
A COMP ARIS ON OF STOCHASTIC GLOBAL
OPTIMIZATION METHODS: ESTIMATING NEURAL

NETWORK WEIGHTS

By

LONNIE KENT HAMM

Bachelor of Science
Oklahoma State University

Stillwater, Oklahoma
1991

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1995

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
August, 2003

A COMPARISON OF STOCHASTIC GLOBAL
OPTIMIZATION METHODS: ESTIMATING NEURAL

NETWORK WEIGHTS

Thesis Approved:

11

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major advisor, Dr. B. Wade

Brorsen for his constructive guidance in conducting this research. This research would

have been considerably more difficult without his encouragement, patience, and

friendship. I would especially like to thank Dr. Brorsen for the financial resources he

provided to pay my assistantship salary and purchase computers and software. In

addition, I would like to thank the Department of Agricultural Economics for their

financial support during my graduate studies. I would also like to thank Dr. Martin

Hagan for his helpful comments and his willingness to share his extensive knowledge of

neural networks with me.

111

TABLE OF CONTENTS

Chapter Page

1. SUMMARY .. 0 ••• 1

1.1 Introduction .. 0 . 1
1.2 Neural Network Learning 3
103 Literature ... 8
1.4 Research Objectives ... 12
1.5 Procedure ... 13
1.6 Organization .. 15

2. NEURAL NETWORKS .. o• •••••••••••••••••••••••••• 17

2.1 Introduction ... o •••• o ••••••••••••••••••• 17
2.2 Applications and Types of Neural Networks 18
2.3 Feedforward Neural Networks .. 20
2.4 Neural Networks as Universal Approximators 27
2.4 Leaming (Estimation) in Neural Networks 28

3. GLOBAL OPTIMIZATION ... 32

3.1 Introduction .. 32
3.2 Genetic Algorithms .. 36

3.2.1 Introduction ... 36
3.2.2 Binary Versus Floating-Point Representation 39
3.2.3 General Types of Genetic Algorithms.................................... 41
3.2.4 Fitness Evaluations 0 0 42
3.2.5 Selection Operators .. 43
3.2.6 Crossover (recombination) 46
3.2.7 Mutation ... 49

3.3 Evolutionary Strategies .. 50
3.3.1 Introduction.. 50
3.3.2 (1+1) and (µ+1)-Evolutionary Strategies 51
3.3.3 (µ+).) and (µ,A) - Evolutionary Strategies 53

3.4 Simulated Annealing .. 59
3 .4.1 Introduction ... 59
3.4.2 Boltzmann Annealing... 64
3.4.3 Fast Simulated Annealing ... 66

IV

4. DATA AND PROCEDURE .. 69

4.1 Introduction .. 69
4.2 Neural Network Architectures and Cost Functions 69
4.3 Training Data Sets .. 71

4.3.1 Synthetic Data 72
4.3.2 Real-Life Data .. 75

4.4 Optimization Algorithms .. 78
4.4.1 Local Optimization ... 79
4.4.2 Genetic Algorithm 82
4.4.3 Evolutionary Strategies .. 84
4.4.4 Simulated Annealing ... 88
4.4.5 Solis and Wets .. 90

4.5 Simulation Details ... 91
4.5 .1 Picking the Global Optimization Parameters 91
4.5.2 Algorithm Evaluation and Comparison 100
4.5.3 Neural Network Software and Computing Environment 101

5. RESULTS AND DISCUSSION ... 102

5 .1 Introduction . 102
5.2 Stochastic Global Optimization Parameters 102
5 .3 Simulation Results ... 104
5.4 Pre-testing Bias .. 136
5.5 Conclusions .. 140

6. SUMMARY AND CONCLUSIONS .. 143

6.1 Introduction ... 143
6.2 Summary of Results, and Conclusions.. 143
6.3 Limitations of Study and Directions for Study 145

BIBLIOGRAPHY ... 147

APPENDIX A ... 161

V

LIST OF TABLES

Table Page

4.1 Summary of Training Data Sets and Neural Network Models 72

4.2 Range of Values Investigated for Parameters of the Global Algorithms 93

4.3 Number of Preliminary Configurations and Restarts and Final Restarts for
Each of the Algorithms and Data Sets .. 95

5.1 R-Squared Across all Optimization Algorithms and Data Sets for Neural
Network Models With the Minimum and MaximumObject Function Values
Across Restarts .. 119

5.2 Probability of Obtaining an Objective Function Value Within the Given
Percentile of All Objective Function Values Within the Given Percentile
of All Objective Function Values Obtained Across All Algorithms for the
Specific Data Set .. 122

5.3 Statistics for Objective Function Values from Random Restarts of
Optimization Algorithms for Training a Neural Network on the Bilinear
Data Set .. 124

5.4 Statistics for Objective Function Values from Random Restarts of
Optimization Algorithms for Training a Neural Network on the
DAX Data Set ... 125

5.5 Statistics for Objective Function Values from Random Restarts of
Optimization Algorithms for Training a Neural Network on the
JYUS Data Set ... 126

5.6 Statistics for Objective Function Values from Random Restarts of
Optimization Algorithms for Training a Neural Network on the
JYUSTTR Data Set ... 127

5.7 Statistics for Objective Function Values from Random Restarts of
Optimization Algorithms for Training a Neural Network on the
Flare Data Set . 128

VI

5.8 Statistics for Objective Function Values from Random Restarts of
Optimization Algorithms for Training a Neural Network on the
Mackey-Glass Data Set .. 129

5.9 Ratio of Training Times for Global Optimization Algorithms in Comparison
to Local Optimization Algorithms ... 131

5.10 Adjusted Probability, Assuming Equal Training Times, of Obtaining
an Objective Function Value Within the Given Percentile of all Objective
Function Values Obtained Across all Algorithms for the Specific Data Set 134

5.11 Probabilities for F-tests From Regressions Comparing the Variability
of Objective Function Values Across Configurations 139

Vll

LIST OF FIGURES

Figure Page

2.1 Feedforward Neural Network With One Hidden Layer 23

3 .1 Comparison of the Normal and Cauchy Probability Density Function 68

3.2 Comparison of Probabilistic Selection Criterion .. 68

4.1 Mackey-Glass Series .. 7 4

4.2 Bilinear Time Series .. 76

5.1 Histograms of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on
the Bilinear Training Data ... 105

5.2 Histograms of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on
the DAX Training Data . 106

5.3 Histograms of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on
the JYUS Training Data . 107

5.4 Histograms of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on
the JYUSTTR Training Data .. 108

5.5 Histograms of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on
the Flare Training Data . 109

5.6 Histograms of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on
the Mackey-Glass Training Data . 110

vm

5.7 Boxplot of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on
the Bilinear Training Data ... 112

5.8 Boxplot of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on
the DAX Training Data .. 113

5.9 Boxplot of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on
the JYUS Training Data . 114

5.10 Boxplot of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on
the JYUSTTR Training Data .. ; 115

5 .11 Boxplot of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on
the Flare Training Data . 116

5.12 Boxplot of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on
the Mackey-Glass Training Data .. 117

IX

1.1 Introduction

CHAPTER!

SUMMARY

A neural network is an analytical tool which models the relationship between a

given set of independent and dependent variables. Since their introduction in the mid-

80's by Rumelhart, Hinton, and Williams, neural networks have received considerable

attention. At times, this attention may have been nothing more than marketing hype.

However, over time, neural networks have become accepted as a mainstream analytical

tool. Neural networks can be found in statistical packages such as SPSS, SAS

(Enterprise Miner), Statistica, and RATS. Companies such as MasterCard, American

Express, Wal-Mart, and KayBee toys are using neural networks and applications range

from fraud detection, product marketing, and financial prediction, to medical diagnosis

(White, 2002).

The most widely used type of neural network, and the object of this study, is the

feedforward type of multilayer perceptron (MLP). For much of the remaining discussion

in this and following chapters, the MLP type of neural network will be referred to

generically as a "neural network". Much of the excitement surrounding the MLP, and

other types of neural networks, is due to their ability to model highly nonlinear

relationships. Neural networks have been shown to be universal approximators capable

1

of approximating almost any function (Cybenko; Hornik, Stinchcombe, and White, 1989;

Funabashi). The neural network approximates the relationship between the dependent

and independent or explanatory variables as well as the interaction between the

explanatory variables. The universal approximation capability of a neural network means

the functional form of the model does not have to be explicitly specified.

A more detailed discussion of neural networks and the universal approximation

property is deferred until chapter 2. At this point it suffices for the reader to understand

that a neural network can be viewed as estimating a map f : 9l n ~ 9l m where n is the

number of explanatory variables and m is the number of dependent variables. The

relationship between the space of explanatory variables X and the space of dependent

variables Y is embodied by

(1.1) f:X~Y.

The relationship in (1.1) is estimated empirically from data that is composed of T

repeated measurements of X and Y , namely n x 1 and m x 1 vectors x, and y, ,

t = l, ... ,T.

The dependent variable(s) Y are rarely completely determined by the explanatory

variables X, therefore, our model with the as of yet unknown function f can be written

as:

(1.2) Y= f(X)+s,

where f is a random error term. We would like to estimate the function f in such a way

that minimizes the error s .

The universal approximation property means that a neural network can estimate

the function f (X) in (1.2) arbitrarily well. The neural network can be written as

2

f(X,B,a), where e is a vector of model parameters that must be estimated, and a is a

vector of parameters that controls the mathematical form of the neural network, i.e. the

number of hidden layers and hidden neurons. Setting the variable a to an appropriate

value and estimating B controls the :flexible functional form of a neural network.

Therefore, given a fixed a, the ability of the neural network to estimate the mapping

rests upon our ability to estimate the parameter values e . The selection of the values for

a is also central to the networks ability to estimate the mapping, however, for purposes

of this research these parameters are considered fixed. More will be said on this subject

in chapter 2. The process of estimating the weights or parameters of a neural network is

commonly referred to in the neural network literature as "training", "supervised

learning", or simply "learning". The next section briefly discusses learning in neural

networks in the context of global optimization.

1.2 Neural Network Learning

The goal of neural network learning is to minimize some error function. One of the

most common is the least squares error function given by:

T

(1.3) Qa(B) = n-1~)y1 - f(x,,B,a)] 2

t=I

which minimizes the mean squared error. The function Q is also called the objective or

cost function. The least squares estimator (} solves

(1.4) minQa(B),
OeS

where S is the set of all feasible model parameters. Given a sufficient number of ·

observations or training examples, standard estimation techniques can be used to achieve

3

optimal approximation (Kuan and White). Since the cost function for this problem is

nonconvex, nonlinear optimization algorithms are required to estimate B .

In the early years of neural network research, a gradient descent algorithm was

commonly used to estimate the parameters of neural networks. Application of the

gradient descent method to neural networks was known as backpropagation (BP)1.

Gradient descent has long been known to be an inefficient estimation method. See

Hagan, Demuth, and Beale and Sima for a discussion of some of the drawbacks of

backpropagation for training neural networks. The estimation of neural networks can be

viewed as being equivalent to estimating a nonlinear regression. Neural network

researchers have drawn from the large body of knowledge that exists for estimation of

nonlinear regressions and applied efficient estimation techniques such as various

conjugate gradient methods (M0ller; Smagt; Kinsella; Johansson, Dowla, and Goodman),

Broyden-Fletcher-Golfarb-Shanno (BFGS) (McLoone and Irwin), and Levenberg-

Marquardt (Hagan and Menhaj). A survey of various training methods is given by

Battiti, and Sjoberg et al.

In spite of the increased efficiency of the aforementioned estimation techniques,

they are still classified as local search techniques. In other words, they suffer from

stopping or converging at a local minimum. A local minima is defined as follows. Let S

denote the set of all feasible model parameters B and e* e S denote the location of a

local minimum for Q(B*) defined in (1.3). Define a 8-neighborhood, N(B*,8),

1 We use the term backpropagation to encompass a strict gradient descent method as well as other heuristic
modifications of gradient descent such as addition of a momentum term or a variable learning rate.

4

around B* as the set of feasible points BES such that O <II B-B* II< 8. Then a local

minimum is defined as2

(1.5) Q(B*) < Q(B) for all BE N(B*,8) ES.

In other words, the objective funct~on value at the local minimum is less than any other

objective function value in a neighborhood around the local mimimum. However, ifwe

go far enough away from the local minima, i.e. somewhere outside the

8 - neighborhood , we may find a function value that is less than the value at the local

minimum. The objective function for training a neural network is multi-modal and thus

any local search algorithm will suffer from local minima. A local search technique will

generally proceed downhill in the search space from its starting point towards the nearest

minimum. What we want to find is the global minimum. A global minimum would be

defined as3

(1.6) Q(B*) < Q(B) for all BES.

In other words, no matter where we go in the feasible search space, we will not find an

objective function value that is less than the value at the global minimum.

Many tricks have been invented to address the local minima issue when using a

local search algorithm to train neural networks. For example, training with noisy

exemplars, and perturbing the parameters after convergence to try to escape from what

may be a local minima. One of the most common methods is to restart a local

optimization routine with a new random set of starting values for the weights. This

2 Technically, (1.5) is defined as a strong local minimum. A weak local minimum is defined as in (1.5)
with the < relation replaced by :5.
3 The relation< in (1.6) could be replaced by:,;; for some problems. For example, in the type of neural
network of concern in this study, symmetries in the mathematical form of the network causes certain
permutations of the elements of 0 to produce identical outputs from the neural network.

5

restarting method is sometimes called a multi-start algorithm. The quality of the final

solution from a multi-start algorithm will depend upon the number of restarts.

While the methods above may lead to improved solutions, there is no guarantee

that such minima will not also be only locally optimal. Global search techniques are an

alternative estimation technique. Global optimization algorithms are a class of

algorithms that seek to avoid getting trapped in local minimums. Two classes of global

optimization methods exist: stochastic or deterministic approach. It should be noted that

although methods such as multi-start local optimization algorithms are not generally

considered a global optimization algorithm, they could be considered a quasi-global

algorithm. This is because as a practical matter many global algorithms, especially the

stochastic kind, only offer asymptotic guarantees of a global minimum. Therefore, global

algorithms may increase the probability of obtaining a good solution but do not offer any

real guarantees ofreaching a global minimum. Therefore, for some problems, a multi

start algorithm could be considered competitive with a more traditional global algorithm,

especially a stochastic algorithm.

Some deterministic global methods are branch and bound, Lipschitz

programming, outer approximation, and concavity cuts'. By taking advantage of the

mathematical structure of the problem, these methods can guarantee, within a specified

level of accuracy, convergence to a global minimum in a finite amount of time (Horst,

Pardalos, and Thoai; Ryoo and Sahinidis). For a review of these deterministic

approaches see Horst and Tuy.

There have only been a few uses of deterministic optimization techniques for

learning in neural networks. Tang and Koehler used a Lipschitz optimization approach.

6

Their procedure required solving a number of nonlinear nonconvex maximization

problems in a recursive manner to find local approximations of the Lipschitz constant.

Therefore, the algorithm was very numerically demanding. Shang and Wah applied a

deterministic algorithm they called NOVEL to neural network learning. The NOVEL

method, introduced by Shang and Wah, is a hybrid global/local minimization method.

Starting points for a gradient based local search technique are selected by solving an

ordinary differential equation specifying a trajectory through the search space. Shang

and Wah indicated that NOVEL performed better than gradient descent, and evolutionary

algorithms on some benchmark problems. However, the algorithm is computationally

demanding because it requires the evaluation of differential equations in each global

search phase.

Because of their computational requirements for problems with more than a few

parameters, deterministic algorithms will not be explored in this study. However, it is

worth noting that the field of deterministic global optimization is fairly new and active

and new methods may some day be developed which could be appropriately applied to

learning in neural networks.

Stochastic global optimization methods have been widely applied to optimization

of neural networks. Stochastic methods employ random elements in their search

procedure. None of these stochastic methods guarantee a global solution but if used they

should increase the probability of obtaining a good solution. Most of these algorithms

can be shown to converge to the global optimum with a probability approaching one as

the number of iterations of the algorithm approaches infinity. Simulated annealing (SA)

and evolutionary algorithms are two of the most commonly used global optimization

7

algorithms and are the two global methods used in this research. The term evolutionary

algorithm (EA) is used here as an umbrella term encompassing genetic algorithm (GA),

evolutionary strategies (ES), and evolutionary programming (EP) methods. SA and EA

methods have been used by many researchers to estimate the parameters of neural

networks.

1.3 Literature

Evolutionary algorithms have been used to estimate neural networks by a great

many researchers (e.g. Chen and O'Connell; Frenzel; Neruda (1997, 2000); and Yan and

Zhu). Yao provides a good literature review of combining EA's with neural networks.

An indexed bibliography ofEA's and neural networks is given by Alander. In this study,

we are only concerned with estimating the weights of neural networks with a fixed

architecture. That is, a neural network with a fixed number of hidden layers and hidden

neurons. However, EA's have also been used to evolve the architecture of neural

networks as well as the weights (e.g. Maniezzo; Harp, Samad, and Guha; Miller, Todd,

and Hegde; Angeline, Saunders, and Pollack; Pujol and Riccardo). In addition, EA's

have also been used to select training data and interpret the outputs of neural networks

(Guo and Uhrig; Chang and Lippmann; Brill, Brown and Martin). A review of different

types of applications ofEA's to neural networks is given by Yao; Whitley; Schaffer,

Whitley, and Eshelman.

Genetic algorithms are the most widely used type of EA for estimating neural

networks. Sexton, Dorsey, and Johnson (1998) compared a GA based training algorithm

with BP for 7 test problems. Overall, the solutions obtained by the GA dominated the

8

solutions obtained by BP. In addition, the solutions obtained by the GA had

significantly less variation in the in-sample root-mean-squared error across different runs.

Bartlett and Downs found that a GA was an order of magnitude faster than BP on the 7-

bit parity problem. However, on the smaller XOR problem data set, Bartlett and Downs

found that a GA training method was slower than backpropagation.

In spite of the encouraging, although mixed at times, results of many researchers,

there are theoretical reasons why a genetic algorithm may not perform satisfactorily for

training neural networks. Because of symmetries in the mathematical functional form of

a neural network, there can be numerous equivalent solutions to the optimization

problem. This is called the competing conventions problem (Whitley) or permutations

problem (Radcliffe). The permutation problem reduces the performance of a genetic

algorithm because of its negative effect on one of the basic operational components of a

genetic algorithm, the crossover or recombination operator. The permutation problem

interferes with the crossover operators ability to combine solutions from previous

iterations or generations into new superior solutions. Hancock, however, concluded that

the permutation problem is not as bad as has been suggested for genetic algorithms.

Nonetheless, several researchers have proposed solutions to this problem for genetic

algorithms. Montana and Davis attempted to incorporate knowledge of the functional

aspects of hidden neurons into a crossover operator for their genetic algorithm. They

compared their GA to BP for optimizing a neural network for the classification of sonar

data. It was found that the GA outperformed BP by a large margin. Rooij, Jain and

Johnson proposed a crossover operator similar in concept to that of Montana and Davis.

When compared against BP on 5 classification problems, Rooij, Jain, and Johnson found

9

that their genetic algorithm was less susceptible to becoming stuck in local minimums,

however, overall the GA was only marginally better than BP and BP was significantly

faster on some problems.

Evolutionary programming and the closeJy related evolutionary strategies are two

evolutionary algorithms that typically do not employ crossover operators but instead rely

mainly on mutation operators to modify the chromosomes. Since they do not use
I

crossover, they may theoretically perform better than GA's for training neural networks.

Porto, Fogel, and Fogel compared an evolutionary programming method with

backpropagation for a sonar classification problem. They found that evolutionary

programming performed better thjlll backpropagation. Backpropagation repeatedly

stalled at suboptimal weight sets that did not yield satisfactory results. The drawback of

the study was they only used one data set and compared evolutionary programming to

inefficient BP.

" In addition to EA's, SA algorithms have been applied to a wide extent in training

neural networks. In the study by Porto, Fogel, and Fogel mentioned above, an SA

algorithm was also included in the comparison. The SA algorithm performed similarly to

the EP algorithm. Sexton, Dorsey, and Johnson (1999a) compared the performance of a

simulated annealing algorithm from Goffe, Ferrier, and Rogers against BP on the same 7

test problems from Sexton, Dorsey, and'Johnson (1998). The simulated annealing

algorithm exhibited superior performance with respect to both in-sample root-mean-

square error as well as out-of-sample interpolation and extrapolation. Cohen, Saad, and

Marom used the adaptive simulated annealing algorithm of Ingber for training of a time

delay recurrent neural network (TDRNN). The training of TDRNN is known to be a very

10

difficult problem. Day and Camporese used a SA algorithm to train a network with non

differentabilites in the objective function with success. However, they also reported that

a stochastic tunneling algorithm required less time than the SA algorithm. Others

successfully using SA or a modified SA algorithm are Fang and Li; and Barnes, O'Neill

and Wood.

Evolutionary algorithms and simulated annealing are not efficient at fine tuning a

local search but are designed to be adept at exploring the search space and finding

regions that may contain a good solution. Therefore, an alternative use of these global

algorithms is for finding a good set of initial weights for a local optimization routine.

This type of hybrid method would be expected to outperform either a local gradient

method or a global algorithm used individually. Many researchers have used this type of

hybrid training (e.g. Chen and O'Connell; Lee;Omatu and Deris; Erkmen and Ozdogan;

Omatu and Yoshioka; and Xinxing and Licheng). Belew, Mcinerney, and Schraudolph

used a hybrid approach with a genetic algorithm to generate starting values for a

conjugate gradient or backpropagation local optimization algorithm. They found that

training times could be reduced by as much as two orders of magnitude. However, their

research was limited to a single data set. Skinner and Broughton reported that for a small

network (18 weights), the local conjugate-gradient algorithm outperformed a .GA in

addition to a SA and a swarm search algorithm. However, for a larger more complex

parameter space, (98 weights), a hybrid scheme with simulated annealing or genetic

algorithms in combination with conjugate-gradient local search technique showed a

dramatic improvement in convergence. They also reported that they have successfully

used their hybrid approach to train networks with as many as 600 weights. Heistermann

11

reported that a hybrid EA and gradient algorithm outperformed the gradient algorithm

alone for large problems. Although he also reported that for small to medium size

problems the gradient algorithm was more efficient than the hybrid method. Other

studies have also found superior performance for hybrid techniques (Likartsis, Vlachavas,

and Tsoukalas; Yan, Zhu, and Hu ; and Knowles, Come, and Bishop). However, Kitano

reported contradictory results. Kitano found that a hybrid GA-BP method was at best

equally efficient to faster variants of BP in neural networks of small size and were far less

efficient in large networks.

Besides simulated annealing and evolutionary algorithms, other types of

stochastic optimization algorithms have been proposed. Baba et al. presented a hybrid

algorithm that used a combination of the Solis and Wets random optimization method

and conjugate gradient training. They compared the hybrid algorithm to local

optimization routines on 3 different problems and found that their hybrid method was

very efficient at finding low error values as compared to conjugate gradient and

backpropagation training. Brunelli introduced a new stochastic algorithm called iterated

adaptive memory stochastic search (IAMSS) and found that it performed better than

backpropagation on two test problems. Barnard also proposed a new stochastic training

technique that performed well against various local optimization techniques.

1.4 Research Objectives

Overall, with some exceptions, the literature shows that global optimization

algorithms such as evolutionary algorithms or simulated annealing, used alone or in

combination with a local search algorithm, offer some advantages. From an experimental

12

evaluation standpoint, many of the studies reviewed in the previous section are lacking in

quality. Many of the studies looked at the performance of the algorithms on only few

data sets, and in some cases only a single data set. In addition, the majority of the data

sets were classification problems. Little attention has been paid to function

approximation problems. The majority of the studies above compared global algorithms

to BP. It is well known that there are much more efficient alternatives than BP local

optimization routines. Yao' s review concludes that contradictory results are partially due

to the fact that in some studies, the EA's were compared with the relatively slow BP

algorithm. Also, few of the studies have compared results across different global

optimization routines. This study attempts to provide a more rigorous comparison of

several global algorithms against efficient local optimization routines across a wide

variety of data sets, both real-world and simulated data, in a function approximation ·

context. The objectives of this study are as follows.

General Objective:

Determine the relative speed and accuracy of alternative global optimization
methods in estimating the weights of neural networks.

Specific objective:

Determine the relative speed and accuracy of 10 alternative global optimization
algorithms for estimating the weights of neural networks by performing multiple
estimations from random starting values on 6 function approximation problems
and analyzing the running time and distribution of the final objective function
values over the multiple estimations.

1.5 Procedure

The objectives given above are addressed by estimating the parameters of neural

networks trained on 6 different function approximation problems in a Monte-Carlo

13

setting. This is done by repeating the estimations on each of the data sets numerous times

from different starting values. The objective function values after convergence from each

of these restarts are saved for further analysis.

This study is limited to estimation of the parameters of a particular type of

feedforward type of neural network, the multilayer perceptron (MLP). The number of

hidden layers and hidden neurons is chosen based on previous usage of the particular data

set of interest or on an ad-hoc basis. Depending upon the size of the estimation problem,

either a quasi-Newton or conjugate gradient algorithm is used for the local optimization

routine. The global optimization algorithms investigated are two simulated annealing

algorithms, one simple random stochastic algorithm, one genetic algorithm and five

evolutionary strategy algorithms. All of the global optimization algorithms are a hybrid

between the aforementioned global algorithms and one of the local search techniques.

The weights after convergence of the global algorithm are used as starting values for the

local optimization algorithm.

The results of the Monte-Carlo estimations will be displayed both numerically

and graphically. The results will be displayed graphically using histograms and boxplots

of the final converged objective function values. In addition, basic statistics such as

mean, median, standard deviation and maximum and minimum values will be computed

for the objective function values for each data set and each algorithm. In addition to the

basic statistics, analysis will be performed which takes into account the computing time

involved with a particular algorithm. An algorithm that converges to a minimum quicker

than another algorithm could be restarted from different starting points more times in a

given amount of computing time than a slower algorithm. Therefore, even though a

14

slower algorithm, e.g. a genetic algorithm, may be more successful at finding lower

minimums than say a relatively faster local search algorithm, e.g. a conjugate gradient

algorithm, the local search algorithm could be rerun more times in a given time frame.

Therefore, the local search technique may be competitive with the global algorithm.

1.6 Organization

Chapter 2 discusses the theory of neural networks. The history and development

of neural netw01;ks is briefly discussed and some applications of neural networks are

presented. The theory of the multiplayer pei"ceptron type offoedforward neural network

will be presented in detail in addition to a brief discussion of a few other types of neural

networks.

Chapter 3 discusses some global optimization algorithms including evolutionary

algorithms, simulated annealing, and a simple stochastic optimization algorithm

introduced by Solis and Wets. The first section introduces two evolutionary algorithms,

the genetic algorithm and several evolutionary strategy algorithms. It also discusses

some issues related to implementing an evolutionary algorithm for the training of a neural

network. The next section discusses two different simulated annealing routines and

finally the last section discusses the stochastic optimization routine proposed by Solis and

Wets.

Chapter 4 presents the details of the methods used to accomplish the research

objectives. The first section presents some of the details and the relevant parameter

setting of the optimization algorithms used in this research. Next is a description of the

15

data sets. The last section describes how the results of the simulations will be presented

and contains a description of some of the statistics used to summarize the results.

Chapter 5 presents and discusses the results of the study. The results of the

estimation of the parameters of the neural network models on the data sets across the

various training algorithms are presented. Mean, median standard deviation, and

maximum and minimum values obtained across restarts are presented for each of the data

sets and training methods. Graphical displays of the distribution of objective function

values after convergence from the various training algorithms .is displayed in histograms

and box plots. The results are discussed irt the context of the research objectives.

The last chapter summarizes the study's results and conclusions. General

conclusions on the applicability of the various optimization algorithms used in this study

for estimation of multi player perceptrons are presented. Some directions for future

research are also discussed.

16

2.1 Introduction

CHAPTER2

NEURAL NETWORKS

The human brain is a marvel of nature, for many tasks it is superior to the most

complex supercomputer. The human brain is especially adept at processing visual

information; recognizing objects, faces, and so on. A brain can adjust to a new

environment by "learning" and it can deal with information that is fuzzy, noisy, or

otherwise inconsistent. Because of these factors, researchers have sought to use the ·

biological concepts of the brain and its neurons to develop new computing and pattern

recognition paradigms. These efforts led to the development of various biologically

inspired input-output models in the 1950's and 60's. Development in this area virtually

ceased when Minsky and Papert showed in 1960 that a particular type of these models,

perceptrons, could not solve some very simple problems.

Research in biologically-inspired models began anew in the early 1980's and

culminated in the work ofRumelhart and the PDP Group. The work ofRumelhart and

the PDP Group is credited for much of the revitalized research in biologically inspired

input-output models, hereafter, generically referred.to as neural networks. Rumelhart,

Hinton and Williams developed what has become known as the backpropagation neural

network. The backpropagation neural network is referred to as a feedforward neural

network in this research. The backpropagation neural network overcame many of the

17

shortcomings of the perceptron which was criticized by Minsky and Papert. It should be

noted that W erbos in 197 4 developed the mathematical framework for the

backpropagation neural network, however, his work went unnoticed at the time.

The next section of this chapter briefly discusses some applications of neural

networks and alternative neural network paradigms. Section 2.3 presents the feedforward

type of neural network in detail. Section 2.4 discusses feedforward neural network's

flexible functional form and their abilities as universal approximators. The last section

discusses and presents some methods for estimating the parameters of feedforward neural

network.

2.2 Applications and Types of Neural Networks

Neural networks are flexible and have been used to solve many different

problems. Some of the applications have been to perform coordination tasks (Hougen,

Fischer, and Johnam), decode deterministic chaos (Lapedes and Farber; Gallant and

White), and recognize hand-printed characters (Fukushima and Miyake). Trippi has

assembled various papers which use neural networks in financial market forecasting,

macro economic prediction, credit risk classification, exchange rate prediction and other

applications related to finance and economics.

The most common uses of neural networks can be classified into the following

categories: classification, associative memory, and autoassociative memory. An example

of classification would be to classify sonar signals as those reflecting from a submarine or

from a naturally occurring underwater object. An example of an associative memory

application would be any time series model or a price prediction model. An

18

autoassociative network is one in which some pattern that has been corrupted by noise is

presented to the network and the network reproduces the original uncorrupted pattern. In

general a neural network can be viewed as estimating a map f : X ~ Y where Xis the

space of inputs or independent variable and Y is the space of outputs or dependent

variables. In the case of classification Y is a n x 1 vector of variables, each of which

indicate inclusion or exclusion in one of n different categories. In an associative memory

application Y is a vector containing that which is to be predicted. In an auto associative

application Y=X, where Xis the uncorrupted version of the input pattern.

The term "neural network" can mean different things to different people. The

term neural network defined in its most general sense is an architecture in which its

operations are distributed among many relatively simple processors (Masters, 1993).

This definition suggests a great deal of flexibility in what computing paradigms· can be

called neural networks. Indeed, a great deal of research has been devoted to developing

different types of neural networks. The literature is extensive and developing rapidly and

therefore a complete review of the subject is beyond the scope of this research. However,

for the interest of those readers seeking to do research in this area, several different types

of neural networks are briefly discussed below.

Some models that are decades.old have received renewed interest because they

are easily recast as a neural network. For example Donald Specht's probabilistic neural

network which is used for classification is identical to kernel discriminant analysis (Sarle

1994b). Another example would be the functional link network developed by Yoh-Han

Pao. The functional link network is simply a multiple regression with a nonlinear front

end, and a nonlinear transformation applied to the output (Masters, 1993). These two

19

types of modeling techniques suddenly attracted attention when they were presented in

the context of a neural network.

Other types of neural networks such as feedforward neural networks and radial

basis function (RBF) networks are more unique. However, there are some similarities

between these types neural networks and existing modeling techniques. It will be shown

later that the standard feedforward type network could be thought of as a form of

nonlinear regression. Xu, Krzyzak, and Yuille have established some useful connections

between kernel regression estimators and RBF networks. Feedforward neural networks

are the focus of this research and are discussed in detail in the next section.

2.3 Feedforward Neural Networks

In light of the considerable hype which sometimes surrounds neural networks, it

would be useful to discuss what a feedforward neural network is not before discussing

what a feedforward neural network is. Neural networks were originally inspired by the

way in which a group of biological neurons process information. Therefore, the

development of neural networks has its roots in neuroscience. There are obvious

analogies that can be drawn between the functioning of artificial neural networks and

their biological counterparts. However, an artificial neural network is a much simplified

model of the way a collection of brain cells operate. In fact, beyond simple analogies, the

neurons in an artificial neural network share little in common with their biological

counterparts.

The word neural probably leads people to sometimes write that a neural network

simulates the behavior of the human brain. The human brain contains about 1.5 x 1010

20

neurons of various types and each neuron receives signals from 10 to 104 other neurons

(Ripley). Therefore, an artificial neural network is a much simplified mathematical

representation of the way a relatively small collection of biological neurons operate. The

process by which biological neurons process information is complex. The

communication between neurons is both electrical and chemical and each of these

communication process is complex. As will become clear in the next section, the neurons

or processing elements in an artificial neural network are simple nonlinear functions and

the "communication" between the neurons is linear. However, even though a neural
I

network shares little in common with the workings of biological neurons, they are

powerful enough to possess the ability to "learn" from experience, develop rules, and

recognize patterns in data.

If an artificial neural network is not a model of the brain, the question is what is a

neural network? Before proceeding with the answer to this question, it would be useful

to associate some of the terminology used in the neural network literature to the

corresponding terminology used in statistics or econometrics. The neural network

literature refers to (Sarle 1994b):

- independent variables as inputs

- dependent variables as targets

- predicted values as outputs

- individual variables as a feature

- estimation as training, learning, adaptation, or self-organization.

- observations as training patterns

- parameter estimates as synaptic weights or connection strengths.

21

The following discussion describes how a feed forward type network with one

hidden layer produces its output given some input. The notation in the following sections

borrows heavily from that used in Kuan and White and Frances and Dijk. Figure 2.1

provides a reference for the discussion. The figure is a graphical representation of a

feedforward neural network with 3 inputs or independent variables, one hidden layer with

2 hidden neurons, and 1 output or dependent variable. The neurons in a neural network

are arranged in layers. The input layer contains the inputs or independent variables at

time t and the output layer contains the output(s) or dependent variable(s) at time t. Note

that similar to a vector autoregression model, there could be more than one dependent

variable.

Assume we are given a set of T observations or data pairs { (x:, y:)} ~=t where x, is

a k x 1 vector of explanatory or independent variables and y, is a d x 1 vector of

dependent variables. Then for each observation t, the k input neurons send the signals

X; , , i = 1, ... , k to the h neurons in the hidden layer via connection weights or model

parameters y .. , j = 1, ... , h . Note that in figure 2.1 there is an input x0 ,. This input or
IJ '

neuron is sometimes called a bias neuron and its value is defined to be always 1.

Therefore, we have inputs to the network defined by x, = (x0 , = 1, x:). Each hidden unit

j takes a linear combination of the inputs by summing the product of the weights

connecting the inputs to itself times those inputs, or in other words taking the dot product

x;-yj where yj =(ro,j,Yt,j""'rk,j). Bysettingthebiasneuron x0,1 =1,theweightor

parameter y o,j for each hidden neuronj is somewhat analogous to the intercept in a linear

regression.

22

A

Y,

-+
Output layer

lf/0,1 = 1 Pj weights

lf/1,, = G(x:r1) Hidden layer

Yi,j weights

Input layer

-+
X 0 =1 ,t Xz,t

Figure 2.1 Feedforward NeuralNetwork With One Hidden Layer

The linear combination of the network inputs to each hidden neuron is processed

by a nonlinear 'activation function' G: 9l ~ 9l. The output or activation of hidden

neuron} is G(x;-yj) or altemative{y

k

(2.1) G(ro,j + ~)x;,1 ·r;,)) ·
i=I

In other words, each hidden neuron in figure 2.1 is a nonlinear single (scalar) valued

function whose input is a linear combination of the networks inputs or independent

variables. The form of the activation function G() can be chosen quit freely, however

the function is generally monotonically increasing. In addition, the activation function in

the hidden layer must be nonlinear. A nonlinear activation function is responsible for the

23

nonlinear approximation capabilities of the feedforward type neural network. The

nonlinear approximation capabilities of neural networks will be discussed in more detail

· in a later section. The two most commonly used activation functions, and the ones used

in this research, are the logistic and hyberbolic tangent functions. The logistic function is

defined by

(2.2) G(z) = 1/[1 + exp(-z)],

and the hyperbolic tangent by

(2.3) G(z) = tanh(z) = (ez -1)/(ez + 1).

The activations or outputs from the hidden neurons are passed to the output

neuron(s) in an analogous manner as from the input layer to the hidden layer. Let the

output from each hidden neuronj be represented by IJli = G(x;)'). The hidden layer

sends the signal fp = (IJI O = 1, IJl1, • •• , IJI h)' to each of the q neurons in the output layer via

weights or parameters pi.i, i = 0, ... , h, j = 1, ... , q . The term If/ o,, = 1 serves the same

purpose as x01 does in the input layer. The output neuron(s) process the signals from the

hidden layer in the same way that the hidden neurons process the signals from the input

layer. That is by taking a linear combination of the outputs of the previous hidden layer

and passing it through an activation function. Assuming an output activation function F,

the output from neuron i, which is the neural networks estimated value of Y;,, would be

Y;,1 =F(fp:fJJ where fJ; =(Po,;,Pi,;,···,Pq,J' or alternatively

h

(2.4) Yi,t = F(Po,; + L(lf/j,t · fi;,)),
j=I

24

where his the number of hidden neruons. Note that in figure 2.1, there is only one output

neuron. The activation function in the output layer is analogous to the activation function

in the hidden layer. The discussion above generalizes to the case of a neural network

with more then one hidden layer. In that case, the outputs from the neurons in the

previous hidden layer become inputs to the neurons in the next hidden layer, and so on,

until the output layer.

Using the notation and discussion from above, the function relationship in a

feedforward neural network with one hidden layer between the independent variables and

the estimated value for a particular dependent variable i and observation t is:

h

(2.5) Y;,, = f(x,,fJ;) = F(Po,; + LPj,;G(x.;-yj))
j=I

where fJ; = (Po,;, Pi,;, ... , P h,i, -y;, -y;, ... , 'Y~) is the vector of model parameters or weights

and h is the number of hidden neurons in the single hidden layer. It is not necessary to

have an activation function in the output layer for a feedforward neural network to be a

universal approximator. Therefore for function approximation types of problems, the

activation function in the output layer is often dropped. If we assume that the activation

function Fis the identity function F(a) = a and for simplicity there is only one output or

dependent variable, equation (2.5) reduces to

h

. (2.6) f(x,,fJ) =Po+ LPjG(x.;-yj)
j=I

where (} = (Po, PP ... , Ph, 'Yi, 'Y 2 , ••• , 'Y h)' is the n x 1 vector of parameters or weights that

must be estimated.

The input variables can be included as linear regressors by using direct

connections between the inputs and outputs. Modifying (2.6) we have:

25

h

(2.7) f(x"8) = x;<J, +Po+ LPjG(x.;-yj)
j=I

activation level is the identity function, as it is in (2. 7) above, we have a standard linear

regression model augmented by nonlinear terms. The hidden layer neurons in (2. 7) can

be viewed as latent variables that enrich the linear model (Kuan and White).

From the preceding discussion, it is clear that the neurons in a neural network

need not be thought of as mysterious. All neurons in a neural network are mearly

"processing elements". Neurons in the input layer serve as "input terminals" to the

network for the independent variables. The neurons in the hidden layer(s) are processing

elements that take a linear combination of the outputs from the neurons in the previous

layer and passes this value through nonlinear activation function. The neurons in the

· output layer are also processing elements that perform a linear combination of the outputs

· from the neurons in the last hidden layer. The neuron(s) in the output layer may perform

no further processing, as in (2.6), or may apply an activation function such as in (2.5). It

can be seen from equations (2.5)-(2. 7) above that a feedf'orward neural network can be

considered a nonlinear regression. Standard iterative estimation techniques familiar to

econometricians for estimation of nonlinear models can be used to estimate the n model

parameters in 8. However, as opposed to most nonlinear regression model, neural

networks, because of the nonlinear activation functions in the hidden layer, are flexible

function forms capable of approximating almost any function. Neural networks are thus

said to be universal approximators.

26

2.4 Neural Networks as Universal Approximators

It has been shown that single hidden layer feedforward neural networks of the

type discussed in the previous section and depicted in figure 2.1 are "universal

approximators". In other words, given sufficiently many hidden units and properly

adjusted model parameters 8 , a neural network can approximate an arbitrary mapping

arbitrarily well for a large class of functions. The theoretical function approximation

capabilities of feedforward neural networks have been explored by Hornik, Stinchcombe,

and White (1989), Cybenko, and Carroll and Dickinson. Barron showed that the

approximation capabilities of feedforward neural networks require the number of

parameters grow linearly. Other function approximation methods, e.g. polynomial,

spline, and trigonometric expansions, require that the number of parameters grow

exponentially for comparable approximation. The universal approximation properties of

neural networks are the key to the demonstrated usefulness of neural networks in many

applications as well the potential usefulness of neural networks in economics. With a

neural network there is no need to explicitly identify the functional form. Only the

variables relevant to the particular problem need be identified.

To be more precise, the universal approximation property means that for any

continuous function g(x,~), every compact subset K of mk, and every 8 > 0, there

exists a neural network f (x, 8) , such that

(2.8) suplf(x,8)- g(x,~)I < 8.
XEK

In (2.8), g(x,~) represents the true (unknown) model that we are trying to approximate.

In reality, unless we are modeling a deterministic process with known inputs, what we

27

generally have is f (x', 8) or f (x', z, 8) where x' c x and z is some other vector of

inputs that are superfluous to the process we are modeling.

Given a sufficient number of hidden neurons, the approximation capability of a

neural network is dependent upon our ability to set the values of the parameters in 8

appropriately. The next section discusses the procedure to set the values for 8 . This

procedure is referred to as estimation in statistics or economics and learning in the neural

network literature.

2.5 Learning (Estimation) in Neural Networks

The objective of training a neural network is to find an optimal set of weights 8

such that some objective or cost function is minimized. The most common objective or

cost function is the least squares function. Suppose we are given a set of training data

composedofTobservationsordatapairs {(x~,y~)};=1 where x, isa kxl vectorof

explanatory or independent variables and y I is a q x 1 vector of dependent variables.

Then the training of a neural network /(x"8) by the least squares objective function is

defined by:

T

(2.9) minQ(B) = "[y, - /(x,,B)]2
8e0 .L..J

t=l

where y, is the dependent variable, and 0 is the space of feasible weights or model

parameters and /(x,,8) is from say (2.7).

A term that penalizes large weights is sometimes added to the objective function.

Addition of this penalty term is referred to as weight decay. Various penalty terms may

be used but the most common is the sum of squared weights times a decay constant. This

28

form of weight decay in a linear model is equivalent to ridge regression. See Bishop for

other forms of weight decay. Augmenting the cost function in (2.9) with terms that

penalize the squared value of large weight values yields:

(2.10)

where r,;, rp, and rr are weight decay constants. The weight decay constants may be set

to for example r,; = .01, and r9 = rr = .0001, as they are in Franses and Dijk. The weight

decay penalty term in (2.10) will cause the weights to converge to smaller values then

they would under the objective function in (2.9).

Large weights can hurt the generalization performance of a neural network.

Excessively large weights leading to hidden neurons can cause "saturation" of those

neurons. A saturated hidden neuron will produce outputs at the extremes of its activation ·

function's range for all or most of the observations of training data. For example, if the

activation function is the sigmoid function given in (2.2), the neurons output will be near

0 or 1. This causes the outputs from the neurons to be too "rough". Excessively large

weights leading to output units can cause outputs beyond the range of the data. In other

words, large weights leading to the hidden layers and/or output layers can cause

excessive variance of the outputs (Geman, Bienenstock, and Doursat). Statistical theory

tells us that a neural network with a large number of weights relative to the number of

observations in the training data may have poor generalization performance. Bartlett

claims that the size of the weights is more important then the number of weights.

Many algorithms from the field of nonlinear optimization have been applied to

minimize (2.9) or (2.10), including gradient or steepest descent, conjugate gradient,

29

Newton, and Quasi-Newton methods (Smagt). The aforementioned optimization

algorithms are iterative procedures. Given a function to be optimized, an initial weight

vector (J <0> is chosen. In practice the initial weight vector (J <0> is usually chosen

randomly. For each iteration i, a direction u<i) and a stepsize au> are calculated by the

optimization algorithm and the weight vector is updated as

(2.11)

Assuming we are minimizing the objective function, the goal of (2.11) is to decrease the

value of the objective function with each iteration. Thus the problem of minimization of

a function by iterative methods is finding the values for u<i) and a<i) to accomplish this.

This task is made difficult due to the fact that we only have information about the

objective function in a small neighborhood around (JU>.

Derivatives of the objective function with respect to (JU> provide information

about the behavior of the objective function in a small neighborhood around (JU>.

Rumelhart et al. derived analytical derivatives for neural networks and proposed an

algorithm that become known as backpropagation. It is a well known fact from

elementary calculus that the value of any function f(fJ) decreases quickest in the

direction - Vf(fJ), or in other words, in the negative direction of the gradient. Thus it

would seem reasonable to let u<i) in (2.11) = -Vf(fJ). Backpropagation utilizes this

principle. Backpropagation is similar, and in some cases, equivalent to the traditional

gradient descent algorithm. Backpropagation, as it was originally implemented, departs

from a true gradient descent by adjusting the weights after the presentation of each

observation as opposed to adjusting the weights after presentation of all the observations

in a training set.

30

During the early development of neural networks, and sometimes still,

backpropagation was the most commonly used training algorithm and was some times

viewed with Mystique. As Kuan and White write

For a period, artificial neural network models coupled with the method of
backpropagation came to be viewed as magic, with considerable accompanying
hype and extravagant claims.

Those familiar with nonlinear optimization theory know that gradient descent is inferior

to many other algorithms which are available. Gradient Descent is very slow to converge

and in addition, if the error surface has ''valleys", it can suffer from a condition known as

hemstitching (A vriel). Hemstitching is a condition in which the weight changes

"bounce" from wall to wall, making little progress down the valley. Hagan, Demuth, and

Beale in addition to Sima also discuss of some of the drawbacks ofbackpropagation for

training neural networks. The preferable optimization routines would be Levenberg-

Marquardt (Hagan and Menhaj), various Newton and Quasi-Newton methods (Smagt;

Battiti), and conjugate gradient methods (Kinsella; Barnard). Despite the efficiency of

the aformentioned algorithms in training neural networks, the estimation procedure is still

problematic. The optimization algorithm mentioned above are local search algorithms.

They proceed downhill to the nearest minimum. The objective function to be minimized

when training neural networks contains numerous local minima. Therefore, some users

have used so called global search algorithms as an alternative to the more traditional local

search algorithms.

31

3.1 Introduction

CHAPTER3

GLOBAL OPTIMIZATION

Many optimization solutions to real world modeling problems in areas such as

financ~, statistics, and engineering design are characterized by multimodal, nonconvex,

objective functions. Standard optimization methods may fail to find adequate solutions

to these problems since they may only find a local minimum. Because of this, interest

and application of global optimization methods has been increasing. Global optimization

is concerned with finding the true global minimum of nonlinear functions. The

increasing interest in global optimization methods is partly fueled by the rapid increase in

computing power available. Researchers have been emboldened to tackle increasingly

difficult optimization problems that would have been computationally impractical a few

years ago.

Global optimization algorithms can be divided into two broad catagories,

stochastic and deterministic. Deterministic algorithms will not be discussed here because

of their significant computational requirements for larger optimization problems such as

neural network estimation. Instead, stochastic global algorithms will be presented in this

chapter. Stochastic global algorithms have been applied to a very wide range of

problems, including large-scale optimization problems. Some examples of stochastic

32

search algorithms are simulated annealing and various evolutionary algorithms such as

genetic algorithms, evolutionary strategies, and evolutionary programming.

The aforementioned stochastic global optimization algorithms have similarities

and differences among themselves with respect to their main operating mechanisms.

However, a concept at the core of all stochastic global optimization algorithms is the

generation of a stochastic move from the current point. For an iteration i of the

algorithm, this move from a point (J(i) E ~Jr can be characterized as follows:

(3.1)

where r is a random vector drawn from some probability density function p((JU> ,<p)

where <p represents the parameter(s) of the p.d.f., for example the standard deviation.

The stochastic or random move is referred to as a mutation in the evolutionary algorithm

literature.

The point 7f<i) generated by a stochastic move such as that in (3.1) is sometimes

called a trial point. The point (J (i) will be called the predecessor point in this discussion.

In some algorithms, such as some evolutionary strategies, if Q(7f <i)) < Q((J<i)), then we

automatically set (J (i+I) = 7f (i) and the algorithm proceeds to the next iteration. In other

algorithms, the trial point is accepted, i.e. replaces its predecessor, based on some

probability. This latter approach is taken in simulated annealing algorithms, genetic

algorithms, and some evolutionary strategy algorithms. Some stochastic search

algorithm, such as genetic algorithms, and some evolutionary strategies, generate

multiple trial points in parallel. The generation of trial points may look like:

33

o<i) =fJ(i) +r
1 1 1

(3.2)

0 U> = fJ U> + r
p p P'

Where r is similarly defined as in (3 .1) and p is the number of trial points. In the case of

(3.2), the acceptance of a trial point for the next iteration of the algorithm may depend

upon its performance in relation to its predecessor point as well as all other trial points

and/or their predecessor points.

Some algorithms, such as genetic algorithms and evolutionary strategies, generate

trial points by combining the "information" in two randomly chosen trial points in

addition to mutations such as those in (3 .2). This may be performed by randomly picking

two integers i, j e [1, p] where i -:t:- j and performing the following operation:

(3.3)
0 ~k) = a .fJ ~k> + a.fJ <~>,

]] I I]

where a; and a j are appropriately chosen n x 1 vectors. In other words, generating two

new trial points by taking a linear combination of both predecessor points. Generating

trial points in this way is often referred to as crossover or recombinaton. In a genetic

algorithm and evolutionary strategy, the crossover operation is normally performed

before mutation. Genetic algorithms emphasize crossover operations like that performed

in (3.3) and evolutionary strategies emphasize random mutation like that performed in

(3.2).

A stochastic mutation like that in (3.1) or (3.2) would move to a new point in the

neighborhood of the old point. The magnitude, or probability radius, of such a move

would be dependent upon the degree of perturbation, i.e. standard deviation. This

perturbation, and for some algorithms, the probability of accepting an uphill move,

34

enables stochastic global algorithms to escape a local minimum. An operation such as

that peformed in (3.3) could move the search to a new region of the solution space.

These characteristics, along with the parallel search characteristics of some of the

algorithms, allows a wide search range of the solution space. The goal being to find a

global minimim point, (J min , such that

(3.4)

where Sis the solution space and QO is the function being minimized or the objective

function. Stochastic global optimization methods in general do not guarantee to find the

global minimum given in (3.4). Statistically we can prove that stochastic methods

coverge to a global minimum with a probability approaching one as their running time

goes to infinity. This is not necessarily an impressive feat since we are interested in

algorithms that can be run in a reasonable amount of time. However, in comparison to

traditional local optimization methods, they theoretically should increase the likelihood

of finding a "good" solution.

References for further aspects of global optimization not addressed in this text are

Floudas; Pinter; Horst and Pardalos; Gray et. al., and Neumaier. The following sections

review the two most common evolutionary algorithms, namely genetic algorithms and

evolutionary strategies, in addition to simulated annealing and a simple stochastic

algorithm attributed to Solis and Wets. Section 3 .2 covers genetic algorithms. Section

3.3 discusses the other major type of evolutionary algorithm, the evolutionary strategy.

Finally simulated annealing and the simple stochastic algorithm of Solis and Wets are

covered in sections 3.4 and 3.5 respectively.

35

3.2 Genetic Algorithms

3.2.1 Introduction

Genetic algorithms were introduced and investigated by John Holland, along with

colleagues and students, at the University of Michigan. A book by Holland as well as

research by one of his students, De Jong, describe the theory and implementation of their

proposed genetic algorithm (GA). The genetic algorithm model introduced by Holland

still applies to much of the current theory. In addition, the Simple Genetic Algorithm

(SGA) of Holland, still serves as a template for all genetic algorithms. The intent of

Holland was not to develop an algorithm for the solution of optimization problems.

Holland's goal was to study the process of adaptation in nature and to develop computer

models of this natural adaptation. Nonetheless, since their introduction, genetic

algorithms have been developed as algorithms to solve optimization problems, and have

been applied to a wide variety of problems. Since a biological motivation underlies the

original development of genetic algorithms, terms from biology'are used to describe their

algorithmic operations and mechanisms.

It should be noted that the terminology in the genetic algorithm literature is not

always consistent. For example, A real-valued vector, or a vector of bit strings as the

case may be, representing a potential solution to the optimization problem, may be

referred to as a chromosome, gene, or individual. In addition, the terminology is

sometimes logically inconsistent across the literature and even compared to the meaning

of the equivalent terms in biology. For example, the term chromosome is sometimes

used to refer to a specific term or parameter in a vector representing a solution to a

problem, instead ofto the whole vector. This is also inconsistent because in biological

36

terms, the genetic content of an individual is distributed over more than one chromosome.

This text will endeavor to be more consistent.

A genetic algorithm works from a set of potential solutions to the optimization at

hand. In the case of estimating the weights of a neural network, each potential solution

represents a set of neural network weights (J • The set of potential solutions is referred to

as a population. In the literature, each potential solution is often referred to as a

chromosome or individual and a collection of individuals is referred to collectively as a

population. The terms chromosome and individual will at times be used interchangeably

in this text. Each iteration of a genetic algorithm is referred to as a generation. The

individuals in a population are each assigned a value called the fitness value, which

measures its goodness with respect to solving the optimization problem. The fitness

values are assigned by a fitness function that is in turn a function of the objective function

value associated with that individual. Operators are sets of functions or procedures which

operate on the population to form the next generation from the current generation with

the goal of on average finding a better solution to the problem in each generation. The

following summarizes some of the genetic algorithm jargon:

Chromosome or individual - A potential solution to the optimization problem at
hand. In the case of this research, each potential solution represents a set of
neural network weights (J •

Population - A set of chromosomes (individuals) referred to collectively as the
population.

Fitness - Each individual in a population is assigned a value called the fitness,
which measures its goodness with respect to solving the optimization problem.

Fitness function - The fitness values are assigned by a fitness function that is in
turn a function of the objective function value associated with that individual.

Generation - Each iteration of a GA is referred to as a generation.

37

Operators: selection, mutation, crossover - Functions or procedures that operate
on the current generation of individuals to form the next generation of individuals.
The primary operators of genetic algorithms are selection, mutation and crossover
operators.

With this terminology in hand, we can sketch out the basic outline of a genetic algorithm:

Step 0: Randomly initialize a population of individuals. Using the fitness
function, evaluate the fitness of each individual in the population.

Step 1: Test for termination criterion, e.g. elapsed time or generations, best
fitness value, etc.

Step 2: Apply the selection operator to the current population to form an
intermediate population of parents for offspring production.

Step 3: Apply the following reproduction operators in turn to the intermediate
population:

crossover operator - recombine the "genes" of selected parents,
mutation operator - randomly perturb individuals.

Step 4: Evaluate the fitness of each individual in the intermediate population.
Based on the fitness values, select the survivors (offspring) from the
intermediate population.

Step 5: Form the population for the next generation by replacement of
individuals in the original population with offpsring. Return to Step 1.

It can be seen that the Darwinian process of natural selection or survival of the fittest

drives the genetic algorithm. In step 4, the individuals in the intermediate population

with higher fitness values have a higher probability of surviving and making it to the next

generation.

The operators of genetic algorithms, namely mutation, crossover, and selection,

will be explored in more detail in sections to come. First, however, two main defining

characteristics of genetic algorithms are covered in the following two sections. Section

3.2.2 examines the choice between a binary or floating-point representation for the

38

individuals in the population and section 3.2.3 examines the choice between a steady- ·

state and generational genetic algorithm.

3.2.2 Binary Versus Floating-Point Representation

A basic design issue when implementing a genetic algorithm is the choice of a

binary or floating-point encoding mechanism for chromosomal representation of the

parameters of the optimization problem at hand. In a floating-point or real-valued

encoding, each chromosome or individual is simply the vector of floating point numbers

representing the optimization problem's parameters. For a binary encoding of a real

valued optimization problem, a suitable encoding of real-valued vectors (J e ~W as binary

strings v e {0,1}1 is required. Some optimization problems, such as combinatorical

optimization, are naturally represented by a binary encoding. Genetic algorithms have

been successfully applied to combinatorial problems such as knapsacks (Khuri, Back, and

Heitkotter 1994a), scheduling (Khuri, Back, and Heitkotter 1994b), and graph problems

(Khuri and Back 94; Back and Khuri 94). Genetic algorithms that work on binary strings

are sometimes referred to as canonical genetic algorithms.

The various methods for encoding real numbers as binary or bit strings will not be

discussed in detail here. However, a simple method for translating between binary and

real-valued numbers would be the following. Suppose a continuous variable is defined in

a range from-.75 to .75. This variable could be encoded to a given precision or number

of decimals places by multiplying the real value by an appropriate integer, say 100, and

dropping the decimal portion of the product. Hence, the real numbers would be mapped

to integers in the range [-750,750] and the corresponding binary code for each integer

39

can be easily computed. The binary codes of all the variables are then concatenated to

obtain a binary string.

It may seem unusual to encode the parameters of a real-valued optimization

problem as binary strings. However, as a method to study the process of adaptation in

nature, the binary representation of Holland's genetic algorithm was most natural. In

addition, fundamental genetic algorithm theory such as the Schema Theorem and the

Building Block Hypothesis rely on a binary or bit string implementation (Holland;

Goldberg 1989b). Therefore, binary representation of chromosomes has been used

historically because of its presumed superiority. The Schema Theorem and Building

Block Hypothesis will not be expounded upon in this text. Interested readers are referred

to Fogel (1994), Whitely (1994), Michalewicz, or van Rooj, Jain, and Johnson. In spite

of the apparent theoretical foundations of binary string representation, researchers have

debated their necessity (Vignaux and Michalewicz; Antonisse; Michalewicz). The

schema theorem, the theoretical underpinning of genetic algorithms, has been criticized

by several researchers (Wright; Whitley). Empirical findings have shown that real

valued encoding has worked well (Syswerda; Wright; Janikow and Michalewicz).

Michalewicz reported superior results for a variety of problems using a floating-point

representation as compared to a binary representation.

The evidence seems to indicate that as a general rule, real-valued representation

should be used when the underlying optimization problem is real-valued. There are many

potential reasons for the demonstrated success ofreal-valued representations. In a binary

representation, the reproduction operators operate at the bit level. Large changes in the

chromosome can result by changing a single bit in the chromosome. This has the result

40

of reducing the correlation between parents and offspring with respect to their fitness

values. A procedure known as gray coding reduces but does not eliminate this problem

(Eshelman and Schaffer). Related to the correlation between parents and offspring is the

fact that a genetic algorithm with a floating point representation is closer to the problem

space. Two potential solutions that are close to each other in the representation space are

also close in the problem space. In a binary representation, the distance would be defined

by the number of different bit positions. Researchers report other negative consequences,

such as hamming cliffs, from bit mutation (Janikow and Michalewicz; Rooij, Jain, and

Johnson).

There is invariably a loss of precision when converting from a floating-point to

binary representation. If too few bits are used to encode the weights, some combinations

of real-valued parameters may be impossible or difficult to achieve (Goldberg 1991). On

the other hand, an increase in precision increases the size of the individuals or

chromosomes. Michalewicz claims that genetic algorithms can be inefficient at

manipulating bitstrings with thousands of bits. Others claim that binary encoding does

not scale up well (Whitley, Starkweather, and Bogart). Increasing the size of the

chromosomes also decreases the computational efficiency of the algorithm. Each

application of the fitness function to a chromosome requires an evaluation of the

objective function being optimized. This in tum necessitates converting the bit string to

floating-point numbers.

3.2.3 General Types of Genetic Algorithms

Genetic algorithms can be categorized by the survival policy used in the

procedure for replacing individuals in each generation. Recall from the outline of the

41

genetic algorithm presented in section 3.2.1 that in step 5, the population of the next

generation is formed by replacing individuals in the current population with survivors or

offspring. The two most common approaches to replacement in a population are

generational and steady-state. The traditional approach is the generational scheme but

the steady-state approach is increasingly popular.

In a generational genetic algorithm, the new population (offspring) entirely

replaces the original population in each generation. The steady-state type of genetic

algorithm replaces only a portion of the population, permitting offspring to compete

directly with parents in the next generation, or in some approaches in the current

generation. Generally, a steady-state genetic algorithm creates only a small number of

offspring in each generation to replace the worst performing individuals in the

population. In some implementations, there can be a competition for survival between

the offspring and current population. One disadvantage of the steady-state scheme is that

because of the extreme selection pressure, they can quickly lose the diversity in their

population of individuals. In other words, each potential solution is very similar to most

others, thereby negating one of genetic algorithms inherent benefits, namely parallel

search. This causes premature convergence of the algorithm, which begins performing a

simple stochastic hill-climbing search in which new potential solutions are similar to the

old solutions.

3.2.4 Fitness Evaluation

In each generation or iteration of a genetic algorithm, the fitness of each member

of the population evaluated. Fitness evaluation measures the relative performance of the

chromosomes in the population. This is done by use of a fitness function that yields a

42

single real-valued parameter that reflects the individuals success at solving the problem at

hand.· The fitness function could be the same as the objective function, i.e. the function

we are trying to optimize, however, in most cases, the fitness function is a function of the

objective function. For example, in this research, we are trying to minimize the sum-of

squared error (SSE), our objective function. The objective function values cannot be

used directly because a lower (higher) SSE indicates a better (worse) solution, and hence

a higher (lower) fitness value. Therefore, the fitness function has to perform some sort of

inversion operation. Also, it is sometimes convenient to normalize the fitness values to a

range of O to 1. Some authors emphasize the potential disconnect between these two

functions and use the term fitness and evaluation separately (Whitley).

3.2.5. Selection Operators

Individuals are selected from the current generation by selection operators which

form an intermediate population on which breeding and mutation are to take place.

Based upon natures "survival of the fittest" mechanism, individuals with a higher fitness

value are more likely to be selected. Those individuals that are selected are said to be

parents of the next generation. There are two important factors to consider when

applying a particular selection operator, namely, population diversity and selective

pressure (Michalewicz). Selection pressure refers to the ability of the operator to select

those individuals with higher fitness values. Population diversity is the degree to which

the individuals in the population differ from each other.

An effective selection operator should exert sufficient selective pressure so as to

avoid stagnation in the evolutionary process (Goldberg, 1989a). This can be seen more

readily in the later stages of a genetic algorithms search where the diversity of the

43

chromosomes is low. Low selective pressure in this situation could easily lead to

stagnation because of the low variance in the fitness values. On the other hand, strong

selective pressure can lead to premature convergence of the genetic algorithm search.

Strong selective pressure could lead the search to focus on a few good individuals in the

population early in the genetic algorithms search. Therefore, genetic or population

diversity would be lost preventing an adequate exploration of the search space. It is

important for the selection operator to balance the two opposing factors.

Many selection strategies are available. Some of the commonly used are

tournament, roulette wheel, and proportionate selection. Some examples of selection

strategies are discussed in more detail in the following sections.

Roulette wheel selection

In roulette wheel selection, individuals are selected with a probability

proportional to their relative fitness values. The probability that a particular chromosome

x is chosen is given by

(3.5)
f(x)

Pselect{x) = Lf

where f() is the fitness function. The roulette wheel selection method is a proportionate

selection method. This method can be described by visualizing a roulette wheel where

each chromosome or individual occupies an area that is relative to its fitness value. A

fixed marker selects a particular chromosome when the wheel stops. By repeatedly

spinning this roulette wheel the intermediate population is formed. Obviously, a

chromosome with a higher fitness value will occupy a larger proportion of the roulette

wheel and hence have a higher probability of being chosen.

Integral selection

44

Integral selection is a modification of roulette wheel selection. In roulette wheel

selection the expected number of times that a chromosome x would be selected is given

by

(3.6) Ese1ec1(x) = n · Pse1ec1(x),

where n is the population size. The number of offspring allocated to a chromosome may

differ significantly from the expected number. Integral selection seeks to reduce the role

of chance by guaranteeing that each chromosome is selected as many times as its

corresponding expected value in (3.6). Since this method will most of the time lead to

the allocation of fractional numbers of a individual chromosomes, the actual number

selected must be rounded up or down. The rounding method includes some

randomization to avoid biases toward a particular chromosome.

Rank selection

Rank selection is a modification of roulette wheel selection where the fitness

values are used to rank the chromosomes. The probability of selection is proportional to

the rank rather than the raw fitness values. One possible ranking scheme is linear

ranking. The individual with the lowest fitness value are assigned a rank of 0, the next

worse a rank of 1, and so on. The individuals are then selected based upon some linear

function of its sorted rank. The linear function ensures that there is always a fixed ratio

between the best and worst chromosomes in a population. The other individuals will be

linearly spaced between the two. We can assign to the individual at rank i a probability

of selection given by

(3.7)
1 i-1

P; =-(2-c+(2c-2)-),
n n-l

45

where n is the size of the population and 1 ~ c ~ 2 is the selection bias. The higher the

value of c the higher the selection pressure. That is, the more the algorithm will favour

the better chromosomes. As a genetic algorithm progresses there is smaller and smaller

variance in the fitness values across the population. The rank selection method ensures

that even after the performance of the individual chromosomes in the population

converge, the best chromosome will be favoured over the worst to the same extent they

were in the beginning. This method helps to avoid premature convergence and

stagnation. One computational drawback of this method is that it requires sorting of the

entire population at each generation. Tournament selection can be used to avoid this

problem.

Tournament selection

In tournament selection, a typically small number, m , of chromosomes is

randomly chosen from the population. The selection is independent and with

replacement so an individual could be chosen more than once. The best or fittest

chromosome is chosen from this pool of individuals to be passed on to the intermediate

population. The size of the pool, i.e. m , is called the tournament size. The higher the

value of m , the more selection pressure the operator will exert. Conversely, if m = 1 ,

then the operator picks randomly. In the genetic algorithm literature, a value of m = 2 is

not very selective and m = 7 is considered relatively highly selective.

3.2.6 Crossover (recombination)

The crossover operator is the distinguishing operator of genetic algorithms

(Davis). Crossover has traditionally been viewed as the main search operator with

mutation being only a background operator (Holland). Crossover is the process by which

46

genetic material from different individuals is combined to create offspring. This is the

so-called mating or breeding portion of the genetic algorithm. Pairs of strings or

chromosomes are picked at random from the population to serve as parents, These

parents are subjected to crossover to form offspring. The theory underlying crossovers

predominant role in the success of a GA is the building-block hypothesis first introduced

by Goldberg (1989b). The building-block hypothesis sais that the "building blocks" are

subparts of individuals that are considered good. As evolution progresses, through

crossover, these building blocks can be transferred from individual to individual

spreading throughout the population.

As an example of how crossover operators work, some of the more common are

illustrated and/or discussed below. Assume we start with the following two

chromosomes:

s = (si, . .. ,sn)

V ={Vi, ... , Vn)

The following crossover operators will operate on the above chromosomes in the

following manner where k, I e (1, ... , n) are random numbers:

a) One-point crossover

s' = (si, . .. ,sk-l•sk, vk+1'· .. , vn)

v' =(vi,. .. , vk-1• vk,sk+t>· .. ,sn)

b) Two-point crossover

s' = (s1,. .. ,sk_Psk, vk+t,. .. , v1_i, v1,s1+1, ... ,sn)

v' = (v1,. •• , Vk-l,' Vk,Sk+t•· .. ,S1_i,Si, Vl+t>· .. , Vn)

c) Linear interpolation one-point crossover

47

The simplest operator and the one employed in Holland's SGA is the one-point crossover

illustrated in a) above. Assuming the string or chromosome is of length n, a crossover

point is randomly chosen in the range 1 to n- l. The portions of the strings that lie beyond

the crossover point are exchanged between the two strings. Similar in concept is the two-

point crossover in which there are two potential crossover points. This operator is

illustrated in b) above. In general, an m-point crossover scheme can be used where m<n.

In uniform crossover, each point between genes is a potential crossover point. Each of

these potential points has a probability of .5 that it will be a crossover point. Note that as

discussed in previous sections, in some traditional implementations of a genetic

al,gorithm, the individual elements in the chromosomes s and v would be binary

numbers. For our purposes in this research, we are only concerned with real-valued

chromosomes. Real-valued strings offer the potential for many other crossover operators.

For example, as illustrated inc) above, the crossover operator could employ a linear

combination of the genes. Regardless of the crossover operator used, genetic algorithms

typically employ a crossover rate pc . The crossover operator is employed only if

pc > r for a random number r E [0,1] . The crossover rate, pc, is typically set close to 1.

If the crossover operator is not employed then the strings remain unaltered.

A disadvantage of one-point crossover is that given two individuals, some

combinations of their building blocks can not be achieved in the offspring. Two-point

crossover is a more flexible operator because it has two segments, one in each parent, that

48

can be swapped. An extreme case is uniform crossover in which each point in both

parents is subject to crossover with a probability of .5. Uniform crossover is very

:flexible, and any combination of individuals in the chromosomes can be achieved. On

the other hand, it is the most disruptive to the building blocks.

Many other crossover operators have been investigated, including linear and non-linear

representations. See Booker, Fogel, Whitley, and Angeline and Michalewicz for further

discussion of the subject.

3.2. 7 Mutation

After crossover, each string is subject to mutation. Mutation is useful for

introducing new genetic material and keeping the genetic diversity in the population

(Back, Fogel, Whitley, and Angeline). For binary strings, mutation operates

independently on each bit of the string. Mutation is simply a matter of :flipping a bit, for

example from O to 1. For real-valued genes, mutation is usually accomplished with the

addition of a normally distributed variable, i.e. Gaussian noise, to the values of the

parameters in the chromosome. For real-valued chromosomes, other mutation options

are available. For example, inversion of the genes or distributions other than normal

could be used for additions to the values in the chromosome.

In most genetic algorithm implementations, each of the individuals in the

population is subject to mutation with a probability Pm. This value is normally close to

zero, however, some have argued that for real-valued chromosomes Pm can be quite

high, for example .5 (mutate 50% of the chromosomes)(Rooij, Jain, Johnson). Such a

high rate of mutation for a binary representation would be very disruptive. When a bit is

mutated, it is switched to its opposite state. This could have a large effect on the

49

chromosome as a whole. However, for a floating-point representation, assuming the

variance of the random number addition is not too large, the mutation is much less

disruptive. Therefore, a higher rate of mutation can be justified.

3.3 Evolutionary Strategies

3.3.1 Introduction

Evolutionary strategies were born out of an attempt to solve an engineering

optimization problem, namely, the optimal shapes of bodies in a flow. To solve this

problem, Schwefel and Rechenberg collaborated in the 1960's to develop the

evolutionary strategy (ES) approach to function optimization. Evolutionary strategies are

designed to optimize functions of continuous variables (Michalewicz). However,

Evolutionary strategies have also been extended to discrete problems (Back, Hoffmeister,

and Schwefel; Herdy). Similar to genetic algorithms, modem evolutionary strategies

operate on a population of potential solutions. However, in contrast to genetic

algorithms, mutation is the primary operator and crossover is only a background operator.

Much of the terminology for genetic algorithms introduced in section 3.2 is also used to

described evolutionary strategies. For example, a potential solution to the optimization

problem at hand is referred to as an individual. A set of individuals is referred to

collectively as a population. In addition, many of the same genetic operators such

crossover, mutation, and selection are used in evolutionary strategies. However, their

fundamental methods of operation are different then the corresponding operators for

genetic algorithms.

50

The following notation is commonly used to describe particular forms of

evolutionary strategy algorithms:

1. (1+1)-ES,

2. (µ+l)-ES,
3. (µ+).)-ES,
4. (µ,).)-ES.

The enumiration above also represents the historical development of evolutonary strategy

algorithms with the (1 + 1) - ES being the earliest and simplest ES and the (µ +).) - ES

and (µ,).) - ES representing the latest and most sophisticated implementations. The

symbol µ denotes the number of parents or individuals in the population and the symbol

). denotes the number of offspring created by the parents within a generation. The

notation representing a particular strategy also serves to characterize the selection

operator that is used to select individuals from the population of potential solutions. Fot

example, in the (µ+).)-ES, the best µ individuals out of the union of parents and

offspring survive. In (µ,).)-ES the next generation is formed by selecting the best µ

individuals from a population of potential solutions of size). (). > µ is necessary). Each

of the four ESs are described in detail in the following sections.

3.3.2 (1 + 1) and (µ+ 1) - Evolutionary Strategies

The earliest developed evolutionary strategy was the (1 + 1)-ES. The

(1 + 1)-ES strategy is based on a population of only one individual and mutation is the

only genetic operator. The n x 1 vector of optimization variables x are mutated

according to

(3.8) x<1+1) = x<t> + N (0, u2)

51

where tis the generation, N(O, <1 2) is a normally distributed random vector of size n x 1

with mean zero and standard deviation given by the n x 1 vector <T • In nature, small

mutations occur more often than larger ones, therefore, the choice of perturbations from a

normal random variable in (3.8) is somewhat intuitively appealing. Assuming we are

minimizing a function, an offsping x<1+1lreplaces its parent x<t) iff f(x<1+1l) < f(x<t)),

otherwise x<1+1l = x<t) and the algorithm proceeds with another Gaussian mutation of x .

The (1 + 1)-ES is called a "two-membered evolution strategy" because the

offspring competes with its parent to make it to the next generation and at least

temporarily, there are two individuals in the population. The algorithm above is mearly a

random search algorithm recast with some evolutionary terminology. Nonetheless, it was

a start toward the more sophisticated evolutionary strategies. In spite of the simplicity of

the (1 + l)-ES, this type of algorithm has been shown to converge to the global optimum

with probability one for sufficiently long search time (Michalewicz). However,

convergence with probability one sais nothing about a particular algorithms potential use

as a practical optimization algorithm, especially with respect to convergence rate. To

improve the convergence rate of the (1 + 1)-ES, Rechenberg proposed a "1/5 success

rule". That is, the ratio <p of successful mutations to all mutations should be 1/5. If <p is

greater than 1/5 the variance is increased, otherwise it is decreased. Rechenberg derived

this somewhat ad-hoc rule on the basis of optimizing the convergence rates on two

particular functions. The rule is intuitive in the sense that if there is a large percentage of

successes, then larger steps should be taken to explore a wider region of the search space.

Alternatively if there is a small percentage of successes, the search should be focused on

a smaller region.

52

The search described above could lead to premature convergence on some types

of functions (Michalewicz). An increased population size was proposed to address this

problem. Rechenberg proposed a multimembered evolutionary strategy with the

(µ + 1)-ES algorithm where µ =population size. A multimembered evolutionary

strategy uses a crossover or recombination operator to combine µ > 1 individuals to form

one offspring. This is unlike a typical genetic algorithm which generally has a fixed

population size from generation to generation or at the very least produces more than one

offsping in each generation. The (µ + 1)-ES strategy was never widely used, however,

it provided a transition to the (µ+A)- ES and (µ,A)- ES introduced by Schwefel

(1977, 1981). These two strategies, and especially the latter one, are more state-of-the-art

than their predicessors. The next section discusses these particular evolutionary

strategeis.

3.3.3 (µ+11.) and (µ,11.) - Evolutionary Strategies

Like the (µ + 1) - ES , (µ +A) - ES and (µ,A) - ES introduce the possibility of a

crossover or recombination operator for a multimembered population. The (µ + A) - ES

and (µ,A)- ES algorithms are distinguished from each other by their selection

mechanism. In the former, µ parents create A ~ 1 offspring by recombination and

mutation. The selection mechanism picks the µ best individuals out of the union of the

parents and offspring to form the next generation. The later algorithm creates A

offspring, where A > µ , by recombination and mutaton. The best µ individuals out of

these A offspring are selected for the next generation. Both of these algorithms use self

adaption of the mutation variances. The self-adaption is an improvement over an ad-hoc

criterion, such as the 1/5 success rule. Each individual in the population is composed of

53

the n x 1 parameter vector x plus up to n(n + 1) I 2 variances and covariances for an n-

dimensional normal distribution used to generate perturbations to the x vector. In the

evolutionary strategy literature, the variances and covariances are called strategy

variables and the individual components of the parameter vector x are called object

variables.

The general functioning of the (µ + A) - ES and (µ,A) - ES algorithms can be

sketched out as follows:

Step 0: Randomly initialize a population of size µ . Evaluate the objective
function value for each of the individuals in the population.

Step 1: Test for termination criterion, e.g. elapsed time or generations, best
objective function value, etc.

Step 2: Apply the following reproduction operators in turn to the population to
produce A offspring:

crossover operator - recombine the "genes" of selected parents,
mutation operator - randomly perturb individuals.

Step 3: Evaluate the objective function value for each of the individuals in the
population.

Step 5: Form a population for the next generation by selecting the best µ
individuals from:

for (µ + ..i)-ES : the parents µ plus the offspring ..i ,
for (µ,A) - ES : the offspring ..i where ..i > µ .

Step 5: Return to Step 1.

The specifics of each of the steps above, i.e. initialization, crossover, mutation, and

selection, are presented in the paragraphs below. The discussion and notation in the

following sections borrows heavily from Back and Schwefel (1993), Back and Schwefel

(1996), and Back, Rudolph, and Schwefel (1993). The notation commonly used in the

evolutionary strategy literature will be introduced in the section on mutation.

54

Initialization

Initialization of the object variables can be handled in the same manner as you

might for a regular nonlinear optimization algorithm. For the standard deviations,

Schwefel (1981) recommended o-;(O),::, !J.xj,J;;, where !J.x; is the estimated distance

between the starting point and optimum. As a practical matter, we might not have an idea

what /J.x; should be. For the neural network problem, care should be taken not to make

the initial values of the standard deviation too large, otherwise, this will tend to saturate

the values of the hidden neurons. Ifwe have previously run a gradient based algorithm,

we could use the difference between the mean of these weight values and the expected

mean of the random initial weights as an estimate of !J.x; should be. The self-adaption

mechanism can scale the standard deviations into a more appropriate range if the initial

values are not too large. It should be noted that constraint handling can be included in the

algorithm but is beyond the scope of this discussion.

Mutation Operator

The mutation is guided by an n-dimensional normal distribution having a

probability density function

(3.9)
exp(-1- x·c-1x)

p(x) = z
~(2trY detC

where x' = (xi,···,xn) is a vector of the choice variables, C is the covariance matrix for

x, and detC represents the determinant of the covariance matrix. The choice variables

x are called object variables in the evolutionary strategy literature. The variances and

covariances also evolve in modem ESs and are thus subject to mutation in addition to

recombination. The variances and covariances are known as strategy variables in the ES

55

literature. The strategy variables are composed ofup ton different variances,

u = (c;; =a}, i E {1, ... , n}), and n(n-1) I 2 covariances,

ex= (cii, i E {1, ... ,n-1},j E {i + 1, ... ,n}). Thus, we have w= n(n + 1)/2 strategy variables

representing the variances and covariances (1/2 the off-diagonal terms from C) that can

be varied during the operation of the algorithm. An individual a in the population

therefore consists ofup to 3 components, a= (x,<1,0!). To ensure positive-definiteness of

the covariance matrix, or equivalently to ensure that the coordinate system remains

orthogonal, rotation angles a1 ,0 ~ a1 ~ 2n are used in place of the covariance

coefficients cii . The rotation angles are related to the covariances by the following

(3.10)
2c ..

tan(2aii) = 2 1J 2
U; -a1

For more detail on algorithmic implementation of the above and further discussion of the

reason for using rotation angles see Back (1996).

With the above information we can proceed with mutation of the strategy and

object variables. The following are the main possibilities for mutation:

1. na = 1, na = 0: All object variables have identical standard deviation a, and

the covariances are zero.

a'= aexp(r0 N(O,l))

x; = X; + aN(0,1)

2. na = n, na = 0: All object variables have their own standard deviation a;,
with covariances of zero.

a; = a; exp(rN(0,1) + rN; (0,1))

x; = X; + a;N(0,1)

56

3. na = n, na = n *(n-l)/2: All object variables have their own standard

deviation CY; , with non-zero covariances.

CY;= CY; exp(r'N(0,1) + rN;(O,l))

a~ = a j + /JN/0,1)

x' = x+N(O,C)

It is suggested that the constants r, r', and f3 be set according to (see Back, 1996, pg.

72):

'o oc c2J;;r1/2

r' oc (2n rl/2

f3 Ri 0.0873 (5°).

It is suggested that the algorithm is robust with respect to the values of these parameters

(Back, Rudolph, and Schwefel), however, the specific optimal values undoubtedly

depend upon the particular topological characteristics of the objective function (Back and

Schwefel, 1993). The factors r and r' are sometimes referred to as "learning rates",

similar in concept to the learning rate for backpropagation in neural networks or the step

size in many nonlinear optimization algorithms.

Crossover or Recombination

In (µ +A)- ES and (µ,A) - ES , the object variables x as well as the strategy

variables CY and a are subject to recombination. In addition, the recombination operator

may be different for the object variables, standard deviations, and rotation angles.

Various recombination operators are used in evolution strategies. A single offspring may

be produced by using information from two parents chosen from the population or the

creation of the individual may involve up to all parent individuals, depending upon the

operator used.

57

Traditionally, two different general forms of recombination operator have been

used for evolution strategies: discrete recombination and intermediate recombination.

Three different versions of these operators exist giving 6 different possibilities for

operators. Notationally, for a specific element X; from the object variable vector x we

have the following possibilities:

X s,i or Xt,i discrete I

rd

xs,i or xtj,i panmictic discrete I

YD

xs; +(x,; -xs ;)/2 intermediate I

Y;
I , , ,

X -
I ;-

xs; + (x1 ; - xs;) I 2 panmictic intermediate r1
' J' '

xsi + X*(x,; -xs;)/2 , , , generalized intermediate I

rg

xs; + X * (x1 ; - xs;) I 2
' 'J' '

panmictic generalized intermediate I

rG

where i = l, ... ,n; j,s,t E {1, ... ,µ} and x E [0,1] is a uniform random variable. In the

panmictic generalized intermediate form, %; denotes that the random variable is

resampled for each possible value of i, or in other words for each component of the new

individual x'. The indices sand t denote two separate parents selected at random from

the population P and the index} in 9 indicates t to be sampled anew for each value of i.

Selection Operator

The selection mechanism is what distinguishes the (µ+A) - ES from

(µ,A) - ES . The notation in fact characterizes the type of selection operator used for the

respective strategies. To be more precise, ifs is the selction operator, the respective

operators perform the following operations or mappings:

(µ +A) - selection

(µ,A) - selection

58

The latter selects the µ best individuals out of the offspring only while the former selects

the µ best individuals out of the parents plus the offspring. It should be obvious that for

the (µ,).,)-ES,)., >µ,otherwise, no selection takes place. The s(µ+).> selection

operator is an elitist scheme where the best individuals are guaranteed to survive. The

s(µ,).) operator on the other hand, restricts each individual to a single generation. This

would seem to be a disadvantage, however, the ability to loose good solutions actually

allows the algorithms to escape local minima. This operator, however, also facilitates the

extinction of bad individuals. Back (1996) recommends intermediate recombination for

the strategy parameters. The ratio µ /)., . drives the character of the evolutionary search.

If we decrease µ , the algorithm will be more path-oriented and converge quicker while

increasing µ leads to a wider or more global search of the parameter space. A

suggested value for these parameters is µ = 15 and µ/)., ';::j 1/7 (Back, 1996).

3.4 Simulated Annealing

3.4.1 Introduction

Simulated annealing as an algorithm originated from an analogy between the

process of slowly cooling a solid to reach a low energy ground state or thermal

equilibrium and minimizing the cost function of a combinatorial (discrete) optimization

problem (Kirkpatrick, Gelatt, and Vecchi). The physical annealing process contains the

following two steps (Aarts and Korst)

Increase the temperature of the heat bath to a maximum value at which the solid
melts.

Decrease carefully the temperature of the heat bath until the particles arrange
themselves in the ground state of the solid.

59

In the liquid phase, the particles move about freely and are arranged randomly. As the

liquid cools this mobility is lost. If it is cooled slowly enough, the particles will align

themselves to each other to form an ordered crystalline structure that is the minimum

energy state for the system. On the other hand, if the liquid is cooled to fast, it will end

up in a polycrystalline state having a higher energy than the minimum energy state.

The physical annealing process can be modeled with computer simulations

(Binder). Metropolis, et al. first proposed a simple algorithm to simulate the annealing of

a solid to thermal equilibrium. Their algorithm, known as the Metropolis algorithm,

generates a sequence of energy states for the system. Let Ei be the current energy state

for the system. A subsequent energy state Ej can be generated by applying a small

perturbation to the system, such as a random displacement of an atom. If the energy has

decrease, that is E j - Ei ~ 0 , then the state j is accepted and the algorithm proceeds to

the next iteration with a perturbation to the system in state j. If E j - Ei > 0 then state j is

accepted with a probability given by

(3.11)

where kB is a physical constant known as the Boltzmann constant and Tis the

temperature of the heat bath. The acceptance rule in (3.11) is known as the Metropolis

criterion. If state j is not accepted then the algorithm starts over beginning with a new

perturbation to the system in state i. By repeating the previous steps many times, the

metropolis algorithm simulates the thermal motion of atoms in thermal contact with a

heat bath at temperature T If the temperature is lowered sufficiently slow, the solid can

60

reach thermal equilibrium at each temperature. Thermal equilibrium in a system at a

temperature Tis given by the Boltzmann probability distribution

(3.12) Prob(E)- exp(-E I kT).

Kirkpatrick, Gelatt, and Vecchi recognized the analogies between the evolution of

a solid at a given temperature and the solution of a combinatorial optimization problem. 1

They applied the metropolis algorithm to function optimization by substituting the

unknown parameters for the particles of the solid and the associated cost or objective

function value for the energy of the system. In this "simulated" annealing algorithm, the

parameters of the function to be optimized are randomly perturbed to create a new set of

parameters. These parameters are accepted if they result in a lower value for the cost

function (assuming minimization), otherwise, if the result is an increase in the cost

function, the new parameters are accepted or rejected based upon a probabilistic

acceptance criterion such as the metropolis criterion in (3.11).

Temperature plays the role of a control parameter in simulated annealing. The

temperature often controls the amount of perturbation to the parameters being optimized.

In addition, the acceptance criterion is a function of the temperature. At lower

temperature, there is a decreasing probability that a set of parameters which results in an

increased cost function, will be accepted. The temperature, which is a control parameter,

is initially set to a high level. The high temperature, which results in large perturbations,

allows the algorithm to perform a wide search of the parameter space. The high

temperature also leads to an acceptance of a higher percentage of steps or perturbations

1 Kirkpatrick, Gelatt and Vecchi are generally credited with the development of a optimization algorithm
from statistical mechanics concepts. However, Laarhoven and Aarts report that Cerny, along with the
earlier works of Pincus as well as Khachaturyan, Semenovskaya, and Vainshtein, also recognized the
analogies between statistical mechanics concepts and optimization.

61

that result in an increase in the cost function. This also allows for a wider search of the

parameter space. The acceptance of parameters with a higher cost also allows the

algorithm to escape local minima.

The occasional acceptance of an uphill step by the acceptance criterion, as well as

a sufficiently high beginning temperature level and its subsequent lowering, are the keys

to an affective "global" simulated annealing algorithm. The converse of the process of

annealing is quenching in which the temperature is rapidly lowered. In the physical

annealing process, quenching is very likely to result in a freezing of the particles of the

solid into suboptimal structure. Similar to quenching, local optimization routines move

rapidly downhill toward the nearest minimum. A local optimization routine is greedy in

the sense that it always seeks to take a step downhill. By executing the simulated

annealing algorithm at a sequence of slowly decreasing temperature values, and allowing

uphill moves with a non-zero but gradually decreasing probability, simulated annealing is

allowed to explore the parameter space but eventually settle into what is hopefully the

global minimum.

Examples of early applications of SA were to designing integrated circuts (Vecchi

and Kirkpatrick), pollution control (Derwent), and the famous traveling salesman

problem (Aarts and Korst). It was reported to perform well in the presence of a high

number of variables (Kirkpatrick, Gelatt, and Vecchi; White, 1984). Vanderbilt and

Louie described the first application of a simulated annealing algorithm to optimization

of a function with continuous parameters (Boender and Romeign). Corona, Marchesi,

Martini, and Ridella also presented a simulated annealing algorithm for functions of

continuous variables. Corona et al. as well as Goffe and Ferrier compared this algorithm

62

to conventional local optimization algorithms for minimizing several test functions and

found the algorithm to be very reliable at finding the global minimum.

There are many different simulated annealing algorithms, however, the following

three functions characterize all simulated annealing algorithms (Ingber, 1989). Let

x E mn be a vector of continuous variables:

1) p(x): The probability density function (p.d.f.) of the distribution to perturb or

generate the parameters, e.g. the gaussian or uniform distributions. The degree of
dispersion is usually controlled by the temperature T , in which case we can write
p(x,T). For example, assuming a normal distribution, the standard deviation

could be a function of T .

2) g(!),.C,T): The p.d.f. for accepting a new set of parameters after perturbation,

e.g. the Metropolis criterion as given in (3 .11). The temperature is given by
T and !),.C is the change in the value of the cost function from the perturbaton is a
decreasing function of the temperature.

3) h(k): The function which controls the cooling schedule for the temperature T.

The function slowly decreases the temperature T as k , the number of iterations
of the algorithm, increases. A simple example would be I;,= Tk-i x p where

pe[0,1].

Using the three functions above, the following is an outline of a simulated annealing

algorithm for minimization of a cost or objective function C(x):

step 1: Pick an initial temperature T0 > 0 and point x0 in the parameter space and

calculate the corresponding function value C(x0).

step 2: Randomly pick a new point x~ = xk + /),.x in the parameter space using the

p.d.f. p(!),.xk) and calculate the corresponding function value C(x~).

step 3: If C(x~) < C(xk) then set xk+I = x~, otherwise generate a uniform random

number r E [0,1] and decide to accept the inferior x' according to the

probabilistic criterion r ~ g(!),.C,I;,), where g() E [0,1] and !),.C = C(x')- C(x).

63

step 4: After M points or perturbations have been considered, i.e. repeating steps
2-3 Mtimes, reduce the temperature by Tk+1 = h(k) T,,ew = T01d x p, where

p E [0,1]. Repeat steps 2-4 until the stopping criterion has been reached.

Note that this is only a rough outline of an annealing algorithm. There could be many

suttle variations. The following two sections discusses the two main variations of

simulated annealing, namely, Boltzmann annealing and Fast Simulated Annealing.

3.4.2 Boltzmann Annealing

Boltzmann annealing (BA), sometimes referred to as classic simulated annealing

(CSA) (Szu and Hartley), is based upon the metropolis (monte carlo) algorithm presented

in the previous section. Referring back to the basic structure of a SA algorithm which

was presented above, boltzmann annealing chooses the normal distribution for p() . The

p.d.f. of a n-dimensional multivariate normally distributed variable x is given by:

(3.13)

where µ is a n x 1 vector of means, R is a n x n covariance matrix, and IRI is the

determinant of the covariance matrix. If assume µ = 0 and the covariances are zero with

a standard deviation CY for each component of x , the normalized multivariate normal

p.d.f. is easily derived from (3.13) above:

(3.14)

Using (3.14) above, the p.d.f. g(~x) for step 2 of BA is then given by:

(3.15) d d/ {- ~x'~x} p(~x) = r- (2nY 2 exp 2r 2 ,

64

where r = a~ and ~x = xk+i - X;. Since the standard deviation is a function of the

temperature T, it is easy to see how the dispersion of perturbations will get smaller as the

temperature T is slowly decreased2•

The acceptance probability from step 3 is given by

(3.16) g(~C,Tk) = min{l,exp(~C/c~)}

where ~C = C(x')- C(x) is the change in the cost function being minimized and c is a

constant scaling factor. If ~C ::::; 0 the step is automatically accepted, otherwise, as

detailed in step 3, it is accepted according to the probability given by exp(~C I cTk) 3.

Geman and Geman proved that given g() in (3 .16), and a sufficiently high

temperature T0 , asymptotically the algorithm will find the global minimum provided the

reduction in T is not faster than:

(3.17) ~ =h(k)=~.
ln(k)

The proof is also sketched in Ingber (1989) and Szu and Hartley. As a practical matter,

the cooling schedule in (3 .17) is very slow. Many researchers use faster cooling

schedules. Global convergence is no longer guaranteed, however this does not preclude

the algorithm from still being useful for solving optimization problems. Since as a

practical matter, the computing power is often not available to "ensure" global

convergence for many larger problems, it suffices to obtain reasonably good answers to

2 The standard deviation can be a function of T or alternatively we can set the standard deviation equal to
T . The algorithm is invariant to which choice we make. We need only consider any necessary scaling

with respect to our choice for T , c in (3 .16) and if appropriate, the standard deviation a .
3 Some authors, such as Ingber and Szu and Hartley, give a description of Boltzmann annealing with the
alternative acceptance criterion given in (3.21) later in this text. However, it is this authors opinion that
mostl'classic" implementations of Boltzmann annealing used the acceptance criterion given in (3.16)
above. See section 3.4.3 and figure 3.2 for a comparison of the two.

65

the problem. Ingber (1993) refers to the use of faster cooling schedules as simulated

quenching rather than simulated annealing.

3.4.3 Fast Simulated Annealing

The choice of p() and g() in (3 .15) and (3 .16) above for Boltzmann Annealing

comes from physical principles underlying concepts from statistical mechanics.

However, there is no reason why these choices should be the optimal for function

optimization. Researchers have used other functions leading to algorithms that are

theoretically more efficient. Szu and Hartley introduced several modification which

theoretically make the simulated annealing algorithm much more efficient. They

introduced what they called fast simulated annealing (FSA) by substituting the cauchy

distribution for p() and introducing a different acceptance criterion g() . The cauchy

distribution with a median of (} and scale parameter A is given by (Johnson and Kotz,

1970)4:

(3.18)

The upper and lower quartiles are given by (} ± A . A standard cauchy distribution with

(} = 0 and A = 1 is a central t distribution with one degree of freedom. To generate a

step for x in mn, one cannot simply sample the univariate cauchy distribution for each

component of x . Instead, the step must be generated from a multivariate cauchy

distribution. Ann-dimensional multivariate cauchy distribution is given by (Johnson and

Kotz, 1972; Styblinski and Tang):

(3.19) (I:!..) (r/)<n+1>/2 A
p X = Jr (A2 + l:!..x' l:!..xin+l)/2 .

66

The cauchy distribution does not possess finite values of mean and standard deviation

(Johnson and Kotz, 1970). The cauchy distributions infinite variance gives the

distribution fatter tails as compared to the normal distribution. Therefore, the cauchy

distribution provides for more occasional long jumps while retaining local sampling as

compared to the gaussian. Figure 3 .1 shows a comparison between cauchy and normal

distributions. This trade-off between local and global search allows for a much faster

cooling schedule given by

(3.20) T. _I'a
k-

k

The cooling schedule in (3.19) is exponentially faster than that given for BA while still

maintaining the property of global convergence (Szu and Hartley). Szu and Hartley also

introduced an acceptence criterion which is different than that for BA:

(3.21)
1

g(!.iC, 1;J = -----
1 + exp(tiC/ c~)

Figure 3.2 shows a comparison between the Szu acceptance criterion (3.20) and the

metropolis acceptance criterion.

4 A mathematically equivalent form which is often given in the simulated annealing literature is

,1,/ {1r[,1,2 + (x-B)2]}.

67

Cauchy pdf~
0.3

50

0.1

-50

L__~----'--~--""'-~~=:::~---'-~~l__~_[_~--1...~~-'---~--'-~-----'0
-5 -4 -3 -2 -1 0 2 3 4 5

Figure 3.1. Comparison of the Normal and Cauchy Probability Density Functions

0.75

~ Szu

~
,D
0

a 0.5
~
u
§
0.
~
u
u
<

0.25

o~~~~~~~~~~~~~~~~~~~~~~~~

-4 -3 -2 -1 0 2 3 4
Change in objective function (~ f)

Figure 3.2 Comparison of Probabilistic Selection Criterion

68

CHAPTER4

DATA AND PROCEDURES

4.1 Introduction

This chapter explains the data and methods used to accomplish the research
•

objectives given in chapter 1. Section 4.2 enumerates the neural network architectures

used with various training data sets. In addition, several cost functions used to train the

neural networks are presented. Section 4.3 describes the neural network training data sets

as well as the configurations of the neural networks associated with each of those data

sets. Section 4.4 describes the local and global optimization algorithms used to train the

neural networks. Finally, Section 4.5 describes the procedures used to determine the

relative speed and accuracy of the alternative global optimization methods used in this

research to train neural networks.

4.2 Neural Network Architectures and Cost Functions

This section presents the specific neural network forms used in this research. For

a more general discussion of different neural networks, the reader is referred to chapter 2.

This study is restricted to training of a feedforward multilayer perceptron (MLP). The

output from output neuron d of a feedforward MLP with one hidden layer is:

h

(4.1) fd(xt,()d) = /Jod + LfJ.idG(x;r)
j=I

69

where h is the number of hidden neurons in the single hidden layer, x 1 is a k x 1 vector of

inputs or explanatory variables for observation t, i 1 = (1, x;), r j = (r oj, ... , r kj)' is a

vector of weights connecting the inputs to hidden neuron}, /Jd = (/Jod, ... , /Jhd)' is a vector

of weights connecting the hidden neurons to output neuron d, e d = (/3~, r:, ... , r~) is the

vector of model parameters or weights, and G(.) is a hidden layer activation function.

The two most commonly used activation functions, and the ones used in this research, are

the logistic and hyberbolic tangent functions. The logistic function is defined by:

(4.2) G(z) = 1/[1 + exp(-z)],

and the hyperbolic tangent by:

(4.3) G(z) = tanh(z) = (ez -1)/ (ez + 1).

A feedforward MLP with one hidden layer and only one output neuron is easily derived

from (4.1):

h

(4.4) f(x1,e) =Po+ "'f.PjG(x;r),
j=I

where e = (/30 , ••• , /Jh, r:, ... , r~) is the n x 1 vector of parameters that must be estimated.

In (4.4), the number of model parameters n = 1 + h(k + 1). The input variables can be

included as linear regressors by using direct connections between the inputs and outputs.

Modifying (4.4) we have:

h

(4.5) f(xt'e) = x;rp + "'f./3jG(x;r),
j=I

70

where r/J = (¢0 , ••• ,<A) and e = (r/J0, ... ,r/Jk,/J1' ... ,/Jh,r;, ... ,r~) is then xl vector of

parameters that must be estimated. In (4.5), the number of model parameters is

n = 1 + k + h(k + 2).

Several different cost or objective functions are used in this research to train the

neural networks. Given a set of training data with T observations and assuming the

neural network form given in (4.4), the least squares cost function is defined by:

(4.6)

where y1 is the dependent variable, and 0 is the space of feasible weights or model

parameters. Augmenting the cost function in (4.6) with terms that penalize large weight

values yields:

(4.7)

where rt/!, rp, and rr are weight decay constants. Following Franses and van Dijk, for all

problems on which weight decay is used, the weight decay parameters are set equal to

rt/! = .01, and rs = rr = .0001 .

4.3 Training Data Sets

A variety of training data sets are used in this research to evaluate the training

algorithms. The data sets include financial, scientific, and synthetically generated data.

The size of the data sets and associated neural network models varies from 250

observations and 2 input variables for a neural network with 15 weights to 533

observations and 22 input variables for a neural network with 211 weights. Table 4.1

71

Table 4.1 Summary of Training Data Sets and Neural Network Models.

Neural Network
Data Set Obsa Architectureb
Bilinear 250 2-3-1, de; logistic-identity
DAX 360 4-4-1, de; logistic-identity
JYUS 364 2-3-1, de; logistic-identity
JYUSTTR 326 2-3-1, de; logistic-identity
Flare 533 22-8-3; logistic-identity
Mackey-Glass 500 5-6-1; logistic-identity
•The number of observations in the data set.

15
29
15
15
211
43

NNF<l

(4.5)
(4.5)
(4.5)
(4.5)
(4.1)
(4.4)

(4.7)
(4.7)
(4.7)
(4.7)
(4.6)
(4.7)

bThe number of neurons in consecutive layers are enumerated as input-hidden-output, with a de following
indicating a direct connection between the input and output neurons. Likewise, following the layout of the
neurons, the activation functions are enumerated beginning with the first hidden layer.
cThe number of neural network weights or parameters that must be estimated.
dEquation number of the neural network functional form used for that data set.
0Equation number of the objective function form used to train the neural network for that data set.

summarizes the characteristics of the data sets. Section 4.3 .1 presents the synthetically

generated training data and section 4.3.2 the real-life training data. The abbreviation for

a particular data set, if any, are in parentheses after the section heading bearing the data

sets name.

4.3.1 Synthetic data

Mackey-Glass

The Mackey-Glass time series has appeared numerous times in the neural network

literature as a benchmark time-series for prediction and estimation, for example, Chow

and Leung; Ergezinger and Thomsen; Goffe, Ferrier, and Rogers; Sexton, Dorsey, and

Jonson (1999b). Mackey and Glass were the first to investigate the series. The Mackey-

Glass time series x(t) is produced by the numerical solution of the Mackey-Glass

differential-delay equation:

(4.8) dx =-bx(t)+ ax(t-r) ,
dt . l+xc(t-r)

72

where a, b, c, and 1: are parameter constants and x(t) is the value of x at time t. The

constants a, b, and c are typically set to 0.2, .1, and 10 respectively. The constant 1: is

called the delay parameter and it determines the chaotic behavior displayed by the series.

Farmer has studied the behavior of (4.8). For values of 1: > 16.8, the series exhibits

chaotic behavior. This study uses a discrete version of the Mackey-Glass equation as

used in Gallant and White:

(4.9) ·c) [0.2xt-5 1] g x1_5 , x1_1 = x,_1 + 10.5 1 10 -0. x,_1 •

+x1-s

The Mackey-Glass series is said to be qualitatively like financial market data (Gallant,

Hsieh, and Tauchen). The series can exhibit long stretches of volatile data of apparently

random duration.

The Mackey-Glass data for this research were generated from (4.9) with starting

values of x0 = 1.6 and X; = 0 for i = -4, ... ,-1 . One thousand observations are

generated with the first 500 discarded leaving 500 observations for training data. Figure

4.1 is a graph of the first 100 observations of the Mackey-Glass series as used in this

research. The neural network model has five inputs consisting of five lags of the

Mackey-Glass series. As can be seen from (4.9), only lags t-1 and t-5 are necessary to

approximate this series. However, in most actual applications of neural networks, the

true dimension of the problems is unknown. Therefore, superfluous inputs are commonly

part of neural network modeling. The neural network model has one hidden layer with 6

·neurons, logistic activation functions for the hidden layer neurons and an identity transfer

function for the output neuron.

73

1. 75 ~-·---........... , ______ ____ .. ____________ .. ,_ --.................................. _, _______ .. _,, ... _, __ - --................................... ,

1.25 \

0.75

~

0.25 I\

~
I

~ \
-0.25 \

/\

~

-0 .. 75

-1 .. 25

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Figure 4.1. Mackey-Glass Time Series

Bilinear Model

The time series from the bilinear model is generated by:

(4.10) Y, = PY,-2&1-1 + &, '

with 13 = 0.6. This series displays occasional sharp spikes. Its characteristics make it of

interest in econometrics and control theory (Mohler). Granger and Anderson showed this

model has zero autocorrelations at all lags. Therefore, linear models will not be

successful in modeling this series. Franses and Dijk modeled the series in (4.10) and

reported that a neural network with at least two lags as inputs showed considerable

improvement over a linear model.

74

The bilinear series in this study is generated by setting Yo= y_1 = 0 and drawing

Et from a Normal(O, 1) distribution. A total of 350 observations are generated with the

first 100 discarded leaving 250 observations for the neural network training set. A graph

of this series is given in figure 4.2. Based upon results in Franses and Dijk, the neural

network for this series has 2 lags of (4.10) as inputs, 3 hidden neurons in a single hidden

layer with logistic activation functions, and an identity activation function for the output

layer.

4.3.2 Real-Life Data

Japanese Yen-US Dollar Exchange Rate (JYUS)

The Japanese Yen-US Dollar Exchange Rate (JYUS) data are weekly returns on

the Japanese yen-US dollar exchange rate from Franses and Dijk. The weekly returns are

given by:

(4.11)

where r 1 is the return for week t and P1 is the level of the Japanese yen-US dollar

exchange rate for week t. Franses and Dijk demonstrated that the relationship between

the JYUS return series and its lags is nonlinear.

Following Franses and Dijk, the training data consists of 364 observations from

January 1986 through December 1992. The neural network model uses two lags of (4.11)

as inputs. We use a feedforward network with logistic activation functions for 3 hidden

neurons in a single hidden layer and an identity activation function for the output neuron.

Japanese Yen-US Dollar Exchange Rate with Technical Trading Rules (JYUSTTR)

This second model to predict the Japanese yen-US dollar exchange rate is

constructed by using technical trading rules as inputs to a neural network prediction

75

21 41 61 81 101 121 141 161 181 201 221 241

Figure 4.2 Bilinear Time Series

model. Specifically, moving average trading signals are used. Following the notation of

Franses and Dijk, we define a moving average of length T for period t as:

(4.12)
1 ,-1

m,(T) =-LP,-;.
'C ;~o

A moving average technical trading rule can be constructed from (4.12) as follows:

(4.13)

where r 1 < r 2 • Equation (4.13) defines what is commonly called a dual moving average

crossover. Following Franses and Dijk, T1 and T 2 are set to 1 and 40. The time periods

for this data are the same as that for the JYUS data set. Based on results presented in

Franses and Dijk, three lags of (4.13) are used as inputs and the neural network is chosen

to have 3 hidden neurons in a single hidden layer with logistic activation functions, and

the identity function for the activation function in the output neuron. This data set will be

referred to in this research as the JYUSTTR data set.

76

DAX

The DAX data are weekly absolute returns on the DAX stock index of the

Frankfurt stock exchange as used in Franses and Dijk . The weekly absolute returns are

as given in equation (4.11) except that the absolute value is taken. This task is given to

be harder than predicting just return levels. Franses and Dijk show evidence of

nonlinearity between this series and its lags. The time periods for the data are the same

as that for the JYUS and JYUSTTR data sets. Based on results presented in Franses and

Dijk, four lags of the absolute returns on the DAX stock index are used as inputs. The

neural network is chosen to have a single hidden layer with 4 hidden neurons and logistic

activation functions. The output neuron has the identity function for its activation

function.

Solar-Flare (Flare)

The solar-flare data were obtained from the Probenl 1 benchmark data set

(Prechelt). The objective is to predict the number of small, medium, and large size flares

that will happen during the next 24-hour period in a fixed active region of the sun's

surface. There are 3 dependent variables in the data set, one each to predict the number

of small, medium, and large solar flares. There are 22 inputs describing the type and

history of the active region and the previous flare activity. 2

Following the Probenl guidelines, the first 533 observations from the data file

flarel.dt are used for training. Based upon the training and prediction results on this data

· set from Prechelt, a network with 8 neurons in a single hidden layer with logistic transfer

1 The Probenl benchmark data set is accessible via anonymous FTP on ftp.ira.uka.de as
/pub/neuron/proben 1. tar.gz.
2 Prechelt reports 24 inputs, however, processing of this data by Prechelt leaves 2 inputs with constant
values of zero in the file flarel.dt. Therefore, these 2 inputs are dropped for this research.

77

functions is chosen and the identity function for the activation functions in the output

layer. The scaling of the data is left as it is in the original file :flarel.dt. The input

variables are scaled from O to 1. The three output variables have minimum values of 0

and maximum values of .75, .375, and 1.00 respectively.

4.4 Optimization Algorithms

The purpose of this section is to present the specific optimization algorithms used

in this research. For a more general and theoretical discussion of these algorithms, the

reader is referred to chapter 3. It is assumed in this section that the reader is familiar with

the general concepts and terminology of the algorithms presented in this chapter.

Therefore, only a very brief introduction is given to each of the algorithms presented.

Some of the terminology in this section for the evolutionary algorithms may differ from

that used in some of the literature. In particular, various presentations of evolutionary

algorithms exist in the literature. Also, the conventional terminology associated with

each of the algorithms will be used in this research to refer to the parameter array being

optimized. For example, the model parameters B may be referred to as trial or candidate

solutions in the simulated annealing literature, an individual in the evolutionary strategy

literature, and a chromosome in the genetic algorithm literature.

The stochastic global optimization algorithms used in this research are hybrid

algorithms combining a local optimization with the stochastic global algorithm by using

the parameters obtained from the global algorithm as starting values for the local routine.

Stochastic global optimization algorithms are theoretically good at widely exploring the

potential solution space. However, they are poor at honing in on a particular solution

once a promising area of the solution space is found. On the other hand, a local routine

78

will quickly converge to a local minimum. Combining the two types of algorithms

exploits the advantages of both local and global types of optimization algorithms. This

hybrid approach has been used for training neural networks (Yan, Zhu, and Hu; Skinner

and Broughton; Knowles, Corne, and Bishop; Heistermann). For a particular data set and

neural network model, the local optimization routine used in the hybrid global algorithm

depends upon the size of the neural network model. For the largest neural network

models, a conjugate gradient routine is used and a quasi-Newton algorithm for the

smaller neural network models.

Since global algorithms are not very good at fine tuning a local minimum,

convergence criterions that are used for local routines, such as the magnitude of the

gradient, are not appropriate. Therefore, for simplicity, all of the stochastic global

routines are run for 100,000 function evaluations. The local routine then takes over and is

run to convergence. Unless otherwise stated, for the local algorithm or any of the global

algorithms, the starting values of the neural network weight vectors B, as given in

equation (4.4), are randomly initialized uniformly between ± .3 . The details of the local

and global optimization algorithms are presented in the following sections.

4.4.1 Local Optimization

Several local optimization routines, namely a quasi-Newton and conjugate

gradient algorithm, are used in this study. The quasi-Newton algorithm uses information

from the first derivatives as well as a BFGS approximation of the hessian. The algorithm

is very efficient at converging to a local-minimum in a minimum number of iterations.

However, the quasi-Newton algorithm can be computationally demanding for larger

problems because it requires calculating and storing the approximation to the hessian.

79

The conjugate-gradient algorithm only requires calculating and storing the first

derivatives and therefore is commonly used for problems with a large number of

variables. In this study, the quasi-Newton algorithm is used for the smaller network

models and the conjugate-gradient method for the largest network models. The quasi

Newton algorithm used is the DUMING subroutine from the IMSL subroutine libraries

(Visual Numerics) and the conjugate-gradient algorithm is the DUMCGG routine, also

from the IMSL libraries. The DUMCGG routine is based on the conjugate gradient

method in Powell. For the DUMING and DUMCGG routines, all user definable

parameters, other than those associated with the stopping criterions, are set to their

default. The starting values of the weight vectors B, as given in equation (4.4), are

randomly initialized uniformly between ± .3 . The stopping criterions and associated user

parameters are discussed below.

The local algorithms are run until a convergence test is met. For both the

conjugate-gradient and quasi-Newton algorithms, the convergence test is based on two

termination criteria. The algorithm continues until one of the termination criteria is met.

One of the termination criteria is based on the computational effort expended. The quasi

Newton algorithm has 3 computational criteria on which to stop the algorithm: the

maximum number of iterations, function evaluations, or gradient evaluations. The

computational stopping criterion for the conjugate gradient algorithm is based on the

maximum number of function evaluations. For the quasi-Newton algorithm, the

maximum number of iterations is set to 20,000 and the maximum number of function and

gradient calculations is set to 30,000. For the conjugate-gradient routine, the maximum

number of function evaluations is set to 60,000.

80

The other stopping criterion for both algorithms is based on the magnitude of the

gradient. A small magnitude of the gradient would indicate that the algorithm has

converged very near the minimum. Therefore, the goal is to obtain convergence based

upon the criterion of a small gradient. The criterion based on computational effort is only

a fall back if the algorithm is stuck. For the conjugate gradient routine DUMCGG, the

algorithm will stop when the square of the Euclidian norm or two-norm of the gradient is

less than a given gradient tolerance. The two-norm is defined as the square root of the

sum of squares of the components of the gradient. A more appropriate norm for large-

scale problems would be the infinity norm which is defined as the maximum of the

absolute values of all elements in the vector. The large number of terms contributing to

the calculation of a two-norm of the gradient will make conventionally accepted values

for the gradient tolerance too stringent (Gill and Murray, pg. 307). Therefore, for a given

optimization problem in this research, some amount of experimentation may be needed to

discover an appropriate value for the gradient tolerance.

The stopping criterion for the quasi-Newton algorithm criterion occurs when the

infinity norm of the scaled gradient is less than a gradient tolerance. The i-th component

of the scaled gradient at the point x is given as

(4.14)
lgil *max(lxjl,1/s;)

maxrjf(x)l,fs) '

where g is the gradient, s is a scaling matrix for the variables, and fs is a scaling factor

for the function being optimized. In this research f. and the elements of s are set to 1.

The gradient tolerance is set to Vi (approximately 6.055E-6), where & is the double

precision machine tolerance. The quasi-Newton algorithm also has a second stopping

81

criterion not based on computation effort. This stopping criterion occurs when the scaled

distance between the last two steps is less than a step tolerance. The i-th component of

the scaled step tolerance between the last two consecutive steps xj and xj-i is given by

(4.15)
lxf -x(1I

max(lxfl,l/s;) ·

The elements of s are set to 1 in this study. The step tolerance is set to & 213

(approximately 3.666E-11), where & is the double precisionmachine tolerance.

4.4.2 Genetic Algorithm

The genetic algorithm used in this study uses a real-valued representation of the

model parameters, as opposed to a binary representation. See section 3.2 for a discussion

of real versus binary valued chromosomes. The genetic algorithm in this research is

patterned after the genetic algorithm used in Rooij, Jain, and Johnson to train neural

networks. The defining feature of this genetic algorithm is the use of a neural network

specific crossover operator. The neural network specific operator addresses what Rooij,

Jain, and Johnson refer to as neuron disruption. This neuron disruption is caused by the

functional characteristics of neural networks and interferes with a normal crossover

operators ability to form superior solutions in neural network training. The genetic

algorithm used in this research will be referred to as the neural network genetic algorithm

(NNGA). In addition to a neural network specific crossover operator, the NNGA uses a

uniform crossover scheme. A uniform crossover operator further minimizes potential

disruptive behavior caused by phenomena that Rooij, Jain, and Johnson refer to as

representational bias of disruption and (reverse) hitch-hiking. See section 3.2 for an

82

illustration of a uniform crossover scheme with the neural network specific crossover

operator.

Assuming the notation for the neural network form given in (4.4) and the cost

function in (4.6), the NNGA algorithm proceeds as follows:

Step 0: Set the generation counter r = 0, pick the values for various parameters
of the algorithm and generate a random population P of chromosomes
()(0) o,n "-1

i E~, l- , ... ,p.

Step 1: Calculate the fitness gi of each chromosome in P using the fitness

function G:-Q(e?>)=>[l,b], i=l, ... ,p wherebisthebias. Save the

fittest chromosome for possible insertion back into the next generation.

Step 2: Evaluate the stopping criterion. If r ~ R ,where R is the maximum
number of generations allowed, halt the algorithm and return the fittest
chromosome found across all generations, else continue to step 3.

Step 3: (a) Using the fitness values, calculate the selection probability spi of

each chromosome according to:

spi = g/1 f gj, i = 1, . .. ,n.
j=l

(b) Form an intermediate population P' of chromosomes from the
current population using a roulette wheel selection scheme by
randomly selecting, based on the selection probabilities,
chromosomes from the current population with replacement.

Step 4: Randomly select, without replacement, two chromosomes from P' and
apply the following operators to the pair of chromosomes:
(a) Generate a random number i e [0,1]. If cP > i, where cp is the

crossover probability, apply the neural network specific uniform
crossover operator to the pair of chromosomes.

(b) For each gene in each chromosome, if mP > i, where mp is the

mutation probability and i e [0,1] is a random number, apply the

mutation operator by adding a random number from a N(O,s) to the
gene.

Step 5: (a) If the fittest chromosome of the population, as calculated in step 1,
has not survived without being altered by the genetic operators, re
insert the chromosome into the population replacing a randomly
selected chromosome.

83

(b) Set P = P' and return to step 1.

In Step 0, the chromosomes or weight vectors are randomly initialized uniformly between

± .3 . In Step 1, according to an elitism scheme, the fittest chromosome in each

generation is saved for possible insertion back into the population. If the fittest

chromosome does not survive selection in Step 3, or is altered in Step 4 by the crossover

or mutation operators, it is reinserted back into the population for the new generation in

Step 5. If reinserted, the chromosome replaces a randomly chosen chromosome. The

fitness function G used in Step 1 transforms the cost function values to produce a high

fitness value from a low cost function value. The fitness function also normalizes the

transformed cost function values over the range [O,b] so that the ratio of the best to worst

fitness values is fixed. As the algorithm progresses and the ratio of the worst to best cost

function values decreases, the fixed ratio of fitness values improves convergence. In Step

4, the crossover operator is applied to the pair of randomly selected chromosomes,

however the mutation operator is applied to each gene of each chromosome (each weight

in each weight array) individually. The size of the populationp, the bias b, the standard

deviation of mutation s, and re and rm , the probability of crossover and mutation

respectively are the user definable algorithm parameters that must be set. The setting of

these parameters will be discussed in section 4.5.1.

4.4.3 Evolutionary Strategies

Five different Evolutionary Strategies taken from Schwefel (1995) are used in this

research. One of the algorithms is the two-membered evolutionary strategy Schwefel

(1995) refers to as EVOL. The other four algorithms are variations of a multi-membered

evolutionary strategy that Schwefel (1995) calls the KORR algorithm. The source code

84

included with the book from Schwefel (1995) is utilized to implement the evolutionary

strategy. Some modifications are made to the code as explained below in the sections

detailing the specific implementations of the algorithms.

The EVOL algorithm is a very simple evolutionary strategy algorithm referred to

as a (1 + 1)-ES algorithm in the literature. This notational representation of the

algorithm characterizes the operation of the algorithm. In each iteration or generation of

the algorithm, a single individual produces one offspring by mutation of itself. The

selection mechanism then picks the superior of the parent or offspring to survive to the

next generation. In spite of its simplicity, Schwefel (1995, pg 151) claims the

(1 + 1)- ES type of evolutionary strategy has been more widely used than any other

evolutionary strategy algorithm in practice.

Assuming the notation for the neural network form given in (4.4) and the cost

function in (4.6), the EVOL algorithm proceeds as follows:

Step 0: Set the generation counter r = 0 and auxiliary counter r' = 0 . Pick the
values for various parameters of the algorithm and randomly initialize the
parent (}(O) E 9r .

Step 1: (a) Mutate the parent to form an offspring according to 'if <r> = o<r> + v
where v is a random vector drawn from a Gaussian distribution with

mean O and standard deviation s<r>,

(b) If Q('jj (r)) < Q((}(r)) let (}(r+I) = 'jj (r), else (}(r+l) = (}(r) ,

Step 2: (a) Set r=r+l and r'=r'+l,
(b) If r' = 10 · n then:

(i) adjust the standard deviation of mutation according to:

{
/r) ·Cu, if <p(p) < 1/5,

/r+l) = s<r> ·l/cu, if <p(p) > 1/5,

s<r>, if <p(p) = 1/ 5,

where cu is a predefined constant and rp(p) is the success ratio

of the mutation operator during the last p generations,

85

(ii) set r' = 0 .

Step 3: If r = R, where R is the maximum number of generations allowed, halt
the algorithm, otherwise return to step 1.

In Step 0, the parent or neural network weight vector is randomly initialized uniformly

between ± .3 . The setting of the values for cu ands are discussed in section 4.5 .1.

The KORR algorithm is a more modem and sophisticated algorithm as compared

to the very simple EVOL evolutionary strategy above. The KORR algorithm has a much

more sophisticated mechanism for adjusting the mutation variances than does the EVOL

algorithm. One of the defining characteristics of a modem evolutionary strategies

algorithm is its ability to evolve or self-adapt the variances and sometimes covariances of

the Gaussian mutations. Each model parameter has a standard deviation of mutation

associated with it that evolves or varies through out the operation of the algorithm. In

addition, as opposed to a single parent producing one offspring in every generation, the

KORR algorithm is multi-membered. Similar to a genetic algorithm, the KORR

algorithm works from a population of individuals or candidate solutions in parallel.

Another similarity to genetic algorithms is that modem evolutionary strategies introduce

recombination as an operator. However, as opposed to a genetic algorithm, mutation

remains the primary operator with recombination a background operator. The KORR

algorithm includes many options for various types of recombination. The four variations

of The KORR algorithms used in this research differ in the type of recombination that is

used.

The KORR algorithms used in this research are referred to in the literature as

(µ,A)- ES types of evolutionary strategies. The (µ,A) - ES algorithm works from a

population with µ individuals. Each individual is composed of the model parameters

86

plus the standard deviations of the mutations associated with that individual. The

population P for iteration or generation r can be written as p<r> = (a?>, ... , at>) with the

. d' 'd 1 . P . b (r) - ((}(r) e<r) (r) (r)) . -1 h (} h Ill lVl Ua S Ill given y aj - tj , ... nj ,S1j , ... ,Snj , J - , ... ,µ, W ere ij are t e

model parameters and s ii are the standard deviations of mutation associated with (} ii .

The u individuals in the population are referred to as parents. In each generation, the

parents produce A offspring, where A > µ > 1, using mutation and possibly

recombination. A selection operator then selects the best µ individuals from the

offspring to form a population for the generation. Assuming the notation for the neural

network form given in (4.4) and the cost function in (4.6), the four variations of the

KORR algorithm, KORRl, KORR2, KORR3, and KORR4 proceed as follows:

Step 0: Set the generation counter r = 0, pick the values for various parameters
of the algorithm, and initialize the population P by setting the starting
values for the model parameters et E mn, i = 1, . .. ,n, j = 1, .. . ,µ, and

the standard deviation of the mutations st0>, i = 1, ... ,n, j = 1, ... ,µ.

Step 1: Create a population of offspring P, of size A > µ , by repeatedly
selecting two parents at random from P and applying the following
operators to the parents:
(a) Recombination operator:

(i) for KORRl: no recombination is used
(ii) for KORR2: intermediary recombination of pairs of parents for

the model parameters,
(iii) for KORR3: intermediary recombination of pairs of parents for

the standard deviation of the gaussian mutations,
(iv) for KORR4: intermediary recombination of pairs of parents for

both the model parameters and standard deviation of the gaussian
mutations.

(b) Apply the mutation operator in turn to the standard deviation of
mutations and the model parameters :
(i) st> =sr>,exp(-r'·N(0,1)+-r·Nu<0,1)), iE{l, ... ,A}, je{l, ... ,n},

(..) e-<r> e<r> -<r> N(O 1) . 1 1 . 1 11 ii = ii + sii · , , z = , ... , /1,, J = , ... , n •

87

Step 2: Evaluate the cost functions Q(e?>), i = 1, .. . ,A, where e?> E P.

Step 3: Apply the selection operator which selects the best µ individuals from

the population of offspring P to form the next generation P .

Step 4: Set r = r + 1. If r = R , where R is the maximum number of generations
allowed, exit the algorithm and return the best solution found, otherwise,
return to Step 1.

Note that as opposed to the NNGA presented in the previous section, the KORR

algorithm is not an elitist strategy. In each generation, the offspring replace all the

parents. In Step 0, the parents or neural network weight vectors are randomly initialized

uniformly between ± .3 . In Step 1 part (b), the subscripts on N if (0,1) indicate that a new

random number is drawn for the mutation of each individual standard deviation of

mutation. The setting of the values for the number of parents µ , number of offspring A ,

the adjustment factors for the standard deviation of mutation r and r' , and the beginning

standard deviations of mutation st are discussed in section 4.5.1.

4.4.4 Simulated Annealing

Two simulated annealing algorithms are used in this research, a classic simulated

annealing (CSA) routine that uses Gaussian mutations and a fast simulated annealing

(FSA) routine that uses Cauchy mutations and a faster cooling scheme than CSA. In this

research, the CSA routine is referred to as SAl and the FSA routine SA2. Assuming the

notation for the neural network form given in (4.4) and the cost function in (4.6), the

algorithms proceed as follows:

Step 0: Pick the maximum number of iterations R, the number of iterations per
temperature reduction R', initial acceptance criterion temperature
T}0> > 0 , initial parameter temperatures T;0> > 0 , final parameter

temperature r?> > 0 , the final temperature ratio parameter

88

a= 7'.a<R) /7:,<R> , estimate an appropriate scale factor c, initialize the

starting point 0<0> e 91n , calculate the corresponding cost function value

Q(0<0>), set Qmin = Q(o<0>), and set the iteration counter r = 0 and

auxiliary counter r' = 0.

Step 1: Randomly pick a trial point 'iJ<r> = o<r> + 110 in the parameter space where
the step 110 is drawn from the following distributions:

(a) for SAl (CSA): a normalized multivariate normal p.d.f., with the

parameter temperature r/> playing the part of the standard deviation:

(110) - 1 ex [-(/10)'(/10)]
p - (21rY12 (T/>y p 2(T~r>)2 '

(b) for SA2 (FSA): a normalized (median of zero) multivariate cauchy
distribution, with scale parameter given by the parameter temperature

r/>, given by (Johnson and Kotz, 1972; Styblinski and Tang):

r<r)
(110) = (r/1r)(n+l)/2 p

p ((T/>)2 + (!10)'(110in+1)/2 .

Step 2: Calculate the cost function value Q(ii<r)), !1Q = Q(if<r>)-Q(O(r)), and

set Qmin = Q(if<r>) if Q(ii<r>) < Qmin. Accept the trial point according to:

(a) For SAl (CSA): if Q(if <r>) < Q(O<r>), set o<r+t) = iJ<r>, otherwise

calculate an acceptance probability pa according to

Pa =MIN(l,exp(-11Q/cT<r>)).

If b <Pa, where be [0,1] is a random number, then accept the

inferior point 'jj(r), Otherwise let o(r+I) = o<r),
(b) For SA2 (FSA): calculate an acceptance probability according to

1

Pa= (/1Q) ·
l+exp cr<r)

If b <Pa, where be [0,1] is a random number, then accept the point

'jj(r), Otherwise let o(r+I) = o<r) ,

Step 3: Set r = r + 1 and r' = r' + 1.
(a) If r = R, exit the algorithm and returnQmin.

(b) Else if r' = R', reduce the acceptance criterion temperature Ta
according to:

i:<r+l) = r/+l) • exp(log(a) / R')(r+l),

where r;7+1> is calculated according to:

89

(i) for SAl (CSA): r;7+!) = T;r) 'h where h = (rt') I r/>)1/(R'-I) ,

r<o> r<o> - r<R'>
(ii) for SA2 (FSA): r<r+I) = p where h = P. p •

p l+h·(k+l) rt>·(R'-l)

Step 4: Return to step 1.

In Step 0, the network weight vector is randomly initialized uniformly between ± .3 . The

two separate temperatures I;, and Ta allow for more control of the algorithm. Setting the

parameter a controls the ratio of the two temperatures at the end of R iterations. Another

parameter that has control over the probability of accepting an inferior trial point is the

scale factor c. The scale factor c is a critical parameter and its appropriate magnitude

depends upon the characteristics of the particular function being optimized. Because of

the factor ~Q , the acceptance criterions in step 2 above are sensitive to the amount of

variation in the cost function. As was done in Masters (1995), an appropriate scale factor

c is estimated in step O by sampling the parameter space numerous times and calculating

the standard deviation of the associated cost function values. The scale factor is then

calculated as c = a c / rc<0> where a c is the standard deviation of the cost functions. The

multivariate normal distribution in step 1 assumes zero covariances. The Cauchy

distribution is calculated as in Styblinski and Tang. The setting of the values for a along

with T;0> and T}0> are discussed in section 4.4.1.

4.4.5 Solis and Wets

The random optimization method of Solis and Wets is a simple algorithm that was

used by Baba et. al. and Baba to train a neural network. Assuming the notation for the

neural network form given in (4.4) and the cost function in (4.6), the algorithm proceeds

as follows:

90

Step 0: Select a starting point e<0> E m_n, a standard deviations, the maximum
number of iterations R, and set r=O and b = 0 .

Step 1: Generate a trial point 'if <r) = e<r) + v where v is drawn from a Guassian
distribution with a mean of b and a standard deviation of s.

Step 2: (a) If Q('iJ(r)) < Q(B(r)), let e<r+I) = 'iJ<r) and b(r+I) = 0.4v(r) + 0.2b(r),

(b) else if Q('if<r)) ~ Q(e<r)), take a step in the opposite direction from the

original point: jj(r) = e<r) -V. If Q(iJ(r)) < Q(B(r)) let e<r+I) = jj(r) and

b(r+I) = b(r) - 0.4V(r), Otherwise let e<r+I) = e(r) and b(r+l) = 0.5b(r).

Step 3: If r=R, exit the algorithm, otherwise set r = r + 1 and go to step 1.

In Step 0, the network weight vector is randomly initialized uniformly between ± .3 .

Note that the mean for the Gaussian perturbations, represented by b, varies for each

element in the weight vector e for each iteration of the algorithm. However, the

standard deviation of the Gaussian perturbations, represented bys, is the same for all

elements. Given a starting vector e<0>, there are two user definable parameters that must

be set for this algorithm, namely the standard deviation deviation s and the maximum

number of iterations R. The setting of these parameters will be discussed in section 4.5.1.

4.5 Simulation Details

4.5.1 Picking the Global Optimization Parameters

There are many parameters for the stochastic global optimization algorithms that

must be chosen wisely for these algorithms to perform well. For example, the standard

deviation of mutation or the temperature in the simulated annealing algorithm. Often,

these parameters are chosen on an ad hoc basis. For some of the parameters, guidance

exists as to reasonable values. In those cases, the recommended values will be used in

this research. For other parameters, a more systematic methodology is employed to

91

determine the appropriate values. Obtaining the results to be presented in chapter 5 for

the stochastic global algorithms can be viewed as a two-stage procedure. In the first

stage, a small number of preliminary restarts is run on each data set with each of the

global algorithms to determine an appropriate set of algorithm parameters for that

particular data set and algorithm. In the second stage, the set of algorithm parameters

chosen in stage 1 is used to run a large number of restarts and the results from these

simulations are presented in chapter 5.

In Stage 1, the procedure for choosing the parameters of the stochastic global

algorithms for a particular data set is based on investigating the performance of a variety

of combinations of algorithm parameters on that data set with a small number of restarts.

Each specific combination of algorithm parameter values is referred to as a specific

configuration of the algorithm. The performance of each of these configurations is based

on the mean of the final cost function values calculated across the limited number of

preliminary restarts. The number of preliminary restarts is 5 for the larger, and hence

more computationally demanding, problems Flare and Mackey-Glass, and 10 for the

smaller problems Bilinear, DAX, JYUS, and JYUSTTR. The specific configuration with

the aforementioned lowest mean cost function value is the set of parameters on which

either 250 or 500 restarts, depending upon the size of the problem, are run. The number

ofrestarts in stage two is 250 for the larger problems Flare and Mackey-Glass and 500

for the remaining smaller problems. The results from these restarts are those that are

reported in Chapter 5.

Tables 4.2 and 4.3 present some of the details of the above-described procedure

for each of the algorithms and training data sets. Table 4.2 lists the range of values

92

Table 4.2 Range of Values Investigated for Parameters of the Global Algorithms.

Algorithm Parameter Range of Values
NNGA b (bias) 2, 5, 10, 20

re (probability of crossover) 0.80, 0.20
rm (probability of mutation) 0.20, 0.60, 0.80

____________________ s_ (standard deviation _of mutation) ____ 0.03,_ 0.06,_ 0.12,_ 0.25,_ 0.50,_ 1.00 ______ _
EVOL s (standard deviation of mutation) 0.03, 0.06, 0.12, 0.25, 0.50, 1.00

___________ _________ as _ (adjustment factor for_s) _____________ 0.85,_ 0.99 __________________________________ _
KORRl-4 r' (adjustment factor for s) 1/ En, 1/ (2En) , 1/ (4En)

r (adjustment factor for s)
1/ ~2-Jn, 1/ (2~2-Jn), 1/ (4~2-Jn)

____________________ s_ (standard deviation_of mutation) ____ 0.03,_ 0.06,_ 0.12,_ 0.25,_ 0.50,_ 1.00 ______ _
SW s (standard deviation of mutation) 0.03, 0.06, 0.12, 0.25, 0.50, 1.00
Note: For a detailed explanation of the algorithms and their parameters, see section 4.4.2 for the NNGA
algorithm, section 4.4.3 for the EVOL and KORR algorithms, section 4.4.5 for the SW algorithm.

investigated for certain parameters of the various global algorithms. The standard

deviation of mutations, is a parameter common to all the algorithms in table 4.2. The

value for sis an important parameter. A value too large can result in saturation of the

hidden neurons. Saturation occurs when large weight values cause most or all of the

hidden neurons to attain values at or near their threshold values, for example, 0 or 1 for

the sigmoid activation function given in (4.2). It can be hard for neurons to come off

their saturated levels because a large change in relevant weights may be necessary. A

small change in a weight or weights may not be enough to bring the activation levels

down enough to come off saturation. On the other hand, a standard deviation of mutation

value that is too small may result in a longer time than necessary for the ES to obtain

satisfactory results. More importantly, the algorithm may never obtain satisfactory

results because it fails to explore a wide enough area of the model parameter space.

It should be noted that a key feature of the evolutionary strategies type of

algorithm is the ability to adjust the standard deviation of mutation as the algorithm

progresses. Nonetheless, different values for the beginning standard deviation of

93

mutation for the evolutionary strategies EVOL and KORRl through KORR4 are

investigated in this research. The reasons given above for trying various values for the

beginning standard deviation of mutation may still apply, albeit to a lesser extent than for

the other algorithms that do not adapt the standard deviation as the algorithm progresses.

Table 4.3 shows the number of preliminary configurations and restarts as well as

the final number of restarts for each of the algorithms and data sets. For example, for the

NNGA algorithm, 72 configurations representing various combinations of algorithm

parameters are investigated for each of the data sets. Depending upon the size of the

neural network model, either 5 or 10 random restarts or runs are estimated for each of

these configurations. Based upon the mean cost function values computed across the

preliminary restarts, the top performing preliminary configuration of algorithm

parameters is chosen to run a full scale number of restarts, either 250 or 500, depending

upon the size of the neural network models. As can be seen in table 4.3, there are no

preliminary configurations for the local optimization routine, LO, and therefore,

depending upon the size of the problem, only 250 or 500 final restarts are run for a single

configuration. The procedure for choosing the parameters of the two simulated annealing

algorithms, SAl and SA2, does not follow exactly with that of the other global

algorithms. The procedure for picking these values is discussed in the appropriately

labeled sections to follow.

It should be noted that the sort of procedure described above for choosing the

parameters of the algorithms gives an unfair advantage to the global algorithms. It could

be argued that in practice, this sort of computationally demanding procedure is infeasible.

However, in this research, if the local optimization routine outperforms the global

94

Table 4.3 Number of Preliminary Configurations and Restarts and Final Restarts
for Each of the Algorithms and Data Sets.

Number of Number of
Preliminary

Configurations
Preliminary Final

Algorithm Data Set Restarts Restarts
LO Bilinear 500

Dax 500
JYlJS 500
JYlJSTTR 500
M-G 250
Flare 250

NNGA 72 Bilinear 10 · 500
Dax 10 500
JYlJS 10 500
JYlJSTTR 10 500
M-G 5 250
Flare 5 250

EVOL 14 Bilinear 10 500

Dax 10 500
JYlJS 10 500
JYlJSTTR 10 500
M-G 5 250
Flare 5 250

--··--------------
KORRl 18 . Bilinear 10 500

Dax 10 500
JYlJS 10 500
JYlJSTTR 10 500
M-G 5 250
Flare 5 250

KORR2 18 Bilinear 10 500

Dax 10 500
JYlJS 10 500
JYlJSTTR 10 500
M-G 5 250
Flare 5 250

KORR3 18 Bilinear 10 500

Dax 10 500
JYlJS 10 500
JYlJSTTR 10 500
M-G 5 250
Flare 5 250

(continued)

95

Table 4.3 (continued) Number of Preliminary Configurations and Restarts and
Final Restarts for Each of the Algorithms and Data Sets.

Algorithm
KORR4

Preliminary
Configurations
18

Number of Number of
Preliminary Final

Data Set Restarts Restarts
Bilinear 10 500
Dax 10 500
JY1JS 10 500
JY1JSTTR 10 500
M-G 5 250
Flare 5 250

SAl Bilinear 5 500

Dax 5 500
JY1JS 5 500
JY1JSTTR 5 500
M-G 5 250
Flare 5 250

SA2 Bilinear 5 500
Dax 5 500
JY1JS 5 500
JY1JSTTR 5 500
M-G 5 250
Flare 5 250 ---

SW 6 Bilinear 10 500
Dax 10 500
JY1JS 10 500
JY1JSTTR 10 500
M-G 5 250
Flare 5 250

routines, the difficulty of choosing the global optimization algorithm parameters would

add weight to the favorable results obtained by the local algorithm. The following

sections outline, for each of the algorithms, either the values for specific algorithm

parameters, or the details of the procedures to obtain them.

NNGA

The parameters for the neural network genetic algorithm (NNGA) that remain to

be determined are the values for p, the size of the population, b, the bias, s, the standard

96

deviation of mutation, and re and rm, the probability of crossover and mutation. The size

of the population, p, is fixed at 50 as it was in the study by Rooij, Jain and Johnson. This

population size is a trade-off between a smaller population size which would have a faster

convergence and a larger population which would provide a higher probability of

obtaining a good solution at the expense of higher computational costs. A range of

values for the bias parameter bare investigated. Rooij, Jain, and Johnson used a value of

10 in their study. This value is investigated along with values of 2, 5, and 20.

Rooij, Jain, and Johnson reported good results with mutation from .4 to .8 and

settled on a rate of .6. As discussed in chapter 3, these rates of mutation are high in

comparison to the values normally used for binary genetic algorithms. Rooij, Jain, and

Johnson indicate that settings of this magnitude produced the best results in their

simulations. Mutation on binary chromosomes produces a high degree of disruption

since the gene in question is switched to its opposite state. Mutation on real-valued

chromosomes through the addition of a probabilistic value is less disruptive and therefore

a higher mutation rate is feasible. Rooij, Jain, and Johnson reported that there was little

difference in performance between values of .6, .8, and 1.0 for the probability of

crossover for the neural network specific uniform crossover operator. Three values are

investigated in this research .8, .6, and a relatively low value of .2. A low value for the

probability of crossover of .2, in conjunction with a high probability of mutation, causes

the NNGA to approach the operation of a multi-membered evolutionary strategy. Table

4.2 lists the range of values investigated for the parameters of the NNGA algorithm

97

EVOL

Table 4.2 lists the range of values investigated for two parameters of the EVOL

algorithm, s, the standard deviation of mutation, and cu, an adjustment factor for the

standard deviation of mutation. Two values for cu are considered, .85 and .99. Schwefel

(1995, pg 368) recommends a value of .85 for cu and Keane states that for highly multi

modal functions, a value of .99 or even higher, improves performance of the EVOL

algorithm. Section 4.3.3 gives a detailed explanation of the EVOL algorithm. Two fixed

values for the EVOL algorithm are not detailed in section 4.3.3. These are listed as

arguments EA and EB to the EVOL subroutine in Schwefel (1995, pg. 368). These

values are both set to Ji, where & is the double precision machine epsilon

(approximately 2.22E-16). The values for the parameters LS, TM, EC, and ED for the

EVOL subroutine in Schwefel are not relevant because the code was modified to

suppress the intrinsic convergence tests.

KORRl, KORR2, KORR3, and KORR4

The distinguishing feature between the four KORR algorithms is the differing

application of recombination. All other parameters for the algorithms are identical. The

parameters r and r' listed in table 4.2 are used to determine the degree of adjustment of

the standard deviations of mutation in each generation. See section 4.3.3 for more details

of these parameters. Schwefel (1995) recommends values of r' = c/ .J2-:;; and

r = c/ ~ 2,J;; with a value of c = 1 likely to work well for the KORR implementations

used in this study. For each of the parameters r and r', two other values which are Yi

98

and Y4 of the recommended values are also investigated. Six different values for the

beginning standard deviation of mutations are listed in table 4.2.

The fixed parameters for the KORR algorithms are the number of parents in the

population, µ , the number of offspring produced, ;i, as used in the specification of the

algorithms in section 4.3.3. Typical values for µ and ;t would be 10 and 100

respectively (Schoenauer and Michalewicz) representing a (10,100)-ES scheme.

However, since some of the neural network models in this research contain a large

number of parameters and the calculation of the cost functions are expensive, the number

of offspring ;i, will be limited in this study. Schwefel (1995, pg. 145) recommends that

the ratio 1/ µ should not be less than 5 or 6. Values of µ = 10 and ;i, = 60 are used for

all KORR algorithms. Therefore, all KORR algorithms in this research will implement a

(10,60) - ES scheme.

SAl and SA2

To establish appropriate values for the various parameters of the simulated

annealing routines SAl and SA2, a procedure using guidelines given in Masters (1995,

pg. 89)is followed. These guidelines, quoting Masters (1995), are as follows:

• The acceptance rate should be high at first. Many experts recommend about
80 percent of trial points be accepted in the early stages. Choose the user
scale accordingly.

• After annealing has progressed for a while, the acceptance rate should have
dropped to a fairly low value. Failure to do so often indicates a proolem. The
user scale may be too high, the temperature may be dropping too quickly, or
the perturbations may be inappropriately scaled.

• When annealing has progressed to the point of diminishing returns, the
acceptance rate will usually stabilize around some moderate asymptote. If it
is still dropping, progress is being made.

99

The user scale c, as given in the explanation of the SAl and SA2 algorithms in section

4.3.4, is automatically estimated. Therefore, the relevant parameters for the simulated

annealing that can be set to affect the above mentioned factors are the beginning and final

temperatures r?> , rt> , and rt> , and the ratio of the ending acceptance criterion and

parameters temperatures given by a = ra<M> / rP<M> . These parameters are varied to get the

beginning acceptance criterion between 70 and 80 percent and the ending acceptance

criterion below 20 percent.

Solis and Wets

The SW algorithm only has one adjustable algorithm parameter, s, the standard

deviation of mutation. Table 4.2 lists the range of values investigated for these

parameters. See section 4.3.5 for a detailed explanation of the SW algorithm.

4.5.2 Algorithm Evaluation and Comparison

The purpose of the comparison of various optimization algorithms in this research

is to determine the relative speed and accuracy of alternative global optimization methods

in estimating the weights of neural networks. To accomplish this objective, the

performance of each of the algorithms is evaluated through Monte-Carlo simulations.

Each of the algorithms for each data set are retrained numerous times from different

random starting points. The final cost function values for each of these runs are saved

and various statistics are then computed from these values. The mean, median, and

standard deviation across the runs will be presented in chapter 5. In addition to the

statistics concerning the different runs, the results of the runs are also presented

graphically. The distribution of the cost function values after convergence over the

different runs will be displayed in histogram format. In addition to the histogram

100

displays, box plots will be displayed to better compare the distributions from different

algorithms.

4.5.3 Neural Network Software and Computing Environment

The neural network software was programmed in Fortran 90 using Compaq's

Visual Fortran, version 6.6A compiler for Windows. Excluding the evolutionary strategy

algorithms, as explained in section 4.3.3, all code was written by the author. The

simulations are performed on two computers, each using a single 1 Ghz Intel PIII

processors with 256 Meg of memory and running the Windows 2000 operating system.

All reasonable efforts were made to optimize the code for speed, both with

compiler optimization switches as well as efficient coding. Where applicable, use was

made of the optimized Math Kernel Libraries (MKL) from Intel. The MKL contains

vector math functions that are highly optimized for Intel processors. The MKL includes

optimized functions from the BLAS libraries, which perform vector and matrix

multiplies, and vectorized transcendental functions, which were used for the activation

functions of the neural networks.

101

5.1 Introduction

CHAPTERS

RESULTS AND DISCUSSION

This chapter presents the results of the simulations carried out to accomplish the

research objectives given in section 1.4. Section 5.2 briefly discusses the selection of the

user-definable parameters of the stochastic global optimization algorithms. These

parameters were obtained by the procedure given in section 4.4.1. The specific values for

the parameters are presented and discussed in more detail in appendix A. Section 5 .3

presents the results of the comparisons of the global optimization algorithms against the

local optimization algorithm. Finally, Section 5.4 summarizes the results and presents

the conclusions in the context of the research objectives.

5.2 Stochastic Global Optimization Algorithm Parameters

The performance of the stochastic global optimization algorithms may depend

upon wisely choosing the values for various user-definable algorithm parameters.

Section 4.4.1 presented the details of the procedure for picking a good combination of

algorithm parameters from a set of many combinations of algorithm parameters. This

section will discuss the algorithm parameters only briefly. The specific values of the

parameters and a more detailed discussion of them are given in Appendix A.For most of

the algorithm parameters, it is difficult to see any discernable pattern in the values

102

chosen. However, a few general observations can be made about some of the parameters.

With some exceptions, it appeared that a smaller value for the standard deviation of

mutation was most appropriate. Values as low as .03 were optimal for some of the

problems. The adjustment factor for the standard deviation of mutation in the EVOL

algorithm, given by a., was with one exception chosen to be .999. The rather small

adjustment of the standard deviation of mutation in each iteration is consistent with the

results of Keane who found that smaller adjustments were required in highly multi-modal

problems. For the NNGA algorithm, a rather high rate of probability of mutation was

chosen for the majority of the problems.

A set of parameters that works well for one neural network model is unlikely to

work for another. The inconsistency of performance for a given set of algorithm

parameters across different optimization problems is a drawback of the stochastic global

algorithms. The reader is also reminded that a computationally expensive procedure,

such as the one used in this study to determine reasonable value for the global

optimization algorithm parameters, would be impractical to use in most modeling

situations. This extra computational effort is essentially ignored in the remainder of the

results presented in this chapter. Therefore, the stochastic global algorithms are

theoretically given an unfair advantage over restarts of a local optimization routine.

However, if a local optimization routine outperforms the global algorithms, it only adds

weight to the results.

103

5.3 Simulation Results

The simulation results presented in this section are from algorithm runs in which

the local or hybrid global/local algorithm converged. Convergence was reached either

through a test such as the magnitude of the gradient, or by reaching the maximum number

of iterations as given in section 4.4.1 of this study. No algorithm run "bombed" or

produced floating-point exceptions that would have caused the algorithm to cease

operation.

Figures 5.1-5.6 show for each of the 6 training data sets the cost function values

in histogram form for each of the 10 optimization routines. For the Bilinear, DAX,

JYUS, and JYUSTTR data sets, the histograms contain 500 objective function values

after convergence. For the Flare and Mackey-Glass data sets, the histograms contain 250

objective function values. To make it easier to compare the various optimization

algorithms, the x-axis is scaled identically for each of the 10 histograms displayed in each

figure. The labels for each histogram correspond with the particular optimization

algorithm used. The abbreviation LO represents the particular local optimization routine

employed in this training data set: for the Flare and Mackey-Glass data sets a conjugate

gradient algorithm and for the rest of the data sets a quasi-Newton algorithm. The

remaining algorithms are global optimization algorithms with the following meaning:

NNGA - a neural network specific genetic algorithm, SW - the Solis-Wets algorithm,

EVOL- an evolutionary strategy (ES) from Schwefel (1995), KORRl through KORR4 -

4 different variations of ES algorithms from Schwefel (1995), and SAl and SA2 are two

variations of simulated annealing. See section 4.4 for details of the algorithms. The

numbers above the left two bins are the percentage of values contained in each of the two

104

3.98 4 4.02 4.04 4.06 4.08 4.1 4.12 4.14

Objective Function Value

Figure 5.1 Histograms of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on the
Bilinear Training Data. Each of the nine histograms above contain 500
objective function values after convergence from 500 different random
starting values. See table 1 for an explanation of the labels in each histogram
representing the various optimization algorithms. The numbers above the left
two bins are the percentage of values contained in each of the two bins. If a
number with an arrow appears over the far right bin, it indicates that the
histogram has been truncated to better display the results. In that case, the
number is the percentage of values contained in and to the right of the bin.

105

3 3.1 3.2 3.3 3.4 3.5

Objective Function Value

Figure 5.2 Histograms of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on the
Dax Training Data. See figure 5 .1 for a more detailed explanation of the
information in this figure.

106

LO l~j 0.4' I :n en: ~ : l
NNGA 1~j ~:~ : l
EVOL 1~j ·~~:n n1 =]: : l

KORRl 1~j .~:~~ ~ l
KORR2 l~j om~:~~ : l
KORR3 1~j 0.80 I :~~=: l
KORR4 l~j .h_:11--rl: ~ : J

SA! l~j
I 2 :~~ : J ~

SA2 1~j o.ro, :~ :;:; : l
SW 1~j ·~~:~= a::: l

8 8.1 8.2 8.3 8.4 8.5

Objective Function Value

Figure 5.3 Histograms of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on the
JYUS Training Data. See figure 5 .1 for a more detailed explanation of the
information in this figure.

107

SAl 200
100

2 0.20
O--'--~~~---

SA2 200
100

0.40
0 --'--~-~---

SW 200
100

0.20
0-'----~---

7.36 7.38

0.40~

0.60~

7.4 7.42 7.44 7.46

Objective Function Value

Figure 5.4 Histograms of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on the
JYUSTTR Training Data. See figure 5.1 for a more detailed explanation of
the information in this figure.

108

2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85

Objective Function Value

Figure 5.5 Histograms of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on the
Flare Training Data. See figure 5 .1 for a more detailed explanation of the
information in this figure.

109

LO ~j .:, - : : : : : : : : : .: t
NNGA ~j .:, : : : : : : : : : ~: t
EVOL ~j ~:, : : : : : : : : : .: t

KORRl~j .: .. _:: : : : : : : : ~:t
KORR2 ~L.:.. : : : : : : : : : ~: t
KORR3 ~j .:, : : : : : : : : : .: t
KORR4 ~j .:'"= : : : : : : : : : ~: t

SAi ~ j .:, - : : : : : : : : : ::: t
SA2 ~ j .:u : : : : : : : : : ~: t
sw~j .:._: : : : : : : : : ~: t

0.133 0.134 0.135 0.136 0.137 0.138 0.139 0.14 0.141 0.142 0.143

Objective Function Value

Figure 5.6 Histograms of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on the
Mackey-Glass Training Data. See figure 5 .1 for a more detailed

explanation of the information in this figure.

110

bins. If a number with an arrow appears over the far right bin, it indicates that the

histogram has been truncated to better display the results. In that case, the number is the

percentage of values contained in and to the right of the bin.

As can be seen from the histograms in figures 5.1-5.6, there is no single algorithm

that dominates all others across the training data sets. The box plots in figures 5.7-5.12

provide an alternative way to characterize the information contained in the histograms.

The box plots also show that no single algorithm dominates all others across the trading

data sets. The box plots indicate the median, upper, and lower quartile, upper and lower

adjacent values, and outside values. The median is displayed as a solid dot and left and

right end of the boxes indicate the upper and lower quartiles. The upper and lower

adjacent values, and outside values are based on the fences. An upper fence would be

calculated as the upper quartile plus 1.5 times the interquartile range, where the

interquartile range is the upper quartile minus the lower quartile. The lower fence would

be analogously calculated. An upper adjacent value is the maximum point within the

upper fence. The vertical lines outside the box indicate the adjacent values. Any value

that falls outside the adjacent values or vertical lines is considered an outside value and is

plotted with an open circle in figures 5.7-5.12. Therefore, the minimum and maximum

objective function values obtained by the respective algorithms are displayed as vertical

lines, or if necessary the most extreme open circle.

The histograms and boxplots do indicate that a large number of local optimums

exist for all the neural network training data sets. The histograms and boxplots display

the unique characteristics of each of the data sets. The histograms do not greatly differ

111

LO H • 1----~ 0 0

NNGA I• 1---------! 0

EVOL l• 1-----~ 00 0

KORRl l• 1--------~ 0 0 0

KORR2 I• 1--------! 0

KORR3 [£]----~ QI) 0

KORR4 [LJ------p 00

SAl l • 1---------~
SA2 l • 1---------! 0

SW l• 1--------~ 0

4 4.1 4.2 4.3 4.4 4.5
Objective Function Value

Figure 5. 7 Boxplot of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on the
Bilinear Training Data. The boxplots indicate the median, upper and lower
quartiles, upper and lower adjacent values, and outside values. In the box
plot, the solid dot indicates the median and the right and left ends of the box
are the upper and lower quartiles. The vertical lines or whiskers outside the
box mark the highest (lowest) data points within a range defined by the upper
(lower) quartile+ (-) 1.5 times the interquartile range. Any values outside of
the whiskers are considered outside values and are plotted by open circles.

112

LO

NNGA

EVOL

KORR.l

KORR2

KORR3

KORR4

SAl

SA2

SW

2.9

!---------j~---------•~1------!

!-------~ • 1------!

!----------------~! ------•~1-------l

!----1~ ____ • _______ __.!--------~
!------j • 1---------i

!------j • 1--------~
!----~ • 1---------~
!------l~-----·-'------------'1--------l

!-------l~----------•~l---------1
!------!.__ _________ • _ __.!-------~

3 3.1 3.2 3.3 3.4 3.5
Objective Function Value

3.6

Figure 5.8 Boxplot of Objectiv~ Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on the
Dax Training Data. See figure 5.7 for a more detailed explanation of the
information in this figure.

113

LO

NNGA

EVOL

KORRl

KORR2

KORR3

KORR4

SAl

SA2

SW

7.9

~----~1-------~
.__ ____ __.I--------!

~----~1--------!

.__ ____ __.I-------~
~----~1--------~
~-----~1--------------------j

.__ ____ __.I------- l

!--------~~-·---~1-------~

!--------~~-·----~1-------~ 0

!------~.__. ____ _.I--------!

8 8.1 8.2 8.3 8.4 8.5
Objective Function Value

Figure 5.9 Boxplot of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on the
JYUS Training Data. See figure 5.7 for a more detailed explanation of the
information in this figure.

114

LO

NNGA

EVOL

KORRl

KORR2

KORR3

KORR4

SAl

SA2

SW

!-----l~--•~1---------J

!----4~-~•-----!

!----4~--•~I----~

!----~ • 1----!

!----~ • 1---------!

!----1 • 1-------! 0

!-----~I --•~I----~
!------j~-~•-------J

!-----1 •1-----J

q-----~-----J

7.35 7.4 7.45

0

0

7.5 7.55
Objective Function Value

0

0

0

0

0

7.6 7.65

Figure 5.10 Boxplot of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on the
JYUSTTR Training Data. See figure 5.7 for a more detailed explanation
of the information in this figure.

115

LO

NNGA

EVOL

KORRl

KORR2

KORR3

KORR4

!firo
!-~-~

!-i-.
!~-~o

I

!i1DID

!~-p@

I I I I

0 0

SAl

SA2

!iH~mo()(]X)ocoo om oo oom o o

0

SW !f~
I I I I I

2.5 3 3.5 4 4.5 5
Objective Function Value

I I

0

moo

I

5.5 6

Figure 5.11 Boxplot of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on the
Flare Training Data. See figure 5 for a more detailed explanation of the
information in this figure.

116

LO {]j 0 iOIB

NNGA t> 0 0 <a»

EVOL -l
I

KORR.1 f> 0 0 @X)

KORR2 t> 0 om)

KORR3 fl! 0 0 <am)

KORR.4 ., 0

SAl t> 0 00>

SA2 ., 00 ®1111)

SW ~ ® 0 OD)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
Objective Function Value

Figure 5.12 Boxplot of Objective Function Values from Random Restarts of
Different Optimization Algorithms for Neural Network Training on the
Mackey-Glass Training Data. See figure 5 for a more detailed explanation
of the information in this figure.

117

from each other across algorithms within the same data set but do differ greatly across

different data sets. The histogram on the Flare data set is the only one that approaches

anything resembling a Normal distribution but it does have a left skew and outliers on the

right. Some of the distributions are very obviously bimodal. As can be seen in figure

5.6, the most bimodal of the results are on the Mackey-Glass data set. The maximum and

minimum values obtained for all but the KORR4 algorithm are slightly over 1.0 and a

little more then .13. This range of values can, however, be misleading. To get a better

idea of the difference in fit between the models associated with the maximum and

minimum objective function values, table 5.1 lists the r-squared and adjust r-squared

values for all the algorithms and data sets. For the Mackey-Glass data set the r-squared

goes down from a near perfect fit at .999 to a little less then .97. Larger drops can be

seen in some of the other data sets, especially when considering the adjusted r-squared.

For example, the DAX data shows a large drop. The neural network models on the JYUS

and JYUSTTR data sets show a relatively poor fit.

From looking at the histograms and boxplots, it can be seen that no single

algorithm consistently outperforms all others. More importantly, with respect to the

research objectives of this study as defined in section 1.4, the local optimization

algorithm is not consistently dominated by any of the global algorithms. However, the

global algorithms do provide on average marginally more probability of obtaining a

lower converged objective function value as opposed to the local optimization routines.

However, with one exception, the local routine obtained a sufficient number of

convergences at the minimum value, or very near the minimum. This statement is

examined more closely in the following paragraph.

118

TABLES.I R-Squared Across all Optimization Algorithms and Data Sets for Neural Network Models with the Minimum
and Maximum Ob,ject Function Values Across Restarts.

Bilinear DAX JYUS
Minimum Maximum Minimum Maximum Minimum Maximum
Obj Fune Obj Fune Obj Fune Obj Fune Obj Fune Obj Fune

Value Value Value Value Value Value

Algorithm R2 Adj R2 R2 AdjR2 R2 Adj R2 R2 Adj R2 R2 Adj R2 R2 Adj R2

LO .310 .269 .218 .172 .334 .278 .155 .084 .102 .066 .055 .018

NNGA .310 .269 .218 .171 .334 .278 .150 .078 .102 .066 .057 .019

EVOL .310 .269 .272 .228 .334 .278 .144 .072 .102 .066 .057 .019

KORRl .310 .269 .218 .172 .334 .278 .144 .072 .102 .066 .057 .019 - KORR2 .310 .269 .274 .231 .333 .277 .144 .072 .102 .066 .057 .019 -\0

KORR3 .310 .269 .274 .231 .335 .279 .149 .077 .102 .066 .040 .001

KORR4 .310 .269 .274 .231 .334 .278 .144 .072 .102 .066 .057 .019

SAl .310 .269 .274 .231 .335 .280 .147 .075 .102 .066 .057 .019

SA2 .310 .269 .218 .172 .335 .279 .143 .071 .102 .066 .044 .006

SW .310 .269 .274 .231 .334 .278 .144 .072 .102 .066 .057 .019

Note: The Adj R2 heading is the Adjusted R2. (continued)

TABLES.l (Continued) R-Squared Across all Optimization Algorithms and Data Sets for Neural Network Models with the
Minimum and Maximum Object Function Values Across Restarts.

JYUSTTR Mackey-Glass Flare
Minimum Maximum Minimum Maximum Minimum Maximum
Obj Fune Obj Fune Obj Fune Obj Fune Obj Fune Obj Fune

Value Value Value Value Value Value

Algorithm R2 Adj R2 R2 AdjR2 R2 Adj R2 R2 Adj R2 . R2 Adj R2 R2 Adj R2

LO .055 .012 .002 -.043 .999 .999 .968 .966 .648 .418 .605 .347

NNGA .058 .015 .029 -.015 .999 .999 .968 .965 .654 .428 .595 .331

EVOL .054 .012 .030 -.014 .999 .999 .968 .965 .653 .427 .607 .350

KORRl .058 .015 .002 -.043 .999 .999 .969 .966 .650 .422 .589 .321
.....

.055 .012 .002 -.043 .999 .999 .968 .966 .650 .422 .603 .344 N KORR2
0

KORR3 .055 .012 .002 -.043 .999 .999 .968 .965 .647 .417 .161 -.386

KORR4 .050 .007 .024 -.020 .999 .999 .997 .997 .651 .423 .612 .359

SAl .055 .012 .002 -.043 .999 .999 .969 .966 .650 .422 .143 -.416

SA2 .055 .012 .030 -.014 .999 .999 .968 .966 .654 .429 .310 -.141

SW .057 .015 .024 -.020 .999 .999 .969 .966 .650 .420 .602 .343

Note: The Adj R2 heading is the Adjusted R2.

Table 5.2 presents the probability of obtaining a solution within 5% and 20%

cutoff points or percentiles. The cutoff points for the given percentiles are calculated by

pooling all unique objective function values across all the algorithms for a given data set

and then calculating the given percentiles. In other words, for each of the Bilinear, DAX,

JYUS, and JYUSTTR data sets, a total of 5000 (500 restarts for each of the 10

algorithms) objective function values for each data set are created by pooling the final

converged objective function values from each algorithm. For the Flare and Mackey

Glass problems, a total of 2500 objective function values are pooled since on these two

data sets only 250 restarts were used for each of the algorithms.

Ideally, all the minimums could be enumerated. However, this obviously cannot

be done analytically, therefore, the pooled minimums found across all the algorithms

serve as a proxy for the set of all minimums. More precisely, if the pooled objective

function values serve as an unbiased proxy for the range and distribution of minimums

for the particular data set, then the calculated percentiles will be unbiased with respect to

the true percentiles. In table 5.2 we can see that for the Bilinear training data set, 4.4% of

the objective function values found by the local optimization routine were within the 5th

percentile of the minimums found across all algorithms and similarly 14.2% of objective

function values were within the 20th percentile. In comparison, for the Bilinear data set, 7

out of 9 of the global algorithms had higher probabilities of obtaining a minimum within

the 5th percentile of all minimums found.

Further examining table 5.2, it can be seen that, on average, as compared to the

local optimization routines, the global algorithms do show an increase in probability of

obtaining a low objective function value. However, the degree to which this is true

121

Table 5.2 Probability of Obtaining an Objective Function Value Within the Given
Percentile of All Objective Function Values Obtained Across All
Algorithms for the Specific Data Set.

Bilinear DAX JYUS

5th 20th 5th 20th 5th 20th

Algorithm percentile percentile percentile percentile percentile percentile
LO .044 .142 .050 .164 .020 .138

NNGA .092 .194 .054 .176 .080 .218

EVOL .074 .260 .022 .128 .086 .228

KORRl .104 .190 .074 .252 .096 .240

KORR2 .090 .246 .056 .226 .090 .216

KORR3 .138 .302 .052 .232 .022 .178

KORR4 .112 .306 .078 .276 .094 .262

SAl ,038 .184 .056 .190 .038 .180

SA2 .040 .152 .066 .174 .032 .134

SW .052 .234 .046 .190 .056 .212

JYUSTTR Flare Mackey-Glass

5th 20th 5th 20th 5th 20th

Algorithm :eercentile percentile percentile percentile percentile percentile
LO .020 .138 .024 .128 .028 .152

NNGA .080 .218 .052 .160 .048 .204

EVOL .086 .228 .064 .244 .004 .076

KORRl .096 .240 .028 .112 .040 .312

KORR2 .090 .216 .044 .220 .056 .232

KORR3 .022 .178 .024 .116 .024 .188

KORR4 .094 .262 .076 .316 .040 .396

SAl .038 .180 .088 .272 .028 .232

SA2 .032 .134 .056 .228 .036 .160

SW .056 .212 .044 .204 .044 .240

122

varied depending upon the data set and the percentile level. For all data sets, the local

optimization routine either beat or was very close to at least one of the global

optimization routines. The results in table 5 .2, would tend to support the statement

reported earlier: "the local routine obtained a sufficient number of convergences at the

minimum value, or very near the minimum". This is especially true in light of the

computational requirements of the global algorithms.

We may not only be interested in the distribution of objective function value. The

absolute or best minimum objective function value is also important. Tables 5.3-5.8

display the following stati'stics computed across the restarts: mean, median, standard

deviation, and maximum and minimum values obtained. For the Bilinear and Mackey

Glass data sets, all the algorithms found the same minimum. On the Dax data set, the

local optimization routine found a lower minimum than 5 of the global optimization

routines and matched the minimum found by the other global routines. For the JYUS and

JYUSTTR data sets, the local optimization routine found a minimum that was only

slightly larger then the lowest minimum found. On both data sets, the local optimization

routine found lower minimums than several of the global routines.

Although the local optimization routines were very competitive with the global

routines in finding the minimum objective function values, the local routines were

outperformed by the global routines on most data sets with respect to the mean and

median. The one exception was for the JYUSTTR data set in which the local routine

outperformed all but one of the global routines with respect to the median. From looking

at the histograms and boxplots in figures 5.1-5.12, the global routines did on average

123

Table 5.3 Statistics for Objective Function Values from Random Restarts of
Optimization Algorithms for Training a Neural Network on the Bilinear
Data Set.

Standard
Algorithm a Mean Median Deviation Maximum Minimum
LO 4.0280 4.0170 .0404 4.4703 3.9880

NNGA 4.0251 4.0032 .0472 4.4706 3.9880

EVOL 4.0213 4.0031 .0422 4.2130 3.9880

KORRl 4.0232 4.0022 .0498 4.4700 3.9880

KORR2 4.0247 4.0031 .0436 4.1663 3.9880

KORR3 4.0145 4.0019 .0341 4.1664 3.9880

KORR4 4.0222 4.0031 .0406 4.1795 3.9880

SAl 4.0295 4.0153 .0438 4.1795 3.9880

SA2 4.0316 4.0156 .0505 4.4703 3.9880

SW 4.0225 4.0031 .0429 4.1666 3.9880

Note: The numbers in the table above represent the indicated statistics computed across 500 restarts of the
algorithms from new random starting values. The statistics are computed for the objective function values
after the algorithm has indicated convergence for each of the restarts.
"The abbreviation LO represents the particular local optimization routine employed in this training data set,
for example, a quasi-Newton algorithm in this case. The rest of the algorithms are global optimization
algorithms with the following meaning: NNGA - a neural network specific genetic algorithm, SW - the
Solis-Wets algorithm, EVOL- a evolutionary strategy (ES) from Schwefel (1995), KORRl through
KORR4 - 4 different variations of ES algorithms from Schwefel (1995), and SAl and SA2 are two
variations of simulated annealing. See 4.4 for details of the algorithms.

124

Table 5.4 Statistics for Objective Function Values from Random Restarts of
Optimization Algorithms for Training a Neural Network on the DAX
Data Set.

Standard
Algorithm Mean Median Deviation Maximum Minimum
LO 3.3004 3.3955 .1798 3.5238 2.9442

NNGA 3.2780 3.3830 .1815 3.5176 2.9442

EVOL 3.3063 3.3906 .1693 3.5379 2.9442

KORRl 3.1907 3.1394 .1835 3.5377 2.9536

KORR2 3.1938 3.1161 .1869 3.5516 2.9444

KORR3 3.2096 3.1674 .1849 3.5418 2.9442

KORR4 3.1803 3.1161 .1789 3.5490 2.9467

SAl 3.2263 3.1953 .1900 3.5516 2.9442

SA2 3.2667 3.3817 .1835 3.5429 2.9444

SW 3.2510 3.3568 .1865 3.5377 2.9444

Note: See table 5.3 for an explanation of the various entries.

125

Table 5.5 Statistics for Objective Function Values from Random Restarts of
Optimization Algorithms for Training a Neural Network on the JYUS
Data Set.

Standard
Algorithm Mean Median Deviation Maximum Minimum
LO

8.1297 8.1111 .0898 8.3018 7.9325
NNGA

8.1133 8.0756 .0970 8.3016 7.9324
EVOL

8.1096 8.0735 .0962 8.3005 7.9340
KORRl

8.1122 8.0731 .0995 8.3005 7.9335
KORR2

8.1170 8.0808 .0986 8.3121 7.9335
KORR3

8.1239 8.1113 .0914 8.4878 7.9324
KORR4

8.1028 8.0708 .0967 8.3005 7.9335
SAl

8.1210 8.0808 .0952 8.3005 7.9324
SA2

8.1159 8.0756 .0911 8.4153 7.9324
SW

8.1066 8.0721 .0886 8.3005 7.9340
Note: See table 5.3 for an explanation of the various entries.

126

Table 5.6 Statistics for Objective Function Values from Random Restarts of
Optimization Algorithms for Training a Neural Network on the
JYUSTTR Data Set.

Algorithm Mean Median
Standard

Maximum Minimum
Deviation

LO
7.4113 7.4138 0.0316 7.6387 7.3479

NNGA
7.4032 7.4138 0.0220 7.4547 7.3478

EVOL
7.4034 7.4130 0.0218 7.4504 7.3478

KORRl
7.4139 7.4144 0.0435 7.6387 7.3479

KORR2
7.4121 7.4142 0.0444 7.6387 , 7.3478

KORR3
7.4020 7.3945 0.0247 7.6387 7.3485

KORR4
7.4071 7.4138 0.0209 7.4932 7.3478

SAl
7.4070 7.4142 0.0227 7.6387 7.3485

SA2
7.4088 7.4142 0.0203 7.4549 7.3478

SW
7.4090 7.4142 0.0200 7.4932 7.3488

Note: See table 5.3 for an explanation of the various entries.

127

Table 5.7 Statistics for Objective Function Values from Random Restarts of
Optimization Algorithms for Training a Neural Network on the Flare
Data Set.

Algorithm Mean Median
Standard

Maximum Minimum
Deviation

LO
2.6096 2.6063 .0452 2.8260 2.5219

NNGA
2.6169 2.6003 .0660 2.8969 2.4752

EVOL
2.5975 2.5871 .0538 2.8150 2.4832

KORRl
2.6342 2.6209 .0678 2.9390 2.5023

KORR2
2.6016 2.5887 .0563 2.8413 2.5037

KORR3
2.6590 2.6227 .2459 6.0022 2.5236

KORR4
2.5815 2.5784 .0384 2.7745 2.4984

SAl
2.7890 2.5846 .6316 6.1310 2.5040

SA2
2.6009 2.5836 .1554 4.9396 2.4744

SW
2.5957 2.5878 .0492 2.8461 2.5101

Note: See table 5.3 for an explanation of the various entries.

128

Table 5.8 Statistics for Objective Function Values from Random Restarts of
Optimization Algorithms for Training a Neural Network on the Mackey-
Glass Data Set.

Algorithm Mean Median
Standard

Maximum Minimum
Deviation

LO
.3434 .1339 .3807 1.0637 .1325

NNGA
.1776 .1335 .1870 1.0770 .1325

EVOL
.4906 .1429 .4439 1.0733 .1325

KORRl
.1568 .1333 .1304 1.0756 .1325

KORR2
.1681 .1335 .1698 1.0673 .1325

KORR3
.3382 .1348 .3760 1.0694 .1325

KORR4
.1350 .1329 .0089 .2122 .1325

SAl
.1989 .1335 .2296 1.0657 .1325

SA2
.2252 .1336 .2687 1.0657 .1325

SW
.1997 .1335 .2285 1.0659 .1325

Note: See table 5.3 for an explanation of the various entries.

129

provide marginally more probability of obtaining a lower minimum. Therefore, we

would expect slightly lower mean and median statistics for the global routines. However,

the local optimization routine outperformed the global routines 63% of the time with

respect to the standard deviation of objective function values.

Although the global routines did on average provide slightly more probability of

obtaining a lower minimum, the local routines were nonetheless competitive. The local

routines had a lower standard deviation ofresults and obtained minimum objective

function values at the minimum. The one exception was for the Flare data set. As can be

seen in figures 5.5 and 5.11, the Evolutionary Strategy routine KORR3 had a higher

minimum then the local routine but the other eight global routines found lower

minimums. However, the lowest minimum found by the local routine is only around 2%

higher then the lowest found by the simulated annealing routine SA2. It can also be seen

that out of all the algorithms, the local routine has the lowest standard deviation of

objective function values. The local optimization routine does outperform 4 of the global

routines with respect to the mean and 2 of the global routines with respect to the median

value of objective function values. Looking at table 5.2, the local routine does obtain a

reasonable number of solutions, as compared to the global routines, within the 5th and

20th percentiles.

The results discussed above are best interpreted in the light of the computing time

required for the various training algorithms. Table 5.9 shows the computing time

required for the various global optimization algorithms relative to the computing time

required for the particular local optimization used on the given training data set. The

numbers in the table show the ratio of the training time for the global optimization

130

-v.) -

Table 5.9 Ratio of Training Times for Global Optimization Algorithms in Comparison to Local Optimization Algorithms

Data Set NNGA EVOL KORRl KORR2 KORR3 KORR4 SAl SA2 SW
Bilinear 145 174 175 175 175 175 174 185 159
DAX 48 59 61 60 60 64 60 63 54
JYUS 93 111 106 106 106 106 113 119 93
JYUSTTR 58 68 66 66 67 66 68 70 56
Flare 4 4 4 4 5 4 4 4 4

__ Mackey-Glass ____ 12 _____________ 14 _____________ 14 _____________ 13 _____________ _14 _____________ 13 _____________ _15 _____________ 14 _____________ 13
Average: 60 71 71 71 71 71 72 76 63

Note: The numbers indicate the ratio of the average training time for the global optimization routine divided by the average training time for the local
optimization routine. For example, for the DAX neural network model, the NNGA took on average 48 times longer to train then the local optimization routine.
The training times are averaged across all restarts. For the global optimization algorithms, the training times are taken from the final configurations as given in
appendix A, tables A.1-A.5.

routine divided by the training time for the local optimization routine. For example, for

the DAX neural network model, the NNGA training time averaged 48 times longer than

the local optimization routine. For a particular data set and algorithm, the training times

were computed as the total computing time consumed for the full number of restarts, e.g.

500 for the Bilinear training data. For the stochastic global algorithms, the training times

are taken from the run of the algorithm with the combination of algorithm parameters

presented in one of the tables Al through A.5 in appendix A, i.e. the winning

combination of parameters. Each of the global algorithms was a hybrid algorithm

whereby the global algorithm provided starting values for the respective local algorithm

for that training set. Therefore, the training times for the global algorithms are the sum of

its local algorithm time plus the training time for the respective global algorithm.

The obvious observation from the training times presented in table 5.9 is that the

global algorithms took much more time to train then the local algorithms. However, the

relative computational requirements between the local and global algorithms were less

pronounced for the larger neural network models trained on the Flare and Mackey-Glass

training data sets. The global algorithms had the worst performance relative to local

algorithm on the Bilinear data set. The obvious cause of this is that the Bilinear data set

is easy to learn and the quasi-Newton local optimization algorithm converges very

quickly on this problem. For the larger and harder to learn problems Flare and Mackey

Glass, the global algorithms were at less of a disadvantage. The disadvantage is the

smallest on the Flare data set. The large size of the neural network model used on the

Flare data set, with 211.parameters to estimate, necessitated the use of the conjugate

132

gradient algorithm as opposed to the more efficient quasi-Newton algorithm used on the

other problems.

The training times for the EVOL, and KORR1-KORR4 algorithms are equal. In

reality, there was some difference in training times, however, training times were

rounded for simplicity and thus the reported relative training times for the evolutionary

strategy algorithms are identical. The code base for the KORR1-KORR4 algorithms is

identical with changes to the calling parameters of the underlying subroutine invoking

different functioning of the crossover operator, which differentiates the various KORR

algorithms. These differences in operation of the KORR algorithms are apparently

dominated by the computational demands of the other processes in each iteration of the

algorithm, not the least of which is the calculation of the outputs of the neural network

given the current values for the weights. The EVOL algorithm is conceptually simpler

then the KORR algorithm, however, it is probably coincidence that the training time is so

similar to the KORR algorithms. The EVOL algorithm could be inefficiently coded

relative to the KORR algorithms and as stated above, other processes may dominate the

computational demands.

Since the global algorithms take a great deal more time relative to the local

routines, a greater number of restarts could be performed by a local routine relative to a

global. An increased number ofrestarts would increase the relative performance of the

local routine. Table 5 .10 presents the probabilities from table 5 .2 normalized with

respect to computing time required. Each of the probabilities for the global algorithms

given in table 5.2 is divided by the associated relative computing time given in table 5.9.

Therefore, the probabilities are adjusted to assume that the global algorithms use the

133

Table 5.10 Adjusted Probability, Assuming Equal Training Times, of Obtaining an
Objective Function Value Within the Given Percentile of all Objective
Function Values Obtained Across all Algorithms for the Specific Data
Set.

Bilinear DAX JYUS

5th 20th 5th 20th 5th 20th

Algorithm percentile percentile percentile percentile percentile percentile
LO 0.0440 0.1420 0.0500 0.1640 0.0200 0.1380

NNGA 0.0006 0.0013 0.0011 0.0037 0.0009 0.0023

EVOL 0.0004 0.0015 0.0004 0.0022 0.0008 0.0021

KORRl 0.0006 0.0011 0.0012 0.0041 0.0009 0.0023

KORR2 0.0005 0.0014 0.0009 0.0038 0.0008 0.0020

KORR3 0.0008 0.0017 0.0009 0.0039 0.0002 0.0017

KORR4 0.0006 0.0017 0.0012 0.0043 0.0009 0.0025

SAl 0.0002 0.0011 0.0009 0.0032 0.0003 0.0016

SA2 0.0002 0.0008 0.0010 0.0028 0.0003 0.0011

SW 0.0003 0.0015 0.0009 0.0035 0.0006 0.0023

JYUSTTR Flare Mackey-Glass

5th 20th 5th 20th 5th 20th

Algorithm percentile percentile percentile percentile percentile percentile
LO 0.0200 0.1380 0.0240 0.1280 0.0280 0.1520

NNGA 0.0014 0.0038 0.0130 0.0400 0.0040 0.0170

EVOL 0.0013 0.0034 0.0160 0.0610 0.0003 0.0054

KORRl 0.0015 0.0036 0.0070 0.0280 0.0029 0.0223

KORR2 0.0014 0.0033 0.0110 0.0550 0.0043 0.0178

KORR3 0.0003 0.0027 0.0048 0.0232 0.0017 0.0134

KORR4 0.0014 0.0040 0.0190 0.0790 0.0031 0.0305

SAl 0.0006 0.0026 0.0220 0.0680 0.0019 0.0155

SA2 0.0005 0.0019 0.0140 0.0570 0.0026 0.0114

SW 0.0010 0.0038 0.0110 0.0510 0.0034 0.0185

134

same amount of computing time that the local algorithm does for that particular data set.

In effect, the global algorithms are allowed a smaller number of restarts relative to the

local algorithm. The probabilities for the local routine could have alternatively been

adjusted upward to assume the local algorithm was allowed to run as long as one of the

global algorithms, in effect, increasing the number of restarts for the local algorithm.

However, what is more important in table 5.10 are the relative probabilities as opposed to

the absolute levels.

We can see from table 5 .10 that if our goal is to obtain a solution within say the

5th percentile of solutions, the local optimization routine outperforms all the global

algorithms on every problem. The local routine also outperforms in the context of

obtaining solutions within the 20th percentile. The global algorithms performed the best

on the Flare data set, relatively speaking. The global algorithms were at the least

disadvantage on the Flare data set. However, the global algorithms were still dominated

by the local algorithm when adjusting for computing time.

One weakness of this type of analysis is that it depends on the particular

implementation of the global algorithms in this study. In particular, an improved method

for switching from the global routine to the local routine could potentially cut a great deal

of time off the computing time of the global algorithms. However, even ignoring

computing time, the local optimization routine is competitive for most of the problems in

this research. Even a simple doubling of the computing time required for the global

algorithms, relative to a local routine, would make the local routine superior to the global

routines in most of the cases presented in this research.

135.

As has been pointed out previously, the computational time required to pick a

good set of algorithm parameters in the pre-testing stage for the global algorithms was

ignored in the analysis above. If a user intends to perform a large number of restarts for

the purposes of obtaining a good set of neural networks, then for the SW algorithm, with

only 6 possible configurations, a pre-testing stage would only add 60 restarts. However,

for the NNGA algorithm, assume we perform 10 restarts for each of the 72 possible

configurations. The pre-testing stage would more then double the computational

requirements with 720 extra restarts. A different procedure for the global algorithms

would have been to drop the second stage and simply perform a number of restarts for

each of the configurations, pooling the results across all configurations. However, a

conservative test of the efficiency of the global algorithms is to compare the local

algorithm against a well configured global algorithm. That is, if the global algorithm

does not significantly outperform the local algorithm with the benefit of hindsight, then

perhaps these global algorithms are not performing according to users preconceived

expectations. The question remains ifthere is significant difference in performance

between the various configurations for the global optimization algorithm parameters?

The next section presents the results of a test to investigate if there is a significant

performance difference between the various configurations.

5.4 Pre-testing Bias

The procedure, as described in section 4.4.1, to pick the algorithm parameters for

the global algorithms could introduce pre-testing bias into the results presented in the

previous sections. For example, for the EVOL algorithm on the bilinear training data, we

136

have 14 different configurations, each representing a different combination of algorithm

parameters. In the pre-testing stage, 10 restarts are run for each of these configurations.

The configuration with the lowest mean objective function value computed across the

restarts is chosen to ·perform the full-scale simulations, i.e. 500 restarts. The simulation

results presented in this chapter are from the full-scale simulations. There is some pre-

testing bias introduced into the results if the optimal set of algorithm parameters

significantly outperforms the other combinations of algorithm parameters.

In practice, the small advantage seen by the global algorithms over the local

algorithms might not be obtainable outside of a procedure like that used in this research

to pick an "optimal" set of algorithm parameters. It should be noted that the pre-testing

procedure could have been incorporated into the estimation procedure for the global

algorithms and the reported results could have contained this information. However, this

would certainly further handicap the global algorithms in viewing the results in the

context of computational time. The procedure followed in this study to report the results

is conservative in the sense that if the results for the global algorithms do not outperform

relative to the results for the local optimization procedure, even in the context of potential

bias, then is no need for further analysis with respect to pre-testing for the global

algorithms.

For a given data set and algorithm, to test if there is a statistically significant

difference for the objective function values between each configuration, an F-test is

calculated in the context of a regression model. Consider the following regression model:

n

(5.1) Q =/Jo+ 2../JJ; +E
;~1

137

where Q is the objective function value, e.g. from (4.6) or (4.7), for a restart and I; is an

indicator variable as follows:

(5.2) {
1, if Q is from configuration i

I -
; - 0, otherwise,

where a configuration, as in preceding discussions in this study, refers to a specific set of

algorithm parameters. For example, consider the EVOL algorithm on the Bilinear

training data. Referring to table 4.3, we have 14 different configurations, each with 10

restarts. Therefore, in (5 .1) the number of classes or configurations is N = 14 and the

regression has a total of 140 observations; 14 configurations times 10 restarts for each

configuration. Note that an econometrician would refer to each "configuration" as a

"class", however, in keeping with the language in this study, we will continue to use the

term configuration. A test for a statistically significant difference between the mean

values for Q between classes or configurations is then an F-test on the regression with a

null hypothesis of:

(5.3)

Note that this test doesn't test which configurations are statistically different, or in other

words which /J; 's are different from zero, only that at least one of the configurations is

significantly different.

Table 5.11 presents the results for the above described F-tests for comparing

variability of objective function values across configurations for the global algorithms.

For most algorithms and data sets, we cannot reject the null hypothesis given in (5.3).

However, at a five or ten percent significance level, we can reject the null hypothesis of

no significant difference in objective function values across configurations for 21 out of

138

TABLE 5.11 Probabilities for F-tests From Regressions Comparing the Variability
of Objective Function Values Across Configurations.

Algorithm Bilinear DAX JYUS
NNGA .0876 .8133 .7325

EVOL .0007** .5477 .5920

KORRl .7163 .4813 .1459

KORR2 .6827 .0067** .9657

KORR3 .0136** .1015 .3550

KORR4 .4418 .0003** .3301

SAl .9862 .5594 .2011

SA2 .8663 .0064** .8498

SW .0022** .0565* .8355

Algorithm JYUSTTR Mackey-Glass Flare
NNGA .6429 .0001 .0012

EVOL .6659 .0326** .039s*"

KORRl .7999 .2858 .0001 *"*

KORR2 .5410 .5808 .0001 **

KORR3 .0462** .2807 .0001 **

KORR4 .3349 .0891 * .0001 **

SAl .1728 .8020 .0001 **

SA2 .0022** .9449 .0002**

SW .1437 .1142 .7447

Significant at the 10% significance level.
**significant at the 5% significance level.

the 54 algorithms and data sets. Out of these 21, 18 are significant at the five percent

level. For each of the Bilinear, DAX, JYUSTTR, and Mackey-Glass data sets, there are a

few algorithms for which there does appear to be some pretesting bias introduced by the

procedure to pick the algorithm parameters for the global algorithms. This could account

139

for some of the small out-performance of those algorithms relative to the local algorithm.

Of particular significance is the Flare data set where at a five percent significance level,

there is evidence of pretesting-bias on eight of the nine algorithms. This is noteworthy

because for the Flare data set, with respect to the objective function values obtained and

ignoring computational time, the global algorithms did appear to outperform the local

algorithm. The evidence of pretesting bias for the global algorithms on the flare data set

could explain their better performance relative to the local algorithms on this data set.

Furthermore, the R-squared from the aforementioned regressions were relatively high for

the flare data set. For the Flare data set, a single low value of .10 for the R-square was

observed for one of the algorithms. The other R-squares were much higher with 4 data

sets producing a regression with an R-squared above .90. The simulations on the

Mackey-Glass data set produced regressions with an average R-squared around .25. The

simulations on the other data set produced regressions with lower R-squares ranging from

.05 to .30.

5.5 Conclusions

Even ignoring the relative computational requirements of the various algorithms,

the results presented in figures 5.1-5.12 and tables 5.1-5.10 fail to provide any convincing

justification for using stochastic global optimization algorithms to train neural networks.

No single algorithm consistently outperforms all others and more importantly, the local

optimization routine is not dominated by any of the global optimization algorithms. The

global algorithms do on average provide marginally more probability of obtaining a

lower converged objective function value as opposed to the local optimization routines.

140

However, in general, the local optimization routines obtained solutions at the minimum

value, or very near the minimum.

Looking at the results in the context of the relative training times presented in

table 5.9 adds weight to the results. For all the neural network models and training data

sets, the global algorithms took considerably more time to train then the local

optimization routines. Stochastic global optimization algorithms as a class of algorithms

are computationally expensive. However, it is generally expected that as a tradeoff for

increased computational time, the global algorithm will obtain a much lower objective

function value then a local algorithm. For estimating neural network parameters, the

simulations presented in this study only show marginally more probability of obtaining a

lower minimum. With respect to the training times, certainly a more sophisticated

stopping method could be investigated for switching from the global algorithms to the

local optimization algorithm. This could considerably reduce the computational time

consumed by the global algorithms. In addition, optimization of the code for the global

algorithms could improve the computational efficiency. Nonetheless, the marginal gains,

if any, in the quality of the solution obtained by the stochastic global algorithms

investigated in this study do not justify the universal application of these algorithms for

training neural networks.

A computationally demanding pre-testing procedure was used to obtain a

reasonable set of user-definable algorithm parameters for the stochastic global

algorithms. The extra computational time required for this pre-testing procedure was

excluded from the analysis presented in this chapter. The pre-testing procedure should

have theoretically given an unfair advantage to the global algorithms. Nonetheless, the

141

global algorithms failed to substantially outperform, or even match in some cases, the

local algorithms with respect to the magnitude of the solutions found. Stochastic global

optimization algorithms could be useful in situations where the neural network objective

function is discontinuous. The local algorithms used in this research require a continuous

and differentiable objective function.

142

Chapter 6

SUMMARY AND CONCLUSIONS

6.1 Introduction

The first section of this chapter presents a summary of the results presented in the

previous chapter. Conclusions to be drawn from these results are also reported. The last

two sections discuss the limitations of the study and give suggestions for further research.

6.2 Summary of Results, and Conclusions

In this research, the relative speed and accuracy of 9 alternative global

optimization methods in estimating the weights of neural networks is compared to local

optimization methods. The stochastic global algorithms investigated were 2 simulated

annealing algorithms, 1 simple random stochastic algorithm, 1 genetic algorithm and 5

evolutionary strategy algorithms. The algorithms are compared by performing multiple

estimations from random starting values on 6 function approximation problems and

analyzing the running time and distribution of the final objective function values over the

multiple estimations. On two of the training data sets, 250 random restarts were run and

on the other four, 500 random restarts were run. The results were displayed graphically

in the form of histograms and boxplots. In addition, various statistics were reported such

as the mean, median, minimum, and maximum of the objective function values computed

across the restarts.

143

The results indicated that a large number of local minimums exist for all the

neural network training data sets considered in this study. There was no single algorithm

that dominated all others across the training data sets. More importantly, with respect to

the research objectives of this study, the local optimization algorithm is not consistently

dominated by any of the global algorithms. However, the global algorithms do provide

on average marginally more probability of obtaining a lower converged objective

function value as opposed to the local optimization routines. The higher probability is

demonstrated in the slightly lower mean and median values for the objective function

values from the global algorithms as compared to the local algorithm. However, on

average, the local optimization routine did have a lower standard deviation of objective

function values across the data sets. The local routine obtained a sufficient number of

convergences at the minimum value, or very near the minimum. In 5 of the 6 training

problems, the local optimization routine found a solution that was at the lowest minimum

found across all algorithms, or within .0001 of it.

The stochastic global algorithms required much more computing time then the

local routines. On average, the global routines required 60 to 70 times as much

computing time. However, for the two largest training data sets with 43 and 211 neural

network weights to estimate, the difference in training times was much less. The global

algorithms for the largest problem with 211 weights took about 4 times longer then the

local routine and 14 times longer for the training problem with 43 weights. Since the

global algorithms take a great deal more time relative to the local routines, a greater

number of restarts could be performed by a local routine relative to a global. This would

increase the relative performance of the local routine. Adjusting the results to account for

144

the computing time showed that if the goal is to obtain a solution within the 5th percentile

of solutions, the local optimization routine outperforms all the global algorithms on every

problem. The weakness of this type of analysis is that it is dependent on the particular

implementation of the global algorithms in this study. In particular, an improved method

for switching from the global routine to the local routine could potentially cut a great deal

of time off the computing time of the global algorithms.

In conclusion, the results indicate that with respect to the specific algorithms

studied, there is little evidence to show that a global algorithm should be used over a

more traditional local optimization routine for training neural networks. Further, neural

networks should not be estimated from a single set of starting values whether a global or

local optimization method is used. The results strictly apply only to the estimation

methods and problems considered. There may be problems where global optimization

methods are superior. However, even ignoring computational time, there is still little

evidence to support the use of stochastic global algorithms for training neural networks.

The results presented in this study add significantly to the body of literature concerning

the usefulness of stochastic global optimization algorithms for training neural networks.

With respect to the range of data sets and algorithms studied, no previous study has

presented simulation results as extensive as those presented in this research.

6.3 Limitations of Study and Directions for Study

The greatest limitation of this study is the limited number of training data sets and

global algorithms examined. Extending the analysis to a larger number of data sets

would either add weight to the results presented in this study or could discover types of

145

problems on which the global algorithms are effective. For the smaller estimation

problems investigated in this study, the local optimization routine was clearly superior to

the global routines. However, for the largest estimation problem in this study the global

algorithms, with one exception, did show an advantage in their ability to find a solution

with a slightly smaller objective function value. In this problem, with respect to the

solution found, the advantage of the best global optimization algorithm over the local

routine was less then 2%. However, perhaps the larger and more complex neural network

estimation problems would benefit from using a stochastic global optimization algorithm.

The global optimization field is an area in which a great deal of research is taking

place. New algorithms and improvements to existing algorithms are being researched.

Other types of stochastic global algorithms could be investigated, for example Ant

algorithms. Besides stochastic algorithms, other categories of global algorithms, such as

function smoothing techniques, could be investigated. The existing algorithms in this

research could be improved by implementing an intelligent method of switching from the

global routines to the associated local routine.

146

Bibliography

Aarts, E., and J. Korst. Simulated Annealing and Boltzmann Machines: A Stochastic
Approach to Combinatorial Optimization and Neural Computing. Chichester,
England: John Wiley & Sons, 1989.

Alander, J.T. "Indexed Bibliography of Genetic Algorithms and Neural Networks."
University ofVaasa, Department of Information Technology and Production
Economics, Report 94-1-NN, available via anonymous ftp: site ftp.uwasa.fi
directory cs/report94-l file gaNNbib.ps.Z.

Angeline, P.J., G.M. Saunders, and J.B. Pollack. "An Evolutionary Algorithm That
Constructs Recurrent Neural Networks." IEEE Transactions on Neural Networks
5(January 1994):54-65.

Antonisse, J. "A New Interpretation of Schema Notation That Overturns the Binary
Encoding Constraint," Proceedings of the Third International Conference on
Genetic Algorithms. J.D. Schaffer, ed., pp. 86-91, San Mateo, CA: Morgan
Kaufmann Publishers, 1989.

A vriel, Mordecai. Nonlinear Programming Analysis and Methods. Englewood Cliffs,
New Jersey: Prentice-Hall Inc., 1976.

Baba, N. "A New Approach for Finding the Global Minimum of Error Function of
Neural Networks." Neural Networks 2(1989):367-373.

Baba, N., Y. Mogami, M. Kohzaki, Y. Shiraihi, and Y. Yoshida. "A Hybrid Algorithm
for Finding the Global Minimum of Error Function of Neural Networks and Its
Applications." Neural Networks 7(1994): 1253-1265.

Back, T. Evolutionary Algorithms Theory and Practice. New York: Oxford University
Press, 1996.

"Optimal Mutation Rates Genetic Search." Proceedings of the Fifth
International Conference on Genetic Algorithms. S. Forrest, ed., pp. 2-8, San
Mateo, CA: Morgan Kaufmann, 1993.

147

Back T. and S. Khuri. "An Evolutionary Heuristic for the Maximum Independent Set
Problem." Proceedings of the First IEEE Conference on Evolutionary
Computation, pp. 531-535, IEEE Press, 1994.

Back, T., and H.P. Schwefel. "An Overview of Evolutionary Algorithms for Parameter
Optimization." Evolutionary Computation 1 (1993): 1-23.

"Evolutionary Computation: An Overview." Proceedings of the IEEE
Conference on Evolutionary Computation. pp. 20-29, 1996.

Back, T., D. Fogel, D. Whitley, and P. Angeline. "Mutation." Handbook of Evolutionary
Computation. T. Back, D. Fogel, and Z. Michalewicz, ed., New York: Oxford
University Press, 1997.

Back, T., F. Hoffmeister, and H.P. Schwefel. "A Survey of Evolution Strategies."
Proceedings of the Fourth International Conference on Genetic Algorithms. R.
Belew, and L. Booker, ed., pp. 2-9, Los Altos, CA: Morgan Kaufmann Publishers,
1991.

Back, T., G. Rudolph, and H.P. Schwefel. "Evolutionary Programming and Evolution
Strategies: Similarities and Differences." Proceedings of the Second Annual
Conference on Evolutionary Programming. D.B. Fogel and W. Atmar, ed., pp.
11-22, San Diego, CA: Evolutionary Programming Society, 1993.

Barnard, E. "Optimization for Training Neural Nets." IEEE Transactions on Neural
Networks 3, 2(March 1992):232-240.

Barnes, N.M., A.W. O'Neill, and D. Wood. "Rapid, Supervised Training of a Two-layer,
Opto-electronic Neural Network Using Simulated Annealing." Optics
Communications 87(1992):203-206.

Barron, A.R. "Universal Approximation Bounds for Superpositions of a Sigmoidal
Function." Manuscript, Department of Statistics, University of Illinois,
Champange Urbana, IL, 1991.

Bartlett, P., and T. Downs. "Training a Neural Network with a Genetic Algorithm."
Department of Electrical Engineering, University of Queensland, Australia,
Technical Report, January 1990.

Bartlett, P.L. "For Valid Generalization, the Size of the Weights is More Important Than
the Size of the Network," Advances Neural Information Processing Systems 9.
M.C. Mozer, M.I. Jordan, and T. Petsche, ed., pp. 134-140, Cambridge, MA: The
MIT Press, 1997.

Battiti, R. "First and Second-Order Methods for Leaming: Between Steepest Descent
and Newton's Method." Neural Computation 4(1992):141-166.

148

Belew, R.K., J. Mcinerney, and N.N. Schraudolph. "Evolving Networks: Using the
Genetic Algorithm with Connectionist Leaming." Cognitive Computer Science
Research Group, Computer Science & Engr. Dept., Univ. of California at San
Diego, CSE Technical Report #CS90-174, June 1990.

Binder, K. Monte Carlo Methods Statistical Physics. New York: Springer-Verlag,
1978.

Bishop, C.M. Neural Networks for Pattern Recognition. Oxford: Oxford University
Press, 1996.

Boender, C.G.E, and H.E. Romeijn. "Stochastic Methods." Handbook of Global
Optimization. R. Horst and P.M. Pardalos, ed., pp. 829-869, Dordrecht, The
Netherlands: Kluwer Academic Publishers, 1995.

Booker L., D. Fogel, D. Whitley, and P. Angeline. "Recombination." Handbook of
Evolutionary Computation. T. Back, D. Fogel, and Z. Michalewicz, ed., pp.
C3.3:l-C.3.3:27, Oxford Press, 1997.

Bretthorst, Larry G. Bayesian Spectrum Analysis and Parameter Estimation. vol. 48 of
Lecture Notes Statistics, Springer, 1988.

Brill, F.Z., D.E. Brown, and W.N. Martin. "Fast Generic Selection of Features for Neural
Network Classifiers." IEEE Transactions on Neural Networks 3, 2(1992):324-
328.

Brunelli, Roberto. "Training Neural Nets through Stochastic Minimization." Neural
Networks 7, 9(1994):1405-1412.

Carroll, S.M., and B.W. Dickinson. "Construction of Neural Nets Using the Radon
Transform." Proceedings of the IEEE Conference on Neural Networks
(Washington DC). New York: IEEE Press, pp. 607-611, 1989.

Cerny, V. "Thermodynamical Approach to the Traveling Salesman Problem: An
Efficient Simulation Algorithm." Journal of Optimization Theory and
Applications 45(1985):41-51.

Chang, E.J., and R.P. Lippmann. "Using Genetic Algorithms to Improve Pattern
Classificiation Performance." Advances Neural Information Processing 3.
R.P. Lippmann, J.E. Moody, and D.S. Touretsky, ed., pp. 797-803, San Mateo,
CA: Morgan Kaufmann, 1991.

Chen, Y.M., and R.M. O'Connell. "Active Power Line Conditioner with a Neural
Network Control." IEEE Transactions on Industry Applications. 33(July/August
1997): 1131-1136.

149

Chow, Tommy, and Chi-Tat Leung. "Performance Enhancement Using Nonlinear
Processing." IEEE Transactions on Neural Networks 7, 4(July 1996):1039-
1042.

Cohen, Barak, David Saad, and Emanuel Marom. "Efficient Training of Recurrent
Neural Network with Time Delays." Neural Networks IO, 1(1997):51-59.

Corana, A., M. Marchesi, C. Martini, and S. Ridella. "Minimizing Multimodal Functions
of Continuous Variables with the "Simulated Annealing" Algorithm." ACM
Transactions on Mathematical Software 13, 3(September 1987):262-280.

Cybenko, G. "Approximation by Superpositions of a Sigmoid Function." Mathematics
of Control Signals and Systems 2(1989):303-314.

Davis, L., Ed. Handbook of Genetic Algorithms, New York: Van Nostrand Reinhold,
1991.

Day, S.P., and D.S. Camporese. "A Stochastic Training Technique for Feed-Forward
Neural Networks." Proceedings of the International Joint Conference on Neural
Networks (IJCNN), vol. 1, pp. 607-612, 1990.

Dean Hougen, D., J. Fischer, and D. Johnam. "A Neural Network Pole Balancer that
Learns and Operates on a Real Robot Real Time." Proceedings of the
Machine-Learning Conference-Conference on Learning Theory, Workshop on
Robot Learning. pp. 73-80, July 10, 1994.

DeJong, K. "Analysis of the Behavior of a Class of Genetic Adaptive Systems." PhD
Dissertation. Dept. of Computer and Communication Sciences, Univ. of
Michigan, Ann Arbor, 1975

Derwent, D. "A Better Way to Control Pollution." Nature 331(1988):575-578.

Ergezinger, S., and E. Thomsen. "An Accelerated Leaming Algorithm for Multilayer
Perceptrons: Optimization Layer by Layer." IEEE Transactions on Neural
Networks 6, l(January 1995):31-42.

Erkmen, I., and A. Ozdogan. "Short Term Load Forecasting Using Genetically
Optimized Neural Network Cascaded with a Modified Kohonen Clustering Process."

Proceedings of the 1997 IEEE International Symposium on Intelligent Control,
pp. 107-112, 1997.

Eshelman, L.J. and J.D. Schaffer. "Crossover's Niche." Proceedings of the Fifth
International Conference on Genetic Algorithms. S. Forrest, ed., pp. 9-14,
San Mateo, CA: Morgan Kaufmann Publishers, 1993.

150

Fang, Luyuan, and Tao Li. "A Globally Optimal Annealing Learning Algorithm for
Multilayer Perceptrons with Applications." Proceedings of the /h Australian
Joint Conference on Artificial Intelligence (AI'90), pp. 21-23, Perth, Australia,
World Scientific Publishing, Singapore, November, 1990.

Farmer, J.D. "Chaotic Attractors of an Infinite-Dimensional Dynamical System."
Physica D 4(1982):366-393.

Floudas, C.A. Deterministic Global Optimization: Theory, Algorithms and Applications.
Dordrecht: The Netherlands: Kluwer Academic Publishers, 1999.

Fogel, D.B. "An Introduction to Simulated Evolutionary Optimization." IEEE
Transactions on Neural Networks 5, l(January 1994):3-14.

Franses, Philip Hans, and Dick van Dijk. Non-linear Time Series Models Empirical
Finance. Cambridge: Cambridge University Press, 2000.

Frenzel J.F. "Genetic Algorithms: A New Breed of Optimization." IEEE Potentials
12(0ctober 1993): 21-24.

Fukushima, K., and S. Miyake. "Neocognition: A New Algorithm for Pattern
Recognition Tolerant of Deformations and Shifts Position." Pattern
Recognition. 15(1984):455-469.

Funabashi, K. "On the Approximate Realization of Continuous Mappings by Neural
Networks." Neural Networks 2(1989):183-192.

Gallant, R., and H. White. "On Learning the Derivatives of an Unknown Mapping with
Multilayer Feedforward Networks." Neural Networks 5(1992):129-138.

Gallant, A.R., D.A. Hsieh, and G.E Tauchen. "On Fitting a Recalcitrant Series: The
Pound/Dollar Exchange Rate, 1974-83." Nonparametric and Semiparametric
Methods Econometrics and Statistics. W.A. Barnett, J. Powell, and G.E.
Tauchen, ed., pp. 199-240. Cambridge: Cambridge University Press, 1991.

Geman, S., and D. Geman. "Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images." IEEE Transactions on Pattern Analysis and
Machine Intelligence 6(1984):721-741.

Geman, S., E. Bienenstock, and R. Doursat. ''Neural Networks and the Bias/Variance
Dilemma." Neural Computation 4(1995):1-58.

Gill, P., W. Murray, and M. Wright, Practical Optimization. London: Academic Press,
1993.

151

Goffe, W.L., and G.D. Ferrier. "Simulated Annealing: An Initial Application in
Econometrics." Computer Science in Economics and Management 5(1992):133-
146.

Goffe, W.L., G.D. Ferrier, and J. Rogers. "Global Optimization of Statistical Functions
with Simulated Annealing." Journal of Econometrics 60(1994):65-99.

Goldberg, D. "Genetic Algorithms and Walsh Functions: Part 1, A Gentle Introduction."
Complex Systems 3(1989a):129-152.

Genetic Algorithms Search, Optimization, and Machine Learning. MA:
Addison-Wesley Reading, 1989b.

"Real-Coded Genetic Algorithms, Virtual Alphabets and Blocking."
Complex Systems 5(1991):119-167.

Granger, C.W., and A.P. Andersen. An Introduction to Bilinear Time Series Models.
Gottingen: Vandenhoek and Ruprecht, 1978.

Gray, Perry, William Hart, Laura Painton, Cindy Phillips, Mike Trahan, and John
Wagner. "A Survey of Global Optimization Methods." Sandia National
Laboratories, Albuquerue, NM, http://www.cs.sandia.gov/opt/survey/, accessed
on March 10, 1992.

Guo, Z., and R.E. Uhrig. "Using Genetic Algorithms to Select Inputs for Neural
Networks." Proceedings of the International Workshop on Combinations of
Genetic Algorithms and Neural Networks, COGANN-92, pp. 223-234, 1992

Hagan, M.T., and M. Menhaj. "Training Feedforward Networks with the Marquardt
Algorithm." IEEE Transactions on Neural Networks 5, 6(1994):989-993.

Hagan, M.T., H.B. Demuth, and M. Beale. Neural Network Design. Boston: PWS
Publishing Company, 1996.

Hancock, P.J.B. "Genetic Algorithms and Permutation Problems: A Comparison of
Recombination Operators for Neural Structure Specification." Combinations of
Genetic Algorithms and Neural Networks (COGANN workshop). D. Whitley ed.,
IEEE Computer Society Press, 1992.

Harp, S., T. Samad, and A. Guha. "Towards the Genetic Synthesis of Neural Networks."
Proceedings of the Third International Conference on Genetic Algorithms. J. D.
Schaffer, ed., pp. 360-369, San Mateo, CA: Morgan Kaufmann, 1989.

152

Heistermann, J. "Different Learning Algorithms for Neural Networks - A Comparative
Study." Parallel Problem Solving from Nature, Workshop Proceedings. Y.
Davidor, H.P. Schwefel, and R. Manner, ed., pp. 368-396, Springer Verlag,
1994.

Herdy, M. "Application of the Evolution Strategy to Discrete Optimization Problems."
Proceedings of the First International Conference on Parallel Problem Solving
from Nature (PPSN). H.P. Schwefel and R. Manner, ed., pp.188-192, Dortmund,
Germany, 1990.

Hjalmarsson, and A. Juditsky. "Nonlinear Black-Box Modeling System Identification:
a Unified Overview." Automatica 31, 12(1995):1691-1724.

Holland, J.H. Adaption Natural and Artificial Systems. Ann Arbor: Univ. of Michigan
Press, 197 5.

Hornik, K., M.B. Stinchcombe, and H. White. "Multilayer Feedforward Networks Are
Universal Approximators." Neural Networks 2(1989): 359-366.

Hornik, K., M. Stinchcombe, and H. White. "Universal Approximation of an Unknown
Mapping and Its Derivatives Using Multilayer Feedforward Networks." Neural
Networks 3(1990):551-560.

Horst, R., and H. Tuy. Global Optimization: Deterministic Approaches, third edition.
Berlin: Springer-Verlag, 1996.

Horst, R., and P .M. Pardolos. Handbook of Global Optimization. Dordrecht, The
Netherlands: Kluwer Academic Publishers, 1995.

Horst, R., P. Pardalos, and N. Thoai. Introduction to Global Optimization.
Boston: Kluwer Academic Publishers, 1995.

Ingber, L. "Very Fast Simulated Re-Annealing." Journal of Mathematical Computer
Modelling 12(1989):967-973.

Ingber, L. "Simulated Annealing: Practice Versus Theory." Mathematical Computer
Modelling 18, 11 (1993):29-57.

Janikow, C.Z., and Michalewicz, Z. "An Experimental Comparison of Binary and
Floating Point Representations Genetic Algorithms." Proceedings of the Fourth
International Conference on Genetic Algorithms. pp. 31-36, Morgan
Kaufman Publishers, 1991.

Johansson, E.M., F.U. Dowla, and D.M. Goodman. "Backpropagation Leaming for
Multilayer Feed-Forward Neural Networks Using the Conjugate Gradient
Method." International Journal of Neural Systems 2, 4(1992): 291-301.

153

Johnson, N.L., and S. Kotz. Distributions Statistics: Continuous Univariate
Distributions-I. New York: Hougton Mifflin, 1970.

Johnson, N.L., and S. Kotz. Distributions Statistics: Continuous Multivariate
Distributions. New York: Wiley, 1972.

Keane, A.J. "The Options Design Exploration System." Reference Manual and Users
Guide - Version B3 .1. Computational Engineering and Design Centre,
University of Southhampton, U.K., 2002.

Khachaturyan, A., A. Semenovskaya, and B. Vainshtein, "The Thermodynamic
Approach to the Structure Analysis of Crystals." Acta Crystallographica
31(1981):742-754.

Khuri S., and T. Back. "An Evolutionary Heuristic for the Minimum Vertex Cover
Problem." Kl-94 Workshops (Extended Abstracts). J. Kunze and H. Stoyan,
ed., pp. 83-84, Gesellschaft fiir Informatik e. V., Bonn, 1994.

Khuri S., T. Back, and J. Heitkotter. "The Zero/One Multiple Knapsack Problem and
Genetic Algorithms." Proceedings of the 1994 ACM Symposium on Applied
Computing. E. Deaton, D. Oppenheim, J. Urban, and H. Berghel, ed., pp. 188-
193, New York: ACM Press, 1994a.

"An Evolutionary Heuristic Approach to Combinatorial Optimization Problems."
Proceedings of the 22nd Annual ACM Computer Science Conference. D.
Cizmar, ed., pp. 66-73, New York: ACM Press, 1994b.

Kinsella, J.A. "Comparison and Evaluation of Variants of the Conjugate Gradient
Method for Efficient Leaming Feed-Forward Neural Networks with Backward
Error Propagation." Network 3(1992):27-35.

Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi. "Optimization by Simulated Annealing."
Science 220(May 1983):671-680.

Kitano, H. "Neurogenetic Leaming: An Integrated Method of Designing and Training
Neural Networks using Genetic Algorithms." Physica D 75(1994):225-228.

Knowles, Joshua, David Come, and Mark Bishop. "Evolutionary Training of Artificial
Neural Networks for Radiotherapy Treatment of Cancers." Proceedings of
1998 International Conference on Evolutionary Computation (ICEC'98), ed., pp.
398-403, 1998.

Knowles, Joshua, David Come, and Mark Bishop. "Evolutionary Training of Artificial
Neural Networks for Radiotherapy Treatment of Cancers." Proceedings of

154

1998 International Conference on Evolutionary Computation (ICEC'98). pp.
398-403, 1998.

Kuan, C.M., and H. White. "Artificial Neural Networks: An Econometric Perspective."
Econometric Reviews 13(1994):1-91.

Laarhoven, P.J.M. van, and E. Aarts. Simulated Annealing: Theory and Applications.
Dordrecht, Holland: Kluwer Academic Publishers, 1987.

Lapedes, A., and R. Farber. "Nonlinear Signal Processing Using Neural Networks:
Prediction and System Modeling." Technical Report LA-UR-87-2662, Los
Alamos National Laboratory, Los Alamos, NM, 1987.

Lee, S.W. "Off-Line Recognition of Totally Unconstrained Handwritten Numerals Using
Multilayer Cluster Neural Networks." IEEE Transactions on Pattern Analysis
and Machine Intelligence 18, 6(June 1996): 648-652.

Likartsis, A, I. Vlachavas, and L.H. Tsoukalas. "A New Hybrid Neural-Genetic
Methodology for Improving Leaming." Proceedings of the 9th IEEE
International Conference on Tools with Artificial Intelligence, pp. 32-36, 1997.

Mackey, M.C., and L. Glass. "Oscillation and Chaos Physiological Control Systems."
Science 197(1977):287-289.

Maniezzo, V. "Genetic Evolution of the Topology and Weight Distribution of Neural
Networks." IEEE Transactions on Neural Networks 5, 1(1994):39-53.

Masters, T. Advanced Algorithms for Neural Networks: A C++ Sourcebook. New York:
John Wiley and Sons Inc., 1995.

Practical Neural Network Recipes C++. New York: Academic Press, 1993.

McLoone, S., and G.W. Irwin. "Fast Parallel Off-Line Training of Multilayer
Perceptrons." IEEE Transactions on Neural Networks 8, 3(May 1997):646-653.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, "Equation of
State Calculations by Fast Computing Machines." Journal of Chemical Physics
21(1953): 1087-1092.

Michalewicz, Zbigniew . Genetic Algorithms + Data Structures = Evolution Programs.
3rd edition Berlin: Springer-Verlag, 1996.

Miller, G., P. Todd, and S. Hedge. "Designing Neural Networks Using Genetic
Algorithms." Proceedings of the Thrid International Conference on Genetic
Algorithms. J. D. Schaffer, ed., pp. 379-384, San Mateo, CA: Morgan Kaufmann,
1989.

155

Minsky, M., and S. Papert. Perceptrons. Cambridge: MIT Press, 1969.

Mohler, R.R. Bilinear Control Processes. New York: Academic Press, 1973.

M0ller, M.F. "A Scaled Conjugate Gradient Algorithm for Fast Supervised Leaming."
Neural Networks 6(1993):525-533.

Montana, D., and L. Davis. "Training Feedforward Neural Networks Using Genetic
Algorithms." Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence. pp. 762-767, San Mateo, CA: Morgan Kaufmann, 1989.

Neruda, R. "Genetic Algorithms and Neural Networks: Making Use of Parameter Space
Symmetries." Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks (IJCNN'2000), vol. 1, pp. 293-298, 2000.

"Yet Another Genetic Algorithm for Feed-forward Neural Networks."
Proceedings of the 9th International Conference on Tools with Artificial
Intelligence (ICTAI '97). Z. Rakowski, ed., pp. 375-380. Newport Beach,
California, IEEE Computer Society, November 4-7, 1997.

Neumaier, Arnold, available at http://solon.cma.univie.ac.at/Nneum/glopt.html, accessed
on May 10, 2001.

Omatu, S, and M. Yoshioka. "Self-Ttuning N euro-PID Control and Applications."
Proceedings of the 1997 IEEE Conference on Systems, Man, and Cybernetics,
vol. 3, pp. 1985-1989, 1989.

Omatu, S., and S. Deris. "Stabalization of Inverted Pendulum by the Genetic Algorithm."
Proceedings of the 1996 IEEE Conference on Emerging Technologies and
Factory Automation, ETFA'96. vol. 1, pp. 282-287, 1996.

Pincus, M. "A Monte Carlo Method for the Approximate Solution of Certain Types of
Constrained Optimization Problems." Operations Research 18(1970):1225-
1228.

Pinter, J.D. Global Optimization Action. Dordrecht: Kluwer, 1996.

Porto, V.W., D.B. Fogel, and L.J. Fogel. "Alternative Neural Network Training
ethods." EE Expert lO(June 1995):16-22.

Powell, M.J.D. "Restart Procedures for the Conjugate Gradient Method." Mathematical
Programming. 12(1977):241-254.

156

Prechelt, Lutz. "Probenl -A Set of Neural Network Benchmark Problems and
Benchmarking Rules." Technical Report 21/94, Fakultat fur lnformatik,
Universitat Karlsruhe, Karlsruhe, Germany, available via
ftp.ira.uka.de/pub/papers/techreports/1994/1994-21.ps.Z, 1994.

Pujol, J.C.F, and P. Riccardo. "Evolution of the Topology and the Weights of Neural
Networks using Genetic Programming with a Dual Representation." Applied
Intelligence. 8(1998):73-84.

Radcliffe, N.J. "Genetic Neural Networks on MIMD Computers." Doctoral dissertation,
University of Edinburgh, Edinburgh, Scotland, 1990.

Rechenberg, I. "Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien
der Biolgischen Evolution." Stuttgar: Frommann-Holzboog Verlag, 1973.

Ripley, B.D. "Statistical Aspects of Neural Networks." Networks and Chaos: Statistical
and Probabilistic Aspects. O.E. Bamdorff-Nielsen, J.L. Jensen, and W.S. Kendall,
ed., London: Chapman & Hall, 1993.

Rooij, A.J.F. van, L.C. Jain, and R.P. Johnson. Neural Network Training Using Genetic
Algorithms. Singapore: World Scientific Publishing Co., 1996.

Rumelhart D.E., G.E. Hinton, and R.J. Williams. "Leaming Internal Representations by
Error Propagation." Parallel Distributed Processing: Explorations the
Microstructure of Cognition, Vol. 1. D.E. Rumelhart and J.L. McClelland ed., pp.
318-362, Cambridge, MA: MIT Press, 1986.

Rumelhart, D.E., J.L. McClelland, and the PDP Group. "Parallel Distributed Processing."
Explorations the Microstructure of Cognition, Vol. 1: Foundation. Cambridge:

MIT Press, 1986.

Ryoo, H., and N. Sahinidis. "A Branch-and-Reduce Approach to Global Optimization."
Journal of Global Optimization 8(1996):107-139.

Sarle, Warren S. "Neural Network Implementation SAS Software." Proceedings
of the Nineteenth Annual SAS Users Group International Conference. April,
1994a.

Sarle, Warren S. "Neural Networks and Statistical Models." Proceedings of the
Nineteenth Annual SAS Users Group International Conference. April 1994b.

Schaffer, J.D., D. Whitley, and L. Eshelman. "Combination of Genetic Algorithms and
Neural Networks: A Survey of the State of the Art." Proceedings of the
International Workshop on Combinations of Genetic Algorithms and Neural
Networks, COGANN-92, pp. 1-37, 1992.

157

Schoenauer, M., and Z. Michalewicz. "Boundary Operators for Constrained Parameter
Optimization Problems." Proceedings of the 7th International Conference on
Genetic Algorithms. pp.320-329, East Lansing, Michigan, July 19-23, 1997.

Schwefel, H.P. Evolution and Optimum Seeking. New York: Wiley, 1995.

_. Numerical Optimization of Computer Models. Chichester: Wiley, 1981.

_. Numerische Optimierung van Computer-Model/en mittel der Evolutionsstrategie,
vol. 26 of Interdisciplinary Systems Research. Basel: Birkhauser, 1977.

Sexton, R.S., RE. Dorsey, and J.D. Johnson. "Beyond Backpropagation: Using
Simulated Annealing for Training Neural Networks." Journal of End User
Computing 11, 3(1999a):3-10.

"Optimization of Neural Networks: A Comparative Analysis of the Genetic
Algorithm and Simulated Annealing." European Journal of Operational
Research 114(1999b):589-601.

"Toward Global Optimization of Neural Networks: A Comparison of the Genetic
Algorithm and Backpropagation." Decision Support Systems 22, 2(1998):171-
185.

Shang, Y., and B. Wah. "Global Optimization for Neural Network Training." Computer
29, 3(1996):45-54.

Sima, J. "Back-propagation is Not Efficient." Neural Networks 9, 6(1996):1017-1023.

Sjoberg, J., Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.Y. Glorennec, H.
Hjalmarsson, and A. Juditsky. "Nonlinear Black-Box Modelling in System
Identification: Mathematical Foundation." Automatica 3l(December
1995):1725-1750.

Skinner, A.J., and J.Q. Broughton. "Neural Networks Computational Materials
Science: Training Algorithms." Modelling Simulation Materials Science
Engineering 3, 3(1995):371-390.

Smagt, P.P. van der. "Minimization Methods for Training Feedforward Neural
Networks." Neural Networks 7, 1(1994):1-11.

Solis, F.J., and J.B. Wets. "Minimization by Random Search Techniques." Mathematics
of Operations Research 6(1981):19-30.

Styblinski, M.A., and T.S. Tang. "Experiments Nonconvex Optimization: Stochastic
Approximation with Function Smoothing and Simulated Annealing." Neural
Networks 3(1990):467-483.

158

Syswerda, G. "Schedule Optimization Using Genetic Algorithms." Handbook of
Genetic Algorithms. L. Davis, ed., pp. 332-349, New York: Van Nostrand
Reinhold, 1991.

Szu, H., and R. Hartley. "Fast Simulated Annealing." Physics Letters A 122(June
1987):157-162.

Tang, Z., and G. Koehler. "Deterministic Global Optimal FNN Training Algorithms."
Neural Networks 7, 2(1994):301-311.

Trippi, Robert R., and Turban Efraim. Neural Networks Finance and Investing.
Chicago: Probus, 1992.

Vanderbilt, D., and S.G. Louie. "A Monte Carlo Simulated Annealing Approach to
Optimization over Continuous Variables." Journal of Computational Physics
56(1984):259-271.

Vecchi, M.P. and S. Kirkpatrick. "Global Wiring by Simulated Annealing." IEEE
Transactions on Computer-Aided Design, vol. CAD-2, 4(0ctober 1983):215-
222.

Vignaux, G.A., and Z. Michalewicz. "A Genetic Algorithm for the Linear Transportation
Problem." IEEE Transactions on Systems, Man and Cybernetics 21,
2(1991):445-452.

Visual Numerics. IMSL Math/Library version 3.0. Houston, TX, 1997.

Werbos, P. "Beyond Regression: New Tools for Prediction and Analysis the
Behavioral Sciences." unpublished Ph.D. Dissertation, Harvard University,
Department of Applied Mathematics, 1974.

White, H. "ANN: A Little Knowledge Can Be a Dangerous Thing." Second Moment,
available at www.secondmoment.org, accessed on Oct. 5, 2002.

"Learning Neural Networks: A Statistical Perspective." Neural Computation
1 (1989):425-464.

White, S.R. "Concepts of Scale Simulated Annealing." Proceedings of the IEEE
International Conference on Computer Design, ICCD'84 pp. 646-641, New
York, October, 1984.

Whitely D., T. Starkweather, and C. Bogart. "Genetic Algorithms and Neural Networks:
Optimizing Connections and Connectivity." Parallel Computing 14,
3(1990):347-361.

159

Whitley, D. "A Genetic Algorithm Tutorial." Statistics and Computing 4(1994):65-85.

"Genetic Algorithms and Neural Networks." Genetic Algorithms Engineering
and Computer Science. G. Winter, J. Periaux, M. Galan and P. Cuesta, ed. pp.
203-216, New York: John Wiley, 1995.

Wright, A.H. "Genetic Algorithms for Real Parameter Optimization." Foundations of
Genetic Algorithms, G.J.E. Rawlins, ed., pp. 205-218, San Mateo, CA: Morgan
Kaufmann Publishers, 1991.

Xinxing, Yang, and Jiao Licheng. "Fast Global Optimization Neural Network and its
Application Data Fusion." Proceedings of the Fourth International
Conference on Signal Processing, (ICSP'98), vol. 2, pp. 1351-1354, 1998.

Xu, Lei, Adam Krzyzak, and Alan Yuille. "On Radial Basis Function Nets and Kemal
Regression: Statistical Consistency, Convergence Rates, and Receptive Field
Size." Neural Networks 7(1994):609-628.

Yan, W., and Z. Zhu. "A New Evolutionary Computation Method." Proceedings of
the IEEE 1997 National Aerospace and Electronics Conference, (NAECON
1997), vol. 2, pgs. 803-807, 1997.

Yan, W,, Z. Zhu, and R. Hu. "A Hybrid Genetic/BP Algorithm and Its Application for
Radar Target Classification." Proceedings of the 1997 IEEE National
Aerospace and Electronics Conference, NAECON, vol. 2, pp. 981-984, 1997.

Yao, Xin, "Evolving Artificial Neural Networks." Proceedings of the IEEE 87,
9(September 1999):1423-1447.

160

APPENDIX A

STOCHASTIC GLOBAL OPTIMIZATION ALGORITHM
PARAMETERS

Tables A. I through A.5 present the chosen values for the user-definable

parameters of the stochastic global optimization algorithms. An example of a user-

definable parameter would be the standard deviation of mutation, which is common to all

the stochastic global algorithms. The performance of the algorithms may depend upon

wisely choosing the values of the various algorithm parameters. Section 4.4.1 presents

the details of the procedure for picking the algorithm parameter values presented in tables

A.I through A.5. For most of the algorithm parameters, it is difficult to see any

discemable pattern in the values chosen. However, one can make some general

observations about some of the parameters. For example, for the standard deviation of

mutation s, a parameter common to all the algorithms1, the value chosen is generally

much less then the maximum value of 1 tried for most of the algorithms.

In the NNGA and SW algorithms, the standard deviation of mutation stays

constant throughout the operation of the algorithm. All the other algorithms have some

sort of mechanism to adjust the standard deviation of mutation throughout the operation

of the algorithm. Therefore, the reported standard deviation of mutation for the EVOL,

KORR1-KORR4, and SAl and SA2 algorithms is the beginning standard deviation of

1 For the simulated annealing algorithm, the standard deviation of mutation is synonymous with the
parameter called temperature.

161

Table A.1 Values for the User-Definable Parameters of the NNGA Algorithm.

r c - probability rm - probability s- std. dev. of
Data Set b- bias of crossover of mutation mutation
Bilinear 5 .8 .2 0.12
Dax 5 .8 .2 .5
JYUS 20 .2 .8 .12
JYUSTTR 20 .2 .8 .12
Flare 10 .8 .6 1.0
Mackey-Glass 10 .8 .6 1.0
Note: See section 4.3.2 for a detailed explanation of the NNGA algorithm and its
parameters. The values in the table are for the various user definable parameters that
were chosen by the procedure described in section 4.4.1.

Table A.2 Values for the User-Definable Parameters of the EVOL Algorithm.

Data Set s- std. dev. of mutationa as - adjustment factor for s
Bilinear .250 .850
Dax .125 .999
JYUS .125 .999
JYUSTTR .125 .999
Flare .060 .999
Mackey-Glass .250 .999
Note: See section 4.3.3 for a detailed explanation of the EVOL algorithm and its
parameters. The values in the table are for the various user definable parameters that
were chosen by the procedure described in section 4.4.1.
aThis column reports the beginning standard deviation of mutation. The algorithm
adjusts s as it progresses.

Table A.3 Values for the User-Definable Parameters of the SW Algorithm.

Data Set
Bilinear
Dax
JYUS
JYUSTTR

s- std. dev. of mutation
.25
.50
.25
.50

Flare .5
Mackey-Glass .125
Note: See section 4.3.5 for a detailed explanation of the SW algorithm and its parameters.
The values in the table are for the various user definable parameters that were chosen by
the procedure described in section 4.4.1.

162

Table A.4 Values for the User-Definable Parameters of the KORRl, KORR2,
KORR3, and KORR4 Algorithms.

s - std. dev. of r' - adjustment r - adjustment
Algorithm Data Set mutationa factor for s factor for s
KORRl Bilinear .125 .183 .359

Dax .5 .033 .076
JYUS .03 .183 .359
JYUSTTR .03 .046 .090
Flare .03. .006 .023

________________________ Mackey-Glass _____ L ____________________ J~?! _________________ .138 _______________ _
KORR2 Bilinear .25 .046 .090

Dax 1 .033 .076
JYUS .25 .091 .180
JYUSTTR .03 .091 .180
Flare .06 .012 .046

________________________ Mackey-Glass _____ :Q~ ____________________ .Q?! _________________ .138 _______________ _
KORR3 Bilinear .03 .183 .359

Dax 1 .033 .076
JYUS .5 .183 .359
JYUSTTR .06 .183 .359
Flare .03 .006 .023

________________________ Mackey-Glass _____ :Q~ ___________________ .027 __________________ .Q~~ _______________ _
KORR4 Bilinear .5 .183 .359

Dax .5 .033 .076
JYUS .06 .046 .090
JYUSTTR .25 .091 .180
Flare .03 .006 .023
Mackey-Glass .5 .108 .276

Note: See section 4.3.3 for a detailed explanation of the KORRl, KORR2, KORR3, and
KORR4 algorithms. The values in the table are for the various user definable parameters
that were chosen by the procedure described in section 4.4.1.
~his column reports the beginning standard deviation of mutation. The algorithm
adjusts s as it progresses.

mutation at the start of the algorithms operation. Note that for the SAl and SA2

algorithms, the beginning standard deviation of mutation is the beginning parameter

temperature given by r;°). For these algorithms, the beginning standard deviation of

mutation is probably not as critical a value as the standard deviation of mutation for the

Table A.5 Values for the User-Definable Parameters of the SAl and SA2
Algorithms.

163

y(O) _ y(M) _
p p

a - ending beginning ending
parameter parameter temperature c' - scale

Algorithm Data Set temperature a temperature ratio factor

SAl Bilinear .01 .001 1 .1
Dax .125 .001 .0001 4
JYUS .02 .001 1 .5
JYUSTTR .01 .001 .01 2
Flare .02 .001 1 2
Mackey- .12 .001 .01 2
Glass

--
SA2 Bilinear .03 .00001 .002 4

Dax .01 .001 1 2
JYUS .03 .001 .01 40
JYUSTTR .01 .00001 .0004 18
Flare .03 .00001 .01 4
Mackey- .03 .001 .01 4
Glass

Note: See section 4.3.4 for a detailed explanation of the SAl and SA2 simulated
annealing algorithms and their parameters. The values in the table are for the various
user definable parameters that were chosen by the procedure described in section 4.4.1.
aThe beginning acceptance criterion temperature T}0l is set equal to the beginning

parameter temperature T;0l but the acceptance criterion temperature is scaled by the

factors c and c'.

NNGA and SW algorithms where the standard deviation stays fixed throughout the

operation of the algorithm. However, a large value for the beginning standard deviation

of mutation can lead to saturated hidden neurons, which could freeze the learning process

of any algorithm. There are several notable exceptions to the general rule of a small

standard deviation of mutation, namely a value of 1 for both the Flare and Mackey-Glass

problems for the NNGA algorithm. For the Flare data set, with 211 model parameters or

neural network weights to estimate, we would expect a smaller standard deviation of

mutation would be best. The Mackey-Glass problem is also one of the larger problems

with 43 model parameters. There are several examples of large standard deviations of

164

mutation for the KORR algorithms. However, as mentioned before, the values reported

in table A.4 are for the beginning standard deviation of mutation and the KORR

algorithms have a mechanism to adjust the mutation rate as the algorithm progresses.

For the NNGA algorithm, the final chosen values for the probabilities of

crossover re and mutation rm varied. A high value of .8 for re was chosen for 4 of the 6

problems with a relatively low value of .2 for the remaining two problems. The converse

was true for rm, the probability of mutation. A relatively low probability of mutation of

.2 was chosen for 2 of the problems with higher values of .6 or .8 for the remaining four

problems. An interesting observations is that the lower values of rm are associated with

the higher values of re and visa-versa. In other words, there appears to be an inverse

relationship between the probability of crossover and of mutation. Note that a probability

of mutation of .2 is still high compared to most genetic algorithm implementations. The

rational for the relatively high probability of mutation is given in section 4.1.1. There

does not appear to be any pattern in the values for the bias parameter b. For the EVOL

algorithm, consistent with the results presented by Keane, a value of .999 was chosen for

as, the adjustment factor for the standard deviation, for 5 out of 6 of the problems.

165

VITA.2.

Lonnie Hamm

Candidate for the Degree of

Doctor of Philosophy

Thesis: A COMPARISON OF STOCHASTIC GLOBAL OPTIMIZATION METHODS:
ESTIMATING NEURAL NETWORK WEIGHTS

Major Field: Agricultural Economics

Biographical:

Education: Graduated from Hooker High School, Hooker, Oklahoma in May
1986; Received Bachelor of Science degree in Accounting from Oklahoma
State University, Stillwater, Oklahoma in May 1991; Received Master of
Science degree with a major in Agricultural Economics at Oklahoma State
University in July 1995. Completed the requirements for the Doctor of
Philosophy degree with a major in Agricultural Economics at Oklahoma
State University in August 2003.

Experience: Employed by Oklahoma State University, Department of
Agricultural Economics, as a graduate research assistant, June 1992 to July
1997 and June 2000 to December 2001. Employed as a research associate
by Telesis Management Incorporated, a Commodity Trading Advisor,
August 1997 to December 2000, Santa Barbara, California.

