 , 

. n-1 n-2 
where O(n) = diag("A ,A , ... , 1). 

Recursive Least Squares (RLS) 

We consider the ARX model in the form of Eq. (4-23) and derive the recursive up-

date of the parameters y ( n) . The forgetting factor A is used to account for parameter vari-

ation in a nonstationary environment. 

The cost function is 

J = wT(n)w(n) 

-1 T -I 
= [T (n)(z(n) -R(n)y(n))] [T (n)(z(n)-R(n)y(n))] (4-24) 

T T T T 
= z (n)O(n)z(n)- z (n)O(n)R(n)y(n) + y (n)R (n)O(n)R(n)y(n) 

Take the derivative of J with respect to y(n) and set the value to O, 

~ T -I T 
y(n) = [R (n)O(n)R(n)] R (n)O(n)z(n). (4-25) 

Since 

RT(n)O(n )R(n) = "ART(n - 1 )O(n - 1 )R(n - 1) + r(n )rT(n), (4-26) 

let P ( n) be the inverse correlation matrix defined by 

T -I 
P(n) = [R (n)O(n)R(n)] . 

By the matrix inversion lemma (see Appendix) 

1 -1 T 
P(n) = A-IP(n-l)-/\, P(n-l)r(n)r (n)P(n-1) 

T 
"A+r (n)P(n-l)r(n) 
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Define k ( n) as the gain vector 

k(n)= P(n-l)r(n) 
T 

A+r (n)P(n-l)r(n) 

Then Eq. (4-28) can be simplified to 

"'-1 T P(n) = I\, [P(n-1)-k(n)r (n)P(n-1)]. 

By rearranging Eq. (4-29), we can get 

k(n) = A-1[P(n- l)r(n)-rT(n)P(n-l)r(n)] 

= t.-1[P(n-1)-k(n)rT(n)P(n-l)]r(n)· 

= P(n)r(n) 

Now we derive the update of y ( n) . Notice that 

(4-29) 

(4-30) 

(4-31) 

RT(n)O(n)z(n) = ART(n- l)O(n- l)z(n-1) + rT(n)z(n), (4-32) 

From Eq. (4-25), (4-27), (4-29), (4-31), and (4-32), 

A T -1 T 
y(n) = [R (n)O(n)R(n)] R (n)O(n)z(n) 

= P(n )[t.RT(n - 1 )O(n - 1 )z(n - 1) + rT(n)z(n)] 

= P(n- l)RT(n- l)O(n- l)z(n-1) 

T T T 
-k(n)r (n)P(n-l)R (n-l)O(n-l)z(n-l)+P(n)(r (n)z(n)) 
A T A 

= y(n-l)+k(n)[z(n)-r (n)y(n-1)] 

The weighted recursive least squares can be summarized as follows [41]: 

1) Initialization: At n = 0, set 

P(O) = 1001, and y(O) == 0. 

(4-33) 

(4-34) 

2) Updating Equations: At each time instant n = 1, 2, ... , N, calculate k(n), 

y(n), and P(n) by Eq. (4-29), (4-33), and (4-30), respectively. 
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James-Stein Recursive Least Squares (JSRLS) 

Since at each time instant, n, Eq. (4-23) holds, it is possible to improve the algo-

rithm for estimating y(n) by using the James-Stein estimator, as in the James-Stein Least 

Squares algorithm. However, the development of this improved algorithm is a little bit dif-

ferent than that of the James-Stein Least Squares algorithm. First of all, as we mentioned 

before, the James-Stein estimator can only be applied to Eq. (4-5). In general, Eq. (4-23) is 

equivalent to Eq. (4-5) only asymptotically. Secondly, this algorithm requires certain care 

to be taken to account for the forgetting factor. 

In order to apply the James-Stein estimator to recursive least squares, we need the 

recursive estimate of cV. The recursive estimate of cV is derived as follows. From Eq. (4-

15), 

02(n) = [T-1(n)z(n) -T-1(n)R(n)y(n)]T[T-1(n)z(n)-T-1(n)R(n)y(n)] 
n-p+2 

= (zT(n)O(n)z(n)- 2zT(n)O(n)R(n)y(n) 

+yT(n)RT(n)O(n)R(n)y(n) ]l(n -p + 2) 

_ s(n) -2dT(n)y(n) + yT(n)P-l(n)y(n) 
- n-p+2 

where s(n) and d(n) are defined by 

s(n) = zT(n)O(n)z(n), 

d(n) = RT(n)O(n)zT(n). 

The recursive update of s(n) and d(n) can be shown to be 

2 
s(n) = As(n- l) + [z(n)] , 

d(n) = 11,d(n- 1) + r(n)z(n). 
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In order to update &2 , n should also be replaced by !t11(n) and updated according to 

Let nmax = max(na, nb) + 1. The algorithm is summarized as follows [46]: 

Initialization: At time instant n = nmax, 

T -1 
P(n) = (R (n)O(n)R(n)) , 

T 
d(n) = R (n)O(n)z(n), 

y(n) = P(n)d(n), 

T 
s(n) = z (n)O(n)z(n), 

T 
Q(n) = R (n)O(n)R(n), 

- {a priori estimation of y(n) 
y(n) = 

0 

if available 

otherwise 

Updating Equations: At time instant n = nmax + 1, nmax + 2, ... , N, 

k(n)= P~-l)r(n) , 

A+ r (n)P(n)r(n) 

,.. ,.. T ,., 
y(n) = y(n-l)+k(n)[z(n)-r (n)y(n-1)], 

~-1 T 
P(n) = /1, [P(n - 1) - k(n )r (n-)P(n - 1)], 

d(n) = Ad(n-1) +z(n)r(n), 

2 
s(n) = As(n-1) + [z(n)] , 
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(4-39) 

(4-40) 

(4-41) 

(4-42) 

(4-43) 

(4-44) 

(4-45) 

(4-46) 

(4-47) 

(4-48) 

(4-49) 

(4-50) 



T 
Q(n) = 11,Q(n-l)+r(n)r (n), 

e tr(P(n)) 
p = ' 

"'ma/P(n)) 

A - T A - T A -

02(n) = s(n) - 2(y(n)-y(n-1 )) d(n) + [y(n)-y(n)] Q(n)[y(n) -y(n)] 

Jtff(n)-p + 2 

AJSRLS( ) _ (l (min{ (p- 2), 2(pe - 2)} )+ ~+ A ( ) y n - - yn, 
[y(n)-y(n -1){ S-1(n)[y(n) -y(n- 1) 

- AJSRLS -
y(n) = Ky (n) + (1- K)y(n -1), 0 ~ K ~ 1 

(4-51) 

(4-52) 

(4-53) 

(4-54) 

(4-55) 

(4-56) 

(4-57) 

In the above formulation, the technique of shifting the origin is applied [46], which 

can decrease the risk of the James-Stein estimator by shifting the origin from O to y( n - 1) 

at time instant n. Specifically, the variable y(n) is introduced and initialized at Eq. (4-45), 

and in the James-Stein estimator formulation Eq. (4-35) and Eq. (4-4), y(n) is replaced by 

y(n)-y(n- 1), resulting in Eq. (4-54) and (4-56). At each iteration, y(n) is updated by 

Eq. (4-57). 

Shrinkage Recursive Least Squares (SRLS) 

In shrinkage recursive least squares, we propose a further improvement to recursive 

least squares based on James-Stein recursive least squares. The RCME is used to estimate 

the covariance matrix, as we did in shrinkage least squares. Specifically, we find the recur-
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sive version of Eq. (4-17) and estimate the shrinkage intensity using Ledoit's method with 

constraint. 

For simplicity, we start at n = 0, as in recursive least squares. The new SRLS al-

gorithm is summarized as follows: 

Initialization: At time instant n = 0 

s(O) = zT(O)O(O)z(O) = 0, 

d(O) = RT(O)O(O)z(O) = 0, 

}fff(O) = 0, 

- {a priori estimation of y(n) 
y(n) = 

0 

if available 

otherwise ' 

b(O) = 0 

Updating Equations: At time instant n = 1, 2, ... , N, 

k(n) = P~ - 1 )r(n) , 

"A.+ r (n)P(n)r(n) 

,.. "' T "' 
y(n) = y(n-l)+k(n)[z(n)-r (n)y(n-1)], 

~-1 T 
P(n) = I\, [P(n-1)-k(n)r (n)P(n-1)], 

d(n) = "A.d(n-1) + z(k)r(n), 

2 
s(n) = "A.s(n-1) + [z(n)] , 
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(4-58) 

(4-59) 

(4-60) 

(4-61) 

(4-62) 

(4-63) 

(4-64) 

(4-65) 

(4-66) 

(4-67) 

(4-68) 

(4-69) 



A 2 s(n)- 2(y(n)-y(n- l)l d(n) + (y(n)-y(n - l)lPk1(y(n)-y(n- l)J 
a (n) = ff 4~m 

lt- (n)-p+2 

S(n) = &2P(n), (4-71) 

(4-72) 

b(n) = b(n) 2' 

(lveff(n)) 
(4-73) 

c(n). = IIS(n)-1112 , (4-74) 

(4-75) 

A 

C(n) = k(n)I + (l -k(n))S(n), (4-76) 

A 

pe(n) = tr(C~n)) , (4-77) 
Arna/ C(n)) 

ASRLS( ) _ (l (min{(p-2), 2(pe-2)})+ ~+ 
y n - - A 1 xk, 

(y(n)-y(n-1)/C- (n)(y(n)-y(n-1) 
(4-78) 

- ASRLS -
y(n - 1) = Ky (n) + ( 1 - K)y(n - 1), (4-79) 

where kup is the upper bound for the k(n) value, and C(n) is the estimated covariance 

matrix by the RCME. 

Let's take a further look to see how the algorithm works. Eq. (4-64)- (4-69) and Eq. 

(4-70) are the same as Eq. (4-46)- (4-51) and Eq. (4-54). Eq. (4-71) is the "sample covari-

ance matrix". Eq. (4-72) - (4-75) estimate the shrinkage intensity by the constraint method 

introduced in Chapter 3, where b(n) is initialized in Eq. (4-64) and Eq. (4-72) - (4-75) use 
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Ledoit's method for estimating shrinkage intensity as in Eq. (3-18) with the upper limit re-

placed by kup. Eq. (4-76)is the covariance matrix estimated bytheRCME. Eq. (4-77) gives 

the effective dimension of y(n) based on the covariance matrix estimated by the RCME. 

Eq. (4-78) is the same as Eq. (4-56), except that the sample covariance matrix s-1(n) is 

A -1 
replaced by C , the covariance matrix estimated by the RCME. Finally, Eq. (4-79) is the 

same as Eq. (4-57). 

The name Shrinkage Recursive Least Squares (SRLS) comes from the fact that the 

covariance matrix is estimated by the RCME and the mean is estimated by James-Stein's 

estimator, both of which belong to the class of shrinkage methods. 

James-Stein Ledoit Recursive Least Squares (JSLRLS) 

We want to propose one more new recursive algorithm - JSLRLS. The JSLRLS is 

similar to the SRLS. The only difference is that the covariance matrix is estimated by the 

LCME instead of the RCME. 

In the JSLRLS, the following updating equations replace Eq. (4-72) - (4-76), 

m(n) = tr(S(n)), 
p 

d(n) = IIS(n) - m(n)Ill 2 , 

b(n) = Ab(n- 1) + lly(n))?(n)-S(n)ll 2 , 

b(n) = min[ b(n) 2, d(n)], 
(Neff(n)) 

a(n) = d(n)- b(n), 
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~ b(n) a(n) 
c(n) = d(n)m(n)I + d(n)S(n). (4-85) 

Eq. (4-80) - (4-85) are the recursive version of the LCME. They are essentially the same as 

Eq. (2-22) - (2-27), with m(n), d(n), b(ri), b(n), and a(n) corresponds tom, d2, b2, 

b2, and a2 in Eq. (2-22) - (2-27). 

Later in Chapter 5, we will provide the simulation results for comparing the stan-

dard RLS, JSRLS, SRLS, and JSLRLS. 
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CHAPTERS 

SIMULATION RESULTS: RIDGE 

COVARIANCE ESTIMATION 

In this chapter, we present the simulation results for the Ridge Covariance Matrix 

Estimator (RCME) proposed in Chapter 3, and its application to Recursive Least Squares 

(RLS) - the Shrinkage Recursive Least Squares (SRLS) algorithm, as proposed in Chapter 

4. 

This chapter contains two sections. Section one is the comparison of different 

shrinkage covariance matrix estimators by Monte Carlo simulation. Section two is the 

Monte Carlo simulation for comparing different recursive least squares algorithms. 

1. RCME: Comparison by Monte Carlo Simulation 

In this section, we present the simulation results for different covariance matrix es-

timators. The first is the sample covariance matrix. The second is the RCME with Ledoit' s 

method for estimating shrinkage intensity. The third is the RCME with optimal shrinkage 

intensity value, in which the true covariance matrix is assumed to be known and shrinkage 

intensity is chosen by the golden section search with parabolic interpolation optimization. 

The third method is only used for comparison purposes and is not practical since the true 

covariance matrix is unknown beforehand. The fourth is the LCME. The three estimated 

Ao 
covariance matrices are denoted by CR, CR, and CL, respectively. We also compare the 
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shrinkage intensity estimate by Ledoit's method with the optimal shrinkage intensity esti-

mated by the golden section search with parabolic interpolation optimization method. 

The Monte Carlo simulations were carried out with different numbers of sample 

points, different eigenstructures of the covariance matrix, and different matrix dimensions 

to show how the estimators perform. 

The Monte Carlo simulation steps are as follows: 

1) Set matrix dimension p = 3. 

2) Set the eigenvalues of the true covariance matrix "A = { 2, 1.5, 1 } . 

3) Set number of sample points N = 10. 

4) Randomly generate true covariance matrix C and N samples. 

5) Compute sample covariance matrix S, CR - covariance matrix estimated by 

AO 

the RCME with shrinkage intensity k estimated by the Ledoit method, CR -

covariance matrix estimated by the RCME with k estimated by the golden 

A 

section search with parabolic interpolation optimization method, and CL -

covariance matrix estimated by the LCME. Calculate the squared error of 

these estimations, which are defined by IIS - Cll 2 ' llcL - cll 2 ' lie~ -cll 2
' and 

llcL- cll 2 , respectively. 

6) Repeat steps 4-5 1000 times. Calculate the average values of the MSE of the 

covariance estimation for the four estimators. 

7) Set N = 20, 30, ... , 200 , repeat step 4-6. Record the four average MSEs. 

8) Set "A = { 10, 5, 1}, and A = { 100, 50, 1}, respectively, repeat step 3-7. 
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9) Set matrix dimension p = 5 , repeat step 2-8. 

We compared the four different covariance matrix estimators by computing the Per-

centage Relative Improvement in Average Loss (PRIAL) [37] [8] defined by 

E[11s- c11 21 -Edlc -cll 21 

E[IIS- Cll 2] 

A A AO A 

(5-1) 

where C can be CR, CR, or CL. Since we are averaging MSEs over 1000 times at step 6, 

the average MSE is a good estimate of the Expectations in Eq. (5-1). The PRIAL can not 

be greater than 1 . The larger the value, the better the improvement of the estimator over 

the sample covariance matrix S. Negative PRIAL indicates that the estimator performs 

worse than the sample covariance estimate. 

Figure 5-1 is the plot of the PRIAL vs. number of samples N for different matrix 

dimension p and different eigenstructures. In each of the plots, the solid line is the PRIAL 

Ao A 
of CR , the dotted line is the PRIAL of CR, and the dash-dotted line is the PRIAL of CL . 

From Figure 5-1, the following observations can be made: 

Ao 
• RCME with optimal shrinkage intensity: In all cases, CR has the largest PRI-

Ao 
AL, which means CR is the best covariance estimator among all the four esti-

mators. This implies that if a good method for estimating the optimal shrinkage 

intensity k0 exists, the RCME can outperform the LCME. 

• Sample covariance matrix: Since all three PRIALs are greater than O for all 

Ao A 
cases, the CR and CR by the Rc;ME, and the CL by the LCME all outperform 

the sample covariance matrix in terms of MSE. 
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Figure 5-1 PRIAL of CR, CR, and CL 

A AO A 

(CR - solid line, CR - dotted line, CL - dash-dotted line) 

• Comparison of CR and CL: The PRIALs of CR and CL are about the same, 

except for the first case. This implies there is no big advantage to choosing the 

LCME. The disadvantage of the LCME is obvious: two parameters need to be 

estimated, and there is no other way (but Ledoit' s method) to estimate both pa-

rameters. The PRIAL of CL is larger than that of CR only in the first case, 

when the dimension of the covariance matrix is small (p = 3 ), the eigenstruc-

ture of the covariance matrix is close to the identity matrix (A = { 2, 1.5, 1} ), 

and the number of observations is small (N < 80 ). 
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• Effect of sample size: When the sample size N gets larger, the PRIAL of CR, 

c~ ' and CL gets smaller. This is because the sample covariance matrix s is a 

consistent estimator of the true covariance matrix C . When more samples are 

available, less shrinkage toward the identity matrix is required. 

• Effect of matrix dimension: Although only two cases were studied (p = 3 and 

p = 5 ), the effect of p is clear. When p is small, for the same PRIAL, fewer 

sample points are needed. 

• Effect of the eigenstructures: The identity matrix has equal eigenvalues. If the 

eigenvalues of a covariance matrix are close to each other, then we say that the 

eigenstructure of the covariance matrix is close to the identity matrix. Simula-

tion results show that if the true covariance matrix has an eigenstructure close 

" AO A 

to the identity matrix, the PRIALs of CR, CR, and CL are large. This is be-

AQ 

cause all three shrinkage estimated covariance matrices, CR, CR, and CL, 

shrink toward the identity matrix. 

Figure 5-2 is the plot of the shrinkage intensity k vs. the number of samples N for 

different matrix dimensions and different eigenstructures. In each of the plots, the solid line 

is the shrinkage intensity estimated by the Ledoit' s method, the dotted line is the optimal 

shrinkage intensity estimated by the golden section search with parabolic interpolation op-

timization method. 

From Figure 5-2, the following observations can be made: 

• Effect of sample size: As sample size gets larger, shrinkage intensity becomes 

smaller, which means less shrinkage towards the identity matrix. When the 

sample size is small, Ledoit' s method tends to over estimate the optimal k. On 
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the other hand, when the sample size is large, Ledoit' s method tends to under 

estimate the optimal k. This indicates that when we estimate the covariance 

matrix with small samples, it may help to put a cap on the maximum allowable 

value of k. This observation results in the Constraint method for shrinkage in-

tensity estimation in Chapter 3 and using Eq. (4-75) in Shrinkage Recursive 

Least Squares. 

p=3,1-=(2, 1.5, 1 I p=5,1-=(2, 1.5, 1, 1, 1 l 

-"' 0.5 -"' 0.5 

0 0 
0 50 100 150 200 0 50 100 150 200 
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-"' 0.5 -"' 0.5 

0 ··················· 0 
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N N 

p=3,1.=(100,50, 1} p=5,1.=(1 oo,so,40,20, 1 l 

-"' 0.5 -"' 0.5 

0 
........ ·········· .... 0 

0 50 100 150 200 0 50 100 150 200 
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Figure 5-2 Shrinkage Intensity 
(k estimated by the Ledoit method - solid line, optimal k - dotted line) 

• Effect of matrix dimension: Although only two cases were simulated (p = 3 

and p = 5 ), the effect of p is clear. When p is larger, for the same sample 

size, k tends to be larger, which means more shrinkage toward the identity ma-

51 



trix is necessary. 

• Effect of the eigen structure: If the true covariance matrix has an eigen structure 

close to the identity matrix, for the same s_ample size, k is larger, which means 

more shrinkage towards the identity matrix is required. 

Because of the wide range of N, p and the eigenstructure, it is difficult to apply the 

Filtering method and the Constraint method (see Chapter 4) in this simulation. We will see 

how these two methods can be used in the estimation of k 0 in the next sections and in Chap-

ter 9. 

2. SRLS: Comparison by Monte Carlo Simulation 

In this section, we compare four different ree1,1rsive least squares algorithms: The 

first is standard Recursive Least Squares (RLS) as described by Eq. (4-34), (4-29), (4-33), 

and (4-30) in Chapter 4. The second is James-Stein Recursive Least Squares (JSRLS) as 

described by Eq. (4-39) - (4-57). The third is Shrinkage Recursive Least Squares (SRLS) 

as described by Eq. (4-58) - (4-79). (In SRLS, the filtering method (see Chapter 3) was used 

for estimating the shrinkage intensity.) The fourth is James-Stein-Ledoit Recursive Least 

Squares (JSLRLS), in which the Ledoit' s covariance matrix estimator is used for estimating 

the covariance matrix. 

In the following, we first present the ARX mqdel used in the Monte Carlo simula

tion and the evaluation criteria for comparing different models. Later, detailed simulation 

steps are addressed. Finally, the simulation results are presented and discussed. 

The following ARX model is used in the simulation: 
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5 

z(n) = L aiz(n - i) + L biu(n- i) + w(n). (5-2) 
i=l i=l 

This model is the same model as described in Eq. (4-19) of Chapter 4 with na = 1 and 

nb = 5 . In JSRLS, SRLS, and JSLRLS, we assume no prior knowledge of the parameters 

are available. Therefore, y(n) = 0, as shown in Eq. (4-45) and Eq. (4-62). 

In comparing the performance of the four different algorithms, we calculate the im-

provement in the squared error of the parameter estimates using the RLS estimates as a 

baseline. The squared error e(n) at time instant n is defined as 

2 
a1 al 
A 

bl b1 
A 

b2 
e(n) = b2 (5-3) 

A 

b3 b3 
A 

b4 b4 
A b5 bs 

where ; 1 , b 1 , b2, b3 , b4, and bs are the estimates of the parameters a 1 , b 1 , b2 , b3 , b 4 , 

and b 5 at time instant n . 

RLS JSRLS 
We denote the e(n) for RLS, JSRLS, SRLS, and JSLRLS as e (n), e (n), 

iRLS (n), and /SLRLS (n), respectively. The RLS algorithm will be used to represent stan-

dard performance, and we will measure the improvements obtained by the other three al-

gorithm. The improvements will be measured for three time intervals: initial, final and total. 

For JSRLS, the improvements are defined as follows: 
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45 45 

L RLS( ) e n - L /SRLS(n) 

Initial = n = 15 n = 15 
45 

L eRLS(n) 

n = 15 

1000 1000 

L RLS( ) e n - L /SRL\n) 

Final = n = 970 n = 970 
1000 

L /L\n) 

n = 970 

1000 1000 

L eRL\n) _ L /SRLS(n) 

Total = n"'---= ....,15.__ __ __,n-=-=___._.15'-----
1000 

L eRLS(n) 

n = 15 

(5-4) 

(5-5) 

(5-6) 

For SRLS and JSLRLS, the definitions of the relative improvements are defined in the 

. JSRLS SRLS JSLRLS 
same way withe (n) replaced bye (n) and e (n). 

The simulation steps are as follows: 

1) Set the forgetting factor 11. = 0.95 for all four recursive least squares algo-

rithms. Set the number of sample points N = 1000. Set the true parameters 

2) Generate N points of input data u(n), n = 1, 2, ... , N. Add independent 

noise with normal distribution N(O, 0.01) to the true parameters. Generate 

observation data z(n), n = 1, 2, ... , N from Eq. (5-2), where w(n), 

n = 1, 2, ... , N is white noise with normal distribution N(O, 0.25). 
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3) Estimate the parameters using RLS, JSLRLS, SRLS, SLRLS. Compute the 

estimation errors for each algorithm. In SRLS, the shrinkage intensity is esti-

mated using the constraint method with constraint equal to 0.02 . 

4) Repeat Steps 2 - 3 750 times. Compute the average estimation error for each 

algorithm. Calculate the relative improvements for JSLRLS, SRLS, and 

SLRLS. 

5) Set 'A, = 1.0, which is equivalent to no forgetting. Repeat Step 2 - 4. 

T T 
6) Set [a1, b 1, b2, b3, b4, b5] = [0.6, 0.4, 0.1, 0.2, 0.3, 0.4] . Repeat Step 2-

5. 

T 
Table 5-1 compares the squared error improvement for y = [0.6, 4, 1, 2, 3, 4] . 

TABLE 5-1 Relative improvement for y = [0.6, 4, 1, 2, 3, 4 { 

'A, 0.95 1.0 

Method JSRLS JSLRLS SRLS JSLS JSLRLS SRLS 
Initial 0.0010 0.0024 0.0035 0.0008 0.0017 0.0034 
Final 0.0009 0.0020 0.0025 -o.0004 0.0012 0.0467 
Total 0.0011 0.0029 0.0044 0.0005 0.0015 0.0134 

From the table, we can make the following conclusions: 

• The shrinkage algorithms, JSRLS, JSLRLS, and SRLS, all outperform the 

standard RLS. This indicates that the improved estimation of either the mean 

(JSRLS) or the mean and the covariance matrix (JSLRLS, SRLS), can improve 

the accuracy of the parameter estimation. 

• Both the JSLRLS and the SRLS outperform the JSRLS. This indicates that if 

the covariance matrix is estimated by some shrinkage estimator (the LCME, as 
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in the JSLRLS, or the RCME, as in the SRLS), instead of by the sample cova

riance matrix, as in the JSRLS, the accuracy of the parameter estimation can be 

improved. 

• The SRLS outperforms the JSLRLS. This indicates that the RCME performs 

better than the LCME. 

• Among all the four algorithms, the parameters estimated by the SRLS are the 

most accurate, no matter whether the forgetting factor is used or not. 

• Effect of sample size in SRLS: When the forgetting factor is considered, SRLS 

has better final estimation error improvement than initial estimation error im

provement. This is mainly caused by the Filtering method for estimating the 

shrinkage intensity. Initially, the incorrect initialization of P( n) leads to incor

rect S(n), b(n), b(n), c(n), and finally k(n), as shown in Eq. (4-58), (4-71), 

(4-72), (4-73), (4-74), and (4-75). With the progress of the algorithm, P(n) ap

proaches the correct value, and causes k( n) to approach the correct value also. 

The final result is that the error of the parameter estimation becomes smaller. 

Table 5-2 compares the squared error improvement for 

y = [0.6, 0.4, 0.1, 0.2, 0.3, 0.4]. 

For all cases, the conclusions from Table 5-1 are also valid here. The reason that we used 

another set of parameters is to show that if the parameter set is closer to O, the relative im

provements of the JSRLS, JSLRLS, and SRLS are greater. This is because we have as

sumed the prior y(n) = 0 in the James-Stein estimator part of the algorithms. The results 

indicate that if a good prior can be given, we can further improve the accuracy of the pa-
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rameter estimation. 

TABLE 5-2 Relative improvement for y = [0.6, 0.4, 0.1, 0.2, 0.3, 0.4{ 

A 0.95 1.0 

Method JSRLS JSLRLS SRLS JSRLS JSLRLS SRLS 

Initial 0.0187 0.0305 0.0321 0.0121 0.0211 0.0306 
Final 0.0117 0.0155 0.0195 0.0001 0.0002 0.0004 

Total 0.0135 0.0194 0.0220 0.0018 0.0034 0.0042 

Till now, we have presented the RCME, which belongs to one class of covariance 

matrix estimators - the shrinkage estimators. Two applications of the RCME were also pre-

sented: shrinkage portfolio optimization and the shrinkage least squares algorithm. Monte 

Carlo simulation results were also given. 

In the next three chapters, we will discuss another class of covariance matrix esti-

mators - Bayesian covariance matrix estimators. Chapter 6 is a survey of the available 

methods. In Chapter 7, we propose the hierarchical Bayesian covariance matrix estimator. 

Chapter 8 presents the simulation results. 
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CHAPTER6 

BAYESIAN METHODS 

In this chapter, we review Bayesian estimation methods. This chapter provides 

background information for developing the Hierarchical Bayesian Covariance Matrix Es-

timator (HBCME), which will be presented in Chapter 7. 

This chapter has three sections. Section one briefly introduces Bayes theorem. Sec-

tion two reviews the available Bayesian covariance matrix estimation methods and the 

available choice of priors. Section three presents the Bayesian regularization method for 

neural network training proposed by MacKay [45] with implementation suggested by Fore-

see and Hagan [20]. The basic idea of the HBCME is inspired by Bayesian regularization. 

1. Bayes' Theorem 

Bayes' theorem describes the relationships that exist within a class of simple and 

conditional probabilities. It was proposed by Thomas Bayes [2]. Areprint of [2] can be 

found in [54]. 

Consider a statistical experiment: Let B be the observed data and A be the unob-

servable quantities or population parameters. Let P(B) be the probability that B occurs, 

and P(A) be the probability that A occurs. Let P(AIB) be the probability that A occurs 

conditional on B, and P(BIA) be the probability that B occurs conditional on A. Bayes's 

Theorem states that (assume P(B) > 0) 

P(AIB) = P(BIA)P(A) 
P(B) ' 

(6-1) 
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where P(A IB) is the posterior probability, P(B IA) is the likelihood function, P(B) is the 

prior probability of B, and P(A) is the total probability. The total probability P(B) is a 

normalizing factor such that P(B) = JP(BIA)P(A)dA. 

In Bayesian estimation, A contains parameters that we would like to estimate. The 

Bayesian estimate of A will be the value that maximizes the posterior density P(A IB). 

2. Bayesian Covariance Matrix Estimation 

When we are using Bayesian methods to estimate the covariance matrix, the A in 

Eq. (6-1) consists of the unknown elements of the covariance matrix, and possibly the 

mean. The trick to Bayesian estimation is in choosing the prior density P(A). We want to 

choose a prior that reflects pre-existing knowledge of A, and also allows for efficient com

putation of the value of A that maximizes the posterior density P(A IB). 

In this section, we review several approaches for covariance matrix estimation by 

Bayesian methods: Anderson's method [1], Chen's method [5], and Raff's method [28]. At 

the end of this section, we briefly introduce some popular priors that can be used for cova

riance matrix estimation. 

First we review Anderson's results. Anderson [l] showed two results for Bayesian 

covariance matrix estimation. The first result assumes a prior distribution for the covari

ance matrix. The second result assumes a joint prior distribution for the covariance matrix 

and the mean. 
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Assume there are N independent observations, x 1, x2, •.• , xN, where each observa-

tion xi is a p x 1 vector with multivariate normal distribution N(µ, C). The sample mean 

x and sample covariance matrix S are 

N 
- 1 
x = NL xi, 

i = 1 

N 
1 - - T 

S = ~ L (xi-x)(x;-x) , 

i = 1 

(6-2) 

(6-3) 

where n = N - 1 is the number of degrees of freedom. It can be shown that, since xi is 

normal, nS will have a Wishart distribution W( C, n). The first result of Anderson shows 

that if we assume that the prior distribution of the true covariance matrix C is inverted 

Wishart, represented by w-1 (L, m), then the posterior distribution of C is 

1 W- (nS+L,n+m). (6-4) 

We can then estimate C by maximizing the posterior distribution. 

The second Anderson result assumes a joint density function for the mean and the 

covariance matrix. The observations x 1, x2, ... , xN are assumed to have a multivariate nor-

mal distribution N(µ, C). Suppose theµ and C have a joint normal-inverted Wishart prior 

density 

(6-5) 

then the joint posterior density of the µ and C is 
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( 1 - 1 ) 
Nµ N+K(Nx+Kt), N+KC 

(6-6) 1( NK - - T ~ 
xW~ L+nS+N+K(x-t)(x-t) ,N+m) 

This can be maximized to obtain estimates of µ and C . 

We next review Chen's result. Chen [5] assumed the true covariance matrix has a 

Wishart prior distribution, as we discussed in Chapter 2, with the form C - W((vG )-1, v), 

where G is the prior mean of the true covariance matrix, and v is the number of degrees 

of freedom of G. By Bayes's theorem, the posterior distribution of C is an inverted 

Wishart distribution 

-1 * * * Cl(x1,x2, ... ,xN)-W (nS+v G ,N+p+v ). (6-7) 

Therefore the Bayes estimate of C is the mode of the posterior density: 

* N- l V * 
C = ---*-S+ * G (6-8) 

N+v -1 N+v -1 

* * where the unknown hyperparameters G and v in the Wishart distribution can be estimat-

ed by the EM algorithm [10] through iteration. Simulation results showed that the estima-

tion error can be very large in some cases. 

Now we present Raff's results. Haff [28] also assumed normally distributed mea-

surements, which produces a Wishart distribution for the sample covariance matrix 

S - W(L, v). He derived an empirical Bayes covariance estimator of the form 

A 

C = c[S + ut(u)C]. (6-9) 
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1 
where O < c < - , u = 

V 

1 
_1 , t(.) is nonincreasing, and C is an arbitrary positive def-

tr(S C) 

inite matrix. He proved that the best estimator among the scalar multiples of S according 

to the loss function L1 (see Eq. (2-1)) is 

A 1 
C1 = -S 

V ' 
(6-10) 

and the best estimator among the scalar multiples of S according to the loss function L2 

(see Eq. (2-2)) is 

C2 = 1 l S. 
v+p+ 

(6-11) 

If the parameters c, u, C and the function t( ·) satisfy certain conditions, the estimator giv-

en by Eq. (6-9) has smaller risk than C 1 in terms ofloss function L1 for every I:. For some 

given conditions (other than th.e ones mentioned above) for the parameters c, u, C and 

A 

function t( ·), the estimator of Eq. (6-9) has smaller risk than C2 in terms of loss function 

L2 for every I: . 

Efron and Morris [17] presented similar results as Haff. Instead of estimating the 

true covariance matrix directly, they estimate the inverse of the true covariance matrix. The 

estimated covariance matrix has less risk than any scalar multiple of the sample covariance 

matrix S. 

In addition to the Wishart prior, there are other priors that can be used for covari-

ance matrix estimation, such as the Jeffreys' prior [35], the reference prior [3], the uniform 
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shrinkage prior [6] [7], and the log matrix prior [39]. Daniels and Kass [7] [8] has a good 

review of the possible priors. 

3. Bayesian Regularization 

In this section, we review the method of Bayesian Regularization for training neural 

networks. The Bayesian Regularization method was first proposed by MacKay [45]. Later, 

Foresee and Hagan [20] applied the Gauss-Newton approximation to the estimation of the 

Hessian matrix in the Bayesian Regularization algorithm. 

In the following we show in detail the Gauss-Newton approximation to Bayesian 

Regularization (GNBR) algorithm. 

Let M represent a specific multi-layer feedforward neural network model (for de-

tails on neural networks, see [30]), and w be the weight vector pertaining to this model, 

which contains nw elements, w 1, w2, ••• , wn . Let D represent the training data set con-
w 

taining N input-target pairs, {p 1, t 1}, {p2, t2}, ... , {pN, tN}, where Pi is the input and ti 

is the target. For input pi, let the corresponding neural network output be ai, calculated by 

(6-12) 

where f( ·) is the neural network mapping function, and Ei is the Gaussian noise pertaining 

to the i th input. 

Define the data error ED to be the sum squared error: 

N 

2 
Ev= L (ti-ai) . 

i = 1 
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Define the regularization error Ew to be the sum of squares of the network weights: 

N 
2 Ew = L wi. 

i = 1 

(6-14) 

The objective of the neural network training is to minimize the following objective func-

tion, 

(6-15) 

where the subscript M represents the total modeling error, a is a parameter related to the 

variance of the weights, and b is a parameter related to variances of the noise Ei. The def-

inition of a and b will be given later. 

In the Bayesian setting, we assume the weights w are random variables. After the 

data is taken, the posterior probability of the weights given the data is 

P( ID b M) = P(Dlw, b, M)P(wla, M) 
w ,a, ' P(Dla,b,M) ' (6-16) 

where P(wlD, a, b, M) is the posterior density function of w, P(Dlw, b, M) is the likeli-

hood function, P(wla, M) is the prior density function, and P(Dla, b, M) is the total prob-

ability density. 

If the noises Ei, i = 1, 2, ... , N, in the training set data are assumed to be indepen-

dent and identically distributed (i.i.d.), with distribution N(O, ci), the likelihood function 

can be written as 
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N 1 { 1 2} P(Dlw, b, M) = II ~ exp --2(ti-ai) 
"' 2 rc cr 2 cr 

i = 1 

= --~-N-/2exp{--1 2 i (ti-ail}. 
(2rccr ) 2cr i = 1 

(6-17) 

We define b = ~ and zv(b) = G;)N/2, then P(Dlw, b, M) simplifies to 
2cr -

1 
P(Dlw, b, M) = zv(b) exp(-bEv). (6-18) 

If the weights w are also i.i.d. with distribution N(O, cr!), then the prior density of 

the weights can be written as 

nw 1 { 1 2} 
P(wla, M) = II ~ exp --2 wi 

i = 1 ,J21tcrw 2crw , 

= 

1 (~1nw/2 
We define a = - 2 and zw(a) = ~ , then P(wla, M) simplifies to 

2crw 

1 
P(wla, M) = -(-)exp(-aEw). 

zw a 

(6-19) 

(6-20) 

Since the total probability P(Dla, b, M) is only a normalizing factor in Eq. (6-16), 

from Eq. (6-18) and Eq. (6-20), we obtain 
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zv(b)zw(a) exp(-(bEv + aEw)) 

P(wjD,a,b,M) = P(Dja,b,M) 

1 

(6-21) 

= / b) exp{-EM} 
ZM a, 

where zM( a, b) is the normalization factor. Since by the fundamental theorem of the prob-

ability, JP(wlD, a, b, M)dw = 1 for all possible w, we have 

(6-22) 

EM can be approximated by a quadratic function using a second order Taylor expansion 

(6-23) 

where wMP is the most probable estimate (maximum of the posterior distribution) of w 

and HMP is the Hessian of EM(w) estimated at point wMP, i.e., 

MP 2 I 2 2 I H = V EM(w) w=wMP = (bV Ev+aV Ew) w=wMP" (6-24) 

It follows from Eq. (6-22) and Eq. (6-23) that 

nw/21 MPi-112 MP 
zM(a,b) = (21t) H exp{-EM(w )}. (6-25) 

In order to find the posterior density P(wjD, a, b, M) from Eq. (6-21), we need to 

find the variance parameters a and b . At this point we take another step in a hierarchical 

Bayesian analysis: We assume that a and b are random variables, with a given prior den-

sity. Apply Bayes's theorem again, we find 

P( bjD M) = P(Dja, b, M)P(a, blM) 
a, ' P(DIM) ' 

(6-26) 
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where the total probability P(Dla, b, M) in Eq. (6-16) becomes the likelihood function in 

Eq. (6-26). If we assume a flat prior for a and b, then P(a, blM) is a constant. P(DIM) 

is the normalization factor and not a function of a and b . Therefore, maximizing the pos-

terior density P(a, bjD, M) is equivalent to maximizing the likelihood function 

P(Dla, b, M). FromEq. (6-16), we get 

P(Dja, b; M) = P(Dlw, b, M)P(wla, M). 
· P(wlD, a, b, M) 

(6-27) 

By Eq. (6-17), (6-19), and (6-21), Eq. (6-27) can be expressed as 

~ exp (-bEv{~exp (-aEw)) 

P(Dla, b, M) = l 

( b) exp{-EM} 
ZM a, (6-28) 

ZM(a, b) 
= 

zv(b)zw(a) 

In order to find the optimal value of a and b , which maximizes the posterior den-

sity, we can take the derivative of the log of the right hand side of the Eq. (6-28) and set it 

to zero, solving for a and b . The result is 

MP Pe . MP N-pe 
a = MP ' and b = MP ' 

2Ew(W ) 2Ev(W ) 
(6-29) 

where 

e MP MP -1 
p = nw - 2a tr((H ) ) (6-30) 

is the effective number of parameter's, which is a measure of how many parameters in the 

neural network can effectively reduce the error function EM. The superscript MP refers to 

Most Probable value. 
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The Levenberg-Marquardt optimization algorithm is used in Eq. (6-15) to find the 

minimal point wMP [30]. The Gauss-Newton approximation can be used to approximate 

HMP h . , t at lS 

2 T 
H = V EM(w) ""'2bJ J + 2al, (6-31) 

where J is the Jacobian matrix of the training set errors, which is readily available in the 

Levenberg-Marquardt algorithm. 

The GNBR algorithm can be summarized as follows: 

1) Initialization: set a = 0, b = 1. Randomly initialize the weights w. 

2) Minimize the objective function Eq. (6-15). Only one step of the Levenberg-

Marquardt algorithm is sufficient. 

3) Compute H by Eq. (6-31). Compute pe by Eq. (6-31). 

4) Compute a and b by Eq. (6-29). 

5) Repeat Step 2-4 until convergence. 

In the next chapter, we will apply the idea of Hierarchical Bayesian regularization 

to the estimation of the covariance matrix. 
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CHAPTER 7 

HIERARCHICAL BAYESIAN COVARIANCE 

MATRIX ESTIMATOR 

In this chapter, we propose the Hierarchical Bayesian Covariance Matrix Estimator 

(HBCME). HBCME is inspired by the Bayesian Regularization for neural network training 

[45] [20] that we reviewed in Chapter 6. 

There are three sections in this chapter, Section one is the assumptions made in or-

der to develop the HBCME, in which only 2 unknown parameters in the prior covariance 

matrix are assumed. Section two presents detailed derivation of the estimator. In section 

three, we relax the assumptions made in Section one and develop the extended HBCME., 

in which p + 1 unknown.parameters in the prior covariance matrix are assumed. 

1. Assumptions 

Let c ij, 1 ::; i, j ::; p , denote the elements of the covariance matrix C . We make the 

following assumptions on the prior of the covariance matrix C : 

Assumption 1: The mean of the covariance matrix is bl, where b is a positive real 

number. 

We assume that the prior structure of the covariance matrix is a multiple of the iden

tity matrix. This is equivalent to assuming that the variances of the elements of the mea

surements are equal and that the covariance between any. two of the elements is zero. 
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Assumption 2: Each element c ij has the same variance ~ . 

Assumption 3: Each element of the upper triangle of the covariance matrix (includ-

ing the diagonal elements), cij (i ~j), is normal, independent, and identically distributed 

(i. i. d.). 

Since the covariance matrix is symmetric, only the elements in the upper triangle of 

the covariance matrix (including the diagonal elements) are independent. 

Based on these assumptions, the distribution of cij (i ~j) is 

where oij is the delta function defined as 

f, .. = {1 
lj 0 

2. Derivation 

if i = j 
if i * j 

(7-1) 

(7-2) 

Assume there are Ni. i. d. observations x 1, x2, ... , xN. Each observation is a p x 1 

vector with normal distribution N(µ, C) for i = 1, 2, ... , N, where µ is the mean vector 

and C is the covariance matrix. 

Based on Bayes' theorem, after the data is taken, the posterior probability of the co-

variance matrix given the data is 

P(CID b ) = P(DIC,µ)·P(Cla,b) 
'a, 'µ P(Dja, b, µ) (7-3) 

where D denotes the data set x 1, x2, ... , xN. In Eq. (7-3), P(DI C, µ) is the likelihood 
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function, P(Cla, b) is the prior density function, P(CID, a, b, µ) is the posterior density 

function, and P(Dla, b, µ) is the total probability. 

The essence of the HBCME is to find C which maximizes the posterior density 

function P(C ID, a, b, µ). We first need to find the analytical function for P(CID, a, b, µ) 

in terms of D , a , b and µ before performing the optimization. Secondly, since a and b 

are unknown parameters, they need to be estimated from the data. We estimate a and b by 

maximizing the posterior density function of a and b through a second (hierarchical) level 

of Bayes' s theorem. Thirdly, in performing the optimization on the posterior density func

tion, we need to ensure the optimiza~ion is along the path in which C is positive definite. 

We will show our solution to this problem. 

In the following, we first find the analytical function for the likelihood function, pri

or density function, posterior density function, and total probability density function. Then 

we present a method for estimating a and b . Later we perform the optimization on the pos

terior density function. Finally we discuss some computational issues which affect the 

speed of computation. 

Likelihood function 

Since xi is i.i.d with normal distribution N(µ, C), the likelihood function 

P(DIC, µ) can be expressed as 
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[ 
N ] 1 1 T -I = pN/2 N/2exp-L2(x;-µ)C (xi-µ) 

(27t) ICI i = 1 

Define the data error 

N 
1 T -1 

Ev(cij• µ) = L 2(x;- µ) C (xi-µ)' 

i = 1 

and 

then the likelihood function of Eq. (7-4) can be expressed as 

exp(-E ) 
P(DIC,µ) = z D . 

D 

Prior density function 

(7-4) 

(7-5) 

(7-6) 

(7-7) 

By Assumptions 1, 2 and 3, the prior P(Cla, b) has normal distribution with 

P(qa, b) = (IT rr : fXPH(c,rb~,;)2JI 
j =ii= l (2n)2ca) 2 lj 

= ~ _l1e...±...!2 exp l-a I_ I_ ! ( c ij - b~>;) 2] 

(21t) 4 (a) 4 _i=lj=i 

(7-8) 

Define the prior error E c as 
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p p 

Ec(cij, b) = L L ~(cij- b0;}2, (7-9) 

j=ii=l 

and 

l1e..:t.!2 
(27t) 4 

Zc(a) = -;; (7-10) 

then the prior P(qa, b) in Eq. (7-8) can be written as 

exp(-aEe) 
P(qa,.b) = z 

C 
(7-11) 

Posterior density function 

From Eq. (7-3), Eq. (7-7) and Eq. (7-11), the posterior probability P(qD, a, b, µ) 

can be rewritten as 

P(CID,a,b,µ) = Z .z ·P(DI b )' 
D C a, ,µ 

(7-12) 

where 

(7-13) 

and the subscript M stands for "Model", representing the total modeling error. 

Total probability 

The denominator in Eq. (7-3) (total probability) can be computed by integrating the 

numerator: 
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P(Dla, b, µ) = f(P(DIC, µ)P(Cja, b))dC 

= J_ JJ_ · exp(-EM)dC 
Zc Zv 

_11.e..±J.2 f!!!. N 

( 2 7t) 4 - 2 J -2 = -;; (27t) !Cl exp(-EM)dc 

(7-14) 

In order to find the analytical expression for the total probability P(D I a, b, µ), we 

need to evaluate the integral in Eq. (7-14). Before we do the evaluation, we define the func-

tion F, 

(7-15) 

Let c be a p(p 2+ 1) x 1 vector with the following elements, 

(7-16) 

The Taylor expansion of F near the most probable value cMP is 

F _ FMP 1 ( MP)THMP( MP) - +-c-c c-c 
2 ' (7-17) 

where the superscript MP on F and H means they are evaluated at c = cMP, i.e . 

.....MP MP 2 MP . p(p + 1) p(p + 1) . 
i' = FI and H = V Fl H 1s a x matnx 

C = CMP' C C = CMP • 2 2 • 

Now we can evaluate the integral in Eq. (7-14) 
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N 

JICI 2 exp(-EM)dc 

= f exp(-~loglCI -EM) de 

~ _! 
4 I MPI 2 · 

( ....MP) f(21t) H [ 1 ( MP)THMP( MP)Jd = exp -/' exp -- C - C C - C C 
~ _! 2 

(27t) 4 IHMPI 2 .. 

(7-18) 

. ~ _! 

( N I MPI ...MP) 4 I MPI 2 = exp - 2 log C -1:,M (27t) H 

From Eq. (7-14) and Eq. (7-18), we have 

_! E!:!. ~ 
( N I MPI ....MP) I MPI 2 - 2 4 P(Dla, b, µ) = exp - 2log C -1:,M H (21t) (a) (7-19) 

Estimating a and b 

In order to find the parameters a and b, we apply the Bayes' rule to the total prob-

ability, 

P( hlD ) = P(Dla, b, µ) · P(a, b) 
a, ,µ P(DIµ) , (7-20) 

If we assume a flat prior distribution for a and b (i.e, P( a, b) is a constant), we have 

P(a, hlD, µ) = P(Dla, b, µ). (7-21) 

Maximizing the posterior density function P(a, hlD, µ) is equivalent to maximizing the 

likelihood function P(Dja, b, µ) in Eq. (7-20), which is also the total probability in Eq. (7-

3), as expressed in Eq. (7-19). 

We can take the log of the right hand side ofEq. (7-19), take the derivative with 

respect to a and b, set both derivatives to zero, and solve for a and b. 
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From Eq. (7-19) 

logP(Dja, b, µ) 

N I MPI .....MP .....MP 1 I MPI = - 21og C -1!,v - a.lie - 21og H (7-22) 

yNlog21t +p(p + l)loga 
2 4 

Take the derivative of logP(Dla., ~. µ) with respect to a and set the result to O: 

(7-23) 

The only difficulty is to evaluate the second term on the right hand side of Eq. (7-23), 

a1 IHMPI 
ogaa . Notice that 

HMP = lJ. .,21 lcMPI .,2EMP .,2EMP 2 V C og + V C D + a V C C . 

Therefore, we have 

MP 
dH = V2EMP 

da c C 

2 p p 

a 1 2! = -" "-(c .. -bo .. ) 
ac~. ~ ~ 2 IJ I] C=CMP 

I] j =ii= 1 

p p 

a = -· "" (c .. -bo .. )1 ac ~ ~ lJ I] MP 
ij. . . C = C 
1=11=1 

= (I)~ 
2 

(7-24) 

(7-25) 

where (1)11e..±12 is the identity matrix with dimension p(p 2+ 1). Therefore, using some 
2 

theorems for matrix derivatives (see Appendix), 
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a log IHI 
T 

a(vecH) 

_ (aioglHI) 
- tr aH 

T 
a(vecH) 

aa 

C = CMP 

MP 
$: = C 

= tr[(2(HMP)f1-diag((HMPf1)] 

= tr[(HMP)-1] 

(7-26) 

where diag((HMP)- 1) is the diagonal matrix formed by taking the diagonal elements of 

(HMP)-1. Caution must be taken to insure that H is symmetric. In the above derivation, 

we used Theorems 2 and 3 in Appendix. 

Solve Eq. (7-23) for a: 

(7-27) 

Similarly, take the derivative of logP(DJa, b, µ) with respect to b, set the result to 

0 , and solve for b , 

MP 
alogP(DJa, b, µ) aEc 

ab = -aab 

p 

= -a-" -(c .. -b) a 1 2I 
ab LJ 2 ll C = CMP 

i = 1 

p 
(7-28) 

=a" (c .. -b)I LJ ll MP 
c=c 

i = 1 

MP = a(pb- tr(C )) 

= 0 
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MP 
b = tr(C ) 

p 
(7-29) 

FromEq. (7-29), we can see that b is the average of the diagonal elements of the covariance 

matrix. 

There is still one problem left in estimating a. From Eq. (7-27), we can see that 

HMP is needed to calculate a. Numerical methods for calculating the second derivative 

should be avoided if possible, since they can induce large numerical errors. Later we 

present a method that can calculate the gradient analytically. Then numerical differentia-

tion can be used on the gradient to calculate the second derivatives. 

Estimating CM P 

We have found analytical forms for the likelihood function P(DI C, µ), the prior 

density function.P(Cla, b), and the equation for estimating a and b in Eq. (7-3). (The es-

timation for the total probability density function P(D I a, b, µ) was used for estimating a 

and b, but was not directly used for evaluating the posterior density function.) It is time to 

perform the optimization on the posterior density function P(CID, a, b, µ). 

From Eq. (7-3), the posterior density function P(CID, a, b, µ) is 

P(CID, a, b, µ) oc P(DIC, µ)P(qa, b) 

= [ 
N ] 1 1 T -1 

l!!!. ~exp - L 2(xi - µ) C (xi-µ) 

(21t) 2 ICI 2 i = 1 
(7-30) 
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Maximizing P( CID, a, b, µ) is equivalent to minimizing the following objective function, 

(7-31) 

i = 1 j=ii=l 

The BFGS algorithm [21] with backtracking line search [ 11] is used for finding c ij. 

However, if we directly optimize c, it is not guaranteed that C is positive definite. There-

fore, in order to keep C positive definite, we decompose C = YYT (any matrix decom-

position method will work, for example, Cholesky Factorization [ 48]). Instead of trying to 

find c ij , we will find y ij . 

Let y be a p 2 x 1 vector defined as y = vecY. The BFGS algorithm requires the 

gradient of the objective function V y1. This gradient can be computed from Eq. (7-31) as 

follows 

(7-32) 

aED aEc a log I Cl 
There are 4 terms that need to be estimated, namely . T, T, T, 

a(vecC) a(vecC) a(vecC) 

d avecC I . . h . b k . C . . S an T . n estlmatmg t ese terms, caut10n must eta en, smce 1s symmetnc. ome 
ay 

matrix derivative theorems can be found in Appendix. We use these theorems to derive the 

expressions for each term in Eq. (7-32). 
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aEv aEv ( aEv''/ 
First, we compute T. Since T = vec ac) , we only need to es-

d( vecC) d(vecC) 

dE 
timate at. By Theorem 1 and 3 in the Appendix, if we let 

(7-33) 

then 

(7-34) 

where X is an N x p matrix with each row containing the observation data. 

aE 
Next we evaluate the second term in Eq. (7-32), c T. Similar to the first case, 

d(vecC) 

dEc ( dEc) T dEc 
since T = vec dC , we only need to estimate ac . In fact, 

d(vecC) 

(7-35) 

80 



Now we evaluate the third term in Eq. (7-32), a log I Cl r· Similar to the cases be
a(vecC) 

. aloglCI ( aloglCI) T . a log I Cl 
fore, smce T = vec ac , we only need to estimate ac . From Theo-

a(vecC) 

rems 2 and 3 in Appendix, 

aloglCI _ 2C-l -d" (C-1) ac - zag . 

Finally we evaluate the last term in Eq. (7-32), ave~C. Since 
c)y 

p p p 
2 

LYli LYuY2i ··· LYiiYpi 

i = 1 i = 1 i = 1 
p p p 

L Y2iY1i 
2 

LY2iYpi T LY2i ... C = yy = 
i = 1 i = 1 i = 1 

p p p 

LYpiYli LYpiY2i ... 
2 

LYpi 

i = 1 i = 1 i = 1 

(7-36) 

(7-37) 

From Eq. (7-37), we find the p 2 x p 2 Jacobian matrix in Eq. (7-38). The rows in Eq. (7-38) 

acp2 acpl acp2 ~ 
... , T , ... , T , T , ... , T . The col-

c)y ay ay ay 

. avecC avecC avecC avecC avecC avecC 
umns m Eq. (7-38) are a , a , ... , a , a , a , ... , a , ... , 

Y11 Y21 Yp1 Y12 Y22 Yp2 

ovecC ovecC avecC 
oy 1P ' ay2P ' ... ' oyPP . 
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= 

Ypl 

Y21 

0 

0 

Yp1 

0 

0 

0 

Yp1 

0 

Yp1 

0 

0 2Y12 0 

0 Y22 Y12 

Yu Yp2 0 

0 Y22 Y12 

0 0 2Y22 ... 

Y21 · 0 Yp2 

Yu Yp2 

Y21 0 

0 

Yp2 

0 ... 2ylp 0 

0 

Y12 

0 

0 

Ypp 

0 

Y12 Ypp 

Y22 0 

0 

Ypp 

0 

Ypp 

... 2ypl 0 0 ... 2yp2 .. . 0 0 

0 

0 

Y1p 

0 

0 
(7-38) 

To summarize, in this section we have developed a procedure for computing CMP. 

The idea is to use the BFGS algorithm, with gradient computed using Eq. (7-32). The four 

individual terms in Eq. (7-32) are computed using Eq. (7-34), Eq. (7-35), Eq. (7-36), and 

Eq. (7-38). 

We still need to estimate the parameter a, which requires the Hessian matrix HMP, 

as in Eq. (7-27). The computation of HMP is described in the next section. 

Computing HMP 

Previously we mentioned that the Hessian HMP from Eq. (7-24) will be inaccurate 

if it is calculated numerically. To improve the accuracy, we will first calculate the gradient 

analytically, then we will apply numerical differentiation to the gradient to compute HMP. 

First we calculate the gradient of the objective function J as 
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- aED aEc ~aloglCI 
V cl - ac + a ac + 2 ac (7-39) 

From Eq. (7-34), (7-35), (7-36) and (7-39), we can compute V cl. By picking up the cor-

responding elements of V cl, we can obtain V c!. Then numerical differentiation can be 

MP 
used to compute H . 

Caution must be taken in the calculation of HMP. Notice that HMP is defined by 

Eq. (7-24), which is the Hessian with respect to c. The BFGS algorithm calculates a Hes-

sian as a by-product. However, the BFGS algorithm calculates v!1 instead of V~l, so we 

can't use the BFGS computations for calculating HMP. 

Other Computational Issues 

In MATLAB, in order to speed up calculations, we can use matrix operations in-

stead of the for loops. The strategy is applied to the calculation of ED and E c. 

where 

The data error ED can be calculated as follows, 

N 

" 1 T -1 Ev=LJ2(xi-µ)C (xi-µ) 

i = l 

N 
1 . -1 T 

= L 2tr[C ((xi- µ)(xi-µ) )] 

i = l 

[ 
N ] 1 -1 T 

= tr -C " (x. - µ)(x. - µ) 2 LI I I 

i = l 
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N 
T 

B = L (xi- µ)(xi-µ) 

i = l 

T 
T T (7-41) µ µ 
T T 

= X- µ X- µ 

T T 

The structure error Ee is in fact one half of the sum of the squares of the elements 

in the upper triangle of the difference (including the diagonal elements) between C and b I , 

therefore 

Ee = !sum(sum(triu[(C - bl).*(C- bl)])), (7-42) 

where triu is a function that sets all the lower triangular elements (not including the diag-

onal elements) to O, ".*" is element by element matrix multiplication. 

Summary of the Algorithm 

Now we summarize the HBCME algorithm: 

0) Initialize a and b to random initial values. 

. MP MP MP MP MP T MP . 
1) Fmd C through Y , where C = (Y )(Y ) . Y 1s found by 

minimizing the following objective function: 

N 
1 T T -1 

min J = " -2(xi- µ) (YY ) (xi-µ) 
Yij L..J 

i = l 
(7-43) 
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where c ij is the i th row and j th column ~lement of YYT. The optimization is 

performed by the BFGS algorithm with backtracking line search. The gradient 

is calculated using Eq. (7-32). 

2) Compute E'/:P using Eq. (7-9): 

p p 

Ec(cij•b) - L L!(cij-b~\)2· 

i = lj = i 

3) Compute HMP using Eq. (7-39) and numerical differentiation. 

4) Compute a and b using Eq. (7-27) and Eq. (7-29): 

a = p(p + 1) 
2tr[(HMPf1] + 4E'/;P 

tr(CMP) b = __,_ _ __..... 
p 

5) Iterate steps 1) through 4) until convergence. 

3. Extension to p + 1 unknown parameters 

In this section, we relax assumption 1 to the following assumption: 

(7-44) 

(7-45) 

(7-46) 

Assumption 1 ': The prior mean of diagonal elements of the covariance matrix is b. 

We assume that the means of the diagonal elements are not neccessarily equal. In 

essence, we are assuming the prior structure of the covariance matrix is a diagonal matrix, 

but is not a multiple of the identity matrix. 

According to this new assumption, we need to modify some of the derivations pre-

sented earlier in this chapter. The changes are as follows: 
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• The prior distribution of cij in Eq. (7-1) changes to 

(7-47) 

where bi is the ith element of b. · 

• The prior density P(Cja, b) in Eq. (7-8) changes to 

P(Cja, b) = [II II J _! expH(c,;-h,ll,)2JJ 
j =ii= I (2n/(a) 2 lj 

(7-48) 

= ~ -~exp[-ai i !(cij-bi3i}2] 

(2n) 4 (a) 4 j=ii=l 

• The prior error Ee in Eq. (7-9) changes to 

. p p 
1 

Ec(cij• b) = LL 2(cij-bi8i}2· (7-49) 

j =ii= l 

• The derivative of logP(Dla, b, µ) with respect to bi in Eq. (7-28) changes to 

MP 
alogP(Dla, b, µ) aEc 

=-a-ab. ab. 
I I 

p 

a 1 2I = -a-" -(c .. -b.) ab.~ 2 II I _ MP 
I C - C 
i = l (7-50) 

= a(c---b·)I II I MP 
C=C 

MP = a(cii -b) 

= 0 

The estimate of bi, by solving Eq. (7-50), is 

(7-51) 
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It is reasonable that the value of bi equals the corresponding diagonal element of the cova-

riance matrix. 

• The posterior density function P(CjD, a, b, µ) in Eq. (7-30) changes to 

P(CjD, a, b, µ) cc P(DIC, µ)P(Cja, b) 

1 [ N 1 T -1 ] = exp - " -( x. - µ) C ( x. - µ) l!!:!. !!._ £..J 2 I I 

<2n) 2 ICI 2 i = 1 
(7-52) 

• The objective function in Eq. (7-31) changes to 

(7-53) 

i = 1 j=ii=l 

• Eq. (7-35) changes to 

M 2 = C-diag(b). (7-54) 

The above list does not include expressions which require only the change of b to 

b, as in Eq. (7-11), (7-12), (7-13), (7-14), (7-19), (7-20), (7-21), (7-22), (7-23), etc. 

The HBCME algorithm for p + 1 unknown parameters is summarized as follows: 

0) Initialize a, b to random values. 

. MP MP MP MP MP T MP . 
1) Fmd C through Y , where C = (Y )(Y ) . Y 1s found by 

minimizing the following objective function: 
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N 
1 T T -1 

min J = " -2(xi- µ) (YY ) (xi-µ) 
Yij L. 

i = 1 (7-55) 
p P· 

1 2 N I Tl +a" "-(c---b-6 .. ) +-log YY L.L.2 lJ II) 2 
i = lj = i 

where c ij is the i th row and j th column element of YYT. The optimization is 

performed by the BFGS algorithm with backtracking line search. The gradient 

is calculated using Eq. (7-32). 

2') Compute ~P using Eq. (7-49): 

p p 

Ec(cij• b) = L L ~(cij-bi'f,ij)2. 

i = lj = i 

3') Compute HMP using Eq. (7-39) and numerical differentiation. 

4') Compute a and b using Eq. (7-27) and Eq. (7-51): 

p(p + 1) 

5') Iterate steps 1 ') through 4') until convergence. 

(7-56) 

(7-57) 

(7-58) 

This completes the development of the HBCME. In practice, if the sample data are 

normalized, the HBCME with 2 unknown parameters is sufficient. Otherwise, the HBC-

ME with p + 1 parameter is suggested. In Chapter 8, we will present the simulation results 

of the HBCME algorithm. 
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CHAPTERS 

SIMULATION RESULTS: HIERARCHICAL 

BAYESIAN COVARIANCE MATRIX 

ESTIMATOR 

In this chapter, we present the simulation results for the Hierarchical Bayesian Co-

variance Matrix Estimator (HBCME), both in the basic form, in which 2 unknown param-

eters of the prior covariance matrix are assumed. and in the extended form, in which p + 1 

unknown parameters of the prior covariance matrix are assumed. · 

There are two sections in this chapter. In section one, we compare the performance 

of the covariance matrix estimated by the basic HBCME to the sample covariance matrix 

when the true covariance matrix is a multiple of the identity matrix. We study the effect of 

the standard deviation of c ij, the sample size N, and the structure of the covariance matrix. 

In section two, we compare the performances of the covariance matrices estimated by the 

basic HBCME and the extended HBCME to the sample covariance matrix. In this section, 

we assume that the true covariance matrix is a diagonal matrix instead of a multiple of the 

identity matrix. 

A2 
We denote the covariance matrix estimated by the basic HBCME as CB, and the 

A + 1 
covariance matrix estimated by the extended HBCME as C~ 
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1. Monte Carlo Simulation: basic HBCME 

In this section, Monte Carlo simulation is carried out to compare the sample cova-

A2 
riance matrix, S, to the covariance matrix estimated by the HBCME, Cn. The true covari-

ance matrix is assumed to be a multiple of the identity matrix. 

We vary three variables in the true covariance matrix to study their effects on the 

estimation errors. The first is cr , which is the standard deviation of c ij . The second is the 

sample size N. The third is nc, which is the number of samples used to generate the true 

covariance matrix. nc is a structure parameter, which measures the closeness of the struc-

ture of the true covariance matrix to that of the identity matrix. The larger the value of nc, 

the closer the structure of the true covariance matrix is to the identity matrix. 

The meaning of nc can be better understood if we consider how data is generated 

for the Monte Carlo experiments. For each set of Monte Carlo simulations, we first generate 

a mean and a covariance matrix at random. The procedure is to first generate nc random 

vectors, where each element is independent with distribution N(O, 1). The sample mean of 

these nc vectors becomes the true mean, and the sample covariance matrix becomes the 

true covariance matrix. Then the true mean and covariance matrix are used to generate data 

for the experiment. 

In the following, we assume the covariance matrix dimension is 3 x 3 . 

The Monte Carlo simulation has the following steps: 

1) Initialization: Set the parameters to their nominal values cr = 10, N = 20, 
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2) Generating Data: First generate a data set with nc samples. Each sample has 

standard normal distribution N(O, 1) with dimension 3 x 1 . Calculate the 

sample mean x0 and the sample covariance matrix S0 from these nc samples. 

Setµ = x0 and C = S0
• Generate a sample data set with N samples, which 

has normal distribution N(µ, crC). 

3) Calculate the sample covariance matrix, S, and the covariance estimated by 

A2 
the HBCME, Cn . Calculate ED, E c, a, and b, which are the outputs of the 

HBCME. 

A2 
4) Calculate the estimation errors for S and Cn. The errors are defined by the 

Frobenius norm as IIS - _CII and lie~ -ell. respectively. 

5) Repeat Steps 2-4 100 times. Calculate the mean and standard deviation of the 

A2 
errors of S and Cn, and the mean of Ev, Ee, a, b. 

6) Effect of standard deviation cr: Set the variance cr = 1, 3, ... , 99, with 

N = 20 and nc = 20. Repeat Steps 2-5. 

7) Effect of sample size N: Set the sample size N = 10, 12, ... , 100 , with 

O' = 10 and nc = 20. Repeat Steps 2-5. 

8) Effect of structure parameter nc: Set nc = 10, 12, ... , 100, with cr = 10 and 

N = 20. Repeat Steps 2-5. 
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From step 2, we can see the role of nc. If nc gets larger, the absolute value of the 

off-diagonal elements of the true covariance matrix C are closer to O. Meanwhile, the di-

agonal elements of C are always close to 1 .Therefore, nc is a measure of how close the 

true covariance matrix is to the identity matrix. 

Now we present the simulation results, studying the effects of the parameters cr , N, 

and n c on the estimation errors for C and on the value of E c, ED , a , and b . 

Effect of standard deviation cr 

In this section, we study the how the standard deviation cr affects the covariance 

estimation errors, and how E c, ED , a and b change when cr increases. The standard de-

viation cr takes on the values 1, 3, ... , 99, while N and nc remain at their nominal values, 

i.e., N = 20 and nc = 20. 

Figure 8-1 shows the estimation errors and the error standard deviations for S and 

A 2 II A 2 II A 2 CB. Error is defined by Frobenius norm as IIS - CII for S, and CB - C for CB. The solid 

line is the error of S . The two dotted lines are one standard deviation above and below the 

A2 
error of S. The dashed line is the error of CB. The two dash dotted lines are one standard 

A2 
deviation above and below the error of CB . 

From Figure 8-1, we make the following conclusions. First consider the effect of 

standard deviation cr. The larger the standard deviation cr, the larger the error of the cova-

riance matrices. The relation is linear. The error we calculated is an estimate of the Root 
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Mean Square (RMS) error, Edlcrc - crcll] ' where C can be s or Ci. This is because we 

take an average of 100 iterations of llcrc - crcll. Because we have 

(8-1) 

the relationship between the RMS error and cr is linear. The larger cr, the larger the error. 

120 

~ E 
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i 80 , 

40 

-- -·- ... -
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0 

Figure 8-1 RMS estimation error vs. cr ( covariance structure: multiple of identity) 

The second conclusion is that the estimation error of CB is smaller than that of 

S .This means that the covariance estimated by HBCME is better than the sample covari-

ance matrix in terms of error. A more rigorous proof would be to perform a t-test on the 

error. We demonstrate this as follows. 

Let llcrS - crCII and llcrci - crcll be the average of 100 iterations of the error of S 
A2 A2 

and CB, respectively. Let ses and secb be the standard deviation of the error of S and CB, 

respectively. For the given O'' we test the null hypothesis Ho: llcrS - crCII = llcrcB - crcll 
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versus the alternative hypothesis Ha,: llcrS - crCII > llcrc~ - crcll with significance level 

equal to 0.05 . The test statistics is 

t = llcrS - crCll - llcrc~ - crcll (8-2) 

where N0 is the number of sample points. The number of degrees of freedom is calculated 

by 

V = (8-3) 

Figure 8-2 shows the t-statistic value and the critical value at each cr. The solid line 

is the t-statistic value and the dotted line is the critical value. Since for every cr, the t-sta-

tistic value is greater than the critical value, the null hypothesis is rejected. Therefore, The 

A2 A2 
estimation error of S is greater than that of CB. Or equivalently, the estimation error of CB 

is smaller than that of S . 

Figure 8-3 shows the changes in Ee and Ev when cr increases. The solid line is 

E c and the dotted line is ED. We can see that E c increases while ED remains almost con-

stant as cr increases. 

From Eq. (7-9), by substituting cij with crcij• we have 
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p p 

Ee= "" !(crc .. -bo .. )2 
£...J £...J 2 I] I] 

j =ii= 1 

2 p p 1( b ) 2 
cr " " - c .. - -3 .. £...J £...J 2 I) Q" I) 

j=ii=l 

6.6 ,-------.-.----.----.---,----.-,--------;,=_=,=.lal]r.=.,ti;:::, =,i 

· · · · critical value 

4.5 

2.5 

m ~ ~ ~ ~ ~ ro ~ oo m . 

Figure 8-2 t-statistic vs. cr ( covariance structure: multiple of identity) 
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Figure 8-3 Ee and Ev vs. cr (covariance structure: multiple of identity) 
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As we will demonstrate shortly, !!. is a constant. We can therefore conclude that Ee is a 
O' 

quadratic function of cr, as we see in Figure 8-3. 

From Eq. (7-5), since 

N 

Ev= L ~(Jcrxk-Jcrµ{(crCf1cJcrxk-Jcrµ) 
k = 1 

N 

" 1 T -1 = Li 2(xk- µ) (C) (xk- µ) 
k = l 

(8-5) 

where xk can be viewed as the sample generated when cr = 1.0, and µ is the mean when 

cr = 1.0. We can see that Ev is not a function of cr, as we see in Figure 8-3. 

Figure 8-4 shows the change in a and b as cr increases. The solid line represents 

a and the dotted line represents b. We can see that a decreases as cr increases, and b in-

creases as cr increases. The relationship between b and cr is linear. In other words, !!. is a 
O' 

constant. 

From Eq. (7-27), repeated here, 

a= p(p+l) 

2tf[(HMPf1] + 4E~P' 
(8-6) 

when cr increases, since Ee increases quadratically (see the discussion above), a decreas-

-2 
es as cr . 

From Eq. (7-29), by substituting CMP with crCMP, we have 

MP MP 
b = tr(crC ) = O'tr(C ), 

p p 
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Clearly, b is a linear function of O'. 

Figure 8-4 a and b vs. cr (covariance structure: multiple of identity) 

Effect of sample size N 

In this section, we study how the sample size N affects the covariance estimation 

errors, and how E c, ED, a and b change as N increases. The sample size takes on the 

values 10, 12, ... , 100, while cr and nc remain at their nominal values, i.e., cr = 10 and 

A2· 
Figure 8-5 shows the estimation errors and error standard deviations for S and CB . 

The solid line is the error of S . The two dotted lines are one standard deviation above and 

A2 
below the error of S. The dashed line is the error of CB. The two dash dotted lines are one 

A2 
standard deviation above and below the error of CB. 
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Figure 8-5 RMS estimation error vs. N (covariance structure: multiple of identity) 

From Figure 8-5, we can see that the larger the sample size N, the smaller the error 

A2 
of the covariance matrices. This is true for both S and CB. We already know that S ap-

A2 
proaches C asymptotically. Now we see that CB also has this property. Meanwhile, the 

A2 
average error of CB is always smaller than that of S . Also, as the sample size increases, 

A2 
the improvement that CB provides decreases. 

Figure 8-6 shows the t-statistic value and the critical value at each N. The solid line 

is the t-statistic value and the dotted line is the critical value. If N < 40, the t-statistic value 

is greater than the critical value, the null hypothesis is rejected. Therefore, the estimation 

A2 
error of CB is smaller than that of S when N < 40. When N > 40, from Figure 8-5, we can 

A2 
find that the error of CB is smaller than that of S, but statistically, it is not significant. 
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Figure 8-6 t-statistic vs. N (covariance structure: multiple of identity) 

Figure 8-7 shows the change of Ee and Ev as N increases. The solid line is Ee 

and the dotted line is Ev . We can see that Ee remains almost constant, and Ev increases 

linearly as N increases. 
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Figure 8-7 Ee and Ev vs. N (covariance structure: multiple ofidentity) 

Eq. (7-9) is repeated here, 
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p p 

Ee= LL~(cij-b6i}1· (8-8) 

j =ii= 1 

Since b is not a function of N, we can see that Ee is not a function of N, as shown in Fig-

ure 8-7. 

Eq. (7-5) is repeated below, 

N 
1 T -1 

Ev= L 2(xk-µ) (C) (xk-µ). (8-9) 

k = 1 

We can see that ED is a linear function of N. ED increases when N increases, as we see 

in Figure 8-7. 

Figure 8-8 shows the change of a and b as N increases. The solid line represents 

a and the dotted line represents b . We can see that both a and b remain almost constant. 

10 

.0 

~ . . 

Figure 8-8 a and b vs. N ( covariance structure: multiple of identity) 

Eq. (7-27) is repeated here, 
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(8-10) 

Since Ee is not a function of N (as discussed before), and N has almost no effect on HMP, 

therefore a is not a function of N, as we see in Figure 8-8. 

Eq. (7-29) is repeated here 

MP 
b = tr(C ) . (8-11) 

p 

Clearly, b is not a function of N, as we see in Figure 8-8. 

Effect of nc 

In this section, we study how the parameter nc affects the covariance estimation er-

rors, and how Ee, ED, a and b change as nc increases. nc is a measure of how close the 

structure of the true covariance matrix is to the structure of the identity matrix. n c takes on 

the values 10, 12, ... , 100, while a and N remain at their nominal values, i.e., a = 10 

and N = 20. 

A2 
Figure 8-9 shows the estimation errors and error standard deviations for S and CB. 

The solid line is the error of S . The two dotted lines are one standard deviation above and 

A,2 
below the error of S. The dashed line is the error of CB. The two dash dotted lines are one 

A2 
standard deviation above and below the error of CB. 
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Figure 8-9 RMS estimation error vs. nc (covariance structure: multiple of identity) 

"2 
From Figure 8-9, we can see the estimation errors for both S and CB remain almost 

constant with the increase of nc. This means that the structure of C has little effect on the 

errors of the estimate. 

Figure 8-10 shows the t-statistic value and the critical value at each nc. The solid 

line is the t-statistic value and the dotted line is the critical value. Since for every nc, the t-

statistic value is greater than the critical value, the null hypothesis is rejected. Therefore, 

"2 
the estimation error of CB is smaller than that of S. 

Figure 8-11 shows the changes of E c and ED when n c increases. The solid line is 

E c and the dotted line is ED . We can see that E c decreases, and ED remains almost con-

stant when nc increases. 

Eq. (7-9) is repeated here, 
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Figure 8-10 t-statistic vs. nc ( covariance structure: multiple of identity) 
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Figure 8-11 Ee and ED vs. nc (covariance structure: multiple of identity) 

(8-12) 

We can see that as nc increases, the off-diagonal elements ( cij, for i -:f:. j) become smaller, 

and E c becomes smaller accordingly. 
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Eq. (7-5) is repeated here, 

(8-13) 

We can see that Ev is not a function of nc, i.e., is not affected by the structure of the true 

covariance matrix. We can see this in Figure 8-11. 

Figure 8-12 shows the change of a and b when nc increases. The solid line repre-

sents a and the dotted line represents b . We can see that a increases, and b remains almost 

constant as n c increases. 
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Figure 8-12 a and b vs. nc (covariance structure: multiple of identity) 

Eq. (7-27) is repeated here, 

(8-14) 

Since Ee decreases as nc increases (as discussed before), and nc has almost no effect on 
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MP · . . F" 8 12 H , therefore a mcreases as nc mcreases, as we seem 1gure - . 

Eq. (7-29) is repeated here, 

(8-15) 

Clearly, b is not a function of nc, as we see in Figure 8-12. 

In conclusion, when the true covariance matrix structure is a multiple of the identity 

A2 
matrix, we can see that the estimation error of CB is smaller than that of S , no matter how 

A2 
cr , N and n c change. In this case, CB is a better estimate of the true covariance matrix than 

S . In the next section, we will see that when the true covariance structure is only a diagonal 

A2 
matrix (instead of a multiple of the identity matrix), CB is still a better estimate of the true 

covariance matrix than S . 

2. Monte Carlo Simulation: Extended HBCME 

The simulation procedure applied in this section is similar to the one we used in sec-

tion 1. The only difference is the configuration of the covariance matrix. Specifically, in 

step 2, we let C = S0 + diag( [s 2 1]). Therefore, the structure of the true covariance ma-

trix is not a multiple of the identity matrix anymore. We only assume the structure of the 

true covariance matrix to be diagonal, thus relaxing the assumption. 

A2 A +l 
Figure 8-13 shows the estimation errors for S, CB and C~ when cr increases. 

A2 
The solid line is the errors of S . The dotted line is the errors of CB . The dash-dotted line 
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A 1 • 
is the errors of C~ + . Clearly, with the increase of cr, S has the largest estimation errors, 

A +1 A2 
C~ has the smallest estimation errors, and the errors from CB stay in between. 
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Figure 8-13 RMS estimation error vs. cr (covariance structure: diagonal) 

Figure 8-14 shows the t-statistic value and the critical value at each cr . The solid 

A2 A +1 
line is the t-statistic value for CB, the dash-dotted line is the t-statistic value for C~ , and 

A2 
the dotted line is the critical value. Since for every cr, the t-statistic value for both CB and 

A + 1 
C~ are greater than the critical value, the null hypothesis is rejected. Therefore, The es-

A 2 A + 1 
timation error of S is greater than that of CB and C~ 

A2 A +1 
Figure 8-15 shows the estimation errors for S, CB and C~ when N increases. 

A2 
The solid line is the error of S. The dotted line is the error of CB s. The dash-dotted line is 

Ap+l 
the error of CB . 
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Figure 8-14 t-statistic vs. cr ( covariance structure: diagonal) 

A + 1 
From Figure 8-15, three conclusions can be made. First, C~ has the smallest es-

timation errors. Secondly, for small N, S has the largest estimation errors. Thirdly, for 

A2 
large N, the error of S and the error of CB are about the same. Therefore, if the structure 

A2 
of the true covariance matrix is not a multiple of the identity matrix, CB does not provide 

much improvement over S. However, if the sample size is very small (compared to the di-

A2 
mension of the matrix), CB is a better choice than S. 

Figure 8-16 shows the t-statistic value and the critical value at each N. The solid 

A 2 A + 1 
line is the t-statistic value for CB, the dash-dotted line is the t-statistic value C~ , and the 

A + 1 
dotted line is the critical value. Since for every N, the t-statistic value for C~ is greater 

than the critical value, the null hypothesis is rejected. Therefore, the estimation error of S 

A + 1 A 2 
is always statistically greater than that of C~ . For small N, the t-statistic value for CB 
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is greater than the critical value, and the null hypothesis is rejected. Therefore, the estima-

A2 
tion error of S is statistically larger than that of CB for small N. However, for large N, we 

A2 
can not reject the hypothesis "the estimation errors of S and CB are the same". 
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Figure 8-15 RMS estimation error vs. N (covariance structure: diagonal) 
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Figure 8-16 t statistic vs. N ( covariance structure: diagonal) 
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A2 A +1 
Figure 8-17 shows the estimation errors for S, CB, and C~ when nc increases. 

A2 
The solid line is the error of S. The dotted line is the error of CB. The dash-dotted line is 

the error of C~ + 1 . Ranking the three covariance matrix estimates in terms of estimation 

A 2 A + 1 
error, from the largest to the smallest, gives S, CB and C~ . Again, we can see that nc 

has little effect on the errors of the estimates. 
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Figure 8-17 RMS estimation error vs. nc (covariance structure: diagonal) 

Figure 8-18 shows the t-statistic value and the critical value at each n c. The solid 

A2 A +1 
line is the t-statistic value for CB, the dash-dotted line is the t-statistic value forC~ , and 

the dotted line is the critical value. Since for almost every nc, the t-statistic values for both 

A 2 A + 1 
CB and C~ are greater than the critical value, the null hypothesis is rejected. Therefore, 

A 2 A + 1 
the estimation error of S is greater than that of CB and C~ 
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Figure 8-18 t statistic vs. n c ( covariance structure: diagonal) 

In conclusion, when the true covariance matrix structure is a diagonal matrix (in-

stead of a multiple of the identity matrix), c~ + l has the smallest estimation error, and S 

A + 1 A 2 
has the largest estimation error. The estimation errors of both C~ and CB are smaller 

than that of S, no matter how cr, N and nc change. 

We have finished the comparison of the sample covariance matrix and the covari-

ance matrix estimated by the HBCME (with both 2 and p + 1 unknown parameters in the 

prior covariance matrix) through Monte Carlo simulation. In Chapter 9, we will apply the 

HBCME to stock portfolio optimization. 
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CHAPTER9 

APPLICATION TO PORTFOLIO 

OPTIMIZATION 

Stock portfolio optimization in itself is just a standard quadratic programming prob

lem, and there are many different methods to solving it (see [19]). The difficulty is to esti

mate the mean and covariance matrix of the stocks in the portfolio, which are two 

parameters required in the optimization. 

We propose two methods fot performing the portfolio optimization. The first is 

Shrinkage Portfolio Optimization, and the second is Bayesian Portfolio Optimization. In 

the first approach, we first estimate the covariance matrix of the portfolio from the RCME, 

as described in Chapter 3. The estimated covariance matrix can be used in the James-Stein 

estimator for estimating the portfolio mean, and in the portfolio optimization itself. The 

name Shrinkage Portfolio Optimization comes from the fact that both the James-Stein es

timator and the RCME belong to the class of shrinkage methods. 

The second approach is similar to the first one. In this approach, instead of using the 

RCME to estimate the covariance m·atrix, we use the HBCME, as described in Chapter 7. 

The name Bayesian Portfolio Optimization comes from the fact that the HBCME applies 

Bayes' Theorem, and the James-Stein estimator can also be interpreted using Bayes' The

orem [24]. 

In this chapter, we first give some background information on stock portfolio opti

mization, then simulated stock return data are generated to perform both shrinkage portfo-
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lio optimization and Bayesian portfolio optimization. Finally, both shrinkage portfolio 

optimization and Bayesian Portfolio optimization are used on real stock return data. 

1. Background 

In the following, we provide some background information on stock portfolio opti

mization. First, the efficient frontier is briefly reviewed. Then two mathematical forms for 

Mean Variance (MV) optimization are presented, and we explain why accurate estimates 

of both the mean and the covariance matrix are necessary in portfolio optimization. Finally 

the Sharpe Ratio is introduced for comparing the portfolio performance. 

First we define what we mean by "efficient frontier". A portfolio is "efficient" if it 

has least risk for a given level of expected return, or equivalently, if it has the maximum 

expected return for a given level ofrisk. Figure 9-1 shows the concept of efficient frontier. 

The curve is the efficient frontier for a specific stock portfolio. Portfolio A is the investor's 

current portfolio, with certain given _return and standard deviation. Portfolio B is efficient 

in the sense that it has the same expected return as A, but with the least possible risk (stan

dard deviation). Portfolio C is also efficient in the sense that it has the maximum possible 

expected return at the same level of risk as A. 

MV optimization is used to find the efficient frontier for a portfolio. MV optimiza

tion was first proposed by Markowitz [47]. It is the foundation of modern finance for effi

cient allocation of capitals among risky assets. Two versions of the MV optimization 

problem are considered in the following. One is the standard form with all constraints con

sidered. The other relaxes the short selling constraints (allow short selling), resulting in a 

simplified solution with analytical form. There is another version of MV optimization, 
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which takes transaction cost into consideration [52] [56]. For simplicity, in the simulations 

we performed, the transaction cost is not considered. 

Expected Return 

Efficient Frontier 

Standard Deviation of the Return 

Figure 9-1 Efficient Frontier 

The first form of MV optimization is the standard form which considers all the con-

straints. The standard MV optimization problem can be expressed as 

(9-1) 

subject to 

N 

"w = w LJ P; p 
i=l ~-2) 

WL < w < wu z· = 1 2 p 
P; - P; - P;' ' ' ''.' 

where 

µp = µTwp 

cr 2 = wTCw ' p p p 

(9-3) 
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and p is the number of stocks in the portfolio, u is the utility of the portfolio, µp is the 

expected return of the portfolio, cri is the variance of the portfolio return, r is the risk aver-

sion factor, µ is the expected return of each stock in the portfolio, w P contains the portfolio 

weights, i.e., proportions of the total capital invested in each stock, w P; is the i th element 

of w P , C is the covariance matrix of the portfolio, w ~; and w ~ are the lower and upper 

bound of the weights of the i th stock, respectively. 

The MV optimization problem stated in Eq. (9-1)- (9-3) is a standard quadratic pro-

gramming problem. All standard methods for solving quadratic programming problems can 

be used (for a list of methods, see [19]). In the simulations below, we will use Sharpe's gra-

dient method [56] [57], which is an intuitive optimization method. 

Generally, the optimization assumes budget constraints (wP = 1) and no-short-

selling constraints ( w~; ~ 0 ). However, in some situations, we can relax the no-short selling 

constraints. If shorting selling is allowed, the solution to the MV problem can be greatly 

simplified. This is the second form of our MV optimization formulation. 

The second form of MV optimization is to consider the budget constraint, but short 

selling is allowed. This MV optimization problem can be expressed as finding the least risk 

for a given level of expected return. Mathematically, it can be formulated as 

1 
J = -wTCw 2 p p (9-4) 

subject to 
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N 

Iw = 1 
P; (9-5) 

i = 1 

µTwp = q 

where q is the desired portfolio return. w P and q are known. 

We proved in [33] that the solution for the MV optimization problem, Eq. (9-4) and 

Eq. (9-5), is 

b - qa c-1. qe - a c-1 
= 2 + 2 µ 

be-a be-a 
(9-6) 

where 1 is a p x 1 vector whose elements are all ones, and 

I -1 
hp = µ C µ (9-7) 

e = l'C-11 
p 

At the first glance, the MV optimization problem seems easy to solve, but it as-

sumes accurate estimates of µ and C . The MV optimization can propagate and maximize 

the estimation errors of the mean µ and the covariance matrix C of the stocks in the port-

folio. Michaud [ 49] pointed out that the MV optimization is actually an "estimation-error 

maximizer". The optimization procedure uses statistically estimated information and mag-

nifies the impact of estimation errors. Michaud [49] pointed out that the MV optimizer sig-

nificantly overweights those stocks that have large estimated returns, negative correlations 

and small variances, and on the other hand, underweights those stocks that have small es-

timated returns, positive correlations and large variances. These stocks are the ones most 

likely to have large estimation errors. 
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In the real world, it is very difficult to get accurate estimates of the mean µ and the 

covariance matrix C because of the small sample size. For example, U.S. domestic stock 

portfolios typically include 100-500 stocks, and international stock portfolios may include 

p2+ 3p 
as many as 4000-5000 stocks [50]. There are 2 parameters to be estimated for a port-

folio containing p stocks. The estimation requires a large amount of historical data, but few 

companies last even 50 years. In addition, the mean µ and the covariance matrix C of the 

stocks is time varying. We can only assume it is a constant over a short period of time. The 

sample size is always too small to accurately estimate the mean µ and covariance matrix 

C by using the sample mean and the sample covariance matrix. 

Therefore, finding good estimators for estimating the mean and the covariance ma-

trix is thus crucial for accurate MV optimization. This is where shrinkage portfolio optimi-

zation and Bayesian portfolio optimization come into play. In shrinkage portfolio 

optimization, the covariance matrix is estimated by the RCME. In Bayesian portfolio opti-

mization, the covariance matrix is estimated by the HBCME. The estimated covariance ma-

trix is subsequently used in the James-Stein estimator for estimating the stock mean, as in 

Eq. (4-3). 

Before we perform the Monte Carlo simulation, we introduce a measure of the per-

formance of a portfolio - the Sharpe Ratio. 

For a stock portfolio, the excess return is the return of the portfolio minus the return 

of a risk-free asset, usually the 3-month US treasury bill rate. The Sharpe Ratio is defined 

as the expected excess return divided by the risk of the portfolio, i.e. 
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(9-8) 

where SR denotes the Sharpe Ratio of the portfolio. A higher Sharpe Ratio indicates a 
p 

higher return µ P for given amount of risk cr p, or less risk for given amount of return. 

Therefore, the higher the sharpe ratio, the better the performance of the portfolio. 

Next we present the Monte Carlo simulation results for portfolio optimization with 

both shrinkage portfolio optimization and Bayesian portfolio optimization. Two sets of 

stock return data are considered. One is randomly generated simulated stock data, the other 

is real stock return data. We use the Sharpe Ratio to judge the performance of the portfolio 

performance. 

2. Simulated Stock Data 

In this section, portfolio optimization is performed on simulated stock return data. 

The covariance matrix is estimated by the RCME, the LCME, and the HBCME, respective-

ly. The mean is estimated by the James-Stein estimator. 

Steps for performing the simulation are described as follows: 

1) Set desired portfolio return q = 0.01, the portfolio size p = 10 and sample 

size N = 60. 

2) Randomly generate mean µ and covariance C . Then randomly generate N 

sample points with distribution N(µ, C). 

3) Estimate the covariance matrix: The covariance matrix is estimated by the 

sample covariance matrix, the LCME, the RCME, and the HBCME. In the 
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RCME, the optimal shrinkage intensity k0 is estimated by both the Filtering 

method and the Constraint method (see Chapter 3). Set the upper limit 

k~P = 0.1 in the Constraint method. 

4) Estimate the mean vector: The estimated covariance matrices from Step 3 are 

used as input to the James-Stein estimator to get four different portfolio mean, 

James-Stein sample mean, James-Stein Ledoit mean, James-Stein ridge mean, 

and James-Stein Bayesian mean. 

5) Compute estimation error: compute the error of the estimates of mean and 

covariance matrix. The error of the mean vector is defined by IIµ- µII, and the 

error of the covariance matrix is defined by II C - di , where the norm is the 

Frobenius norm, µ and C are estimated mean and covariance, respectively. 

6) MV optimization: Apply Sharpe's gradient method [56] [57] to calculate the 

weight of each stock in the portfolio. 

7) Generate 1000 data points with distribution Np(µ, C). Apply the portfolio 

weights calculated in Step 6 to get the portfolio return at each point. Calculate 

the overall portfolio return for all three cases. 

8) Repeat Step 2 - 7 1000 times. Calculate average and standard deviation of the 

error of the mean vector and the error of the covariance matrix. Calculate the 

average and the standard deviation of the portfolio return and then get the 

Sharpe Ratio. 

9) Perform t-test for the error of the James-Stein estimator in which the covari

ance matrix is estimated by the LCME, the RCME and the HBCME, respec-
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tively. Perform t-test for the error of the covariance matrix estimated by the 

LCME, the RCME, and the HBCME. 

The t-test can be explained as follows (we take the example of the covariance matrix 

estimated by the HBCME): We test the null hypothesis Ho: IIS- CII = llcn-ell versus 

the alternative hypothesis Ha: IIS - CII > llcn - ell with significance level equal to 0.05. 

The test statistics is 

IIS - Cll - llcn - ell 
t = "-:-----;:::::=:::=::::----"' 

2 2 
ses secb 
-+-
No No 

(9-9) 

where ses and secb are the standard deviations of the errors of S and Cn, N0 = 1000 is 

the number of sample points. The number of degrees of freedom is calculated by 

V = (8-10) 

Table 9-1 gives the simulation results. Optimal Sharpe ratios were calculated by us-

ing the true mean and covariance matrix. The last column shows if H0 is rejected. 

From the simulation results, the following observations can be made: 

• The mean estimation error: The stock mean is estimated by the James-Stein es-

timator with the covariance matrix estimated by four different estimators, the 

sample covariance matrix, the LCME, the RCME, and the HBCME. The esti-

mation error, ranked in the descending order, are: the sample covariance ma-
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trix, the HBCME, the LCME, and the RCME. According to the t-test results, 

the errors of the James-Stein estimator in which the covariance matrix is esti-

mated by the LCME, the RCME and the HBCME are all significantly smaller 

than the error of the James-Stein estimator in which the covariance matrix is 

estimated by the sample covariance matrix. 

TABLE 9-1 Portfolio Performance Comparison with Simulated Data 

standard 
t-statistics reject H0 ? mean 

deviation 

Sample 0.3879 0.1146 

llft-µII LCME 0.2364 0.0977 31.8351 Yes 

RCME 0.2226 0.0933 35.3691 Yes 

HBCME 0.2439 0.1010 29.8267 Yes 
Sample 1.3771 0.2965 

lie-ell LCME 1.3526 0.2898 1.8719 Yes 

RCME 1.2724 0.2584 8.4243 Yes 

HBCME 1.3336 0.2717 3.1866 Yes 

Sample 0.0029 

LCME 0.0036 

SRP RCME 0.0037 

HBCME 0.0035 

Optimal 0.0261 

• The covariance matrix estimation error: The covariance matrix estimated by 

the RCME has the smallest estimation error (defined as lie- ell). The sample 

covariance matrix has the largest estimation error. The errors of the covariance 

matrices estimated by the LCME, the RCME, and the HBCME are all statisti-

cally smaller than the error of the sample covariance matrix. 

• Sharpe Ratio of the portfolio: In comparing the Sharpe Ratio, the "optimal" es-

timator uses the true mean and covariance matrix to calculate Sharpe Ratio, 
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which is the true efficient frontier of the portfolio. Therefore, it has the highest 

achievable Sharpe Ratio. However, since we don't know the true mean and co

variance matrix, the optimal estimator can not be used in practical situations. 

Comparing the sample covariance matrix estimators, the LCME, and the RC

ME, and the HBCME, the portfolio in which the covariance matrix is estimated 

by the RCME gives the highest Sharpe Ratio. The portfolio in which the cova

riance matrix is estimated by the sample covariance matrix estimator has the 

lowest Sharpe Ratio. The portfolio in which the covariance matrix is estimated 

by the LCME and the HBCME produce intermediate Sharpe Ratios. 

3. Real Stock Data 

In this section, portfolio optimization is performed using real stock data. Budget 

constraints and no-short selling constraints are assumed. Therefore, the standard form of 

the portfolio optimization as in Eq. (9-1) - (9-3) is used. Sharpe's gradient method [56] [57] 

is used for the optimization. 

The candidate stocks for constructing the portfolio are from the S&P 500. Stocks 

were chosen from the S&P 500 composite as of June 25, 2001. A stock is included in the 

portfolio only if it has been publicly traded on the stock market no later than January, 1980. 

There are 68 stocks which meet this criteria. Stock monthly return data were obtained from 

Yahoo.com, which had been adjusted for dividends and splits. The three-month US trea

sury bill rate published by Federal Reserve Bank was taken as the riskless asset to calculate 

the excess return for each stock. The return data and treasury bill rate data were adjusted to 

reflect the annual return and the annual treasury bill rate, respectively. 
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Five portfolios were constructed based on the 68 candidate stocks. The first is the 

equal-weight portfolio, which is constructed by assigning each of the 68 stocks with equal 

weight. The second is the sample portfolio, in which the covariance matrix is estimated by 

the sample covariance matrix. The third is the Ledoit portfolio, in which the covariance ma

trix is estimated by the LCME. The fourth one is the ridge portfolio, which is constructed 

by the Shrinkage Portfolio Optimization method. The last one is the Bayesian portfolio, 

which is constructed by the Bayesian Portfolio Optimization method. 

The simulation is performed as follows: 

1) Set sample size N = 100, portfolio size p = 68. Set the desired return 

q = 5%. 

2) Take sample points 1 -N, perform portfolio optimization. Construct the five 

portfolios by calculating the weight of each stock: the equal-weight portfolio, 

sample portfolio, Ledoit portfolio, ridge portfolio and the Bayesian portfolio. 

3) Apply the weights of each portfolio to the N + 1 th sample to get each portfo

lio return and variance. Calculate the Sharpe Ratio of each portfolio at N + 1 . 

4) Take sample point 2 - N + 1, repeat Step 2 - 3, calculate the Sharpe Ratio of 

each portfolio at N + 2 . Continue with sample point 3 - N + 2, 4 - N + 3 , 

... , to calculate the Sharpe Ratio of each portfolio at N + 3 , N = 4 , ... , until 

we have Sharpe Ratios at each sample point except the first 100 points. 

5) Set desired return q = 10%, repeat Step 2 - 4. 

122 



6) Set sample size N = 60 , repeat Step 2 - 5. Since in this case the sample size 

is-smaller than the number of stocks in the portfolio, the sample portfolio can 

not be constructed because the sample covariance matrix can not be inverted. 

In the Bayesian portfolio construction, it worth mentioning that the HBCME is very 

computational intensive. This is because the estimation of the covariance matrix requires 

iterative optimization. With each iteration, we need to calculate a large covariance matrix 

( 68 x 68) and we need to compute the Hessian HMP at each iteration. As the dimension of 

the covariance matrix increases, the computation time will increase geometrically. 

Table 9-2 shows the results for N = 100 and q = 5%, and 10%. The perfor-

mance of the portfolios, in terms of Sharpe Ratio, from the best to the worst, are: ridge port-

folio, Bayesian portfolio, equal-weight portfolio, Ledoit portfolio, and sample portfolio. 

Since the Ledoit portfolio and the sample portfolio perform worse than the equal-weight 

portfolio, there is no reason to use these two in practice. Both the ridge portfolio and the 

Bayesian portfolio perform better than the equal-weight portfolio in terms of Sharpe Ratio. 

TABLE 9-2 Sharpe Ratio Comparison for Real Stock Data with T = 100 

q 
Equal 

Sample Ledoit Ridge Bayesian 
Weight 

5% 0.4749 0.4072 0.4689 0.5014 0.4901 
10% 0.4749 0.4118 0.4687 0.5086 0.4914 

Table 9-3 shows the simulation results for N = 60. Since the portfolio size 

p = 68 is greater than N, the sample covariance matrix is not invertible. Therefore, the 

sample portfolio cannot be constructed here. We compare the performance of three portf o-

lios: the equal-weight portfolio, the Ledoit portfolio, and the ridge portfolio. Results show 
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that both the Ledoit and the ridge portfolio perform better than the equal-weight portfolio 

in terms of Sharpe Ratio. The ridge portfolio performs the best amongst the three. 

TABLE 9-3 Sharpe Ratio Comparison for Real Stock Data with T = 60 

q 
Equal 

Ledoit Ridge 
Weight 

0.05 0.4869 0.5948 0.6077 
0.1 0.4869 0.5963 0.6050 
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CHAPTERlO 

CONCLUSIONS 

In this work, we proposed two covariance matrix estimators and their applications 

to Least Squares (LS), Recursive Least Squares (RLS), and portfolio optimization. The two 

covariance matrix estimators are the Ridge Covariance Matrix Estimator (RCME) and the 

Hierarchical Bayesian Covariance Matrix Estimator (HBCME). The RCME is used to im

prove the LS and RLS algorithms, leading to methods called Shrinkage Least Squares 

(SLS) and Shrinkage Recursive Least Squares (SRLS). In the application to portfolio opti

mization, both the RCME and the HBCME are applied to the estimation of the covariance 

matrix, leading to the Shrinkage Portfolio Optimization algorithm and the Bayesian Port

folio Optimization algorithm. 

Ridge Covariance Matrix Estimator 

The RCME is developed to obtain a better estimate of the covariance matrix than 

the sample covariance matrix in terms of Mean Square Error (MSE) when the sample size 

is small. The RCME is a weighted average of the sample covariance matrix and the identity 

matrix. The RCME can also be viewed as a shrinkage method, in which we shrink the 

eigenvalues of the sample covariance matrix. There is only one parameter, the shrinkage 

intensity, that needs to be estimated in RCME. For sufficiently small shrinkage intensity, 

the RCME is guaranteed to have smaller MSE than the sample covariance matrix. 

The RCME has some nice properties: First, if the sample size is large, the covari

ance matrix estimated by the RCME is close to the sample covariance matrix, which is a 
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consistent estimator of the true covariance matrix. Second, instead of shrinking toward the 

identity matrix, we could use other matrices if proper justification can be made. Third, the 

RCME can be viewed as a method of shrinking or expanding the eigenvalues of the sample 

covariance matrix toward 1 . Fourth, the condition number of the covariance matrix esti-

mated by the RCME is smaller than that of the sample covariance matrix. Lastly, the 

RCME preserves the order of the eigenvalues. 

Three methods for estimating the shrinkage intensity are proposed. The first is 

Ledoit' s method, which is based on Ledoit' s asymptotic estimation theorems. The second 

is a filtering method that takes the moving average value from Ledoit' s method. The third 

is a constraint method that limits the upper bound of the shrinkage intensity. 

Hierarchical Bayesian Covariance Matrix Estimator 

The second estimator for covariance matrix estimation is the Hierarchical Bayesian 

Covariance Matrix Estimator (HBCME). The HBCME applies Bayes' theorem in two lev

els. The first level is used to estimate the true covariance matrix by maximizing the poste

rior density function of the covariance matrix. In this level, the structure of the covariance 

matrix is assumed to be a multiple of the identity matrix, and each element of the covari

ance matrix is assumed to have equal variance. Based on prior knowledge of the covariance 

matrix, a prior density function for the covariance matrix is assumed, with unknown param

eters. Using Bayes' theorem, the analytical form of the posterior density function is found. 

An optimization method is used to find the Most Probable (MP) estimate of the covariance 

matrix by maximizing the posterior density function. The second level of Bayes' Theorem 

is used to estimate the unknown parameters in the prior density function from the first level. 
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Bayes' s theorem is used to find the MP estimate of these two parameters. Simulation results 

show that the HBCME has superior performance than the sample covariance matrix. 

If we assume that the prior covariance matrix is a multiple of the identity matrix, 

there are only 2 unknown parameters in the second level of Bayes' Theorem. If we assume 

the prior covariance matrix is a diagonal matrix, then there are p + 1 unknown parameters 

in the second level, where p is the dimension of the covariance matrix. 

In practice, if the sample data are normalized, the HBCME with 2 unknown param

eters is sufficient. Otherwise, the HBCME with p + 1 parameter is suggested. 

Shrinkage Least Squares and Shrinkage Recursive Least Squares 

Shrinkage Least Squares (SLS) and Shrinkage Recursive Least Squares (SRLS) im

prove on Least Squares (LS) and Recursive Least Squares (RLS). In the SLS algorithm, our 

improvement is based on James-Stein Least Squares (JSLS), which is an improvement to 

the standard LS. In JSLS, the covariance matrix is approximated by the sample covariance 

matrix. In SLS, the covariance matrix is estimated by the RCME. The recursive version of 

SLS, Shrinkage Recursive Least Squares (SRLS), is based on James-Stein Recursive Least 

Squares (JSRLS), which is an improvement to the standard Recursive Least Squares (RLS). 

Simulation results show that SRLS performs better than both JSRLS and the standard RLS. 

Portfolio Optimization 

The RCME and the HBCME were applied to the covariance matrix estimation in 

the stock portfolio optimization, leading to the Shrinkage Portfolio Optimization algorithm 

and the Bayesian Portfolio Optimization algorithm. 
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In stock portfolio optimization, due to the nature of the stock return data, the sample 

size is small. The optimization problem itself is not difficult to solve, but it assumes accu

rate estimates of the covariance matrix and the mean of the stocks in the portfolio. In 

Shrinkage Portfolio Optimization, the RCME first provide_s a better estimate of the covari

ance matrix (than the sample covariance matrix), then the estimated covariance matrix is 

used in the James-Stein estimator to get a better estimate of the mean (than the sample 

mean). The estimated covariance and mean are then used as parameters in the optimization 

algorithm. Improved estimates of the covariance matrix and the mean result in an improved 

optimization solution. Since both the covariance matrix and the mean of the stocks in the 

portfolio are estimated by shrinkage methods (the James-Stein estimator is also a shrinkage 

method), we call this approach Shrinkage Portfolio Optimization. 

Bayesian Portfolio Optimization is similar to Shrinkage Portfolio Optimization. 

The only difference is that in Bayesian Portfolio Optimization, we use the HBCME to es

timate the covariance matrix, instead of using the RCME. The name Bayesian comes from 

the fact that both the covariance matrix and the mean of the stocks in the portfolio are esti

mated using Bayesian methods (the James-Stein estimator can also be derived from Bayes' 

Theorem). 

Simulation results show that the portfolios constructed by using Shrinkage Portfo

lio Optimization and Bayesian Portfolio Optimization perform better than the portfolio 

constructed using portfolio optimization with the sample covariance matrix or using an 

equal-weight strategy. 
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APPENDIX 

SOME THEOREMS ON MATRIX 

DERIVATIVES 

The following theorems are from [55]: 

Theorem 1 (page 52) Let U be n x n and nonsingular; let A, B be constant, 

Theorem 2 (page 51) Let U be n x n and nonsingular, then 

Theorem 3 (page 80) Let U be an n x n matrix of distinct elements u = vec(U) 

2 

in an open ball Q of Rn . Let f be a scalar function of U and differentiable in Q . Let V 

be n x n but symmetric such that v = vec(V) E Q. Then 

aJcv) = [atcu) aJ(U) _ d' (af(U))] av au + T zag au . 
au u=v 
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