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1.1 Introduction 

CHAPTER! 

SUMMARY 

A neural network is an analytical tool which models the relationship between a 

given set of independent and dependent variables. Since their introduction in the mid-

80's by Rumelhart, Hinton, and Williams, neural networks have received considerable 

attention. At times, this attention may have been nothing more than marketing hype. 

However, over time, neural networks have become accepted as a mainstream analytical 

tool. Neural networks can be found in statistical packages such as SPSS, SAS 

(Enterprise Miner), Statistica, and RATS. Companies such as MasterCard, American 

Express, Wal-Mart, and KayBee toys are using neural networks and applications range 

from fraud detection, product marketing, and financial prediction, to medical diagnosis 

(White, 2002). 

The most widely used type of neural network, and the object of this study, is the 

feedforward type of multilayer perceptron (MLP). For much of the remaining discussion 

in this and following chapters, the MLP type of neural network will be referred to 

generically as a "neural network". Much of the excitement surrounding the MLP, and 

other types of neural networks, is due to their ability to model highly nonlinear 

relationships. Neural networks have been shown to be universal approximators capable 
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of approximating almost any function (Cybenko; Hornik, Stinchcombe, and White, 1989; 

Funabashi). The neural network approximates the relationship between the dependent 

and independent or explanatory variables as well as the interaction between the 

explanatory variables. The universal approximation capability of a neural network means 

the functional form of the model does not have to be explicitly specified. 

A more detailed discussion of neural networks and the universal approximation 

property is deferred until chapter 2. At this point it suffices for the reader to understand 

that a neural network can be viewed as estimating a map f : 9l n ~ 9l m where n is the 

number of explanatory variables and m is the number of dependent variables. The 

relationship between the space of explanatory variables X and the space of dependent 

variables Y is embodied by 

(1.1) f:X~Y. 

The relationship in (1.1) is estimated empirically from data that is composed of T 

repeated measurements of X and Y , namely n x 1 and m x 1 vectors x, and y, , 

t = l, ... ,T. 

The dependent variable(s) Y are rarely completely determined by the explanatory 

variables X, therefore, our model with the as of yet unknown function f can be written 

as: 

(1.2) Y= f(X)+s, 

where f is a random error term. We would like to estimate the function f in such a way 

that minimizes the error s . 

The universal approximation property means that a neural network can estimate 

the function f (X) in (1.2) arbitrarily well. The neural network can be written as 
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f(X,B,a), where e is a vector of model parameters that must be estimated, and a is a 

vector of parameters that controls the mathematical form of the neural network, i.e. the 

number of hidden layers and hidden neurons. Setting the variable a to an appropriate 

value and estimating B controls the :flexible functional form of a neural network. 

Therefore, given a fixed a, the ability of the neural network to estimate the mapping 

rests upon our ability to estimate the parameter values e . The selection of the values for 

a is also central to the networks ability to estimate the mapping, however, for purposes 

of this research these parameters are considered fixed. More will be said on this subject 

in chapter 2. The process of estimating the weights or parameters of a neural network is 

commonly referred to in the neural network literature as "training", "supervised 

learning", or simply "learning". The next section briefly discusses learning in neural 

networks in the context of global optimization. 

1.2 Neural Network Learning 

The goal of neural network learning is to minimize some error function. One of the 

most common is the least squares error function given by: 

T 

(1.3) Qa(B) = n-1~)y1 - f(x,,B,a)] 2 

t=I 

which minimizes the mean squared error. The function Q is also called the objective or 

cost function. The least squares estimator (} solves 

(1.4) minQa(B), 
OeS 

where S is the set of all feasible model parameters. Given a sufficient number of · 

observations or training examples, standard estimation techniques can be used to achieve 
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optimal approximation (Kuan and White). Since the cost function for this problem is 

nonconvex, nonlinear optimization algorithms are required to estimate B . 

In the early years of neural network research, a gradient descent algorithm was 

commonly used to estimate the parameters of neural networks. Application of the 

gradient descent method to neural networks was known as backpropagation (BP)1. 

Gradient descent has long been known to be an inefficient estimation method. See 

Hagan, Demuth, and Beale and Sima for a discussion of some of the drawbacks of 

backpropagation for training neural networks. The estimation of neural networks can be 

viewed as being equivalent to estimating a nonlinear regression. Neural network 

researchers have drawn from the large body of knowledge that exists for estimation of 

nonlinear regressions and applied efficient estimation techniques such as various 

conjugate gradient methods (M0ller; Smagt; Kinsella; Johansson, Dowla, and Goodman), 

Broyden-Fletcher-Golfarb-Shanno (BFGS) (McLoone and Irwin), and Levenberg-

Marquardt (Hagan and Menhaj). A survey of various training methods is given by 

Battiti, and Sjoberg et al. 

In spite of the increased efficiency of the aforementioned estimation techniques, 

they are still classified as local search techniques. In other words, they suffer from 

stopping or converging at a local minimum. A local minima is defined as follows. Let S 

denote the set of all feasible model parameters B and e* e S denote the location of a 

local minimum for Q(B*) defined in (1.3). Define a 8-neighborhood, N(B*,8), 

1 We use the term backpropagation to encompass a strict gradient descent method as well as other heuristic 
modifications of gradient descent such as addition of a momentum term or a variable learning rate. 
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around B* as the set of feasible points BES such that O <II B-B* II< 8. Then a local 

minimum is defined as2 

(1.5) Q(B*) < Q(B) for all BE N(B*,8) ES. 

In other words, the objective funct~on value at the local minimum is less than any other 

objective function value in a neighborhood around the local mimimum. However, ifwe 

go far enough away from the local minima, i.e. somewhere outside the 

8 - neighborhood , we may find a function value that is less than the value at the local 

minimum. The objective function for training a neural network is multi-modal and thus 

any local search algorithm will suffer from local minima. A local search technique will 

generally proceed downhill in the search space from its starting point towards the nearest 

minimum. What we want to find is the global minimum. A global minimum would be 

defined as3 

(1.6) Q(B*) < Q(B) for all BES. 

In other words, no matter where we go in the feasible search space, we will not find an 

objective function value that is less than the value at the global minimum. 

Many tricks have been invented to address the local minima issue when using a 

local search algorithm to train neural networks. For example, training with noisy 

exemplars, and perturbing the parameters after convergence to try to escape from what 

may be a local minima. One of the most common methods is to restart a local 

optimization routine with a new random set of starting values for the weights. This 

2 Technically, (1.5) is defined as a strong local minimum. A weak local minimum is defined as in (1.5) 
with the < relation replaced by :5. 
3 The relation< in (1.6) could be replaced by:,;; for some problems. For example, in the type of neural 
network of concern in this study, symmetries in the mathematical form of the network causes certain 
permutations of the elements of 0 to produce identical outputs from the neural network. 
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restarting method is sometimes called a multi-start algorithm. The quality of the final 

solution from a multi-start algorithm will depend upon the number of restarts. 

While the methods above may lead to improved solutions, there is no guarantee 

that such minima will not also be only locally optimal. Global search techniques are an 

alternative estimation technique. Global optimization algorithms are a class of 

algorithms that seek to avoid getting trapped in local minimums. Two classes of global 

optimization methods exist: stochastic or deterministic approach. It should be noted that 

although methods such as multi-start local optimization algorithms are not generally 

considered a global optimization algorithm, they could be considered a quasi-global 

algorithm. This is because as a practical matter many global algorithms, especially the 

stochastic kind, only offer asymptotic guarantees of a global minimum. Therefore, global 

algorithms may increase the probability of obtaining a good solution but do not offer any 

real guarantees ofreaching a global minimum. Therefore, for some problems, a multi­

start algorithm could be considered competitive with a more traditional global algorithm, 

especially a stochastic algorithm. 

Some deterministic global methods are branch and bound, Lipschitz 

programming, outer approximation, and concavity cuts'. By taking advantage of the 

mathematical structure of the problem, these methods can guarantee, within a specified 

level of accuracy, convergence to a global minimum in a finite amount of time (Horst, 

Pardalos, and Thoai; Ryoo and Sahinidis). For a review of these deterministic 

approaches see Horst and Tuy. 

There have only been a few uses of deterministic optimization techniques for 

learning in neural networks. Tang and Koehler used a Lipschitz optimization approach. 
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Their procedure required solving a number of nonlinear nonconvex maximization 

problems in a recursive manner to find local approximations of the Lipschitz constant. 

Therefore, the algorithm was very numerically demanding. Shang and Wah applied a 

deterministic algorithm they called NOVEL to neural network learning. The NOVEL 

method, introduced by Shang and Wah, is a hybrid global/local minimization method. 

Starting points for a gradient based local search technique are selected by solving an 

ordinary differential equation specifying a trajectory through the search space. Shang 

and Wah indicated that NOVEL performed better than gradient descent, and evolutionary 

algorithms on some benchmark problems. However, the algorithm is computationally 

demanding because it requires the evaluation of differential equations in each global 

search phase. 

Because of their computational requirements for problems with more than a few 

parameters, deterministic algorithms will not be explored in this study. However, it is 

worth noting that the field of deterministic global optimization is fairly new and active 

and new methods may some day be developed which could be appropriately applied to 

learning in neural networks. 

Stochastic global optimization methods have been widely applied to optimization 

of neural networks. Stochastic methods employ random elements in their search 

procedure. None of these stochastic methods guarantee a global solution but if used they 

should increase the probability of obtaining a good solution. Most of these algorithms 

can be shown to converge to the global optimum with a probability approaching one as 

the number of iterations of the algorithm approaches infinity. Simulated annealing (SA) 

and evolutionary algorithms are two of the most commonly used global optimization 
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algorithms and are the two global methods used in this research. The term evolutionary 

algorithm (EA) is used here as an umbrella term encompassing genetic algorithm (GA), 

evolutionary strategies (ES), and evolutionary programming (EP) methods. SA and EA 

methods have been used by many researchers to estimate the parameters of neural 

networks. 

1.3 Literature 

Evolutionary algorithms have been used to estimate neural networks by a great 

many researchers (e.g. Chen and O'Connell; Frenzel; Neruda (1997, 2000); and Yan and 

Zhu). Yao provides a good literature review of combining EA's with neural networks. 

An indexed bibliography ofEA's and neural networks is given by Alander. In this study, 

we are only concerned with estimating the weights of neural networks with a fixed 

architecture. That is, a neural network with a fixed number of hidden layers and hidden 

neurons. However, EA's have also been used to evolve the architecture of neural 

networks as well as the weights ( e.g. Maniezzo; Harp, Samad, and Guha; Miller, Todd, 

and Hegde; Angeline, Saunders, and Pollack; Pujol and Riccardo). In addition, EA's 

have also been used to select training data and interpret the outputs of neural networks 

(Guo and Uhrig; Chang and Lippmann; Brill, Brown and Martin). A review of different 

types of applications ofEA's to neural networks is given by Yao; Whitley; Schaffer, 

Whitley, and Eshelman. 

Genetic algorithms are the most widely used type of EA for estimating neural 

networks. Sexton, Dorsey, and Johnson (1998) compared a GA based training algorithm 

with BP for 7 test problems. Overall, the solutions obtained by the GA dominated the 
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solutions obtained by BP. In addition, the solutions obtained by the GA had 

significantly less variation in the in-sample root-mean-squared error across different runs. 

Bartlett and Downs found that a GA was an order of magnitude faster than BP on the 7-

bit parity problem. However, on the smaller XOR problem data set, Bartlett and Downs 

found that a GA training method was slower than backpropagation. 

In spite of the encouraging, although mixed at times, results of many researchers, 

there are theoretical reasons why a genetic algorithm may not perform satisfactorily for 

training neural networks. Because of symmetries in the mathematical functional form of 

a neural network, there can be numerous equivalent solutions to the optimization 

problem. This is called the competing conventions problem (Whitley) or permutations 

problem (Radcliffe). The permutation problem reduces the performance of a genetic 

algorithm because of its negative effect on one of the basic operational components of a 

genetic algorithm, the crossover or recombination operator. The permutation problem 

interferes with the crossover operators ability to combine solutions from previous 

iterations or generations into new superior solutions. Hancock, however, concluded that 

the permutation problem is not as bad as has been suggested for genetic algorithms. 

Nonetheless, several researchers have proposed solutions to this problem for genetic 

algorithms. Montana and Davis attempted to incorporate knowledge of the functional 

aspects of hidden neurons into a crossover operator for their genetic algorithm. They 

compared their GA to BP for optimizing a neural network for the classification of sonar 

data. It was found that the GA outperformed BP by a large margin. Rooij, Jain and 

Johnson proposed a crossover operator similar in concept to that of Montana and Davis. 

When compared against BP on 5 classification problems, Rooij, Jain, and Johnson found 
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that their genetic algorithm was less susceptible to becoming stuck in local minimums, 

however, overall the GA was only marginally better than BP and BP was significantly 

faster on some problems. 

Evolutionary programming and the closeJy related evolutionary strategies are two 

evolutionary algorithms that typically do not employ crossover operators but instead rely 

mainly on mutation operators to modify the chromosomes. Since they do not use 
I 

crossover, they may theoretically perform better than GA's for training neural networks. 

Porto, Fogel, and Fogel compared an evolutionary programming method with 

backpropagation for a sonar classification problem. They found that evolutionary 

programming performed better thjlll backpropagation. Backpropagation repeatedly 

stalled at suboptimal weight sets that did not yield satisfactory results. The drawback of 

the study was they only used one data set and compared evolutionary programming to 

inefficient BP. 

" In addition to EA's, SA algorithms have been applied to a wide extent in training 

neural networks. In the study by Porto, Fogel, and Fogel mentioned above, an SA 

algorithm was also included in the comparison. The SA algorithm performed similarly to 

the EP algorithm. Sexton, Dorsey, and Johnson (1999a) compared the performance of a 

simulated annealing algorithm from Goffe, Ferrier, and Rogers against BP on the same 7 

test problems from Sexton, Dorsey, and'Johnson (1998). The simulated annealing 

algorithm exhibited superior performance with respect to both in-sample root-mean-

square error as well as out-of-sample interpolation and extrapolation. Cohen, Saad, and 

Marom used the adaptive simulated annealing algorithm of Ingber for training of a time 

delay recurrent neural network (TDRNN). The training of TDRNN is known to be a very 
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difficult problem. Day and Camporese used a SA algorithm to train a network with non­

differentabilites in the objective function with success. However, they also reported that 

a stochastic tunneling algorithm required less time than the SA algorithm. Others 

successfully using SA or a modified SA algorithm are Fang and Li; and Barnes, O'Neill 

and Wood. 

Evolutionary algorithms and simulated annealing are not efficient at fine tuning a 

local search but are designed to be adept at exploring the search space and finding 

regions that may contain a good solution. Therefore, an alternative use of these global 

algorithms is for finding a good set of initial weights for a local optimization routine. 

This type of hybrid method would be expected to outperform either a local gradient 

method or a global algorithm used individually. Many researchers have used this type of 

hybrid training (e.g. Chen and O'Connell; Lee;Omatu and Deris; Erkmen and Ozdogan; 

Omatu and Yoshioka; and Xinxing and Licheng). Belew, Mcinerney, and Schraudolph 

used a hybrid approach with a genetic algorithm to generate starting values for a 

conjugate gradient or backpropagation local optimization algorithm. They found that 

training times could be reduced by as much as two orders of magnitude. However, their 

research was limited to a single data set. Skinner and Broughton reported that for a small 

network (18 weights), the local conjugate-gradient algorithm outperformed a .GA in 

addition to a SA and a swarm search algorithm. However, for a larger more complex 

parameter space, (98 weights), a hybrid scheme with simulated annealing or genetic 

algorithms in combination with conjugate-gradient local search technique showed a 

dramatic improvement in convergence. They also reported that they have successfully 

used their hybrid approach to train networks with as many as 600 weights. Heistermann 
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reported that a hybrid EA and gradient algorithm outperformed the gradient algorithm 

alone for large problems. Although he also reported that for small to medium size 

problems the gradient algorithm was more efficient than the hybrid method. Other 

studies have also found superior performance for hybrid techniques (Likartsis, Vlachavas, 

and Tsoukalas; Yan, Zhu, and Hu ; and Knowles, Come, and Bishop). However, Kitano 

reported contradictory results. Kitano found that a hybrid GA-BP method was at best 

equally efficient to faster variants of BP in neural networks of small size and were far less 

efficient in large networks. 

Besides simulated annealing and evolutionary algorithms, other types of 

stochastic optimization algorithms have been proposed. Baba et al. presented a hybrid 

algorithm that used a combination of the Solis and Wets random optimization method 

and conjugate gradient training. They compared the hybrid algorithm to local 

optimization routines on 3 different problems and found that their hybrid method was 

very efficient at finding low error values as compared to conjugate gradient and 

backpropagation training. Brunelli introduced a new stochastic algorithm called iterated 

adaptive memory stochastic search (IAMSS) and found that it performed better than 

backpropagation on two test problems. Barnard also proposed a new stochastic training 

technique that performed well against various local optimization techniques. 

1.4 Research Objectives 

Overall, with some exceptions, the literature shows that global optimization 

algorithms such as evolutionary algorithms or simulated annealing, used alone or in 

combination with a local search algorithm, offer some advantages. From an experimental 
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evaluation standpoint, many of the studies reviewed in the previous section are lacking in 

quality. Many of the studies looked at the performance of the algorithms on only few 

data sets, and in some cases only a single data set. In addition, the majority of the data 

sets were classification problems. Little attention has been paid to function 

approximation problems. The majority of the studies above compared global algorithms 

to BP. It is well known that there are much more efficient alternatives than BP local 

optimization routines. Yao' s review concludes that contradictory results are partially due 

to the fact that in some studies, the EA's were compared with the relatively slow BP 

algorithm. Also, few of the studies have compared results across different global 

optimization routines. This study attempts to provide a more rigorous comparison of 

several global algorithms against efficient local optimization routines across a wide 

variety of data sets, both real-world and simulated data, in a function approximation · 

context. The objectives of this study are as follows. 

General Objective: 

Determine the relative speed and accuracy of alternative global optimization 
methods in estimating the weights of neural networks. 

Specific objective: 

Determine the relative speed and accuracy of 10 alternative global optimization 
algorithms for estimating the weights of neural networks by performing multiple 
estimations from random starting values on 6 function approximation problems 
and analyzing the running time and distribution of the final objective function 
values over the multiple estimations. 

1.5 Procedure 

The objectives given above are addressed by estimating the parameters of neural 

networks trained on 6 different function approximation problems in a Monte-Carlo 
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setting. This is done by repeating the estimations on each of the data sets numerous times 

from different starting values. The objective function values after convergence from each 

of these restarts are saved for further analysis. 

This study is limited to estimation of the parameters of a particular type of 

feedforward type of neural network, the multilayer perceptron (MLP). The number of 

hidden layers and hidden neurons is chosen based on previous usage of the particular data 

set of interest or on an ad-hoc basis. Depending upon the size of the estimation problem, 

either a quasi-Newton or conjugate gradient algorithm is used for the local optimization 

routine. The global optimization algorithms investigated are two simulated annealing 

algorithms, one simple random stochastic algorithm, one genetic algorithm and five 

evolutionary strategy algorithms. All of the global optimization algorithms are a hybrid 

between the aforementioned global algorithms and one of the local search techniques. 

The weights after convergence of the global algorithm are used as starting values for the 

local optimization algorithm. 

The results of the Monte-Carlo estimations will be displayed both numerically 

and graphically. The results will be displayed graphically using histograms and boxplots 

of the final converged objective function values. In addition, basic statistics such as 

mean, median, standard deviation and maximum and minimum values will be computed 

for the objective function values for each data set and each algorithm. In addition to the 

basic statistics, analysis will be performed which takes into account the computing time 

involved with a particular algorithm. An algorithm that converges to a minimum quicker 

than another algorithm could be restarted from different starting points more times in a 

given amount of computing time than a slower algorithm. Therefore, even though a 
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slower algorithm, e.g. a genetic algorithm, may be more successful at finding lower 

minimums than say a relatively faster local search algorithm, e.g. a conjugate gradient 

algorithm, the local search algorithm could be rerun more times in a given time frame. 

Therefore, the local search technique may be competitive with the global algorithm. 

1.6 Organization 

Chapter 2 discusses the theory of neural networks. The history and development 

of neural netw01;ks is briefly discussed and some applications of neural networks are 

presented. The theory of the multiplayer pei"ceptron type offoedforward neural network 

will be presented in detail in addition to a brief discussion of a few other types of neural 

networks. 

Chapter 3 discusses some global optimization algorithms including evolutionary 

algorithms, simulated annealing, and a simple stochastic optimization algorithm 

introduced by Solis and Wets. The first section introduces two evolutionary algorithms, 

the genetic algorithm and several evolutionary strategy algorithms. It also discusses 

some issues related to implementing an evolutionary algorithm for the training of a neural 

network. The next section discusses two different simulated annealing routines and 

finally the last section discusses the stochastic optimization routine proposed by Solis and 

Wets. 

Chapter 4 presents the details of the methods used to accomplish the research 

objectives. The first section presents some of the details and the relevant parameter 

setting of the optimization algorithms used in this research. Next is a description of the 
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data sets. The last section describes how the results of the simulations will be presented 

and contains a description of some of the statistics used to summarize the results. 

Chapter 5 presents and discusses the results of the study. The results of the 

estimation of the parameters of the neural network models on the data sets across the 

various training algorithms are presented. Mean, median standard deviation, and 

maximum and minimum values obtained across restarts are presented for each of the data 

sets and training methods. Graphical displays of the distribution of objective function 

values after convergence from the various training algorithms .is displayed in histograms 

and box plots. The results are discussed irt the context of the research objectives. 

The last chapter summarizes the study's results and conclusions. General 

conclusions on the applicability of the various optimization algorithms used in this study 

for estimation of multi player perceptrons are presented. Some directions for future 

research are also discussed. 
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2.1 Introduction 

CHAPTER2 

NEURAL NETWORKS 

The human brain is a marvel of nature, for many tasks it is superior to the most 

complex supercomputer. The human brain is especially adept at processing visual 

information; recognizing objects, faces, and so on. A brain can adjust to a new 

environment by "learning" and it can deal with information that is fuzzy, noisy, or 

otherwise inconsistent. Because of these factors, researchers have sought to use the · 

biological concepts of the brain and its neurons to develop new computing and pattern 

recognition paradigms. These efforts led to the development of various biologically 

inspired input-output models in the 1950's and 60's. Development in this area virtually 

ceased when Minsky and Papert showed in 1960 that a particular type of these models, 

perceptrons, could not solve some very simple problems. 

Research in biologically-inspired models began anew in the early 1980's and 

culminated in the work ofRumelhart and the PDP Group. The work ofRumelhart and 

the PDP Group is credited for much of the revitalized research in biologically inspired 

input-output models, hereafter, generically referred.to as neural networks. Rumelhart, 

Hinton and Williams developed what has become known as the backpropagation neural 

network. The backpropagation neural network is referred to as a feedforward neural 

network in this research. The backpropagation neural network overcame many of the 
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shortcomings of the perceptron which was criticized by Minsky and Papert. It should be 

noted that W erbos in 197 4 developed the mathematical framework for the 

backpropagation neural network, however, his work went unnoticed at the time. 

The next section of this chapter briefly discusses some applications of neural 

networks and alternative neural network paradigms. Section 2.3 presents the feedforward 

type of neural network in detail. Section 2.4 discusses feedforward neural network's 

flexible functional form and their abilities as universal approximators. The last section 

discusses and presents some methods for estimating the parameters of feedforward neural 

network. 

2.2 Applications and Types of Neural Networks 

Neural networks are flexible and have been used to solve many different 

problems. Some of the applications have been to perform coordination tasks (Hougen, 

Fischer, and Johnam), decode deterministic chaos (Lapedes and Farber; Gallant and 

White), and recognize hand-printed characters (Fukushima and Miyake). Trippi has 

assembled various papers which use neural networks in financial market forecasting, 

macro economic prediction, credit risk classification, exchange rate prediction and other 

applications related to finance and economics. 

The most common uses of neural networks can be classified into the following 

categories: classification, associative memory, and autoassociative memory. An example 

of classification would be to classify sonar signals as those reflecting from a submarine or 

from a naturally occurring underwater object. An example of an associative memory 

application would be any time series model or a price prediction model. An 
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autoassociative network is one in which some pattern that has been corrupted by noise is 

presented to the network and the network reproduces the original uncorrupted pattern. In 

general a neural network can be viewed as estimating a map f : X ~ Y where Xis the 

space of inputs or independent variable and Y is the space of outputs or dependent 

variables. In the case of classification Y is a n x 1 vector of variables, each of which 

indicate inclusion or exclusion in one of n different categories. In an associative memory 

application Y is a vector containing that which is to be predicted. In an auto associative 

application Y=X, where Xis the uncorrupted version of the input pattern. 

The term "neural network" can mean different things to different people. The 

term neural network defined in its most general sense is an architecture in which its 

operations are distributed among many relatively simple processors (Masters, 1993). 

This definition suggests a great deal of flexibility in what computing paradigms· can be 

called neural networks. Indeed, a great deal of research has been devoted to developing 

different types of neural networks. The literature is extensive and developing rapidly and 

therefore a complete review of the subject is beyond the scope of this research. However, 

for the interest of those readers seeking to do research in this area, several different types 

of neural networks are briefly discussed below. 

Some models that are decades.old have received renewed interest because they 

are easily recast as a neural network. For example Donald Specht's probabilistic neural 

network which is used for classification is identical to kernel discriminant analysis (Sarle 

1994b ). Another example would be the functional link network developed by Yoh-Han 

Pao. The functional link network is simply a multiple regression with a nonlinear front­

end, and a nonlinear transformation applied to the output (Masters, 1993). These two 
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types of modeling techniques suddenly attracted attention when they were presented in 

the context of a neural network. 

Other types of neural networks such as feedforward neural networks and radial 

basis function (RBF) networks are more unique. However, there are some similarities 

between these types neural networks and existing modeling techniques. It will be shown 

later that the standard feedforward type network could be thought of as a form of 

nonlinear regression. Xu, Krzyzak, and Yuille have established some useful connections 

between kernel regression estimators and RBF networks. Feedforward neural networks 

are the focus of this research and are discussed in detail in the next section. 

2.3 Feedforward Neural Networks 

In light of the considerable hype which sometimes surrounds neural networks, it 

would be useful to discuss what a feedforward neural network is not before discussing 

what a feedforward neural network is. Neural networks were originally inspired by the 

way in which a group of biological neurons process information. Therefore, the 

development of neural networks has its roots in neuroscience. There are obvious 

analogies that can be drawn between the functioning of artificial neural networks and 

their biological counterparts. However, an artificial neural network is a much simplified 

model of the way a collection of brain cells operate. In fact, beyond simple analogies, the 

neurons in an artificial neural network share little in common with their biological 

counterparts. 

The word neural probably leads people to sometimes write that a neural network 

simulates the behavior of the human brain. The human brain contains about 1.5 x 1010 

20 



neurons of various types and each neuron receives signals from 10 to 104 other neurons 

(Ripley). Therefore, an artificial neural network is a much simplified mathematical 

representation of the way a relatively small collection of biological neurons operate. The 

process by which biological neurons process information is complex. The 

communication between neurons is both electrical and chemical and each of these 

communication process is complex. As will become clear in the next section, the neurons 

or processing elements in an artificial neural network are simple nonlinear functions and 

the "communication" between the neurons is linear. However, even though a neural 
I 

network shares little in common with the workings of biological neurons, they are 

powerful enough to possess the ability to "learn" from experience, develop rules, and 

recognize patterns in data. 

If an artificial neural network is not a model of the brain, the question is what is a 

neural network? Before proceeding with the answer to this question, it would be useful 

to associate some of the terminology used in the neural network literature to the 

corresponding terminology used in statistics or econometrics. The neural network 

literature refers to (Sarle 1994b ): 

- independent variables as inputs 

- dependent variables as targets 

- predicted values as outputs 

- individual variables as a feature 

- estimation as training, learning, adaptation, or self-organization. 

- observations as training patterns 

- parameter estimates as synaptic weights or connection strengths. 
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The following discussion describes how a feed forward type network with one 

hidden layer produces its output given some input. The notation in the following sections 

borrows heavily from that used in Kuan and White and Frances and Dijk. Figure 2.1 

provides a reference for the discussion. The figure is a graphical representation of a 

feedforward neural network with 3 inputs or independent variables, one hidden layer with 

2 hidden neurons, and 1 output or dependent variable. The neurons in a neural network 

are arranged in layers. The input layer contains the inputs or independent variables at 

time t and the output layer contains the output(s) or dependent variable(s) at time t. Note 

that similar to a vector autoregression model, there could be more than one dependent 

variable. 

Assume we are given a set of T observations or data pairs { ( x:, y:)} ~=t where x, is 

a k x 1 vector of explanatory or independent variables and y, is a d x 1 vector of 

dependent variables. Then for each observation t, the k input neurons send the signals 

X; , , i = 1, ... , k to the h neurons in the hidden layer via connection weights or model 

parameters y .. , j = 1, ... , h . Note that in figure 2.1 there is an input x0 ,. This input or 
IJ ' 

neuron is sometimes called a bias neuron and its value is defined to be always 1. 

Therefore, we have inputs to the network defined by x, = (x0 , = 1, x:). Each hidden unit 

j takes a linear combination of the inputs by summing the product of the weights 

connecting the inputs to itself times those inputs, or in other words taking the dot product 

x;-yj where yj =(ro,j,Yt,j""'rk,j). Bysettingthebiasneuron x0,1 =1,theweightor 

parameter y o,j for each hidden neuronj is somewhat analogous to the intercept in a linear 

regression. 
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Y, 
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Output layer 

lf/0,1 = 1 Pj weights 

lf/1,, = G(x:r1) Hidden layer 

Yi,j weights 

Input layer 

-+ 
X 0 =1 ,t Xz,t 

Figure 2.1 Feedforward NeuralNetwork With One Hidden Layer 

The linear combination of the network inputs to each hidden neuron is processed 

by a nonlinear 'activation function' G: 9l ~ 9l. The output or activation of hidden 

neuron} is G(x;-yj) or altemative{y 

k 

(2.1) G(ro,j + ~)x;,1 ·r;,)) · 
i=I 

In other words, each hidden neuron in figure 2.1 is a nonlinear single (scalar) valued 

function whose input is a linear combination of the networks inputs or independent 

variables. The form of the activation function G() can be chosen quit freely, however 

the function is generally monotonically increasing. In addition, the activation function in 

the hidden layer must be nonlinear. A nonlinear activation function is responsible for the 
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nonlinear approximation capabilities of the feedforward type neural network. The 

nonlinear approximation capabilities of neural networks will be discussed in more detail 

· in a later section. The two most commonly used activation functions, and the ones used 

in this research, are the logistic and hyberbolic tangent functions. The logistic function is 

defined by 

(2.2) G(z) = 1/[1 + exp(-z)], 

and the hyperbolic tangent by 

(2.3) G(z) = tanh(z) = (ez -1)/(ez + 1). 

The activations or outputs from the hidden neurons are passed to the output 

neuron(s) in an analogous manner as from the input layer to the hidden layer. Let the 

output from each hidden neuronj be represented by IJli = G(x;)'). The hidden layer 

sends the signal fp = ( IJI O = 1, IJl1, • •• , IJI h )' to each of the q neurons in the output layer via 

weights or parameters pi.i, i = 0, ... , h, j = 1, ... , q . The term If/ o,, = 1 serves the same 

purpose as x01 does in the input layer. The output neuron(s) process the signals from the 

hidden layer in the same way that the hidden neurons process the signals from the input 

layer. That is by taking a linear combination of the outputs of the previous hidden layer 

and passing it through an activation function. Assuming an output activation function F, 

the output from neuron i, which is the neural networks estimated value of Y;,, would be 

Y;,1 =F(fp:fJJ where fJ; =(Po,;,Pi,;,···,Pq,J' or alternatively 

h 

(2.4) Yi,t = F(Po,; + L(lf/j,t · fi;,)), 
j=I 
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where his the number of hidden neruons. Note that in figure 2.1, there is only one output 

neuron. The activation function in the output layer is analogous to the activation function 

in the hidden layer. The discussion above generalizes to the case of a neural network 

with more then one hidden layer. In that case, the outputs from the neurons in the 

previous hidden layer become inputs to the neurons in the next hidden layer, and so on, 

until the output layer. 

Using the notation and discussion from above, the function relationship in a 

feedforward neural network with one hidden layer between the independent variables and 

the estimated value for a particular dependent variable i and observation t is: 

h 

(2.5) Y;,, = f(x,,fJ;) = F(Po,; + LPj,;G(x.;-yj)) 
j=I 

where fJ; = (Po,;, Pi,;, ... , P h,i, -y;, -y;, ... , 'Y~) is the vector of model parameters or weights 

and h is the number of hidden neurons in the single hidden layer. It is not necessary to 

have an activation function in the output layer for a feedforward neural network to be a 

universal approximator. Therefore for function approximation types of problems, the 

activation function in the output layer is often dropped. If we assume that the activation 

function Fis the identity function F(a) = a and for simplicity there is only one output or 

dependent variable, equation (2.5) reduces to 

h 

. (2.6) f(x,,fJ) =Po+ LPjG(x.;-yj) 
j=I 

where (} = (Po, PP ... , Ph, 'Yi, 'Y 2 , ••• , 'Y h )' is the n x 1 vector of parameters or weights that 

must be estimated. 

The input variables can be included as linear regressors by using direct 

connections between the inputs and outputs. Modifying (2.6) we have: 
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h 

(2.7) f(x"8) = x;<J, +Po+ LPjG(x.;-yj) 
j=I 

activation level is the identity function, as it is in (2. 7) above, we have a standard linear 

regression model augmented by nonlinear terms. The hidden layer neurons in (2. 7) can 

be viewed as latent variables that enrich the linear model (Kuan and White). 

From the preceding discussion, it is clear that the neurons in a neural network 

need not be thought of as mysterious. All neurons in a neural network are mearly 

"processing elements". Neurons in the input layer serve as "input terminals" to the 

network for the independent variables. The neurons in the hidden layer(s) are processing 

elements that take a linear combination of the outputs from the neurons in the previous 

layer and passes this value through nonlinear activation function. The neurons in the 

· output layer are also processing elements that perform a linear combination of the outputs 

· from the neurons in the last hidden layer. The neuron(s) in the output layer may perform 

no further processing, as in (2.6), or may apply an activation function such as in (2.5). It 

can be seen from equations (2.5)-(2. 7) above that a feedf'orward neural network can be 

considered a nonlinear regression. Standard iterative estimation techniques familiar to 

econometricians for estimation of nonlinear models can be used to estimate the n model 

parameters in 8. However, as opposed to most nonlinear regression model, neural 

networks, because of the nonlinear activation functions in the hidden layer, are flexible 

function forms capable of approximating almost any function. Neural networks are thus 

said to be universal approximators. 
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2.4 Neural Networks as Universal Approximators 

It has been shown that single hidden layer feedforward neural networks of the 

type discussed in the previous section and depicted in figure 2.1 are "universal 

approximators". In other words, given sufficiently many hidden units and properly 

adjusted model parameters 8 , a neural network can approximate an arbitrary mapping 

arbitrarily well for a large class of functions. The theoretical function approximation 

capabilities of feedforward neural networks have been explored by Hornik, Stinchcombe, 

and White (1989), Cybenko, and Carroll and Dickinson. Barron showed that the 

approximation capabilities of feedforward neural networks require the number of 

parameters grow linearly. Other function approximation methods, e.g. polynomial, 

spline, and trigonometric expansions, require that the number of parameters grow 

exponentially for comparable approximation. The universal approximation properties of 

neural networks are the key to the demonstrated usefulness of neural networks in many 

applications as well the potential usefulness of neural networks in economics. With a 

neural network there is no need to explicitly identify the functional form. Only the 

variables relevant to the particular problem need be identified. 

To be more precise, the universal approximation property means that for any 

continuous function g(x,~), every compact subset K of mk, and every 8 > 0, there 

exists a neural network f ( x, 8) , such that 

(2.8) suplf(x,8)- g(x,~)I < 8. 
XEK 

In (2.8), g(x,~) represents the true (unknown) model that we are trying to approximate. 

In reality, unless we are modeling a deterministic process with known inputs, what we 
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generally have is f ( x', 8) or f ( x', z, 8) where x' c x and z is some other vector of 

inputs that are superfluous to the process we are modeling. 

Given a sufficient number of hidden neurons, the approximation capability of a 

neural network is dependent upon our ability to set the values of the parameters in 8 

appropriately. The next section discusses the procedure to set the values for 8 . This 

procedure is referred to as estimation in statistics or economics and learning in the neural 

network literature. 

2.5 Learning (Estimation) in Neural Networks 

The objective of training a neural network is to find an optimal set of weights 8 

such that some objective or cost function is minimized. The most common objective or 

cost function is the least squares function. Suppose we are given a set of training data 

composedofTobservationsordatapairs {(x~,y~)};=1 where x, isa kxl vectorof 

explanatory or independent variables and y I is a q x 1 vector of dependent variables. 

Then the training of a neural network /(x"8) by the least squares objective function is 

defined by: 

T 

(2.9) minQ(B) = "[y, - /(x,,B)]2 
8e0 .L..J 

t=l 

where y, is the dependent variable, and 0 is the space of feasible weights or model 

parameters and /(x,,8) is from say (2.7). 

A term that penalizes large weights is sometimes added to the objective function. 

Addition of this penalty term is referred to as weight decay. Various penalty terms may 

be used but the most common is the sum of squared weights times a decay constant. This 
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form of weight decay in a linear model is equivalent to ridge regression. See Bishop for 

other forms of weight decay. Augmenting the cost function in (2.9) with terms that 

penalize the squared value of large weight values yields: 

(2.10) 

where r,;, rp, and rr are weight decay constants. The weight decay constants may be set 

to for example r,; = .01, and r9 = rr = .0001, as they are in Franses and Dijk. The weight 

decay penalty term in (2.10) will cause the weights to converge to smaller values then 

they would under the objective function in (2.9). 

Large weights can hurt the generalization performance of a neural network. 

Excessively large weights leading to hidden neurons can cause "saturation" of those 

neurons. A saturated hidden neuron will produce outputs at the extremes of its activation · 

function's range for all or most of the observations of training data. For example, if the 

activation function is the sigmoid function given in (2.2), the neurons output will be near 

0 or 1. This causes the outputs from the neurons to be too "rough". Excessively large 

weights leading to output units can cause outputs beyond the range of the data. In other 

words, large weights leading to the hidden layers and/or output layers can cause 

excessive variance of the outputs (Geman, Bienenstock, and Doursat). Statistical theory 

tells us that a neural network with a large number of weights relative to the number of 

observations in the training data may have poor generalization performance. Bartlett 

claims that the size of the weights is more important then the number of weights. 

Many algorithms from the field of nonlinear optimization have been applied to 

minimize (2.9) or (2.10), including gradient or steepest descent, conjugate gradient, 
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Newton, and Quasi-Newton methods (Smagt). The aforementioned optimization 

algorithms are iterative procedures. Given a function to be optimized, an initial weight 

vector (J <0> is chosen. In practice the initial weight vector (J <0> is usually chosen 

randomly. For each iteration i, a direction u<i) and a stepsize au> are calculated by the 

optimization algorithm and the weight vector is updated as 

(2.11) 

Assuming we are minimizing the objective function, the goal of (2.11) is to decrease the 

value of the objective function with each iteration. Thus the problem of minimization of 

a function by iterative methods is finding the values for u<i) and a<i) to accomplish this. 

This task is made difficult due to the fact that we only have information about the 

objective function in a small neighborhood around (JU>. 

Derivatives of the objective function with respect to (JU> provide information 

about the behavior of the objective function in a small neighborhood around (JU>. 

Rumelhart et al. derived analytical derivatives for neural networks and proposed an 

algorithm that become known as backpropagation. It is a well known fact from 

elementary calculus that the value of any function f(fJ) decreases quickest in the 

direction - Vf(fJ), or in other words, in the negative direction of the gradient. Thus it 

would seem reasonable to let u<i) in (2.11) = -Vf(fJ). Backpropagation utilizes this 

principle. Backpropagation is similar, and in some cases, equivalent to the traditional 

gradient descent algorithm. Backpropagation, as it was originally implemented, departs 

from a true gradient descent by adjusting the weights after the presentation of each 

observation as opposed to adjusting the weights after presentation of all the observations 

in a training set. 
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During the early development of neural networks, and sometimes still, 

backpropagation was the most commonly used training algorithm and was some times 

viewed with Mystique. As Kuan and White write 

For a period, artificial neural network models coupled with the method of 
backpropagation came to be viewed as magic, with considerable accompanying 
hype and extravagant claims. 

Those familiar with nonlinear optimization theory know that gradient descent is inferior 

to many other algorithms which are available. Gradient Descent is very slow to converge 

and in addition, if the error surface has ''valleys", it can suffer from a condition known as 

hemstitching (A vriel). Hemstitching is a condition in which the weight changes 

"bounce" from wall to wall, making little progress down the valley. Hagan, Demuth, and 

Beale in addition to Sima also discuss of some of the drawbacks ofbackpropagation for 

training neural networks. The preferable optimization routines would be Levenberg-

Marquardt (Hagan and Menhaj), various Newton and Quasi-Newton methods (Smagt; 

Battiti), and conjugate gradient methods (Kinsella; Barnard). Despite the efficiency of 

the aformentioned algorithms in training neural networks, the estimation procedure is still 

problematic. The optimization algorithm mentioned above are local search algorithms. 

They proceed downhill to the nearest minimum. The objective function to be minimized 

when training neural networks contains numerous local minima. Therefore, some users 

have used so called global search algorithms as an alternative to the more traditional local 

search algorithms. 
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3.1 Introduction 

CHAPTER3 

GLOBAL OPTIMIZATION 

Many optimization solutions to real world modeling problems in areas such as 

financ~, statistics, and engineering design are characterized by multimodal, nonconvex, 

objective functions. Standard optimization methods may fail to find adequate solutions 

to these problems since they may only find a local minimum. Because of this, interest 

and application of global optimization methods has been increasing. Global optimization 

is concerned with finding the true global minimum of nonlinear functions. The 

increasing interest in global optimization methods is partly fueled by the rapid increase in 

computing power available. Researchers have been emboldened to tackle increasingly 

difficult optimization problems that would have been computationally impractical a few 

years ago. 

Global optimization algorithms can be divided into two broad catagories, 

stochastic and deterministic. Deterministic algorithms will not be discussed here because 

of their significant computational requirements for larger optimization problems such as 

neural network estimation. Instead, stochastic global algorithms will be presented in this 

chapter. Stochastic global algorithms have been applied to a very wide range of 

problems, including large-scale optimization problems. Some examples of stochastic 
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search algorithms are simulated annealing and various evolutionary algorithms such as 

genetic algorithms, evolutionary strategies, and evolutionary programming. 

The aforementioned stochastic global optimization algorithms have similarities 

and differences among themselves with respect to their main operating mechanisms. 

However, a concept at the core of all stochastic global optimization algorithms is the 

generation of a stochastic move from the current point. For an iteration i of the 

algorithm, this move from a point (J(i) E ~Jr can be characterized as follows: 

(3.1) 

where r is a random vector drawn from some probability density function p((JU> ,<p) 

where <p represents the parameter(s) of the p.d.f., for example the standard deviation. 

The stochastic or random move is referred to as a mutation in the evolutionary algorithm 

literature. 

The point 7f<i) generated by a stochastic move such as that in (3.1) is sometimes 

called a trial point. The point (J (i) will be called the predecessor point in this discussion. 

In some algorithms, such as some evolutionary strategies, if Q(7f <i)) < Q((J<i)), then we 

automatically set (J (i+I) = 7f (i) and the algorithm proceeds to the next iteration. In other 

algorithms, the trial point is accepted, i.e. replaces its predecessor, based on some 

probability. This latter approach is taken in simulated annealing algorithms, genetic 

algorithms, and some evolutionary strategy algorithms. Some stochastic search 

algorithm, such as genetic algorithms, and some evolutionary strategies, generate 

multiple trial points in parallel. The generation of trial points may look like: 
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o<i) =fJ(i) +r 
1 1 1 

(3.2) 

0 U> = fJ U> + r 
p p P' 

Where r is similarly defined as in (3 .1) and p is the number of trial points. In the case of 

(3.2), the acceptance of a trial point for the next iteration of the algorithm may depend 

upon its performance in relation to its predecessor point as well as all other trial points 

and/or their predecessor points. 

Some algorithms, such as genetic algorithms and evolutionary strategies, generate 

trial points by combining the "information" in two randomly chosen trial points in 

addition to mutations such as those in (3 .2). This may be performed by randomly picking 

two integers i, j e [1, p] where i -:t:- j and performing the following operation: 

(3.3) 
0 ~k) = a .fJ ~k> + a.fJ <~>, 

] ] I I ] 

where a; and a j are appropriately chosen n x 1 vectors. In other words, generating two 

new trial points by taking a linear combination of both predecessor points. Generating 

trial points in this way is often referred to as crossover or recombinaton. In a genetic 

algorithm and evolutionary strategy, the crossover operation is normally performed 

before mutation. Genetic algorithms emphasize crossover operations like that performed 

in (3.3) and evolutionary strategies emphasize random mutation like that performed in 

(3.2). 

A stochastic mutation like that in (3.1) or (3.2) would move to a new point in the 

neighborhood of the old point. The magnitude, or probability radius, of such a move 

would be dependent upon the degree of perturbation, i.e. standard deviation. This 

perturbation, and for some algorithms, the probability of accepting an uphill move, 
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enables stochastic global algorithms to escape a local minimum. An operation such as 

that peformed in (3.3) could move the search to a new region of the solution space. 

These characteristics, along with the parallel search characteristics of some of the 

algorithms, allows a wide search range of the solution space. The goal being to find a 

global minimim point, (J min , such that 

(3.4) 

where Sis the solution space and QO is the function being minimized or the objective 

function. Stochastic global optimization methods in general do not guarantee to find the 

global minimum given in (3.4). Statistically we can prove that stochastic methods 

coverge to a global minimum with a probability approaching one as their running time 

goes to infinity. This is not necessarily an impressive feat since we are interested in 

algorithms that can be run in a reasonable amount of time. However, in comparison to 

traditional local optimization methods, they theoretically should increase the likelihood 

of finding a "good" solution. 

References for further aspects of global optimization not addressed in this text are 

Floudas; Pinter; Horst and Pardalos; Gray et. al., and Neumaier. The following sections 

review the two most common evolutionary algorithms, namely genetic algorithms and 

evolutionary strategies, in addition to simulated annealing and a simple stochastic 

algorithm attributed to Solis and Wets. Section 3 .2 covers genetic algorithms. Section 

3.3 discusses the other major type of evolutionary algorithm, the evolutionary strategy. 

Finally simulated annealing and the simple stochastic algorithm of Solis and Wets are 

covered in sections 3.4 and 3.5 respectively. 
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3.2 Genetic Algorithms 

3.2.1 Introduction 

Genetic algorithms were introduced and investigated by John Holland, along with 

colleagues and students, at the University of Michigan. A book by Holland as well as 

research by one of his students, De Jong, describe the theory and implementation of their 

proposed genetic algorithm (GA). The genetic algorithm model introduced by Holland 

still applies to much of the current theory. In addition, the Simple Genetic Algorithm 

(SGA) of Holland, still serves as a template for all genetic algorithms. The intent of 

Holland was not to develop an algorithm for the solution of optimization problems. 

Holland's goal was to study the process of adaptation in nature and to develop computer 

models of this natural adaptation. Nonetheless, since their introduction, genetic 

algorithms have been developed as algorithms to solve optimization problems, and have 

been applied to a wide variety of problems. Since a biological motivation underlies the 

original development of genetic algorithms, terms from biology'are used to describe their 

algorithmic operations and mechanisms. 

It should be noted that the terminology in the genetic algorithm literature is not 

always consistent. For example, A real-valued vector, or a vector of bit strings as the 

case may be, representing a potential solution to the optimization problem, may be 

referred to as a chromosome, gene, or individual. In addition, the terminology is 

sometimes logically inconsistent across the literature and even compared to the meaning 

of the equivalent terms in biology. For example, the term chromosome is sometimes 

used to refer to a specific term or parameter in a vector representing a solution to a 

problem, instead ofto the whole vector. This is also inconsistent because in biological 
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terms, the genetic content of an individual is distributed over more than one chromosome. 

This text will endeavor to be more consistent. 

A genetic algorithm works from a set of potential solutions to the optimization at 

hand. In the case of estimating the weights of a neural network, each potential solution 

represents a set of neural network weights (J • The set of potential solutions is referred to 

as a population. In the literature, each potential solution is often referred to as a 

chromosome or individual and a collection of individuals is referred to collectively as a 

population. The terms chromosome and individual will at times be used interchangeably 

in this text. Each iteration of a genetic algorithm is referred to as a generation. The 

individuals in a population are each assigned a value called the fitness value, which 

measures its goodness with respect to solving the optimization problem. The fitness 

values are assigned by a fitness function that is in turn a function of the objective function 

value associated with that individual. Operators are sets of functions or procedures which 

operate on the population to form the next generation from the current generation with 

the goal of on average finding a better solution to the problem in each generation. The 

following summarizes some of the genetic algorithm jargon: 

Chromosome or individual - A potential solution to the optimization problem at 
hand. In the case of this research, each potential solution represents a set of 
neural network weights (J • 

Population - A set of chromosomes (individuals) referred to collectively as the 
population. 

Fitness - Each individual in a population is assigned a value called the fitness, 
which measures its goodness with respect to solving the optimization problem. 

Fitness function - The fitness values are assigned by a fitness function that is in 
turn a function of the objective function value associated with that individual. 

Generation - Each iteration of a GA is referred to as a generation. 
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Operators: selection, mutation, crossover - Functions or procedures that operate 
on the current generation of individuals to form the next generation of individuals. 
The primary operators of genetic algorithms are selection, mutation and crossover 
operators. 

With this terminology in hand, we can sketch out the basic outline of a genetic algorithm: 

Step 0: Randomly initialize a population of individuals. Using the fitness 
function, evaluate the fitness of each individual in the population. 

Step 1: Test for termination criterion, e.g. elapsed time or generations, best 
fitness value, etc. 

Step 2: Apply the selection operator to the current population to form an 
intermediate population of parents for offspring production. 

Step 3: Apply the following reproduction operators in turn to the intermediate 
population: 

crossover operator - recombine the "genes" of selected parents, 
mutation operator - randomly perturb individuals. 

Step 4: Evaluate the fitness of each individual in the intermediate population. 
Based on the fitness values, select the survivors ( offspring) from the 
intermediate population. 

Step 5: Form the population for the next generation by replacement of 
individuals in the original population with offpsring. Return to Step 1. 

It can be seen that the Darwinian process of natural selection or survival of the fittest 

drives the genetic algorithm. In step 4, the individuals in the intermediate population 

with higher fitness values have a higher probability of surviving and making it to the next 

generation. 

The operators of genetic algorithms, namely mutation, crossover, and selection, 

will be explored in more detail in sections to come. First, however, two main defining 

characteristics of genetic algorithms are covered in the following two sections. Section 

3.2.2 examines the choice between a binary or floating-point representation for the 
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individuals in the population and section 3.2.3 examines the choice between a steady- · 

state and generational genetic algorithm. 

3.2.2 Binary Versus Floating-Point Representation 

A basic design issue when implementing a genetic algorithm is the choice of a 

binary or floating-point encoding mechanism for chromosomal representation of the 

parameters of the optimization problem at hand. In a floating-point or real-valued 

encoding, each chromosome or individual is simply the vector of floating point numbers 

representing the optimization problem's parameters. For a binary encoding of a real 

valued optimization problem, a suitable encoding of real-valued vectors (J e ~W as binary 

strings v e {0,1}1 is required. Some optimization problems, such as combinatorical 

optimization, are naturally represented by a binary encoding. Genetic algorithms have 

been successfully applied to combinatorial problems such as knapsacks (Khuri, Back, and 

Heitkotter 1994a), scheduling (Khuri, Back, and Heitkotter 1994b ), and graph problems 

(Khuri and Back 94; Back and Khuri 94). Genetic algorithms that work on binary strings 

are sometimes referred to as canonical genetic algorithms. 

The various methods for encoding real numbers as binary or bit strings will not be 

discussed in detail here. However, a simple method for translating between binary and 

real-valued numbers would be the following. Suppose a continuous variable is defined in 

a range from-.75 to .75. This variable could be encoded to a given precision or number 

of decimals places by multiplying the real value by an appropriate integer, say 100, and 

dropping the decimal portion of the product. Hence, the real numbers would be mapped 

to integers in the range [-750,750] and the corresponding binary code for each integer 
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can be easily computed. The binary codes of all the variables are then concatenated to 

obtain a binary string. 

It may seem unusual to encode the parameters of a real-valued optimization 

problem as binary strings. However, as a method to study the process of adaptation in 

nature, the binary representation of Holland's genetic algorithm was most natural. In 

addition, fundamental genetic algorithm theory such as the Schema Theorem and the 

Building Block Hypothesis rely on a binary or bit string implementation (Holland; 

Goldberg 1989b ). Therefore, binary representation of chromosomes has been used 

historically because of its presumed superiority. The Schema Theorem and Building 

Block Hypothesis will not be expounded upon in this text. Interested readers are referred 

to Fogel (1994), Whitely (1994), Michalewicz, or van Rooj, Jain, and Johnson. In spite 

of the apparent theoretical foundations of binary string representation, researchers have 

debated their necessity (Vignaux and Michalewicz; Antonisse; Michalewicz). The 

schema theorem, the theoretical underpinning of genetic algorithms, has been criticized 

by several researchers (Wright; Whitley). Empirical findings have shown that real­

valued encoding has worked well (Syswerda; Wright; Janikow and Michalewicz). 

Michalewicz reported superior results for a variety of problems using a floating-point 

representation as compared to a binary representation. 

The evidence seems to indicate that as a general rule, real-valued representation 

should be used when the underlying optimization problem is real-valued. There are many 

potential reasons for the demonstrated success ofreal-valued representations. In a binary 

representation, the reproduction operators operate at the bit level. Large changes in the 

chromosome can result by changing a single bit in the chromosome. This has the result 
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of reducing the correlation between parents and offspring with respect to their fitness 

values. A procedure known as gray coding reduces but does not eliminate this problem 

(Eshelman and Schaffer). Related to the correlation between parents and offspring is the 

fact that a genetic algorithm with a floating point representation is closer to the problem 

space. Two potential solutions that are close to each other in the representation space are 

also close in the problem space. In a binary representation, the distance would be defined 

by the number of different bit positions. Researchers report other negative consequences, 

such as hamming cliffs, from bit mutation (Janikow and Michalewicz; Rooij, Jain, and 

Johnson). 

There is invariably a loss of precision when converting from a floating-point to 

binary representation. If too few bits are used to encode the weights, some combinations 

of real-valued parameters may be impossible or difficult to achieve (Goldberg 1991 ). On 

the other hand, an increase in precision increases the size of the individuals or 

chromosomes. Michalewicz claims that genetic algorithms can be inefficient at 

manipulating bitstrings with thousands of bits. Others claim that binary encoding does 

not scale up well (Whitley, Starkweather, and Bogart). Increasing the size of the 

chromosomes also decreases the computational efficiency of the algorithm. Each 

application of the fitness function to a chromosome requires an evaluation of the 

objective function being optimized. This in tum necessitates converting the bit string to 

floating-point numbers. 

3.2.3 General Types of Genetic Algorithms 

Genetic algorithms can be categorized by the survival policy used in the 

procedure for replacing individuals in each generation. Recall from the outline of the 
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genetic algorithm presented in section 3.2.1 that in step 5, the population of the next 

generation is formed by replacing individuals in the current population with survivors or 

offspring. The two most common approaches to replacement in a population are 

generational and steady-state. The traditional approach is the generational scheme but 

the steady-state approach is increasingly popular. 

In a generational genetic algorithm, the new population ( offspring) entirely 

replaces the original population in each generation. The steady-state type of genetic 

algorithm replaces only a portion of the population, permitting offspring to compete 

directly with parents in the next generation, or in some approaches in the current 

generation. Generally, a steady-state genetic algorithm creates only a small number of 

offspring in each generation to replace the worst performing individuals in the 

population. In some implementations, there can be a competition for survival between 

the offspring and current population. One disadvantage of the steady-state scheme is that 

because of the extreme selection pressure, they can quickly lose the diversity in their 

population of individuals. In other words, each potential solution is very similar to most 

others, thereby negating one of genetic algorithms inherent benefits, namely parallel 

search. This causes premature convergence of the algorithm, which begins performing a 

simple stochastic hill-climbing search in which new potential solutions are similar to the 

old solutions. 

3.2.4 Fitness Evaluation 

In each generation or iteration of a genetic algorithm, the fitness of each member 

of the population evaluated. Fitness evaluation measures the relative performance of the 

chromosomes in the population. This is done by use of a fitness function that yields a 
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single real-valued parameter that reflects the individuals success at solving the problem at 

hand.· The fitness function could be the same as the objective function, i.e. the function 

we are trying to optimize, however, in most cases, the fitness function is a function of the 

objective function. For example, in this research, we are trying to minimize the sum-of­

squared error (SSE), our objective function. The objective function values cannot be 

used directly because a lower (higher) SSE indicates a better (worse) solution, and hence 

a higher (lower) fitness value. Therefore, the fitness function has to perform some sort of 

inversion operation. Also, it is sometimes convenient to normalize the fitness values to a 

range of O to 1. Some authors emphasize the potential disconnect between these two 

functions and use the term fitness and evaluation separately (Whitley). 

3.2.5. Selection Operators 

Individuals are selected from the current generation by selection operators which 

form an intermediate population on which breeding and mutation are to take place. 

Based upon natures "survival of the fittest" mechanism, individuals with a higher fitness 

value are more likely to be selected. Those individuals that are selected are said to be 

parents of the next generation. There are two important factors to consider when 

applying a particular selection operator, namely, population diversity and selective 

pressure (Michalewicz). Selection pressure refers to the ability of the operator to select 

those individuals with higher fitness values. Population diversity is the degree to which 

the individuals in the population differ from each other. 

An effective selection operator should exert sufficient selective pressure so as to 

avoid stagnation in the evolutionary process (Goldberg, 1989a). This can be seen more 

readily in the later stages of a genetic algorithms search where the diversity of the 
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chromosomes is low. Low selective pressure in this situation could easily lead to 

stagnation because of the low variance in the fitness values. On the other hand, strong 

selective pressure can lead to premature convergence of the genetic algorithm search. 

Strong selective pressure could lead the search to focus on a few good individuals in the 

population early in the genetic algorithms search. Therefore, genetic or population 

diversity would be lost preventing an adequate exploration of the search space. It is 

important for the selection operator to balance the two opposing factors. 

Many selection strategies are available. Some of the commonly used are 

tournament, roulette wheel, and proportionate selection. Some examples of selection 

strategies are discussed in more detail in the following sections. 

Roulette wheel selection 

In roulette wheel selection, individuals are selected with a probability 

proportional to their relative fitness values. The probability that a particular chromosome 

x is chosen is given by 

(3.5) 
f(x) 

Pselect{x) = Lf 

where f() is the fitness function. The roulette wheel selection method is a proportionate 

selection method. This method can be described by visualizing a roulette wheel where 

each chromosome or individual occupies an area that is relative to its fitness value. A 

fixed marker selects a particular chromosome when the wheel stops. By repeatedly 

spinning this roulette wheel the intermediate population is formed. Obviously, a 

chromosome with a higher fitness value will occupy a larger proportion of the roulette 

wheel and hence have a higher probability of being chosen. 

Integral selection 
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Integral selection is a modification of roulette wheel selection. In roulette wheel 

selection the expected number of times that a chromosome x would be selected is given 

by 

(3.6) Ese1ec1(x) = n · Pse1ec1(x), 

where n is the population size. The number of offspring allocated to a chromosome may 

differ significantly from the expected number. Integral selection seeks to reduce the role 

of chance by guaranteeing that each chromosome is selected as many times as its 

corresponding expected value in (3.6). Since this method will most of the time lead to 

the allocation of fractional numbers of a individual chromosomes, the actual number 

selected must be rounded up or down. The rounding method includes some 

randomization to avoid biases toward a particular chromosome. 

Rank selection 

Rank selection is a modification of roulette wheel selection where the fitness 

values are used to rank the chromosomes. The probability of selection is proportional to 

the rank rather than the raw fitness values. One possible ranking scheme is linear 

ranking. The individual with the lowest fitness value are assigned a rank of 0, the next 

worse a rank of 1, and so on. The individuals are then selected based upon some linear 

function of its sorted rank. The linear function ensures that there is always a fixed ratio 

between the best and worst chromosomes in a population. The other individuals will be 

linearly spaced between the two. We can assign to the individual at rank i a probability 

of selection given by 

(3.7) 
1 i-1 

P; =-(2-c+(2c-2)-), 
n n-l 
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where n is the size of the population and 1 ~ c ~ 2 is the selection bias. The higher the 

value of c the higher the selection pressure. That is, the more the algorithm will favour 

the better chromosomes. As a genetic algorithm progresses there is smaller and smaller 

variance in the fitness values across the population. The rank selection method ensures 

that even after the performance of the individual chromosomes in the population 

converge, the best chromosome will be favoured over the worst to the same extent they 

were in the beginning. This method helps to avoid premature convergence and 

stagnation. One computational drawback of this method is that it requires sorting of the 

entire population at each generation. Tournament selection can be used to avoid this 

problem. 

Tournament selection 

In tournament selection, a typically small number, m , of chromosomes is 

randomly chosen from the population. The selection is independent and with 

replacement so an individual could be chosen more than once. The best or fittest 

chromosome is chosen from this pool of individuals to be passed on to the intermediate 

population. The size of the pool, i.e. m , is called the tournament size. The higher the 

value of m , the more selection pressure the operator will exert. Conversely, if m = 1 , 

then the operator picks randomly. In the genetic algorithm literature, a value of m = 2 is 

not very selective and m = 7 is considered relatively highly selective. 

3.2.6 Crossover (recombination) 

The crossover operator is the distinguishing operator of genetic algorithms 

(Davis). Crossover has traditionally been viewed as the main search operator with 

mutation being only a background operator (Holland). Crossover is the process by which 
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genetic material from different individuals is combined to create offspring. This is the 

so-called mating or breeding portion of the genetic algorithm. Pairs of strings or 

chromosomes are picked at random from the population to serve as parents, These 

parents are subjected to crossover to form offspring. The theory underlying crossovers 

predominant role in the success of a GA is the building-block hypothesis first introduced 

by Goldberg (1989b ). The building-block hypothesis sais that the "building blocks" are 

subparts of individuals that are considered good. As evolution progresses, through 

crossover, these building blocks can be transferred from individual to individual 

spreading throughout the population. 

As an example of how crossover operators work, some of the more common are 

illustrated and/or discussed below. Assume we start with the following two 

chromosomes: 

s = (si, . .. ,sn) 

V ={Vi, ... , Vn) 

The following crossover operators will operate on the above chromosomes in the 

following manner where k, I e (1, ... , n) are random numbers: 

a) One-point crossover 

s' = (si, . .. ,sk-l•sk, vk+1'· .. , vn) 

v' =(vi,. .. , vk-1• vk,sk+t>· .. ,sn) 

b) Two-point crossover 

s' = (s1,. .. ,sk_Psk, vk+t,. .. , v1_i, v1,s1+1, ... ,sn) 

v' = (v1,. •• , Vk-l,' Vk,Sk+t•· .. ,S1_i,Si, Vl+t>· .. , Vn) 

c) Linear interpolation one-point crossover 
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The simplest operator and the one employed in Holland's SGA is the one-point crossover 

illustrated in a) above. Assuming the string or chromosome is of length n, a crossover 

point is randomly chosen in the range 1 to n- l. The portions of the strings that lie beyond 

the crossover point are exchanged between the two strings. Similar in concept is the two-

point crossover in which there are two potential crossover points. This operator is 

illustrated in b) above. In general, an m-point crossover scheme can be used where m<n. 

In uniform crossover, each point between genes is a potential crossover point. Each of 

these potential points has a probability of .5 that it will be a crossover point. Note that as 

discussed in previous sections, in some traditional implementations of a genetic 

al,gorithm, the individual elements in the chromosomes s and v would be binary 

numbers. For our purposes in this research, we are only concerned with real-valued 

chromosomes. Real-valued strings offer the potential for many other crossover operators. 

For example, as illustrated inc) above, the crossover operator could employ a linear 

combination of the genes. Regardless of the crossover operator used, genetic algorithms 

typically employ a crossover rate pc . The crossover operator is employed only if 

pc > r for a random number r E [0,1] . The crossover rate, pc, is typically set close to 1. 

If the crossover operator is not employed then the strings remain unaltered. 

A disadvantage of one-point crossover is that given two individuals, some 

combinations of their building blocks can not be achieved in the offspring. Two-point 

crossover is a more flexible operator because it has two segments, one in each parent, that 
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can be swapped. An extreme case is uniform crossover in which each point in both 

parents is subject to crossover with a probability of .5. Uniform crossover is very 

:flexible, and any combination of individuals in the chromosomes can be achieved. On 

the other hand, it is the most disruptive to the building blocks. 

Many other crossover operators have been investigated, including linear and non-linear 

representations. See Booker, Fogel, Whitley, and Angeline and Michalewicz for further 

discussion of the subject. 

3.2. 7 Mutation 

After crossover, each string is subject to mutation. Mutation is useful for 

introducing new genetic material and keeping the genetic diversity in the population 

(Back, Fogel, Whitley, and Angeline). For binary strings, mutation operates 

independently on each bit of the string. Mutation is simply a matter of :flipping a bit, for 

example from O to 1. For real-valued genes, mutation is usually accomplished with the 

addition of a normally distributed variable, i.e. Gaussian noise, to the values of the 

parameters in the chromosome. For real-valued chromosomes, other mutation options 

are available. For example, inversion of the genes or distributions other than normal 

could be used for additions to the values in the chromosome. 

In most genetic algorithm implementations, each of the individuals in the 

population is subject to mutation with a probability Pm. This value is normally close to 

zero, however, some have argued that for real-valued chromosomes Pm can be quite 

high, for example .5 (mutate 50% of the chromosomes)(Rooij, Jain, Johnson). Such a 

high rate of mutation for a binary representation would be very disruptive. When a bit is 

mutated, it is switched to its opposite state. This could have a large effect on the 
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chromosome as a whole. However, for a floating-point representation, assuming the 

variance of the random number addition is not too large, the mutation is much less 

disruptive. Therefore, a higher rate of mutation can be justified. 

3.3 Evolutionary Strategies 

3.3.1 Introduction 

Evolutionary strategies were born out of an attempt to solve an engineering 

optimization problem, namely, the optimal shapes of bodies in a flow. To solve this 

problem, Schwefel and Rechenberg collaborated in the 1960's to develop the 

evolutionary strategy (ES) approach to function optimization. Evolutionary strategies are 

designed to optimize functions of continuous variables (Michalewicz). However, 

Evolutionary strategies have also been extended to discrete problems (Back, Hoffmeister, 

and Schwefel; Herdy). Similar to genetic algorithms, modem evolutionary strategies 

operate on a population of potential solutions. However, in contrast to genetic 

algorithms, mutation is the primary operator and crossover is only a background operator. 

Much of the terminology for genetic algorithms introduced in section 3.2 is also used to 

described evolutionary strategies. For example, a potential solution to the optimization 

problem at hand is referred to as an individual. A set of individuals is referred to 

collectively as a population. In addition, many of the same genetic operators such 

crossover, mutation, and selection are used in evolutionary strategies. However, their 

fundamental methods of operation are different then the corresponding operators for 

genetic algorithms. 
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The following notation is commonly used to describe particular forms of 

evolutionary strategy algorithms: 

1. (1+1)-ES, 

2. (µ+l)-ES, 
3. (µ+).)-ES, 
4. (µ,).)-ES. 

The enumiration above also represents the historical development of evolutonary strategy 

algorithms with the (1 + 1) - ES being the earliest and simplest ES and the (µ + ). ) - ES 

and (µ,).) - ES representing the latest and most sophisticated implementations. The 

symbol µ denotes the number of parents or individuals in the population and the symbol 

). denotes the number of offspring created by the parents within a generation. The 

notation representing a particular strategy also serves to characterize the selection 

operator that is used to select individuals from the population of potential solutions. Fot 

example, in the (µ+).)-ES, the best µ individuals out of the union of parents and 

offspring survive. In (µ,).)-ES the next generation is formed by selecting the best µ 

individuals from a population of potential solutions of size ). (). > µ is necessary). Each 

of the four ESs are described in detail in the following sections. 

3.3.2 (1 + 1) and (µ+ 1) - Evolutionary Strategies 

The earliest developed evolutionary strategy was the (1 + 1)-ES. The 

(1 + 1)-ES strategy is based on a population of only one individual and mutation is the 

only genetic operator. The n x 1 vector of optimization variables x are mutated 

according to 

(3.8) x<1+1) = x<t> + N ( 0, u2) 
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where tis the generation, N(O, <1 2 ) is a normally distributed random vector of size n x 1 

with mean zero and standard deviation given by the n x 1 vector <T • In nature, small 

mutations occur more often than larger ones, therefore, the choice of perturbations from a 

normal random variable in (3.8) is somewhat intuitively appealing. Assuming we are 

minimizing a function, an offsping x<1+1lreplaces its parent x<t) iff f(x<1+1l) < f(x<t)), 

otherwise x<1+1l = x<t) and the algorithm proceeds with another Gaussian mutation of x . 

The (1 + 1)-ES is called a "two-membered evolution strategy" because the 

offspring competes with its parent to make it to the next generation and at least 

temporarily, there are two individuals in the population. The algorithm above is mearly a 

random search algorithm recast with some evolutionary terminology. Nonetheless, it was 

a start toward the more sophisticated evolutionary strategies. In spite of the simplicity of 

the (1 + l)-ES, this type of algorithm has been shown to converge to the global optimum 

with probability one for sufficiently long search time (Michalewicz). However, 

convergence with probability one sais nothing about a particular algorithms potential use 

as a practical optimization algorithm, especially with respect to convergence rate. To 

improve the convergence rate of the (1 + 1)-ES, Rechenberg proposed a "1/5 success 

rule". That is, the ratio <p of successful mutations to all mutations should be 1/5. If <p is 

greater than 1/5 the variance is increased, otherwise it is decreased. Rechenberg derived 

this somewhat ad-hoc rule on the basis of optimizing the convergence rates on two 

particular functions. The rule is intuitive in the sense that if there is a large percentage of 

successes, then larger steps should be taken to explore a wider region of the search space. 

Alternatively if there is a small percentage of successes, the search should be focused on 

a smaller region. 
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The search described above could lead to premature convergence on some types 

of functions (Michalewicz). An increased population size was proposed to address this 

problem. Rechenberg proposed a multimembered evolutionary strategy with the 

(µ + 1)-ES algorithm where µ =population size. A multimembered evolutionary 

strategy uses a crossover or recombination operator to combine µ > 1 individuals to form 

one offspring. This is unlike a typical genetic algorithm which generally has a fixed 

population size from generation to generation or at the very least produces more than one 

offsping in each generation. The (µ + 1)-ES strategy was never widely used, however, 

it provided a transition to the (µ+A)- ES and (µ,A)- ES introduced by Schwefel 

(1977, 1981 ). These two strategies, and especially the latter one, are more state-of-the-art 

than their predicessors. The next section discusses these particular evolutionary 

strategeis. 

3.3.3 (µ+11.) and (µ,11.) - Evolutionary Strategies 

Like the (µ + 1) - ES , (µ +A) - ES and (µ,A) - ES introduce the possibility of a 

crossover or recombination operator for a multimembered population. The (µ + A) - ES 

and (µ,A)- ES algorithms are distinguished from each other by their selection 

mechanism. In the former, µ parents create A ~ 1 offspring by recombination and 

mutation. The selection mechanism picks the µ best individuals out of the union of the 

parents and offspring to form the next generation. The later algorithm creates A 

offspring, where A > µ , by recombination and mutaton. The best µ individuals out of 

these A offspring are selected for the next generation. Both of these algorithms use self­

adaption of the mutation variances. The self-adaption is an improvement over an ad-hoc 

criterion, such as the 1/5 success rule. Each individual in the population is composed of 
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the n x 1 parameter vector x plus up to n(n + 1) I 2 variances and covariances for an n-

dimensional normal distribution used to generate perturbations to the x vector. In the 

evolutionary strategy literature, the variances and covariances are called strategy 

variables and the individual components of the parameter vector x are called object 

variables. 

The general functioning of the (µ + A) - ES and (µ,A) - ES algorithms can be 

sketched out as follows: 

Step 0: Randomly initialize a population of size µ . Evaluate the objective 
function value for each of the individuals in the population. 

Step 1: Test for termination criterion, e.g. elapsed time or generations, best 
objective function value, etc. 

Step 2: Apply the following reproduction operators in turn to the population to 
produce A offspring: 

crossover operator - recombine the "genes" of selected parents, 
mutation operator - randomly perturb individuals. 

Step 3: Evaluate the objective function value for each of the individuals in the 
population. 

Step 5: Form a population for the next generation by selecting the best µ 
individuals from: 

for (µ + ..i )-ES : the parents µ plus the offspring ..i , 
for (µ,A) - ES : the offspring ..i where ..i > µ . 

Step 5: Return to Step 1. 

The specifics of each of the steps above, i.e. initialization, crossover, mutation, and 

selection, are presented in the paragraphs below. The discussion and notation in the 

following sections borrows heavily from Back and Schwefel (1993), Back and Schwefel 

(1996), and Back, Rudolph, and Schwefel (1993). The notation commonly used in the 

evolutionary strategy literature will be introduced in the section on mutation. 
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Initialization 

Initialization of the object variables can be handled in the same manner as you 

might for a regular nonlinear optimization algorithm. For the standard deviations, 

Schwefel (1981) recommended o-;(O),::, !J.xj,J;;, where !J.x; is the estimated distance 

between the starting point and optimum. As a practical matter, we might not have an idea 

what /J.x; should be. For the neural network problem, care should be taken not to make 

the initial values of the standard deviation too large, otherwise, this will tend to saturate 

the values of the hidden neurons. Ifwe have previously run a gradient based algorithm, 

we could use the difference between the mean of these weight values and the expected 

mean of the random initial weights as an estimate of !J.x; should be. The self-adaption 

mechanism can scale the standard deviations into a more appropriate range if the initial 

values are not too large. It should be noted that constraint handling can be included in the 

algorithm but is beyond the scope of this discussion. 

Mutation Operator 

The mutation is guided by an n-dimensional normal distribution having a 

probability density function 

(3.9) 
exp(-1- x·c-1x) 

p(x) = z 
~(2trY detC 

where x' = (xi,···,xn) is a vector of the choice variables, C is the covariance matrix for 

x, and detC represents the determinant of the covariance matrix. The choice variables 

x are called object variables in the evolutionary strategy literature. The variances and 

covariances also evolve in modem ESs and are thus subject to mutation in addition to 

recombination. The variances and covariances are known as strategy variables in the ES 
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literature. The strategy variables are composed ofup ton different variances, 

u = (c;; =a}, i E {1, ... , n}), and n(n-1) I 2 covariances, 

ex= (cii, i E {1, ... ,n-1},j E {i + 1, ... ,n}). Thus, we have w= n(n + 1)/2 strategy variables 

representing the variances and covariances (1/2 the off-diagonal terms from C) that can 

be varied during the operation of the algorithm. An individual a in the population 

therefore consists ofup to 3 components, a= (x,<1,0!). To ensure positive-definiteness of 

the covariance matrix, or equivalently to ensure that the coordinate system remains 

orthogonal, rotation angles a1 ,0 ~ a1 ~ 2n are used in place of the covariance 

coefficients cii . The rotation angles are related to the covariances by the following 

(3.10) 
2c .. 

tan(2aii) = 2 1J 2 
U; -a1 

For more detail on algorithmic implementation of the above and further discussion of the 

reason for using rotation angles see Back (1996). 

With the above information we can proceed with mutation of the strategy and 

object variables. The following are the main possibilities for mutation: 

1. na = 1, na = 0: All object variables have identical standard deviation a, and 

the covariances are zero. 

a'= aexp(r0 N(O,l)) 

x; = X; + aN(0,1) 

2. na = n, na = 0: All object variables have their own standard deviation a;, 
with covariances of zero. 

a; = a; exp(rN(0,1) + rN; (0,1)) 

x; = X; + a;N(0,1) 
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3. na = n, na = n *(n-l)/2: All object variables have their own standard 

deviation CY; , with non-zero covariances. 

CY;= CY; exp(r'N(0,1) + rN;(O,l)) 

a~ = a j + /JN/0,1) 

x' = x+N(O,C) 

It is suggested that the constants r, r', and f3 be set according to (see Back, 1996, pg. 

72): 

'o oc c2J;;r1/2 

r' oc (2n rl/2 

f3 Ri 0.0873 (5°). 

It is suggested that the algorithm is robust with respect to the values of these parameters 

(Back, Rudolph, and Schwefel), however, the specific optimal values undoubtedly 

depend upon the particular topological characteristics of the objective function (Back and 

Schwefel, 1993). The factors r and r' are sometimes referred to as "learning rates", 

similar in concept to the learning rate for backpropagation in neural networks or the step 

size in many nonlinear optimization algorithms. 

Crossover or Recombination 

In (µ +A)- ES and (µ,A) - ES , the object variables x as well as the strategy 

variables CY and a are subject to recombination. In addition, the recombination operator 

may be different for the object variables, standard deviations, and rotation angles. 

Various recombination operators are used in evolution strategies. A single offspring may 

be produced by using information from two parents chosen from the population or the 

creation of the individual may involve up to all parent individuals, depending upon the 

operator used. 
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Traditionally, two different general forms of recombination operator have been 

used for evolution strategies: discrete recombination and intermediate recombination. 

Three different versions of these operators exist giving 6 different possibilities for 

operators. Notationally, for a specific element X; from the object variable vector x we 

have the following possibilities: 

X s,i or Xt,i discrete I 

rd 

xs,i or xtj,i panmictic discrete I 

YD 

xs; +(x,; -xs ;)/2 intermediate I 

Y; 
I , , , 

X -
I ;-

xs; + (x1 ; - xs;) I 2 panmictic intermediate r1 
' J' ' 

xsi + X*(x,; -xs;)/2 , , , generalized intermediate I 

rg 

xs; + X * (x1 ; - xs;) I 2 
' 'J' ' 

panmictic generalized intermediate I 

rG 

where i = l, ... ,n; j,s,t E {1, ... ,µ} and x E [0,1] is a uniform random variable. In the 

panmictic generalized intermediate form, %; denotes that the random variable is 

resampled for each possible value of i, or in other words for each component of the new 

individual x'. The indices sand t denote two separate parents selected at random from 

the population P and the index} in 9 indicates t to be sampled anew for each value of i. 

Selection Operator 

The selection mechanism is what distinguishes the (µ+A) - ES from 

(µ,A) - ES . The notation in fact characterizes the type of selection operator used for the 

respective strategies. To be more precise, ifs is the selction operator, the respective 

operators perform the following operations or mappings: 

(µ +A) - selection 

(µ,A) - selection 
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The latter selects the µ best individuals out of the offspring only while the former selects 

the µ best individuals out of the parents plus the offspring. It should be obvious that for 

the (µ,).,)-ES, )., >µ,otherwise, no selection takes place. The s(µ+).> selection 

operator is an elitist scheme where the best individuals are guaranteed to survive. The 

s(µ,).) operator on the other hand, restricts each individual to a single generation. This 

would seem to be a disadvantage, however, the ability to loose good solutions actually 

allows the algorithms to escape local minima. This operator, however, also facilitates the 

extinction of bad individuals. Back (1996) recommends intermediate recombination for 

the strategy parameters. The ratio µ /)., . drives the character of the evolutionary search. 

If we decrease µ , the algorithm will be more path-oriented and converge quicker while 

increasing µ leads to a wider or more global search of the parameter space. A 

suggested value for these parameters is µ = 15 and µ/)., ';::j 1/7 (Back, 1996). 

3.4 Simulated Annealing 

3.4.1 Introduction 

Simulated annealing as an algorithm originated from an analogy between the 

process of slowly cooling a solid to reach a low energy ground state or thermal 

equilibrium and minimizing the cost function of a combinatorial (discrete) optimization 

problem (Kirkpatrick, Gelatt, and Vecchi). The physical annealing process contains the 

following two steps (Aarts and Korst) 

Increase the temperature of the heat bath to a maximum value at which the solid 
melts. 

Decrease carefully the temperature of the heat bath until the particles arrange 
themselves in the ground state of the solid. 

59 



In the liquid phase, the particles move about freely and are arranged randomly. As the 

liquid cools this mobility is lost. If it is cooled slowly enough, the particles will align 

themselves to each other to form an ordered crystalline structure that is the minimum 

energy state for the system. On the other hand, if the liquid is cooled to fast, it will end 

up in a polycrystalline state having a higher energy than the minimum energy state. 

The physical annealing process can be modeled with computer simulations 

(Binder). Metropolis, et al. first proposed a simple algorithm to simulate the annealing of 

a solid to thermal equilibrium. Their algorithm, known as the Metropolis algorithm, 

generates a sequence of energy states for the system. Let Ei be the current energy state 

for the system. A subsequent energy state Ej can be generated by applying a small 

perturbation to the system, such as a random displacement of an atom. If the energy has 

decrease, that is E j - Ei ~ 0 , then the state j is accepted and the algorithm proceeds to 

the next iteration with a perturbation to the system in state j. If E j - Ei > 0 then state j is 

accepted with a probability given by 

(3.11) 

where kB is a physical constant known as the Boltzmann constant and Tis the 

temperature of the heat bath. The acceptance rule in (3.11) is known as the Metropolis 

criterion. If state j is not accepted then the algorithm starts over beginning with a new 

perturbation to the system in state i. By repeating the previous steps many times, the 

metropolis algorithm simulates the thermal motion of atoms in thermal contact with a 

heat bath at temperature T If the temperature is lowered sufficiently slow, the solid can 
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reach thermal equilibrium at each temperature. Thermal equilibrium in a system at a 

temperature Tis given by the Boltzmann probability distribution 

(3.12) Prob(E)- exp(-E I kT). 

Kirkpatrick, Gelatt, and Vecchi recognized the analogies between the evolution of 

a solid at a given temperature and the solution of a combinatorial optimization problem. 1 

They applied the metropolis algorithm to function optimization by substituting the 

unknown parameters for the particles of the solid and the associated cost or objective 

function value for the energy of the system. In this "simulated" annealing algorithm, the 

parameters of the function to be optimized are randomly perturbed to create a new set of 

parameters. These parameters are accepted if they result in a lower value for the cost 

function (assuming minimization), otherwise, if the result is an increase in the cost 

function, the new parameters are accepted or rejected based upon a probabilistic 

acceptance criterion such as the metropolis criterion in (3.11 ). 

Temperature plays the role of a control parameter in simulated annealing. The 

temperature often controls the amount of perturbation to the parameters being optimized. 

In addition, the acceptance criterion is a function of the temperature. At lower 

temperature, there is a decreasing probability that a set of parameters which results in an 

increased cost function, will be accepted. The temperature, which is a control parameter, 

is initially set to a high level. The high temperature, which results in large perturbations, 

allows the algorithm to perform a wide search of the parameter space. The high 

temperature also leads to an acceptance of a higher percentage of steps or perturbations 

1 Kirkpatrick, Gelatt and Vecchi are generally credited with the development of a optimization algorithm 
from statistical mechanics concepts. However, Laarhoven and Aarts report that Cerny, along with the 
earlier works of Pincus as well as Khachaturyan, Semenovskaya, and Vainshtein, also recognized the 
analogies between statistical mechanics concepts and optimization. 
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that result in an increase in the cost function. This also allows for a wider search of the 

parameter space. The acceptance of parameters with a higher cost also allows the 

algorithm to escape local minima. 

The occasional acceptance of an uphill step by the acceptance criterion, as well as 

a sufficiently high beginning temperature level and its subsequent lowering, are the keys 

to an affective "global" simulated annealing algorithm. The converse of the process of 

annealing is quenching in which the temperature is rapidly lowered. In the physical 

annealing process, quenching is very likely to result in a freezing of the particles of the 

solid into suboptimal structure. Similar to quenching, local optimization routines move 

rapidly downhill toward the nearest minimum. A local optimization routine is greedy in 

the sense that it always seeks to take a step downhill. By executing the simulated 

annealing algorithm at a sequence of slowly decreasing temperature values, and allowing 

uphill moves with a non-zero but gradually decreasing probability, simulated annealing is 

allowed to explore the parameter space but eventually settle into what is hopefully the 

global minimum. 

Examples of early applications of SA were to designing integrated circuts (Vecchi 

and Kirkpatrick), pollution control (Derwent), and the famous traveling salesman 

problem (Aarts and Korst). It was reported to perform well in the presence of a high 

number of variables (Kirkpatrick, Gelatt, and Vecchi; White, 1984). Vanderbilt and 

Louie described the first application of a simulated annealing algorithm to optimization 

of a function with continuous parameters (Boender and Romeign). Corona, Marchesi, 

Martini, and Ridella also presented a simulated annealing algorithm for functions of 

continuous variables. Corona et al. as well as Goffe and Ferrier compared this algorithm 
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to conventional local optimization algorithms for minimizing several test functions and 

found the algorithm to be very reliable at finding the global minimum. 

There are many different simulated annealing algorithms, however, the following 

three functions characterize all simulated annealing algorithms (Ingber, 1989). Let 

x E mn be a vector of continuous variables: 

1) p(x): The probability density function (p.d.f.) of the distribution to perturb or 

generate the parameters, e.g. the gaussian or uniform distributions. The degree of 
dispersion is usually controlled by the temperature T , in which case we can write 
p(x,T). For example, assuming a normal distribution, the standard deviation 

could be a function of T . 

2) g(!),.C,T): The p.d.f. for accepting a new set of parameters after perturbation, 

e.g. the Metropolis criterion as given in (3 .11 ). The temperature is given by 
T and !),.C is the change in the value of the cost function from the perturbaton is a 
decreasing function of the temperature. 

3) h(k): The function which controls the cooling schedule for the temperature T. 

The function slowly decreases the temperature T as k , the number of iterations 
of the algorithm, increases. A simple example would be I;,= Tk-i x p where 

pe[0,1]. 

Using the three functions above, the following is an outline of a simulated annealing 

algorithm for minimization of a cost or objective function C(x): 

step 1: Pick an initial temperature T0 > 0 and point x0 in the parameter space and 

calculate the corresponding function value C(x0 ). 

step 2: Randomly pick a new point x~ = xk + /),.x in the parameter space using the 

p.d.f. p(!),.xk) and calculate the corresponding function value C(x~). 

step 3: If C(x~) < C(xk) then set xk+I = x~, otherwise generate a uniform random 

number r E [0,1] and decide to accept the inferior x' according to the 

probabilistic criterion r ~ g(!),.C,I;,), where g() E [0,1] and !),.C = C(x')- C(x). 
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step 4: After M points or perturbations have been considered, i.e. repeating steps 
2-3 Mtimes, reduce the temperature by Tk+1 = h(k) T,,ew = T01d x p, where 

p E [0,1]. Repeat steps 2-4 until the stopping criterion has been reached. 

Note that this is only a rough outline of an annealing algorithm. There could be many 

suttle variations. The following two sections discusses the two main variations of 

simulated annealing, namely, Boltzmann annealing and Fast Simulated Annealing. 

3.4.2 Boltzmann Annealing 

Boltzmann annealing (BA), sometimes referred to as classic simulated annealing 

(CSA) (Szu and Hartley), is based upon the metropolis (monte carlo) algorithm presented 

in the previous section. Referring back to the basic structure of a SA algorithm which 

was presented above, boltzmann annealing chooses the normal distribution for p() . The 

p.d.f. of a n-dimensional multivariate normally distributed variable x is given by: 

(3.13) 

where µ is a n x 1 vector of means, R is a n x n covariance matrix, and IRI is the 

determinant of the covariance matrix. If assume µ = 0 and the covariances are zero with 

a standard deviation CY for each component of x , the normalized multivariate normal 

p.d.f. is easily derived from (3.13) above: 

(3.14) 

Using (3.14) above, the p.d.f. g(~x) for step 2 of BA is then given by: 

(3.15) d d/ {- ~x'~x} p(~x) = r- (2nY 2 exp 2r 2 , 
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where r = a~ and ~x = xk+i - X;. Since the standard deviation is a function of the 

temperature T, it is easy to see how the dispersion of perturbations will get smaller as the 

temperature T is slowly decreased2• 

The acceptance probability from step 3 is given by 

(3.16) g(~C,Tk) = min{l,exp(~C/c~)} 

where ~C = C(x')- C(x) is the change in the cost function being minimized and c is a 

constant scaling factor. If ~C ::::; 0 the step is automatically accepted, otherwise, as 

detailed in step 3, it is accepted according to the probability given by exp(~C I cTk) 3. 

Geman and Geman proved that given g() in (3 .16), and a sufficiently high 

temperature T0 , asymptotically the algorithm will find the global minimum provided the 

reduction in T is not faster than: 

(3.17) ~ =h(k)=~. 
ln(k) 

The proof is also sketched in Ingber (1989) and Szu and Hartley. As a practical matter, 

the cooling schedule in (3 .17) is very slow. Many researchers use faster cooling 

schedules. Global convergence is no longer guaranteed, however this does not preclude 

the algorithm from still being useful for solving optimization problems. Since as a 

practical matter, the computing power is often not available to "ensure" global 

convergence for many larger problems, it suffices to obtain reasonably good answers to 

2 The standard deviation can be a function of T or alternatively we can set the standard deviation equal to 
T . The algorithm is invariant to which choice we make. We need only consider any necessary scaling 

with respect to our choice for T , c in (3 .16) and if appropriate, the standard deviation a . 
3 Some authors, such as Ingber and Szu and Hartley, give a description of Boltzmann annealing with the 
alternative acceptance criterion given in (3.21) later in this text. However, it is this authors opinion that 
mostl'classic" implementations of Boltzmann annealing used the acceptance criterion given in (3.16) 
above. See section 3.4.3 and figure 3.2 for a comparison of the two. 
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the problem. Ingber (1993) refers to the use of faster cooling schedules as simulated 

quenching rather than simulated annealing. 

3.4.3 Fast Simulated Annealing 

The choice of p() and g() in (3 .15) and (3 .16) above for Boltzmann Annealing 

comes from physical principles underlying concepts from statistical mechanics. 

However, there is no reason why these choices should be the optimal for function 

optimization. Researchers have used other functions leading to algorithms that are 

theoretically more efficient. Szu and Hartley introduced several modification which 

theoretically make the simulated annealing algorithm much more efficient. They 

introduced what they called fast simulated annealing (FSA) by substituting the cauchy 

distribution for p() and introducing a different acceptance criterion g() . The cauchy 

distribution with a median of (} and scale parameter A is given by (Johnson and Kotz, 

1970)4: 

(3.18) 

The upper and lower quartiles are given by (} ± A . A standard cauchy distribution with 

(} = 0 and A = 1 is a central t distribution with one degree of freedom. To generate a 

step for x in mn, one cannot simply sample the univariate cauchy distribution for each 

component of x . Instead, the step must be generated from a multivariate cauchy 

distribution. Ann-dimensional multivariate cauchy distribution is given by (Johnson and 

Kotz, 1972; Styblinski and Tang): 

(3.19) ( I:!.. ) (r/ )<n+1>/2 A 
p X = Jr (A2 + l:!..x' l:!..xin+l)/2 . 
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The cauchy distribution does not possess finite values of mean and standard deviation 

(Johnson and Kotz, 1970). The cauchy distributions infinite variance gives the 

distribution fatter tails as compared to the normal distribution. Therefore, the cauchy 

distribution provides for more occasional long jumps while retaining local sampling as 

compared to the gaussian. Figure 3 .1 shows a comparison between cauchy and normal 

distributions. This trade-off between local and global search allows for a much faster 

cooling schedule given by 

(3.20) T. _I'a 
k-

k 

The cooling schedule in (3.19) is exponentially faster than that given for BA while still 

maintaining the property of global convergence (Szu and Hartley). Szu and Hartley also 

introduced an acceptence criterion which is different than that for BA: 

(3.21) 
1 

g(!.iC, 1;J = -----
1 + exp(tiC/ c~) 

Figure 3.2 shows a comparison between the Szu acceptance criterion (3.20) and the 

metropolis acceptance criterion. 

4 A mathematically equivalent form which is often given in the simulated annealing literature is 

,1,/ {1r[,1,2 + (x-B)2]}. 
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CHAPTER4 

DATA AND PROCEDURES 

4.1 Introduction 

This chapter explains the data and methods used to accomplish the research 
• 

objectives given in chapter 1. Section 4.2 enumerates the neural network architectures 

used with various training data sets. In addition, several cost functions used to train the 

neural networks are presented. Section 4.3 describes the neural network training data sets 

as well as the configurations of the neural networks associated with each of those data 

sets. Section 4.4 describes the local and global optimization algorithms used to train the 

neural networks. Finally, Section 4.5 describes the procedures used to determine the 

relative speed and accuracy of the alternative global optimization methods used in this 

research to train neural networks. 

4.2 Neural Network Architectures and Cost Functions 

This section presents the specific neural network forms used in this research. For 

a more general discussion of different neural networks, the reader is referred to chapter 2. 

This study is restricted to training of a feedforward multilayer perceptron (MLP). The 

output from output neuron d of a feedforward MLP with one hidden layer is: 

h 

(4.1) fd(xt,()d) = /Jod + LfJ.idG(x;r) 
j=I 

69 



where h is the number of hidden neurons in the single hidden layer, x 1 is a k x 1 vector of 

inputs or explanatory variables for observation t, i 1 = (1, x;), r j = (r oj, ... , r kj )' is a 

vector of weights connecting the inputs to hidden neuron}, /Jd = (/Jod, ... , /Jhd )' is a vector 

of weights connecting the hidden neurons to output neuron d, e d = (/3~, r:, ... , r~) is the 

vector of model parameters or weights, and G(.) is a hidden layer activation function. 

The two most commonly used activation functions, and the ones used in this research, are 

the logistic and hyberbolic tangent functions. The logistic function is defined by: 

(4.2) G(z) = 1/[1 + exp(-z)], 

and the hyperbolic tangent by: 

(4.3) G(z) = tanh(z) = (ez -1)/ (ez + 1). 

A feedforward MLP with one hidden layer and only one output neuron is easily derived 

from (4.1): 

h 

(4.4) f(x1,e) =Po+ "'f.PjG(x;r), 
j=I 

where e = (/30 , ••• , /Jh, r:, ... , r~) is the n x 1 vector of parameters that must be estimated. 

In (4.4), the number of model parameters n = 1 + h(k + 1). The input variables can be 

included as linear regressors by using direct connections between the inputs and outputs. 

Modifying (4.4) we have: 

h 

(4.5) f(xt'e) = x;rp + "'f./3jG(x;r), 
j=I 
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where r/J = (¢0 , ••• ,<A) and e = (r/J0, ... ,r/Jk,/J1' ... ,/Jh,r;, ... ,r~) is then xl vector of 

parameters that must be estimated. In ( 4.5), the number of model parameters is 

n = 1 + k + h(k + 2). 

Several different cost or objective functions are used in this research to train the 

neural networks. Given a set of training data with T observations and assuming the 

neural network form given in (4.4), the least squares cost function is defined by: 

(4.6) 

where y1 is the dependent variable, and 0 is the space of feasible weights or model 

parameters. Augmenting the cost function in ( 4.6) with terms that penalize large weight 

values yields: 

(4.7) 

where rt/!, rp, and rr are weight decay constants. Following Franses and van Dijk, for all 

problems on which weight decay is used, the weight decay parameters are set equal to 

rt/! = .01, and rs = rr = .0001 . 

4.3 Training Data Sets 

A variety of training data sets are used in this research to evaluate the training 

algorithms. The data sets include financial, scientific, and synthetically generated data. 

The size of the data sets and associated neural network models varies from 250 

observations and 2 input variables for a neural network with 15 weights to 533 

observations and 22 input variables for a neural network with 211 weights. Table 4.1 
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Table 4.1 Summary of Training Data Sets and Neural Network Models. 

Neural Network 
Data Set Obsa Architectureb 
Bilinear 250 2-3-1, de; logistic-identity 
DAX 360 4-4-1, de; logistic-identity 
JYUS 364 2-3-1, de; logistic-identity 
JYUSTTR 326 2-3-1, de; logistic-identity 
Flare 533 22-8-3; logistic-identity 
Mackey-Glass 500 5-6-1; logistic-identity 
•The number of observations in the data set. 

15 
29 
15 
15 
211 
43 

NNF<l 

(4.5) 
(4.5) 
(4.5) 
(4.5) 
(4.1) 
(4.4) 

(4.7) 
(4.7) 
(4.7) 
(4.7) 
(4.6) 
(4.7) 

bThe number of neurons in consecutive layers are enumerated as input-hidden-output, with a de following 
indicating a direct connection between the input and output neurons. Likewise, following the layout of the 
neurons, the activation functions are enumerated beginning with the first hidden layer. 
cThe number of neural network weights or parameters that must be estimated. 
dEquation number of the neural network functional form used for that data set. 
0Equation number of the objective function form used to train the neural network for that data set. 

summarizes the characteristics of the data sets. Section 4.3 .1 presents the synthetically 

generated training data and section 4.3.2 the real-life training data. The abbreviation for 

a particular data set, if any, are in parentheses after the section heading bearing the data 

sets name. 

4.3.1 Synthetic data 

Mackey-Glass 

The Mackey-Glass time series has appeared numerous times in the neural network 

literature as a benchmark time-series for prediction and estimation, for example, Chow 

and Leung; Ergezinger and Thomsen; Goffe, Ferrier, and Rogers; Sexton, Dorsey, and 

Jonson (1999b). Mackey and Glass were the first to investigate the series. The Mackey-

Glass time series x(t) is produced by the numerical solution of the Mackey-Glass 

differential-delay equation: 

(4.8) dx =-bx(t)+ ax(t-r) , 
dt . l+xc(t-r) 
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where a, b, c, and 1: are parameter constants and x(t) is the value of x at time t. The 

constants a, b, and c are typically set to 0.2, .1, and 10 respectively. The constant 1: is 

called the delay parameter and it determines the chaotic behavior displayed by the series. 

Farmer has studied the behavior of ( 4.8). For values of 1: > 16.8, the series exhibits 

chaotic behavior. This study uses a discrete version of the Mackey-Glass equation as 

used in Gallant and White: 

(4.9) ·c ) [0.2xt-5 1 ] g x1_5 , x1_1 = x,_1 + 10.5 1 10 -0. x,_1 • 

+x1-s 

The Mackey-Glass series is said to be qualitatively like financial market data (Gallant, 

Hsieh, and Tauchen). The series can exhibit long stretches of volatile data of apparently 

random duration. 

The Mackey-Glass data for this research were generated from ( 4.9) with starting 

values of x0 = 1.6 and X; = 0 for i = -4, ... ,-1 . One thousand observations are 

generated with the first 500 discarded leaving 500 observations for training data. Figure 

4.1 is a graph of the first 100 observations of the Mackey-Glass series as used in this 

research. The neural network model has five inputs consisting of five lags of the 

Mackey-Glass series. As can be seen from ( 4.9), only lags t-1 and t-5 are necessary to 

approximate this series. However, in most actual applications of neural networks, the 

true dimension of the problems is unknown. Therefore, superfluous inputs are commonly 

part of neural network modeling. The neural network model has one hidden layer with 6 

·neurons, logistic activation functions for the hidden layer neurons and an identity transfer 

function for the output neuron. 
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Figure 4.1. Mackey-Glass Time Series 

Bilinear Model 

The time series from the bilinear model is generated by: 

(4.10) Y, = PY,-2&1-1 + &, ' 

with 13 = 0.6. This series displays occasional sharp spikes. Its characteristics make it of 

interest in econometrics and control theory (Mohler). Granger and Anderson showed this 

model has zero autocorrelations at all lags. Therefore, linear models will not be 

successful in modeling this series. Franses and Dijk modeled the series in ( 4.10) and 

reported that a neural network with at least two lags as inputs showed considerable 

improvement over a linear model. 
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The bilinear series in this study is generated by setting Yo= y_1 = 0 and drawing 

Et from a Normal(O, 1) distribution. A total of 350 observations are generated with the 

first 100 discarded leaving 250 observations for the neural network training set. A graph 

of this series is given in figure 4.2. Based upon results in Franses and Dijk, the neural 

network for this series has 2 lags of ( 4.10) as inputs, 3 hidden neurons in a single hidden 

layer with logistic activation functions, and an identity activation function for the output 

layer. 

4.3.2 Real-Life Data 

Japanese Yen-US Dollar Exchange Rate (JYUS) 

The Japanese Yen-US Dollar Exchange Rate (JYUS) data are weekly returns on 

the Japanese yen-US dollar exchange rate from Franses and Dijk. The weekly returns are 

given by: 

(4.11) 

where r 1 is the return for week t and P1 is the level of the Japanese yen-US dollar 

exchange rate for week t. Franses and Dijk demonstrated that the relationship between 

the JYUS return series and its lags is nonlinear. 

Following Franses and Dijk, the training data consists of 364 observations from 

January 1986 through December 1992. The neural network model uses two lags of ( 4.11) 

as inputs. We use a feedforward network with logistic activation functions for 3 hidden 

neurons in a single hidden layer and an identity activation function for the output neuron. 

Japanese Yen-US Dollar Exchange Rate with Technical Trading Rules (JYUSTTR) 

This second model to predict the Japanese yen-US dollar exchange rate is 

constructed by using technical trading rules as inputs to a neural network prediction 
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Figure 4.2 Bilinear Time Series 

model. Specifically, moving average trading signals are used. Following the notation of 

Franses and Dijk, we define a moving average of length T for period t as: 

(4.12) 
1 ,-1 

m,(T) =-LP,-;. 
'C ;~o 

A moving average technical trading rule can be constructed from (4.12) as follows: 

(4.13) 

where r 1 < r 2 • Equation ( 4.13) defines what is commonly called a dual moving average 

crossover. Following Franses and Dijk, T1 and T 2 are set to 1 and 40. The time periods 

for this data are the same as that for the JYUS data set. Based on results presented in 

Franses and Dijk, three lags of ( 4.13) are used as inputs and the neural network is chosen 

to have 3 hidden neurons in a single hidden layer with logistic activation functions, and 

the identity function for the activation function in the output neuron. This data set will be 

referred to in this research as the JYUSTTR data set. 
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DAX 

The DAX data are weekly absolute returns on the DAX stock index of the 

Frankfurt stock exchange as used in Franses and Dijk . The weekly absolute returns are 

as given in equation ( 4.11) except that the absolute value is taken. This task is given to 

be harder than predicting just return levels. Franses and Dijk show evidence of 

nonlinearity between this series and its lags. The time periods for the data are the same 

as that for the JYUS and JYUSTTR data sets. Based on results presented in Franses and 

Dijk, four lags of the absolute returns on the DAX stock index are used as inputs. The 

neural network is chosen to have a single hidden layer with 4 hidden neurons and logistic 

activation functions. The output neuron has the identity function for its activation 

function. 

Solar-Flare (Flare) 

The solar-flare data were obtained from the Probenl 1 benchmark data set 

(Prechelt). The objective is to predict the number of small, medium, and large size flares 

that will happen during the next 24-hour period in a fixed active region of the sun's 

surface. There are 3 dependent variables in the data set, one each to predict the number 

of small, medium, and large solar flares. There are 22 inputs describing the type and 

history of the active region and the previous flare activity. 2 

Following the Probenl guidelines, the first 533 observations from the data file 

flarel.dt are used for training. Based upon the training and prediction results on this data 

· set from Prechelt, a network with 8 neurons in a single hidden layer with logistic transfer 

1 The Probenl benchmark data set is accessible via anonymous FTP on ftp.ira.uka.de as 
/pub/neuron/proben 1. tar.gz. 
2 Prechelt reports 24 inputs, however, processing of this data by Prechelt leaves 2 inputs with constant 
values of zero in the file flarel.dt. Therefore, these 2 inputs are dropped for this research. 
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functions is chosen and the identity function for the activation functions in the output 

layer. The scaling of the data is left as it is in the original file :flarel.dt. The input 

variables are scaled from O to 1. The three output variables have minimum values of 0 

and maximum values of .75, .375, and 1.00 respectively. 

4.4 Optimization Algorithms 

The purpose of this section is to present the specific optimization algorithms used 

in this research. For a more general and theoretical discussion of these algorithms, the 

reader is referred to chapter 3. It is assumed in this section that the reader is familiar with 

the general concepts and terminology of the algorithms presented in this chapter. 

Therefore, only a very brief introduction is given to each of the algorithms presented. 

Some of the terminology in this section for the evolutionary algorithms may differ from 

that used in some of the literature. In particular, various presentations of evolutionary 

algorithms exist in the literature. Also, the conventional terminology associated with 

each of the algorithms will be used in this research to refer to the parameter array being 

optimized. For example, the model parameters B may be referred to as trial or candidate 

solutions in the simulated annealing literature, an individual in the evolutionary strategy 

literature, and a chromosome in the genetic algorithm literature. 

The stochastic global optimization algorithms used in this research are hybrid 

algorithms combining a local optimization with the stochastic global algorithm by using 

the parameters obtained from the global algorithm as starting values for the local routine. 

Stochastic global optimization algorithms are theoretically good at widely exploring the 

potential solution space. However, they are poor at honing in on a particular solution 

once a promising area of the solution space is found. On the other hand, a local routine 
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will quickly converge to a local minimum. Combining the two types of algorithms 

exploits the advantages of both local and global types of optimization algorithms. This 

hybrid approach has been used for training neural networks (Yan, Zhu, and Hu; Skinner 

and Broughton; Knowles, Corne, and Bishop; Heistermann). For a particular data set and 

neural network model, the local optimization routine used in the hybrid global algorithm 

depends upon the size of the neural network model. For the largest neural network 

models, a conjugate gradient routine is used and a quasi-Newton algorithm for the 

smaller neural network models. 

Since global algorithms are not very good at fine tuning a local minimum, 

convergence criterions that are used for local routines, such as the magnitude of the 

gradient, are not appropriate. Therefore, for simplicity, all of the stochastic global 

routines are run for 100,000 function evaluations. The local routine then takes over and is 

run to convergence. Unless otherwise stated, for the local algorithm or any of the global 

algorithms, the starting values of the neural network weight vectors B, as given in 

equation ( 4.4 ), are randomly initialized uniformly between ± .3 . The details of the local 

and global optimization algorithms are presented in the following sections. 

4.4.1 Local Optimization 

Several local optimization routines, namely a quasi-Newton and conjugate­

gradient algorithm, are used in this study. The quasi-Newton algorithm uses information 

from the first derivatives as well as a BFGS approximation of the hessian. The algorithm 

is very efficient at converging to a local-minimum in a minimum number of iterations. 

However, the quasi-Newton algorithm can be computationally demanding for larger 

problems because it requires calculating and storing the approximation to the hessian. 
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The conjugate-gradient algorithm only requires calculating and storing the first 

derivatives and therefore is commonly used for problems with a large number of 

variables. In this study, the quasi-Newton algorithm is used for the smaller network 

models and the conjugate-gradient method for the largest network models. The quasi­

Newton algorithm used is the DUMING subroutine from the IMSL subroutine libraries 

(Visual Numerics) and the conjugate-gradient algorithm is the DUMCGG routine, also 

from the IMSL libraries. The DUMCGG routine is based on the conjugate gradient 

method in Powell. For the DUMING and DUMCGG routines, all user definable 

parameters, other than those associated with the stopping criterions, are set to their 

default. The starting values of the weight vectors B, as given in equation (4.4), are 

randomly initialized uniformly between ± .3 . The stopping criterions and associated user 

parameters are discussed below. 

The local algorithms are run until a convergence test is met. For both the 

conjugate-gradient and quasi-Newton algorithms, the convergence test is based on two 

termination criteria. The algorithm continues until one of the termination criteria is met. 

One of the termination criteria is based on the computational effort expended. The quasi­

Newton algorithm has 3 computational criteria on which to stop the algorithm: the 

maximum number of iterations, function evaluations, or gradient evaluations. The 

computational stopping criterion for the conjugate gradient algorithm is based on the 

maximum number of function evaluations. For the quasi-Newton algorithm, the 

maximum number of iterations is set to 20,000 and the maximum number of function and 

gradient calculations is set to 30,000. For the conjugate-gradient routine, the maximum 

number of function evaluations is set to 60,000. 
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The other stopping criterion for both algorithms is based on the magnitude of the 

gradient. A small magnitude of the gradient would indicate that the algorithm has 

converged very near the minimum. Therefore, the goal is to obtain convergence based 

upon the criterion of a small gradient. The criterion based on computational effort is only 

a fall back if the algorithm is stuck. For the conjugate gradient routine DUMCGG, the 

algorithm will stop when the square of the Euclidian norm or two-norm of the gradient is 

less than a given gradient tolerance. The two-norm is defined as the square root of the 

sum of squares of the components of the gradient. A more appropriate norm for large-

scale problems would be the infinity norm which is defined as the maximum of the 

absolute values of all elements in the vector. The large number of terms contributing to 

the calculation of a two-norm of the gradient will make conventionally accepted values 

for the gradient tolerance too stringent (Gill and Murray, pg. 307). Therefore, for a given 

optimization problem in this research, some amount of experimentation may be needed to 

discover an appropriate value for the gradient tolerance. 

The stopping criterion for the quasi-Newton algorithm criterion occurs when the 

infinity norm of the scaled gradient is less than a gradient tolerance. The i-th component 

of the scaled gradient at the point x is given as 

(4.14) 
lgil *max(lxjl,1/s;) 

maxrjf(x)l,fs) ' 

where g is the gradient, s is a scaling matrix for the variables, and fs is a scaling factor 

for the function being optimized. In this research f. and the elements of s are set to 1. 

The gradient tolerance is set to Vi (approximately 6.055E-6), where & is the double 

precision machine tolerance. The quasi-Newton algorithm also has a second stopping 
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criterion not based on computation effort. This stopping criterion occurs when the scaled 

distance between the last two steps is less than a step tolerance. The i-th component of 

the scaled step tolerance between the last two consecutive steps xj and xj-i is given by 

(4.15) 
lxf -x(1I 

max(lxfl,l/s;) · 

The elements of s are set to 1 in this study. The step tolerance is set to & 213 

(approximately 3.666E-11), where & is the double precisionmachine tolerance. 

4.4.2 Genetic Algorithm 

The genetic algorithm used in this study uses a real-valued representation of the 

model parameters, as opposed to a binary representation. See section 3.2 for a discussion 

of real versus binary valued chromosomes. The genetic algorithm in this research is 

patterned after the genetic algorithm used in Rooij, Jain, and Johnson to train neural 

networks. The defining feature of this genetic algorithm is the use of a neural network 

specific crossover operator. The neural network specific operator addresses what Rooij, 

Jain, and Johnson refer to as neuron disruption. This neuron disruption is caused by the 

functional characteristics of neural networks and interferes with a normal crossover 

operators ability to form superior solutions in neural network training. The genetic 

algorithm used in this research will be referred to as the neural network genetic algorithm 

(NNGA). In addition to a neural network specific crossover operator, the NNGA uses a 

uniform crossover scheme. A uniform crossover operator further minimizes potential 

disruptive behavior caused by phenomena that Rooij, Jain, and Johnson refer to as 

representational bias of disruption and (reverse) hitch-hiking. See section 3.2 for an 
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illustration of a uniform crossover scheme with the neural network specific crossover 

operator. 

Assuming the notation for the neural network form given in (4.4) and the cost 

function in ( 4.6), the NNGA algorithm proceeds as follows: 

Step 0: Set the generation counter r = 0, pick the values for various parameters 
of the algorithm and generate a random population P of chromosomes 
()(0) o,n "-1 

i E~, l- , ... ,p. 

Step 1: Calculate the fitness gi of each chromosome in P using the fitness 

function G:-Q(e?>)=>[l,b], i=l, ... ,p wherebisthebias. Save the 

fittest chromosome for possible insertion back into the next generation. 

Step 2: Evaluate the stopping criterion. If r ~ R ,where R is the maximum 
number of generations allowed, halt the algorithm and return the fittest 
chromosome found across all generations, else continue to step 3. 

Step 3: (a) Using the fitness values, calculate the selection probability spi of 

each chromosome according to: 

spi = g/1 f gj, i = 1, . .. ,n. 
j=l 

(b) Form an intermediate population P' of chromosomes from the 
current population using a roulette wheel selection scheme by 
randomly selecting, based on the selection probabilities, 
chromosomes from the current population with replacement. 

Step 4: Randomly select, without replacement, two chromosomes from P' and 
apply the following operators to the pair of chromosomes: 
(a) Generate a random number i e [0,1]. If cP > i, where cp is the 

crossover probability, apply the neural network specific uniform 
crossover operator to the pair of chromosomes. 

(b) For each gene in each chromosome, if mP > i, where mp is the 

mutation probability and i e [0,1] is a random number, apply the 

mutation operator by adding a random number from a N(O,s) to the 
gene. 

Step 5: (a) If the fittest chromosome of the population, as calculated in step 1, 
has not survived without being altered by the genetic operators, re­
insert the chromosome into the population replacing a randomly 
selected chromosome. 
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(b) Set P = P' and return to step 1. 

In Step 0, the chromosomes or weight vectors are randomly initialized uniformly between 

± .3 . In Step 1, according to an elitism scheme, the fittest chromosome in each 

generation is saved for possible insertion back into the population. If the fittest 

chromosome does not survive selection in Step 3, or is altered in Step 4 by the crossover 

or mutation operators, it is reinserted back into the population for the new generation in 

Step 5. If reinserted, the chromosome replaces a randomly chosen chromosome. The 

fitness function G used in Step 1 transforms the cost function values to produce a high 

fitness value from a low cost function value. The fitness function also normalizes the 

transformed cost function values over the range [O,b] so that the ratio of the best to worst 

fitness values is fixed. As the algorithm progresses and the ratio of the worst to best cost 

function values decreases, the fixed ratio of fitness values improves convergence. In Step 

4, the crossover operator is applied to the pair of randomly selected chromosomes, 

however the mutation operator is applied to each gene of each chromosome ( each weight 

in each weight array) individually. The size of the populationp, the bias b, the standard 

deviation of mutation s, and re and rm , the probability of crossover and mutation 

respectively are the user definable algorithm parameters that must be set. The setting of 

these parameters will be discussed in section 4.5.1. 

4.4.3 Evolutionary Strategies 

Five different Evolutionary Strategies taken from Schwefel (1995) are used in this 

research. One of the algorithms is the two-membered evolutionary strategy Schwefel 

(1995) refers to as EVOL. The other four algorithms are variations of a multi-membered 

evolutionary strategy that Schwefel (1995) calls the KORR algorithm. The source code 
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included with the book from Schwefel (1995) is utilized to implement the evolutionary 

strategy. Some modifications are made to the code as explained below in the sections 

detailing the specific implementations of the algorithms. 

The EVOL algorithm is a very simple evolutionary strategy algorithm referred to 

as a (1 + 1)-ES algorithm in the literature. This notational representation of the 

algorithm characterizes the operation of the algorithm. In each iteration or generation of 

the algorithm, a single individual produces one offspring by mutation of itself. The 

selection mechanism then picks the superior of the parent or offspring to survive to the 

next generation. In spite of its simplicity, Schwefel (1995, pg 151) claims the 

(1 + 1)- ES type of evolutionary strategy has been more widely used than any other 

evolutionary strategy algorithm in practice. 

Assuming the notation for the neural network form given in (4.4) and the cost 

function in ( 4.6), the EVOL algorithm proceeds as follows: 

Step 0: Set the generation counter r = 0 and auxiliary counter r' = 0 . Pick the 
values for various parameters of the algorithm and randomly initialize the 
parent (}(O) E 9r . 

Step 1: (a) Mutate the parent to form an offspring according to 'if <r> = o<r> + v 
where v is a random vector drawn from a Gaussian distribution with 

mean O and standard deviation s<r>, 

(b) If Q( 'jj (r)) < Q( (}(r)) let (}(r+I) = 'jj (r), else (}(r+l) = (}(r) , 

Step 2: (a) Set r=r+l and r'=r'+l, 
(b) If r' = 10 · n then: 

(i) adjust the standard deviation of mutation according to: 

{
/r) ·Cu, if <p(p) < 1/5, 

/r+l) = s<r> ·l/cu, if <p(p) > 1/5, 

s<r>, if <p(p) = 1/ 5, 

where cu is a predefined constant and rp(p) is the success ratio 

of the mutation operator during the last p generations, 
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(ii) set r' = 0 . 

Step 3: If r = R, where R is the maximum number of generations allowed, halt 
the algorithm, otherwise return to step 1. 

In Step 0, the parent or neural network weight vector is randomly initialized uniformly 

between ± .3 . The setting of the values for cu ands are discussed in section 4.5 .1. 

The KORR algorithm is a more modem and sophisticated algorithm as compared 

to the very simple EVOL evolutionary strategy above. The KORR algorithm has a much 

more sophisticated mechanism for adjusting the mutation variances than does the EVOL 

algorithm. One of the defining characteristics of a modem evolutionary strategies 

algorithm is its ability to evolve or self-adapt the variances and sometimes covariances of 

the Gaussian mutations. Each model parameter has a standard deviation of mutation 

associated with it that evolves or varies through out the operation of the algorithm. In 

addition, as opposed to a single parent producing one offspring in every generation, the 

KORR algorithm is multi-membered. Similar to a genetic algorithm, the KORR 

algorithm works from a population of individuals or candidate solutions in parallel. 

Another similarity to genetic algorithms is that modem evolutionary strategies introduce 

recombination as an operator. However, as opposed to a genetic algorithm, mutation 

remains the primary operator with recombination a background operator. The KORR 

algorithm includes many options for various types of recombination. The four variations 

of The KORR algorithms used in this research differ in the type of recombination that is 

used. 

The KORR algorithms used in this research are referred to in the literature as 

(µ,A)- ES types of evolutionary strategies. The (µ,A) - ES algorithm works from a 

population with µ individuals. Each individual is composed of the model parameters 
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plus the standard deviations of the mutations associated with that individual. The 

population P for iteration or generation r can be written as p<r> = (a?>, ... , at>) with the 

. d' 'd 1 . P . b (r) - ((}(r) e<r) (r) (r)) . -1 h (} h Ill lVl Ua S Ill given y aj - tj , ... nj ,S1j , ... ,Snj , J - , ... ,µ, W ere ij are t e 

model parameters and s ii are the standard deviations of mutation associated with (} ii . 

The u individuals in the population are referred to as parents. In each generation, the 

parents produce A offspring, where A > µ > 1, using mutation and possibly 

recombination. A selection operator then selects the best µ individuals from the 

offspring to form a population for the generation. Assuming the notation for the neural 

network form given in (4.4) and the cost function in (4.6), the four variations of the 

KORR algorithm, KORRl, KORR2, KORR3, and KORR4 proceed as follows: 

Step 0: Set the generation counter r = 0, pick the values for various parameters 
of the algorithm, and initialize the population P by setting the starting 
values for the model parameters et E mn, i = 1, . .. ,n, j = 1, .. . ,µ, and 

the standard deviation of the mutations st0>, i = 1, ... ,n, j = 1, ... ,µ. 

Step 1: Create a population of offspring P, of size A > µ , by repeatedly 
selecting two parents at random from P and applying the following 
operators to the parents: 
(a) Recombination operator: 

(i) for KORRl: no recombination is used 
(ii) for KORR2: intermediary recombination of pairs of parents for 

the model parameters, 
(iii) for KORR3: intermediary recombination of pairs of parents for 

the standard deviation of the gaussian mutations, 
(iv) for KORR4: intermediary recombination of pairs of parents for 

both the model parameters and standard deviation of the gaussian 
mutations. 

(b) Apply the mutation operator in turn to the standard deviation of 
mutations and the model parameters : 
(i) st> =sr>,exp(-r'·N(0,1)+-r·Nu<0,1)), iE{l, ... ,A}, je{l, ... ,n}, 

( .. ) e-<r> e<r> -<r> N(O 1) . 1 1 . 1 11 ii = ii + sii · , , z = , ... , /1,, J = , ... , n • 
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Step 2: Evaluate the cost functions Q(e?>), i = 1, .. . ,A, where e?> E P. 

Step 3: Apply the selection operator which selects the best µ individuals from 

the population of offspring P to form the next generation P . 

Step 4: Set r = r + 1. If r = R , where R is the maximum number of generations 
allowed, exit the algorithm and return the best solution found, otherwise, 
return to Step 1. 

Note that as opposed to the NNGA presented in the previous section, the KORR 

algorithm is not an elitist strategy. In each generation, the offspring replace all the 

parents. In Step 0, the parents or neural network weight vectors are randomly initialized 

uniformly between ± .3 . In Step 1 part (b ), the subscripts on N if (0,1) indicate that a new 

random number is drawn for the mutation of each individual standard deviation of 

mutation. The setting of the values for the number of parents µ , number of offspring A , 

the adjustment factors for the standard deviation of mutation r and r' , and the beginning 

standard deviations of mutation st are discussed in section 4.5.1. 

4.4.4 Simulated Annealing 

Two simulated annealing algorithms are used in this research, a classic simulated 

annealing (CSA) routine that uses Gaussian mutations and a fast simulated annealing 

(FSA) routine that uses Cauchy mutations and a faster cooling scheme than CSA. In this 

research, the CSA routine is referred to as SAl and the FSA routine SA2. Assuming the 

notation for the neural network form given in (4.4) and the cost function in (4.6), the 

algorithms proceed as follows: 

Step 0: Pick the maximum number of iterations R, the number of iterations per 
temperature reduction R', initial acceptance criterion temperature 
T}0> > 0 , initial parameter temperatures T;0> > 0 , final parameter 

temperature r?> > 0 , the final temperature ratio parameter 
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a= 7'.a<R) /7:,<R> , estimate an appropriate scale factor c, initialize the 

starting point 0<0> e 91n , calculate the corresponding cost function value 

Q(0<0>), set Qmin = Q(o<0>), and set the iteration counter r = 0 and 

auxiliary counter r' = 0. 

Step 1: Randomly pick a trial point 'iJ<r> = o<r> + 110 in the parameter space where 
the step 110 is drawn from the following distributions: 

(a) for SAl (CSA): a normalized multivariate normal p.d.f., with the 

parameter temperature r/> playing the part of the standard deviation: 

(110) - 1 ex [-(/10)'(/10)] 
p - (21rY12 (T/>y p 2(T~r>)2 ' 

(b) for SA2 (FSA): a normalized (median of zero) multivariate cauchy 
distribution, with scale parameter given by the parameter temperature 

r/>, given by (Johnson and Kotz, 1972; Styblinski and Tang): 

r<r) 
(110) = (r/1r)(n+l)/2 p 

p ((T/>)2 + (!10)'(110in+1)/2 . 

Step 2: Calculate the cost function value Q(ii<r)), !1Q = Q(if<r>)-Q(O(r)), and 

set Qmin = Q(if<r>) if Q(ii<r>) < Qmin. Accept the trial point according to: 

(a) For SAl (CSA): if Q(if <r>) < Q(O<r>), set o<r+t) = iJ<r>, otherwise 

calculate an acceptance probability pa according to 

Pa =MIN(l,exp(-11Q/cT<r>)). 

If b <Pa, where be [0,1] is a random number, then accept the 

inferior point 'jj(r), Otherwise let o(r+I) = o<r), 
(b) For SA2 (FSA): calculate an acceptance probability according to 

1 

Pa= ( /1Q) · 
l+exp cr<r) 

If b <Pa, where be [0,1] is a random number, then accept the point 

'jj(r), Otherwise let o(r+I) = o<r) , 

Step 3: Set r = r + 1 and r' = r' + 1. 
(a) If r = R, exit the algorithm and returnQmin. 

(b) Else if r' = R', reduce the acceptance criterion temperature Ta 
according to: 

i:<r+l) = r/+l) • exp(log(a) / R')(r+l), 

where r;7+1> is calculated according to: 
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(i) for SAl (CSA): r;7+!) = T;r) 'h where h = (rt') I r/>)1/(R'-I) , 

r<o> r<o> - r<R'> 
(ii) for SA2 (FSA): r<r+I) = p where h = P. p • 

p l+h·(k+l) rt>·(R'-l) 

Step 4: Return to step 1. 

In Step 0, the network weight vector is randomly initialized uniformly between ± .3 . The 

two separate temperatures I;, and Ta allow for more control of the algorithm. Setting the 

parameter a controls the ratio of the two temperatures at the end of R iterations. Another 

parameter that has control over the probability of accepting an inferior trial point is the 

scale factor c. The scale factor c is a critical parameter and its appropriate magnitude 

depends upon the characteristics of the particular function being optimized. Because of 

the factor ~Q , the acceptance criterions in step 2 above are sensitive to the amount of 

variation in the cost function. As was done in Masters (1995), an appropriate scale factor 

c is estimated in step O by sampling the parameter space numerous times and calculating 

the standard deviation of the associated cost function values. The scale factor is then 

calculated as c = a c / rc<0> where a c is the standard deviation of the cost functions. The 

multivariate normal distribution in step 1 assumes zero covariances. The Cauchy 

distribution is calculated as in Styblinski and Tang. The setting of the values for a along 

with T;0> and T}0> are discussed in section 4.4.1. 

4.4.5 Solis and Wets 

The random optimization method of Solis and Wets is a simple algorithm that was 

used by Baba et. al. and Baba to train a neural network. Assuming the notation for the 

neural network form given in (4.4) and the cost function in (4.6), the algorithm proceeds 

as follows: 
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Step 0: Select a starting point e<0> E m_n, a standard deviations, the maximum 
number of iterations R, and set r=O and b = 0 . 

Step 1: Generate a trial point 'if <r) = e<r) + v where v is drawn from a Guassian 
distribution with a mean of b and a standard deviation of s. 

Step 2: (a) If Q('iJ(r)) < Q(B(r)), let e<r+I) = 'iJ<r) and b(r+I) = 0.4v(r) + 0.2b(r), 

(b) else if Q('if<r)) ~ Q(e<r)), take a step in the opposite direction from the 

original point: jj(r) = e<r) -V. If Q(iJ(r)) < Q(B(r)) let e<r+I) = jj(r) and 

b(r+I) = b(r) - 0.4V(r), Otherwise let e<r+I) = e(r) and b(r+l) = 0.5b(r). 

Step 3: If r=R, exit the algorithm, otherwise set r = r + 1 and go to step 1. 

In Step 0, the network weight vector is randomly initialized uniformly between ± .3 . 

Note that the mean for the Gaussian perturbations, represented by b, varies for each 

element in the weight vector e for each iteration of the algorithm. However, the 

standard deviation of the Gaussian perturbations, represented bys, is the same for all 

elements. Given a starting vector e<0>, there are two user definable parameters that must 

be set for this algorithm, namely the standard deviation deviation s and the maximum 

number of iterations R. The setting of these parameters will be discussed in section 4.5.1. 

4.5 Simulation Details 

4.5.1 Picking the Global Optimization Parameters 

There are many parameters for the stochastic global optimization algorithms that 

must be chosen wisely for these algorithms to perform well. For example, the standard 

deviation of mutation or the temperature in the simulated annealing algorithm. Often, 

these parameters are chosen on an ad hoc basis. For some of the parameters, guidance 

exists as to reasonable values. In those cases, the recommended values will be used in 

this research. For other parameters, a more systematic methodology is employed to 
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determine the appropriate values. Obtaining the results to be presented in chapter 5 for 

the stochastic global algorithms can be viewed as a two-stage procedure. In the first 

stage, a small number of preliminary restarts is run on each data set with each of the 

global algorithms to determine an appropriate set of algorithm parameters for that 

particular data set and algorithm. In the second stage, the set of algorithm parameters 

chosen in stage 1 is used to run a large number of restarts and the results from these 

simulations are presented in chapter 5. 

In Stage 1, the procedure for choosing the parameters of the stochastic global 

algorithms for a particular data set is based on investigating the performance of a variety 

of combinations of algorithm parameters on that data set with a small number of restarts. 

Each specific combination of algorithm parameter values is referred to as a specific 

configuration of the algorithm. The performance of each of these configurations is based 

on the mean of the final cost function values calculated across the limited number of 

preliminary restarts. The number of preliminary restarts is 5 for the larger, and hence 

more computationally demanding, problems Flare and Mackey-Glass, and 10 for the 

smaller problems Bilinear, DAX, JYUS, and JYUSTTR. The specific configuration with 

the aforementioned lowest mean cost function value is the set of parameters on which 

either 250 or 500 restarts, depending upon the size of the problem, are run. The number 

ofrestarts in stage two is 250 for the larger problems Flare and Mackey-Glass and 500 

for the remaining smaller problems. The results from these restarts are those that are 

reported in Chapter 5. 

Tables 4.2 and 4.3 present some of the details of the above-described procedure 

for each of the algorithms and training data sets. Table 4.2 lists the range of values 
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Table 4.2 Range of Values Investigated for Parameters of the Global Algorithms. 

Algorithm Parameter Range of Values 
NNGA b (bias) 2, 5, 10, 20 

re (probability of crossover) 0.80, 0.20 
rm (probability of mutation) 0.20, 0.60, 0.80 

____________________ s_ (standard deviation _of mutation) ____ 0.03,_ 0.06,_ 0.12,_ 0.25,_ 0.50,_ 1.00 ______ _ 
EVOL s (standard deviation of mutation) 0.03, 0.06, 0.12, 0.25, 0.50, 1.00 

___________ _________ as _ ( adjustment factor for_s) _____________ 0.85,_ 0.99 __________________________________ _ 
KORRl-4 r' (adjustment factor for s) 1/ En, 1/ (2En) , 1/ ( 4En) 

r (adjustment factor for s) 
1/ ~2-Jn, 1/ (2~2-Jn), 1/ ( 4~2-Jn) 

____________________ s_ (standard deviation_of mutation) ____ 0.03,_ 0.06,_ 0.12,_ 0.25,_ 0.50,_ 1.00 ______ _ 
SW s (standard deviation of mutation) 0.03, 0.06, 0.12, 0.25, 0.50, 1.00 
Note: For a detailed explanation of the algorithms and their parameters, see section 4.4.2 for the NNGA 
algorithm, section 4.4.3 for the EVOL and KORR algorithms, section 4.4.5 for the SW algorithm. 

investigated for certain parameters of the various global algorithms. The standard 

deviation of mutations, is a parameter common to all the algorithms in table 4.2. The 

value for sis an important parameter. A value too large can result in saturation of the 

hidden neurons. Saturation occurs when large weight values cause most or all of the 

hidden neurons to attain values at or near their threshold values, for example, 0 or 1 for 

the sigmoid activation function given in ( 4.2). It can be hard for neurons to come off 

their saturated levels because a large change in relevant weights may be necessary. A 

small change in a weight or weights may not be enough to bring the activation levels 

down enough to come off saturation. On the other hand, a standard deviation of mutation 

value that is too small may result in a longer time than necessary for the ES to obtain 

satisfactory results. More importantly, the algorithm may never obtain satisfactory 

results because it fails to explore a wide enough area of the model parameter space. 

It should be noted that a key feature of the evolutionary strategies type of 

algorithm is the ability to adjust the standard deviation of mutation as the algorithm 

progresses. Nonetheless, different values for the beginning standard deviation of 
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mutation for the evolutionary strategies EVOL and KORRl through KORR4 are 

investigated in this research. The reasons given above for trying various values for the 

beginning standard deviation of mutation may still apply, albeit to a lesser extent than for 

the other algorithms that do not adapt the standard deviation as the algorithm progresses. 

Table 4.3 shows the number of preliminary configurations and restarts as well as 

the final number of restarts for each of the algorithms and data sets. For example, for the 

NNGA algorithm, 72 configurations representing various combinations of algorithm 

parameters are investigated for each of the data sets. Depending upon the size of the 

neural network model, either 5 or 10 random restarts or runs are estimated for each of 

these configurations. Based upon the mean cost function values computed across the 

preliminary restarts, the top performing preliminary configuration of algorithm 

parameters is chosen to run a full scale number of restarts, either 250 or 500, depending 

upon the size of the neural network models. As can be seen in table 4.3, there are no 

preliminary configurations for the local optimization routine, LO, and therefore, 

depending upon the size of the problem, only 250 or 500 final restarts are run for a single 

configuration. The procedure for choosing the parameters of the two simulated annealing 

algorithms, SAl and SA2, does not follow exactly with that of the other global 

algorithms. The procedure for picking these values is discussed in the appropriately 

labeled sections to follow. 

It should be noted that the sort of procedure described above for choosing the 

parameters of the algorithms gives an unfair advantage to the global algorithms. It could 

be argued that in practice, this sort of computationally demanding procedure is infeasible. 

However, in this research, if the local optimization routine outperforms the global 
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Table 4.3 Number of Preliminary Configurations and Restarts and Final Restarts 
for Each of the Algorithms and Data Sets. 

Number of Number of 
Preliminary 

Configurations 
Preliminary Final 

Algorithm Data Set Restarts Restarts 
LO Bilinear 500 

Dax 500 
JYlJS 500 
JYlJSTTR 500 
M-G 250 
Flare 250 

NNGA 72 Bilinear 10 · 500 
Dax 10 500 
JYlJS 10 500 
JYlJSTTR 10 500 
M-G 5 250 
Flare 5 250 

-------------------------------------------------------------------------------------------------------------------
EVOL 14 Bilinear 10 500 

Dax 10 500 
JYlJS 10 500 
JYlJSTTR 10 500 
M-G 5 250 
Flare 5 250 

----------------------------------------------------------------------------------------------------··--------------
KORRl 18 . Bilinear 10 500 

Dax 10 500 
JYlJS 10 500 
JYlJSTTR 10 500 
M-G 5 250 
Flare 5 250 

-------------------------------------------------------------------------------------------------------------------
KORR2 18 Bilinear 10 500 

Dax 10 500 
JYlJS 10 500 
JYlJSTTR 10 500 
M-G 5 250 
Flare 5 250 

-------------------------------------------------------------------------------------------------------------------
KORR3 18 Bilinear 10 500 

Dax 10 500 
JYlJS 10 500 
JYlJSTTR 10 500 
M-G 5 250 
Flare 5 250 

( continued) 
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Table 4.3 (continued) Number of Preliminary Configurations and Restarts and 
Final Restarts for Each of the Algorithms and Data Sets. 

Algorithm 
KORR4 

Preliminary 
Configurations 
18 

Number of Number of 
Preliminary Final 

Data Set Restarts Restarts 
Bilinear 10 500 
Dax 10 500 
JY1JS 10 500 
JY1JSTTR 10 500 
M-G 5 250 
Flare 5 250 

-------------------------------------------------------------------------------------------------------------------
SAl Bilinear 5 500 

Dax 5 500 
JY1JS 5 500 
JY1JSTTR 5 500 
M-G 5 250 
Flare 5 250 

SA2 Bilinear 5 500 
Dax 5 500 
JY1JS 5 500 
JY1JSTTR 5 500 
M-G 5 250 
Flare 5 250 -------------------------------------------------------------------------------------------------------------------

SW 6 Bilinear 10 500 
Dax 10 500 
JY1JS 10 500 
JY1JSTTR 10 500 
M-G 5 250 
Flare 5 250 

routines, the difficulty of choosing the global optimization algorithm parameters would 

add weight to the favorable results obtained by the local algorithm. The following 

sections outline, for each of the algorithms, either the values for specific algorithm 

parameters, or the details of the procedures to obtain them. 

NNGA 

The parameters for the neural network genetic algorithm (NNGA) that remain to 

be determined are the values for p, the size of the population, b, the bias, s, the standard 
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deviation of mutation, and re and rm, the probability of crossover and mutation. The size 

of the population, p, is fixed at 50 as it was in the study by Rooij, Jain and Johnson. This 

population size is a trade-off between a smaller population size which would have a faster 

convergence and a larger population which would provide a higher probability of 

obtaining a good solution at the expense of higher computational costs. A range of 

values for the bias parameter bare investigated. Rooij, Jain, and Johnson used a value of 

10 in their study. This value is investigated along with values of 2, 5, and 20. 

Rooij, Jain, and Johnson reported good results with mutation from .4 to .8 and 

settled on a rate of .6. As discussed in chapter 3, these rates of mutation are high in 

comparison to the values normally used for binary genetic algorithms. Rooij, Jain, and 

Johnson indicate that settings of this magnitude produced the best results in their 

simulations. Mutation on binary chromosomes produces a high degree of disruption 

since the gene in question is switched to its opposite state. Mutation on real-valued 

chromosomes through the addition of a probabilistic value is less disruptive and therefore 

a higher mutation rate is feasible. Rooij, Jain, and Johnson reported that there was little 

difference in performance between values of .6, .8, and 1.0 for the probability of 

crossover for the neural network specific uniform crossover operator. Three values are 

investigated in this research .8, .6, and a relatively low value of .2. A low value for the 

probability of crossover of .2, in conjunction with a high probability of mutation, causes 

the NNGA to approach the operation of a multi-membered evolutionary strategy. Table 

4.2 lists the range of values investigated for the parameters of the NNGA algorithm 
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EVOL 

Table 4.2 lists the range of values investigated for two parameters of the EVOL 

algorithm, s, the standard deviation of mutation, and cu, an adjustment factor for the 

standard deviation of mutation. Two values for cu are considered, .85 and .99. Schwefel 

(1995, pg 368) recommends a value of .85 for cu and Keane states that for highly multi­

modal functions, a value of .99 or even higher, improves performance of the EVOL 

algorithm. Section 4.3.3 gives a detailed explanation of the EVOL algorithm. Two fixed 

values for the EVOL algorithm are not detailed in section 4.3.3. These are listed as 

arguments EA and EB to the EVOL subroutine in Schwefel (1995, pg. 368). These 

values are both set to Ji, where & is the double precision machine epsilon 

(approximately 2.22E-16). The values for the parameters LS, TM, EC, and ED for the 

EVOL subroutine in Schwefel are not relevant because the code was modified to 

suppress the intrinsic convergence tests. 

KORRl, KORR2, KORR3, and KORR4 

The distinguishing feature between the four KORR algorithms is the differing 

application of recombination. All other parameters for the algorithms are identical. The 

parameters r and r' listed in table 4.2 are used to determine the degree of adjustment of 

the standard deviations of mutation in each generation. See section 4.3.3 for more details 

of these parameters. Schwefel (1995) recommends values of r' = c/ .J2-:;; and 

r = c/ ~ 2,J;; with a value of c = 1 likely to work well for the KORR implementations 

used in this study. For each of the parameters r and r', two other values which are Yi 
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and Y4 of the recommended values are also investigated. Six different values for the 

beginning standard deviation of mutations are listed in table 4.2. 

The fixed parameters for the KORR algorithms are the number of parents in the 

population, µ , the number of offspring produced, ;i, as used in the specification of the 

algorithms in section 4.3.3. Typical values for µ and ;t would be 10 and 100 

respectively (Schoenauer and Michalewicz) representing a (10,100)-ES scheme. 

However, since some of the neural network models in this research contain a large 

number of parameters and the calculation of the cost functions are expensive, the number 

of offspring ;i, will be limited in this study. Schwefel (1995, pg. 145) recommends that 

the ratio 1/ µ should not be less than 5 or 6. Values of µ = 10 and ;i, = 60 are used for 

all KORR algorithms. Therefore, all KORR algorithms in this research will implement a 

(10,60) - ES scheme. 

SAl and SA2 

To establish appropriate values for the various parameters of the simulated 

annealing routines SAl and SA2, a procedure using guidelines given in Masters (1995, 

pg. 89)is followed. These guidelines, quoting Masters (1995), are as follows: 

• The acceptance rate should be high at first. Many experts recommend about 
80 percent of trial points be accepted in the early stages. Choose the user 
scale accordingly. 

• After annealing has progressed for a while, the acceptance rate should have 
dropped to a fairly low value. Failure to do so often indicates a proolem. The 
user scale may be too high, the temperature may be dropping too quickly, or 
the perturbations may be inappropriately scaled. 

• When annealing has progressed to the point of diminishing returns, the 
acceptance rate will usually stabilize around some moderate asymptote. If it 
is still dropping, progress is being made. 
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The user scale c, as given in the explanation of the SAl and SA2 algorithms in section 

4.3.4, is automatically estimated. Therefore, the relevant parameters for the simulated 

annealing that can be set to affect the above mentioned factors are the beginning and final 

temperatures r?> , rt> , and rt> , and the ratio of the ending acceptance criterion and 

parameters temperatures given by a = ra<M> / rP<M> . These parameters are varied to get the 

beginning acceptance criterion between 70 and 80 percent and the ending acceptance 

criterion below 20 percent. 

Solis and Wets 

The SW algorithm only has one adjustable algorithm parameter, s, the standard 

deviation of mutation. Table 4.2 lists the range of values investigated for these 

parameters. See section 4.3.5 for a detailed explanation of the SW algorithm. 

4.5.2 Algorithm Evaluation and Comparison 

The purpose of the comparison of various optimization algorithms in this research 

is to determine the relative speed and accuracy of alternative global optimization methods 

in estimating the weights of neural networks. To accomplish this objective, the 

performance of each of the algorithms is evaluated through Monte-Carlo simulations. 

Each of the algorithms for each data set are retrained numerous times from different 

random starting points. The final cost function values for each of these runs are saved 

and various statistics are then computed from these values. The mean, median, and 

standard deviation across the runs will be presented in chapter 5. In addition to the 

statistics concerning the different runs, the results of the runs are also presented 

graphically. The distribution of the cost function values after convergence over the 

different runs will be displayed in histogram format. In addition to the histogram 
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displays, box plots will be displayed to better compare the distributions from different 

algorithms. 

4.5.3 Neural Network Software and Computing Environment 

The neural network software was programmed in Fortran 90 using Compaq's 

Visual Fortran, version 6.6A compiler for Windows. Excluding the evolutionary strategy 

algorithms, as explained in section 4.3.3, all code was written by the author. The 

simulations are performed on two computers, each using a single 1 Ghz Intel PIII 

processors with 256 Meg of memory and running the Windows 2000 operating system. 

All reasonable efforts were made to optimize the code for speed, both with 

compiler optimization switches as well as efficient coding. Where applicable, use was 

made of the optimized Math Kernel Libraries (MKL) from Intel. The MKL contains 

vector math functions that are highly optimized for Intel processors. The MKL includes 

optimized functions from the BLAS libraries, which perform vector and matrix 

multiplies, and vectorized transcendental functions, which were used for the activation 

functions of the neural networks. 
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5.1 Introduction 

CHAPTERS 

RESULTS AND DISCUSSION 

This chapter presents the results of the simulations carried out to accomplish the 

research objectives given in section 1.4. Section 5.2 briefly discusses the selection of the 

user-definable parameters of the stochastic global optimization algorithms. These 

parameters were obtained by the procedure given in section 4.4.1. The specific values for 

the parameters are presented and discussed in more detail in appendix A. Section 5 .3 

presents the results of the comparisons of the global optimization algorithms against the 

local optimization algorithm. Finally, Section 5.4 summarizes the results and presents 

the conclusions in the context of the research objectives. 

5.2 Stochastic Global Optimization Algorithm Parameters 

The performance of the stochastic global optimization algorithms may depend 

upon wisely choosing the values for various user-definable algorithm parameters. 

Section 4.4.1 presented the details of the procedure for picking a good combination of 

algorithm parameters from a set of many combinations of algorithm parameters. This 

section will discuss the algorithm parameters only briefly. The specific values of the 

parameters and a more detailed discussion of them are given in Appendix A.For most of 

the algorithm parameters, it is difficult to see any discernable pattern in the values 
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chosen. However, a few general observations can be made about some of the parameters. 

With some exceptions, it appeared that a smaller value for the standard deviation of 

mutation was most appropriate. Values as low as .03 were optimal for some of the 

problems. The adjustment factor for the standard deviation of mutation in the EVOL 

algorithm, given by a., was with one exception chosen to be .999. The rather small 

adjustment of the standard deviation of mutation in each iteration is consistent with the 

results of Keane who found that smaller adjustments were required in highly multi-modal 

problems. For the NNGA algorithm, a rather high rate of probability of mutation was 

chosen for the majority of the problems. 

A set of parameters that works well for one neural network model is unlikely to 

work for another. The inconsistency of performance for a given set of algorithm 

parameters across different optimization problems is a drawback of the stochastic global 

algorithms. The reader is also reminded that a computationally expensive procedure, 

such as the one used in this study to determine reasonable value for the global 

optimization algorithm parameters, would be impractical to use in most modeling 

situations. This extra computational effort is essentially ignored in the remainder of the 

results presented in this chapter. Therefore, the stochastic global algorithms are 

theoretically given an unfair advantage over restarts of a local optimization routine. 

However, if a local optimization routine outperforms the global algorithms, it only adds 

weight to the results. 
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5.3 Simulation Results 

The simulation results presented in this section are from algorithm runs in which 

the local or hybrid global/local algorithm converged. Convergence was reached either 

through a test such as the magnitude of the gradient, or by reaching the maximum number 

of iterations as given in section 4.4.1 of this study. No algorithm run "bombed" or 

produced floating-point exceptions that would have caused the algorithm to cease 

operation. 

Figures 5.1-5.6 show for each of the 6 training data sets the cost function values 

in histogram form for each of the 10 optimization routines. For the Bilinear, DAX, 

JYUS, and JYUSTTR data sets, the histograms contain 500 objective function values 

after convergence. For the Flare and Mackey-Glass data sets, the histograms contain 250 

objective function values. To make it easier to compare the various optimization 

algorithms, the x-axis is scaled identically for each of the 10 histograms displayed in each 

figure. The labels for each histogram correspond with the particular optimization 

algorithm used. The abbreviation LO represents the particular local optimization routine 

employed in this training data set: for the Flare and Mackey-Glass data sets a conjugate 

gradient algorithm and for the rest of the data sets a quasi-Newton algorithm. The 

remaining algorithms are global optimization algorithms with the following meaning: 

NNGA - a neural network specific genetic algorithm, SW - the Solis-Wets algorithm, 

EVOL- an evolutionary strategy (ES) from Schwefel (1995), KORRl through KORR4 -

4 different variations of ES algorithms from Schwefel (1995), and SAl and SA2 are two 

variations of simulated annealing. See section 4.4 for details of the algorithms. The 

numbers above the left two bins are the percentage of values contained in each of the two 
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Objective Function Value 

Figure 5.1 Histograms of Objective Function Values from Random Restarts of 
Different Optimization Algorithms for Neural Network Training on the 
Bilinear Training Data. Each of the nine histograms above contain 500 
objective function values after convergence from 500 different random 
starting values. See table 1 for an explanation of the labels in each histogram 
representing the various optimization algorithms. The numbers above the left 
two bins are the percentage of values contained in each of the two bins. If a 
number with an arrow appears over the far right bin, it indicates that the 
histogram has been truncated to better display the results. In that case, the 
number is the percentage of values contained in and to the right of the bin. 
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Figure 5.2 Histograms of Objective Function Values from Random Restarts of 
Different Optimization Algorithms for Neural Network Training on the 
Dax Training Data. See figure 5 .1 for a more detailed explanation of the 
information in this figure. 
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Figure 5.3 Histograms of Objective Function Values from Random Restarts of 
Different Optimization Algorithms for Neural Network Training on the 
JYUS Training Data. See figure 5 .1 for a more detailed explanation of the 
information in this figure. 
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Figure 5.4 Histograms of Objective Function Values from Random Restarts of 
Different Optimization Algorithms for Neural Network Training on the 
JYUSTTR Training Data. See figure 5.1 for a more detailed explanation of 
the information in this figure. 
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Figure 5.5 Histograms of Objective Function Values from Random Restarts of 
Different Optimization Algorithms for Neural Network Training on the 
Flare Training Data. See figure 5 .1 for a more detailed explanation of the 
information in this figure. 
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Figure 5.6 Histograms of Objective Function Values from Random Restarts of 
Different Optimization Algorithms for Neural Network Training on the 
Mackey-Glass Training Data. See figure 5 .1 for a more detailed 

explanation of the information in this figure. 
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bins. If a number with an arrow appears over the far right bin, it indicates that the 

histogram has been truncated to better display the results. In that case, the number is the 

percentage of values contained in and to the right of the bin. 

As can be seen from the histograms in figures 5.1-5.6, there is no single algorithm 

that dominates all others across the training data sets. The box plots in figures 5.7-5.12 

provide an alternative way to characterize the information contained in the histograms. 

The box plots also show that no single algorithm dominates all others across the trading 

data sets. The box plots indicate the median, upper, and lower quartile, upper and lower 

adjacent values, and outside values. The median is displayed as a solid dot and left and 

right end of the boxes indicate the upper and lower quartiles. The upper and lower 

adjacent values, and outside values are based on the fences. An upper fence would be 

calculated as the upper quartile plus 1.5 times the interquartile range, where the 

interquartile range is the upper quartile minus the lower quartile. The lower fence would 

be analogously calculated. An upper adjacent value is the maximum point within the 

upper fence. The vertical lines outside the box indicate the adjacent values. Any value 

that falls outside the adjacent values or vertical lines is considered an outside value and is 

plotted with an open circle in figures 5.7-5.12. Therefore, the minimum and maximum 

objective function values obtained by the respective algorithms are displayed as vertical 

lines, or if necessary the most extreme open circle. 

The histograms and boxplots do indicate that a large number of local optimums 

exist for all the neural network training data sets. The histograms and boxplots display 

the unique characteristics of each of the data sets. The histograms do not greatly differ 
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Figure 5. 7 Boxplot of Objective Function Values from Random Restarts of 
Different Optimization Algorithms for Neural Network Training on the 
Bilinear Training Data. The boxplots indicate the median, upper and lower 
quartiles, upper and lower adjacent values, and outside values. In the box 
plot, the solid dot indicates the median and the right and left ends of the box 
are the upper and lower quartiles. The vertical lines or whiskers outside the 
box mark the highest (lowest) data points within a range defined by the upper 
(lower) quartile+ (-) 1.5 times the interquartile range. Any values outside of 
the whiskers are considered outside values and are plotted by open circles. 
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Figure 5.8 Boxplot of Objectiv~ Function Values from Random Restarts of 
Different Optimization Algorithms for Neural Network Training on the 
Dax Training Data. See figure 5.7 for a more detailed explanation of the 
information in this figure. 
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Figure 5.9 Boxplot of Objective Function Values from Random Restarts of 
Different Optimization Algorithms for Neural Network Training on the 
JYUS Training Data. See figure 5.7 for a more detailed explanation of the 
information in this figure. 
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Figure 5.10 Boxplot of Objective Function Values from Random Restarts of 
Different Optimization Algorithms for Neural Network Training on the 
JYUSTTR Training Data. See figure 5.7 for a more detailed explanation 
of the information in this figure. 
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Figure 5.11 Boxplot of Objective Function Values from Random Restarts of 
Different Optimization Algorithms for Neural Network Training on the 
Flare Training Data. See figure 5 for a more detailed explanation of the 
information in this figure. 
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Figure 5.12 Boxplot of Objective Function Values from Random Restarts of 
Different Optimization Algorithms for Neural Network Training on the 
Mackey-Glass Training Data. See figure 5 for a more detailed explanation 
of the information in this figure. 
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from each other across algorithms within the same data set but do differ greatly across 

different data sets. The histogram on the Flare data set is the only one that approaches 

anything resembling a Normal distribution but it does have a left skew and outliers on the 

right. Some of the distributions are very obviously bimodal. As can be seen in figure 

5.6, the most bimodal of the results are on the Mackey-Glass data set. The maximum and 

minimum values obtained for all but the KORR4 algorithm are slightly over 1.0 and a 

little more then .13. This range of values can, however, be misleading. To get a better 

idea of the difference in fit between the models associated with the maximum and 

minimum objective function values, table 5.1 lists the r-squared and adjust r-squared 

values for all the algorithms and data sets. For the Mackey-Glass data set the r-squared 

goes down from a near perfect fit at .999 to a little less then .97. Larger drops can be 

seen in some of the other data sets, especially when considering the adjusted r-squared. 

For example, the DAX data shows a large drop. The neural network models on the JYUS 

and JYUSTTR data sets show a relatively poor fit. 

From looking at the histograms and boxplots, it can be seen that no single 

algorithm consistently outperforms all others. More importantly, with respect to the 

research objectives of this study as defined in section 1.4, the local optimization 

algorithm is not consistently dominated by any of the global algorithms. However, the 

global algorithms do provide on average marginally more probability of obtaining a 

lower converged objective function value as opposed to the local optimization routines. 

However, with one exception, the local routine obtained a sufficient number of 

convergences at the minimum value, or very near the minimum. This statement is 

examined more closely in the following paragraph. 
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TABLES.I R-Squared Across all Optimization Algorithms and Data Sets for Neural Network Models with the Minimum 
and Maximum Ob,ject Function Values Across Restarts. 

Bilinear DAX JYUS 
Minimum Maximum Minimum Maximum Minimum Maximum 
Obj Fune Obj Fune Obj Fune Obj Fune Obj Fune Obj Fune 

Value Value Value Value Value Value 

Algorithm R2 Adj R2 R2 AdjR2 R2 Adj R2 R2 Adj R2 R2 Adj R2 R2 Adj R2 

LO .310 .269 .218 .172 .334 .278 .155 .084 .102 .066 .055 .018 

NNGA .310 .269 .218 .171 .334 .278 .150 .078 .102 .066 .057 .019 

EVOL .310 .269 .272 .228 .334 .278 .144 .072 .102 .066 .057 .019 

KORRl .310 .269 .218 .172 .334 .278 .144 .072 .102 .066 .057 .019 - KORR2 .310 .269 .274 .231 .333 .277 .144 .072 .102 .066 .057 .019 -\0 

KORR3 .310 .269 .274 .231 .335 .279 .149 .077 .102 .066 .040 .001 

KORR4 .310 .269 .274 .231 .334 .278 .144 .072 .102 .066 .057 .019 

SAl .310 .269 .274 .231 .335 .280 .147 .075 .102 .066 .057 .019 

SA2 .310 .269 .218 .172 .335 .279 .143 .071 .102 .066 .044 .006 

SW .310 .269 .274 .231 .334 .278 .144 .072 .102 .066 .057 .019 

Note: The Adj R2 heading is the Adjusted R2. ( continued) 



TABLES.l (Continued) R-Squared Across all Optimization Algorithms and Data Sets for Neural Network Models with the 
Minimum and Maximum Object Function Values Across Restarts. 

JYUSTTR Mackey-Glass Flare 
Minimum Maximum Minimum Maximum Minimum Maximum 
Obj Fune Obj Fune Obj Fune Obj Fune Obj Fune Obj Fune 

Value Value Value Value Value Value 

Algorithm R2 Adj R2 R2 AdjR2 R2 Adj R2 R2 Adj R2 . R2 Adj R2 R2 Adj R2 

LO .055 .012 .002 -.043 .999 .999 .968 .966 .648 .418 .605 .347 

NNGA .058 .015 .029 -.015 .999 .999 .968 .965 .654 .428 .595 .331 

EVOL .054 .012 .030 -.014 .999 .999 .968 .965 .653 .427 .607 .350 

KORRl .058 .015 .002 -.043 .999 .999 .969 .966 .650 .422 .589 .321 
..... 

.055 .012 .002 -.043 .999 .999 .968 .966 .650 .422 .603 .344 N KORR2 
0 

KORR3 .055 .012 .002 -.043 .999 .999 .968 .965 .647 .417 .161 -.386 

KORR4 .050 .007 .024 -.020 .999 .999 .997 .997 .651 .423 .612 .359 

SAl .055 .012 .002 -.043 .999 .999 .969 .966 .650 .422 .143 -.416 

SA2 .055 .012 .030 -.014 .999 .999 .968 .966 .654 .429 .310 -.141 

SW .057 .015 .024 -.020 .999 .999 .969 .966 .650 .420 .602 .343 

Note: The Adj R2 heading is the Adjusted R2. 



Table 5.2 presents the probability of obtaining a solution within 5% and 20% 

cutoff points or percentiles. The cutoff points for the given percentiles are calculated by 

pooling all unique objective function values across all the algorithms for a given data set 

and then calculating the given percentiles. In other words, for each of the Bilinear, DAX, 

JYUS, and JYUSTTR data sets, a total of 5000 (500 restarts for each of the 10 

algorithms) objective function values for each data set are created by pooling the final 

converged objective function values from each algorithm. For the Flare and Mackey­

Glass problems, a total of 2500 objective function values are pooled since on these two 

data sets only 250 restarts were used for each of the algorithms. 

Ideally, all the minimums could be enumerated. However, this obviously cannot 

be done analytically, therefore, the pooled minimums found across all the algorithms 

serve as a proxy for the set of all minimums. More precisely, if the pooled objective 

function values serve as an unbiased proxy for the range and distribution of minimums 

for the particular data set, then the calculated percentiles will be unbiased with respect to 

the true percentiles. In table 5.2 we can see that for the Bilinear training data set, 4.4% of 

the objective function values found by the local optimization routine were within the 5th 

percentile of the minimums found across all algorithms and similarly 14.2% of objective 

function values were within the 20th percentile. In comparison, for the Bilinear data set, 7 

out of 9 of the global algorithms had higher probabilities of obtaining a minimum within 

the 5th percentile of all minimums found. 

Further examining table 5.2, it can be seen that, on average, as compared to the 

local optimization routines, the global algorithms do show an increase in probability of 

obtaining a low objective function value. However, the degree to which this is true 
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Table 5.2 Probability of Obtaining an Objective Function Value Within the Given 
Percentile of All Objective Function Values Obtained Across All 
Algorithms for the Specific Data Set. 

Bilinear DAX JYUS 

5th 20th 5th 20th 5th 20th 

Algorithm percentile percentile percentile percentile percentile percentile 
LO .044 .142 .050 .164 .020 .138 

NNGA .092 .194 .054 .176 .080 .218 

EVOL .074 .260 .022 .128 .086 .228 

KORRl .104 .190 .074 .252 .096 .240 

KORR2 .090 .246 .056 .226 .090 .216 

KORR3 .138 .302 .052 .232 .022 .178 

KORR4 .112 .306 .078 .276 .094 .262 

SAl ,038 .184 .056 .190 .038 .180 

SA2 .040 .152 .066 .174 .032 .134 

SW .052 .234 .046 .190 .056 .212 

JYUSTTR Flare Mackey-Glass 

5th 20th 5th 20th 5th 20th 

Algorithm :eercentile percentile percentile percentile percentile percentile 
LO .020 .138 .024 .128 .028 .152 

NNGA .080 .218 .052 .160 .048 .204 

EVOL .086 .228 .064 .244 .004 .076 

KORRl .096 .240 .028 .112 .040 .312 

KORR2 .090 .216 .044 .220 .056 .232 

KORR3 .022 .178 .024 .116 .024 .188 

KORR4 .094 .262 .076 .316 .040 .396 

SAl .038 .180 .088 .272 .028 .232 

SA2 .032 .134 .056 .228 .036 .160 

SW .056 .212 .044 .204 .044 .240 
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varied depending upon the data set and the percentile level. For all data sets, the local 

optimization routine either beat or was very close to at least one of the global 

optimization routines. The results in table 5 .2, would tend to support the statement 

reported earlier: "the local routine obtained a sufficient number of convergences at the 

minimum value, or very near the minimum". This is especially true in light of the 

computational requirements of the global algorithms. 

We may not only be interested in the distribution of objective function value. The 

absolute or best minimum objective function value is also important. Tables 5.3-5.8 

display the following stati'stics computed across the restarts: mean, median, standard 

deviation, and maximum and minimum values obtained. For the Bilinear and Mackey­

Glass data sets, all the algorithms found the same minimum. On the Dax data set, the 

local optimization routine found a lower minimum than 5 of the global optimization 

routines and matched the minimum found by the other global routines. For the JYUS and 

JYUSTTR data sets, the local optimization routine found a minimum that was only 

slightly larger then the lowest minimum found. On both data sets, the local optimization 

routine found lower minimums than several of the global routines. 

Although the local optimization routines were very competitive with the global 

routines in finding the minimum objective function values, the local routines were 

outperformed by the global routines on most data sets with respect to the mean and 

median. The one exception was for the JYUSTTR data set in which the local routine 

outperformed all but one of the global routines with respect to the median. From looking 

at the histograms and boxplots in figures 5.1-5.12, the global routines did on average 
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Table 5.3 Statistics for Objective Function Values from Random Restarts of 
Optimization Algorithms for Training a Neural Network on the Bilinear 
Data Set. 

Standard 
Algorithm a Mean Median Deviation Maximum Minimum 
LO 4.0280 4.0170 .0404 4.4703 3.9880 

NNGA 4.0251 4.0032 .0472 4.4706 3.9880 

EVOL 4.0213 4.0031 .0422 4.2130 3.9880 

KORRl 4.0232 4.0022 .0498 4.4700 3.9880 

KORR2 4.0247 4.0031 .0436 4.1663 3.9880 

KORR3 4.0145 4.0019 .0341 4.1664 3.9880 

KORR4 4.0222 4.0031 .0406 4.1795 3.9880 

SAl 4.0295 4.0153 .0438 4.1795 3.9880 

SA2 4.0316 4.0156 .0505 4.4703 3.9880 

SW 4.0225 4.0031 .0429 4.1666 3.9880 

Note: The numbers in the table above represent the indicated statistics computed across 500 restarts of the 
algorithms from new random starting values. The statistics are computed for the objective function values 
after the algorithm has indicated convergence for each of the restarts. 
"The abbreviation LO represents the particular local optimization routine employed in this training data set, 
for example, a quasi-Newton algorithm in this case. The rest of the algorithms are global optimization 
algorithms with the following meaning: NNGA - a neural network specific genetic algorithm, SW - the 
Solis-Wets algorithm, EVOL- a evolutionary strategy (ES) from Schwefel (1995), KORRl through 
KORR4 - 4 different variations of ES algorithms from Schwefel (1995), and SAl and SA2 are two 
variations of simulated annealing. See 4.4 for details of the algorithms. 
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Table 5.4 Statistics for Objective Function Values from Random Restarts of 
Optimization Algorithms for Training a Neural Network on the DAX 
Data Set. 

Standard 
Algorithm Mean Median Deviation Maximum Minimum 
LO 3.3004 3.3955 .1798 3.5238 2.9442 

NNGA 3.2780 3.3830 .1815 3.5176 2.9442 

EVOL 3.3063 3.3906 .1693 3.5379 2.9442 

KORRl 3.1907 3.1394 .1835 3.5377 2.9536 

KORR2 3.1938 3.1161 .1869 3.5516 2.9444 

KORR3 3.2096 3.1674 .1849 3.5418 2.9442 

KORR4 3.1803 3.1161 .1789 3.5490 2.9467 

SAl 3.2263 3.1953 .1900 3.5516 2.9442 

SA2 3.2667 3.3817 .1835 3.5429 2.9444 

SW 3.2510 3.3568 .1865 3.5377 2.9444 

Note: See table 5.3 for an explanation of the various entries. 
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Table 5.5 Statistics for Objective Function Values from Random Restarts of 
Optimization Algorithms for Training a Neural Network on the JYUS 
Data Set. 

Standard 
Algorithm Mean Median Deviation Maximum Minimum 
LO 

8.1297 8.1111 .0898 8.3018 7.9325 
NNGA 

8.1133 8.0756 .0970 8.3016 7.9324 
EVOL 

8.1096 8.0735 .0962 8.3005 7.9340 
KORRl 

8.1122 8.0731 .0995 8.3005 7.9335 
KORR2 

8.1170 8.0808 .0986 8.3121 7.9335 
KORR3 

8.1239 8.1113 .0914 8.4878 7.9324 
KORR4 

8.1028 8.0708 .0967 8.3005 7.9335 
SAl 

8.1210 8.0808 .0952 8.3005 7.9324 
SA2 

8.1159 8.0756 .0911 8.4153 7.9324 
SW 

8.1066 8.0721 .0886 8.3005 7.9340 
Note: See table 5.3 for an explanation of the various entries. 
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Table 5.6 Statistics for Objective Function Values from Random Restarts of 
Optimization Algorithms for Training a Neural Network on the 
JYUSTTR Data Set. 

Algorithm Mean Median 
Standard 

Maximum Minimum 
Deviation 

LO 
7.4113 7.4138 0.0316 7.6387 7.3479 

NNGA 
7.4032 7.4138 0.0220 7.4547 7.3478 

EVOL 
7.4034 7.4130 0.0218 7.4504 7.3478 

KORRl 
7.4139 7.4144 0.0435 7.6387 7.3479 

KORR2 
7.4121 7.4142 0.0444 7.6387 , 7.3478 

KORR3 
7.4020 7.3945 0.0247 7.6387 7.3485 

KORR4 
7.4071 7.4138 0.0209 7.4932 7.3478 

SAl 
7.4070 7.4142 0.0227 7.6387 7.3485 

SA2 
7.4088 7.4142 0.0203 7.4549 7.3478 

SW 
7.4090 7.4142 0.0200 7.4932 7.3488 

Note: See table 5.3 for an explanation of the various entries. 
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Table 5.7 Statistics for Objective Function Values from Random Restarts of 
Optimization Algorithms for Training a Neural Network on the Flare 
Data Set. 

Algorithm Mean Median 
Standard 

Maximum Minimum 
Deviation 

LO 
2.6096 2.6063 .0452 2.8260 2.5219 

NNGA 
2.6169 2.6003 .0660 2.8969 2.4752 

EVOL 
2.5975 2.5871 .0538 2.8150 2.4832 

KORRl 
2.6342 2.6209 .0678 2.9390 2.5023 

KORR2 
2.6016 2.5887 .0563 2.8413 2.5037 

KORR3 
2.6590 2.6227 .2459 6.0022 2.5236 

KORR4 
2.5815 2.5784 .0384 2.7745 2.4984 

SAl 
2.7890 2.5846 .6316 6.1310 2.5040 

SA2 
2.6009 2.5836 .1554 4.9396 2.4744 

SW 
2.5957 2.5878 .0492 2.8461 2.5101 

Note: See table 5.3 for an explanation of the various entries. 
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Table 5.8 Statistics for Objective Function Values from Random Restarts of 
Optimization Algorithms for Training a Neural Network on the Mackey-
Glass Data Set. 

Algorithm Mean Median 
Standard 

Maximum Minimum 
Deviation 

LO 
.3434 .1339 .3807 1.0637 .1325 

NNGA 
.1776 .1335 .1870 1.0770 .1325 

EVOL 
.4906 .1429 .4439 1.0733 .1325 

KORRl 
.1568 .1333 .1304 1.0756 .1325 

KORR2 
.1681 .1335 .1698 1.0673 .1325 

KORR3 
.3382 .1348 .3760 1.0694 .1325 

KORR4 
.1350 .1329 .0089 .2122 .1325 

SAl 
.1989 .1335 .2296 1.0657 .1325 

SA2 
.2252 .1336 .2687 1.0657 .1325 

SW 
.1997 .1335 .2285 1.0659 .1325 

Note: See table 5.3 for an explanation of the various entries. 
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provide marginally more probability of obtaining a lower minimum. Therefore, we 

would expect slightly lower mean and median statistics for the global routines. However, 

the local optimization routine outperformed the global routines 63% of the time with 

respect to the standard deviation of objective function values. 

Although the global routines did on average provide slightly more probability of 

obtaining a lower minimum, the local routines were nonetheless competitive. The local 

routines had a lower standard deviation ofresults and obtained minimum objective 

function values at the minimum. The one exception was for the Flare data set. As can be 

seen in figures 5.5 and 5.11, the Evolutionary Strategy routine KORR3 had a higher 

minimum then the local routine but the other eight global routines found lower 

minimums. However, the lowest minimum found by the local routine is only around 2% 

higher then the lowest found by the simulated annealing routine SA2. It can also be seen 

that out of all the algorithms, the local routine has the lowest standard deviation of 

objective function values. The local optimization routine does outperform 4 of the global 

routines with respect to the mean and 2 of the global routines with respect to the median 

value of objective function values. Looking at table 5.2, the local routine does obtain a 

reasonable number of solutions, as compared to the global routines, within the 5th and 

20th percentiles. 

The results discussed above are best interpreted in the light of the computing time 

required for the various training algorithms. Table 5.9 shows the computing time 

required for the various global optimization algorithms relative to the computing time 

required for the particular local optimization used on the given training data set. The 

numbers in the table show the ratio of the training time for the global optimization 
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Table 5.9 Ratio of Training Times for Global Optimization Algorithms in Comparison to Local Optimization Algorithms 

Data Set NNGA EVOL KORRl KORR2 KORR3 KORR4 SAl SA2 SW 
Bilinear 145 174 175 175 175 175 174 185 159 
DAX 48 59 61 60 60 64 60 63 54 
JYUS 93 111 106 106 106 106 113 119 93 
JYUSTTR 58 68 66 66 67 66 68 70 56 
Flare 4 4 4 4 5 4 4 4 4 

__ Mackey-Glass ____ 12 _____________ 14 _____________ 14 _____________ 13 _____________ _14 _____________ 13 _____________ _15 _____________ 14 _____________ 13 
Average: 60 71 71 71 71 71 72 76 63 

Note: The numbers indicate the ratio of the average training time for the global optimization routine divided by the average training time for the local 
optimization routine. For example, for the DAX neural network model, the NNGA took on average 48 times longer to train then the local optimization routine. 
The training times are averaged across all restarts. For the global optimization algorithms, the training times are taken from the final configurations as given in 
appendix A, tables A.1-A.5. 



routine divided by the training time for the local optimization routine. For example, for 

the DAX neural network model, the NNGA training time averaged 48 times longer than 

the local optimization routine. For a particular data set and algorithm, the training times 

were computed as the total computing time consumed for the full number of restarts, e.g. 

500 for the Bilinear training data. For the stochastic global algorithms, the training times 

are taken from the run of the algorithm with the combination of algorithm parameters 

presented in one of the tables Al through A.5 in appendix A, i.e. the winning 

combination of parameters. Each of the global algorithms was a hybrid algorithm 

whereby the global algorithm provided starting values for the respective local algorithm 

for that training set. Therefore, the training times for the global algorithms are the sum of 

its local algorithm time plus the training time for the respective global algorithm. 

The obvious observation from the training times presented in table 5.9 is that the 

global algorithms took much more time to train then the local algorithms. However, the 

relative computational requirements between the local and global algorithms were less 

pronounced for the larger neural network models trained on the Flare and Mackey-Glass 

training data sets. The global algorithms had the worst performance relative to local 

algorithm on the Bilinear data set. The obvious cause of this is that the Bilinear data set 

is easy to learn and the quasi-Newton local optimization algorithm converges very 

quickly on this problem. For the larger and harder to learn problems Flare and Mackey­

Glass, the global algorithms were at less of a disadvantage. The disadvantage is the 

smallest on the Flare data set. The large size of the neural network model used on the 

Flare data set, with 211.parameters to estimate, necessitated the use of the conjugate 
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gradient algorithm as opposed to the more efficient quasi-Newton algorithm used on the 

other problems. 

The training times for the EVOL, and KORR1-KORR4 algorithms are equal. In 

reality, there was some difference in training times, however, training times were 

rounded for simplicity and thus the reported relative training times for the evolutionary 

strategy algorithms are identical. The code base for the KORR1-KORR4 algorithms is 

identical with changes to the calling parameters of the underlying subroutine invoking 

different functioning of the crossover operator, which differentiates the various KORR 

algorithms. These differences in operation of the KORR algorithms are apparently 

dominated by the computational demands of the other processes in each iteration of the 

algorithm, not the least of which is the calculation of the outputs of the neural network 

given the current values for the weights. The EVOL algorithm is conceptually simpler 

then the KORR algorithm, however, it is probably coincidence that the training time is so 

similar to the KORR algorithms. The EVOL algorithm could be inefficiently coded 

relative to the KORR algorithms and as stated above, other processes may dominate the 

computational demands. 

Since the global algorithms take a great deal more time relative to the local 

routines, a greater number of restarts could be performed by a local routine relative to a 

global. An increased number ofrestarts would increase the relative performance of the 

local routine. Table 5 .10 presents the probabilities from table 5 .2 normalized with 

respect to computing time required. Each of the probabilities for the global algorithms 

given in table 5.2 is divided by the associated relative computing time given in table 5.9. 

Therefore, the probabilities are adjusted to assume that the global algorithms use the 
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Table 5.10 Adjusted Probability, Assuming Equal Training Times, of Obtaining an 
Objective Function Value Within the Given Percentile of all Objective 
Function Values Obtained Across all Algorithms for the Specific Data 
Set. 

Bilinear DAX JYUS 

5th 20th 5th 20th 5th 20th 

Algorithm percentile percentile percentile percentile percentile percentile 
LO 0.0440 0.1420 0.0500 0.1640 0.0200 0.1380 

NNGA 0.0006 0.0013 0.0011 0.0037 0.0009 0.0023 

EVOL 0.0004 0.0015 0.0004 0.0022 0.0008 0.0021 

KORRl 0.0006 0.0011 0.0012 0.0041 0.0009 0.0023 

KORR2 0.0005 0.0014 0.0009 0.0038 0.0008 0.0020 

KORR3 0.0008 0.0017 0.0009 0.0039 0.0002 0.0017 

KORR4 0.0006 0.0017 0.0012 0.0043 0.0009 0.0025 

SAl 0.0002 0.0011 0.0009 0.0032 0.0003 0.0016 

SA2 0.0002 0.0008 0.0010 0.0028 0.0003 0.0011 

SW 0.0003 0.0015 0.0009 0.0035 0.0006 0.0023 

JYUSTTR Flare Mackey-Glass 

5th 20th 5th 20th 5th 20th 

Algorithm percentile percentile percentile percentile percentile percentile 
LO 0.0200 0.1380 0.0240 0.1280 0.0280 0.1520 

NNGA 0.0014 0.0038 0.0130 0.0400 0.0040 0.0170 

EVOL 0.0013 0.0034 0.0160 0.0610 0.0003 0.0054 

KORRl 0.0015 0.0036 0.0070 0.0280 0.0029 0.0223 

KORR2 0.0014 0.0033 0.0110 0.0550 0.0043 0.0178 

KORR3 0.0003 0.0027 0.0048 0.0232 0.0017 0.0134 

KORR4 0.0014 0.0040 0.0190 0.0790 0.0031 0.0305 

SAl 0.0006 0.0026 0.0220 0.0680 0.0019 0.0155 

SA2 0.0005 0.0019 0.0140 0.0570 0.0026 0.0114 

SW 0.0010 0.0038 0.0110 0.0510 0.0034 0.0185 
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same amount of computing time that the local algorithm does for that particular data set. 

In effect, the global algorithms are allowed a smaller number of restarts relative to the 

local algorithm. The probabilities for the local routine could have alternatively been 

adjusted upward to assume the local algorithm was allowed to run as long as one of the 

global algorithms, in effect, increasing the number of restarts for the local algorithm. 

However, what is more important in table 5.10 are the relative probabilities as opposed to 

the absolute levels. 

We can see from table 5 .10 that if our goal is to obtain a solution within say the 

5th percentile of solutions, the local optimization routine outperforms all the global 

algorithms on every problem. The local routine also outperforms in the context of 

obtaining solutions within the 20th percentile. The global algorithms performed the best 

on the Flare data set, relatively speaking. The global algorithms were at the least 

disadvantage on the Flare data set. However, the global algorithms were still dominated 

by the local algorithm when adjusting for computing time. 

One weakness of this type of analysis is that it depends on the particular 

implementation of the global algorithms in this study. In particular, an improved method 

for switching from the global routine to the local routine could potentially cut a great deal 

of time off the computing time of the global algorithms. However, even ignoring 

computing time, the local optimization routine is competitive for most of the problems in 

this research. Even a simple doubling of the computing time required for the global 

algorithms, relative to a local routine, would make the local routine superior to the global 

routines in most of the cases presented in this research. 
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As has been pointed out previously, the computational time required to pick a 

good set of algorithm parameters in the pre-testing stage for the global algorithms was 

ignored in the analysis above. If a user intends to perform a large number of restarts for 

the purposes of obtaining a good set of neural networks, then for the SW algorithm, with 

only 6 possible configurations, a pre-testing stage would only add 60 restarts. However, 

for the NNGA algorithm, assume we perform 10 restarts for each of the 72 possible 

configurations. The pre-testing stage would more then double the computational 

requirements with 720 extra restarts. A different procedure for the global algorithms 

would have been to drop the second stage and simply perform a number of restarts for 

each of the configurations, pooling the results across all configurations. However, a 

conservative test of the efficiency of the global algorithms is to compare the local 

algorithm against a well configured global algorithm. That is, if the global algorithm 

does not significantly outperform the local algorithm with the benefit of hindsight, then 

perhaps these global algorithms are not performing according to users preconceived 

expectations. The question remains ifthere is significant difference in performance 

between the various configurations for the global optimization algorithm parameters? 

The next section presents the results of a test to investigate if there is a significant 

performance difference between the various configurations. 

5.4 Pre-testing Bias 

The procedure, as described in section 4.4.1, to pick the algorithm parameters for 

the global algorithms could introduce pre-testing bias into the results presented in the 

previous sections. For example, for the EVOL algorithm on the bilinear training data, we 
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have 14 different configurations, each representing a different combination of algorithm 

parameters. In the pre-testing stage, 10 restarts are run for each of these configurations. 

The configuration with the lowest mean objective function value computed across the 

restarts is chosen to ·perform the full-scale simulations, i.e. 500 restarts. The simulation 

results presented in this chapter are from the full-scale simulations. There is some pre-

testing bias introduced into the results if the optimal set of algorithm parameters 

significantly outperforms the other combinations of algorithm parameters. 

In practice, the small advantage seen by the global algorithms over the local 

algorithms might not be obtainable outside of a procedure like that used in this research 

to pick an "optimal" set of algorithm parameters. It should be noted that the pre-testing 

procedure could have been incorporated into the estimation procedure for the global 

algorithms and the reported results could have contained this information. However, this 

would certainly further handicap the global algorithms in viewing the results in the 

context of computational time. The procedure followed in this study to report the results 

is conservative in the sense that if the results for the global algorithms do not outperform 

relative to the results for the local optimization procedure, even in the context of potential 

bias, then is no need for further analysis with respect to pre-testing for the global 

algorithms. 

For a given data set and algorithm, to test if there is a statistically significant 

difference for the objective function values between each configuration, an F-test is 

calculated in the context of a regression model. Consider the following regression model: 

n 

(5.1) Q =/Jo+ 2../JJ; +E 
;~1 
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where Q is the objective function value, e.g. from (4.6) or (4.7), for a restart and I; is an 

indicator variable as follows: 

(5.2) {
1, if Q is from configuration i 

I -
; - 0, otherwise, 

where a configuration, as in preceding discussions in this study, refers to a specific set of 

algorithm parameters. For example, consider the EVOL algorithm on the Bilinear 

training data. Referring to table 4.3, we have 14 different configurations, each with 10 

restarts. Therefore, in ( 5 .1) the number of classes or configurations is N = 14 and the 

regression has a total of 140 observations; 14 configurations times 10 restarts for each 

configuration. Note that an econometrician would refer to each "configuration" as a 

"class", however, in keeping with the language in this study, we will continue to use the 

term configuration. A test for a statistically significant difference between the mean 

values for Q between classes or configurations is then an F-test on the regression with a 

null hypothesis of: 

(5.3) 

Note that this test doesn't test which configurations are statistically different, or in other 

words which /J; 's are different from zero, only that at least one of the configurations is 

significantly different. 

Table 5.11 presents the results for the above described F-tests for comparing 

variability of objective function values across configurations for the global algorithms. 

For most algorithms and data sets, we cannot reject the null hypothesis given in (5.3). 

However, at a five or ten percent significance level, we can reject the null hypothesis of 

no significant difference in objective function values across configurations for 21 out of 
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TABLE 5.11 Probabilities for F-tests From Regressions Comparing the Variability 
of Objective Function Values Across Configurations. 

Algorithm Bilinear DAX JYUS 
NNGA .0876 .8133 .7325 

EVOL .0007** .5477 .5920 

KORRl .7163 .4813 .1459 

KORR2 .6827 .0067** .9657 

KORR3 .0136** .1015 .3550 

KORR4 .4418 .0003** .3301 

SAl .9862 .5594 .2011 

SA2 .8663 .0064** .8498 

SW .0022** .0565* .8355 

Algorithm JYUSTTR Mackey-Glass Flare 
NNGA .6429 .0001 .0012 

EVOL .6659 .0326** .039s*" 

KORRl .7999 .2858 .0001 *"* 

KORR2 .5410 .5808 .0001 ** 

KORR3 .0462** .2807 .0001 ** 

KORR4 .3349 .0891 * .0001 ** 

SAl .1728 .8020 .0001 ** 

SA2 .0022** .9449 .0002** 

SW .1437 .1142 .7447 

Significant at the 10% significance level. 
**significant at the 5% significance level. 

the 54 algorithms and data sets. Out of these 21, 18 are significant at the five percent 

level. For each of the Bilinear, DAX, JYUSTTR, and Mackey-Glass data sets, there are a 

few algorithms for which there does appear to be some pretesting bias introduced by the 

procedure to pick the algorithm parameters for the global algorithms. This could account 
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for some of the small out-performance of those algorithms relative to the local algorithm. 

Of particular significance is the Flare data set where at a five percent significance level, 

there is evidence of pretesting-bias on eight of the nine algorithms. This is noteworthy 

because for the Flare data set, with respect to the objective function values obtained and 

ignoring computational time, the global algorithms did appear to outperform the local 

algorithm. The evidence of pretesting bias for the global algorithms on the flare data set 

could explain their better performance relative to the local algorithms on this data set. 

Furthermore, the R-squared from the aforementioned regressions were relatively high for 

the flare data set. For the Flare data set, a single low value of .10 for the R-square was 

observed for one of the algorithms. The other R-squares were much higher with 4 data 

sets producing a regression with an R-squared above .90. The simulations on the 

Mackey-Glass data set produced regressions with an average R-squared around .25. The 

simulations on the other data set produced regressions with lower R-squares ranging from 

.05 to .30. 

5.5 Conclusions 

Even ignoring the relative computational requirements of the various algorithms, 

the results presented in figures 5.1-5.12 and tables 5.1-5.10 fail to provide any convincing 

justification for using stochastic global optimization algorithms to train neural networks. 

No single algorithm consistently outperforms all others and more importantly, the local 

optimization routine is not dominated by any of the global optimization algorithms. The 

global algorithms do on average provide marginally more probability of obtaining a 

lower converged objective function value as opposed to the local optimization routines. 
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However, in general, the local optimization routines obtained solutions at the minimum 

value, or very near the minimum. 

Looking at the results in the context of the relative training times presented in 

table 5.9 adds weight to the results. For all the neural network models and training data 

sets, the global algorithms took considerably more time to train then the local 

optimization routines. Stochastic global optimization algorithms as a class of algorithms 

are computationally expensive. However, it is generally expected that as a tradeoff for 

increased computational time, the global algorithm will obtain a much lower objective 

function value then a local algorithm. For estimating neural network parameters, the 

simulations presented in this study only show marginally more probability of obtaining a 

lower minimum. With respect to the training times, certainly a more sophisticated 

stopping method could be investigated for switching from the global algorithms to the 

local optimization algorithm. This could considerably reduce the computational time 

consumed by the global algorithms. In addition, optimization of the code for the global 

algorithms could improve the computational efficiency. Nonetheless, the marginal gains, 

if any, in the quality of the solution obtained by the stochastic global algorithms 

investigated in this study do not justify the universal application of these algorithms for 

training neural networks. 

A computationally demanding pre-testing procedure was used to obtain a 

reasonable set of user-definable algorithm parameters for the stochastic global 

algorithms. The extra computational time required for this pre-testing procedure was 

excluded from the analysis presented in this chapter. The pre-testing procedure should 

have theoretically given an unfair advantage to the global algorithms. Nonetheless, the 
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global algorithms failed to substantially outperform, or even match in some cases, the 

local algorithms with respect to the magnitude of the solutions found. Stochastic global 

optimization algorithms could be useful in situations where the neural network objective 

function is discontinuous. The local algorithms used in this research require a continuous 

and differentiable objective function. 
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Chapter 6 

SUMMARY AND CONCLUSIONS 

6.1 Introduction 

The first section of this chapter presents a summary of the results presented in the 

previous chapter. Conclusions to be drawn from these results are also reported. The last 

two sections discuss the limitations of the study and give suggestions for further research. 

6.2 Summary of Results, and Conclusions 

In this research, the relative speed and accuracy of 9 alternative global 

optimization methods in estimating the weights of neural networks is compared to local 

optimization methods. The stochastic global algorithms investigated were 2 simulated 

annealing algorithms, 1 simple random stochastic algorithm, 1 genetic algorithm and 5 

evolutionary strategy algorithms. The algorithms are compared by performing multiple 

estimations from random starting values on 6 function approximation problems and 

analyzing the running time and distribution of the final objective function values over the 

multiple estimations. On two of the training data sets, 250 random restarts were run and 

on the other four, 500 random restarts were run. The results were displayed graphically 

in the form of histograms and boxplots. In addition, various statistics were reported such 

as the mean, median, minimum, and maximum of the objective function values computed 

across the restarts. 

143 



The results indicated that a large number of local minimums exist for all the 

neural network training data sets considered in this study. There was no single algorithm 

that dominated all others across the training data sets. More importantly, with respect to 

the research objectives of this study, the local optimization algorithm is not consistently 

dominated by any of the global algorithms. However, the global algorithms do provide 

on average marginally more probability of obtaining a lower converged objective 

function value as opposed to the local optimization routines. The higher probability is 

demonstrated in the slightly lower mean and median values for the objective function 

values from the global algorithms as compared to the local algorithm. However, on 

average, the local optimization routine did have a lower standard deviation of objective 

function values across the data sets. The local routine obtained a sufficient number of 

convergences at the minimum value, or very near the minimum. In 5 of the 6 training 

problems, the local optimization routine found a solution that was at the lowest minimum 

found across all algorithms, or within .0001 of it. 

The stochastic global algorithms required much more computing time then the 

local routines. On average, the global routines required 60 to 70 times as much 

computing time. However, for the two largest training data sets with 43 and 211 neural 

network weights to estimate, the difference in training times was much less. The global 

algorithms for the largest problem with 211 weights took about 4 times longer then the 

local routine and 14 times longer for the training problem with 43 weights. Since the 

global algorithms take a great deal more time relative to the local routines, a greater 

number of restarts could be performed by a local routine relative to a global. This would 

increase the relative performance of the local routine. Adjusting the results to account for 
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the computing time showed that if the goal is to obtain a solution within the 5th percentile 

of solutions, the local optimization routine outperforms all the global algorithms on every 

problem. The weakness of this type of analysis is that it is dependent on the particular 

implementation of the global algorithms in this study. In particular, an improved method 

for switching from the global routine to the local routine could potentially cut a great deal 

of time off the computing time of the global algorithms. 

In conclusion, the results indicate that with respect to the specific algorithms 

studied, there is little evidence to show that a global algorithm should be used over a 

more traditional local optimization routine for training neural networks. Further, neural 

networks should not be estimated from a single set of starting values whether a global or 

local optimization method is used. The results strictly apply only to the estimation 

methods and problems considered. There may be problems where global optimization 

methods are superior. However, even ignoring computational time, there is still little 

evidence to support the use of stochastic global algorithms for training neural networks. 

The results presented in this study add significantly to the body of literature concerning 

the usefulness of stochastic global optimization algorithms for training neural networks. 

With respect to the range of data sets and algorithms studied, no previous study has 

presented simulation results as extensive as those presented in this research. 

6.3 Limitations of Study and Directions for Study 

The greatest limitation of this study is the limited number of training data sets and 

global algorithms examined. Extending the analysis to a larger number of data sets 

would either add weight to the results presented in this study or could discover types of 
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problems on which the global algorithms are effective. For the smaller estimation 

problems investigated in this study, the local optimization routine was clearly superior to 

the global routines. However, for the largest estimation problem in this study the global 

algorithms, with one exception, did show an advantage in their ability to find a solution 

with a slightly smaller objective function value. In this problem, with respect to the 

solution found, the advantage of the best global optimization algorithm over the local 

routine was less then 2%. However, perhaps the larger and more complex neural network 

estimation problems would benefit from using a stochastic global optimization algorithm. 

The global optimization field is an area in which a great deal of research is taking 

place. New algorithms and improvements to existing algorithms are being researched. 

Other types of stochastic global algorithms could be investigated, for example Ant 

algorithms. Besides stochastic algorithms, other categories of global algorithms, such as 

function smoothing techniques, could be investigated. The existing algorithms in this 

research could be improved by implementing an intelligent method of switching from the 

global routines to the associated local routine. 
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APPENDIX A 

STOCHASTIC GLOBAL OPTIMIZATION ALGORITHM 
PARAMETERS 

Tables A. I through A.5 present the chosen values for the user-definable 

parameters of the stochastic global optimization algorithms. An example of a user-

definable parameter would be the standard deviation of mutation, which is common to all 

the stochastic global algorithms. The performance of the algorithms may depend upon 

wisely choosing the values of the various algorithm parameters. Section 4.4.1 presents 

the details of the procedure for picking the algorithm parameter values presented in tables 

A.I through A.5. For most of the algorithm parameters, it is difficult to see any 

discemable pattern in the values chosen. However, one can make some general 

observations about some of the parameters. For example, for the standard deviation of 

mutation s, a parameter common to all the algorithms1, the value chosen is generally 

much less then the maximum value of 1 tried for most of the algorithms. 

In the NNGA and SW algorithms, the standard deviation of mutation stays 

constant throughout the operation of the algorithm. All the other algorithms have some 

sort of mechanism to adjust the standard deviation of mutation throughout the operation 

of the algorithm. Therefore, the reported standard deviation of mutation for the EVOL, 

KORR1-KORR4, and SAl and SA2 algorithms is the beginning standard deviation of 

1 For the simulated annealing algorithm, the standard deviation of mutation is synonymous with the 
parameter called temperature. 
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Table A.1 Values for the User-Definable Parameters of the NNGA Algorithm. 

r c - probability rm - probability s- std. dev. of 
Data Set b- bias of crossover of mutation mutation 
Bilinear 5 .8 .2 0.12 
Dax 5 .8 .2 .5 
JYUS 20 .2 .8 .12 
JYUSTTR 20 .2 .8 .12 
Flare 10 .8 .6 1.0 
Mackey-Glass 10 .8 .6 1.0 
Note: See section 4.3.2 for a detailed explanation of the NNGA algorithm and its 
parameters. The values in the table are for the various user definable parameters that 
were chosen by the procedure described in section 4.4.1. 

Table A.2 Values for the User-Definable Parameters of the EVOL Algorithm. 

Data Set s- std. dev. of mutationa as - adjustment factor for s 
Bilinear .250 .850 
Dax .125 .999 
JYUS .125 .999 
JYUSTTR .125 .999 
Flare .060 .999 
Mackey-Glass .250 .999 
Note: See section 4.3.3 for a detailed explanation of the EVOL algorithm and its 
parameters. The values in the table are for the various user definable parameters that 
were chosen by the procedure described in section 4.4.1. 
aThis column reports the beginning standard deviation of mutation. The algorithm 
adjusts s as it progresses. 

Table A.3 Values for the User-Definable Parameters of the SW Algorithm. 

Data Set 
Bilinear 
Dax 
JYUS 
JYUSTTR 

s- std. dev. of mutation 
.25 
.50 
.25 
.50 

Flare .5 
Mackey-Glass .125 
Note: See section 4.3.5 for a detailed explanation of the SW algorithm and its parameters. 
The values in the table are for the various user definable parameters that were chosen by 
the procedure described in section 4.4.1. 
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Table A.4 Values for the User-Definable Parameters of the KORRl, KORR2, 
KORR3, and KORR4 Algorithms. 

s - std. dev. of r' - adjustment r - adjustment 
Algorithm Data Set mutationa factor for s factor for s 
KORRl Bilinear .125 .183 .359 

Dax .5 .033 .076 
JYUS .03 .183 .359 
JYUSTTR .03 .046 .090 
Flare .03. .006 .023 

________________________ Mackey-Glass _____ L ____________________ J~?! _________________ .138 _______________ _ 
KORR2 Bilinear .25 .046 .090 

Dax 1 .033 .076 
JYUS .25 .091 .180 
JYUSTTR .03 .091 .180 
Flare .06 .012 .046 

________________________ Mackey-Glass _____ :Q~ ____________________ .Q?! _________________ .138 _______________ _ 
KORR3 Bilinear .03 .183 .359 

Dax 1 .033 .076 
JYUS .5 .183 .359 
JYUSTTR .06 .183 .359 
Flare .03 .006 .023 

________________________ Mackey-Glass _____ :Q~ ___________________ .027 __________________ .Q~~ _______________ _ 
KORR4 Bilinear .5 .183 .359 

Dax .5 .033 .076 
JYUS .06 .046 .090 
JYUSTTR .25 .091 .180 
Flare .03 .006 .023 
Mackey-Glass .5 .108 .276 

Note: See section 4.3.3 for a detailed explanation of the KORRl, KORR2, KORR3, and 
KORR4 algorithms. The values in the table are for the various user definable parameters 
that were chosen by the procedure described in section 4.4.1. 
~his column reports the beginning standard deviation of mutation. The algorithm 
adjusts s as it progresses. 

mutation at the start of the algorithms operation. Note that for the SAl and SA2 

algorithms, the beginning standard deviation of mutation is the beginning parameter 

temperature given by r;°). For these algorithms, the beginning standard deviation of 

mutation is probably not as critical a value as the standard deviation of mutation for the 

Table A.5 Values for the User-Definable Parameters of the SAl and SA2 
Algorithms. 
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y(O) _ y(M) _ 
p p 

a - ending beginning ending 
parameter parameter temperature c' - scale 

Algorithm Data Set temperature a temperature ratio factor 

SAl Bilinear .01 .001 1 .1 
Dax .125 .001 .0001 4 
JYUS .02 .001 1 .5 
JYUSTTR .01 .001 .01 2 
Flare .02 .001 1 2 
Mackey- .12 .001 .01 2 
Glass 

--------------------------------------------------------------------------------------------------------------------
SA2 Bilinear .03 .00001 .002 4 

Dax .01 .001 1 2 
JYUS .03 .001 .01 40 
JYUSTTR .01 .00001 .0004 18 
Flare .03 .00001 .01 4 
Mackey- .03 .001 .01 4 
Glass 

Note: See section 4.3.4 for a detailed explanation of the SAl and SA2 simulated 
annealing algorithms and their parameters. The values in the table are for the various 
user definable parameters that were chosen by the procedure described in section 4.4.1. 
aThe beginning acceptance criterion temperature T}0l is set equal to the beginning 

parameter temperature T;0l but the acceptance criterion temperature is scaled by the 

factors c and c'. 

NNGA and SW algorithms where the standard deviation stays fixed throughout the 

operation of the algorithm. However, a large value for the beginning standard deviation 

of mutation can lead to saturated hidden neurons, which could freeze the learning process 

of any algorithm. There are several notable exceptions to the general rule of a small 

standard deviation of mutation, namely a value of 1 for both the Flare and Mackey-Glass 

problems for the NNGA algorithm. For the Flare data set, with 211 model parameters or 

neural network weights to estimate, we would expect a smaller standard deviation of 

mutation would be best. The Mackey-Glass problem is also one of the larger problems 

with 43 model parameters. There are several examples of large standard deviations of 
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mutation for the KORR algorithms. However, as mentioned before, the values reported 

in table A.4 are for the beginning standard deviation of mutation and the KORR 

algorithms have a mechanism to adjust the mutation rate as the algorithm progresses. 

For the NNGA algorithm, the final chosen values for the probabilities of 

crossover re and mutation rm varied. A high value of .8 for re was chosen for 4 of the 6 

problems with a relatively low value of .2 for the remaining two problems. The converse 

was true for rm, the probability of mutation. A relatively low probability of mutation of 

.2 was chosen for 2 of the problems with higher values of .6 or .8 for the remaining four 

problems. An interesting observations is that the lower values of rm are associated with 

the higher values of re and visa-versa. In other words, there appears to be an inverse 

relationship between the probability of crossover and of mutation. Note that a probability 

of mutation of .2 is still high compared to most genetic algorithm implementations. The 

rational for the relatively high probability of mutation is given in section 4.1.1. There 

does not appear to be any pattern in the values for the bias parameter b. For the EVOL 

algorithm, consistent with the results presented by Keane, a value of .999 was chosen for 

as, the adjustment factor for the standard deviation, for 5 out of 6 of the problems. 
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