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RESIDUAL SPACES OVER COMMUTATIVE RINGS
INTRODUCTION

The automorphism theory of the classical groups was begun in 1928
by O. Schreier and B. L. van der Waerden [ 7] when they described the
automorphisms of PSL(V), where V is a vector space over a field.

In 1951, J. Dieudonné [ 2] published a description of the auto~
morphisms of GL(V) and PGL(V), where V is a vector space of dimension
n > 3 over a division ring k.

E. Artin [ 1] has studied the structure of the group GL(V), where
V is a vector space over a field kK. He also considered the symplectic
and orthogonal groups.

B. McDonald [ 3] described a theory similar to that of Artin's
except that in this case V is a free module over a local ring R.
Recall that all projective R-modules are free R-modules when R is local.

0. T. O'Meara [ 6 ] has also studied the structure of GL(V), where
V is a vector space over a field k, but he did not use matrix argu-
ments. His approach was to define the fixed and residual spaces of an
element of GL(V). Through these spaces he was able to characterize
transvections and then redevelop the automorphism theory of GL(V).
This is the approach taken in this paper although the automorphism

theory is still incomplete.



CHAPTER 1

RESIDUAL SPACES

Introduction

In Chapter 1 we look at the structures of some of the linear
groups. The basic approach to this is through what we will call
residues. These will be defined in Section l.4. The elements of GL(V)
that we will be working with most often in Chapter 1 and throughout the
paper are transvections, which are introduced in Section 1.5. Later in
the chapter we consider the problem of generation of subsets of GL(V)
by transvections although this is rather difficult in the case where R
is a ring and not a field.

Let R be a commutative ring with identity. We will assume that

all projective R-modules are free R-modules. All free R-modules are

called spaces. Throughout the paper, V will denote a free R-module,

U and W will be submodules of V, and n will denote the dimension of V.
A submodule U of V is called a subspace if U is a direct summand of V.
In this case U is also a free module, so a subspace of V is itself a
space. An element x of R is called unimodular if Rx is a direct
sumand of V. Let R* represent the multiplicative group of units of R.

Let GL(V) represent the group of R—automorphisms of V. A one-

dimensional subspace of V is called a line.



l.1 Subspaces

Theorem 1.1.1l: (i) If Rb and Rec are lines with Rb ¢ Rec, then Rb =

Re.
(ii) If Ul and U, are subspaces of V with dim(Ul) = dim(U_.) and
Ul C U2, then Ul = U2.

Proof: (i) WehaveRb$Wl=V=RcQW. Sob=rcand c=sb+w

for some w in W.. Then b =

1 rsb+ rw. Sors =1 and rw = 0. Thus

¢ = src = sb is in Rb. Therefore Rb = Rc.
(ii) Let U'1 = Rbl ®...9 Rb_, U2 = Rc:L ®...0 Rcm and

U1®W1=V=U2@W2. Then

bi= Zr .C forall:.

j=1 3
and
EN kgls‘]kbk * w, for some v, in W, for all j.
So
m m
b, = .ngrlj (kgls 4P * W)
m m o
) ng kzlr”s'kbk ler 3“3
m m
kzl(jzlr ij Jk k Zr W for all i.
Thus zr =&

i 1155k ~ 813 for all i and k. So [rij][sij] = Im. Thus [riJ]

is invertible, so c‘j is in Ul for all j. Therefore Ul = U2.

Theorem 1.1.2:

Let U and W be subspaces of V with U ¢ W and dim (U) =



dim(W) = i + j with j > 2. Then there exist subspaces U, vith
dim(Uk) =i+k,k=1, oo »J = 1 such that

UCU C...CU,_, CW.
Proof: We have V=U@® M=WON. We claimW=U®@ (W NM).

Let xbe inUN (WNM). Then x is inUNM = 0. So x= 0. Let
XbeinW. Thenx=u+mn, foruinU, m in M. Nowm=x-uis in W
since UC W, somis in WN M. Thus W=U + (W N M). Hence
W=U® (WNM). Therefore WN M is a subspace.

Iet {b

’bi} be a basis of U and {bi ’bi+j} a basis of

l’ oo +l’ L)

WnMn Let Uk=Rbl®ooo@Rbi+k fork'—'l, es e ,J"'l- Then
am(uk) =i+ k and

UCUlC-o- CUJ-lCW.

Theorem 1.1.3: Let U and W be subspaces of V such that U + W=V,

Then U N W is a subspace of V.
Proof: We have the isomorphism
(U+ W)/u~w/(unw).
So V/UM W/(UNW)., But V/U is free so W/ (U N W) is free. So we have
the split exact sequence
0+UNWW2 W ({UNW)~>oO.

SoWA (UNW)® WU NW). Thus U N W is a subspace of V.

Theorem 1.1.4: Let U and W be proper subspaces of V. If W ¢ U then

there exists a hyperplane H such that U C H and W ¢ H.



Proof: Let {b ;b } be a basis of U and extend it to a basis

l’ LN ]
{bl, ,bn} of V. ThenV =U®@Rb, . &...0RD . |
Let Hi =U® Rby 41 o...8 Rby b1 ® Rbk+i+le‘“eRbn y 1 <i<n- k.
Let x be in V. Then x = rlbl +...4 rn'bn. If x is in Hi’ then r, = 0.
n-k
So if x is in Ql Hi’ thenﬁ rk-i-l = .0 = rn = 0, in which case x is in
n-k n-k n-k
U. so N H, CU. Clearly UC ﬂHi, so U= ﬂHi. Therefore, if
i=1 i=1 i=l

{Hala is in A} is the set of all hyperplanes that contain U, then
u=[\&,.

aSA

Now suppose that W ¢ U, but W is contained in every hyperplane

that contains U. Then W C n ch = U, which is a contradiction. Thus
a€A

there exists a hyperpla.né H such that UCH and W ¢ H.

l.2 Geometric, Linear, and Projective Transformations

A geometric transformation g of V

onto V., is a bijection g:Vl >V

1 2 2
which has the property that U is a subspace of Vl if and only if g(U)
is a subspace of V2.
Theorem 1.2.1: Let g be a geometric transformation of Vl onto V2. Let

U and W be subspaces of V Then

1
(1) gluNnw) =g(U) N g(w);
(ii) (a2) If U+ W is a subspace, then g(U + W) D g(U) + g(W);
(b) If g(U) + g(W) is also a subspace, then g(U + W) = g(U) + g(W);
(ii1) g(0) = 0, &(V,) = V3

(iv) aim(U) = aim(g(u)).



Proof: (i) It is immediave since g is bijective.
(ii) (a) Note that g(U) C g(U + W) and g(W) € g(U + W). Now g(U + W)
is a subspace so g(U) + g(W) C g(U + W).

(b) Now g(U) + g(W) = g(T) for some subspace T of V So

1
g(u) C g(T), g(W) c g(T). Thus UCTand WCT. SoU + W CT. There-
fore g(U + W) C g(1) = g(U) + g(W).

(iii) Since O is a subspace, g(0) is a subspace.' But g(0) contains
only one element, so g(0) = 0. Also g(Vl) = g(VQ) since g is surjective.
(iv) ILet U be a subspace of dimensionm. Then U® W = V.. Let

1

U=Rbl@...@ Rbm and W = Fb @...@R‘bn. We have a chain

m+l
C e o0
0cl,ch el Y

where U, = Rb, @...8 Rb.. So U = U. Then

i 1 i m
We have dlm(Vl) = thm(Vz) = n. Suppose g(Ui) and g(Ui+l) have the
same dimension. Then g(Ui) = g(Ui+l)' This is a contradiction. So

-dim(g(Ui)) =3i-= dim(Ui). In particular, dim(g(U)) = aim(U).

let P(V) be the set of all subspaces of V. Note that P(V) is not
necessarily a lattice since U + W and U N W may not be free. Let

PH(V) = {U in P(V)|ain(U) = i}.

[l

Call elements of P (V) lines, P2(V) planes, and P° (V) hyperplanes.

A projectivity = of V, onto V, is a bijection w:P(Vl) - P(V2) with

2
the property that n(U) C w(W) if and only if U C W.

Theorem 1.2.2: If n:P(Vl) = P(V2) is a projectivity, then

dim(v,) = aim(V,).

Proof: Suppose dim(wr(vl)) > dim(n(va)). Let



Cc
Uy CU, T CU, CYy
be a chain of subspaces with dim(Ui) = i. Then each n(Ui) is a sub-

space and
C LN Y ] .
m(U)) € n(U,) © cm(u _,)cv,
So there exists i such that dim(n(Ui)) = dim(n(Ui+1)). But then
"(Ui) = 1T(Ui+1), so Ui = Ui-l-l’ which is a contradiction. Thus
dim(Vl) < dim(Vz).
Now 7 is also a projectivity, so a similar argument using T

shows that dim(Vl) > dim(Vz). Thus dim(Vl) = dim(Ve).

Theorem 1.2.3: Let ‘!T:P(Vl) > P(Vz) be a projectivity.

(i) Let U,W be in P(Vl). Then
| (a) If UN W is a subspace, then w(U N W) C = (U) N n(W),
(b) If w(U) N w(W) is also a subspace, then (U N W)
= n(U) N w(W).
(ii) Let U,W be in P(V,). Then
(a) If U+ Wis in P(V,), then n(U + W) 2 w(U) + (W),
(b) 1If w(U) + w(W) is also in P(V2), then w(U + W)
= n(U) + w(W).
(ii1) 7(0) = 0, w(V,) = V,,
(iv) dim (w(U)) = dim(U).
Proof: (i) (a) We have UNWC U and UNWC W. So n(U N W) C = (V)
and (U N W) C n(W). Therefore n(U N W) C =(U) N =(W).
(b) If w(U) N m(W) is a subspace, then m(U) N (W) = ©(T) for
some T in P(Vl). Then w(T) C 7(U) and #(T) C 7(W). So T C U and
TCW. Thus TCUNW, son(UNW Da(T) = a(U) N w(W). Thus

m(UNW) =a(U) N n(W).



(11) (a) Wehave UCU+ Wand WC U + W so m(U) € w(U + W) end
m(W) € (U + W). Thus m(U) + 7(W) C n(U + W).
(b) If m(U) + ™(W) is in P(V2) then w(U) + ®(W) = n(T) for some
T in P(Vl). Now m(U) C n(T) and m(W) C n(T), soUC T and W C T. Thus
U+ WCT. Thus (U + W) € n(T) =7(U) + w(W). Therefore
mU + W) = 7(U) + m(W).
(iii) There exists W in P(Vl) with m(W) = 0. Now Q C W,.so
"(0) C (W) = 0. Thus w(0) = 0. There exists W in P(Vl) with

T(W) = V,. Now V, D Wso m(V)DmW) =V

2° 2

(iv) Let U be a subspace of dimension m. Then there exist Uis oo 50

. Thus "(Vl) =V,

in P(Vl) such that

C C c... C -
0 Ul U2 Un. \'J

with dim(Ui) = i and Um = U. So

l .

- - c... C =V,.
0 cm(u) Cn(u,) C. m(U,) =V,
Suppose "(Ui) and Tr(U:.LH_) have the same dimension. Then T(U_)
i
= “(Ui-i-l)’ so Ui = Ui+l’ which is a contradiction. So each Tr(Ui) has a
distinct dimension. Thus dim(T(U,)) = i = d&im(U;). In particular,

dim(7"(U)) = dim(U).

So Theorem 1.2.2 tells us that projectivities carry lines to lines,

planes to planes, ete. But if Ll’ L2 are in Pl(Vl) with Ll'e L2 in

P2(Vl), we do not necessarily have that 1r(Ll ® L2) = n(Ll) @ 1r(L2).
A transformation f:V_.L > V2 which maps subspaces to subspaces will
induce a transformation f:P(Vl) -+ P(V2) defined by

£(U) = £(U) = {f(x)|x is in U}.



1

map g is a projectivity.

Theorem 1.2.4: Let g:V., + V2 be a geometric transformation. Then the

Proof: Suppose g(U) = g(W). Then g(U) = g(W), so U = W.
Now suppose U is in P(V2). Then there exists W in P(Vl) such that
g(W) = U. So g(w) = U.
Suppose U C W. Then
g(u) = g(u) c g(W) = g(w).
Suppose g(U) C g(W). Then g(U) € g(W), so UC W. Therefore g is

a projectivity.

If a projectivity ‘n':P(Vl) - P(V2) has the form m = g for some

geometric transformation, then we say m is a projective geometric

transformation.

Clearly —g-l_g-z_ = g_;_é-z and ;:J—' = é_l. So composites and inverses of
projective geometric transformations are also projective geometric
transformations.

Let GG(V) denote the group of geometric' transformations of V onto

V. Call GG(V) the general geometric group of V. Every element of

GL(V) and SL(V) is a geometric transformation so GL(V) and SL(V) are
subgroups of GG(V). |

If v is a projectivity of V onto V, we say that 7 is simply a
projectivity of V.

The map is a group homomorphism, :GG(V) + group of projecti-
vities of V. Let us write P instead of and PGG(V) instead of
GG(V) or Im( ).

Since GL(V) and SL(V) are Subgroups of GG(V), we have that PGL(V)

and PSL(V) are subgroups of PGG(V).
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Theorem 1.2.5: Let ﬂ:P(Vl) - 'P(Vz) be a projectivity. Then 7 is a

bijection from Pl(Vl) to Pl(Ve).

Proof: ILet Rb be a line in V,. Then m(Rb) is a subspace of vV, so

m(Rb) = Ro, ®...® Rb,. Now 'n:P(Vl) > P(V2) is a bijection so there

exist non-zero U U, in P(Vl) with Rbi = 1r(Ui). Thus w(Rb)

l’ *® 00 9 t
= n(U;) ®...8 n(U,). Now w(U;) € n(Rb) so U; C b for 811 i. There-

fore Ui = Kb, for if Ui = 0.then 1r(Ui) = 0, which would be a contra-

diction. Therefore Ui = U, for all i and J so Rbi = Rb, for all i and

J J

J. Thus w(Rb) = Rb, .
Suppose n(Rbl) = T_r(Rbg). Then Rb; C Rb, and Rb, C Rb,, so

Rb. = Rb Let Rb be in Pl(V Then Rb = w(U) for some U in P(Vl).

1
So

2° 2)'

Rb = w(U) = Tr(Rbl o...0 Rbt) > Tr(Rbl) +...+ n(Rbt) ) 1T(Rbl) = Rb'

for some b' in Vl. So we have equality in each case. So w(U) = n(Rbl)

implies that U = Rb,. Thus Rb = 'rr(Rbl). Therefore m is a bijection

1 1
from P (vl) to P (V2).

1.3 Radiations

Let o be in GL(V). If there exists an o in R* such that o(x) = ax
for all x in V, then o is called a radiation .and is denoted by ra.
Let o be in GL(V) and a be in R*. Then
o-lrao(x) = o-l(ac(x)) = o-lc(qx) = ox = ra(x)
for all x in V. Therefore the group of radiations, RL(V), is normal in

GL(V).

Theorem 1.3.1: Let ¢ be in GL(V). Then o is in RL(V) if and only if

o(L) = L for all L in P(V). In particular;



(1) ker(P|GL(V)) = RL(V),

SL(V) N RL(V),

(11) ker(P|SL(V))
(iii) PGL(V) ~ GL(V)/RL(V),
(iv) PsSL(V) ~ SL(V)/(SL(V) N RL(V)}),

where P:GL(V) » PGL(V) by P(o) = o.

Proof: Suppose o(L) =L for all L in P(V). Let {b), ... b }bea
: *
basis of V. Then c(bl) = abl for gome o« in R . Let bi be any other

: *
basis element. Then c(bi) = Bbi for some B in R . Then

ob, + Bb, = o(b;) + o(b;) = o(by +b;) = y(b) +b;) = yby + yb,

*
for some vy in R since b, + bi is unimodular. So a = B = y since b

1

and bi are basis vectors. Thus o is a radiation.

1

Conversely, it is clear that o(L) = L for all L in P(V) if ¢ is a
radiation.
(i) Let o be in ker(P|GL(V)). Then o(L) = L for all L in P(V). So
o(L) = L for all L in P(V). Thus o is in RL(V).
Conversely, if o is in RL(V) then o(L) = L for all L in P(V), so
o(L) = o(L) = L. Thus 0 = I, so 0 is in ker.(PIGL(V)).
(i) Let o be in ker(P|SL(V)). Then o is in RL(V) and o is in SL(V)
so 0 is in RL(V) N SL(V).
If 0 is in RL(V) N SL(V), then ¢ is in ker(P|GL(V)), so ¢ is in
ker(P|SL(V)).
(iii) and (iv) It follows that PGL(V) _fg GL(V)/RL(V) and

PSL(V) ~ SL(V)/(SL(V) N RL(V)).

Theorem 1.3.2: The group PSL(V) is normal in PGL(V) and

PGL(V)/PSL(V) ~ R /(R )P.
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Proof: Let O be in PSL(V) and T be in PGL(V). Then o is in SL(V) and

T is in GL(V) so 7 Yot is in SL(V). Thus T 3% = t “ot is in PSL(V).
Let £:PGL(V) » R*/(R*)n be defined by f:o » det(o)(n*)n. This map is
well defined since (a = c;; implies o, = r02 which implies

det (o) = rdet(o,).

Iet 0 be in ker(f). Then det(o) is in (R*)n. So det(c) = r® for
some r in R'. Then o = o'c, where det(c') = 1. Thus ¢ = E'Er =g' is
in PSL(V).

Let O be in PSL(V). Then o = ¢'0, where o' is in SL(V). So
£(0) = det(o)(R )" = det(o")det(o )R )P = (8 )® = (R))". Soo isin
ker(f). Thus ker(f) = PSL(V). Hence, |

PGL(V)/PSL(V) ~ R /(R )™,

1.4 Residues

Let o be in GL(V) and consider the submodules
P = ker(o - I) = {x in V|o(x) = x}
and
Q = Im(o - I) = {xin V|x = o(y) - y for some y in V}.

Call P the fixed module of o and Q the residual module of o.

We will always use P and Q to denote the fixed and residual
modules of o, respectively. Further, for s l1<i<n, Pi and Qi
denote the fixed and residual modules of as. At times it will also be
convenient to let P 5 and Qc denote the fixed and residual modules of g.

If P and Q are direct summands of V, then o is proper. In this
case, define the residue of o, res(o), to be dim(Q), call P the fixed

space of ¢ and Q the residual space of o.
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We are introducing the fixed and residual spaces of an element of
GL(V) in order to avoid complicated arguments involving matrices,
although we have used them occasionally. In the study of automorphisms
of GL(V), 0. T. O'Meara [6] has shown that many of the residual properties
of tra.nsvectioﬁs are preserved by autamorphisms of GL(V). This
suggests that they might provide a matrix-free approach to the study of
the automorphisms of GL(V). Indeed, O'Meara has shown that this is the
case. As one would expect, difficulties appear when the base field is
replaced by a ring. These problems are caused to a great extent by
the fact that P and Q are not necessarily subspaces of V, i.e. they
need not be direct summands of V. The followiﬁg example demonstrates
this.

Suppose Q is a direct summand of V. We have the split ‘exact .
sequence

inecl. v S-:E Q— 0

T

0O -»P

vhere (0 - I)r=1. SoV=P® ‘r(Q)-. Thus P is also a direct summand
of V. So o is proper if and only if Q is a direct summand of V.

But if P is a direct summand of V, it may not be true that Q is
also a direct summand. For example, let R=2, V= 2Z @ Z and define
0:Z®2Z2~+>2@® Z by oln,m) =(n+ 2m,m). Then ¢ is in GL2(Z'® Z) since
o-l:Z ®@Z>Z6 2 by O'-l(n,m) = (n - 2m,m) is its inverse. Then
(0 - I)(n,m) = (2m,0) so P =ker(c - I) =2 @ 0 and Q = Im(c - I)

=22 ® 0. Thus P is a direct summand of V but Q is not.

Theorem 1.4.1: For any ¢ in GL(V), we have o(P) = P and ¢(Q) = Q.

Furthermore, if ¢ is proper in GL(V), then



(i) aim(P) + dim(Q) = n,
(1i) res(o) = 0 if and only if o = I.
Proof: Let x be in P. Then x = o(x) is in o(P) so P C o(P). Let x

be in o(P). Then x = ofy) for some y in P. So

o(x) = o(aly)) = o(y) = x .
Thus x is in P and o(P) = P.
Let X be in Q. Then x = o(y) ~ y and y = o(z) for some y,z in V
since o is in GL(V). So
x=0(y) -y =o0(a(z)) - o(z) = o(a(z) ~ 2)
which is in o(Q). So Q C a(Q).
Let X be in o(Q). Then x = o(y) for some ‘y in Q. Let

y = o(z) - z. Then

x= oly) = olo(z) - 2) = olo(z)) - ofz)

Q.

which is in Q, so o(Q)
(i) If ois proper, then the exact sequence
0 >P+>V »+q +0
is split, so V vP & Q. Thus
dim(P) + dim(Q) = dim(V) = n.

(1i) Clearly res(o) = O if and only if P = V if and only if o= I.

Theorem 1.4.2: Let a and a, be in GL(V). let o= o, 9, Then

N C
Pl P2 CP and Q Ql + Q2. If 01305 and g are proper, then

res(c). < res(ol) + res(ce)-

Proof: ILet x be in Pl N P2. Then

o(x) = 01(02(1:)) = Gl(x) = X,

so x is in P. Thus PlﬁPQCP.

1%
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Let x be in Q. Then x = cl(aa(y) -y) for same y in V. Then
x=(0y - I)(oy(y)) + (o5 - I)(y) is in Q; + Q,, 50 Q CQ; + Q,.
From this we see that
res(o) < res(oy) + res(oy)

whenever o and ¢ are proper.

190'23

Examples :

(1) If o is the radiation o(x) = ax whefe o -1 is in R*, then
Q =V since x = (g - I)((a - 1)"x) is in Q for all x in V.

(2) Let V=U®W; U, W# 0. Set g, = (I;)® (oI) for some
a#0, ¢=-1 inR*. Let x be in W. Then

x= (¢ -1)(a~1)"Hx) = (6, ~I)((a - 1) H(x))

is in Ql' So W is in Ql'

Let x be in Ql. Then x = Ul(y) -y. Let x= u F s YEu, t v,

where u,, U, are in U and W,s Wy are in W. Then

X

ul+ Wl

0y uy) + 0, (wy) = wy = W,

= ol(we) -V,
= aw2 - w2
= O -

( l)w2

which is in W. S0 @ = W. Thus Q; is a direct swmand of V. So P,

is a direct summand of V. Also,

dim(Pl) n - dim(Ql)

n - dim(W)

dim(U).

= i C . = . =
So Pl U since U Pl Let g, (aI.U) @ (IW) Then as before, P2 W

a.ndQ2=U. Leto=0102. Let x = u+ wbe in V vhere u is in U, w is



in W. Then

alu + w)

o(x)

= "1("2(“ +w))

= ol(au + W)
= au + ow
= oX,
‘ = = = = N .
So Q =V and thus P = 0. So Q Q1+Q2andP Pl P2
. _ =1
(3) Let o, be proper in GL(V), ay # I, and o, =0y . Let
- —3 - ﬂ
o] 0102 I. Then P = V and Pl #V, P‘2 # V. SoP # Pl P2. Also
Theorem 1.4.3: Let o, and 0, be in GL(V) and let o = 0,0, Then

(i) IfrVv= P, + Py, then Q = Q, *+ Q.
13 N = = N
(ii) 1If Q; NQ, =0, then P = P, NP,.

Proof: (i) We have

q, = (o, - D)

(or‘1 - I)(Pl + P2)

(o) = T)(B,)
= (o,0, - I)(P2)
€ (s - 1)(V)

=Q.

16



-1
2

-1
2

-1
(0,7t - 1)(P,)

= (02‘101'1 - )(p,)

(o, = = I)(V)

O
9l

(o - I)(Pl +P.)

2

c (7t - 1)(V)

= Q.
So Ql + Q2 C€Q. Thus Q = Ql + Q2 by Theorem 1.4.2.
(ii) Let x be in P. Then
o (x) = x = =(o; (0,(x)) = 0,(x))
which is ianﬂQ2=O. So x is in P.. Thus P C P..

2 2

gives -(ql(x) - x) = 0. Thus x is in Pl' Thus P C Pl'

Hence P = P, N P, by Theorem 1. 4,2,

Theorem 1l.4.4: TLet ¢ and t be elements of GL(V). Then

So the above

a7

SoPCP, NP,

1

the fixed and

residusl modules of ToT T are v(P) and 1(Q), respectively. Also, if

0T = T0 then T(P) = P and T(Q)

l) res(o).

-1 . -
TOT ~ is proper and res(ToT

Proof: Let x be in P. Then x = t(y) for same y in P.
10t (x) = W0t (y) = To(y) = 1(y) = x.

So x is in P

_l.
10T
Let xbe in P .. Then 'ror-l(x) = X so o'c_l(x) =
TOT
'r-l(x) is in P so x is in 1(P). Hence P _. = t(P).

TOT 1

Let x be in T(Q). Then
x=1(o(y) - y) = to(y) - =(y),

for some y in V. ILet y = 't'l(z), for some z in V. Then

So

t™(x). Thus

2

Q. In particular, if ¢ is proper then
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x = to(y) = t(y) = 1ot L(z) - 'r't—l(z) = -tot 2(2) - z.

So x is in Q -1
10T

Iet x be in Q Then x = .'ro'-r_l(y) -y, for same y in V. Now

-1°
TOT

y = 1(z) for some z in V, so
x = 10(z) = ©(z) = (o - I)(z),

which is in 7(Q). So Q@ _; = (Q).
' TO0T

Suppose 10 = ot. Then 10T L = ¢ so «(p)="P 1= Pand

) =q _, =0

T0T

Suppose 0 is proper. Then V=P @® U = Q @ W for subspaces U and
W. SoV=1(P)® T(U) = ©(Q) ® T(W). Thus the fixed and residual
modules of Tcr-l are free, so ‘rct_l is proper. Then clearly

res(TcT-l) = res(ao).

Theorem 1.L4.5: Let o s

1 and s be in GL(V). ‘Then if Qy C P, and

C =
Q, € P, then 0.0, = 0,0,.

Proof: Let x be in V. Then

= oz(x) - x + 07(x)
= o‘l(x) - X + 0’2(x)
= 02(01(::) - X) + o,(x)
= ozal(x)
Therefore 0102 =0 201,
Theorem 1.4.6: Let ¢. and g, be in GL(V) with 0,0, = 0,0,- Then

1 2

c c if ei = =
Ql P2 and Q2 Pl if either V Pl + P2 or Ql n Q,2 0.

Proof: Suppose Q; N Q, = 0. Fromo,0, = 0,0,, e have 5,(Q,) = Q, and
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= - Cc N = . imi
01(P2) P2. So (01 I)(Qa) Ql Q2 0. So Q2CP.1 Similarly,
cp,.
9 =P
Suppose V = Pl + P2. Then

q, = (9, = I)(V) = (o) - 1)(2, + B,) = (5, = I)(B,) C B,
Similarly, Q, € P;.

Theorem 1.4.7: Let o be in GL(V). Then o> = I if and only if R = ~I

Q'
Proof: 02 = I if and only if oa(x) = x for all x in V
if and only if o(o(x) - x) = =(o(x) - x) for all x in V
if and only if o(y) = -y for all y in Q

if and only if o|qQ = Iy

Theorem 1.4.8: ILet 0 # I be proper in GL(V) and V = Q ® W. Then

IQ TTW
0 -Q =+V -»>W +0

o |l
Q m
0 »Q +V ->W > 0

commutes, where 7. is the projection of V onto W.

W
Proof: (a) Let x be in Q. Then o('IQ(x)) = g(x) and IQ((OIQ) (x))
= IQ(c(x)) = o(x). Thus the first square commutes.

(b) Let x =u+ wbe in V with u in Q and w in W. Then

IW(‘“W(X)) = IW(W) = w and 'uw(c(x)) = wa(c(u) + g(w)) =w since o(u) is

in Q and o(w) - w is in Q. Thus the second square commutes.

Theorem 1.4.9: Let o # I be proper in GL(V). Then

(1) det(o) = det(c]Q),
(ii) tr(o) = tr(o|Q) + ¢,
(ii1) x(o) = x(o]Q)(x - 1)®,

where x(g) is the characteristic polynamial of ¢, tr(c) is the trace
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of 0, and t = @im(W).

Proof: Follows from Theorem 1.4.8.

Theorem 1.4.10: If V = Vl 2] V2 and ¢ = a9y ® g, Where g, is in GLn(vl)

and 0, is in GLm(Vz), then ¢ is in Gan(v) and P = P, ® P,

2

Q= Ql o Q’2' If oy and o, are proper then o is proper.

Proof: Clearly Ple P2 CP and QlQ Q2 C Q. Let X + X5 be in P. Then
c(xl + x2) = ol(xl) + ca(xe) =X+ x,.

So ol(xl) = xl and 02(x2) = x2. Theﬁ xl is in Pl and x2 is in P2.

Let xl + x2 be in Q. Then

+
n T

oly) - ¥

1]

(6(y)) = ¥q) + (aly,) - ¥,)

which is in Ql (53} Q2. Therefore P = Pl @ P2 and Q = Ql 2] Q2.

1l.5 Transvections

Let ¢ be proper in GL(V). Then o is a proper transvection if

o =1Ior res(c) =1 and det(o) = 1; o is a proper dilation if

res(o) = 1 and det(o) # 1.
From Theorem 1.4.4 we have res(rcr-l) = res(o) and we also have
det('rcr-l) = det(a), so tor L is a proper transvection (dilation) if

and only if 0 is a proper tranmsvection (dilation).

Theorem 1.5.1: Let o be proper in GL(V) with res(c) = 1 and n > 2.

Then (i) Q C P if and only if o is a proper transvection,
(ii) P NQ = 0 if and only if ¢ is a proper dilation and det(s) - 1

is not a zero divisor,



.21

(iii) V=P ® Q if and only if o is a proper dilation and det(c) - 1
is a unit.

Proof: (i) Suppose Q C P. Then o(x) = x for all x in Q. So

det (o) = det(c|Q) = 1. Thus o is a proper transvection. Now suppose o
is a proper transvection, ¢ # I. Then det(c|Q) = det(c) = 1. But Q
is a line so Q = Eb for some unimoduler b in V. Then cx(b) = b since
det(c|Q) = 1. So o(x) = x for all x in Q. Thus Q C P.

(11) Suppose PN Q= 0. Then Q¢ P so o is not a proper transvection.
So det(s) # 1. Thus 0 is a proper dilation. ILet det(¢g) = r. Then
det(0]|Q) = r. So o(x) = rx for all x in Q since Q is a line.
Suppose (r - 1)s = 0 for some s in R. Then rs = s so rsb = sb where
Q = Rb. Then o(sb) = rsb = sb so sb is in P. Thus sb = 0 and s = 0.
Therefore r = 1 is not a zero divisor.

Let 0 be a proper dilation such that.det(o) - 1 is not a zero
divisor. Let r = det(o). Let x be in P N Q. Then o(x) = x and

o(x) = rx. So x = rx. Let {b .,bn} be a basis of V and

l’ LN BN
x = Za.b,. Then La.b, = Ira,b, so (r - 1)a, = 0 for all i, thus a, = 0

1 1 11 11 1 1
for all i. Sox = 0. Thus PN qQ = 0.

Q®P. Then PN Q =0 so o is a proper dilation.

(1iii) Suppose V

Let {b ;b } be a basis of V where Q=Rb and P = Rb, ©...® Rb_.

l, LI I
Since V=P & Q,

19

r 0 r-1 0]

N I A 0

mat (o) = . so mat{o - I) = .
0 ‘1 0 ‘0

So

(0 = I)Vv=(r - 1)Rbl = Rb, .

Thus r - 1 is a unit.
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Now suppose ¢ is a proper dilation. By Theorem 1.4.8 there exists

& basis {bl, cee ,bn} of V such that
mat(g]Q) *
mat(c) =
0 In—l

where Q = Fb,, c(bl) = rb, and r # 1. Then

8 .8
2 n

T
mat{g) =0 1 O for some 8 eee 2B in R.
0

0 °1

= 2 i R
Soo(b;) =b, + ab;52< 1 <n

1

* *
Suppose det(g) -~ 1 is in R. Then r-1 is in R since det(c) = r.

Now O is invertible so {rbl, b, + 8ybys oee ,bn + anbl} is a basis
of V. Define 0y by
c; =0,y(by) =1,
and
- - - - = - +
e, Ul(b ) =(r - 1) a bl rb:.L (bi aibl)

for i =2, ... ,n. The matrix of this transformation is

K _ “
1 a2 . -a,n
0 (r-1) 0
O .
L_-O (r—l)—

. . n-1 __. .. * .
whose determinant is (r - 1) which is in R . So {cl, ,cn} is a

l) = reg and

(r - 1) (bi) - a0 (bi)

basis of V. Now o(c

o(ci)

(r - l)(bi - aibl) - ai(rbl)

rb._1 + rza.ib:L

(r - l)bi - aibl

- bi - aibl - ra,ib:L

= c..
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Therefore
r 0
met(c) = 1
0 ‘1
with respect to {cl, cee ,cn} and Q = Rcl, P = Rt‘:2 ®...0 ch and

V=P&® Q.

When n = 1, I is the only proper transvection. When R = 22’ there
are no proper dilations.

Let a be in V and p:V -+ R be a surjective R-module morphism. Then

0+ker(c)+V£’>R+0
is split exact, so ker(p) is a hyperplane.

Let T, p:V + V be given by T, p(x) = x + p(x)a. A map of the form
] L]

Ta 0 is defined to be a transvection when det('ra p) = 1 and is defined
2 ]

to be a dilation when det('ra p) # 1, but is a unit. We will show
3

’

later (Theorem 1.5.5) that when Ta,o is proper the definitions above
0

conform with those given earlier for proper transvections and proper

dilations.

Let x be in V. Then (Ta - I)(x) = p(x)a which is in Ra. So

2

(1 - I)(V) = Ra since p is surjective. If det(ra

a,p

*
) is in R , then
2P .

T, 0 is in GL{(V). Note that Ty 0 = I if and only if a = 0.

Theorem 1.5.2: Suppose a,b are in V, p:V -+ R, and ¢:V + R, where p

and ¢ are surjective. Then

i T =T
(1) a,p b,p

-1
g =
a,p

if and only if a = b.

(ii) o7 T -1 for a&ll o in GL(V).
ga,po

If a and b are unimodular, then
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"

(1ii) = Tarb if and only if p = ¢,

a,p 8,

*
(iv) = if and only if there exists u in R such that

= T
a,p b,¢
a=1uband p = u-1¢.

Proof: (i) Suppose T =1 Then p(x)a = p(x)b for all x in V.

a,p b.p’
There exists y in V such that p(y) = 1. So
a= p(¥)a=p({¥)b =b.

oo™ (x) + p(o™Hx))(a))

(ii) ora’pg"l(x)
= co-l(x) + po_l(x)c(a)
x + (po~1)(x)o(a)

= -1
Taa,po

(iii) Suppose a is unimodular and T = Then

T L]

a,p a,¢

p(x)a = ¢(x)a for all x in V. So p(x) = ¢(x) for all x in V. Thus
P = ¢.

(iv) Suppose a and b are unimodular and T =T ‘Then

8,0 ba¢'
p(x)a = ¢(x)b for all x in V. There exists y in V such that p(y) = 1,
so a = ¢(y)b. There exists z in V such that ¢(z) = 1, so p(z)a = b.

Thus a = ¢(y)p(z)a. But a is unimodular, so ¢(y)e(z) = 1. Let

¢(y) = u. Then a = ub, and up(x)b = ¢(x)b. But b is unimodular, so

w(x) = ¢(x) for all x in V. So uw = ¢.

Theorem 1.5.3: For the map T, 0’ we have that
9

det('ra p) =1+ p(a).

2

Proof: Let {bl, ’bn--l} be a basis of ker(p). So

p(bl) =...=p(b .,)=0.

n=1
Case I: Suppose a is in H = ker(p). Let bn be unimodular such that

V=H$Rbn. Then

P, ,(B,) = b)) = olo(n )a) = o (5 Jo(a) = 0.
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So ,p(bn) - b igs in H. Let

,p(bn) - b = apby) et g b g

Then Ta,p(bn) = albl +o..t a'n-lbn-l + bn' Also, Ta,p(bi) = bi for

l<is<n-1l. So

F -
l. 0 ?’l
mat('ra’p) =10 " 1 'a'n-l
0 0 1
L. tee e

Thus det('ta p) =1=1+p(a).

Case II: Suppose a is not in H. Again, let bn be such that

=HO® Rbn. Now,

plr, p<bn) -b - p(a)bn)

9

p(p(bn)a - p(a)bn)

p(bn)p(a) - p(a)p(bn)

O.

So ,p(bn) - b - p(a.)bn is in H. Let

So ’
,p(bn) = eby tent e b o+ (14 p(a))b .

So

1 o i

©1
mat('ra’ ) = ..d
0
1 cn—l
0 ¢se O l-|-p(a)-‘

Thus det(‘ra p) =1+ p(a).

Thus T, 0 is a transvection if and only if a is in ker(p) and Tl p
] 9

is a dilation if and only if a is not in ker(p) and 1 + p(a) is in R¥.
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If Ta is proper, with 1 + p(a) a unit, then by Theorem 1.5.1, we see

o]
9
that Q C P if and only if p(a) = 0; PN Q = 0 if and only if p(a) is

not a zero divisor; and V=P @ Q if and only if p(a) is a unit.
Let P and Q be the fixed and residual modules of To 0 respectively.
]

Then P = ker(p) and @ = Ra. If Ta. and T are transvections, then

2P b,p

Ta,p tb’p(x) = Ta’p(x + p(x)b)

x+p(x)b + p(x + p(x)b)a

x + p(x)b + p(x)a + p(x)p(b)a

x+ p(x)(b + a)

= Ta-l-b,p (x) for all x in V.
So Ta’p Tbap = Ta-'*'bsp.
If T and T are transvections then
a,p as
Taup Ta’¢(x) = Ta,p(x + ¢(x)a)
= x + ¢(x)a + p(x + ¢(x)a)a
= x + ¢(x)a + p(x)a + ¢(x)p(a)a
=x+ (¢ +p)(x)a
= Ta,p+<p(x) for all x in V.’
So T

T =T .
a,p a9 a,p+¢

So if Ta. 0 is a transvection and n is an integer, then
. .

n
T = T = T .‘ .
( a,p ) na,p g,np

Theorem 1.5.4: Let n > 2. Let L be & line and H a hyperplane in V.

If L C H, then there exists a proper transvection with P = H and Q = L.
Proof: Suppose LC H. ILet L = Ra. Let V= H® Rb. Define
p:V-> Rby p(H) = 0, p(b) = 1. Then T, 0 is a proper transvection with

P=H and Q = L.
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Theorem 1.5.5: Let O be proper in GL(V) with res(c) = 1. Then there

exist p:V+R, where p is onto, and unimodular a in V such that o = Ta’p.
Proof: Let H=P. Then V=H® Rb. Define p:V +R by p(H) = 0 and
p(b) =1, Let a=o0o(b) -b. Let x=h+ rbbe in V, h in H, r in R..
Then '

Ta,p(x) = Ta,p(h + rb)

h+1rb+plh + rbe
=h + rb + Ip(b)a
=h+1rb+ ra

=h + ' + r(c{b) - b)

h + rb + o(rb) - b

h + o(rb)

= g(h + rb)
= o(x)

Thus T = g,
us T, o

Now Q € Ra so Q = Ra since Q is a free summand. Therefore a is

wnimodular.

14

By this theorem we see that

'{Ta p]a unimodular is in ker(p) and p:V -+ R is surjective}
3

- is exactly the set of proper transvections.

Theorem 1.5.6: (i) If dim(V) = 2, then there exists a proper trans-

vection T such that o1 is also a proper transvection if and only if
«® =1 and (a - 1)° = 0.
(ii) If dim(V) > 2, and if there exists a proper transvection 1 .such

that at is also a proper transvection, then o° = 1 and (a - l)2 = 0.
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(iii) If n is not a zero divisor and T is a proper transvection, then
at is a proper transvection if and only if a= 1.
.(iv) Suppose R has no nontrivial nilpotents and t is a proper trans-

vection. Then at is a proper transvection if and only if a = 1.

Proof: (ii) Let dim(V) > 2. Let T be a proper transvection and suppose

at 1s also a proper transvection. Clearly o is a unit and o = 1.

Let T = Te.0 and at = B, ¢ Then orra,p(x) = rb’¢(x) which implies
ax + ap(x)a = x + ¢(x)b
for all x in V. So .
aa + ap(a)a = a + ¢(a)b and (a - 1)a = ¢(a)b.
Then
(a = 1)¢(a) = ¢((a - 1)a) = ¢(¢(a)b) = ¢(a)¢(p) = 0.
So
(@ - 1% = (a - 1)¢(a)b = 0.

Thus (o - 1)2 = 0.

(i) Suppose dim(V) = 2, « 1 and (a - l)2 = 0. Let {bl,'be} be a

L}
o'
o’

[}

basis for V. Let a oby + (a - 1)b2. Define p:V + R by
p(bl) = 0 and p(b2) = 1 and define ¢:V + R by ¢(bl) = q ~ 1 and
| ¢(b2) = 1, Then a and b -.are unimodular and p(a) = 0 and
$b) =ala-1)+ (@-1) = (a+1)(a=1)=aZ~1=o0.
So Ta,p and Tb,p are proper transvections. Then
Ta,p(Py) = by * p(by)b) =Dy
Ta,o(P2) = by * p(by)by =B, + by

and
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T,eP1) =1 * ¢(p,)(ab; + (a - 1)b,)
=b, +afa - 1)bl + (o - 1)2b2
= (@2 - a + 1)b,
= ((@ - 1% +a)p,
= ab,.

T

b’¢(b2) = b2 + ¢(b2)(abl + (o - l)b2)

b2 + abl + (@ - 1)b2

a + .
(b, + 1)
Thus ot =T
a,p b,¢
(iii) Suppose n is not a zero divisor and T and at are proper trans—

vections. Then tr(t) = n, so tr(at) = an, where tr(t) is the trace of
T. But if atr is also a proper transvection, then tr(at) = n. So

n. Hence o = 1 since n is not a zero divisor.

on
(iv) From proof of part (ii) we have that (a - 1)2 = 0. Since R

has no nontrivial nilpotents then o« -~ 1 =0 so a = 1.

Theorem 1.5.7: Let ol and 02

= o0 = 3 =
1 and 1%, proper, but 0,0, # I. Then res(cloz) 1 if P:L P2 or

be proper in GL(V) with res(ol) = res(02)

Ql = Q-2'

. = . = . C = .
Proof: ILet o 0102 Suppose Ql Q2 Then Q Ql + Q,2 Ql So

dim(Q) < dim(Ql) = 1. But dim(Q) # 0, so dim(Q) = 1. Hence res(c) = 1.

Suppose P Then P 2 P, NP_ =P.. So din(P) > dim(Pl) =n - 1.

1= Fo 1 =F
But dim(P) # n, so dim(P) = n - 1. Thus dim(Q) = 1 and res(c) = 1.

Theorem 1.5.8: Let o, and g, be proper in GL(V) with res(ol) = res(og)

= 1 and res(cxlc = 1, but 0,0, # I.

2) 12
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V, then Ql = Q2 = Q.

(i) 1If Q, NQ, = 0, then P, P.

(ii) If P, + P

Similarly

1 2
; . 3 N = = N
Proof: (i) If Ql Q2 0, then P Pl 1”2 c Pl by Theorem 1.4.3.
i = di = N =
But dim(P) c_lm(Pl), so P Pl P, Pl. Thus P,y c P,.

C . = = P,
P2 Pl Thus Pl P2 P

30

(1) If P, + P, =7V, then Q = @ + Q> 'Q;. But dim(Q) = din(Q,), so

1 2
Q= Ql + Q2 = Ql thus Q,2 - Ql. Similarly Q‘l c Q2. Thus

Q = Q, = Q.

Theorem 1.5.9: Let o, and o, be nontrivial proper transvections in

1 2
GL(V).
(i) 1Ir Ql C P2, Q, C P,, then 0,05 = 0,07+
(ii) 1r 040, = 0,0, 'and either V = Pl + P2 or Ql N Q2 = 0, then

C
Ql P2, Q2 C Pl.
(iii) If R has no nontrivial nilpotents and 0,0, = 0,07>
Cc .
and Q2 Pl
Proof: (i) This follows from Theorem 1.4.5.
(ii) This follows from Theorem 1.4.6.

(iii) Let o, =1 ,0.=T1 Then

1 "a,p’ "2 b,¢°

asp b, - b,¢ Tasp(X)

ra’p(x + ¢(x)b) Tb’¢(x + p(x)a).

Thus,

x+ ¢(x)b + p(x + ¢(x)bla = x + p(x)a + ¢(x + p(x)

x+ ¢(x)b + p(x)a + ¢(x)o(bla = x + p(x)a + ¢(x)b + o
and consequently, ¢(x)p(bla = p(x)¢(a)b for all x in V.
¢(a)e(b) = 0. So

0 = o(x)s(a)e (b)a = o(x)(6(a))3

then Q‘l cP

a)b
x)¢p(a)b

Thus

2
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for all x in V. Choose x = c.where p(e) = 1. Then .(¢(a))2b = 0 so
(¢(a) )2 = 0. Then ¢(a) = O since R has no nontrivial nilpotents.
Similarly, p(b) = 0. Thus a is in ker(¢) and b is in ker(p). So

C
Ql c P2 and Q2 Pl'

Theorem 1.5.10: Let V = H @ Rb where b is unimodular and H is a hyper-

plane in V. ILet a be in V such that H contains a = b and a - b is
unimodular. Then there exists a proper transvection o such that P = H
and Q = R(a - b) and o(b) = a.

Proof: Define p:V + Rby p(H) = 0 and p(b) = 1. Sop(a - b) = 0. ILet

o=t This is a transvection with Q = R(a - b) and P = H. Also

a-b,p’

a(b) (v)

Ta-b 3p

b+ p(b)(a - b)

b+a->D

8.

1.6 Matrices

We shall use GLn(R) to denote the multiplicative group of inverti-
ble n x n matrices over R and SLn(R) for the subgroup of those matrices
of determinant 1. The group of scalar matrices (matrices of the form

*
ol . ,» With @ in R ) will be denoted RLn(R).
If we fix a basis for the n~dimensional vector space V, then we

have



GL(V) & GL_(R)
sL(v) » 8L (R)
RL(V) » RL (R)
by mapping O in GL(V) to mat(c) in GLn(R), where mat(g) is the matrix
of O with respect to the chosen basis. Let P be the natural surjection
P: GLn(R) -*GLn(R)/RIh(R).
Then
PSL, (R) = (SL (R) « BRI, (R))/RL (R) « SL_(R)/(SI_(R) NRL (R))
So ker(PlSLn(R)) = SL (R) N RL (R). By Theorem 1.3.1 we have
PGL(V) ~ GL(V)/RL(V)
: ;v_ GL (R)/RL (R)
~ PGLn(R)
and
PSL(V) ~ SL(V)/(SL(V) A RL(V))
~ 8L (R)/(sL (R) N RL _(R))
~ PsL (R).

(x)

letn>2,1Xxi<n,1< j<n,andi# j, A in R. Let t,

J

denote the n * n matrix with 1's on the diagonal, A in the (i,j)-
position, and 0's elsewhere.

Let {b

13 e ,bn} be a basis of V and define pi:V + R by

Py (bj) = Gij' Define an elementary transvection with respect to the

basis {bl, ,bn} to be a transvection of the form -'T)‘bi p for A,u

J
in R. Note that



(x)

-?A‘bi i x + (upJ (x))(ap, )

x + Aupd(x)bi

T
bi sAUP j

x + pJ(x).(lubi)

= ,Tlllbi , %(x)

for all x in V, so every elementary transvection can be written as

T
. Abi’pj‘

Let Ta 0 be a proper transvection. Then a is unimodular, so
3

extend {a} to a basis {a, X5 «+ »X } of V, choosing Xy, ... »X _, in

ker(p) and choosing x  such that p(xn) = 1. Then t, is an elementary

3P

transvection with respect to this basis. Therefore every proper
transvection is also an elementary transvection with respect to some

basis. Now

.lei,pj(bk) =, + Apj(bk)bi
=D * aékxbi
o 1tk #
-bj +2b, if k = J.
So mat(jkbi ’pj) = tij (1) with respect to {bl, cen ,bn}. So
('lei ’y - I)(v) = R().bi). Thus an elementary transvection is a proper

*
transvection if and only if A is in R .

If Eij is a matrix with a 1 in the (i,j) position and 0's else-
where then tiJ(A) = I+AE;;. So
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b3y (\eg () = (T + 28T + iy )
=1+ “Eij + AEiJ
=TI+ (A+ ")Ei,j
= tiJ_(A-t- u)e
Also .
[0, Tingup, ) = i) tgto0]

(T + AEik)(I + uEkj)(I - lEik)(I - ME, )

kj

(T + AE, + uEkJ + AuEij)(I ~ AE;, - uEkjjl-AuEi

I- lEik - uEkj +-AuEiJ + AEik

+ uE

- AuEi e

+
AuEi

J J

I+ Au!i‘.iJ

tiJ(Au)
T L]
.Aubi,pj

From this point on we will assume that 2 is a unit in R.

Theorem 1.6.1: If ¢ in GL(V) is an involution then ¢ is proper and

V=70 q
Proof: ILet ¢ be in GL(V) with o> = I. Let P = {x in V]o(x) = x}.
Let x be in Q. Then x = o(y) - y for some y in V. Then

o(x) = =0(a(y) = ¥) = ~a2(y) + o(y) = oly) - ¥ = x.

So o(x) = ~x.
Now let x be any element of V and suppose o(x) = =x. Then
x = o(-%x) - (-%x) which is in Q. So Q = {x in V]o(x) = -x}.

Iet xbe in P NQ. Then o(x) = x =-xso x= 0. Let x be in V.

J

)
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Then o(x) + x is in P and o(x) - x is in Q and x = %(o(x) + x)-¥%(o(x)-x)

soxisinP+ Q. Thus V=P® Q.

Theorem 1.6.2: IfXis any set of pairwise commuting involutions in

GL(V), then there is a basis of V in which mat(og) = diag(#l, #1, ... 1)

for all o in X.

Proof: We use induction on n. If n = 1, oi = I, V=Fb, and ol(b) = rb,

then 02(b) = rab = b, so r2 = 1. Since 2 is a unit and all perjectives
of V are free, then r = 1. So ma.t(ol) = [+1].

Suppose n > 1. Let o, be in X, a_L# +#I. By Theorem 1.6.1,
V= Ple Ql. We also have Pl # 0 and Ql # 0. Let o, be in X. Then
0,0, =00, 50 02(P1) =P, and cz(Ql) = Q. So {(olPl)Io is in x}
and {(olQl) |6 is in x} are each families of pairwise commuting involu-
tions, so by induction, there exists a basis" {bl, ,bs}‘of Pl such
that mat(c]Pl) = diag (#1, ... ,%1) for all o in X and there exists a
basis {b_ 15 -+ b } of Q such that ma.t(cr[Ql) = diag(#l, ... , %1)

for all ¢ in X. Thus mat(c) = diag(*l, ... ,*1) with respect to the

basis {b ,bn} for all ¢ in X.

l’ e s

1.7 Generation by Transvections

Let o be in GL(V) and g = 1

[ERED Tkol where each T4 is a trans-
vection and oy is either a transvection or a dilation. Then
- -1
0 =1y eee T 007 Ty
=1 t (1, itioiT, T _l)
17 k-2 k1K1 kel MThedTx

. -1 -1
(Tl ee e Tkolrk es s Tl )Tl s e Tko

1%

1

In each case Ty eee T, 0 is still a transvection or

..T.
* i
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dilation if ¢, is a transvection or dilation, resp. So the position of

1

'01 really does not matter; we may assume it always appears as the

right-most factor.

Theorem 1.7.1l: If g is proper in GL(V) and is of the formo =0, ... o

t

1

where each 0, is proper in GL(V) and res(ai) = 1 for each i, then

= = = n,., N .
t > res(o). If t = res(o) then Q Qo ... ®Qq andP P P,
Proof: By Theorem 1.4.2 we have res(o) < t. Let Q’i = Rbi for each i.

Suppose res(o) = t. Now Q C Q *+ ...t Qt'= Kb, + ... + Kb and Q has

OsoP =P NP_,
0,05 1 2

= Pl N... ﬂPk for same k < t. Then

dimension t, so @ = Q; @ ... ® Q. Thus @, NQ,

Suppose P
Ul LN ) Gk

Q N =(Q, ®...0Q) N =0so P =
cl Gk Q’k-i-l 1 Q’k Q'lt:+l Op eev Opyq

n = n.'. n L ] = n"' [ ]
Pol"' ok Pk+1 Pl Pk+l Therefore P Pl OPt

Let U be a subspace of V. Define

G(u)

{o in GL(V)|U € P}

{0 in GL(V)|o(x) = x for all x in U},
where P = ker(o - I). Now consider the R-module V/U. We have
r(x + U) = rx + U. Let x + U be denoted by %. Then r% = 7R, Suppose
’J"c = ’3\; Then x -y 1is in U, so rx - ry is in U since U is a subspace.
Thus 7% = . Son:V s VU, x e % is an R-morphism.

Now U is a subspace of V so there exists a subspace W such that
U® W= V. Then Wé»_ V/U, so V/U is projective and hence free. Also
dim(V/U) = dim(V) - dim(U). For each ¢ in G(U), we can define an
R—morphism.E:V/U > V/U by §(%) = 5(%). I£% =Y, then x -y is in U

. 7~ YV
s0 0(x) = o(y) = o(x - y) = x = y which is in U. Thus o(x) = o(y).
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n noony
Therefore ¢ is well defined. For any x, y in V/U,

VT VY ¥ n, NS
o(lx +y) = o(x +y)

o
o(x + y)

AR s

= o(®) + o(y)
= 'c‘r'(':\'c) + ?,‘(;),

Iet UG W =V and let {b ',bm} be a basis of W. Then

l’ o0

N n
' ’%m} is a basis of V/U. Let x be in V/U, x = x + U. Then

l, LI

XxX=u+wy,s0x+U=u+w+ U=w+ U, Thus we may assume that x is

- y — : "‘_

inW. Sox = rlbl+ ees + rmbm', Then x = rlbl + ... + rmbm + U
=rb. + +rb. S b, + +rb =0. Th

— rl l LY ) I'm mo uppose I‘l l e 00 I‘m m - . en
rlbl+...+rmbm1s in U so rl=r2=...=rm=0.

Theorem 1.7.2: Let 0 be in G(U). Then the diagram

0->U.->:>VLV/U-—>0

n
o
A ™
O+ UV = V/U-— 0
comutes, where A(u) = u and w(u + x) = x + U.
Proof: let u be in U. Then o(A(u)) = g(u) = u and A(IU(u)) = A(u) =
Iet u+ x be in V. Then 7(o(u + x)) = w(o(u) + o(x)) =n(u + o(x)
Let g(x) = u, + ¥ where 0y is in U. Then m(u + o(x)) = w(u + u ¥ y)
=y + U. Also

N .
Gr(u+x))=g(x+U) =o(x)+U=u +y+U=y+U

1

Thus the diagram commutes.

Theorem 1.7.3: Let o be in G(U). Then

Uu.

).
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(1) det(o) = det(s),

(i1) tr(o) = tr('g) + t,
(111) x(0) = X&) (x - 1
where Xx(o) is the characteristic polynomial of 0, tr is the trace of 0,
and t = dim(U).

Proof: This follows from Theorem 1.T.2.

N a7 47
Thus 0 is in GL(V/U). Let ¢_.,0. be in GL(V/U). Then

1272
PP Y A~ N,
g LYY _/\J
fo) 010'2 = 0102.
v m n
Let 0 be in GL(V/U). Then o(b.) = } a_.b,... Define o' in GL(YV)

m
by o(b.) = ) a,.b, fori=1, ... ,mand 0(b.) =D, for i > m. Then
| i =1 173 i i

n
o' = g, So v:G(U) - GL(V/U) is a surjective determinant preserving

homomorphism. We will use v to denote the map U * V/U and the map

G(U) »+ GL(V/U). Each map is called the tilda map going with reduction
modulo U,

Let ¢ be in GL(V) with U C P, DNow

K

{x + Ulx is in Q}

{oly) - y + U]y is in V}

B i ey
{o(y) - y|y is in V}

{o(¥) - VY is in V/U}

In(S - I).

So Im(g -~ I) =g = (Q + U)/U. Suppose S is proper in GL(V/U). Then
ViU = a: ® W for some W. Now clearly dim(&) < dim(Q), so res(9) < res(o)
where res('c\:') = dim(a).

Suppose Q NU = 0. Then (Q + U)/U= (Q® U)/U~ q so
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dim((Q + U)/U) = dim(Q). Thus res(c) = res(c).

Now suppose res(?}') = res(o). Then dim((Q + U)/U) = dim(Q). Let

. ) n, N
{bl, ces ,bm} be a basis of Q. Then {bl, ,bm} is a basis of Q.
Suppose x is in Q NU. Then x = rlbl + oae. t rmbm is in U, so

n, n
rlbl+... +rmbm-0. Thus rl—...—rm-o. So x = 0. Thus

Q NU = 0. Therefore res(s) = res(o) if and only if Q NU = 0.
Suppose 3' = I. Then

0 for all y in V/U.

§(}) = ¥ if and only if o(¥) - ¥

N
if and only if o(y) =y =0 for all y in V
if and only if o(y) - y is in U for ally in V
if and only if Q C U.

So¢ = I if and only if Q C U.

We say that an element ¢ in GL(V) is a big dilation if there is a
splitting V = U® W with W # 0 such that ¢ = (Iy) @ (ol,) for some
¢ # Owith ¢ - 1 in R*. Then by a previous example, P = U and @ = W.
Note that dilations are big dilations, but big dilations need not
be dilations, nontrivial radiations are big dilations, I is not a big
dilation, and a big dilation may be in SL(V). Note also that big

dilations are proper.

Theorem 1.7.4: Let ¢ # I be an element of GL(V), let ~ be the tilda

mappings going with reduction modulo the fixed space P of o. Then the
following are equivalent:
(i) o is a big dilation.
(i) ¢ is proper and ¢ is a nontrivial radiation of with
. *
¢=-1linR.

N
(iii) o is proper and ¢|Q is nontrivial radiation oI, with a = 1 in R .

Q
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Proof: (i) implies (ii):

Suppose 0 is a big dilation. Then ¢ is proper and V=U @ W with
o= (IU) ® (aIW) withW# 0, a# 0, a-11in R*. Let " be the tilda
mapping going with reduction modulo P = U. Let 'ch be in V/U. Then

T e VR VI, T

X=sut+tw=ut+w=w So

' AN A "
F(X) = YW = 0(w) = oW = oV = ax.

So ’é’ is a nontrivial radiation.
(ii) implies (iii):
Suppose ¢ is proper a.pd 3‘ is a nontrivial radiation. Then
o(¥) = 0¥ for all ¥ in V/P, for some a ¥ 1, a in R*. Then CIIR:J) = fx\;c
so o(x) - ax is in P for all x in V. Since 3' is a nontrivial radiation,
res(s) = m = dim(V/P) = a&im(V) - dim(P) = daim(Q) = res(0),
since ¢ ~ 1 is in R*. SoQ NP = Q.
Let x be in Q. Now o(Q) = Q so o(x) is in Q. Also ox is in Q.
So 0(x) - ax is in Q. Thus o(x) - ax is in P NQ = 0. Thus o(x) = ox.
So (¢|Q) is a nontrivial radiation.
(iii) implies (i):
Suppose o is proper and (UIQ) is & nontrivial radiation c&' with

* .
¢~-1inR. Then (0 - I)(x) = (a ~ 1)x for all x in Q. Define

1:Q >V by t(x) = (o - l)-lx. Then we have the split exact.sequence

inel. o -I
0 —P -V > Q > 0

e o
T

since (o - I)t I. So

Q.‘
V=P® 1Q=P0 (a - 1) g=P ® Q.

Clearly, then o is a big dilation.
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In the last part of the above proof, it is necessary that a - 1 be
a unit. For suppose that o - 1 is not a unit and not a zero-divisor.
Iet dim(V) = 2 and let o:V + V be defined by o(x,y) = (x + y, ay).
Then o is in GL(V), since a-l(x,y) = (x - a_ly, u-ly). Suppose (x,y)
is in P. Then o(x,y) = (x,y). Sox + y = x and hence y = 0. Thus

P = {(x,0)x is in R} = R(1,0). Suppose (x,y) is in Q. Then

(x,5) = o(z,w) - (z,w)

(z + w, aw) = (z,w)

it

(wy (a - 1)w)

for some z and w in R. So Q = {(w, (¢ = 1)w)|w is in R} = R(1,e - 1).
Then 0 is proper and P N Q = 0 since o - 1 is not a zero-divisor. Let
(w, (@ = 1)w) be in Q. Then

(w+ (@ = 1)w, alec = 1)w)

G(Wa (d - l)W)

(éw, o (@ - 1L)w)
=alw, (a = 1)w).

Soo|Q=o0aI_. But P® Q#V since (0,1) is not in P & Q.

o

Theorem 1.7.5: Let ¢ be proper in GL(V) with P NQ = 0 and (¢]Q) in

RL(Q). Let r = res(o) > 0. Then o is not the product of r trans-
vections.
Proof: Suppose ¢ is the product of r transvections. Let

g=rT ces T T . Now Q C Ra
8p 2Py 82,P0 1Py

Q= Ra.l <) Ra, ® ... 0 Rar. 1f (0]Q) is in RL(Q), then o(x) = ax for

+ + ce. +
1 Ra2 _Ra.r SO

*
all x in Q, for sane o in R . Then o(al) = aal since 2y is in Q.
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T cee T T (a.) =1 e T (a.)
ar’pr 8'2"32 al’pl l ar’pr a’23p2 l
‘ I‘il
=17 (a, + c.a.), ¢, in R
ar,pr 1 oo 11 i
ril : 'rflc a,la
= a, + c,a, + p_(a, + i“i%pt
1 i=2 i~i r al =2
So
r-1 r-1
(¢ - l)al = .chiai + pr(al + izzciai)ar.

But the a.i's are independent soa - 1 = 0 thus a ='l. So o = I. Hence

res(c) = 0, a contradiction.



CHAPTER 2

CENTERS AND COMMUTATORS

Introduction

In this chapter we simply note a few theorems on centers and
centralizers of subgroups of PGL(V) and on the conjugacy classes of

proper transvections.

2.1 Centers

If n > 2, then PSL(V) and SL(V) are not abelian.

Suppose PSL(V) is abelian. Let {bl, by ee- ,bn} be & basis of V

‘ # *
and {pl, Pps +ee ,pn} the dual basis of V , where V is the dual space
of V. Then
T T (b)) =1 (b, + b,)
=D, + b, + p2(bl + b2)bl
= 2bl + b2
and
T T (b,) = 1 (v.)
= bl + b2.
*
So 2b, + b, = oz('nl + b2) = ob, + ab, for some « in R . But this gives

@ =1andoa 2, vhich is a contradiction, so PSL(V), and hence SL(V),

are nonabelian.

43
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Theorem 2.1.1: (i) The centralizer of PSL(V) in PGL(V) is trivial.
(ii) The centralizer of SL(V) in GL(V) is RL(V).

(1ii) PGL(V) and PSL(V) are centerless.

(iv) 2z(GL(V)) = RL(V), Z(SL(V)) = SL(V) n RL(V).
Proof: (i) Let g be in the centralizer of PSL(V) in PGL(V). Let L be
any line in V and let T be a transvection with residual line L. Then
016”1 has residual line o(L). But 010t = T so 0(L) = L. Thus 0 fixes
all lines. So 0 is in BL(V) and 0 = I.

(ii) If o is in the éentralizer of SL(V) in GL(V), then ¢ is in the
centralizer of PSL(V) in PGL(V), so ¢ = I. Thus ¢ is in RL(V).

Now suppose ¢ is in RL(V). Then ¢ = r for some a in R. Let x

be in V and o, be in SL(V). Then ocl(x) = acl(x) = ol(ax) = olg(x).

So 6o, = 0,0. So 0 is in the centralizer of SL(V) in GL(V).
(iii) Let o be in Z(PGL(V)) or Z(PSL(V)). Then o is in the centralizer
of PSL(V) in PGL(V), so ¢ = I. Thus Z(PGL(V)) = Z(PSL(V)) = I.
(iv) Let o be in Z(GL(V)). Then o1 = 10 for all 1 in GL(V). So
0t = 10 for all f in SL(V). Thus from (ii) above, o is in RL(V). Now
suppose ¢ is in RL(V), say o = r,. Then ot(x) = at(x) =_r(ax) = to(x)
for all t in GL(V). So Z(GL(V)) = RL(V).
From (ii) it follows that Z(SL(V)) € RL(V). So Z(SL(V)) C SL(V)

N RL(V). It also follows that SL(V) N RL(V) C Z(SL(V)). So

Z(SL(V)) = sL(V) n RL(V).

2.2 Commutator Subgroups

Theorem 2.2.1: Any two nontrivial proper transvections of Vare

conjugate under GL(V). If n > 3, then they are conjugate under SL(V).
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Proof: Ifn =1, it is immediate, so assume n > 2. Let T s T be
—_—— = a,p’ "by¢

two non-trivial proper transvections. Extend {a} and {b} to bases

{8, 8np eee ,an} and {b, b ,b#} of V, respectively, where

2’ L]

9(32) = .. = p(an-l) = o’ p(an) = l’ ¢('b2) = a0 = ¢(bn_l) = 0, and
¢(bn) = 1,
Define o:V + V by o(a) = b and o(a.i) =b;. Then 90.1 = ¢. So
ot o l=r1 -1=1
a,p ga,p0 by¢°

*
Suppose n > 3. Let u= det(o) which is in R . Define olzv >V

by al(a) = b, ol(a.i) = 'bi, for i > 3 and ¢ (a.2) =Au-lb2. Then

1
; is in SL(V). We still have pot = ¢
-1

. -1 _ - _ . -
sinece PO, (b2) = p(uaz) = 0 and ¢(b2) = 0. So again GlTa,pUl =Ty ¢

det(ol) = u_ldet(c) =1, Soo

Theorem 2.2.2: If Ll and L2 are any two lines in V, then the set of

proper nontrivial transvections with residual line Ll is conjugate to

the set of proper nontrivial transvections with residual line L2 under

sL(V).
Proof: Let L_1 = Rbl, L2

{bys cps ee se and {b,, a

= Rb,. Extend {bl} and {b2} to bases

5 eee ,dn} of V. Define 0.:V >V by

ol(bl) = b, and U(Ci) =d, fori 2> 2. Then let u= det(Ol) which is in

" _
i ' ] = i >
R . Define 02.V +V by Uz(bl) b,s Uz(ci) di for i > 3,.and

_ .=l < . -
02(c2) = u "d,. Then o, is in SL(V) and 02(Ll) = L,.

I is a proper transvection with residual line L., then

f Tbl,p 1

-1

c = =1 is a proper transvection with residual line L
02 Tbl,P > Tb2,9°‘2 1 1s prop

2.



CHAPTER 3

COLLINEAR TRANSFORMATIONS AND PROJECTIVE GEOMEIRY

Introduction

The first part of this chapter is concerned with the Fundamental
Theorem of Projective Geometry and its consequences which primarily
deal with the automorphisms (bg and the contragredient isomorphism. We
state the Fundamental Theorem of Projective Geometry without proof in
Section 3.2. Later in the chapter we consider properties of full
subgroups of GL(V) and PGL(V). We will define a subgroup G of GL(V) to
be full if for every hyperplane H and every line L in H, there exists a

transvection T in G with fixed hyperplane H ‘and residual line L.

3.1 Semilinear Algebra

A map o0:V > V is called semilinear with automorphism ¢ if

o(x + y) = o(x) + o(y) and o(rx) = 9(r)o(x) for some automorphism
¢:R + R. If,in addition,o:V - V is a group automorphism, then ¢ is a

semilinear automorphism.

Theorem 3.1.1: Let 0:V + V be a semilinear automorphism and W a

subspace of V. Then
(i) o(W) is a subspace of V,

(ii) o -l(W) is a subspace of V.

L6
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Proof: (i) Clearly o(W) is a subgroup of V. Let x be in W and r in R.
Then ro(x) = $(¢ ~(r))o(x) = o(¢"Hr)x) which is in o'(w). So o(W) is &
submodule of V. If W@ U = V, then clearly o(W) ® o(U) = V, so o(W) is
a subspace of V.

(ii) Clearly oL is also a semilinear automorphism.

Define a collinear transformation o of V onto V to be a semilinear

bijection ¢:V -+ V. Then compositions and inverses of collinear trans-~
formations are again collinear transformations. From Theorem 3.1.1, we
see that if o is collinear, then o is geometric. So if ¢ is collinear,
then 0 is a projectivity. If v is a projectivity and m = o where ¢ is

collinear, then m is called a projective collinear transformation. So

if w is projective collinear, then m is projective geometric.

3.2 The Groups T'L(V) and PIrL(V)

We state without proof the Fundamental Thearem of Projective
Geometry, due to R. Sridharen and M. oJ'a.nguré.n [L4].
Theorem: Let Vl and V2 be free modules of finite dimension > 3 over
commutative rings R, and R,, respectively. If G:P(Vl) +> P(V2) is a
projectivity, then there exists an isomorphism 4>:Rl - R, and a
¢-semilinear automorphism ¢:Vy+V, such that o = §. If ¢,:R,"
i=1, 2, are isomorphisms and <15:1:V1->V2 are cbi—semilinear isomorphisms
such that 51 = ?52, then there exists an r in R, such that
?l = rd, and ¢, = b0

So if ¢ is a collinear transformation from V onto V, then by the

Fundamental Theorem of Projective Geometry ¢ is a semilinear bijection

with some ¢:R =+ R as its associated ring isomorphism. Thus ¢ is in
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Aut(R). Clearly the set of all collinear transformetions of V forms a
group. In fact, this group is a subgroup of GG(V), the general
geometric group of V. Denote this subgroup by T'L(V) and call it the
collinear group of V. Clearly GL(V) C I'L(V) so GL(V) is a subgroup

of TL(V).

From each ¢ in I'L(V), we can form a projective collinear trans-
formation ¢, where o(u) = {o(x)|x is in U} for any subspace U. The
set of all projective collinear transformations forms a group which we
will call PTL(V). Thus

PrL(V) = {o]o is in TL(V)}.

Call PI'L(V) the projective collinear group of V. Clearly PGL(V) C PrL(V)

so PGL(V) is a subgroup of PIL(V).

Theorem 3.2.1: (i) RL(V) and GL(V) are normal subgroups of I'L(V).

(ii) PGL(V) is a normal subgroup of PTL(V).
Proof: (i) Let P be in GL(V) and o in TL(V) with associated ring
isamorphism ¢. Then opoL(x + y) = opo L(x) + UPU_l(y) for all x and y

in V and

op (¢ Hr)o H(x))
o(¢™(r)po™ (x))
3 (6”1 (r))opo™ (x)

r(opo t(x)) for all r in R and x in V.

op c".l(rx)

1

Thus cpcr'l is linear, so opo — is in GL(V).

let o, be in RL(V) and ¢ in T'L(V) as before. We know ooro'-l is in
GL(V) so we need only show that ooro'l = sI for some s in R. Let x be

in V. Then

oaro"l(x) = o(ro~1(x)) = ¢(r) (oo t(x)) = ¢(r)x



g

Thus ooro_l = ¢(r)I= %o (r)

(ii) Follows fram (i).

Theorem 3.2.2: ILet R be a local ring and let dim(V) > 2. Let o be in

- TL(V) such that (L) = L for all L in P(V). Then ¢ is in RL(V).

Proof: Let {b ;b_} be a basis of V. Then o(b;) = r;b, for all i.

l’ o e
Now b, + bi is unimoduler for i # 1, so c(bl + bi) = s(bl + bi)' Thus
sby + sb, = o(bl + bi) = U(bl) + o(bi) = r;b; + r;b.. Therefore

rp=s=r, for all i. Let r = rg. Then c(bi) = rbi for all i.

Iet b and ¢ be any two unimodular elements of V. Extend b to a

basis {b_, b ,b }Jwhere b, =b. Then c =ab, + ab_ + ... + ab .
1 n nn

2% '’ 1 171 22
Now c is unimodular so one of the ai's is a unit. Suppose ay is a wnit,
. . =1 -1 =1 -1
i # 1. Then b, = a, ¢ - a, albl oo -85 ai—lbi—l a; "8, ..b.
-1 C
~ eee = ai anbnc SO Cle&l‘ly {C, bl, L) ,bi-l’ bi‘*‘l’ oo e ’bn} spalls V.

Suppose rc + rlbl + .0 + ri-lbi-l + ri+lbi+1 + ... + rnbn = 0. Then

re = —(rlbl oot qb. oF T obo o+l rn'bn). Now
by = sC ¥ sby *aee sy gby ) FSyDign * e +sDb .
rbi = rsc + rslb:L + ... rsi—lbi-l + rsi+lbi+i + ... F rsnbn
= -s(rlb_.L *eeetr, b g otr bt rnbn)
+ r.slb:L + e + rsi-lbi—.l + rsi+lbi+l + oo rsnbn
= (z_-si-srl)bl + ...+ (rsi—l_sri—l)bi—l + (rsi+l-sri+l)bi+1

+ ceoe + (rsn - srn)bno

Thus r = 0. Hence Ty = eeo=rx = 0. So {c, bl""’bi-l’ bi+l""bn}

*
is a basis of V. So there exists some r in R such that o(c) = re and

o(bl) = rbl.
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Now suppose ay is a unit. Then a similar argument shows that

. »
{c, bys eee ,bn} is a basis of V so there exists some s in R such that

*
o(c) = sc and o(b2) = s'bz. But we know there exists some t in R such

1 and o(bz) = tbe. Thus s = t so o(bl) = sb

o(c) = se for all unimodular ¢ in V.

that o(bl) = tb Hence

1
Let b be unimodular and u be in R*. Then ub is also unimodular.
So |
¢ (u)sb = ¢(u)o(b) = o(ub) = sub.
Therefore sp(u) = su. Hence ¢{(u) = u since s is in R*. Therefore ¢
fixes all units of R. Let x be a nonunit. Then 1 - x is a wnit, so

¢(1-x)=1-x. But ¢(1 - x) =¢(1) - ¢(x) =1 - ¢(x). Thus

¢(x) = x. Hence ¢ = I. Therefore ¢ is linear and hence ¢ is in RL(V).
Example: Let k be a field and R = k[X]. Let V = R. Define ¢ in TL(V)
by o(a) = a whenever a is unimodular and define the associated ring

isomorphism ¢ by ¢(a) = a if a is in k and ¢(X) = X + 1. Then o is not

linear so ¢ is not in RL(V), but o(L) = L for all lines L of V.

Theorem 3.2.3: (i) The group of projectivities of V is equal to

PGG(V) for n # 2.
- (ii) PGG(V) = PTL(V) for n > 3.
Proof: (i) We have PTL(V) C PGG(V), which is contained in the group
of projectivities. By the Fundamental Theorem of Projective Geometry,
these are all equal if n > 3.

Let n = 1. Then there is only one line in V so the group
PGG(V) = {I} and there is only one projectivity so the group of
projectivities is equal to {I}.

(ii) Follows from the above.
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Theorem 3.2.4: Define f:TL(V) - Aut(R) by f£(o) = ¢, where ¢  is the

ring automorphism associated with o. Then

(i) £ is a surjective group morphism and ker(f) = GL(V),

(i1) TL(V)/GL(V) ~ Aut(R).

Proof: (i) Let {b,, ... ;b } be a basis of V. Let ¢ be in Aut(R).
Define 0:V > V by G(Zaibi) = 2¢(ai)bi. Clea&ly o is in TL(V) and ¢ 'is
the ring automorphism associated with o. So f is surjective. Let oy
and 0, be in TL(V) with associated ring automorphisms ¢, and ¢,5

2
respectively. Then

:olcz(zaibi) 01(2¢2(ai)02(bi))

= I¢,9,(a,;)oj0,(b, ).
So ¢l¢2 = f(clce) is the ring automorphism associated with 0102.
Clearly GL(V) C ker(f) and if f(o) = I, then the associated ring

automorphism is I. Hence ¢ is in GL(V).

(ii) Follows directly from (i).

We have the following commutative diagram.

1
¥
RL(V)
+
1 -+ GL(V) > TL(V) - Aut(R) > 1 (exact)

¥ ¥
PGL(V) - PrL(V)

¥
1

(exact)
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3.3 The Automorphisms @g

Iet g:V » V be a collinear transformation. Let ¢:R -+ R be the
associated ring automorphism. Define sbg:I'L(V) -+ IL(V) by @g(o)=gcg-1.

Clearly :pg is an automorphism. We have & & = and

®
18 &%

-1
(0.)y =9 ..
-1

& g

Theorem 3.3.1:

@glGL(v): GL(V) -+ GL(V)
sbg]SL(V): SL(V) - SL(V)
Qg[RL(V): RL(V) - RL(V)

are all automorphisms.

Proof :  An argument similar to that used in Theorem 3.2.1 shows that
if o is in GL(V), then gcg‘l is in GL(V). Similarly, if o is in GL(V),
then g_log is in GL(V), so 2, is surjective since @g(g-log) = g.

Let obe in SL(V). ILet {b ;b } be a basis of V. Let

l, LN N J
mat(o) = A and mat(g) = B with respect to the basis. Then

-1
mat(g—l) =)= (B"l)q> . Now

mat_(g)(mat(cg-l) )¢

=
&
3
®
I

B(ma.t(o)mat(g_l) )¢
-1 ¢’l ¢
B(A(B ) )

Bads 1,

where [aijJ¢ = [q)(aij)] for any matri:; [aij]' So
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det(mat(gog-l)) det(B)det(A¢)det(B-l)

= det(A¢)

¢(det(a))
= ¢(1)
= 1.
-1 . .
So gog — is in SL(V). .
Let o, be in RL(V). Then mat(or) = rI. Then

mat (g0,& ™) = mat(s) (mat(o_met (™))"

-1 4
= B(r1(™1)? )

-1 ¢
= B(r(87H)? )

= B(¢(r)B™ 1)
= ¢(r)I.

-1 _ . . s
?hus 80,8 T = 0y which is in RL(V).

Theorem 3.3.2: Let ¢ be in GL(V) and g in T'L(V). Then

(1) det(s,(0)) = (aet(o))?,
(ii) By (c) = g(P),
g
(iii) Qp (o) = g(Q),
g
{iv) If ¢ is proper then @g(o) is proper and res(@g(c)) = res(a).

Proof: (i) Let o be in GL(V) and mat(c) = A. Then

det(gog ™)

det(Qg(o))

_1¢
det(B(A(B"l)¢ ) )

¢B-l )

det(BA

aet(a®) = (aet(a))? = (aet(o))?.
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(i1) Let v be in P, the fixed space of ¢. Then o(v) = v. Then
gog L(g(v)) = ga(v) = g(v). So g(P) € Py (0)*
8

o (g)° Then gog (v) = v. Soo(g H(v)) = g t(v),
g

thus g_l(v) is in P. Therefore v is in g(P). Thus Py () = g(P).
g

ILet v be in P

(iii) Iet vbe in Q. Then v = o(x) - x. Let x = g_l(y) for some y
in V. Then '

glv) = go(x) - g(x) = gog™1(y) - ¥

. . . . c .
which is in QQ s So g(Q) Qq, (0)
g . 8
Let v be in Q(p (0)° Then v = gcg-l(x) - x for some x in V. Then
g

G(g_l(x)) - g-l(x) which is in Q. So v is'in g(Q). Thus

. s“l(V)
8

(iv) Suppose o is proper in GL(V). Then Q is a direct summand of V,
V=W&® Q. Thus V= g(V) = g(W) & g(Q). So ¢g(c) is proper in GL(V)

and res(@g(a)) = res(o).

Let L be a line and H a hyperplane with L C H. Then g(L) C g(H).
So if T is a transvection with line L and hyperplane H, then <I>g('t) is a
transvection with line g(L) and hyperplane g(H). Let T = L be a
b

transvection. Then

(2,(0))(x) = g T, p&™"(x)

el (x) + ap(g™2(x)))

x + gla)d(p(g t(x)))

x + gla)dpg T(x)

T (x).
ga;opg~t *
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Thus ¢ (v, ) =1 R
. -l
g 8&,p g5 ¢p8

Now consider & projective collinear transformation g:P(V) » P(V).

Define ¢ (h) = ghg_l for all h in PIL(V). We have ¢ _¢&_ = 'y and
g 8, 8 2.8
1 =2 1°2

o ~1

g = ¢ _,» so @g is a group isomorphism. Since g is in PTL(V), there

h. So

is an h in TL(V) such that g

Qg('c'x) = g'&-g-l RSh T = hoh T = QhZc).
Therefore we have isomorphisms

qsg: PGL(V) -+ PGL(V)

0y PSL(V) - PSL(V).

3.4 The Contragredient

Consider a semilinear mapping ¢:V -+ V with ring automorphism
* - *
$:R + R. Then for each p in V , we have that ¢ lpo’ is in V . Denote
-1 t . t ¥ * .
¢ po by o (p). Then we have a mapping ¢ :V - V defined by
- *
ot:p ¢ lpo. If we denote f(x) by <x,f> for x in V and f in V , then
<x,5t(p)>¢ = <o(x),0>.

. , * *
Let {b ,bn} be a basis of V and {b., , ... ’bn } the

l’ LRI

) , * * n *
corresponding dual basis of V. Let p be in V and p = Z aibi' Then
i=1"

ct (o) ot (Zaibi*)

-1 *
¢ (L‘aibi Jo

-1 *
s (Zla.ibi o)

267 (2,)) (477, o)

1]

2667, )) (v, ")),
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Thus ot is semilinear with associated ring automorphism ¢-l. Suppose

t

. * *
o = 0. Then ¢ Ypo = 0 for allp in V. So pg = O for all p in V .

*
Thus bi 0=0~fori=1, ... ,n. Suppose there exists x in V such that

ag(x) # 0. Let o(x) = Zab.. Then some a, # 0, say aj. But

* *
0="5b, o(x)=0>b, (Sa.b.) = Thus o(x) = 0 for all x in V. So o=0.

3 5 R0 T &y

t t -1 -1 R *
Suppose 0, = o, . Then ¢ “po, = ¢ po, for all o in V. BSo
1 2 1 2
- o ¥ ¥ _ . % .
pal = pcx2 for all p in V. Then bi g, = bi o, fori=1, ... ,n. Let

. - = ]
X be in V and al(x) = Iab., ce(x) zai b, . Then

a b (za b, ) = b c (x) =b 0' (x) = bj*():ai'bi) =

J J 2
E— o =0 o_ = .
for =1, ««. on. Thus l(x) 2(x). Therefore 159%
Iet Gl:V + V and a, :V + V be semilinear with ring automorphisms

1#1 and ¢2, respectively. Then o is semilinear with ring auto-

21
*
morphism ¢2¢l. Let p,be in V . Then

(ozol)t(pl) ("’2"’1)-1"1"2"1

-1, -1
o) by P19

= 6. "L( -1,
‘¢1 (4’2 1°2

)o

-1 t
¢, (02 91)01

t

12"1
t ot t

Thus (¢ 59y) = 9 70,

*
Let {b ,b } be a basis for V and {b ,bn } the

l, LI l 9 ewoe

corresponding dual basis for V . Let A be the matrix of ¢ with respect
to {b;, ... b } and C be the matrix of o° with respect to

. *
{v

*
109 e ,bn }. Then



57

®
[

*»
13 =53 (Eakdbk)

b, (o(b,))

-1 %
¢ (7", o) (b,)
T
= 0" (b, )(v,)

* -
= ¢(£ckibk J(vy) = oleyy)

¢

Thus A# = C', Therefore det(A) $det(C). So ¢ is bijective if and

-1 )t

only if ab is bijective. So if ¢ is bijective, then (Ut)_l and (0

are also bijective.' Note that

(o) ((0™H)E) = (6710)® = 1 = T 50 (o)L = (o71)t,

Let 0:V - V be a collinear transformation. Then define the
contragredient of O to be ¢ = (Ot)-l. Thenvé:V* -+ V* is a semilinear
bijection with ring automorphism ¢. So ; is also a collinear trans-
formation.

Let 0,:V > V and 6,.:V > V be collinear transformations. Then

1 2
(035,) = ((0,0,)%)7
- (°2t°1t -1
= (olt)-l(ogt)-l
= 9,9

and
N v
-1 ~1,t\-1 ty-1y-1 -1
()= 7)") "= ((c")7) " = (o).
v *
So we have the map .:TL(V) » I'L(V ). This is a homomorphism by the
ebove.
v t\-1 t M
Suppose ¢ = I. Then (0°) ~ =I,so0 =1I. Thus 0= I. So .

is injective.
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Let u be in TL(V.) and u(b, ) = ) a,;b, » and let ¢ be its ring
J

* *
automorphism. ILet £ = Z dibi be in V and v = Z e

b. be in V. Then
X i
i i

i

of0 S(v) = ¢20 (] eb.)
5 58

_ ol B -1

-¢f(§¢ (e;)5™ (b))

_ T+l -1
_¢f(§¢ (ej)(1§¢ (2, )0, )

_ -1 -1
= ¢f(£ §¢ (8,087 (o)1)

-1 -1
¢(£ § 0™ (ag )¢ (e)e(p)

-1 -1 *
¢(§§¢ (ay, )¢ <ej>(§ ab, " (n,)))

r -1 -1
¢(£§¢ (ajk)(# (ej)dk)

) (a,)
£ 88y 949
and

(u(£))(v)

(] &2, ()

(L ¢(a ud, *))(v)
kd’dk“k v

12 eta)(la, b )1
k i

n

*
(11 6(a)agyb; ) ()

I g(a e, b, (v)

ik"i

1
*
iz $(a )a, b, (e b,)
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- * L 4 L 4
So ¢fo 1. u(f) for all £ in I'L(V ). Therefore ¢ = u. So . is

v

surjective. Thus is a semilinear isomorphism.

v - » *
Tet ¢ be in GL(V). Then mat(c) = ((ma.t(o))t) 1o det(c) is in R .

» *
let Ea.ibi be in V. Then
v * * -1
G(Zaibi ) = (Xer.ibi )o
* _
= Za.b, ¢ 1
ii
v *
= ):aio(bi ).

v

*
Thus o is in GL(V ).
If ¢ is in SL(V), then det(c) = 1. So det(o) = det(a)-l= 1, Thus
v *
o is in SL(V).
%
Let o be in RL(V). Then mat(g) = rI for some r in R . Then

-1

mat (0) = ((mat(0))?)™L = r11I. So @ is in RL(V ).

In addition, the maps

T GL(V) » GL(V)
i sL(V) + sL(v)

v

.2 RL(V) - RL(V*)
are isomorphisms.
Let o be in TL(V) and let U be a subspace of V. Define
U° = {f in V*If(u) = 0 for all u in V1%
Thus U® is a subspace of V' because if V = U @ W then V=10 @ W,
Let f be in ZI(U°). Then f = :?(g) for some g in U%, so £ = ¢g0-l.

Then £(x) = ¢go T(x) = 0 for all x in o(U). So £ is in (o(U))°.

Now suppose f is in (o(U))°. Then f(x) = 0 for all x in o(U). So

¢ 1f9. Then

: ~1
fo (1) =0 for all u in U. Let g = (o ~)(f)

glu) = ¢—lfq‘(u) = 0 for all u in U, so g is in U°. Also
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;(g) = ¢gc_l = q>¢-lfao-l = f.

So £ is in o (U°). Thus o(W°) = (o(U))°. Call : TL(V) + TL(V') the

contragredient isomorphism.

Theorem 3.4.1: Let " be the contragredient isomorphism of V and let ©

be in GL(V). Then
(i) +the residual module of ; is P°,
(11) the fixed module of ¢ is Q°,
(iii) res(o) = res(;) if o is proper,

(iv) the isomorphism . carries the proper transvections with spaces

L C H onto the set of proper transvections with spaces H° C L°,

(v) T =

T %
a,p p,~a

*%

" n
where -a in V  is defined by a(f) = f(a).

Proof: (i) Let f be in Q-t' Thenf=0t(g) - g=g0-; g for some g
in GL(V*). Let x be in P,o Then
£(x) = go(x) - g(x) = g(x) - g(x) = 0.
So f is in P°.
Iet £ be in P°. Then f(x) = 0 for all x in P. Define g:Q > V by
g(x) = f(y) for all x in Q where x = o(y) - y. Then g is well-defined
since if o(y) - y = 0(z) ~ z, then o(y - 2) =y - 2 soy - z is in P.

Thus £(y) ~ £(z) = f(y - z) = 0. Then g(o(x) - x) = £(x) for all x in

V. So
t %
f=glo-I)=gi-g=0g-g-= (¢ ~Ie.
Thus f is in Q ,. Hence P° =Q , = =Q .
O‘t ot (Ut)-l .6

(ii) Let f be in Q°. Then

(o¥(£) = £)(x) = (f0 - £)(x) = £(o(x) - x) = 0

since f£ is in Q°. So crt(:f‘) = f. Thus f is in P .. Now suppose f is
o



in P .. Then 6°(f) = £f. So

t
g
£(o(x) - x) = £o(x) - £(x) = (¢°(2) - £)(x) = o.
So £ is in Q°. Thus Q°=Pt.' SincePt=P t_l,wehaveQ°=Pa.
) G (a”)
(iii) Now
res(;) = dim(Qg)
=n - dim(P;)
=n - aim(Q°)

n - (n - dim(Q))

aim(Q)

res(a).

(iv) Let t:V -V be a proper iransvection with spaces L C H. Then ;
has spaces H° C L° where H° is a line and I1° is a hyperplane. Thus ;
is a proper transvection in GL(V*).

Suppose T in GL(V*) is a proper transvection with spaces H° C L°.
Then T has spaces L CH. So v maps the set of proper transvections
with spaces L C H onto the set of proper transvections with spaces
H® C1°,

(v) We have

(r,°) (D) = (97, )(x)

$(x + o(x)a)
d(x) + p(x)é(a)
¢(x) + p(x)a(9)
(¢ + g(¢)p)(x)
(v, @) ().

61
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Therefore T° = Tp"g, so
a,p
N t -1 R
= = (7 =T ",
T ) ( p,'é‘.) T6,-a

v *
Also, maps RL(V) to RL(V ) so we can define the map

v * : _v-
2PGL(V) > PGL(V ) by (o) = (o). Call this map the projective contra-

. . : *
_gredient isamorphism. This induces :PSL(V) - PSL(V ).

If R is a local ring then we may also define the map

v *
sPIL(V) + PTL(V ) in the same way.

3.5 Unipotent Transformations

We use CA(X) to denote the centralizer in A of a nonempty subset X
of a group A. Thus CA(X) is a subgroup of A, and

(i) X, € X, implies that cA(xl) D |CA(x2) and

(ii) xc CA(CA(X))'

If ¢ is a one-to~one group homomorphism, then ¢(CA(X))= C¢(A)(¢(X)).

If A= GL(V), we will simply write cv(x) instead of C (x).

GL(V)

Theorem 3.5.1: If n=2, V=L®® K, where LL and K are lines, and T

and TK are proper transvections with residual lines L and K, respec-

tively, then TL‘EK‘L‘L—lTK—l is an element of GL(V) ~ RL(V) with residual

space V.

Proof: ILet J = TL(K) # K. Let L = Ra and K = Rb. Then TL(b) - b is

ra + b where r is in R¥*. Thus

in L, so TL(b) - b = ra, so TL(b)

J = RTL(‘D) = R(ra + b).
Suppose x is in J NL. Then x is in R(ra + b) N Ra so
x = s(ra + b) = ta for some s and t in R. But then s = 0, so x = O.
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Thus § NL =0, Hence V=JO L.

Now T J = TLTKTL_l is a proper transvection with residp.al line

TL(K)=J. Let x be inJd NK = R(ra + b) NRb. Then x = s(ra + b) =

)
O. Thus sr=0but risin R, so s = 0.

for some s and t in R, so sra

Thus x = 0. Thus V= J @ K. Hence, by Theorem 1.4.3, the residual

=1_ -1
T T i =
space of LKL k  is JOK
1. -1, . .
T
In addition, T T, T, “T, ~ is not in RL(V) since

-1 -1 '
L K L K (‘l’ (7)) = TLTK‘L‘L (J) = TLTK(K) = TL(K) =J # TK(J),

Theorem 3.5.2: Let n

2, L and K be lines with V = L ® K and let

T TK’ and TK be proper transvections with residual lines L, K, ‘and K,

L’
respectively, T # TK' Then T_T,T. *t ~% and T.T 1t 'lTK':L

LKL K LK L do not

commute.

Proof: Iet {b,,b,} be a basis of V with L = Rb, and K = Rb,. Then

1 2°
there exist &, B, Y in R such that
1 o 1 0 1 0

mat(T ) = ’ mat(T )
' 1o 2 K B 1 y 1

il
5
o
—~

-3

with ¢, B, Y# 0 and B # Y. So

1+ 0B+ a 82 -a28
-1, -1, _
mat (Ty Ty "Ty ) = 5
aB 1 - 08
and
1+ 0B + a2Y2 -GQY
=-1n =1
T =
S 5
ay 1 - ay

vhich commute if and only if azsy(ﬂ -~ Y) = 0. But one can easily check

that o, B, and Y must be units since the transvections are proper. Thus



. s 3 s s -1 -1
B =vy. Since % # TK,thls is a contradiction. So T TT; "T, ~ and

-1l -1
TLTKTL TK do not cammute.

Let 0 be in GL(V). If there exists k > 0 such that (o - I)k

then call ¢ unipotent.

If ¢ is. unipotent and U is a submodule of V for which o (U)

then OIU is unipotent.

Theorem 3.5.3: Suppose n is not a zero-divisor. Let t be a proper

transvection in GL(V). If T cammutes projectively with ¢ in GL(V),

then T and ¢ commute in GL(V).

Proof: If T and 0 commute projectively, then 016 T = ol for some
* -1 - -
a in R. So 1l = det(oto L l) = &, Noworo T =ar. So

&bt = (otc-l)n = (a1)® = ™" = 7.

Iet T = Ta 0? where a is unimodular in V. , Then
Kol
ctnc-l = g1 0-1 = T
na -1?
P no(a),po
sOo T =T « Thus
-1
no(a),po nasp

T . (a) = 1 (2)

A _l

‘ngfa) ,po né,p

a + plot(a))(no(a)) = a + p(a)(na)
1o (o~ Ha))e(a) = oO.

Then p(c-l(a)) = 0 since 0(a) is unimodular and n is not a zero-

divisor. Now

oto -l(a.) = qt(a)

a + p(o-l(a))c(a) aa

a = aa.

. 64
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Thus & = 1 since a is unimodular. So T and ¢ commute.

Theorem 3.5.4: If char(R) = p, where p is an odd prime, then o in GL(V)
n
I)=Ifors<:anenlo.

is unipotent if and only if ¢

Proof: Suppose ¢ in GL(V) is unipotent. Then there exists k > 0 such
k

that (0 -= I) = 0. Choose n large enough that p- > k. Then

(6 - )P

S T (gn)opn'?-‘ S

o
]

=O'P—I

n n
since p divides (f ) for 1 <t f_pn - 1. So oP = I.

n I
Conversely, of = I implies that (o - I)P = 0,

Let % be in PTL(V),I= G where ¢ is in GL(V). We call X a

projective unipotent transformation if ¢ is a unipotent transformation.

Then o is called a unipotent representative of I.
Let o be a proper transvection with residual line L. Then
(0 = INV) =L. But (6 - I)(V) CP so (o ~ I)2(V) = 0. Thus all

proper transvections are unipotent and all projective transvections are

unipotent.

We say that two elements ¢, and 0, in I'L(V) commute projectively
if 3& and Eé commute. Certainly commutability implies projective
commutability.

3.6 Full Groups

We say that a subgroup G of I'L(V) is full of tramsvections if

n > 2 and for each hyperplane H of V and each line L C H, there is at
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least one proper transvection ¢ in G with P = H and Q@ = L. Similarly,
a subgroup A of PTL(V) is said to be full of projective transvections
if n > 2 and for each hyperplane H of V and each L € H, there is at
least one proper projective transvection ¢ in A with P = H and @ = L.

If n > 2, then clearly SL(V) and PSL(V) are full of transvections
and projective transvections, respectively.

Throughout the rest of the chapter, G C I'L(V) will denote a group
full of transvections, A C PTL(V) will denote a group full of
projective transvections and A:Al -+ A2 will denote a group isomorphism.
We say ’chath.A preserves the projective transvection o, in A, if Aol is

1 1

a projective transvection in A, and it preserves the projective

2

transvection o, in A, if A-lo is a projective transvection in A It

2 2 2 1

preserves projective transvections if it preserves all projective

transvections in Al and A2,

Theorem 3.6.1: If G and A are full, then G and A are also full.

Proof: Let H be a hyperplane in V* and L a line, L € H. . Then L° is a
hyperplane in V and H° a line in V with H° C L°. So there exists a
proper transvection ¢ in G such that P = L° and Q = H°. Thus by
Theorem 3.4.1, ; is a proper transvection in (;with residual space

[+ o

(I°) = L and fixed space (H°) = H. Similarly, A is full.

Define DG = [G,G] and DA = [A,A].

Theorem 3.6.2: If n > 3, then DG and DA are full.

Proof: Let H be a hyperplane of V and L C H a line. Let {bl’ cee

Let

b }

be a basis of V such that L = Rby and H = Rb, @ ... ® Rb _

‘ * * ’
{bl 5 see ’bn } be the corresponding dual basis. Now G is full so there

i
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exists @, B in R* such that T % isin Gand 7 « 1s in G.
Now [t x T 2] =T .
bl,ab2 ’ b2,an bl,aan
The proper transvection T « has fixed space ker(afb *) = H
'bl’aan :

and residual line R'bl = L. Thus DG is full.
Now A is full of projective transvections. So p~1A is full of
transvections. Hence pp 1A is full. So P(DP'lA) = DA is full of

proper projective transvections.

Theorem 3.6.3: Let Po and Qo be subspaces of V such that Po nQo is
also a subspace and dim(Po) + dim(Qo) =n., If dim(Qo) = 1, then assume
Po N Q’o # 0. Then there is a product o of dim(Qo) proper transvections
in G such that P = Po and Q = Qo'
Proof: If dim(Qo) = 0, then we are done.

If dim(Qo) = 1, then P0 n Qo = Qo, so choose a proper transvection
6inGwithP=Po, andQ=Qo.

Let dim(Qo) =2, Let V= Po &M= Qo ® N for subspaces M and N of
V. Then P = (Po nq)® (P, NN) and Q = (P, N Q) ®(q " M). Now
P0 N Q’o’ P0 NN, Qo NMand M NN are all subspaces since they are direct

summands of subspaces. Clearly (Po nN)N (Qoh M) = 0. Let
{
Ae

{a

i P N
RXE ,bi}be a basis of P, N Q_,

ITIEE ,cj}be & basis of P Ny,

R ,dk} be a basis of Qoﬁ M, and

'{el, ,ez}be a basis of M N N,

Then



V=R'bl@... eRbiQRcl@ ...QRcJ

P, = Ro)@-.. ® Ro, ®Rc, & ... ® Re

'j’

and Qo = Rble vee @ Rbi@ RdIQ I de.
Case I: i = 0. Then Po = Rlcl® e B ch_2
L, =Rd), H =Rd, @ Re; ® ... ® Re
L, =Rd,, H,=R4, ® Re; ® ... @ Re

Then Q°=Ll®L ,P°=HlnH2, LlCHl, L2CH2.

Case II: i = 1. Then

P

Rbl®Rcl® eee @ch

o -3
QO = R'bleRc'il
MNNKN= Rel.
Let
L = Rb,, H, =Rb, ®Re; ® ... ® Re; . @ Rey
L, = R4, H, =Ko, ®Re; ® ... ® Re, . @ Rd,

Then Qo = LlQ L2, Po = Hl N H2, Ll c Hl, L2C H2.

" Case III: i = 2. Then

Po = Rbleﬂb2® Rcl® Qch—h
Qo = Rbl@sz
M NN = Rel® Rez.
Let
Ll = Rbl, Hl = Rle Rb2® Rcl® ces Qch_htB Re:L
L2 = sz, H2 = Rbl® Rb2®Rcl® cee @ch_hQRez

QRdlfb e O de‘,

and Qo = Rdl @ Rd

2-

Let

68
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= = n (- C
Then QO Ll@ L2, PO H H2’ L Hl, L H..

1 1 2 2

N .
L NEy, Ly CH, L, CH,

So choose a proper transvection oy in G with Pl = Hl and Ql = Ll and &

proper transvection 02 in G with P2 =H., Q2 = L2. Let 0 = 0102 which

N = . i =
Hl H2 Po Since V P1+P2,

In each case we have Q‘o = Ll @ L2, Po = H

is in G. Since Ql n Q,2 = 0, then P
then Q = Ll + L2 = Qo:

We now proceed by induction on dim(Qo). Suppose dim(Qo) > 3 and
dim(Po) <n-3. Let {b ,bn} be a basis of V where {b

1, s e ’bk}

and P_. =P @®@ Rb .
2 o n

l, see
is & basis of Po. Let Pl = P°® Rbk+1 o @ Rbn_

1
'] = 3 = N =
Then d1m(P2) dlm(Po) + 1 and Po Pl P2. Also V = P, + P2. Now
ng C N N ; ; i ;
Po Q’o Pl Qo so Pl Q‘o contains a line. Let Ql be a line in

ng ., = . Now G is full so there
Pl Qo Then choose Q2 such that Q’o Ql ® Q,2

exists a proper transvection ¢, in G with residual space Ql and fixed

1

space P By induction, there exists a product o_ of dim( Q2) proper

1’ 2

transvections in G with residual space Q2 and fixed space P2. Iet
= N =

0,0,. Now V=P +P, and Q; NQ, = 0 so by Theorem 1.k%.3,

n - —1 3
Pl P Poa.ndQ Ql".c’)? Q'o'

g =

P

2

Theorem 3.6.4: If n > 2, then there is a o in DG such that Q = V.

~ Proof: Ifn > 3, then DG is full. In Theorem 3.6.3 let Po = 0, Qo = V.
Then there exists ¢ is DG such that Q@ = V and P = 0,
So assume n =2, Let V=L@ K. In G there are proper trans-

1 2

g = 0102 has residual space V.

vections o, and 0, with Q‘l =L, Q2 = K. Then by Theorem 3.5.1,

Theorem 3.6.5: Suppose n > 2 and that G is full. Then the centralizer

of G in GL(V) is RL(V).
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» »
Proof: Let {bl, ,bn} be a basis of V and {bl JETTRRC } the dual
*
basis of V. Then G contains a proper transvection Tt % for some
b, ,ab,
* 371
a in R for i # j. Let g be in cv(G).
o(t (X)) =1 #(0(x))
bJ,a'bi bj’dbi
“(x)b,) = o(x) + ab_ " (a(x))b
o(x + abi X bj = o(x ab, x 3

o(x) + o, (x)o(by) = olx) + ob,” (a(x))b,
So bi*(x)c(bj) = bi*(o(x))bJ for all x in V.

Let O(bk) = ZaZkbz for each k. Then

bi*(bk)o(bj) = bi*(a(bk))bj
Gikc(bj) = aikbj'
Thus &, = 0 if i # k. So c(bk) = a b . Then sikg(bj) = a.ikbj implies
ajjbj = aiibj so aﬁj =a,. for all i. Thus 0 is in RL(V). Clearly

RL(V) is contained in the centrelizer of G. Thus the centralizer of G

in GL(V) is RL(V).

Theorem 3.6.6: If n > 3 and O is a proper unipotent element of CV(DG),
then 0 = T.

RL(V). So

Proof: If n > 3 then DG is full. By Theorem 3.6.5 C.(DG)

0 =al. Also (o - I)k = 0, so 0= (a - I)k = ((a - 1)1)k (¢ - 1)k1 and

. . | *
(a - 1)k = 0. But o is a proper radiation so either (a - 1) is in R or

a~-1=0. Soa~1=0, hence a = 1. Thus g = I.

Theorem 3.6.7: Let n > 3. Then for each hyperplane H in V and each

line L € H, there are at least two distinct proper transvections in G,

and at least two distinct proper projective tramnsvections in A, with
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residual line L and fixed hyperplane H.

. . _ _ 2 _
Proof: Let Ta,p be in G with L = Ra and H = ker(p). Then Ta,p= Tea,p
is in G and T is distinct from 1 .
2a,p a,p
1

The above result applies to P A and hence'to A,

Theorem 3.6.8: If G CGL(V) and n > 3, then CV(DG) = RL(V).

Proof: By Theorem 3.6.2, DG is full, so by Theorem 3.6.5, c,(DG) = RL(V).

3.7 The Group CDC(o)

Let A be a full subgroup of PIL(V). Then P n IL(Vv) is a sub~-
~group of TL(V) which is full, so let G = pia N rL(v). If A € PpgL(V),

then G C GL(V). Throughout this section we will assume that & € PGL(V),

¢ =P 1A ATL(V), so G C GL(V).
v v *
Since is an isomorphism, we also have A C PGL(V ),
v 1Y ¥* v *
¢ =P lANTL(V), and G € GL(V ).

Cx when we are

We will use C to denote the centralizer. CA’ CG’ Cz, G

hd hd

working with A, G, A, G, respectively.

Theorem 3.7.1: For any o in G, C(o) C €(v) and DC(o) € DC(T). Further,

if o commutes with an element of G whenever it commutes projectively

with the element, then C(o) = ¢(o), DC(o) = DC(v). In particular, if
T is a proper transvection, then C(7) = C(T) and DC(7) = DC (7).
Proof: Let T be in C(o), T in C(o). Then to = ot so 10 = ot. Thus T

is in ¢(35). Hence C(o) C C(3).

-1 -1 . -1, -1 .
TTT T
Let T, 7,7, T, bein DCc(oa), 1% T T in DC(o), and T, T,
in C(0). Then T., T_is in 6(9) so T.t.t. tt "t = 7277171 45 in

1’ 2 l21 2 121 2
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DC(o). Hence DC(o) C DC(T).
Suppose ¢ commutes with an element of G whenever it commutes

projectively with it. ILet T be in C(0). Then To = oT so T0 = OT.

Then T is in C(9). Thus T is in C(9). Hence C(0) = ¢(0).
------ 1. . - == = ..
Let T,T,T) 11'2 be in DC(T), 1,7, in (). Then T4s T, is in

—1.:—1. . o :E-;—l--l
1°o%1 T  is in DC(0). Thus T,T,T 7T, 172'1 2

i

L]
)
-

c(9), so T

is in DC(9). Hence DC(¢) = Dc(o).

For any two subspaces U and W of V, define

6(u,W) = {0 in 6|/Q € U and P D W}
a(u,w) = 6(U,W).

By Theorem 1.5.2, G(U,W) and A(U,W) are subgroups of G and 4,
respectively. Let © be in G(U,W), £ = O, u be in U and w be in W.
Then o(u) - u is in Q € U so o(u) is in U. So o(U) € U. Now o™l is in
G(U,W) so 0 1(U) € u. Thus o(U) = U. Hencé 2(U) = U since & = 0,
Clearly o(W) = W and Z(W) = W since W C P.

If H is a hyperplane in V and L is a line with L C H, then G(L,H)
contains the set of all proper transvections in G with residual line L

and fixed space H, plus I.

Theorem 3.7.2: If U and W are subspaces of V, then

\/ v
G(U,W) = G(w°,u°)
and
\/ v
a(u,w) = A(W°,U°)
v \/
Proof: Let o be in G(U,W) with o in G(U,W). Then Py = Q%2 'U° and
v v ) \/ v
qQ; = P°C ‘W°. So ¢ is in G(W°,U°), and conversely. So G(U,W) = G(W°,U°).

Then
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v i S
A(U,W) = PG(U,W)

- B(eW)
= P(G(wW°,u°)
= P(G)(w°,u°)
= PG(W°,U°)

= A(WO,U°).

Theorem 3.7.3: Let R be a ring without nontrivial nilpotents. ILet o

1

and % be nontrivial proper transvections in G. Then the following

statements are equivalent:

(i) P, =P a.ndQl=Q2.

(i1) c(ol) C(az).

(ii1) c(o)) = c(a,).

Proof: (i) Suppose P, =P, and Q; = Q,. Let I be in C(Ol), o, = Ta,P

and 0, = Then T = IT I T =r Thus by Theorem 1.5.2,

T L] L)
2 Qa,p agp agp za pz"l
L

1

- _l .. * .
Z(a) = Aa and pZ = A" p for some A in R .  So

T 371 = ¢ =1 =T

oa,p GZa,pZ-l qka,l-lp a.p

Thus I is in C(oz). Hence c(ol) - C(og). Similarly, C("z) c c(ol). So

C(ol) = 0(02).

(ii).By Theorem 3.7.1, if €(0;) = C(0,), then C(v ) = C(0;) = Clo,) -

1)
= C(o,).

(iii) Suppose C(E;) = C(E;). Suppose P # P2. Then there exists a line
in G with

L with L € P2 but L ¢ Pl' The group G is full, so choose O

= = C C
P3 P2 and Q3 L. Then Q3 P2 and Q2 P

is in C(02). Thus 03 is in C(02) so 03

3

3 so by Theorem 1.5.9, ©

.. ). ..
is in C( l) Hence 63 is in

3
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c(ol) by Theorem 3.5.3. So by Theorem 1.5.9, L € P_, which is a

l’

contradiction. So Pl = P2.

Suppose Ql # Q2. Then there exists a hyperplane, H, such that

Q. C H, but Q. ¢ H, by Theorem 1.1l.4. The group G is full so choose ¢
2 1 g 3

inG'w:i.thP3=HandQ3=Q2

0(02). Then o4 is in C(oa) = C(ol). So o3

Then by Theorem 1.5.9, Ql CP_ = H, which is a contradiction. Hence

. ThenQ,3CP a.nszcP S0 g, is in

3 3
is in C(ol) by Theorem 3.5.3.

2

3
Ql = Qe’

Theorem 3.7.4: Let R be a ring without nilpotents. If n > 3 and 0 is

a nontrivial proper transvection in G, then G(Q,P) N DC(c) # I.

Proof: Choose a basis {b ,'bn} of V¥ with the dual basis

l’ L N ]
e % % *
fb,"s «e. b} of V such that o =T - Then Q = Rb, and
n b.,b
1°'n
*
P = ke:r(‘::n ). The group G is full of proper transvections so there
*
exist @ and B in R such that t % and T % are in G. Also
bl,ab2 b.2’an
T % is in C(o) and T % is in C(o) by Theorem 1.5.9. Now
bl’abQ b2,8bn
[~ %o T *]=1:b 'b*TTb L *(b.),mab T .
bys0b,  PysBby 1%z PPy T 2y ey

fl

T # T

* *
bl,ab2 bl,-ab2 + aan

bl,aan

which is in G(Q,P) N DnC(0).

‘Theorem 3.7.5: If n > 3 and H is a hyperplane of V and L is a line in

H, then there is a nontrivial proper transvection Tt in G with spaces
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L C H such that t is in DC(t).
Proof: Let o be a proper transvection in G with spaces L C H. By
Theorem 3.T.l4 there exists a proper transvection 7t in G with spaces

LCHand t in DC(o). By Theorem 3.7.3, C(o) = C(t), so t is in DC(z).

Theorem 3.7.6: Let R be & ring without nontrivial nilpotents. If n> L

and ¢ is a nontrivial proper traﬁsvection in G, then G(L,P) nDC(g) # I
for all lines L in P.

Proof: Fix a line K in P with K¢ Q + L. This is possible since n > k.
By Theorem 1.1.4 there exists a hyperplane; M, containing Q + L but not

K. Let T be a proper transvection in G with residual line L and

fixed hyperplane M and let Tx be a proper transvection in G with
residual line K and fixed hyperplane P. By Theorem 1.5.9, T and Tg

are in C(o).

1l -1

T o Then & is in DC(c). Now 1.K # K since

let Z =TLTKIL L

Kq: M, hence TLTKTL-l is a proper transvection with residual line -cLK

distinct from K and fixed hyperplane T.P = P, Thus I = (rLTKanl)rK.l

L
having fixed hyperplane P, is a nontrivial proper transvection.

l1_ -1

Similarly, I = TL(TKTL Tk ) has residual line L. Hence £ is in

¢(L,P) N pClo ).

Theorem 3.7.7: If n> 2 and 0is a nontrivial proper transvection in G,

then the nontrivial proper elements of G(Q,P) are contained in CClo)
- - - - . *
and if I is in CC(¢), then @I is in G(Q,P) for some & in R .
Proof: If I is a typical nontrivial proper element of G(Q,P). then by
Theorem 3.7.3 C(Z) = C(o). Hence I is in CC(Z) = cc(o).

Suppose n > 3. Let I be in CC(o). For each line L C P there
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exists a proper transvection in G with residual line L and fixed hyper-
- plane P. This proper transvection is in C(0), hence I commutes with
it. Hence IL = L for all lines L€ P. So E|P is in RL(P). Thus

* -1
Z|P = aIp for some @ in R . So (a L)|P = Ip. Thus P _

1 D ‘P, where
o

Z
is the fixed space of « 1z,

P
a-]-z hd v hd v

" Now I is in CC(g) with I in G. For each line L C Q°, there exists
a proper transvection in é with residual line L and fixed hyperplane Q°.

This proper transvection is in c(g), hence I commutes with it. So

I(L) = L for all lines L C Q°. So %|Q° is in RL(Q®). Thus 5]Q° = BI

QO
* - v
for some B in R . So (B 12)|Q°=Io. Thus P 2 Q° So
Q B"‘li
Q3 (P L P=(P~r P°=(a. P> q .
g~1% ) e ek
Let Q = Rb, and choose b, in P independent of bl' Then aZ(bz) = by,
so BE(b,) = Ba™'b,. Now BE(b,) - b, is in Q, so0 BZ(b,) - b, = b,

for some r in R. But

= - - = —l_
BZ(bz) - b, = Ba b, - b, = (Ba 1)v,.

2
So Ba_l - 1= 0, which implies that @ = B, So o is in G(Q,P). Thus

L is in A(Q,P).

Now suppose n = 2. Let I be in G with I in CC(c). Then Z is in

C(0). Choose a basis of V in which 0 has matrix [’2)' : i] Let I have

*

matrix [Z‘ EJ with ad - be = u in R . Then



7

A -1 I-d =bj|1 A ra. b
o 1|7 % |-c ajfo 1if|e a
- -
-1 d da-b a b
SR e -cata c d
1 ad + cdX - be db + d?)t - bd
=% ac - clal +ac  -bc - cdi + ad
4 jut Acd A&®
=T u - Acd
1+ uted  utad®
N -u'm.lkc2 1 - uthea
-1, L . * . . 2 2
Nowu A is in R since o is proper, so ed = 0, & = u, and ¢ = 0.

*
Thus d is in R and ¢ = 0. So ad = u, which gives ud = ad2 = ua. So

_ _la ® _ ' 11 a
a = d. Thus mat(g) = l:o a]' Sotf = a.'z‘.l where ma.t(zl) = [0 3 ]

So a1t is in G(Q,P).

Theorem 3.7.8: Let ¢ be a nontrivial proper transvection in G. If

n > 3, then the nontrivial proper elements of G(Q,P) are contained in
cbc(o).

Proof: The result follows from CC(s) C CDC(c).

Theorem 3.7.9: Assume n > 4, Let ¢ be a proper element of G with

res(o) <n - 3 and suppose that P N Q = 0. Then CDC(c) C G(Q,P).
Proof: For each hyperplane H of P and each line L in H, fix a proper

transvection T in G with residual line L and fixed hyperplane Q ® H.

L,H

Choose two such proper transvections, by Theorem 3.6.7,

dr. '

TL,H ¥ T, m
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Clearly T P) =Pand 1. .(Q) =Qq, so (rL HIP) is a proper transvection
?

1,1 L,H
with spaces L C H and (1, .|Q) = I. Similarly (t.' .|P) is a proper
L,H L ,H

transvection with spaces L C H and (t;' ,|Q) = I.
9

Let Gp denote the subgroup of GL(P) generated by all 1. ., one for

L,H

each L in each H. Then Gp is full. Then I, ® Gp € C(o). So

Q

IQ$ DGp = D(IQ ® Gp) € DC(g). Thus CDC(o) C c(J:Q ® DGp)

Iet I be in CDC(c). Then I commutes with each element of IQ @ DGP.
Now DGp is full so for each line L and each hyperplane H containing L,
there is a proper transvection in DGP with residual line L and fixed
hyperplane H. But I will cammute with any such proper transvection.

Thus (L) = L for all L € P. Hence I(P) = P and by duality, Z(Q) = Q.

Hence ¥ is in G(Q.,P).

Theorem 3.7.10: Let n > 4 and o be in G with res(c) <n - 3. Suppose

that @ NP = 0. Then every proper unipotent transformation in CDC(o)
is a proper transvection in G(Q,P).
Proof: This follows from Theorem 3.7.9 since CDC(o) C G(Q,P) and all

proper elements of G(Q,P) are proper transvections.
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