
FINITE ELEMENT CFD ANALYSIS

OF SUPER-MANEUVERING AND

SPINNING STRUCTURES

By

TIMOTHY JOHN COW AN

Bachelor of Science
Oklahoma State University

Stillwater, Oklahoma
1996

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1998

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
August, 2003

FINITE ELEMENT CFD ANALYSIS

OF SUPER-MANEUVERING AND

SPINNING STRUCTURES

Thesis Approved:

ii

ACKNOWLEDGEMENTS

I wish to thank Dr. A. S. Arena, Jr. for inspiring and encouraging me in my pursuit

of enlightenment. This work never would have been completed without his

understanding and patience as I moved across the country and lived in four different

states during my work on this project over the past four years. I also want to thank the

other members of my committee: Dr. B. T. Binegar, Dr. F. W. Chambers and Dr. D. G.

Lilley.

But, no one deserves more thanks than my wife Leslie whose support, patience, and

encouragement ultimately made this all possible. Her support and companionship were

critical ingredients in providing me the strength to complete this work.

iii

TABLE OF CONTENTS

Chapter _Page

1. INTRODUCTION ... 1

1.1 Background .. I
1.2 Research Objective .. 4
1.3 Overview .. 5

2. PROBLEM DEFINITION .. 7

2.1 Choice of Governing Equations ... 7
2.2 The Compressible Euler Equations ... 12
2.3 Non-Inertial Formulation ... 13
2.4 Dimensionless Forms ... 18

3. METHODOLOGY .. 21

3.1 Overview of Finite Element Methods .. 22
3.2 Space-Time Formulation ... 26
3.3 Finite Element Discretization .. 28

3.3.1 One-Dimensional Elements .. 32
3.3.2 °Two-Dimensional Elements ... 35
3.3.3 Three-Dimensional Elements ... 39
3.3.4 Element Edge Data ... 45

3.4 . Boundary Conditions and the Boundary Integral 46
3.4.1 Symmetry Boundary Condition47
3.4.2 Far-Field Boundary Condition .. .48
3.4.3 Solid Wall Boundary Condition ... 51

3.5 Predictor Multi-Corrector Algorithms ... 57
3.5.1 Steady Solutions ... 60
3.5.2 1st Order Unsteady Solutions .. 62
3.5.3 2nd Order Unsteady Solutions ... 65

3.6 Stabilization ... 67
3.6.1 SUPGandGLS .. 68
3.6.2 Artificial Dissipation .. 71

4. COMPUTER IMPLEMENTATION .. 74

4.1 Data Structures ... 75
4.2 Basic Algorithm ... 77
4.3 Available Codes ... 80

iv

4.4 Algorithm Control ... 82
4.5 Aerodynamic Forces .. 84
4.6 Structural Dynamics .. 86

4.6.1 Core Dynamics Algorithm .. ; 88
4.6.2 Sampling Sensitivity ... 94

· 4.6.3 Higher Order Algorithms ... 98
4.7 Summary .. 104

4.7.1 Memory Requirements ... 105
4. 7 .2 Computational Performance ... 107

5. RESULTS .. 113

5 .1 Verification .. 114
5 .1.1 Oblique Shock .. 116
5.1.2 Prandtl-Meyer Expansion ... 127
5.1.3 Converging-Diverging Nozzle ... 135
5.1.4 Subsonic NACA-0012 Airfoil.. .. 141
5.1.5 _Conical Shock on a 10 degree Cone 154
5.1.6 Unsteady Shock Tube ... 160
5 .1. 7 Impulsively Accelerated Airfoil.. ... :. 169
5.1.8 Pitching and Plunging Airfoil.. ... 177
5.1.9 Spinning Centrifuge ... 185

5:2 Validation .. 188
5.2.1 RAE 2822 Transonic Airfoil .. 190
5.2.2 AGARD 445.6 Aeroelastic Test Wing 194
5.2.3 Benchmark Active Controls Technology (BACT) Wing ... , ... 204
5.2.4 Vortex Generation Behind a Sharp-Edged Body 213
5.2.5 80 Degree Delta Wing .. 220
5.2.6 Hovering Rotor ... 230

6. CONCLUSIONS · ... 240

6.1 Discussion of Results ... 241
6.2 Future Challenges .. 242

BIBLIOGRAPHY ... 248

APPENDIX A: Summary of 2-D File Formats ... 254

Geometry Input .File (case. g2d) ... 255
Solver Control Input File (case. con) ... 257
Solution Unknowns Input/Output File (case . un *) 259
Dynamic Mesh Input File (case . dyn) .. 260
Elastic Vectors Input File (case. vec) ... 263
Solution Residuals Output File (case. rsd) .. 266
Aerodynamic Loads Output File (case. lds) .. 268
Dynamic Output File (xd . da t) .. 270
Elastic Output File (xn. da t) .. 272

APPENDIX B: Summary of 3-D File Formats ... 274

V

Geometry Input File (case. g3 d) ... 275
Solver Control File (case. con) ... 277
Solution Unknowns Input/Output File (case. un*) 280
Dynamic Mesh Input File (case. dyn) .. 281
Elastic Vectors Input File (case. vec) ... 284
External Force Input File (case. frc) ... 287
Solution Residuals Output File (case. rsd) .. 289
Aerodynamic Loads Output File (case. lds) .. 291
Dynamic Output File (xd. dat) .. :. 293
Elastic Output File (xn. dat) .. 295

APPENDIX C: Time History Data For AGARD Wing .. 297

Time History Data for Mach 0.96, dt = 16.0 .. 298
Time History Data for Mach 0.96, dt = 4.0 .. 300
Time History Data for Mach 0.96, dt = 1.0 .. 302
Time History Data for Mach 0.96, dt = 0.25 .. 304

APPENDIX D: Steady Validation Data For BACT Wing .. 306

Cp Data for-Mach 0.51 .. 307
Cp Data for Mach 0.67 .. 309
Cp Data for Mach 0.71 .. 311
Cp Data for Mach 0. 77 .. 313
Cp Data for Mach 0.80 ,. ; ... 315
Cp Data for Mach 0.82 .. 317

APPENDIX E: Steady Validation Data For 80 Degree Delta Wing 319

Cp Data for Mach 0.30, Roll Angles of O and 10 Degrees 320
Cp Data for Mach 0.30, Roll Angles of 20 and 30 degrees :. 321
Cp Data for Mach 0.30, Roll Angles of 40 and 50 degrees 322
Cp Data for Mach 0.30, Roll Angles of 60 and 70 degrees 323
Cp Data for Mach 1.20, Roll Angles of O and 10 Degrees 324
Cp Data for Mach 1.20, Roll Angles of 20 and 30 Degrees 325
Cp Data for Mach 1.20, Roll Angles of 40 and 50 Degrees 326
Cp Data for Mach 1.20, Roll Angles of 60 and 70 Degrees 327

VITA ... 328

vi

LIST OFT ABLES

Table Page

Table 3 .1: Gauss points and weights for one-dimensional elements 34

Table 3.2: Gauss points and weights for two-dimensional elements 38

Table 3.3: Gauss points and weights for three-dimensional elements 44

Table 4.1: Summary of solver parameters for unsteady solution performance tests 110

Table 5.1: Summary of grid parameters for oblique shock problem 118

Table 5.2: Summary of average error downstream of the shock for all solutions to the
oblique shock at Mach 2.5 .. 121

Table 5.3: Summary of one-point, low-order dissipation solution to the oblique shock at
Mach 6.0 ... 125

Table 5.4: Summary of grid parameters for Prandtl-Meyer expansion 128

Table 5.5: Summary of average error downstream of the shock for all solutions to the
Prandtl-Meyer expansion at Mach 2.5 .. 132

Table 5.6: Summary of grid parameters for converging-diverging nozzle 136

Table 5.7: Summary of Mach number at inlet and exit of converging-diverging nozzle .
.. 140

Table 5.8: Summary of grid parameters for NACA 0012 airfoil. 142

Table 5.9: Summary of sectional lift and drag coefficients for the NACA 0012 airfoii at
Mach 0.30.and zero angle of attack .. 146

Table 5.10: Summary of sectional lift coefficients for the NACA 0012 airfoil at Mach
0.30 and 5.0 degree angle of attack .. 153

Table 5.11: Summary of average pressure and Mach number on the surface of the 10
degree cone at Mach 2.35 ... 160

vii

Table 5.12: Summary of solver control parameters used for time step refinement with
unsteady shock tube .. 165

Table 5.13: Summary of solver control parameters used for time step refinement with the
impulsively accelerated airfoil. .. 172

Table 5.14: Summary of solver control parameters used for time step refinement with
AGARD wing at Mach 0.96 ... ,. 202

Table 5.15: Summary of computed flutter velocity for the AGARD wing at Mach 0.96 .
.. 204

Table 5.16: Measured frequency, damping and stiffness reported for the BACT wing. 208

Table 5.17: Summary of experimental and computed flutter characteristics for the BACT
wing at Mach 0.82 .. 212

Table 5 .18: Summary of computed Strauhal numbers for the wedge solution 219

Table 5.19: Summary of solver angle parameters for various roll angles with a constant
30° angle of attack .. 223

viii

LIST OF FIGURES

Figure Page

Figure 2.1: Vector relationship between inertial and non-inertial reference frames 13

Figure 3.1: Variation in time of unknowns using a constant-in-time approximation 29

Figure 3.2: Typical one-dimensional finite element in natural coordinates 32

Figure 3.3: Typical two-dimensional finite element in natural coordinates 35

Figure 3.4: Typical three-dimensional finite element in natural coordinates 40

Figure 3.5: Illustration of an average surface normal for the trailing edge of an airfoil. .. 52

Figure 3.6: Illustration of transpiration concept. ... 53

Figure 3.7: Model problem for testing transpiration with non-inertial rotation 54

Figure 3.8: Time history for the pitch angle of a rotating airfoil. 56

Figure 3.9: Comparison of predicted pressure coefficient for a pitching airfoil. 57

Figure 4.1: Pseudo-code summary of core CFO algorithm .. : ... 78

Figure 4.2: Unsteady Solution Flow Chart .. 87

Figure 4.3: Block diagram representing a discrete-time aeroelastic system 95

Figure 4.4: Comparison between continuous and discrete models for a one-dimensional
aeroelastic model problem .. 97

Figure 4.5: Error comparison between several discrete-time models for the one-
dimensional aeroelastic model problem ... 99

Figure 4.6: Error comparison between several discrete-time models for the two-
dimensional aeroelastic model problem ... 101

Figure 4.7: Error comparison between several discrete-time models for the two-
dimensional aeroelastic CFO problem ... 102

ix

Figure 4.8: Plot of absolute difference between the zero-order and second-order
integrators for each mode of the aeroelastic CFD problem 103

Figure 4.9: Comparison of computational performance of old solver and new solver for
various operating system/processor combinations ... 108

Figure 4.10: Comparison of residual convergence histories of old and new CFD solvers
for two different free stream mach numbers .. 109

Figure 4.11: Comparison of computational performance for different types of unsteady
solutions with new CFD solver. ... 111

Figure 4.12: Comparison of CPU time for different geometries 112

Figure 5 .1: Layout of computational domain for oblique shock problem 117

Figure 5.2: Representative surface triangulation for oblique shock 118

Figure 5.3: Summary of solver control parameters for oblique shock at Mach 2.5 119

Figure 5.4: Plot of residual histories for oblique shock at Mach 2.5 :. 120

Figure 5.5: Pressure and Mach distributions for one-point, low-order dissipation solution
to the oblique shock at Mach 2.5 .. 122

Figure 5.6: Pressure and Mach distributions for one-point, high-order dissipation solution
to the oblique shock at Mach 2.5 .. 123

Figure 5.7: Summary of solver control parameters for oblique shock at Mach 6.0 124

Figure 5.8: Plot of residual histories for oblique shock at Mach 6.0 125

Figure 5.9: Pressure and Mach distributions for one-point, low-order dissipation solution
to the oblique shock at Mach 6.0 .. 126

Figure 5.10: Layout of computational domain for Prandtl-Meyer expansion 128

Figure 5.11: Representative surface triangulation for Prandtl-Meyer expansion 129

Figure 5.12: Summary of solver control parameters for oblique shock at Mach 2.5 130

Figure 5.13: Plot of residual histories for Prandtl-Meyer expansion at Mach 2.5 :. 131

Figure 5.14: Pressure and Mach distributions for one-point, low-order dissipation solution
to the Prandtl-Meyer at Mach 2.5 ... 133

Figure 5.15: Pressure and Mach distributions for one-point, high-order dissipation
solution to the Prandtl-Meyer at Mach 2.5 ... 134

X

Figure 5.16: Layout of computational domain for converging-diverging nozzle 136

Figure 5.17: Representative surface triangulation for converging-diverging nozzle 136

Figure 5.18: Summary of solver control parameters for converging-diverging nozzle .. 137

Figure 5.19: Plot ofresidual histories for converging-diverging nozzle 137

Figure 5.20: Colored Mach profile for converging-diverging nozzle 138

Figure 5.21: Mach distributions for one-point, low-order and high-order dissipation
solutions to the converging-diverging nozzle ... 139

Figure 5.22: Layout of computational domain for NACA 0012 airfoil. 141

Figure 5.23: Representative grid for the NACA 0012 airfoil. .. 142

Figure 5.24: Close-up of coarse and medium surface grids near the NACA 0012 airfoil.
.. 143

Figure 5.25: Summary of solver control parameters for NACA 0012 airfoil. 143

Figure 5.26: Plot ofresidual histories for the NACA 0012 airfoil at Mach 0.3 and zero
angle of attack ... 144

Figure 5.27: Comparison of pressure coefficient distributions for NACA 0012 airfoil at
Mach 0.3 and zero angle of attack .. 145

Figure 5.28: Summary of solver control parameters for transpiration solutions with the
NACA 0012 airfoil. .. 149

Figure 5.29: Head of elastic vectors file for the NACA 0012 airfoil with a specified mode
one generalized velocity ... 150

Figure 5.30: Plot of residual histories for the NACA 0012 airfoil at Mach 0.3 and 5.0
degree angle of attack ... 151

Figure 5.31: Comparison of pressure coefficient distributions for NACA 0012 airfoil at
Mach 0.3 and 5.0 degree angle of attack .. 152

Figure 5.32: Layout of computational domain for the 10 degree cone 156

Figure 5.33: Surface triangulation for 10 degree cone .. 157

Figure 5.34: Close-up of surface triangulation at the apex of 10 degree cone 157

Figure 5.35: Summary of solver control parameters for 10 degree cone 158

Figure 5.36: Plot of residual histories for 10 degree cone .. 158

xi

Figure 5.37: Pressure and Mach distributions on the surface of the 10 degree cone at
Mach 2.35 ... 159

Figure 5.38: Layout of computational domain for unsteady shock tube 161

Figure 5.39: Surface triangulation for unsteady shock tube ... 161

Figure 5.40: Summary of solver control parameters for unsteady shock tube 162

Figure 5.41: Initial conditions for unsteady shock tube .. 162

Figure 5.42: Plot of residual histories for 1st and 2nd order solution to the unsteady shock
tube using a dimensionless time step of 0.001. .. 163

Figure 5.43: Density, pressure, and Mach distributions for 1st and 2nd order solution to the
unsteady shock tube at l = 0.2 using a dimensionless time step of 0.001. 164

Figure 5.44: Plot of residual histories for 1st and 2nd order solution to the unsteady shock
tube using various dimensionless time steps .. 166

Figure 5.45: Density, pressure, and Mach distributions for 1st and 2nd order solution to the
unsteady shock tube at l = 0.2 using various dimensionless time steps 167

Figure 5.46: Surface triangulation with wake refinement for impulsively accelerated
airfoil. ... 170

Figure 5.47: Close-up of surface triangulation for impulsively accelerated airfoil. 170

Figure 5.48: Summary of solver control parameters for impulsively accelerated airfoil.
.. 171

Figure 5.49: Plot of residual histories for impulsively accelerated airfoil using various
dimensionless time steps .. 172

Figure 5.50: Plot of lift coefficient variation for the impulsively accelerated airfoil using
various dimensionless time steps .. 173

Figure 5.51: Colored Mach profile showing unsteady wake development for the
impulsively accelerated airfoil. .. 17 4

Figure 5.52: Summary of solver control parameters for impulsively accelerated airfoil in
a non-inertial frame .. 175

Figure 5.53: Dynamics file for the impulsively accelerated airfoil in a non-inertial frame .
. 17 6

Figure 5.54: Comparison of transient lift coefficient for the impulsively accelerated
airfoil solved using inertial and non-inertial formulations 177

xii

Figure 5.55: Summary of solver control parameters for the plunging airfoil. 178

Figure 5.56: Dynamics input file for the plunging airfoil. .. 179

Figure 5.57: Response time history for the plunging airfoil. .. 180

Figure 5.58: Plot of residual time histories for the plunging airfoil solution 180

Figure 5 .59: Comparison of lift coefficient time histories for the plunging airfoil. ; . 181

Figure 5.60: Dynamics input file for the pitching airfoil. ... 182

Figure 5.61: Plot of residual time histories for the pitching airfoil solution 183

Figure 5.62: Comparison of lift coefficient time histories for the pitching airfoil.. 184

Figure 5.63: Summary of solver control parameters for spinning centrifuge 186

Figure 5.64: Dynamics file for the spinning centrifuge .. 187

Figure 5.65: Comparison of computed and theoretical pressure and density distributions
along the centerline of the spinning centrifuge after four revolutions 188

Figure 5.66: Layout of computational domain for the RAE 2822 transonic airfoil.. 191

Figure 5.67: Close-up of surface grid near the RAE-2822 airfoil.. 192

Figure 5.68: Summary of solver control parameters for transonic airfoil solution 192

Figure 5.69: Plot ofresidual histories for transonic airfoil solution ;. 193

Figure 5.70: Plot of pressure coefficient distribution on the surface of the transonic airfoil
at Mach 0.729 and angle of attack 2.31 degrees ... 194

Figure 5.71: Close-up of surface grid for AGARD 445.6 aeroelastic test wing 195

Figure 5.72: Summary of solver control parameters for the AGARD steady solution ... 196

Figure 5.73: Plot of steady pressure coefficient distribution on the surface of the AGARD
wing at Mach 0.96 for various spanwise locations, 17 •... 197

Figure 5.74: Summary of solver control parameters for the AGARD aeroelastic solution .
.. 198

Figure 5.75: Header of elastic vectors input file for the AGARD aeroelastic solution .. 198

Figure 5.76: External force input file for the AGARD aeroelastic solution 199

xiii

Figure 5.77: Comparison between time history data computed by STARS and euler3d
solvers for the AGARD wing at Mach 0.96 ... 200

Figure 5.78: Comparison of time history data for AGARD wing at Mach 0.96 201

Figure 5.79: Plot of flutter velocity versus time step for the AGARD wing at Mach 0.96 .
.. 203

Figure 5.80: Layout of computational domain for BACT wing 205

Figure 5 .81: Close-up of surface grid for BACT wing ... 206

Figure 5.82: Summary of solver control parameters for the steady BACT wing solutions .
.. 207

Figure 5.83: Comparison of steady surface pressure distribution at the 60% span location
for the BACT wing at Mach 0.82 and zero angle of attack 207

Figure 5.84: Summary of solver control parameters for the unsteady BACT wing
solutions .. 209

Figure 5.85: Dynamics input file for the unsteady BACT wing solutions 209

Figure 5.86: Aeroelastic response of BACT wing at Mach 0.82 for a free-stream dynamic
pressure of 144 psf .. 210

Figure 5.87: Pitch response of BACT wing at Mach 0.82 for various free-stream dynamic
pressures using idsol = 0 .. 211

Figure 5.88: Surface triangulation around wedge-shaped body 214

Figure 5.89: Close-up of surface triangulation near wedge-shaped body 214

Figure 5.90: Summary of solver control parameters for the wedge solution 215

Figure 5.91: Contour plot showing vortex generation behind a wedge-shaped cylinder .
.. 216

Figure 5.92: Plot of lift coefficient time history data for the wedge solution 217

Figure 5.93: Comparison of lift coefficient time history data for the wedge solution with
various outer radius dimensions ... 218

Figure 5.94: Plot of Strouhal number versus outer radius of the computational domain for
the wedge solution .. 219

Figure 5.95: Layout of computational domain for 80 degree delta wing 221

Figure 5.96: Surface triangulation for 80 degree delta wing ... 221

xiv

Figure 5.97: Summary of solver control parameters for the steady delta wing solutions .
.. 222

Figure 5.98: Plot of velocity vectors along a normal cut plane at xlc = 0.60 for the Mach
0.30 delta wing , .. 223

Figure 5.99: Plot of velocity vectors along a normal cut plane at x/c = 0.60 for the Mach
1.20 delta wing at a 30° angle of attack .. 225

Figure 5.100: Summary of solver control parameters for the unsteady free to roll delta
wing solutions ... 226

Figure 5.101: Dynamics input file for the unsteady free to roll delta wing solution 226

Figure 5.102: Roll time history data for the Mach 1.20 delta wing at a 30° angle of attack .
.. 227

Figure 5.103: Plot of roll moment coefficient versus roll angle for the Mach 1.20 delta
wing at a 30° angle of attack .. 228

Figure 5.104: Roll time history data for the Mach 1.20 delta wing at a 10° angle of attack .
.. 229

Figure 5.105: Plot of roll moment coefficient versus roll angle for the Mach 1.20 delta
wing at a 10° angle o_f attack .. 229

Figure 5.106: Layout of computational domain for hovering rotor 231

Figure 5.107: Close-up of surface grid for hovering rotor .. 231

Figure 5.108: Summary of solver control parameters for the hovering rotor with tip Mach
0.520 ... 232

Figure 5.109: Dynamics input file for the hovering rotor with tip Mach 0.520 233

Figure 5.110: Plots of z-force time history for the hovering rotor with a 2° collective pitch
angle and a tip Mach number of 0.520 ... 234

Figure 5.111: Comparison of surface pressure distributions after various revolutions for a
hovering rotor with a 2° collective pitch and tip Mach number of 0.520 234

Figure 5.112: Plot of surface pressure distribution for a hovering rotor with a 2°
collective pitch and tip Mach number of 0.520 after eight revolutions 235

Figure 5.113: Plots of z-force time history for the hovering rotor with an 8° collective
pitch angle and a tip Mach number of 0.439 .. 236

Figure 5.114: Comparison of surface pressure distributions after various revolutions for a
hovering rotor with an 8° collective pitch and tip Mach number of 0.439 237

xv

Figure 5.115: Plot of surface pressure distribution for a hovering rotor with an 8°
collective pitch and tip Mach number of 0.439 after five revolutions 237

Figure 5.116: Comparison of computed surface pressure distribution for a hovering rotor
using an actual and simulated 2° collective pitch angle for a tip Mach number of
0.520 ... 238

Figure 5.117: Comparison of computed surface pressure distribution for a hovering rotor
using an actual and simulated 8° collective pitch angle for a tip Mach number of
0.439 ... 239

xvi

CHAPTER 1

1. INTRODUCTION

This dissertation presents a space-time finite element method for solving the

compressible Euler equations in a non-inertial reference frame. The methodology

developed here has been formulated with an emphasis on solving problems that are found

in aerospace applications. In particular, we are interested in modeling aeroservoelastic

interactions for complicated three-dimensional problems such as fighter aircraft.

In this Chapter we discuss the background behind our current interest in the

modeling of aeroservoelastic problems. This includes a discussion on the computational

tools we seek to enhance through the development of a non-inertial finite element

methodology. We then proceed by defining the objectives of this research effort, and

finish the introduction with a brief overview for the remaining Chapters of this document.

1.1 Background

Modern high-performance aerospace vehicles are highly maneuverable, operate

over a wide range of speeds, in some cases hypersonic speeds, and are designed to have

lightweight, sometimes flexible structures. Examples of such vehicles currently being

developed include the X-33 single stage to orbit vehicle, the X-43 or Hyper-X, and the X-

34 reusable launch vehicle technology demonstrator. Unfortunately, this type of vehicle

1

often encounters aeroservoelastic (ASE) instabilities during part of its flight profile as a

result of complicated aerodynamic, elastic, inertial, and control interactions. Hence, the

accurate prediction of such interactions prior to flight testing is a necessary part of the

design process.

In terms of accuracy, the most attractive model for the aerodynamic interaction in

an ASE analysis is a computational fluid dynamics (CFD) model. Unsteady CFD

solutions provide an accurate physical model of the flow field for all flight regimes. with

the ability to account for nonlinear generation and unsteady movement of shock waves

when dealing with compressible flows. Traditionally, the use of such models in an ASE

analysis has been limited to academic research due to long computational times,

especially for the three-dimensional models of complicated aerospace vehicles.

However, this limitation is rapidly diminishing as technological advances provide

affordable, faster computers each year. Additionally, research into synergistic

combinations of aerodynamic modeling techniques and CFD have demonstrated a

significant reduction in computational times for aeroelastic simulations.1•2•3 Thanks to

these developments, CFD is now more likely to be applied to ASE analysis not just by

academic researchers, but also by aircraft designers in an operational environment.

The capability for completely coupled, nonlinear aeroservoelastic analysis has

recently been integrated into STARS (STructural Analysis RoutineS) developed by Gupta

at the NASA Dryden Flight Research Center. STARS is an highly integrated, finite

element based code for multidisciplinary analysis of flight vehicles including static and

dynamic structural analysis, computational fluid dynamics, heat transfer, and

aeroservoelastic capabilities.4 The core of the nonlinear ASE analysis routine in STARS

2

is a finite element CFO· algorithm based on a time-marched solution to the unsteady,

compressible Euler equations. This routine is capable of simulating the time accurate

fluid-structure "interactions for arbitrary three-dimensional geometries interacting with

inviscid, compressible flows. The accuracy of this routine has been demonstrated in the

literature for both aeroelastic and aeroservoelastic analysis of several flight vehicle

configurations. 5•6

One of the interesting features of the STARS ASE analysis routine is the

methodology used to apply the unsteady CFO boundary conditions for an elastically

deforming structure. Rather than utilizing a computationally expensive moving grid

algorithm or attempting to re-grid the problem at each time step, STARS uses

transpiration to simulate the correct boundary conditions for the deformed structure by

updating only the wall surface normals at each time step. Obviously, this methodology is

more efficient than attempting to update all of the nodes in the computational domain by

some other method, such as a moving mesh algorithm. At the same time, research has

demonstrated that STARS CFO results employing the transpiration boundary condition

are in excellent agreement with those obtained using actually defomied grids for the

small deformations typically seen in ASE simulations.7

Unfortunately, the transpiration boundary condition will actually limit the type of

applications the STARS ASE routines are capable of analyzing. Simulations involving

large amplitude motion cannot be modeled accurately using this method. Common

examples of these applications include spinning structures such as propellers and

turbines, rigid body translation and rotation of fighter aircraft under combat and

maneuvering conditions, and free-to-roll oscillations of delta wings or "wing-rock." For

3

such applications, it would be convenient to solve the governing CFD equations in a non

inertial reference frame, thus allowing for uniform motion of the entire computational

grid. This formulation should still be substantially faster than updating each individual

node in an arbitrarily deforming grid, and may also be combined with the transpiration

boundary condition to include elastic deformation of the local surface geometry.

1.2 Research Objective

The objective of this research effort will be to extend the capabilities of the

STARS ASE analysis routine by incorporating the capability for unsteady CFD analysis

in a non-inertial reference frame. Hence, we will focus on the development of an

efficient and accurate finite element methodology for solving the compressible Euler

equations expressed in non-inertial coordinates. Although this is non-trivial and arguably

a complicated task, it also is not a unique or novel topic of research as it has been

accomplished in the past. Several finite volume based codes already exist which employ

a non-inertial reference frame, and at least one finite element based code allows for a

rotating (but non-accelerating) frame of reference.

The unique aspects of this project involve the more general goal of developing the

capacity for an aeroservoelastic analysis of a super-maneuvering or spinning structure.

This type of multidisciplinary analysis will rely on the integration of the aforementioned

finite element CFD algorithm into the existing STARS framework and require that the

algorithm developed be as general as possible. To solve the most general

aeroservoelastic problem, the finite element CFD algorithm will be required to account

not only for velocities and accelerations produced by rigid body motion of the non-

4

inertial reference frame, but also simulate elastic deformations and control surface

deflections through an appropriately modified transpiration boundary condition that

accounts for an arbitrarily rotating coordinate system. The resulting code is potentially a

general purpose flight simulator capable of accurately modeling an aircraft configuration

performing any sort of arbitrary dynamic flight maneuver. However, the simulation will

obviously not be performed in "real-time" due to the immense computational

requirements of a large-scale CFO analysis.

1.3 Overview

Our discussion begins in Chapter 2 with an examination of the equations we_ seek

to solve. This. includes a derivation of the non-inertial 'Euler equations in conservation

form. Chapter 3 then discusses the details of discretizing and numerically solving the

governing equations using advanced finite element methods. Although many aspects of

the current STARS unsteady CFO module will be retained, we do not simply start by

modifying the existing algorithm to accommodate a non-inertial frame. Rather, we seek

to develop a new algorithm by examining state of the art finite element methods currently

in use for computational fluid dynamics research. In fact, we will find that the current

STARS unsteady CFO module is unsuitable for our purposes due to the limitations of its

edge-based data structure.

After evaluating. a variety of methods, we develop a space-time finite element

algorithm which re-uses some of the best aspects of the STARS methodology, but is

modified appropriately for a non-inertial formulation. In order to facilitate future

enhancements to this algorithm, Chapter 3 is intended to provide the reader with all of the

5

relevant theory and equations needed to reconstruct the methodology presented in this

document. Furthermore, Chapter 4 presents many of the details of how the finite element

methodology is implemented as a working computer algorithm, including details on the

solution of the structural_ dynamics equations not presented in Chapter 3. In Chapter 5,

we attempt a rigorous verification and validation of the CFD algorithm for a wide range

of flow problems. Finally, Chapter 6 presents conclusions and makes recommendations

for future research.

6

CHAPTER2

2. PROBLEM DEFINITION

In this Chapter we review the governing equations that define our problem. We

begin by discussing the _choice of governing equations used in this study, namely the

compressible Euler equations. This includes a brief literature review investigatin~ the

trade-offs associated with using the Euler equations rather than the Navier-Stokes

equations for aeroelastic simulations. In the next section we present the classic form of

the compressible Euler equations which will serve as the basis for deriving our numerical

algorithm. This is followed by a discussion of the transformations necessary to re-cast

the equations for use in a non-inertial formulation, and the appropriate dimensionless

form of the governing equations needed for development of a numerical algorithm.

2.1 Choice of Governing Equations

The emphasis of the present work is to extend the capabilities of the STARS

nonlinear ASE module to include CFD analysis in a non-inertial reference frame. As

mentioned previously, the current unsteady CFD module uses a time-marched approach

to solving the unsteady, compressible Euler equations. Although the Navier-Stokes

equations represent the most precise mathematical model for fluid flow, the Euler

equations adequately model most of the physical characteristics of transonic and

7

supersonic flows with the obvious exception of substantial viscous effects. Flow features

of particular interest for compressible flows are the generation and motion of shock

waves, entropy increases· across shocks, and vorticity production and convection behind

shocks, all of which can be successfully modeled using the Euler equations. 8•9

One of the primary motivations for employing the Euler equations rather than the

full Navier-Stokes equations is computational efficiency. We expect that any numerical

solution to the Euler equations will be faster than a similar solution to the Navier-Stokes

equations since there are fewer terms to compute. In fact, Roache10 has suggested that,

"one could swallow up one order of magnitude (increase in computing power) with

Reynolds Averaged Navier-Stokes equations and a two-equation model of turbulence."

This problem is compounded by the fact that Navier-Stokes solutions typically require

greater grid resolution, and even small increases in grid resolution swallow up enormous

amounts of computing power.

If one were ambitious enough to be interested in direct numerical simulation

(DNS) of aerospace flows using the Navier-Stokes equations and brute-force calculation

of turbulence, multiple references have suggested that the required number of grid points

is approximately proportional to the Reynolds number raised to the 9 h power. With this

relationship in mind, Moin 11 estimates that about 1016 grid points would be required to

model a typical transport aircraft cruising at 250 meters per second. Furthermore, he

estimates that even with teraflop supercomputers it would take several thousand years to

compute the flow for one second of flight time.11

To date, only simple, low Reynolds number flows such as plate, channel, and step

flows have been successfully analyzed using DNS, and only at an extreme computational

8

, . 12 13 ' al expense usmg parallel supercomputers. ' Because of this, any practlc viscous

solution employs the Reynolds Averaged Navier-Stokes (RANS) equations plus some

form of turbulence model. Although this averaged form of the Navier-Stokes equations

does relax the grid spacing requirements when compared to DNS, it still requires

significantly more grid points over comparable Euler solutions to accurately resolve the

boundary layer. Considering that many of the existing STARS CFD models consist of

several hundred thousand elements and take on the order of weeks or even months to

analyze using an Euler solution, increasing the computational time by incorporating a

Navier-Stokes model does not appear to be practical at this time.

It is important, however, to consider what physical aspects of the problem may be

lost when the viscous terms in the Navier-Stokes equations are neglected. Some of the

more interesting features that the full N avier-Stokes equations are capable of predicting

include boundary layer development and interaction with shocks, as well as turbulence

generation and vorticity shedding. In general, these flow features cannot be modeled by

the Euler equations since they are inherently viscous effects. This is a significant

problem if the expressed purpose for modeling a particular aircraft is to search for these

specific flow features. However, the primary use of the STARS unsteady CFD module is

in coupled aeroelastic and aeroservoelastic analysis. Hence it may be more relevant to

question what accuracy might be lost in a typical ASE analysis as a result of neglecting

the viscous terms from the Navier-Stokes equations.

In a typical CPD-based ASE · analysis, the dynamic response of a structure is

computed by solving Equation (2.1), the matrix equation of motion for an arbitrary

structure in generalized coordinates.

9

(2.1) Mx(t)+ Cx(t)+ Kx(t) =fa (t)

In the above relation, x = {x1, x2, ... , Xn} Tis a yector of n generalized displacements, fa is

a vector of n generalized aerodynamic forces, and M, C and K are nxn matrices of

generalized mass, damping, and stiffness coefficients respectively.

Notice in Equation (2.1) that the dynamics of an aeroelastic problem is driven by

an unsteady aerodynamic force vector, the calculation of which involves an integration of

pressure over the surface of the structure. With this in mind, it is often argued that small

or localized pressure fluctuations due to viscous effects should not significantly impact

aeroelastic stability since their integrated effect would be negligible.

Obviously this will not be true for all classes of problems, but for many aerospace

applications, excluding high angle of attack problems, this does seem to be the case. One

example of such an application is the AGARD 445.6 aeroelastic test wing. Gµpta5

modeled this wing configuration in order to demonstrate the capabilities of the STARS

ASE module. Although the results were not quantitatively precise, the qualitative trends

accurately matched those observed during the original wind tunnel testing at the Langley

Transonic Dynamics tunnel, including the transonic dip in the flutter boundary near Mach

1.0. These results seem to indicate that the Euler solution is capable of modeling the

dominant flow physics which drive this aeroelastic problem, while the small numerical

discrepancy is most likely the result of structural modeling uncertainty along with some

viscous effects. In addition to the AGARD, a variety of other aeroelastic simulations

have been performed using STARS, including the BACT wing.6 Recent efforts at NASA

are focused on modeling the Hyper-X supersonic vehicle using STARS.

10

Another interesting numerical study was completed by Steger and Bailey.14 It

involved the prediction of a single degree-of-freedom aeroelastic phenomenon known as

buzz. One of the more interesting results from their simulation was a comparison

between the buzz boundary predicted by a viscous and inviscid flow solver. The viscous

solution predicted buzz at both Mach 0.82 and 0.83, while the inviscid solution predicted

buzz slightly later at Mach 0.84. Furthermore, a limit cycle oscillation was predicted by

the viscous flow model while the inviscid model predicted exponential divergence. On

the difference between the observed limit cycle oscillations and exponential divergence,

Steger and Bailey concluded that: " ... while inviscid unsteady shock wave motion is the

driving force of transonic aileron buzz, the viscosity is nevertheless crucial and can both

sustain and moderate the flap motion."

Again, the conclusion is that an inviscid solution is entirely capable of predicting

the dominate flow physics which initially drive an aeroelastic problem, or at least enough

to obtain a reasonable approximation for a stability boundary. The viscosity, on the other

hand, seems to have a nonlinear effect on the rate of divergence for an unstable time

history, making limit cycles and other nonlinear behavior possible. That is not to say that

an inviscid solution cannot predict nonlinear behavior as well though. As discussed at

the beginning of this section, an Euler solution is entirely capable of predicting nonlinear

generation and motion of shock waves.

For the remainder of this research, it is assumed that an Euler solution is

appropriate for modeling many aeroelastic problems, and it is left for individual

researchers to decide whether viscosity will play a dominate role in their particular

problem.

11

2.2 The Compressible Euler Equations

The compressible Euler equations are fundamental to the subject of inviscid flow.

As such, their derivation from the three conservation laws; conservation of mass,

momentum and energy; can be found in most introductory texts on fluid dynamics. Here,

the compressible Euler equations are presented in their most commonly used form, the

so-called conservative variables formulation. Using indicial notation, a single vector

equation representing the compressible Euler equations is written as follows:

(2.2)

where, in three dimensions,

p

put
(2.3) U= pu2

pu3

pe

pui 0

pu;u1 pt5li
(2.4) F; = pu;u2 + pt52i

pu;U3 pt53i
pu;e pui

In the above equations, U is the Euler unknowns vector, Fi is the lh component of the

Euler flux vector, pis the fluid density, u = {u1, u2, u3}T is the fluid velocity vector, e is

the total energy per unit mass, p is the thermodynamic pressure, and 4i is the Kronecker

delta (i.e. 4i = 1 for i = j, and 4i = 0 for i "# j).

12

Along with Equation (2.2), we will also reqmre the following constitutive

equations relating the thermodynamic pressure and total enthalpy per unit mass, h, to the

Euler unknowns:

(2.5)

(2.6)

p = p(y-1)(e-flul 2
)

h = e + p / p = '}P + 1. lul 2
p(y- I) 2

In the above equations, yis the ratio of specific heats, which is assumed to be constant for

a given problem.

2.3 Non-Inertial Formulation

The Euler equations presented in the previous section were formulated in terms of

an inertial or stationary reference frame. In this section we will extend these equations to

account for the arbitrary motion of a non-inertial reference frame. Consider the layout

presented in Figure 2.1, where XYZ represents an inertial reference frame and xyz

represents a non-inertial reference frame which is free to translate and rotate in all three

dimensions.

y

Figure 2.1: Vector re_lationship between inertial and non-inertial reference frames.

13

The position vector, q, for a particle located in the non-inertial reference frame

can be expressed in terms of the inertial reference frame by Equation (2.7).

(2.7) qxyz = R Xl'Z + Br xyz

In the above relation, B is a coordinate transformation matrix that maps a particular

coordinate location in the non-inertial frame, xyz, to the inertial frame, XYZ. In three-

dimensions, the matrix B may be defined as follows:

(2.8)

where the angles 8, lf/ and </J are the classic Euler angles used in flight dynamics to

describe the orientation of an aircraft. 15

Next, consider the time rate of change of Equation (2.7).

(2.9)
dq xyz dR xyz dB dr xyz ·
-~= +-rxyz +B--=V0 +Brxyz +BVr

dt dt dt dt

In the above equation, VO is the velocity vector for the origin of the non-inertial frame

expressed in inertial coordinates, and V r is the relative velocity vector for the fluid

particle expressed in non-inertial coordinates. For convenience, a matrix which has the

property given by Equation (2.10) is introduced.

(2.10)

where

(2.11) B=B!l

For a rotating system, the angular velocity matrix, n, is defined by Equation (2.12).

14

(2.12) !lr =roxr =[; xyz xyz z

-OJY

0

where the angular rates, OJx, £0, and ulz, are the angular velocities of the non-inertial frame

expressed in non-inertial coordinates. These angular rates are equivalent to the body

angular rates, p, q and r, typically used to describe the motion of an aircraft in flight

dynamics.15

Now consider the time rate of change of Equation (2.9).

d (V) dV0 dB n. Bd!l B drxyz dB dVr (2.13)- V0 +B!lrxyz +B r =--+-:.,=.rxyz + -rxyz + !l--+-Vr +B--
dt dt dt dt dt dt dt

Simplifying Equation (2.13) yields the equation needed to define a velocity derivative in

terms of its non-inertial components.

(2.14)
dV _ 2 • dVr
- -a0 +B!l rxyz +B!lrxyz +2B!lVr +B--
dt dt

Notice that the derivation of Equation (2.14) was based on a Lagrangian

description of motion and defines the total acceleration vector for a particle moving in a

non-inertial reference frame. This expression is also valid in an Eulerian description of

motion if the total time derivative is replace by the particle, or substantial derivative.

(2.15)

For convenience, a transformation velocity vector, Vt, and transformation acceleration

vector, at, both expressed in the inertial frame, are defined as follows:

(2.16)

(2.17)
dV 2 '

a 1 =--1 =a0 +B!l rxyz +B!lrxyz +B!lVr
dt

15

The above equations allow us to rewrite the definition for the total velocity and

acceleration vectors, Equations (2.9) and (2.15), in a more compact form as follows:

(2.18) V=V, +BV,

(2.19)
DV DV
-=a +BQV +B--'
Dt 1 ' Dt

These equations will help us to cast the compressible Euler equations in terms of relative

quantities expressed in non-inertial coordinates. To do so, we must first define a relative

energy, er, by substituting the definition for the total velocity into the perfect gas law,

Equation (2.5),_ as follows:

(2.20)

where

(2.21)

Pe = _f!_l + t p (V, · V,)-t p (V, · V,) + p V · V, = p e, + p V · V,
r-

e =e-V·V r t

Using this definition for the relative energy, we now write our constitutive

equations in terms of relative and transformation velocities as follows:

(2.22) . p = p(y-1)(e, -tlvJ +tlv,12)

(2.23) h. - I - r P i 1v 12 i 1v 12 ,-e,+p P- ()+2 r -2 t p y-l

where hr is a relative enthalpy per unit mass.

Through careful substitution of the above non-inertial definitions into the

compressible Euler equations for flow relative to an inertial frame, we are able to derive

the following vector equation for the compressible Euler equations for flow relative to a

non-inertial frame:

16

(2.24)

where, in three dimensions,

p

pul

(2.25) V= puz

pu3
pe,

pui 0

pu;u1 p<\

(2.26) F; = pu;Uz + pS2;

pu;u3 p03;

pu;e, PU;

s =-p{ (!r'a, ~nv,)}
a,· (v, +BV,)

(2.27)

In the above relations, S is the non-inertial source vector, and u = { u1, u2, u3} T now

represents the relative fluid velocity vector expressed in non-inertial coordinates, which is

equivalent to the relative velocity vector, Vr, appearing in the non-inertial source vector

and used in the derivation of the non-inertial quantities.

Notice that the transformation matrix, B, and its inverse, B-1, are required in order

to evaluate Equation (2.24). This is not a desirable definition to form the basis of an

efficient numerical algorithm. Instead, let us redefine the transformation velocity and

acceleration, V1 and a1, respectively, so that they are vectors expressed in non-inertial

coordinates. From Equations (2.16) and (2.17) the non-inertial transformation velocity

and acceleration, V,' and a,' respectively, may be expressed in non-inertial coordinates as

follows:

17

(2.28)

(2.29)

Taking advantage of the above definitions, we also define the following definition for the

non-inertial source vector such that all vector quantities are expressed in terms of non-

inertial coordinates:

(2.30) S=-p a'+QV {
0 }

a;~ (v; + ~r)

In later sections, we will drop the prime notation and assume that all vector quantities are

appropriately expressed in terms of non-inertial coordinates.

2.4 Dimensionless Forms

The successful application of a numerical algorithm to solve the compressible

Euler equations requires that they first be cast in dimensionless form. This is

accomplished by defining a dimensionless density, velocity, pressure, energy, time, and

coordinate location as follows:

(2.31)

(2.32)

(2.33)

(2.34) e· = e/u;

(2.35)

(2.36) x· = x/L0

18

In the above expressions, p0 is the reference density, U0 is the reference velocity, L0 is a

reference length, and the asterisk is used to denote dimensionless forms of the usual

quantities.

Next, the above definitions are used to derive dimensionless forms for the

unknowns vector and inviscid flux vectors.

0 0 0 0
.

Po p

0 PoUo 0 0 0 • • pu

(2.37) U= 0 0 PoUo 0 0
.. = [uJu· pv

0 0 0 PoUo 0
. .

pw

0 0 0 0 Pou; •• pe

PoUo 0 0 0 0
. .

p U;

0 Pou; 0 0 0 *** *t5. pu;u1+P Ii

(2.38) F; = 0 0 Pou; 0 0 * * * *8. p U;Uz + p 2i = [FJF;*
0 0 0 Pou; 0 * * * * 8 p U;U3 +p 3i
0 0 0 0 Pou: • (p· • .) U; e +p

In the above expressions, u* is the dimensionless Euler unknowns vector, Ft is the ;th

component of the dimensionless Euler flux vector, and [U0] and [F0] are matrices defined

such that they convert these dimensionless vectors back into their dimensional form.

Using Equations (2.37) and (2.38), the compressible Euler equations are now

written as follows:

(2.39) [U]U0 au•+ [F]-1 aF;* = S
0 L a· 0 La~ 0 t O x,

The dimensionless form of the compressible Euler equations in non-inertial coordinates

may then be expressed as follows:

(2.40)

19

where

(2.41) s = ~o [uJs·
0

For the remainder of this study, this dimensionless form \Yill be used exclusively as the

basis of our numerical algorithm. Therefore, we will drop the asterisks when referring to

the compressible Euler equations and assume that all variables are in their appropriate

dimensionless form.

To conclude this section, we present three additional dimensionless forms that are

useful in the development of a solution for the compressible Euler equations. First, the

local acoustic speed, a, is written as follows:

(2.42) a2 =rp
p

Utilizing the above definition, the local Mach number, M, may be written as follows:

(2.43) 2 1°1 2 Plul 2

M =-=--
a2 r p

Finally, the perfect gas equation of state in inertial coordinates, may be written using the

local Mach number as follows:

(2.44) pe=p --+-r_· -(1 M 2 J
r-I 2

20

CHAPTER3

3. METHODOLOGY

In this chapter we define the finite element methodology that will be employed in

our numerical solution for the unsteady, compressible Euler equations. We begin our

discussion with an overview of finite element methods along with an introduction to

some of the basic terminology for describing such methods. This includes an

introduction to the integral formulation that results when we apply the Galerkin method

to the governing equations. In the next section, we present the fully discrete space-time

formulation that will serve as the basis of our finite element methodology. This is

followed by a discussion on the discretization by finite elements of the space-time

integrals found in our formulation and numerical evaluation of those integrals using one,

two and three-dimensional finite elements.

Also included in this chapter is a discussion of relevant boundary conditions and

their practical implementation through the boundary integrals. This includes a derivation

of the transpiration boundary condition for elastic problems in both inertial and non

inertial formulations. The next section discusses several predictor multi-corrector

algorithms for advancing the finite element solutions in time. The chapter concludes with

a review of techniques for stabilizing our finite element solution scheme, including the

rationale behind our choice of stabilization operator to adopt.

21

3.1 Overview of Finite Element Methods

The partial differential equations presented in the previous chapter provide the

basis for describing a general, three-dimensional flow field. Since there is no general

analytical solution to these equations for three-dimensional problems, numerical methods

for approximating their solution have been the topic of research for decades.

Traditionally, numerical methods for fluid dynamics were based on finite difference

approximations for derivatives in the governing equations. This type of formulation

required the use of carefully structured, body-conforming grids; the generation of which

is extremely laborious and often a practical impossibility for geometrically and

topologically complicated domains. Hence, finite difference methods have quickly

become obsolete as new methods without this geometric limitation have been developed.

Most state of the art computational fluid dynamics algorithms are based on either

finite volume or finite element formulations. Both of these formulations have the

necessary geometric flexibility to allow for the use of unstructured grids when analyzing

complicated domains. Finite volume methods currently dominate the field, but finite

element methods for fluid flow have matured rapidly over the past several years and are

beginning to gain more widespread acceptance by the CFD community, despite their

perception as strictly a structural modeling technique based on their origins in that field.

In reality, there is very little difference between the two formulations. It has even been

demonstrated that a finite element formulation based on the Galerkin method is entirely

equivalent to a finite volume formulation when a diagonal form of the finite element

mass matrix is used.16

22

For our purposes, we seek an efficient and accurate finite element formulation in

order to maintain a consistent framework for analysis within the finite element based

STARS routines. A standard finite element solution begins by dividing the spatial

domain, Q, into non-overlapping sub-domains called elements. The elements are either

line segments in one dimension, triangles/quadrilaterals in two dimensions, or

tetrahedrons/hexahedrons in three dimensions. Each element consists of nodes that are

typically located at the element's vertices and are shared by neighboring elements. The

basic idea of the finite element method is to then construct in a piecewise manner the

solution for the fluid unknowns everywhere within Q using shape functions for each

element. These shape functions represent the variation of the solution over an element's

sub-domain through an interpolation of discrete values at the element's nodes.

With the geometry suitably defined, the next step is to write an integral

formulation for the governing equations, usually by applying some type of Galerkin

weighted residual procedure. Applying the basic Galerkin formulation to the

dimensionless form of the compressible Euler equations over a closed spatial domain Q

results in the following integral equation:

(3.1)

In the above expression, '1> is a vector of element weighting functions, which are the

same as the finite element shape functions assumed in our discretization of the spatial

domain.

Next, we apply the Gauss divergence theorem, or integration by parts, and re-

write the integral expression in Equation (3.1) as follows:

23

(3.2)

where

(3.3)

pun

pulun + pnl

Fn = F;n; = pu2un + pn2

pu3un + pn3

(pe+ p)un

In the above expression, r is the boundary of the spatial domain, n = { n1, n2, n3} T is the

outward facing normal vector at the boundary, Un= u·n is the normal fluid velocity at the

boundary, and Fn is the normal flux vector.

The integrated by parts formulation in Equation (3.2) results in the conservation

of fluxes under inexact quadrature rules. 17 This form also eliminates the flux derivatives

from Equation (3.1), which allows for a discontinuous representation of the Euler

fluxes. 16 Furthermore, the introduction of a boundary integral in Equation (3.2) provides

us with a natural means of enforcing the boundary conditions on the spatial domain. 16•17

To complete our discrete formulation for the compressible Euler equations, it is

necessary to approximate the remaining time derivative in Equation (3.2). In most of the

existing finite element methods for fluid flow, this is accomplished through some sort of

finite difference approximation. The current literature abounds with methods that utilize

either forward, backward or central-difference formulas with varying orders of accuracy,

all of which lead to either explicit or implicit formulations depending on the choice of

differencing formula. In fact, the current STARS unsteady CFD module utilizes an

implicit, second-order accurate, backwards-difference operator for its time

discretization. 18

24

While there is nothing fundamentally wrong with employing finite differences as

described above, this type of formulation is sometimes labeled as a semi-discrete

formulation due to the mixing of finite element and finite difference approximations

within one algorithm. In contrast, a fully discrete finite element formulation would

utilize element shape functions to represent both the spatial and temporal variation of

unknowns within the computational domain. This approach leads to an implicit

formulation where the time discretization is derived directly from the Galerkin integrals.

The development of these so-called space-time finite element methods has been a major

contribution to the field and "should forever dispel the prevalent myth in finite difference

circles that somehow finite element methods are not appropriate for hyperbolic

problems."18 Space-time finite element formulations represent the current state of the art

within the field and have been successfully employed in some of the more recently

developed algorithms.23'24 As we will see later, the differences between the semi-discrete

and fully discrete formulations is, in most cases, a question of semantics. However, we

will pursue a fully discrete finite element formulation for this study due to the general

flexibility it offers when considering the discretization of temporal derivatives.

It is well documented through out the finite element literature that the Galerkin

method lacks stability. A solution scheme based on the methodology presented so far

will manifest spurious oscillations that are both non-physical and undesirable. To combat

this problem, the numerical scheme needs to be stabilized by adding some form of

stabilization operator. This is, in fact, the focus of most finite element CFD research, and

there are almost as many stabilization operators as there are finite element based CFD

codes.

25

It is important to note that this instability is not a problem that is unique to finite

element methods. Stabilization techniques are also necessary for both finite difference

and finite volume methods as the instability is inherent to all discretization methods. In

fact, many of the stabilization techniques used for finite element methods are simply

extrapolations of similar techniques originally derived for finite difference solutions. The

remainder of this chapter will focus on developing a working numerical algorithm out of

the equations presented so far, including a discussion on the relevant stabilization

methods for such an algorithm.

3.2 Space-Time Formulation

The basis of our formulation is the time-discontinuous Galerkin method, which

employs finite elements that are piecewise continuous in space and discontinuous in time.

To begin our discretization of the problem, consider the space-time domain S, where the

time interval I= [O, 1] is divided into N intervals In= Un, tn+I], where n = 0, 1, ... , N - 1.

For each time interval, we then define a space-time sub-domain as Sn = Q x In and its

boundary Bn = r x In, where Q is the spatial domain and r is its boundary.

The introduction of a space-time sub-domain in this discussion can very easily

lead to conceptual difficulties when deriving the Galerkin integral formulation. To avoid

this, it is useful to consider time as simply an additional dimension for the problem. This

works particularly well for a two-dimensional geometry where time can then be thought

as a third dimension for each element. The elements then encompass a space-time

volume which could be computed as the spatial area of the element times the size of the

time increment, or the height of the space-time sub-domain. In three-dimensions, this

26

idea does not have a solid physical representation, but the mathematical implementation

is extended in the same manner.

It is now necessary to modify the previously defined Galerkin formulation,

Equation (3.1), to include integration over the entire space-time sub-domain rather than

just the spatial domain. Hence, we re-apply the basic Galerkin formulation to the

dimensionless form of the compressible Euler equations over a closed space-time sub-

domain Sn to derive the following integral equation:

(3.4)

In the above expression, <I> is now a vector of weighting functions that includes both the

spatial and temporal variation of the unknowns within the space-time sub-domain. The

weighting function is assumed to be continuous within Sn, but discontinuous across the

boundary of the space-time sub-domains.

As before, we apply the Gauss divergence theorem, or integration by parts, and

re-write the integral expression in Equation (3.4) as follows:

l a«I>T a«1>T T J J(T T _i J T (3.5) ---U--F;-«l> s dS+ «l>n+JU,,+1-<l>,,Un-JU'Q+ «I> F,,dB=O
s at ax; 0 . B

n " n

In the above expression, <l>n+1 and <l>n are the weight functions evaluated at the tn+1 and tn

boundaries of Sn respectively, Un+l is the value of the unknowns at the tn+1 boundary of

Sn, and Un- is the value of the unknowns at the tn boundary from the previous space-time

sub-domain, Sn-1-

The second integral in Equation (3.5) represents a time boundary integral, which

results from the integration by parts of the time flux term. Since our formulation is

27

discontinuous in time across the space-time sub-domains, this integral serves as a

mechanism for information to jump from one sub-domain to the next. As such, it will be

referred to as the jump condition and has been formulated such that it imposes a weakly

enforced initial condition for the space-time sub:.domains. 17

3.3 Finite Element Discretization

We now decompose our space-time sub-domain Sn into finite elements S/, where

e = 1, 2, ... , net· The result is a fully discrete finite element formulation where the

integrals of Equation (3.5) are assembled by summing the contributions of each

individual element within Sn as follows:

(3.6)

nbe

+ L f <I>TFndB = 0
e=l B;

In the above expression, notice that the boundary integral is only computed for the

elements along the boundary of the computational domain, where nbe is the number of

boundary elements. This is because the boundary integral will identically cancel on

interior elements that have shared boundaries with other elements.

To accomplish the integration on an individual element, the solution for the vector

of fluid unknowns within an element is constructed through an interpolation of discrete

values at that element's nodes. For our purposes, we will consider the spatial and

temporal interpolation within an element separately by defining different shape functions

for each. Furthermore, we will assume that the spatial sub-domain defining an element,

28

Q/, does not change with time, i.e. we have a non-deforming grid. For our application,

deforming grids will be simulated through a suitable modification of the boundary

conditions as is done with the current STARS unsteady CFD module. This approach is

more computationally efficient than employing a fully deforming grid. However, it

should be noted that a space-time formulation has been demonstrated for arbitrarily

deforming grids if this capability is desired later.24'25

For our derivation in this section, it will be assumed that the unknowns vector for

each element varies linearly in space and is piecewise constant in time. This constant-in-

time discretization can be modified later to account for higher-order temporal variation

without the need to modify the geometric transformations that will be derived here. For a

constant-in-time discretization, the unknowns are considered constant along each

individual space-time sub-domain, but they are discontinuous across different sub-

domains. Figure 3.1 presents the notation used for describing the temporal variation of

the unknowns from one space-time sub-domain to the next when viewed with respect to

the current sub-domain Sn.

I I

Un+ : •
I

1 Un+J •
I

Un-I : • : Un-•
S n-2 S n-1 Sn S n+l

t n-2 t n-1 tn f n+l f n+2

Figure 3.1: Variation in time of unknowns using a constant-in-time approximation.

29

For our finite element discretization, we define the vector of unknowns V within

an element e as follows:

(3.7) ... <I>]l~'J=<l>U nd · e e

vnd

In the above expression, ndis the number of nodes for the element, <I>e = [<I>1, .•• , <I>11d] is

a lxnd vector of spatial shape functions for each node of the element, and Ve= [U1, .•• ,

V,,J f is a ndxl vector of unknowns for each node of the element.

Substituting Equation (3.7) into Equation (3.6) and reducing the space-time

integrals to spatial integrals only using the transformations dS = !it dQ and dB = !it cir

produces the following expression:

nhe

+ /it L J <l>~Fnd[' = 0
e=l r'

In the above expression, we have omitted the temporal subscripts wherever possible since

the shape functions and the geometry are now assumed to be constant in time.

It is possible to further simplify Equation (3.8) if the flux vectors are also

assumed to vary linearly within an element. This assumption leads to what is sometimes

called a mixed finite element method. One advantage of a mixed finite element

formulation is that the element flux integrals may be re-constructed by integrating over

only the edges of the elements. The current STARS unsteady CFD module takes

advantage of the edge-based data structure that results from this type of formulation to

improve its computational efficiency. In fact, an edge-based data structure is reportedly

30

up to 30% more efficient than a similar element-based data structure for three

dimensional problems. 18 However, the improved computational efficiency is lost for

two-dimensional problems where we have observed that edge-based algorithms are

slower than similar element-based algorithms.

For our derivation, element integrals will not be evaluated using an edge-based

data structure for several reasons. First, an element-based data structure is required for a

consistent evaluation of the jump condition and non-inertial source integrals. The current

STARS unsteady CFD module actually uses an approximation for its time flux integrals

in order to remain within the context of its edge-based data structure. This

approximation, known as mass lumping, is required for edge-based data structures since

there is insufficient nodal connectivity information to re-construct the consistent finite

element mass matrix that will be derive in the next sections. Furthermore, an edge-based

data structure is only useful for approximating the Euler flux integrals for a mixed finite

element formulation. This type of formulation does not appear to be extendable to

viscous flows where an additional viscous flux integral must be assembled. Hence, the

generality and consistency of our formulation will be lost if an edge-based data structure

is utilized exclusively.

In order to maintain a consistent finite element formulation, the flux integrals on

element interiors will be approximated using Gauss quadrature rather than by making an

assumption about the variation of fluxes on element interiors. As discussed previously,

this is a significant deviation from the edge-based STARS unsteady CFD module.

However, we will follow the current STARS formulation and approximate the boundary

flux integrals of Equation (3 .8) using a mixed finite element formulation. This is a

31

reasonable approximation that has been proven to be sufficient for our applications, and it

eliminates the complexity of interpolating nodal boundary conditions to Gauss points on

the boundary elements. This will be particularly important later when we attempt to

implement the transpiration method to simulate deforming boundaries.

3.3.1 One-Dimensional Elements

In this section we derive the geometric transformations necessary to compute the

integrals in Equation (3.8) for a one-dimensional element. Although a one-dimensional

finite element solver is not particularly useful for aerospace applications, the derivations

presented here will be necessary for evaluating boundary integrals in two-dimensions.

The non~inertial source and boundary flux integrals will be omitted in this section since

they are trivial for a one-dimensional problem and will not be needed. Figure 3.2

presents the general layout for a typical one-dimensional element in element natural

coordinates and the variation of the element shape functions over the length of the

element.

T
1

1 ~----:....-......;;;;,.
ndl I nd2

; =-1 ; =O ; =+I

Figure 3.2: Typical one-dimensional finite element in natural coordinates.

The shape function for a one-dimensional linear element is defined in terms of

element natural coordinates as follows:

32

(3.9)

In the above expression, c; is the element's natural coordinate, which ranges from -1 to

+ 1 across the length of the element.

In order to convert from element natural coordinates to homogenous Cartesian

coordinates, we define the following scalar transformation:

(3.10)

where

(3.11)

In the above expressions, Xndl and Xnd2 are constants that are equal to the x-location for the

first and second node of the element respectively.

Using the chain rule for partial derivatives, the Jacobean, J, of the coordinate

transformation may be derived from Equation (3.10).

(3.12)

where

(3.13) J - IX _ I A ..
-2 21 -zL.Ue

From Equation (3.12), the inverse relationship follows:

(3.14)
2 a/ax= -a/ac;

Llxe

From Equation (3.14), spatial derivatives of the element shape function may be converted

from Cartesian coordinates into element natural coordinates as follows:

(3.15)

33

With the shape functions and geometric transformations suitably defined, we now

evaluate the integral expressions in Equation (3.8). First, the jump condition integral is

evaluated as follows:

(3.16)
Q'

where

(3.17)

and

(3.18) LlUe =(UJn+l -(ueL

In the above expressions, Me will be referred to as the finite element mass matrix. Next,

the flux integral is evaluated using Gauss quadrature as follows:

(3.19)

where np is the number of Gauss points, w; are the Gauss weights, and Q are the Gauss

points. Table 3 .1 gives the appropriate values of the Gauss points and weights for one-

point and two-point approximations on a one-dimensional element.26

Table 3.1: Gauss points and weights for one-dimensional elements.

Number of points, np
1

2

Points, <5
0.0

- 0.5773502692
+ 0.5773502692

34

Weights, w;

2.0
1.0
1.0

3.3.2 Two-Dimensional Elements

In this section we derive the geometric transformations necessary to compute the

integrals in Equation (3.8) for a two-dimensional element. Since the boundary of a two

dimensional element is one-dimensional, this section will also utilize the transformations

from the previous section when deriving the boundary flux integrals for two-dimensional

elements. Figure 3.3 presents the general layout for a typical two-dimensional element in

element natural coordinates.

(0, 0, 1)

(1, 0, 0)

q1, 9, 9 are a set

of natural coordinates

(0, 1, 0)

At any point within the element

q1+9+9=l

Figure 3.3: Typical two-dimensional finite element in natural coordinates.

The shape function for a two-dimensional linear element is defined in terms of

element natural coordinates as follows:

(3.20)

where

(3.21)

In the above expression, Q are the element's natural coordinates, which range from O to I

across the element.

35

In order to convert from element natural coordinates to homogenous Cartesian

coordinates, we define the following transformation:

(3.22)

where Xndl, Xnd2 and x11c13 are constants that are equal to the x-location for the first, second

and third node of the element respectively. Alternatively, Equation (3.22) may be

reduced to a 2x2 transformation by substituting in the expression for i;3.

(3.23)

where

(3.24)
xi} = xndi -xndj

Yi} = Yndi -yndj

Using the chain rule for partial derivatives, the Jacobean, J, of the coordinate

transformation may be derived from Equation (3 .23).

(3.25)

J

where

(3.26)

From Equation (3.25), the inverse relationship follows:

(3.27)

A

where the area of an element Ae is computed as follows:

36

(3.28)

From Equation (3.27), spatial derivatives of the shape function may be converted from

Cartesian coordinates into element natural coordinates as follows:

(3.29) a<I> - _I_ A a<I> + A a<I> - _I_ A (J rA 11
]

dX - 2Ae II atr 12 at2 - 2Ae A::

where

(3.30)

and

(3.31) a<1> __ 1_ A a<I> + A a<1> __ 1_ A (J rA21]
ay - 2Ae 21 ai;r 22 ai;2 - 2Ae A::

where

(3.32)

With the shape functions and geometric transformations suitably defined, we now

evaluate the integral expressions in Equation (3.8). First, the jump condition integral is

evaluated as follows:

(3.33) f (<I>~ <I> e (Ve)11+1 -<I>~ <I> e (Ve)11 _ ')cin = Mef1U e
Q'

where

(3.34)

37

In the above expressions, Me is referred to as the finite element mass matrix, and LlUe is

as defined previously by Equation (3.18). Next, the flux integrals are evaluated using

Gauss quadrature as follows:

(3.35)

(3.36)

where np is the number of Gauss points, w; are the Gauss weights, and ;; are the Gauss

points. Table 3 .2 gives the appropriate values of the Gauss points and weights for one-

point and three-point approximations on a two-dimensional element. 26

Table 3.2: Gauss points and weights for two-dimensional elements.

Number of points, np Points,<;; Weights, w;
1 1/3 0.5

2/3 1/6
3 1/6 1/6

1/6 1/6

The boundary integrals for a two-dimensional element are computed by assuming

the normal flux varies linearly along the one-dimensional edge of the element as follows:

(3.37)

38

Substitution of Equation (3 .3 7) into the boundary edge integral results in an integral

identical to that used when defining the one-dimensional finite element mass matrix.

(3.38)

Finally, the non-inertial source integral is evaluated using Gauss quadrature as follows:

3.3.3 Three-Dimensional Elements

In this section we derive the geometric transformations necessary to compute the

integrals in Equation (3.8) for a three-dimensional element. Since the boundary of a three

dimensional element is two-dimensional, this section will also utilize the transformations

from the previous section when deriving the boundary flux integrals for three-

dimensional elements. Figure 3.4 presents the general layout for a typical three-

dimensional element in element natural coordinates.

39

q1, 9, 9, q4 are a set

of natural coordinates

At any point within the element

q1 + qi + 9 + q4 = 1

Figure 3.4: Typical three-dimensional finite element in natural coordinates.

The shape function for a three-dimensional linear element is defined in terms of

element natural coordinates as follows:

(3.40)

where

(3.41)

In the above expression, 9 are the element's natural coordinates, which range from Oto 1

linearly across the element.

In order to convert from element natural coordinates to homogenous Cartesian

coordinates, we define the following transformation:

X xndl xnd2 xnd3 xnd4 qi

(3.42)
y Ynd1 Ynd2 Ynd3 Ynd4 q2

=
z zndl znd2 znd3 znd4 ?3
h 1 1 1 1 q4

40

where Xndl through Xnd4 are constants that are equal to the x-location for the four nodes of

the element. Alternatively, Equation (3.22) may be reduced to a 3x3 transformation by

substituting in the expression for 9,.

(3.43)

where

(3.44) Yij = Yndi - Yndj

zij = zndi -zndj

Using the chain rule for partial derivatives, the Jacobean, J, of the coordinate

transformation may be derived from Equation (3.43).

(3.45)

J

where

(3.46)

From Equation (3.45), the inverse relationship follows:

A

where the volume of an element Ve is computed as follows:

(3.48)

41

From Equation (3.47), the spatial derivatives of the shape function may be converted

from Cartesian coordinates into element natural coordinates as follows:

(3.49)

where

(3.50)

and

(3.51)

where

(3.52)

and

(3.53)

where

(3.54)

Au

a<1> a<1> a<1> a<1> 1 A 12
-=A11-+A12-+A13-=-ax a;I a;2 a;3 6Ve A13

A14

A21

a<1> a<1> a<1> a<1> 1 A 22
ay =A21 a;I +A22 a;2 +A21 a;3 = 6Ve A23

A24

A31

ac]) = A ac]) + A ac]) + A ac]) = _1_ A 32
az 31 a;I . 32 a;2 33 a;3 6Ve A33

A34

With the shape functions and geometric transformations suitably defined, we now

evaluate the integral expressions in Equation (3.8). First, the jump condition integral is

evaluated as follows:

42

(3.55) f (<I>~ <I> .(u Jn+I -<I>~ <I> e (u et)dn = Me~u e

o:

where

2 1 1 1

M = 6V (ff" t,-<, <I>' <I> d4' d4' #) = V,
1 2 1 1

(3.56)
e e e e I 2 3 20 1 1 2 1

0

1 1 1 2

and

(3.57) ~ue = (ueL1 -(uet1

In the above expressions, Me is referred to as the finite element mass matrix and ~Ue is as

defined previously by Equation (3 .18). Next, the flux integrals are evaluated using Gauss

quadrature as follows:

A11

(3.58) R"<I>: F}n= A12 np

L w;F1 (i;1,;,t;2,;,t;3,;)
n, ax Al3 i=I

A14

A21

(a<1>; F, }n = A22 np

L W;F2 (i;l,i ,t2,;,t;3,;)
A23 n, c)y i=I

(3.59)

A24

A31

R"<I>: F, }n =
A32 np

I W;F3 (i;l,i, t;2,;, i;3,i)
n, dz A33 i=l

(3.60)

A34

where np is the number of Gauss points, wi are the Gauss weights, and i; are the Gauss

points. Table 3.3 gives the appropriate values of the Gauss points and weights for one-

point and four-point approximations on a three-dimensional element.27•28

43

Table 3.3: Gauss points and weights for three-dimensional elements.

Number of points, np
1

4

Points, 9
0.25

0.5854101966249685
0.13819 66011 250105
0.13819 66011 250105
0.13819 66011 250105

Weights, wi

1/6
1/24
1/24
1/24
1/24

The boundary integral for a three-dimensional element is computed by assuming

the normal flux varies linearly along the two-dimensional boundary face of the element

as follows:

(3.61)

Substitution of Equation (3 .61) into the boundary integral results in an integral identical

to that used when defining the two-dimensional finite element mass matrix.

Finally, the non-inertial source integral is evaluated using Gauss quadrature as follows:

(3.63)

¢1,i
np ¢

J(<I>~s)in ~ 6Ve~w; ¢::; S(¢1,;,¢2,;,¢3_;)

¢4,i

44

3.3.4 Element Edge Data

While the edge-based method employed by STARS will not be used for

evaluating element integrals, element edge data will prove useful later for evaluating

other quantities such as local time steps and artificial dissipation. For this reason, it is

also prudent to discuss the nomenclature used to describe an edge-based data structure.

For the specific theory and justification behind an edge-based data structure, we refer to

the original FELISA manual. 19 The basic idea is to lump the element geometry data to

the edges or segments associated with each element. This will result in a vector of

geometric weights for each unique segment in the computational domain. As such we

define the weight vector for a segments that connects node i to nodej as follows:

(3.64)

The segment weight vectors are built-up by finding each element containing the

segment and adding in one sixth of the components of the element jacobian associated

with node i of the segment. For segments which lie on boundary elements, it will also be

necessary to add one sixth of the area weighted boundary element normal vector to the

segment weights. The result is a vector of weights that is useful for computing edge

gradients along the segments of an element as follows:

(3.65) {q .w .. } V .. = J u,s
qu,s -q.W ..

I lj,S

where q is some flow quantity and the subscripts i andj denote the values of q at the first

and second node of the segment respectively.

45

3.4 Boundary Conditions and the Boundary Integral

As suggested in Section 3 .1, the finite element boundary integral provides us with

a natural means for enforcing boundary conditions within our finite element framework.

Specifically, boundary conditions should be weakly enforced by modifying the boundary

flux during the integration over the boundary rather than by explicitly modifying the

nodal unknowns along the boundary. This is the most common method of enforcing

boundary conditions within a finite element algorithm, and typically yields the most

accuracy. Unfortunately, our experience has shown that weakly enforced boundary

conditions exhibit instabilities for solid wall boundary conditions in three dimensional

flows, especially when combined with the transpiration boundary condition used to

simulate elastic deformations of the grid. This fact will require us to explicitly impose

the solid wall boundary conditions, which · will include the transpiration boundary

condition.

Regardless of our method for imposing boundary conditions, it is important to

note that the boundary flux integral should be computed on the entire boundary.

Neglecting the boundary integral will lead to a loss of flux conservation in the finite

element formulation.23 Also, the boundary integral must always be computed using the

original normal vector for the boundary element regardless of whether an elastic

deformation is being simulated using transpiration. This is again necessary to maintain

flux conservation within the solution methodology.

In the sub-sections that follow, we address the practical implementation of three

different boundary condition types: symmetry, far-field and solid wall. These are the

three types of boundary conditions currently supported by the STARS unsteady CFD

46

module. Therefore, each boundary element, which is either a line segment in two-

dimensions or a triangular face in three dimensions, will have an associated boundary

condition flag that indicates which of the three boundary conditions should be applied on

that element.

3.4.1 Symmetry Boundary Condition

The symmetry boundary condition is the simplest to implement. For inviscid

flow, a symmetry condition will behave similar to a wall in that it requires the normal

component of the fluid velocity be zero. This will be the only condition imposed on

elements that are flagged with the symmetry boundary condition. Substitution of this

condition, u11 = 0, into the definition of the boundary flux, Equation (3.3), results in the

following modified boundary flux:

0

(3.66)

If the modified boundary flux given above is utilized in the calculation of the boundary

flux integral the symmetry condition will be weakly enforced on that boundary element.

Since the symmetry boundary condition is essentially the same as a rigid, inviscid

wall boundary condition, it would seem to make sense that the symmetry and wall

boundary conditions could be used interchangeably for rigid walls. However, when we

refer to a symmetry boundary condition, we are typically referring to a symmetry plane,

or a flat wall with a constant surface normal. In fact, the symmetry boundary condition

47

has proven useful for flat walls that do not include any elastic effects. However, the

weakly enforced wall boundary condition used for defining a symmetry boundary

condition has proven to be mildly unstable for three-dimensional flows on curved walls

where the surface normal is not constant. Therefore the symmetry boundary condition

should only be used on boundary surfaces that represent flat planes.

3.4.2 Far-Field Boundary Condition

As with the symmetry boundary condition, the far field boundary condition will

be weakly enforced by modifying the boundary integral. Multiple references, for both

finite volume and finite element methods, suggest imposing far field boundary conditions

by computing the one-dimensional Riemann invariants for flow normal to the

boundary.8' 19'20 This methodology has proven to be quite robust and reliable as it is

implemented within the current STARS unsteady CFD module. Therefore, we will

simply review the current STARS far field boundary condition and modify it as necessary

to account for a non-inertial reference frame.

For a far field boundary element, the boundary conditions are enforced by

computing a modified boundary flux vector for each node and using the modified

boundary flux vectors to compute the boundary integral for that element. The modified

boundary flux vector is computed by comparing the specified free stream conditions with

the computed unknowns at each node. We begin by defining a density ratio for a far field

node as follows:

(3.67)

48

where p is the fluid density and the subscripts 00 and c refer to the free stream conditions

and the computed values, respectively.

The above density ratio is now used to computed appropriately scaled ratios for

the velocity components and enthalpy using the following relations:

(3.68)

(3.69) h. = pih= +he
I P; +l

(3.70)

where u = { u1, u2, u3 } T is the fluid velocity vector, h is the total enthalpy per unit mass,

and a is the local speed of sound. However, Equations (3.68) and (3.69) represent

relative velocity and enthalpy for non-inertial problems. Based on the definition for

relative enthalpy given by Equation (2.23), we see that Equation (3.70) must be modified

to include the transformation velocity V1 as follows:

(3.71)

Next, we compute three Riemann invariants and an Euler unknowns difference

vector for the boundary node as follows:

(3.72)

"(3.73)

(3.74)

49

(3.75)

P--Pc
(pu1 L -(pu1 t

AU= (pu2L-(pu2t

(pu3 L -{pu3 t
(peL-(pet

Using the above definitions, we next define the following "correction" factors:

(3.76)

(3.77)

(3.78)

(3.79)

Notice that Equation (3.76) has the form of a scaled pressure difference. Hence, this

equation must be modified for non-inertial problems by including the transformation

velocity as follows:

Finally, we define the corrected normal flux vector for a node on a far field

element as follows:

(3.81)

where

(3.82)

~AU1 +c1

~AU2 + c1u1,; + c2n1

AF = ~AU3 + c1 u2,; + c2n2

~AU4 + c1u3 ; + c2n3

~AU5 +c1h; +c2{u; ·n)

50

If the modified boundary flux given above is utilized in the calculation of the boundary

flux integral the far field boundary condition will be weakly enforced on that boundary

element. This leads to a stable and accurate representation of inflow-outflow boundary

conditions for flow conditions ranging from subsonic to supersonic speeds.

3.4.3 Solid Wall Boundary Condition

Unlike the previous two boundary conditions, the solid wall boundary condition

will be strongly enforced by directly modifying the unknowns at the end of each iteration.

This is the methodology currently implement within the STARS unsteady CFD module,

and seems to be necessary to prevent mild instabilities which arise along the solid wall

boundaries if this boundary condition were weakly enforced for three-dimensional flows.

Strongly enforced wall boundary conditions have also been utilized by Shapiro,20 and

Shakib17 reported that a strongly enforced pressure leads to a more stable solution with a

faster convergence rate.

The basic wall boundary condition for a rigid wall will require that the relative

velocity of the flow be tangent to the boundary surface, or alternatively that the normal

component of the flow velocity is zero as seen by an observer moving with the body.

This is implemented by subtracting off the normal component of the fluid velocity at a

node as follows:

(3.83) u=u-(u-n)n

Equation (3.83) is explicitly applied to every node which lies on a solid wall boundary

element using an appropriately averaged normal from the surrounding boundary

elements. However, nodes where the average surface normal is not well defined will

51

present a problem. This includes wall nodes at the intersection of two surfaces where the

direction of the surface normal changes substantially, such as the trailing edge of an

airfoil as shown in Figure 3.5.

Figure 3.5: Illustration of an average surface normal for the trailing edge of an airfoil.

Obviously, the flow tangency condition would not be accurate for the node at the

trailing edge of this airfoil since it would require that the flow move in the vertical

direction. This is contrary to the requirement of the Kutta condition,21 which states that

the flow must leave the upper and lower surface of the trailing edge smoothly and with a

finite velocity. The simplest way of handling this problem is to skip the enforcement of

flow tangency on these nodes. For a surface which is sufficiently discretized, this will

still result in flow which remains tangent to the body thanks to the boundary conditions

being applied at the neighboring nodes.

The rigid wall boundary condition discussed so far is sufficient for both inertial

and non-inertial problems. However, it is also necessary to account for elastic walls

when simulating aeroelastic problems. As suggested previously, this can be

accomplished by using transpiration to simulate a deformed surface using a modified

surface normal. For an elastic problem, the deformed state of the structure is defined by a

52

set of structural mode shapes. The mode shapes define a deformation vector for each

solid wall node in the computational domain. Consider the deformed state given by

Figure 3.6, where the two nodes of an edge have been displaced from their initial position

by a deformation vector -6.r.

Figure 3.6: Illustration of transpiration concept.

This statically deformed shape can be simulated without actually deforming the

surface grid by using the deformed normal vector, n', when enforcing flow tangency.

The original normal vector is still used to evaluate the boundary integral and maintain

flux conservation, but the averaged normal vector used to explicitly enforce flow

tangency at each wall node is _now based on the deformed shape of the structure. This

results in a situation where the normal· component of the fluid velocity on the wall

surfaces is no longer zero since the flow is forced to follow the deformed shape of the

surface.

In addition to statically deformed structures, it is also necessary to simulate

dynamically deforming structures for an aeroelastic simulation. In this case, the elastic

surface is continuously changing its deformed shape and has an associated deformation

53

velocity, Vb, for each node on the boundary. The transpiration boundary condition for a

node on a solid wall that is dynamically deforming is given as follows:

(3.84) u =u-(u ·n' -Vb ·n')n'

Equation (3.84) simply ensures that the normal component of the fluid velocity is equal

to the normal component of the boundary velocity at each node using the deformed

normal vector.

The solid wall boundary condition described so far defines the transpiration

method currently implemented in STARS to simulate dynamically deforming structures

in an inertial frame of reference. Research has demonstrated that STARS CFD results

employing this transpiration boundary condition are in excellent agreement with those

obtained using actually deformed grids for the small deformations typically seen in

aeroelastic simulations.7 However, it is not expected that this methodology will

accurately represent a deformed body in a non-inertial frame. Consider the two cases

illustrated in Figure 3.7.

... -- -- -- .. --------

R

Figure 3.7: Model problem for testing transpiration with non-inertial rotation.

The graphic on the left represents an airfoil in a rotating frame of reference with

the origin of rotation some vector distance R away from the midpoint of the airfoil, while

the graphic on the right is attempting to simulate the same rotating airfoil using

54

transpiration to shift an airfoil rotating about its midpoint to the vector location R.

Obviously, these two problems are very different unless the transpiration method

accurately accounts for the non-inertial rotation for the shifted body. However, the

transpiration procedure presented so far would effectively do nothing because the body

has been shifted uniformly, with no change in surface normals, to a new static position.

Consider what would happen if we rotated the coordinate system illustrated in

Figure 3.6. In this case, the mesh transformation velocity for the two nodes of the

boundary element would be given by the following equation:

(3.85) v,,; =!l(r; +L1r;}=!lr; +!ll1r;

Since we are simulating the elastic deformation using transpiration, it will be necessary to

account for the .QL1r term in the transpiration boundary condition. This term will simply

be treated as an additional boundary velocity for each node, giving us the following

equation for our solid wall boundary condition:

(3.86) u =u-[u ·n' -(Vb +!lL1r)·n']n'

Equation (3.86) now simulates the elastic deformations for a solid wall boundary in either

an inertial or non-inertial frame of reference.

As a brief verification for this non-inertial transpiration methodology, consider

the airfoil illustrated in Figure 3.7 where the displacement vector R is oriented in the

negative x-direction with a magnitude equal to half the chord of the airfoil, or R = { -Vic,

0 } . This puts the origin of rotation at the trailing. edge of the airfoil. The airfoil is then

forced to pitch sinusoidal with a dimensionless frequency of m* = 2.0, where the

· dimensionless frequency is defined as follows:

55

(3.87)
• OJ C

OJ ---
2U~

Figure 3.8 shows the time history of the pitch angle for this airfoil.

2.5 a (deg)

2

1.5
I

0.5 t*
0

-0.5 4 6 8 0

-1

-1.5

-2

-2.5

Figure 3.8: Time history for the pitch angle of a rotating airfoil.

Now, three different simulations are performed for this airfoil. First, a baseline

solution is run, which consists of a non-inertial solution for the airfoil pitching at its

midpoint. Secondly, a "shifted" solution is run, which consists of a non-inertial solution

where the pitch location has been shifted a distance R from the midpoint. Finally, a

transpiration solution is run, which consists of a non-inertial solution for the airfoil

pitching about its midpoint with a simulated shift to the location R using the transpiration

method corrected for a rotating non-inertial frame. Figure 3.9 presents a comparison of

the surface pressure distribution predicted by these three solutions at four different

instants in time.

56

-1.6 cp
-1.2

-0.8

-0.4

0

0.4

0.8
" 1.2

-0.1

-1.2

-0.8

-0.4

0

0.4

0.8
f
&

1.2

-0.1

t* =0.4

0.4

t* = 1.2

0.4

o Baseline

a Shifted

0.9

o Baseline

0 Shifted

xlc

A Transpiration

xlc

0.9

0.6
0

xlc

-0.1 0.4 0.9

-1 Cp t*=l.6
_,fff~il!l!Ua l! II

o Baseline

a Shifted
-0.6

f-0000 l! II g i!

:
0 0 o O O

11 !l & Ii\ ,. Transpiration
0 o a a

o O B

~

00 0 0 0 0 0 0 0 0 O 8 o 6 •• 0 9g ••
a ""., 88s

11- a A o 11. a a. a a. a u n a11 11 •
g DS

-0.2

0.2

0.6
xlc

I -t-~~~~~~.--~~~~~-+~~-

-0 .I 0.4 0.9

Figure 3.9: Comparison.of predicted pressure coefficient for a pitching airfoil.

Notice that both the shifted and transpiration solutions are in excellent agreement

even for this relatively large displacement. The baseline solution is presented only to

show that the shifted axis has a significant effect in the resulting pressure distributions.

Thus, we see that without the non-inertial correction to the transpiration method we

would have a significantly inaccurate representation for the shifted non-inertial solution.

Further verification of the transpiration method will be pursued in more detail later.

3.5 Predictor Multi-Corrector Algorithms

The basic finite element formulation · derived so far may be summarized as

follows:

57

(3.88) M(Un+l -Un)-1!:.t·FS(U n+l)+!!:.t ·B(U n+I)= 0

The above equation is typically referred to as the global form of the finite element

formulation and is assembled by summing the nodal contributions from each element. In

the above expression, M is the assembled finite element mass matrix, Un+I and Un are

vectors of nodal unknowns for the current and previous time intervals respectively,

FS(Un+I) is the assembled flux and source integrals for the current time interval, and

B(Un+I) is the assembled boundary integrals forthe current time interval. Notice that this

formulation is implicit in time since the values of the flux, source and boundary integrals

all depend on the unknowns for the current time interval. Furthermore, there is an

implicit coupling between the unknowns since the finite element mass matrix derived in

Section 3.3 is not diagonal.

There are a variety of numerical schemes documented in the current literature for

solving the nonlinear system of equations represented by Equation (3.88). Although

these equations have been formulated with an implicit coupling in time, it is still possible

to develop an explicit numerical scheme for iteratively advancing the solution. An

explicit method is definitely the most attractive option in terms of memory usage and

computational speed. However, the maximum allowable time step for explicit algorithms

is known to be limited by a stability criterion that is based on the element dimensions and

local fluid velocities.16'23 For our application, it will be necessary to accept the stability

limitations of explicit algorithms and work to extend their stability limit since we require

the speed and economy of such methods.

. In developing an explicit solution, we first notice that any iterative algorithm we

develop should drive Equation (3.88) to zero for each time interval. As such, we call

58

Equation (3.88) the solution residual and denote it as R(Un+I, Un). Now, the solution

residual is driven to zero using a predictor multi-corrector algorithm written as follows:

(3.89) R(ui+I u)=R(ui u)+ aR(u~+J,un) .1U;
· n+I , n n+l ' n dU n+I

where

(3.90) i i+I i
.1Un+I =Un+! -Un+!

Equation (3.89) represents what is known as a residual driven algorithm. The residual

R{U~~1, Un) on the left-hand side should be driven to zero by equating the right-hand

side of the equation to zero and solving for U~~1 '. As long as this iterative solution

converges, it will converge toward a solution of our original system of nonlinear

equations, and the order of accuracy for the final converged solution is preserved.23

As it is written, Equation (3.89) defines an implicit iterative algorithm due to

coupling in the tangent vector dR!dV. This coupling may be eliminated by

approximating the tangent vector with a lumped form of the finite element mass matrix.

The "lumped mass" matrix is obtained by summing each row of the previously derived

finite element mass matrix and lumping that sum on the diagonal of the matrix. In three-

dimensions, the lumped mass matrix is given by Equation (3.91).

' 1 0 0 0

f(<I>T <I> -<I>T <I>)dn:::: Ve
0 1 0 0

(3.91) =ML · e e e e 4 0 0 1 0 n.
0 0 0 1

Substitution of the lumped mass matrix into Equation (3.89) produces the

following explicit equation for advancing each iteration:

(3.92)

59

The iterative algorithm defined by this equation is explicit now because the lumped mass

matrix is diagonal and may be inverted directly to solve for the new nodal unknowns

vector. Also notice that this method retains all of the implicit terms in the solution

residual, so it is still considered an implicit formulation. As suggested above, the final

order of accuracy for the converged solution is not affected by our use of the lumped

mass matrix since it is only necessary to drive the solution residual to zero. This

approximation only affects the stability and convergence rate of the algorithm.

3.5.1 Steady Solutions

When computing a steady solution, it is possible to further simplify the predictor

multi-corrector algorithm given by Equation (3.92). At a converged steady state

condition, the jump condition in the solution residual should vanish since the nodal

unknowns vector becomes constant. Because we are only interested in computing the

final converged state, it is common to approximate the finite element mass matrix, which

is multiplied by the jump condition in the solution residual, with the lumped form of the

mass matrix. This approximation eliminates some of the implicit coupling in the solution

residual at the expense of time accuracy, but does not affect the final converged state

since the jump condition is identically zero at steady state.

Substitution of the lumped mass matrix into Equation (3.92) allows us to write the

following iterative time advancement scheme:

(3.93)

where

(3.94)

60

In the above expression, Rs is the "steady" solution residual. Notice that the steady

solution residual now represents the difference between the nodal unknowns vectors from

the previous and current time intervals rather than the difference between two explicit

iterations on the current time interval.

When implementing the predictor multi-corrector algorithm give by Equation

(3.94), it is necessary to chose a suitable time increment for advancing the solution. It is

well known that explicit iterative methods are subject to a Courant type stability criteria

where the maximum allowable time increment is proportional to the time it takes for a

fluid particle to traverse the length of an element. Unfortunately, this means that the time

increment will be limited by the smallest elements in the spatial domain if we use one

global time increment for the entire domain. Obviously this is not an optimal situation

since flow information will propagate at different rates throughout the domain based on

the local element size and fluid velocity. Therefore, it is common to compute local time

increments for each node in the spatial domain in order to advance the solution at the

most optimal rate. Obviously, this will further degrade the time accuracy of the multi

corrector algorithm, but it does not affect .the final converged state since the solution

residual vanishes at steady state.

There are a variety of techniques documented in the literature for computing the

local time increment for a node. For our application, we employ the methodology

currently implemented in the STARS CFD modules. The methodology is derived

according to an energy stability analysis, which relates the local time increment to the

eigenvalues for each segment connected to a node, when using the edge-based data

structure previously described. 18

61

(3.95)

where

(3.96)

In the above expressions, cfl is the Courant stability factor, [ML]; is the value of the

global lumped mass matrix at node i, ns is the number of segments connected to node i,

Ay,s is the eigenvalues for the segment s connecting nodes i and j, and Uij,s, W ij,s and aij,s

are the fluid velocity vector, geometric weight vector and speed of sound for the same

segment.

3.5.2 1st Order Unsteady Solutions

If we are interested in a time-accurate unsteady solution, it will be necessary to

use the unmodified, implicit solution residual as the basis for our predictor multi-

corrector algorithm. Such a formulation will allow us to compute true transient flows

where the jump condition is nonzero. However, we will modify the original predictor

multi-corrector algorithm given by Equation (3.92) so that it resembles the steady

algorithm derived in the previous section with the time increment factored out of the

solution residual.

(3.97) V i+I vi A M-1 R (vi v)
n+I = n+I - LJ.f. L • I n+I, n

where

(3.98)

62

In the above expression, R 1 is the unsteady solution residual. This predictor multi

corrector algorithm, which is based on a constant-in-time approximation, has been

demonstrated to be first-order accurate in time.29

Since we are now computing time-accurate unsteady solutions, it is typically

necessary to chose a global time increment for advancing the solution for the entire

computational domain. However, we could instead view Equation (3.97) as a modified

steady problem since we have factored the time increment out of the solution residual. In

this case, the solution residual represents the difference between two iterations for one

time increment and we utilize local time stepping to accelerate the convergence of this

residual to zero. This idea, where an unsteady problem is solved as a modified steady

problem using local time stepping, was first proposed by Jameson30 and is implemented

in the current STARS unsteady CFD module. 18

To implement this method, we select a global time increment for computing the

solution residual given by Equation (3.98), and use a local time increment to update the

unknowns for each iteration in the predictor multi-corrector algorithm given by Equation

(3.97). The final converged state for each global time step will satisfy the condition that

the unsteady solution residual 1s zero. Thus we maintain the time accuracy of the

algorithm despite usmg local time stepping to drive the solution to convergence.

Furthermore, the stability of this algorithm is maintained even for large global time

increments since the algorithm is driven to convergence using a locally stable time

increment for each node. However, we do expect that the number of iterations necessary

to attain convergence will increase as the size of the global time increment increases.

63

In the original work on this method, Jameson30 proposed the use of a multistage

advancement scheme for each iteration in order to maximize the stability of the method

for large time increments. The same multistage advancement scheme was also adopted

within the STARS unsteady CFD module. The idea is.to use up to five stages to advance

the unknowns for each iteration. For example, one might use ten iterations for each

global time increment and five stages for each iteration, which means the algorithm must

re-compute the unknowns a total of fifty times for each global time increment. Our

experience has shown that the same effect can be obtained by decreasing the Courant

stability factor and simply using more iterations with the basic one stage scheme already

presente,d. Furthermore, excessively large global time increments will exceed the time

resolution of the algorithm, which is only first-order accurate, and should not be used.

Therefore, we do not advocate the use of a multistage scheme here.

While the focus of this method is to increase the size of the maximum allowable

global time increment, an interesting numerical problem manifests itself for small global

time increments. Surprisingly, the current STARS unsteady CFD module becomes

unstable during a simple time increment convergence test where the global time

increment is successively decreased in size. _This is contrary to how a well formulated

numerical algorithm should behave, but it is easily explainable and corrected. Notice that

the first term of the unsteady solution residual defined by Equation (3.98) will be scaled

by a ratio of local to global time increments when it is substituted into the multi-corrector

algorithm defined by Equation (3.97). This ratio is analogous to a numerical relaxation

factor for the iterative algorithm and explains the numerical instability we observe for

small global time increments.

64

As long as the global time increment is larger than the computed local time

increments, the algorithm is using an under-relaxation factor. Conversely, an over

relaxation factor results whenever the computed local time increment exceeds the size of

the global time increment. From a physical standpoint, over-relaxation is not expected to

be desirable since the algorithm would actually over-shoot the correct answer. This

insight concurs with our numerical tests, which showed that the STARS unsteady CFD

module has an obvious numerical instability when the global time increment is relatively

small. To our knowledge, this instability has not been documented in the current

literature, but it is now obvious how to remedy the problem.

Any time the computed local time increment exceeds the value of the global time

increment, the local time increment defaults to the value of the global time increment.

This guarantees that the ratio of local to global time increments does not exceed one, and

the multi-corrector algorithm always uses under-relaxation to advance the solution.

3.5.3 2°d Order Unsteady Solutions

The unsteady algorithm developed in the previous section is known to be only

first-order accurate in time.29 Our tests have shown that this algorithm is sufficient for a

wide variety of unsteady problems as long as a sufficiently small global time increment is

used. However, an algorithm with a higher order of accuracy is needed if a large global

time increment is desired. The obvious procedure for increasing this order of accuracy is

to modify the finite element interpolation function used to represent time in our

derivation. Thus far, it has been assumed that the unknowns are piecewise constant in

time. Alternatively, a third-order accurate method can be developed if the unknowns are

65

assumed to be piecewise linear in time.29 This assumption leads to a significantly more

complicated algorithm with two sets of unknowns that must be updated for each space

time sub-domain.17

In order to avoid this increase in complexity, we will attempt to increase the order

of accuracy by modifying our algorithm in a different manner. Notice in the previous

derivation that the jump condition is identical to a backwards difference operator when

Equation (3.88) is re-written as follows:

(3.99)

With this in mind, we can consider increasing the order of accuracy for the algorithm by

substituting a higher-order difference operator for the jump condition. This would be

analogous to changing the initial conditions for the space-time sub-domain using a

higher-order interpolation of unknowns from the previous sub-domain, but without

actually changing the interpolation of unknowns within the sub-domain.

The current STARS unsteady CFD module uses the second-order accurate

backwards difference operator suggested by Jameson.30 Substitution of this difference

operator for the jump condition produces the following predictor multi-corrector

algorithm for unsteady problems:

(3.100)

where

(3.101)

The unsteady algorithm defined above is expected to be second-order accurate in time,

and the computational difference between the two unsteady algorithms is negligible.

66

Notice that the only difference between the two algorithms is the form of the jump

condition. One of the side effects of modifying the jump condition is that the stability

characteristics of the two algorithms will be different. One of the roles the jump

condition plays is to add a consistent and higher-order numerical dissipation to the

algorithm. 17 Our tests have shown that the second-order method is less stable and will

typically require more artificial dissipation than the first-order method.

3 .6 Stabilization

It is well documented that any discrete CFD solution for the compressible Euler

equations will exhibit numerical instabilities in the form of spurious oscillations, despite

the fact that the analytical solution remains smooth, monotone and bounded. These

oscillations emanate from regions with sharp gradients and grow rapidly until the solution

is globally corrupted. As stated previously, this situation is not unique to our finite

element discretization. In fact, most of the stabilization techniques we will discuss in this

section were derived from similar techniques used to stabilize finite difference schemes.

There are a variety of techniques for improving the poor stability properties of our

discrete CFD solution, but all of them are based on adding some sort of dissipative

mechanism to the solution. Therefore it is necessary to modify the solution residuals

derived in the previous section to include an extra dissipative operator D. For example,

the first-order unsteady solution residual would now be expressed as follows:

(3.102)

67

This dissipative mechanism may come from upwind differencing, explicit addition of

artificial diffusion, or a residual based dissipation operator. Within these broad

classifications, literally hundreds of algorithms exist, and we will review several of the

most advanced finite element methods here.

The current STARS CFD modules use a form of explicit artificial dissipation to

stabilize the solution scheme. While this method has proven reliable for a variety of

applications, it has some limitations that make it less than the optimal choice. In

particular, artificial dissipation methods violate the consistency of our weighted residual

formulation because the exact solution no longer satisfies the algorithmic residual.22 This

degrades the overall order of accuracy for the algorithm.

3.6.1 SUPG and GLS

The Streamline-Upwind/Petrov-Galerkin (SUPG) method and the Galerkin Least

Squares (GLS) method have been the topic of much research lately, especially with

regards to space-time finite element formulations. These methods are similar in that they

both rely on residual based dissipation mechanisms. One of the key advantages of such a

method is that the stabilization control is introduced directly within the weighted residual

expression. This maintains the consistency of the formulation since the dissipation

operator vanishes as the residual approaches zero.22 The following equations present the

SUPG and GLS stabilization operators for a conservation variables formulation in an

inertial frame using constant-in-time elements:

(3.103)

68

(3.104)

where

(3.105) A.=aF;
' au

Notice in the above expressions that the two operators are very similar. The

fundamental difference between the two lies in the structure of the 't' matrix. The SUPG

methodology has been the most widely implemented of the two, in part because the

formulation of the 't' matrix is fairly simple and straightforward. In fact, there are a

variety of recommendations for the structure of 't'suPG for the compressible Euler

equations. For example, Hughes suggests that 't'suPG should be a diagonal matrix whose

diagonal elements are given by the following equation:

(3.106)

where h is the minimum element dimension and a is the local speed of sound.

In contrast, the construction of 't°GLS is neither simple nor straightforward for the

three-dimensional Euler or Navier-Stokes equations. In fact, the formulation for 't'GLS

involves the inverse square root of the flux jacobian matrices, A;, for each element. 17

This is a very expensive computational operation as it requires the solution of an

eigenvalues problem for each element. Specifically, our tests showed that this increase in

complexity leads to a factor of ten increase in CPU time over stabilized artificial

dissipation methods for simple one-dimensional problems. The GLS methodology is

arguably the more accurate of the two methods and leads to a system of equations whose

stability and convergence characteristics can be rigorously analyzed.29 However, it is

69

unlikely that this methodology will be widely accepted for complicated aerospace

applications unless a more direct formulation for 'taLS is developed.

Although the GLS method appears to be too numerically expensive for our

applications, the SUPG method still appears to be an efficient option that has the capacity

to stabilize the solution scheme while maintaining the order of accuracy of the algorithm.

However, both GLS and SUPG are linear methods that cannot produce monotone

solutions for discontinuities.31 In practice, this means that overshoots and undershoots

still develop around shocks, but are controlled so that they no longer globally pollute the

solution.22 Therefore, it becomes necessary to introduce non-linear operators to further

control these oscillations and produce smooth solutions for discontinuities.

It is also possible to formulate a residual based discontinuity capturing operator to

accomplish this. This type of non-linear operator maintains the consistency of the finite

element formulation as with the SUPG and GLS stabilization operators already presented.

Unfortunately, residual based discontinuity operators are formulated using the same least

squares operator from the GLS formulation, which involved the inverse square-root of a

matrix. 17•32 Thus, the computational performance of the SUPG method will be similar to

that of the GLS method already discussed. It is unfortunate that both of these methods

suffer from such poor computational efficiency when compared with similar artificial

dissipation method since they would seem to offer a significant improvement in accuracy

over such methods. However, it is unlikely that the improved accuracy would be

welcomed if it accompanied an order of magnitude increase in computational time since

the current STARS artificial dissipation model has proven to be reliable for many

applications.

70

3.6.2 Artificial Dissipation

The computational fluid dynamics literature abounds with artificial dissipation

models for compressible flows. In comparing several of these models for this research

effort, the STARS dissipation model performs comparably to other models in terms of its

ability to capture shocks over relatively small intervals while still sufficiently stabilizing

the solution. The STARS dissipation model is identical to the model employed by the

FELISA codes, and is an edge-based scheme that relies on the computation of flow

gradients along the segments of the computational domain. 19 Interested readers should

refer to the FELISA research literature for the mathematical equations describing this

dissipation model. We will only describe its basic function and make some general

comments on its application to non-inertial solutions in this work since the dissipation

model is not our intellectual achievement.

STARS employs two different versions of its dissipation model, the so-called

low-order and high-order dissipation. Both versions are based on the same fundamental

set of equations, with the difference being that the high-order dissipation utilizes gradient

limiters to reduce the amount of dissipation that is added to the solution in regions where

there are real flow discontinuities. This is accomplished using a pre-processing step,

where first the spatial gradients for every node are computed using the segment weights

as discussed in Section 3.3.4. Next, a set of modified unknowns are computed using the

nodal gradient information. Using this set of modified unknowns, the amount of

dissipation for each node is then computed in the same way as the low-order dissipation.

Since the dissipation operates directly on relative flow quantities, the fundamental

dissipation equations used by STARS required essentially no modification for use with

71

our non-inertial solutions. However, one significant change was required for the high

order dissipation in the pre-processing stage where it computes the nodal gradients. The

original high-order dissipation methodology applied boundary conditions to the gradient

vectors it computed. This translated into the assumption of zero gradient across the far

field boundaries. Therefore, the nodal gradients for every node on the far-field boundary

were set equal to zero. For a non-inertial problem, this is no longer a good or accurate

assumption. Consider the case of a non-translating, rotating domain where the relative

flow velocity is given by Equation (3.107).

(3.107) u=!lr

In the above expression, u = {u 1, u2, u3}T is the fluid velocity vector, .Q is the angular

rotation matrix defined in Section 2.3, and r is a vector location within the computational

domain.

For this type of problem, the velocity gradient will be non-zero everywhere in the

computational domain, including at the far-field boundary. The simplest way to correct

for this is to skip the enforcement of any boundary conditions on the nodal gradients and

use whatever relative gradient the solver computes for the far field nodes of the domain.

Our tests have shown that this has no adverse effect on inertial or stationary domains, and

it corrects an observed problem with rotating non-inertial domains where too much

dissipation is added at the far-field boundaries due to a lack of accurate gradient

information. In fact, the modified high-order dissipation is a practical requirement for

non-inertial solutions because the low-order dissipation (with-out the gradient limiters)

will effectively smooth out all strong gradients produced by a rotating domain to the

point of converging on a solution where the relative velocity is zero everywhere.

72

This is a rather unfortunate result because the high-order dissipation requires

more than twice as much computational time as the low-order dissipation. Furthermore,

solutions that use the high-order dissipation typically converge at a slower rate than the

same solution using the low-order dissipation. Based on its computational performance,

the low-order dissipation would be the ideal choice for efficient numerical solutions.

However, it is typically too dissipative, resulting in solutions with gradients that are

excessively smeared.

That is not to say the low-order dissipation is completely useless. For supersonic

problems, solutions using the high-order dissipation tend to be unstable for high Mach

numbers, while the low-order dissipation is actually quite stable and produces accurate

solutions. For subsonic and transonic flows, accurate solutions can sometimes be

obtained using the low-order dissipation by decreasing the amount of dissipation added to

the solution. This is accomplished by decreasing the dissipation scaling factor, which is a

constant scaling factor applied in the calculation of the dissipation for each node.

However, this is a uniform decrease of the dissipation everywhere in the domain and

typically leads to a numerical instability before n;aching the point of producing an

accurate solution. In contrast, the high-order dissipation uses a non-linear mechanism for

locally decreasing the amount of dissipation.

73

CHAPTER4

4. COMPUTER IMPLEMENTATION

This Chapter discusses the practical implementation of our finite element

methodology as a working computer algorithm. The first two sections discuss the details

of how the source code for the algorithm is structured. Specifically, we define the

fundamental data structures that are required by the algorithm and provide an overview of

the basic algorithm's structure and timing. The next two sections provide some details on

the operation and control of the computer algorithm, including a definition of the

algorithmic control parameters and all of the available computer executables developed

for this research. This information is supplemented by Appendix A and Appendix B,

which define the format of all input and output data files used by our codes.

The next section discusses the structural dynamics solver that 1s currently

available for unsteady flow solutions. This discussion includes some key issues on

consistent non-dimensionalization of the structural parameters for a coupled unsteady

CFD analysis of aeroelastic or flight dynamics problems. The final section summarizes

the differences between the new algorithm that has been developed here and the old

STARS CFD modules. This includes details on memory usage and computational

performance for the two algorithms.

74

4.1 Data Structures

Perhaps the most complicated aspect of any two or three-dimensional CFD

algorithm is the organization and interpretation of its data structures. As such, the

computational performance of our numerical algorithm will depend on how efficiently

these structures are organized. In order to develop an algorithm based on the

methodology presented so far, we require the following fundamental sets of data:

• COOR => real vectors of nodal coordinate data for nodes 1 through nnd

• IELM => integer vectors of element connectivity data for elements 1 through nel

• ISEG => integer vectors of segment connectivity data for segment 1 through nsg

• IBEL => integer vectors of boundary element connectivity data for boundary
elements 1 through nbe

• PHIA => real vectors of elastic deformations for each wall node

• G 2 DIG 3 D => real vectors of element geometry data for each element

• DM => real vector of inverse lumped mass values for each node

• WSG => real vectors of segment weights for each segment

• RBE => real vectors of boundary element geometry data for each boundary
element

• ANOR => real vectors of averaged surface normals for wall nodes 1 to nwl

• BVEL => real vectors of elastic boundary velocities for each wall node

• UN => real vectors of algorithm unknowns at t = n for each node

• UNl => real vectors of algorithm unknowns at t = n + 1 for each node

• UNO => real vectors of algorithm unknowns at t = n - 1 for each node

• RHS => real vectors of assembled solution residuals for each node

75

Only the first five sets of data listed above will actually be read in by the solver.

This is to allow for maximum compatibility with a wide range of unstructured grid

generation packages. However, some pre-processing of this geometry data is necessary

so that it is sorted appropriately. The algorithm developed here requires that the

boundary elements be sorted based on boundary condition type so that the boundary

integrals can be evaluated efficiently, i.e. with out complicated switches or if blocks ..

Furthermore, nodes which lie on solid wall surfaces must be sorted to the front of the

nodal arrays, i.e. nodes 1 through nwl are solid wall nodes and nodes nwl + 1 through nnd

are the rest of the nodes in the domain. This facilitates an efficient implementation of the

solid wall boundary condition, which is applied explicitly to each solid wall node. As

discussed in Section 3.4.3, some solid walls nodes are omitted from the enforcement of

boundary conditions due to ambiguity in the average surface normal for that node. These

nodes are flagged as singular and are sorted to be last nsd nodes of the solid wall nodes,

i.e. nodes 1 through nwl - nsd are the solid walls nodes on which the boundary conditions

will be enforced.

The next five sets of geometry data, G2D/G3D through ANOR, are assembled

once by the algorithm when it is initialized. The total computational time required for

this operation is approximately equal to the time required for one or two iterations of the

actual flow solver. The element geometry vectors, G2D/G3D, contain the element area

or volume for two or three-dimensional elements respectively and the coordinate

transformation matrix needed to convert gradients from Cartesian coordinates to element

natural coordinates; The lumped mass vector, DM, contains the inverse of the diagonal

elements of the lumped mass matrix for each node scaled such that it is proportional to

76

the area or volume of the two or three-dimensional elements surrounding that node. This

is equivalent to multiplying the entire algorithmic equation by three for two-dimensional

problems or four for three-dimensional problems, and is purely a choice of convenience.

The segment weight vector, WSG, contains the appropriately scaled segment weight

vector for each segment as discussed in Section 3.3.4. The boundary element data vector,

RBE, contains the length or area for two or three-dimensional boundary elements

respectively, and the outward pointing, unit normal vector for each boundary element.

Finally, the averaged normal vector, ANOR, contains the length or area weighted average

normal vector for each node that lies on a two or three-dimensional solid wall boundary

respectively. These averaged wall normals are also unit vectors pointing outward from

the computational domain.

The last five sets of fundamental data represent vectors that are computed by the

algorithm during the iterative solution process presented thus far. BVEL is a vector of

computed velocities for each solid wall node that is used for the transpiration boundary

condition when solving elastic problems. UN, UNl, and UNO are vectors of algorithm

unknowns from the current, next, and previous time steps respectively, and RHS is the

computed solution residual for whichever predictor multi-corrector algorithm is being

used.

4.2 Basic Algorithm

With all of the fundamental data structures defined, the core finite element

methodology can be summarized in pseudo-code as follows:

77

read solver control parameters

read geometry data: COOR, IELM, ISEG, IBEL

compute additional geometry data: G2D/G3D, DM, RBE, WSG, ANOR

read any elastic/dynamic data

set/read initial conditions for UN for t = 0

compute initial aerodynamic loads for t = 0

compute initial structural dynamics state for t = 0

output initial conditions for t = 0

UNO=UN

UNl =UN

do istp = l,nstp

advance structural dynamics from t = n to t = n + 1

update ANOR and compute BVEL (transpiration) fort= n + 1

compute local time .step, DELT, for each node

do icyc = 1, ncyc

initialize RHS

enforce flow tangency on UNl

add element integrals to RHS

add boundary integrals to RHS

add dissipation to RHS

enforce flow tangency on RHS

UNl = UNl - DELT·DM·RHS

end do

output solution residuals

UNO =UN

UN=UNl

compute new aerodynamic loads for t = n + 1

output forces and dynamics for t = n + 1

ifMOD(istp, nout) = 0, output solution unknowns

end do

Figure 4.1: Pseudo-code summary of core CFD algorithm.

The above pseudo-code shows the overall timing of the code in terms of the defined data

structures. It also defines three solver control parameters: nstp, ncyc, and nout. The

total number of solution steps is controlled by the parameter nstp, the number of

iterative convergence cycles is controlled by the parameter ncyc, and the output

frequency is controlled by the parameter nout. Solver control parameters will be

discussed in more detail in the Section 4.4. Additional information on all solver control

78

parameters and other input/output data files for both the two-dimensional and three-

dimensional solvers is also present in Appendix A and Appendix B.

One final modification will be made to this algorithm in order to help maintain the

stability of the iterative procedure. It is possible during the iterative process that the

update equation in the above algorithm, UNl = UNl -M·DM·RHS, will predict a negative

value for the density or pressure due to a local instability in the algorithm. Such a value

is obviously a nonphysical representation for either of these quantities and will cause the

program to crash when it computes other quantities that require the square-root of these

variables, such as the local speed of sound. The current STARS CFD modules use a

method originally developed for the FELISA CFD solver to force these quantities to

remain positive. 19 This helps maintain the stability of the algorithm in the face of mild

instabilities that might develop locally and extends the range of the maximum allowable

global time step and Courant stability factor, cfl.

In order to efficiently implement this method, it is necessary to use a set of

algorithmic unknowns that includes the pressure. As such, the algorithmic unknowns

vector will be defined as follows:

p

(4.1)

p

Notice that the algorithmic unknowns vector differs from the Euler unknowns vector

previously derived. To some extent, this will complicate the evaluation of element

integrals, but it streamlines the calculation of quantities that involve the pressure since the

Euler unknowns did not include pressure as an unknown. Furthermore, this modification

79

will make the output from our new algorithm more compatible with the post-processors

developed to analyze data output by the STARS CFO solvers.

The equation for updating the density and pressure for each iteration is then as

follows:

(4.2) {
qi+ !'!:..q !!:..q/q; ~ -0.1

q = !'!:..q
i+l q. + () !!:..q/q; < 0.1

' 1-4 O.l+!!:..q/q;

In the above expression, q is the unknown quantity being updated and !'!:..q is the predicted

change in that quantity computed from the solution residual. Use of this equation for

updating the density and pressure will ensure that these quantities remain positive from

one iteration to the next. However, it will not universally guarantee the stability of the

algorithm. This process only prevents mild instabilities from globally polluting the

solution.

4.3 Available Codes

A variety of computer codes have been developed for this research effort.

Although the names may be changed in the near future, a summary of all the available

codes and a description of their function is provided here. As mentioned in the previous

section, refer to Appendix A and Appendix B for details on the input and output file

formats for most of these codes.

The following executables are available for two-dimensional CFD analysis:

• makeg2 d. exe is a pre-processor used to convert a standard STARS

surface triangulation file and modified boundary conditions file into an

appropriately sorted two-dimensional geometry file. The surface

80

triangulation data must be restricted to one of the following coordinate

<

planes: xy-plane, xz-plane, or yz-plane.

• euler2d. exe is the finite element CFD algorithm used to perform a

two-dimensional steady or unsteady CFD analysis for the specified two-

dimensional computational domain.

• make cut 2 d. exe is a post-processor used to extract relevant flow

quantities along arbitrary cut-lines through the computational domain or

along the individual boundary curves of the computational domain.

• particle2d. exe is a post-processor used to generate steady particle

traces or stream lines through-out the computational domain for a given

set of solution unknowns.

• glplot2d. exe is a graphical post-processor used for visualization of

the two-dimensional geometry, flow solution, and particle traces.

The following executables are available for three-dimensional CFD analysis:

• makeg3 d. exe is a pre-processor used to convert a standard STARS

surface triangulation file, tetrahedral volume file, and boundary conditions

file into an appropriately sorted three-dimensional geometry file.

• euler3d. exe is the finite element CFD algorithm used to perform a

three -dimensional steady or unsteady CFD analysis for the specified three

-dimensional computational domain.

• makecut3d. exe is a post-processor used to extract relevant flow

quantities along arbitrary cut-lines through the computational domain or

81

along the intersection of cut-planes with the individual boundary surfaces

of the computational domain.

• particle3d. exe is a post-processor used to generate steady particle

traces or stream lines through-out the computational domain for a given

set of solution unknowns.

• glplot3d. exe is a graphical post-processor used for visualization of

the three -dimensional geometry, flow solution, and particle traces.

4.4 Algorithm Control

The behavior of the pnmary CFD algorithms, euler3d. exe and

euler2d. exe, is controlled through a set of control parameters that are read from a

Fortran namelist file. The following parameters and flags are available with their default

setting given in parentheses:

• dt => dimensionless global time step for unsteady solutions (0. 1)

• gamma=> ratio of specific heats (1. 4)

• diss => artificial dissipation scaling factor (1. 0)

• cfl => courant stability factor for local time steps (o. s)

• mach => free stream Mach number (0. 6)

• a 1 pha => 1st free stream orientation angle (0 . 0)

• beta=> 2nd free stream orientation angle (0. 0)

• ref dim=> reference dimension for non-dimensionalization of problem (1. O)

• a inf => dimensional free stream speed of sound (1 . o)

• rhoinf => dimensional free stream density (1. 0)

82

• nstp => total number of solution time steps (100)

• nout => output frequency, number of steps per output (50)

• ncyc => number of iterative cycles per solution step (3)

• istrt => restart flag (.false.)

• isol => solution type (0)

o steady solution: isol = 0

o 1st order unsteady solution: isol = 1

o 2nd order unsteady solution: isol = 2

o piston perturbation solution: isol = 3

• idsol => structural dynamics solution type (2)

o zero-order integration: idsol = 0

o 1st order integration: idsol = 1

o 2nd ord~r integration: idsol = 2

• idiss => dissipation type (0)

o low-order dissipation: idiss = 0

o high-order dissipation: idiss = 1

• ipnt => number of points for numerical integration of flux/source vectors(l)

o one-point gauss quadrature: ipnt = 1

o three-point symmetric gauss quadrature (2-D only): ipnt = 3

o four-point symmetric gauss quadrature (3-D only): ipnt = 4

• iaero => aerodynamic forces flag (.false.)

• idynm => dynamic/non-inertial solution flag (.false.)

• ielast => elastic solution flag (.false.)

• i free => free-stream velocity flag (.true.)

83

• nr ~ number of elastic modes (0)

Many of the solver control parameters listed above are, to some extent, self-

explanatory based on the structure of the algorithm presented thus far. However,

additional information about these parameters is provided in Appendix A and Appendix

B in the section that details the format of the control input files for each solver.

Furthermore, Chapter 5 will investigate the application of three-dimensional solver to

flow problems of interest. For each of these problems, the appropriate choice of control

parameters will be specified.

4.5 Aerodynamic Forces

For iaero = . true., fundamental aerodynamic forces and moments are

computed following each solution step. A vector of aerodynamic forces and moments is

computed by summing the force/moment contributions for every solid wall boundary

element as follows:

LBE(2)

(4.3) (= L2A;(p; - Pinf)n;
i=LBE (1)

LBE(2)

(4.4) M: = I[2A;(Pi'-Pinf)nJxr;
i=LBE (1)

In the above expression, LBE (1) and LBE (2) are the starting and stopping indexes for

solid wall boundary elements, A; is the area for boundary element i, p; is the average

pressure acting on boundary element i, Pinf is the free-stream pressure, n; is the unit

normal vector for boundary element i, and r; is a vector from the origin of rotation to the

84

center of boundary element i. For two-dimensional problems, the element area m

Equations (4.3) and (4.4) is replacedwith the element length.

Since the CFD algorithm solves for a dimensionless pressure as defined in Section

2.4, the aerodynamic forces and moments computed using Equations (4.3) and (4.4) will

be dimensionless force and moment coefficients respectively and are marked by an

asterisk. Both of these equations are multiplied by two so that they are non-

dimensionalized with respect to a dynamic pressure, since that is the aerodynamic

standard . for non-dimensionalization of forces and moments. These dimensionless

quantities can be converted to dimensional forces and moments as follows:

(4.5)

(4.6)

In the above expressions, P-mr is the free-stream density, Uinf is the free stream velocity,

and L is the reference length or dimension.

In addition to the fundamental aerodynamic forces and moments, generalized

aerodynamic forces are also computed for elastic problems, ielast = . true. A

generalized aerodynamic force is computed for each elastic mode by summing nodal

contribution for every solid wall node as follows:

nwl

(4.7) fa. = I [2A; (pi - Piaf)nJ <I>;
i=l

In the above expression, nwl is the number of solid wall nodes and Cl>; is the elastic

deformation vector for node i. For two-dimensional problems, the element area in

Equation (4.7) is again replaced with the element length.

85

Although Equation (4. 7) is defined as a summation over solid wall nodes, the

generalized aerodynamic forces are actually assembled in the same manner as the

fundamental aerodynamic forces, i.e. by looping over solid wall boundary elements and

calculating their contribution to each node of that element. The dimensionless form of a

generalized aerodynamic force is similar to that of an aerodynamic moment since the

elastic deformation vector has units of length. Therefore, the generalize aerodynamic

force given by Equation (4. 7) can be converted to a dimensional force as follows:

(4.8) fa = (t Pinfui!fL3)fa*

Both sets of aerodynamic forces described here will be required by the structural

dynamics solver described in the next section. The fundamental aerodynamic forces and

moments are used to compute the non-inertial or rigid-body dynamics of the system and

are stored in a six-element array (three-element for two-dimensional problems) called FD

by the algorithm, while the generalized aerodynamic forces are used to compute the

elastic deformation of the structure and are stored in a nr element array designated as FA

by the algorithm.

4.6 Structural Dynamics

Through-out most of this research effort, the structural dynamics algorithm

required for a couple unsteady CFD solution was considered to be a low risk area of

development. The existing STARS structural dynamics algorithm was thought to be

more than suitable for our application. It would simply be necessary to add the non

inertial degrees of freedom to the existing algorithm. This assumption has proven to be

inaccurate as the structural dynamics solver exhibits an unfortunate sensitivity to time

86

step, which will be investigated further in the following sections. Nevertheless, the focus

of this project remains the development of an efficient and stable unsteady CFD

algorithm that can be coupled to an existing structural dynamics solver.

It has been a fundamental design goal during development that the structural

dynamics solver and unsteady CFD solver should be maintained as two separate entities

so that either could be enhanced, upgraded, or replaced with out impacting the other.

Figure 4.2 presents a conceptual flow chart of how the structural dynamics solver and

unsteady CFD· solver are coupled together to advance the solution through time. This

flow chart illustrates what is referred to as a time-marched aeroelastic solution.

FEM Solids Steady State
Analysis CFDSoln

Modal Params. l CFDI.C.'s
,r

~ Dynamics ...
Aero. Solver
Loads

l CFDB.C.'s

Unsteady

CFD Solver

I
Global Time Step

Figure 4.2: Unsteady Solution Flow Chart

Notice that the dynamics solver updates the boundary conditions for the unsteady

CFD solver, while the unsteady CFD solver provides a set of aerodynamic loads to the

dynamics solver. In such a solution scheme, the unsteady CFD solver is typically the

more complicated module which requires the overwhelming majority of CPU cycles. In

the following sections, we will develop the core algorithm for a discrete dynamics solver,

87

investigate the sensitivity of the algorithm to the time scale of the simulation, and

propose enhancements that will improve the accuracy of the algorithm.

4.6.1 Core Dynamics Algorithm

The core dynamics algorithm remarns essentially unchanged from the

methodology used with the original STARS unsteady CFD module. The methodology

relies on converting the continuous-time equation of motion to a discrete state-space

representation that can be easily integrated to advance the solution one discrete time step.

We start by converting the basic aeroelastic equation of motion presented previously in

Equation (2.1) to state-space form as follows:

(4.9) {x(t)} {x(t)}
x(t) = A X(t) +Bf)t)

where the continuous-time state matrix, A, and input matrix, B, are defined as follows:

(4.10)

(4.11)

Next, Equation (4.9) is converted to the zero-order hold equivalent system, which

has a discrete-time state equation with the following form:

(4.12) {x(k + 1)} = {x(k)} ()
. () G . () + H fa k
X k+l X k

where the discrete-time state matrix, G, and input matrix, H, are defined as follows:

(4.13)

88

(4.14)

If the continuous-time state matrix is not singular, the discrete-time input matrix

can be computed using the inverse of the state matrix as follows:

(4.15)

If the continuous-time state matrix is singular, the discrete-time input matrix must be

approximated . numerically by first expanding the discrete-time state matrix into an

infinite series and simplifying equation (4.15) as follows:

(4.16)

(4.17)

(4.18)

n

G = ~ A; t,1,' =I + Mt + A z t,21' + A 3 t,61' + ... + An ""," L I. ~
i=O

H = (A A tJ2 AZ !}L_ An-I tJ" \.,,=~Ai 1,1•+1 ut+ 2 + 6 + ... + n! JD L (i+I)!
i=O

Equation (4.18) represent a modification to the original STARS matrix assembler

that will allow us to analyze systems with rigid-body modes. Such modes have mass but

zero stiffness, which will result in a singular continuous-time state matrix.

In order to effectively couple the structur~l dynamics solver with the unsteady

CFD solver, the two modules must utilize the same dimensionless system of units. The

structural dynamics solver must be able to accept dimensionless aerodynamic forces from

the CFD solver and return dimensionless boundary conditions to the CFD solver. Rather

than maintaining two systems of measurement and converting back and forth, the

matrices derived for the structural dynamics algorithm will be converted to dimensionless

units that are consistent with the CFD solver.

89

First, we define the dimensionless form of the generalized mass, damping and

stiffness matrices. In terms of units, a generalized degree of freedom resembles a

rotational degree of freedom since the finite element mass matrix is multiplied by the

elastic deformation vectors twice in its derivation.4 Hence, the generalized mass matrix

will have units of inertia and its dimensionless form is defined as follows:

(4.19) M -(1 5) * - 2PinrL M

Similarly, dimensionless forms of the generalized damping and stiffness matrices are

defined as follows:

(4.20)

(4.21)

In the above expressions, Pmf is the free-stream density, Uinf is the free stream velocity, L

is the reference length or dimension, and an asterisk indicates the dimensionless form of

each matrix.

Substituting the above definitions along with the definition of a dimensionless

aerodynamic force, Equation (4.8), into the aeroelastic equation of motion, Equation

(2.1), yields the following:

(4.22)

where the dimensionless form of the generalized displacement, velocity, and acceleration

are defined as follows:

(4.23) x·(t·)= x(t)

(4.24) ·*(*) L ·() X t =-X t
uinf

90

(4.25) ··*(*) L2 ··() X f =-2-Xt

uinf

Notice that the dimensionless form of the generalized displacement is identical to its

dimensional form. This is because the elastic deformation vector itself is dimensionless

and the generalized displacement is simply a dimensionless scaling factor for the elastic

deformation vector.

All of the above dimensionless forms are used exclusively when assembling the

state space matrices and for advancing the structural dynamics through time. The

dimensionless elastic state vector is stored in an array with nr* 2 elements. Two copies

of this array are needed for advancing the structural dynamics. The state vectors at time

n and n + 1 are stored in the arrays XN and XNl respectively.

Following a similar process, it is possible to define dimensionless forms for the

non-inertial coefficient matrices. The matrix solution developed previously for the

aeroelastic equation of motion is not directly applicable to the non-inertial equation of

motion due to the non-linear coupling between the three rotational degrees of freedom.

However, a matrix of structural coefficients is a convenient way of defining the non~

inertial structural system. As such, we begin by defining a three-dimensional rigid-body

state vector as follows:

(4.26)

In the above expression, Xr is the x-displacement for the non-inertial frame, Yr is they-

displacement for the non-inertial frame, Zr is the z-displacement for the non-inertial

frame, </Jr is the roll angle for the non-inertial frame in radians, Br is the pitch angle for the

91

non-inertial frame in radians, and ljf,. is the yaw angle for the non-inertial frame in

radians.

Dimensionless forms for the rigid-body state vector and structural coefficient

matrices are defined as follows:

1 0 0 0 0 0

0 1 0 0 0 0

x(t) = L
0 0 1 0 0 0 x'(t')
0 0 0 .L 0 0 L

(4.27)

0 0 0 0 1 0 L

0 0 0 0 0 .L
L

1 0 0 0 0 0

0 0 0 0 0

x(t) = uinf

0 0 1 0 0 0 x'(t')
0 0 0 1 0 0 L

(4.28)

0 0 0 0 1 0 L

0 0 0 0 0 1
L

1 0 0 0 0 0

0 1 0 0 0 0
2 0 0 1 0 0 0

··() uinf x * (t') xt =-
1 L 0 0 0 L 0 0

(4.29)

0 0 0 0 1 0 L

0 0 0 0 0 1
L

1 1 1 L L L

1 1 L L L

(4.30) M-1 L3
1 1 L L L

M*
- 2 Pinr L L L Lz Lz Lz

L L L Lz Lz L2

L L L Lz Lz Lz

92

1 1 1 L L L

1 1 1 L L L

c-1 L2 1 1 1 L L L c· (4.31) - 2 Pinruinr L2 L2 L2 L L L

L L L L2 L2 L2

L L L L2 L2 L2

1 1 1 L L L

1 1 1 L L L

K-1 2 L 1 1 1 L L L
K* (4.32) - 2 Pinfuinr

L L L L2 L2 L2

L L L L2 L2 L2

L L L L2 L2 L2

The dimensionless rigid-body state vector is stored m an array with twelve

elements. Two copies of this array are needed for advancing the structural dynamics.

The state vectors at time n and n+ 1 are stored in the arrays XD and XDl respectively. As

a matter of convenience, the initial conditions for the three rotational degrees of freedom

are input by the user using degrees rather than radians, and the solver performs the

conversion to radians when deriving the dimensionless rigid-body state vector.

The implementation of a fully coupled dynamics solution where both the non-

inertial and elastic degrees of freedom are solved simultaneously is left for a topic of

future research. For the verification and validation of the non-inertial algorithm, we will

restrict ourselves to uncoupled non-inertial problems without elasticity. In this case, the

structural equation of motion for each non-inertial degree of freedom can be solved

separately. The non-inertial dynamics is solved with respect to the inertial frame and the

inertial vectors are transformed to the non-inertial coordinate system before they are

passed back to the CFD module. By convention, the solver outputs the rigid-body state

vector in the inertial frame following each step of the solution.

93

4.6.2 Sampling Sensitivity

The algorithm presented in Section 4.6.1 was derived usmg the classic

methodology for converting a continuous-time system to its discrete-time equivalent,

which can be found in any textbook on discrete-time control systems. This methodology

assumes that the input force vector is held constant between any two consecutive

sampling instants. Provided that this assumption is true, Equation (4.12) is an exact

representation for the original continuous-time equation of motion. Such a discrete-time

model is typically sufficient for representing digital control systems where the input is

provided by the user for the purpose of controlling or stabilizing the system. In which

case, the control input provided to the system almost certainly is held constant across

consecutive sampling intervals and Equation (4.12) exactly matches the physical reality

of the real continuous-time system.

Unfortunately, the aeroelastic system that we are trying to simulate does not

perfectly fit the assumptions of this derivation. The input that we have defined for the

discrete-time structural equation certainly is not constant across consecutive sampling

intervals. As shown in Figure 4.3, the model we are using to represent an aeroelastic

system is made up of a structural dynamics block and an aerodynamics block connected

in a feedback loop.

94

r----------------------------------
1
I

f; (k) ' + f (k) Structural x (k)

Dynamics

'-----1 Aerodynamics ,.__.....,

fa (k) X (k)

Figure 4.3: Block diagram representing a discrete-time aeroelastic system.

When representing an aeroelastic system in this fashion, it is natural to think of it

as simply a control system with a feedback loop. However, the reality of this problem is

that it consists of two complicated continuous-time systems where the output of each

system, which is the corresponding input to the complementary system, is not constant

across the sampling interval. Regardless, it is tempting to try and apply this solution

scheme to an aeroelastic problem. Certainly the error incurred by assuming a constant

input to the system may be offset by choosing a sufficiently small sampling interval. The

only question then is how small must the sampling interval be?

In order to evaluate the accuracy of the discrete-time solution scheme, let us

consider the one-dimensional structural system given by equation (4.33).

(4.33) x + 0.05.x+ 2x= J(t)

The state-space form of equation (4.33) is as follows:

(4.34)

The natural frequency of this continuous-time system is 0.225 Hz with a damping ratio of

0.0177.

95

The simplified aerodynamic force model that will be used to complete the

feedback loop for this one-dimensional model problem is given by equation (4.35).

(4.35) J(t)=-x

The resulting coupled system has a modified natural frequency of 0.277 Hz and a

damping ratio of 0.144. Theses are the exact values for the natural frequency and

damping of the coupled system computed from the eigenvalues of the continuous-time

state matrix.

Following the methodology of Section 4.6.1, the zero-order hold equivalent of the

one-dimensional model problem is given by equation (4.36).

(4.36) {~(k + 1)} =) ~2 -o
1
.os]t.t {~(k)} + [OJ J(k)

x(k + 1) x(k) 1

where,

(4.37) J(k)=-x(k)

Notice that the state matrix for the discrete-time system has a dependency on the

sampling time, 11t. As with the continuous-time system, the natural frequency and

damping of the system can be computed from the eigenvalues of the state matrix. Figure

4.4 presents plots of damping ratio, (, and percent error, c, versus sampling frequency, T,

in samples per period of the structural system.

96

0.02 (
1000 e (%)

0.01 JOO

T
Q+--~---ffl-~~~~~~~~~

JOO 1000 10000 JO

-0.01
T

- - - - - Continuous

-0.02 -a--- Discrete JO JOO 1000 10000

Figure 4.4: Comparison between continuous and discrete models for a one-dimensional

aeroelastic model problem.

The data for Figure 4.4 was taken for sampling frequencies ranging from 22 to

1421 samples per period, and each successive data point was taken using fifty percent of

the previous data point's sampling interval. If we extrapolate the error curve for this

problem, a sampling frequency of nearly 4500 samples per period would be required to

reach less than one percent error. It is important to note that the properties of the

discrete-time system without feedback exactly matched the properties of the continuous

time system without feedback for each of sampling frequencies used to construct Figure

4.4. Hence, the sampling of the input force is solely responsible for the error that is

evident in these plots.

Clearly the discrete-time solution to this one-dimensional model problem has a

strong sensitivity to the size of the sampling interval. Surprisingly, it has not been

uncommon to use sampling intervals of 100 samples per period or less when solving

aeroelastic problems with the original STARS unsteady CFD algorithm. In light of the

results presented for this model problem, the accuracy of these solutions is questionable.

97

It is expected that this model problem presents a best-case scenario smce the

aerodynamic model is exactly represented and does not itself posses a sensitivity to the

sampling interval. If this is the case, then a problem that used a sampling interval of 100

samples/period would be off by more than 45%.

4.6.3 Higher Order Algorithms

A significant amount of effort was spent developing a CFD algorithm that would

be both stable and accurate for relatively large global time steps. In Section 3.5.3, a

second-order backwards difference operator was used to increase the time accuracy of the

unsteady CFD algorithm. The result is a second-order discretization of our continuous-

time aerodynamic model, the compressible Euler equations. A similar process can be

used to improve the accuracy of the discrete-time structural model.

The zero-order hold used in the derivation of the discrete-time structural model is

equivalent to using a zero-order integrator or a simple left-hand sum to integrate the input

force for each sampling interval. An obvious enhancement to this scheme would be to

substitute a higher order numerical integrator. Equations (4.38) and (4.39) define

discrete-time models that use first-order and second-order integrators respectively.

(4.38) {x(k + 1)}- {x(k)} [3 1]
i(k+l) -G x(k) +H 2 f)k)- 2 f)k-l)

(4.39) { :i:: :i}-G{ :i: !} + H[2f O (k)-± f O (k-1)+ ± f O (k- 2)]

Notice that the only real cost of implementing a higher-order integrator is the

small amount of additional memory required to store the force vectors from previous time

intervals. Furthermore, these models were derived such that the core discrete-time

98

advancement scheme will remain essentially unchanged. All that is required is to swap in

the appropriate force integrator during the structural advancement to the next time

interval. Figure 4.5 presents a comparison of the error for the three different force

integrators when applied to the one-dimensional model problem from Section 4.6.2.

1000 e -a- zero-order

100
-er- !st-order

<>, · ... <> · 2nd-order
10 ' '

' '¢_

' '
'<st

' 0.1

0.01

' 0.001 ,,

0.0001
T

0.00001

10 100 1000 10000

Figure 4.5: Error comparison between several discrete-time models for the one

dimensional aeroelastic model problem.

The results in Figure 4.5 show a significant improvement m the rate of

convergence for the two higher-order integrators. Notice that the error for both the first

and second-order methods is several orders of magnitude smaller than the zero-order

method at the highest sampling frequency. Furthermore, we see that the first and second

order solution produce almost identical results. This result is somewhat expected for our

model problem with its over-simplified linear force model.

For a better evaluation of our three integrators, let us consider the two-

dimensional structural system defined by equation (4.40).

99

(4.40)

0

0

0
1 X2 0 0 {J;}
0 .xi + 2.6093 0 f2

-0.1011

0

-0.0032

0

0 ilxll I O O I
- 0.0127 i:2 0 8.7036

The structural coefficients for this system were taken from an actual aeroelastic model of

a wing with two dominant structural modes. Equation (4.41) defines the quasi-steady

aerodynamic model that will be used to complete this two-dimensional model problem.

(4.41) (t) = [- 0.0020 - 0.0078
f 0.0011 0.0032

-0.0026

0.0015
-0.0015]
-0.0009

XI

X2

Xr

Xz

The aerodynamic coefficients for this force model were computed by applying a unit

displacement and velocity to each degree of freedom and computing the resulting forces

using the unsteady CFD solver. This leaves us with a system that can still be solved

analytically, but is hopefully a closer approximation of a real aeroelastic system than the

previous one-dimensional model problem.

Figure 4.6 presents a comparison of the modeling error at various sampling

frequencies for the three force integrators when applied to the two-dimensional model

problem.

100

1000 E

100

10

0.1

0.01

0.001

0.0001

Model -e-- zero-order

~ =:= ~::order
~ ~-order

<>·· 0.
···o.

T
0.00001 +----~----~---~

10 100 1000 10000

1000 E

100

10

0.1

0.01

0.001

0.0001

Model

~
O· ··· ·O ..

-e-- zero-order

--e,-- !st-order

·<>··· 2nd-order

T
0.00001 +----~----~---~

10 100 1000 10000

Figure 4.6: Error comparison between several discrete-time models for the two-

dimensional aeroelastic model problem.

Once again, we see a similar trend in the convergence of the three models. The

higher-order models clearly provide better accuracy over the zero-order model.

However, we should note that the difference in rate of convergence between the three

models is not as significant. For the results in Figure 4.5, the slope of the error curve for

the higher-order models is approximately 200 percent greater than the slope for the zero-

order model. This compares to only a 75 percent difference for the two-dimensional

results of Figure 4.6.

The previous two model problems both relied on a linear force model where the

force could be directly computed based on the generalized displacement and velocity of

the structure at the current time step. This allowed us to compute the predicted response

of the system directly and compare it to an exact analytical solution. What we are really

interested in is the sensitivity of the system when we couple the structural dynamics

integrators with the unsteady CFD solution. Figure 4.7 presents a comparison between

the error of the zero-order and second-order integrator over a similar range of sampling

101

frequencies when the unsteady CFD solver is instead used to compute the aerodynamic

forces acting on the structure. In this case an exact analytical solution for the damping

ratio of each mode is not available, so the error is actually a percent difference between

the computed value at each sampling frequency and an extrapolated value based on the

trend of the two solutions. Although the improvement of the second-order solution is not

as significant as the results shown in Figure 4.6, the trend here continues to be

convergence of the solution as the sampling frequency is increased.

1000 E Model --e- zero-order 1000 Model --e- zero-order E

100 --~ 2nd-order
100 ~2nd-order

IO IO

I

~ 0.1 0.1

0.01 0.01

0.001 0.001

0.0001 0.0001
T T

0.00001 0.00001

IO 100 1000 10000 · 10 100 1000 10000

Figure 4.7: Error comparison between several discrete-time models for the two-

dimensional aeroelastic CFD problem.

It would seem that the accumulation of errors between the CFD solver and the

structural integrator has narrowed the gap between the two solutions. However, the

benefit of having multiple structural integrators becomes more obvious if we plot the

absolute difference between the damping ratio predicted by the zero-order and second-

order integrators for each sampling frequency. Figure 4.8 presents plots of absolute

difference, 8, versus sampling frequency, T, for each mode of the structural system.

102

1000 5 -a-mode 1

100 --mode2

10

0.1

O.oI

0.001

0.0001
T

0.00001

10 100 1000 10000

Figure 4.8: Plot of absolute difference between the zero-order and second-order

integrators for each mode of the aeroelastic CFD problem.

By comparing the plot in Figure 4.8 with the error comparisons of Figure 4.7, we

observe that the absolute difference between the two solutions is an indicator of the error

present at that sampling frequency. This observation provides us with a way of directly

evaluating the sensitivity of an aeroelastic system to the solution time step. A time step

convergence study can actually be performed by running two solutions at the same time

.
step with two different structural integrators and differencing the results rather than

· running three or more solutions at different time steps with the same structural integrator

and searching for asymptotic convergence.

This is an important result because we expect that each aeroelastic system will

exhibit a different degree of sensitivity to the sampling frequency based on the unique

combination of structural and aerodynamic parameters that make up the system. At this

point there is not enough data to make a generalization about the minimum sampling

frequency required to attain a given level of convergence. However, it does appear that

the best way of judging the convergence of the system is by comparing two solutions for

a given time step.

103

4.7 Summary

We began this research with the goal of extending the capabilities of the STARS

non-linear aeroelastic module by adding the capability for non-inertial CFD analysis. For

a variety of reasons, a completely new CFD module was developed with non-inertial

capabilities rather than simply modifying the existing CFD modules. Therefore, it is

prudent at this point to compare the algorithm presented in this document with the

previous CFD modules used by .STARS. The fundamental differences between the two

algorithms are summarized as follows:

1. The new CFD algorithm uses double precision for all floating-point calculations

rather than single precision.

2. Element data is used to evaluate the Euler flux integrals rather than edge data.

3. A consistent mass formulation is used to evaluate the unsteady time flux rather

than a lumped mass formulation.

4. The time advancement scheme has been re-worked, and no longer includes a

multi-stage time stepping algorithm.

5. A non-inertial source term has been added to the unsteady solution residual to

account for an arbitrarily rotating and accelerating frame of reference.

6. The transpiration boundary condition has been modified to correct for elastic

deformations relative to a rotating frame of reference.

7. Local time steps are compared to the global time step for unsteady solutions to

maintain stability for small global time steps.

8. Boundary conditions have been sorted and re-worked in order to achieve better

computational efficiency.

104

9. Multigrid capability has not been included in the new solver since it is impractical

for unsteady aeroelastic applications.

10. The structural matrix assembler has been modified to account for singular state

matrices in systems with rigid-body modes.

11. The structural dynamics algorithm was expanded to include the choice of three

different integrators to improve the accuracy of unsteady aeroelastic solutions.

· A comparison of the memory requirements and computational performance of the

two codes is also provided the next two sections.

4. 7 .1 Memory Requirements

The CFD algorithm developed for this research actually requires more memory

than the previous STARS CFD algorithm for two reasons. First, the new CFD algorithm

is written in double precision, which requires exactly twice as much memory for each

floating-point variable. In the new code, all floating-point variables are 8 bytes in size

rather than the default 4 byte floating-point variables used by the original STARS CFD

modules. Furthermore, the new algorithm requires both the element and edge data

structures to accommodate the algorithmic enhancements indicated in the previous

section, while the old CFD module utilized an edge-based data structure exclusively.

Combine these two factors together, and the new algorithm would require about

four or five times the memory of the old algorithm. Fortunately, there were some

redundant or superficial sets of data maintained in the old algorithm. These were

removed to streamline our new memory requirements, but the resulting code still requires

about a factor of three and a half times more memory (depending on the problem).

105

Equations (4.42) and (4.43) give the approximate memory requirements in bytes for the

two-dimensional and three-dimensional solvers respectively.

(4.42)

(4.43)

mem20 = 8·(37·nnd + 8·nel + 4·nsg + 2·(2 + nr)·nwl + 5·nbe)

mem30 = 8·(51 ·nnd + 14·nel + 5·nsg + 3·(2 + nr)"nwl + 7·nbe)

In the above expressions, nnd is the total number of nodes, nel is the total number of

elements, nsg is the number of segments, nr is the number of elastic modes, nwl is the

number of wall nodes, and nbe is the number of boundary elements.

Note that the above equations actually assume that integers are 8 bytes as well,

which may or may not be the default on different systems. Regardless, the proportion of

integer arrays is small compared to the required floating-point arrays, so these equations

would still be close. Furthermore, the memory requirements calculated above are only

for the pointer workspace used to define the main data arrays. Obviously there are

additional intermediate variables used to calculate various quantities, but these should

also be a small proportion compared to the main data arrays. As an example, a problem

that has 461,575 elements, 84,448 nodes, 17,838 boundary elements, and 8,923 boundary

nodes requires about 105 MB of memory with the new algorithm, while it would have

required about 29 MB, or around a third of the memory, with the old STARS CFD

module. Fortunately, memory is less expensive than it was when the original STARS

CFD module was written, and this increase in memory requirements is not seen as a

major downfall of the new methodology.

106

4.7.2 Computational Performance

In this section we investigate the computational performance of the new solver

and will compare and contrast its performance to the old STARS CFD solver. In

particular, we are interested in the raw number crunching abilities of the two codes, and

the overall rate of convergence of the two codes. For our comparison, we will run steady

solutions for a three-dimensional geometry that is representative of the type of aerospace

application we are interested in analyzing. Since unsteady solutions involve the solution

of a modified steady problem at each step, we expect that the unsteady performance of

the two codes is similar to that observed for steady solutions.

First we examine the relative CPU time required for a solution. Figure 4.9

presents a comparison between the relative computational time for the old solver and the

new solver for various operating system/processor combinations. The relative CPU time

is computed by dividing the total run time of the new solver by the total run time of the

old solver for the same operating system. This simple normalization procedure provides

an easy means of evaluating the performance gap between the two solvers.

107

Old

Windows

Linux

AIX

0 0.2 0.4 0.6 0.8 1.2

Relative CPU Time

Figure 4.9: Comparison of computational performance of old solver and new solver for

various operating system/processor combinations.

Notice that the new solver benefits from an improved computational performance

on all three operating systems. However, the size of the computational gap is different

for all three operating systems. This is most likely due to differences in how the compiler

optimizes on each system and fundamental architecture differences, such as the system

bus and floating point unit, between the three systems tested here.

The fact that the new solver is actually faster than the old solver is an interesting

result considering the old solver utilized the faster edge-based data structure exclusively.

Hence, the algorithmic enhancements that were made to the new code have more than

made up for the quoted 30% difference between the element and edge-based data

structures, since we have actually surpassed the performance of the old code. For our

performance comparison, each solver was run using an equivalent set of control

parameters so that the raw iterative speed is compared directly. In the case of the old

steady solver this means that three stages for each steady cycle were used, while the new

108

solver ran three iterative cycles for each solution step. Both solvers. used the same

courant stability factor, cfl = 0.7, and the high-order dissipation model.

Our next comparison considers the rate of convergence for each code. Figure

4.10 shows the residual convergence histories for the same problem run at two different

Mach numbers with both the new and old solvers. Notice in both cases that the new

solver convergences "farther" since it is coded using double precision variables.

l.E-02 rsd

1.E-04

1.E-06

1.E-08

1.E-10

1.E-12

1.E-14

1.E-16

1.E-18

0

--Old

········New
Mach0.3

'··,,,----------
'·"

""· ··~--,
', '~----.. --......... -.... ·-·-

2000 4000 6000 8000 10000
istep

1.E-01

1.E-03

l.E-05

1.E-07

1.E-09

1.E-11

1.E-13

1.E-15

1.E-17

l.E-19

0

rsd

500 1000
istep

--Old

···-·-······New
Mach 1.2

1500 2000 2500

Figure 4.10: Comparison ofresidual convergence histories of old and new CFD solvers

for two different free stream mach numbers.

Of particular interest is the slope of the residual convergence histories for each

code. Notice that the new code actually converges faster than the old code for the

subsonic Mach number, i.e. it converge to the same point in fewer iterations. For the

supersonic Mach number, both codes converge at the same rate. Hence, the new code

converges at least as fast as the old code when run with the same set of control

parameters. This is not an entirely fair comparison though. The old STARS CFD

module was written with a multi-stage time stepping algorithm and residual smoothing

capability specifically for the purpose of allowing higher values of cf 1 to be used. If the

109

old code is actually capable of running stably at higher values of cfl, then its rate of

convergence would beat the new solver. However, the multi-stage time stepping

algorithm and residual smoothing require extra CPU time for each step.

It is unclear exactly how to compare the total performance of the two codes when

each is run with different sets of parameters. Especially because there is no way to factor

in the amount of additional user time that is required to tweak the additional parameters

available with the old solver. In fact, part of our design philosophy in developing the

new solver has been to eliminate potentially confusing free parameters and go for a more

direct solution of the fundamental equations. In this respect, the new solver should be

easier to use, and thus save time with debugging and parameter tweaking for each

individual problem.

Having compared the performance of the old and new steady solvers, we now

examine the performance of the new unsteady solver for different combinations of

control parameters. Specifically, we are interested in determining how much

performance penalty is associated with non-inertial or higher-order accurate unsteady

solutions when compared against the basic first-order accurate, inertial solution using

one-point gauss quadrature for numerical integration. Tabl~ 4.1 summarizes the solver

control settings for each of eight different tests used to investigate the performance of the

unsteady solver.

Table 4.1: Summary of solver parameters for unsteady solution performance tests.

Label isol idiss npnt idynm
Ull 1 1 1 .false.
U21 2 1 1 .false.
Ul4 1 1 4 .false.
U24 2 1 4 .false. --·

110

~·

DI I I I I .true.
D21 2 I 1 .true.
Dl4 1 1 4 .true. -
D24 2 1 4 .true.

Using the above set of control parameters, eight unsteady solutions were

completed for the geometry tested previously in the steady performance comparisons.

Figure 4.11 shows the relative performance for each test, where the relative performance

is computed by dividing the total CPU time for each solution by the total CPU time for

the U 11 solution.

0 0.5 1.5
Relative CPU Time

Figure 4.11: Comparison of computational performance for different types of unsteady

solutions with new CFD solver.

From· Figure 4.11 , we can readily see the relative "cost" of running a non-inertial

or higher-order accurate solution. Notice that the basic first-order accurate, non-inertial

solution only requires about 8% more CPU time than the similar inertial solution for this

problem. Considering the added functionality the non-inertial capability has added to the

basic solver, this is not a significant performance penalty.

111

As a final performance comparison, Figure 4.12 presents a plot of CPU time

versus number of elements for different problems analyzed using the new steady solver.

There is some scatter in this data due to differences in type and number of boundary

elements for each unique problem, but this plot shows the general trend of increasing

CPU time as the number of elements in the computational domain increases. Figure 4.12

is intended to provide a gauge of the performance cost associated with grid refinement.

14 -

• •
12 -----------------------------------

0.. 10
0) • t; -- 8
.§

- - - - - - - - - - - - -.- -

••• +-'
6

~ u i•
4 ------- .--------------------------

• 2 - - -~ .. -

• o------~-----~----~
0 500,000 1,000,000 1,500,000

Number of elements, nel

Figure 4.12: Comparison of CPU time for different geometries.

112

CHAPTERS

5. RESULTS

In this Chapter, we present numerical examples intended to demonstrate the

accuracy and performance of the finite element methodology presented thus far. Since

our primary interest lies in solving three-dimensional aerospace application:;;, results are

only presented for the new three-dimensional solver. The accuracy and performance of

the two-dimensional solver has also been fully evaluated, but its primary purpose is for

quick evaluation of simplified problems in preparation for a more complicated three

dimensional analysis. Hence, two-dimensional results are not presented here so that we

may focus on more three-dimensional results.

The results in this section begin with a set of verification calculations for three

dimensional, steady and unsteady problems. This section is intended to demonstrate that

the governing equations are being solved correctly and to investigate the order of

convergence for the algorithm where possible. Following our verification of the

algorithm, we examine validation problems. The validation problems are intended to

demonstrate that the relevant flow physics are modeled correctly for the applications we

are interested in solving. In particular, we investigate problems that demonstrate the

application of the non-inertial reference frame to flight dynamics and spinning structures.

113

5 .1 Verification

In the field of computational fluid dynamics, verification is typically referred to as

solving the equations right. 10 We have adopted that definition here and will attempt to

demonstrate that our governing equations, the compressible Euler equations, are solved

correctly. For the purposes of verification, our algorithm will be used to analyze a set of

verification cases that have well known analytic solutions. Where ever possible, we will

also compare our solutions to published solutions from other CFD codes that employ

different algorithms. While this is a useful comparison to demonstrate accuracy, the

primary comparison for verification will be with the analytic solution for each problem.

The verification results in this section are intended to provide a reasonable

sampling of the verification problems that have been analyzed. A comprehensive

verification procedure requires that we investigate problems that exercise all of the

relevant flow physics and every possible combination of parameters for the algorithm.

Obviously, this is a rather complicated task for a three-dimensional, unsteady CFD

algorithm, and a comprehensive verification procedure will necessarily be a continuing

process. However, the results presented here do provide a compelling verification of the

accuracy for a variety of problems that are of interest.

The first several sub-sections pursue verification for steady problems. These

problems demonstrate that the spatial variation of the governing equations is represented

accurately for flow conditions ranging from supersonic down to subsonic. Next we

tackle verification for unsteady problems where the temporal variation of the governing

equations must be represented accurately. This is obviously a more complicated task,

and there are fewer problems with analytical solutions for comparison. Especially when

114

we extend the verification to include non-inertial or elastic unsteady problems. However,

the sampling of problems presented here do form a compelling argument for unsteady

verification of the algorithm.

As much as possible, it is necessary in our verification process to include a grid

convergence study that demonstrates the consistency of our discretization. A grid

convergence study is intended to demonstrate that the solution approaches an exact

solution to the governing equations as the measure of discretization for the problem

approaches zero. 1° For steady problems this is accomplished by using multiple grids with

successively smaller elements. For unsteady problems this refinement will necessarily

need to include successively smaller time increments as well.

A suitable grid convergence study will allow us to compute the observed order of

convergence for the algorithm. Roache10 derives the order of convergence from the

behavior of the error for the discrete solution,£, as defined by Equation (5.1).

(5.1) C = J(Li)- fexact

In the equation above, f (Li) represents the discrete solution and !exact represents the exact

or analytic solution. For a well behaved problem, it is expected that the error in the

discrete solution, E, will be asymptotically proportional to LiP, where Li is some measure

of discretization and p is the order of convergence for the method. The order of

convergence,p, can then be obtained from the slope oflog(E) versus log(Li).

Roache10 also reports that a more direct evaluation for the observed order of

convergence may be obtained if the refinement is performed with a constant refinement

ratio r. Equation (5.2) then defines the observed order of convergence, p, using three

solutions that have been successively refined by a constant ratio r.

115

(5.2) p = ln(J; - 12 Jnnr
/2 - J;

In the above expression,Ji refers to the solution on the finest grid,.fi refers to the solution

on the intermediate grid, and.fj refers to the solution on the coarsest grid.

Before beginning our verification it is appropriate to make some general

comments about order of convergence. First, it is well known that the observed order of
J

convergence will be less than the theoretical order of convergence. Of particular interest

for our application, Roache10 cites a study on the observed order of convergence for the

Euler equations with shocks. The results indicated that the observed order of

convergence downstream of shocks is typically around p = 1 despite higher orders of

convergence upstream of the shock. Along with this observation, we should make the

distinction between local and global order of convergence. As the names imply, local

order of convergence refers to one location within the grid, while global order of

convergence involves the accumulation of errors throughout the entire grid. As such, the

global order of convergence is typically one degree less than the local order of

convergence. 33

5.1.1 Oblique Shock

This steady problem consists of supersonic flow over a wedge with a half angle of

15 degrees. The resulting flow field develops an oblique shock at the leading edge of the

wedge. The results will be compared to the exact solution computed using the perfect gas

equations. The first test will involve an upstream Mach number of 2.5, for which our

theory predicts a downstream Mach number of M 2 = 1.87353, an oblique shock angle of 8

116

= 36.94 degrees, a pressure ratio across the shock of p2/p 1 = 2.46750, and a density ratio

across the shock of pi/p1 = 1.86655.

We take advantage of symmetry when defining this problem and represent only

the upper half of the wedge. The layout of the computational domain, which covers the

volume x E [O, 1.5], y E [O, 1] & z E [O, 0.1], is presented in Figure 5.1. Boundary

conditions for the seven boundary surfaces enclosing this domain are specified as

follows: surfaces 1, 2 and 3 are symmetry planes, surface 4 is a solid wall, and surfaces 5,

6, and 7 are far-field boundaries. Furthermore, all nodes on the line at the intersection of

surfaces 3 and 4 are specified as singular to avoid ambiguity in the enforcement of

boundary conditions.

0 =surface#

l
1.0

l
----. I :--c--- 0.5 ~------ 1.0 ___ _,

I :

Figure 5.1: Layout of computational domain for oblique shock problem.

To solve this problem, we employ three grids that are refined successively using a

constant refinement ratio ofr = 2. Table 5.1 presents the grid spacing h, number of nodes

nnd, number of elements. nel, and the average computational time required per iteration

11tcpu for each grid. All three grids are made up of tetrahedral elements and are generated

117

using a uniform grid spacing. Figure 5.2 shows the surface triangulation of the coarse

grid generated for this study.

Table 5.1: Summary of grid parameters for oblique shock problem.

h nnd ! nel I 11fcvu

coarse 0.04 3500 I 13743 0.0452 s
medium 0.02 21804 i· 98580 0.3992 s J

fine 0.01 145385 I 728564 3.6730 s

Figure 5.2: Representative surface triangulation for oblique shock.

The computational times presented in Table 5.1 are intended to show the relative

increase in computer resources required as the grid resolution increases and are quoted

for a steady solution using the low-order dissipation with one-point gauss quadrature.

With this information, the total computational time required for an analysis of any grid is

computed by multiplying the total number of iterations required for convergence, ns tp,

by 11tcpu for that grid. Unfortunately, the total computational time increases as the grid

resolution increases not only because of an increase in /).fcpu, but also because more

iterations are required for convergence on the finer grids due to greater restrictions placed

on local time increments for small elements.

118

In our analysis of this problem, four different solutions will be computed for each

grid in order to evaluate the performance of the low-order and high-order dissipation

models with both the one-point and four-point numerical integration options. A summary

of the relevant solver parameters for this problem is provided in Figure 5.3. The solver

control parameters are identical for all three grids except for the number of solution steps,

ns t p, since the number of steps required for numerical convergence increases as the grid

resolution increases.

Low-Jpt High-I pt

gamma = 1. 40d0 gamma = l.40d0
mach = 2.50d0 mach = 2.50d0
diss = 0.80d0 diss = 1. OOdO
cfl = 0.80d0 cfl = 0.80d0
nstp = 500 nstp = 500
nout = 500 nout = 500
ncyc = 3 ncyc = 3
isol = 0 isol = 0
idiss = 0 idiss = 1
ipnt = 1 ipnt = 1

Low-4pt High-4pt

gamma = l.40d0 gamma = l.40d0
mach = 2.50d0 mach = 2.50d0
diss = 0.80d0 diss = l.OOdO
cfl = 0.80d0 cfl = 0.80d0
nstp = 500 nstp = 500
nout = 500 nout = 500
ncyc = 3 ncyc = 3
isol = 0 isol = 0
idiss = 0 idiss = 1
ipnt = 4 ipnt = 4

Figure 5.3: Summary of solver control parameters for oblique shock at Mach 2.5.

Figure 5.4 presents a plot of the residual convergence history for the four

solutions on each grid. The coarse, medium, and fine grids were run for 600, 800 and

1000 iterations respectively in order to achieve full numerical convergence for each

different solution.

119

rsd Low-lpt -Coarse rsd High-lpt -Coarse
l.E-03 l.E-03

-Medium
l.E-05 l.E-05

-Medium

l.E-07
--Fine

l.E-07
--Fine

l.E-09 l.Ea09

1.E-11 1.E-11

l.E-13 l.E-13

l.E-15 l.E-15

1.E-17 l.E-17

l.E-19 l.E-19

0 200 400 600 800 1000 0 200 400 600 800 1000
nstep nstep

rsd Low-4pt -Coarse
l.E-03 l.E-03

rsd High-4pt -Coarse

-Medium
l.E-05

-Medium
l.E-05

--Fine
l.E-07 l.E-07

--Fine

l.E-09 !.E-09

1.E-11 l.E-11

1.E-13 l.E-13

l.E-15 l.E-15

l.E-17 l.E-17

1.E-19 l.E-19

0 200 400 600 800 1000 0 200 400 600 800 1000
nstep nstep

Figure 5.4: Plot ofresidual histories for oblique shock at Mach 2.5.

Results for these solutions are obtained along a cut-line defining the intersection

of an xy-plane down the center of the computational domain, z = 0.05, with surfaces 3

and 4. Values of the pressure and local Mach number are obtained from this cut-line

along the lower surfaces of the domain. Table 5.2 presents the average Mach error, EM,

and average pressure error, EP, downstream of the shock for all twelve solutions. In each

case, the average error is computed as the integral of the percent error along the cut-line

divided by the length of the cut-line for x > 0.5.

120

Table 5.2: Summary of average error downstream of the shock for all solutions to the

oblique shock at Mach 2.5.

Coarse Medium Fine

Solution EM (%) EP (%) EM (%) EP (%) EM (%) EP (%)

....... Low-jp[_____ .. _2.933·-····-·······-- 3.535 ···--······-··2.490 ·-·-· _).146 ___ ···--· 1.918 _. __ .. _. __ 1.3.67··-······-·

._._Low-4pL_ __ ··--·2.93.3···············-··_ 3.601 - _.2.497 ___ ·-··· }.182 --··- 1.923 .. _ ···-·-···1 .. 388
High-Ip!··-··-- 3.292····---·--·····}.748 ---·· 2.854··---- ... __ 2.456··-····-·· 2.054 -······· ·--····).141_

High~4pt 3.171 3.722 2.788 2.469 1.978 1.122

Based on the data given in Table 5.2, it appears that all four solutions are

converging toward the correct theoretical value as the grid resolution increases. The

observed order of convergence for these solutions is found by computing the slope for the

plot of log(c) versus log(d) as discussed in Section 5.1. For the one-point, low-order

dissipation solution, the observed order of convergence is computed to be either p = 0.98

or p = 1.15 using the average Mach or pressure error respectively. This rate of

convergence is comparable to the value reported by Roache for Euler solutions with

shocks. The other three solutions also have a similar rate of convergence.

In addition to the error data, plots of the Mach number and pressure distributions

along the cut-line are provided for the one-point low order and high-order dissipation

solutions in Figure 5.5 and Figure 5.6 respectively. Both of the four-point solutions are

indistinguishable from the similar one-point solutions and are not presented here.

121

2.61 M 0 Coarse --Theory

2.4 M,,,=2.5

2.2

2 •
1.8

........... oooCIIOOICIIOOC •• 0 0 0

X

1.6

0 0.5 1.5

2.6 M
1

o Medium

--Theory

2.4 M,,,=2.5

2.2

•
2 0 ~.

1.8

X

1.6

0 0.5 1.5

2.6 l M 0 Fine

!--Theory

2.4 M,,,=2.5

2.2

2
~

..
1.8

X

1.6

0 0.5 1.5

0.3 p

0.25

0.2

0.15

0.3 p

0.25

0.2

0.15

0.1

0

0.3 p

0.25

0.2

0.15

0.1

0

••

,
•
•

8
0

0.5

r
8
•
0

0

0.5

o Coarse

--Theory

M,,,=2.5

X

1.5

o Medium

--Theory

M.,.,=2.5

X

1.5

I o Fine

--Theory ..,
M,,,=2.5

X

1.5

Figure 5.5: Pressure and Mach distributions for one-point, low-order dissipation solution

to the oblique shock at Mach 2.5.

122

2.6 M

2.4

2.2

2

1.8

1.6
0

2.61 M

2.4

2.2

2

1.8

1.6

0

2.6 M

2.4

2.2

2

1.8

1.6
0

o Coarse 0.35 p

--Theory
0.3

0.25

8 0.2

•••eoo••• •=cgac rcOOOO Oo
0.15

••••
X

0.1

0.5 1.5 0

o Medium 0.35 p

'

0.5

•• 8 •
••ow0 o• 1 HQ OIIDti>oo• o o

o Coarse

--Theory

M;.,=2.5

X

1.5

0
!--Theory~ d"

0

0

•
t .,.,Pl'

0.5

0

•

0.5

8 • ..
X

1.5

o Fine

--Theory

M;.,= 2.5

X

1.5

0.3

0.25

0.2

0.15

8" "'' • •
0

0

I • Medium

--Theory
~

M;.,=2.5

X

0.1 +-----~-----~----~
0 0.5

0.35 p

~

b\
L

0.3

0

0.25
~

0.2
0

0.15

-
1.5

I o Fine

--Theory
~

M;.,=2.5

X

0.1 +-----~----~---.
0 0.5 1.5

Figure 5.6: Pressure and Mach distributions for one-point, high-order dissipation

solution to the oblique shock at Mach 2.5.

Notice that the high-order dissipation solution exhibits a severe overshoot in the

vicinity of the shock for all three solutions. Increasing the dissipation factor will not help

damp this overshoot because too much dissipation actually destabilizes the solution for

this case. Because of this, the low-order dissipation solution is actually preferred since it

produces a monotone shock profile. In fact, the high-order dissipation seems to be tuned

123

for subsonic and transonic applications, making it unsuitable for supersonic applications

unless some additional dissipation in the form of a bulk viscosity is included. 19 A bulk

viscosity model was not implemented here since the low-order dissipation does perform

satisfactorily as seen above.

As a final test with this geometry, the free-stream Mach number will be increased

to 6.0 in order to investigate a solution in the upper Mach range for the solver. For an

upstream Mach number of 6.0, ideal gas theory predicts a downstream Mach number of

M2 = 3.99179, an oblique shock angle of e = 22.67 degrees, a pressure ratio across the

shock ofp2/p 1 ~ 6.07, and a density ratio across the shock of fJ2/p1 = 3.10108. Only the

one-point, low-order dissipation solution will be presented for this problem because the

high-order dissipation is incapable of producing a reasonable approximation for the

strong shock that forms at Mach 6.0. Figure 5.7 presents a summary of the control

parameters used for the solution to the oblique shock at Mach 6.0. As before, the solver

control parameters are identical for all three grids except for the number of solution steps,

nstp.

Low-I pt

gamma l.40d0
mach 2.50d0
diss l.OOdO
cfl 0.60d0
nstp 300
nout 300
ncyc 3
isol 0
idiss = 0
ipnt = 1

Figure 5.7: Summary of solver control parameters for oblique shock at Mach 6.0.

124

Figure 5.8 presents a plot of the residual convergence history for each grid. The

coarse, medium, and fine grids were run for 300, 400 and 500 iterations respectively in

order to achieve full numerical convergence.

rsd Low-I pt -Coarse
l.E-03

-Medium
l.E-05

-Fine
l.E-07

l.E-09

l.E-11

l.E-13

1.E-15

1.E-17

1.E-19

0 100 200 300 400 500 600
nstep

Figure 5.8: Plot ofresidual histories for oblique shock at Mach 6.0.

As with the Mach 2.5 solution, values of the local Mach number and pressure are

extracted along a cut-line on the lower surfaces of the domain. Table 5.3 presents a

summary of the average Mach and pressure error behind the shock along with the

computed value of the local Mach number and pressure ratio on the cut-line at a point

where at x ~ 1.46.

Table 5.3: Summary of one-point, low-order dissipation solution to the oblique shock at

Mach 6.0.

coarse 3.8163 5.5090 4.202 -···-······· --···-···· ,-·-····· _________ -,

medium 3.8233 5.8268 3.693
-··-·······-···--·-·······-

fine 3.8628 6.0182 3.588

125

24.231
20.514 _ .. ._ _________ _
10.873

Notice that the average pressure error is quite a bit higher than that observed for

the Mach 2.5 solution. The reason for this is evident in the computed Mach number and

pressure distributions plotted in Figure 5.9.

6.5

6

5.5

4.5

4

3.5

0

6.5

6

5.5

4.5

4

3.5

0

6.5

6 I

5.: j

4.5 i
4 j

I

M

M

M

••<00000~.-1

0.5

0 Coarse

--Theory

M,.,= 6.0

O ··••Goo••·~··· 00 X

1.5

0.15 p

0.1

0.05

0

o Medium 0.15 p

--Theory

M,.,= 6.0

0.1

0.05

•

0.5

•• 9

~00000
8 • 00of>• o Coarse

M,.,= 6.0

X

1.5

i~
I oo'~-sP°' _

0

_ ;:::: r M,.,=6.0

~----"' X X

0

0.5 1.5 0 0.5 1.5

0 Fine 0.15 p

--Theory

M,.,=6.0

0.1

0.05
1

~----

1 / --Theory

Minr= 6.0

o Fine

I

L
X X

3.5 +------------~~-----~-----~ 0 +------~--------

0 0.5 1.5 0 0.5 1.5

Figure 5.9: Pressure and Mach distributions for one-point, low-order dissipation solution

to the oblique shock at Mach 6.0.

Unlike the Mach 2.5 solution, the pressure distributions in Figure 5.9 are in poor

agreement with the sharp theoretical solution. In this case, stabilization has been

126

achieved at the expense of excessively smearing the shock. Despite this, the solution

does converge toward the theoretical values as the grid resolution increases and the order

of convergence is similar to that observed for the Mach 2.5 solution. This hypersonic

Mach number seems to be the practical limit for the low-order dissipation model.

5 .1.2 Prandtl-Meyer Expansion

This steady problem consists of a supersonic flow through an expansion comer at

an angle of 15 degrees. The resulting flow develops a Prandtl-Meyer expansion fan on

the backside of the 15 degree comer. The results will be compared to the exact solution

computed using the perfect gas equations. This test will involve an upstream Mach

number of2.5, which results in a downstream Mach number of 3.23684, an expansion fan

angle of 20.58 degrees, a downstream pressure ratio of 0.32743, and a downstream

density ratio of 0.45046.

The layout of the computational domain, which covers the volume x E [O, 2], y E

[-0.402, 1] & z E [O, 0.1], is presented in Figure 5.10. Boundary conditions for the seven

boundary surfaces enclosing this domain are specified as follows: surfaces 1 and 2 are

symmetry planes, surfaces 3 and 4 are solid walls, and surfaces 5, 6, and 7 are far-field

boundaries.

127

0 =surface#

T
1.0

l
- - - -i-, ---..:--~

I
I
I
I
I
I I
I I

~ 0.5 ~------ 1.5 ------

Figure 5.10: Layout of computational domain for Prandtl-Meyer expansion.

To solve this problem, we employ three grids that are refined successively using a

constant refinement ratio of r = 2. Table 5 .4 presents the grid spacing h, number of nodes

nnd, number of elements nel, and the average computational time required per iteration

!J.tcpu for each grid. All three grids are made up of tetrahedral elements and are generated

using a uniform grid spacing. In order to maintain a reasonable element count, the

thickness of the domain was cut in half when generating the fine grid. Figure 5.11 shows

the surface triangulation of the coarse grid generated for this study.

Table 5.4: Summary of grid parameters for Prandtl-Meyer expansion.

h nnd nel /J.fcnu

coarse 0.04 5886 23313 0.0379 s
medium 0.02 36345 165581 0.1792 s

fine 0.01 142789 659119 0.7749 s

128

Figure 5.11: Representative surface triangulation for Prandtl-Meyer expansion.

As with the oblique shock problem, four different solutions will be computed for

each grid in order to evaluate the performance of the low-order and high-order dissipation

models with both the one-point and four-point numerical integration options. A summary

of the relevant solver parameters for this problem is provided in Figure 5.12. The solver

control parameters are identical for all three grids except for the number of solution steps,

ns t p, since the number of steps required for. numerical convergence increases as the grid

resolution increases.

129

Low-lpt High-lpt

gamma = l.40d0 gamma = 1.40d0
mach = 2.50d0 mach = 2.50d0
diss = 0.60d0 diss = 0.90d0
cfl = O.BOdO cfl = 0.70d0
nstp = 400 nstp = 500
nout = 400 nout = 500
ncyc = 3 ncyc = 3
isol = 0 isol = 0
idiss = 0 idiss = 1
ipnt = 1 ipnt = 1

Low-4pt High-4pt

gamma = 1. 40d0 gamma = 1.40d0
mach = 2.50d0 mach = 2.50d0
diss = 0.60d0 diss = 0.90d0
cfl = O.BOdO cfl = 0.70d0
nstp = 400 nstp = 500
nout = 400 nout = 500
ncyc = 3 ncyc = 3
isol = 0 isol = 0
idiss = 0 idiss = 1
ipnt = 4 ipnt = 4

Figure 5.12: Summary of solver control parameters for oblique shock at Mach 2.5.

Figure 5.13 presents a plot of the residual convergence history for the four

solutions on each grid. The low-order dissipation solution on the coarse, medium, and

fine grids required 400, 500 and 600 iterations respectively in order to achieve full

numerical convergence. The high-order dissipation solution required 500, 700, and 1200

iterations on the coarse, medium, and fine grids respectively.

130

rsd Low-lpt --Coarse rsd High-I pt -Coarse
I.E-03 1.E-03

--Medium --Medium
I.E-05 1.E-05

--Fine
l.E-07 l.E-07

I.E-09 1.E-09

I.E-11 1.E-11

I.E-13 1.E-13

I.E-15 1.E-15

1.E-17 1.E-17

I.E-19 1.E-19

0 100 200 300 400 500 600 0 200 400 600 800 1000 1200
nstep nstep

rsd Low-4pt --·Coarse rsd --Coarse
l.E-03 1.E-03

I.E-05
--Medium

1.E-05

1.E-07 1.E-07

1.E-09 1.E-09

I.E-11 1.E-11

1.E-13 1.E-13

I.E-15 1.E-15

1.E-17 1.E-17

l.E-19 1.E-19

0 100 200 300 400 500 600 0 200 400 600 800 1000 1200
nstep nstep

Figure 5.13: Plot of residual histories for Prandtl-Meyer expansion at Mach 2.5.

As with the oblique shock problem, results for these solutions are obtained for a

cut-line along surfaces 3 and 4 at z = 0.05. Table 5.5 presents the average Mach error,

£ M, and average pressure error, EP, downstream of the shock for all twelve solutions. In

each case, the average error is computed as the integral of the percent error along the cut-.

line divided by the length of the cut-line for x > 0.5.

131

Table 5.5: Summary of average error downstream of the shock for all solutions to the

Prandtl-Meyer expansion at Mach 2.5.

Coarse Medium

Solution

.. Low-!_pt·- 5. 8 90 .. -.!?. . .:.!?.§___ _ ?}4..Z·-·-· . ___ ?:??.9.__ -·-··· 4 .243

... Low-4pt§:?.?L _J_?.:.107 .?.:.24.~--·-···· .. !):.P~ 4.691
...... High-I pt _4.:991. _ ___ §._?_r!__ _4.:.922 .. _ 3.:4.~~··········· -·-·~.670

Hizh-4pt 3.898 6.673 3.773 3.386 3.427

Fine

4.899
····························-···-·······-····-.. -

6.119
1.791
1.696

Based on the data given in Table 5.5, it appears that all four solutions are again

converging toward the correct theoretical value as the grid resolution increases. The

observed order of convergence for the one-point, low-order dissipation solution, is

computed to be p = 0.74 using the Mach error or p = 1.72 using the pressure error data.

In both cases, only the error data from the medium and fine grids was used.

In addition to the error data, plots of the Mach number and pressure distributions

along the cut-line are provided for the one-point low order and high-order dissipation

solutions in Figure 5.5 and Figure 5.6 respectively. Both of the four-point solutions are

indistinguishable from the similar one-point solutions and are not presented here.

132

3.4 M 0.15 p 0 Coarse

--Theory

3.2 , ... -.l .. Minr=2.5
mooooooco••oo•ooooo oo r·.,,.._ 0.1

(t.,
Coarse 0 0

(t
2.8 , --Theory

0.05
M;.,= 2.5 ~ .. a• 000000•0• 0 0 omMOOO 00-

2.6 ..
o 01•0- 0

X X

2.4 0

0 0.5 1.5 2 0 0.5 1.5 2

3.4 M 0.15 p I o Medium

--Theory

3.2 Minr=2.5
II

r - 0.1
3

Medium 0

~ .. --Theory 0

2.8 0 ' I Minr= 2.5 0.05 0,
0

2.6 f
0

X X

2.4 0

0 0.5 1.5 2 0.5 1.5

3.4 M 0.15 p I o Fine
--Theory

3.2
Minr= 2.5

r 0.1

0 Fine

--Theory • 2.8 0 • 0

'-.. M;.,= 2.5 0.05

2.6

X X

2.4 ---------, 0

0 0.5 1.5 0 0.5 1.5

Figure 5.14: Pressure and Mach distributions for one-point, low-order dissipation

solution to the Prandtl-Meyer at Mach 2.5.

133

3.4 M 0.15 p 0 Coarse

--Theory

3.2

l
M;.,=2.5

0•wo•ot 1.,.,,,oau•••ac•111u oo
8 0.1

8
0 Coarse

2.8 --Theory

• 0.05
M;.,= 2.5 •• a•o 101010901-11111 ••

2.6
I

X X

2.4 0

0 0.5 1.5 2 0 0.5 1.5 2

'T 0.151 p
0 Medium

--Theory

3.2 M;,,=2.5

• 0.1

L I 3
0 Medium

0 --Theory
2.8

~
M,.,= 2.5 0.05

2.6

2.4 r X X

0

0 0.5 1.5 2 0 0.5 1.5 2

3.4 M

""h
0 Fine

--Theory
3.2 M.,,= 2.5

• 0.1
3 •

l
0 Fine

2.8
--Theory

M.,r=2.5 0.05

2.6

X X

2.4 . 0

0 0.5 1.5 2 0 0.5 1.5 2

Figure 5.15: Pressure and Mach distributions for one-point, high-order dissipation

solution to the Prandtl-Meyer at Mach 2.5.

For this problem, the high-order solution actually does a better job approximating

the sharp jump in the theoretical Mach and pressure distributions. It does falls short of

achieving the maximum Mach amplitude downstream of the expansion by approximately

4%. Despite this relatively large error, the solution is comparable to other CFD solutions

134

for the same problem. The NP ARC alliance reports an average Mach error of over 5%

for the WIND codes. 34

5.1.3 Converging-Diverging Nozzle

This steady problem consists of subsonic flow entering a converging-diverging

nozzle whose cross-sectional area is defined by Equation (5.3).

(5.3) A(x)= 1.0+ (x- 2·5)2, 0 :s;x:::; 5
12.5

The objective of this problem is to verify the transonic shock capturing capabilities of the

solver by generating a solution where a shock wave forms between the throat and the exit

plane. Since we do not have direct control over the back pressure at the exit plane with

the three types of boundary conditions implemented in the solver, we must choose an

initial condition that will lead to the formation of a shock wave in the nozzle. After some

experimentation, a free-stream Mach number of 0.5 was chosen as our initial condition,

which corresponds to enforcing an initial, dimensionless pressure as defined by Equation

(2.43). This initial condition leads to the formation of a shock in the nozzle with the inlet

and exit planes simply specified as far-field boundaries.

The layout of the computational domain, which covers the volume x E [O, 5], y E

[-0.75, 0.75] & z E [O, 1], is presented in Figure 5.16. Boundary conditions for the six

boundary surfaces enclosing this domain are specified as follows: surfaces 1 and 2 are

symmetry planes, surfaces 3 and 5 are solid walls, and surfaces 4 and 6 are far-field

boundaries.

135

y
0 =surface#

0.5
X

Q+-.---,--,--~ -r-,-,-+---,-,-...,--,r-+--.-,-,------.--+--r----.-.-.r-+--.-,-,---f--1-----r----.--.-.-~

-0.5
2 3 6

-1

Figure 5.16: Layout of computational domain for converging-diverging nozzle.

To solve this problem, we employ two grids that are refined successively using a

constant refinement ratio ofr = 2. Table 5.6 presents the grid spacing h, number of nodes

nnd, number of elements nel, and the average computational time required per iteration

1'!,.tcpu for each grid. Both grids are made up of tetrahedral elements and are generated

using a uniform grid spacing. Figure 5.17 shows the surface triangulation of the coarse

grid generated for this study.

Table 5.6: Summary of grid parameters for converging-diverging nozzle.

h nnd nel
coarse 0.100 7116 32774 ! 0.1108 s

me 0.050 48219 243643 1.0456 s

2~"'- ..,7<S
Vf\/\ I ,,,

~ , I ~I\N'>t--/I/\LY1\/\ ', / "-YI\ ."i "
/"

,,,, I/ I\ '':~- '\/\DI 7\
),,, V " ,,"'r.iv 7\. '".~ ... , ·.~v ,,
~ ~,;

15 * .,., "
.t\" 1'-., ,, ,,

; ~ k'f-V t.. ~1'n.l' ' 1 ,, ,..._,,
/ ,::,-.~,v / V

"''-'" ~

...., ,,
I/ J y '\ r-,_,' '-'<-""7'\:I\ '\JV "''\ '/ ,/ /

__, ~" ,,,,
; Kl ~ ~-k'.: ... -

Figure 5.17: Representative surface triangulation for converging-diverging nozzle.

Two different solutions will be computed for each grid in order to evaluate the

performance of the low-order and high-order dissipation models. A summary of the

136

relevant solver parameters for this problem is provided in Figure 5.18. The solver control

parameters are identical for all three grids except for the number of solution steps, nstp.

Low-lpt High-lpt

gamma 1.40d0 gamma 1.40d0
mach 0.50d0 mach 0.50d0
diss 0.60d0 diss 1. OOdO
cfl 0.80d0 cfl 0.70d0
nstp 400 nstp 500
nout 400 nout 500
ncyc 3 ncyc 3
isol 0 isol 0
idiss 0 idiss 1
ipnt 1 ipnt 1

Figure 5.18: Summary of solver control parameters for converging-diverging nozzle.

Figure 5 .13 presents a plot of the residual convergence history for the two

solutions on each grid. Both the low-order and high-order dissipation solutions on the

coarse and fine grids required 4500 and 8000 iterations respectively in order to achieve

full numerical convergence.

I.E-02 rsd

I.E-04 -

I.E-06

I.E-08

I.E-10 j

l.E-12

I.E-14

I.E-16

Low-Ip/

~ e

I.E-18 +-, ---~--~----',---~

0 2000 4000
nstep

6000 8000

I.E-02

I.E-04 -

l.E-06

1.E-08 I

I.E-10

I.E-12

I.E-14

I.E-16

I.E-18

0

rsd

2000

High-I pt

4000
nstep

6000

Figure 5.19: Plot ofresidual histories for converging-diverging nozzle.

8000

Results for this problem are taken along a cut-line through the center of the nozzle

on symmetry surface 1. The CFD results will be compared to the theoretical solution

computed using the one-dimensional equations of gas dynamics. Since the CFD

137

geometry is not one-dimensional, we must consider the effect of the wall curvature when

comparing the results. Figure 5.20 shows a plot of the Mach profile within the nozzle

computed using the fine grid. As expected, the shock, as well as the overall Mach

profile, has a slight curvature to it. The theoretical solution using one-dimensional gas

dynamics will be valid along streamlines that are everywhere perpendicular to this curved

Mach profile. This means that the Mach on the inlet and exit surface of the

computational domain is not expected to be constant since they do not have the

appropriate curvature.

Mach
1.5

Figure 5.20: Colored Mach profile for converging-diverging nozzle.

Figure 5.21 shows a comparison of the computed Mach distribution and the

theoretical Mach distribution for all four solutions. Since we have no direct control over

the back pressure controlling the location of the shock in the nozzle, the theoretical

138

solution is computed based on the average Mach number computed at the exit of the

converging-diverging nozzle for each case.

1.8 M

1.6

1.4

Low-lpt 1.8 M

1.6

o Fine

1.2 -Theory

0.8

0.6

0 2 3 4

1.8 M High-lpt

0

o Coarse A
1.6

1.4

1.2 -Theory / ~

/ l 0.8

0.6 ; o"'
Oo

0

1.8 M

1.6

1.4

1.2

0.8

0.6

0.4 0.4

0.2 0.2

Low-lpt

2 4

High-lpt
0

X X
O+-~~~~~~~~~~~~~~~ O+-~~~~~~~~~~~~~~

0 2 3 4 0 2 4

Figure 5.21: Mach distributions for one-point, low-order and high-order dissipation

solutions to the converging-diverging nozzle.

Notice in Figure 5.21 that the high-order solutions predict the theoretical shock

location better than the equivalent low-order solution. The low-order solution does

provide reasonable accuracy for the overall Mach profile, and it converges toward the

theoretical shock location as the grid resolution is increased. However, the low-order

solution is not useful for most practical transonic applications because it requires a low

value for the dissipation factor in order to provide accurate shock resolution. For this

problem, the dissipation factor for both low-order solutions is specified as 0.5. In

139

practice, true three-dimensional solutions for more complicated geometries are not

sufficiently stabilized using this low dissipation factor. Hence the high-order dissipation

model will be preferred for most subsonic and transonic applications.

In order to quantify the order of convergence for this problem, we will consider

the computed value of the inlet Mach number. The theoretical value for the inlet Mach

number is directly related to the area ratio of the nozzle as defined by Equation (5.4) .

(5.4)
A

A*

.Jr(r; 1) 1, .. v1,-,,1

Mfy 1+LM2 (. 11)(r+1)/(2-2r)

2

Given that the ratio of the inlet area to the throat area is A/A*= 1.5, the theoretical value

for the inlet Mach number is numerically computed to be 0.430262. This theoretical

value will be compared to the average Mach number at the inlet of the nozzle computed

using the integral definition for the average value of a function. Table 5.7 presents a

summary of the average Mach number at the inlet and exit of the nozzle for all four

solutions.

Table 5.7: Summary of Mach number at inlet and exit of converging-diverging nozzle.

Coarse Fine
- - - -

Solution Min Mexit Min Mexit

Low-lpt 0.43190 0.48656 0.43112 0.48463
High-lpt 0.43059 0.48193 0.43059 0.48188

Notice that both the low-order and high-order dissipation solutions converge

toward the theoretical inlet Mach number as the grid resolution increases. Using the inlet

Mach number data in Table 5.7, the order of convergence for the high-order dissipation

solution is computed to be p = 2.10.

140

5.1.4 Subsonic NACA-0012 Airfoil

This steady problem consists of a NACA 0012 airfoil in a subsonic, nearly

incompressible flow. The results will be compared to the theoretical solution from ideal

aerodynamics for a thin airfoil. The layout of the computational domain, which has the

x-axis running along the airfoil's chord and y-axis along the span of the airfoil, is

presented in Figure 5.16. Boundary conditions for the eight boundary surfaces enclosing

this domain are specified as follows: surfaces 1 and 2 are solid walls, surfaces 3, 4, 5 and

6 are symmetry planes, and surfaces 7 and 8 are far-field boundaries.

0 =surface#

R = 80

C = 16

t,.y = 16

Figure 5.22: Layout of computational domain for NACA 0012 airfoil.

To solve this problem, we employ three grids that are refined successively using a

constant refinement ratio of r = 2. This results in nearly 3 million elements for the third

refinement. Hence, the width of the computational domain is cut in half for the fine grid

in order to maintain a reasonable element count. Table 5.6 presents the number of nodes

141

nnd, number of elements nel, and the average computational time required per iteration

fltcpu for all three grids. Each grid is made up of tetrahedral elements and is generated

using a non-uniform grid spacing that concentrates elements near the surface of the airfoil

where the strongest flow gradients reside. Figure 5.23 shows the overall surface

triangulation of the coarse grid generated for this study, and Figure 5 .24 shows a close-up

of the surface triangulation on the surface of the airfoil for the coarse and medium grids.

Table 5.8: Summary of grid parameters for NACA 0012 airfoil.

nnd nel fltcou

coarse 8,815 43,552 0.2132 s
medium 59,011 311,060 2.3609 s

fine 262,859 1,406,731 13.1228 s

Figure 5.23: Representative grid for the NACA 0012 airfoil.

142

Figure 5.24: Close-up of coarse and medium surface grids near the NACA 0012 airfoil.

Only the high-order dissipation solution is investigated for this problem because

the low-order model is overly dissipative at this low Mach number for all useful values of

the dissipation factor. A summary of the relevant solver parameters for this problem is

provided in Figure 5.25. Since the airfoil has a chord of 16, the reference dimension is

specified as ref dim= 16.0 for this problem. The solver control parameters are identical

for all three grids except for the number of solution steps, nstp.

gamma l.40d0
mach 0.30d0
r ef dim 16.0dO
diss 1.00dO
cfl O.BOdO
nstp 3000
nout 3000
ncyc = 3
isol = 0
idiss 1
ipnt 1
iaero . true.

Figure 5.25: Summary of solver control parameters for NACA 0012 airfoil.

143

Figure 5 .26 presents a plot of the residual convergence history for the three

solutions. The solution on the coarse, medium and fine grids required 3000, 8000 and

16,000 iterations respectively in order to achieve numerical convergence.

rsd --Coarse
l.E-03 --Medium

l.E-05 --Fine

l.E-07

l.E-09

l.E-11

l.E-13

l.E-15

l.E-17

0 4000 8000 12000 16000
nstep

Figure 5.26: Plot ofresidual histories for the NACA 0012 airfoil at Mach 0.3 and zero

angle of attack.

Results for this problem are taken along a cut-line defining the intersection of an

.xz-plane at y = 8 and the two surfaces defining the airfoil, surfaces 1 and 2. Figure 5.27

presents a comparison of the computed pressure coefficient distribution along the surface

of the airfoil and the theoretical distribution computed using thin airfoil theory.35 The

theoretical solution has also been corrected for the effects of compressibility using the

Prandtl-Glauert relation given in Equation (5.5).

(5.5)
, cp

C = --;::::=====
P .J1-M2

144

-0.8 Cp 0 .Coarse

-0.6 0 --Theoretical
8 s, ••

-0.4
0 ..

-0.2

0

0.2

0.4

0.6

0.8

xlc
1.2

-0.l 0.1 0.3 0.5 0.7 0.9 1.1

-0.6 Cp 0 Medium

-0.4 --Theoretical

-0.2

0
8

0.2 0

0.4

0.6

0.8

x/c
1.2

-0.l 0.1 0.3 0.5 0.7 0.9 1.1

-0.6 Cp 0 Fine

-0.4 --Theoretical
L____

-0.2

0

0.2
0

0.4

0.6

0.8

xlc
1.2 +---~--~--~---~-~--~

-0.l 0.1 0.3 0.5 0.7 0.9 I.I

Figure 5.27: Comparison of pressure coefficient distributions for NACA 0012 airfoil at

Mach 0.3 and zero angle of attack.

145

Notice that the computed pressure coefficient distribution for both the medium

and fine grids are in excellent agreement with the theoretical solution. Even the coarse

grid matches the theoretical solution aft of the leading edge, but it exhibits a large amount

of scatter at the leading edge of the airfoil. Obviously the coarse grid does not have

sufficient grid resolution at the leading edge of the airfoil and is not capable of accurately

representing the strong flow gradients present there. In order to quantify the order of

convergence for this solution, we consider the sectional lift and drag coefficients along

the same cut-line used when extracting the pressure coefficient distributions in Figure

5.27. Table 5.9 presents a summary of the sectional lift and drag coefficients for each

grid. The theoretical value for both sectional coefficients is zero for a symmetric airfoil

in an ideal flow. Hence, the error in each case is simply the absolute value of the

computed sectional coefficient.

Table 5.9: Summary of sectional lift and drag coefficients for the NACA 0012 airfoil at

Mach 0.30 and zero angle of attack ..

Coarse 0.08749 -0.58608 0.08749 0.58608
······--·····-···--······- ·········-· ... -.......... --.... -.................. _____ ______ _,._ _____ .. ,_,____ ···--··"·--·----........................... -................. --··-·-··-··----.. ·····--····-............ .

Medium 0.09775 -0.24861 0.09775 0.24861
Fine -0.08432 -0.15792 0.08432 0.15792

With the exception of the sectional lift coefficient for the coarse grid, the numbers

in Table 5.9 show convergence toward the correct theoretical values as the grid resolution

increases. The sectional lift coefficient actually increases when changing from the coarse

to the medium grid, but the large amount of scatter at the leading edge of the coarse

grid's pressure distribution is an indication that this grid is probably beyond the lower

resolution limit required for asymptotic convergence of this value. The order of

146

convergence for this problem is computed to be p = 2.07 usmg the sectional lift

coefficients from the medium and fine grids or p = 1.15 using the sectional drag

coefficients.

In addition to the zero angle of attack case, this airfoil geometry is also analyzed

for an angle of attack of 5 degrees. This nonzero angle of attack will allow us to verify

the steady transpiration boundary condition by simulating an angle of attack using elastic

deformation vectors. Based on the results from the previous tests, we generated a new

computational grid that is refined better than the medium grid, but uses fewer elements

than the fine grid. As with the fine grid of the previous solutions, the width of the

computational domain was also cut in half for this problem. The resulting grid consists

of 165,943 elements and 33,995 nodes.

Next, two elastic mode shapes representing rigid-body pitch and plunge are

manually generated. The mode shapes consist of a deformation vector for each solid wall

node. The first mode represents a uniform translation of one chord length along the z

axis, while the second mode represents a rotation of one degree around the y-axis. These

two mode shapes allow us to simulate an angle of attack in two different ways. The

second mode with a generalized displacement, or scaling factor, of 5.0 is equivalent to a

static angle of attack of five degrees. Alternatively, the first mode with a dimensionless

generalized velocity of -0.087489, which is simply tan(5°), is also equivalent to an angle

of attack of five degrees. Results from both of these transpiration solutions will be

compared to the theoretical solution from thin airfoil theory as well as a steady solution

using alpha= 5.0.

147

For an elastic problem, the are two important reference conditions that must be

specified in the solver control file: the free-stream speed of sound a inf and free-stream

density rhoinf. These reference conditions are used to non-dimensionalize the

structural matrices and initial conditions specified in the elastic vectors file. Since we are

not solving a coupled aeroelastic problem, we are only interested in the dimensionless

quantities output by the CFD solver. In this case, it makes sense to input dimensionless

quantities as our initial conditions as well. Specifically, we want to input a dimensionless

generalized velocity for mode one, which corresponds to a 5.0 degree angle of attack.

The reference conditions will have no affect on the other elastic solution for this problem

since the initial condition is a generalized displacement, and generalized displacements

are dimensionless by definition.

Using the non-dimensionalization given m Equation (4.24) for a generalized

velocity, a free-stream speed of sound is computed such that the · dimensional and

dimensionless generalized velocity are equivalent, or L/uinr= 1.0. Figure 5.28 provides a

summary of the solver control parameters required for the transpiration solutions.

148

gamma 1.40d0
mach 0.30d0
alpha O.OOdO
ref dim 16.0dO
diss 1. OOdO
cfl O.BOdO
nstp 5000
neut 5000
ncyc 3
isol = 0
idiss = 1
ipnt = 1
iaero .true.
ielast .true.
nr 2
a inf 53.3333d0
rho inf 1.0dO

Figure 5.28: Summary of solver control parameters for transpiration solutions with the

NACA 0012 airfoil.

With the free-stream speed of sound chosen appropriately, the dimensionless

generalized velocity corresponding to a five degree angle of attack is input directly as the

initial condition for mode one in the elastic vectors file. Figure 5 .29 presents the head of

the elastic vectors file up to the comment line that the elastic mode vectors themselves

follow.

149

$ Number of elastic modes (nr)
2

$ Mass matrix for elastic modes (nr x nr)
1. ado o. ado
O.OdO l.OdO

$ Damping matrix for elastic modes (nr x nr)
l.OdO O.OdO
O.OdO l.OdO

$ Stiffness matrix for elastic modes (nr x nr)
1. ado o. ado
o. ado 1. ado

$ ICs for elastic modes (xl xn, vxl .. ,vxn)
O.OdO O.OdO -0.087489 O.OdO

$ IBXN for elastic modes (nr)
2 1

$Elastic.modes vectors (nwl 2) x nr

Figure 5.29: Head of elastic vectors file for the NACA 0012 airfoil with a specified

mode one generalized velocity.

Figure 5.30 presents a plot of the residual convergence history for the three

solutions. The labels Alpha 5, Transpiration 5 and Transpiration hctot refer to the solution

using alpha = 5, the transpiration solution using a mode two generalized displacement

of 5.0, and the transpiration solution using a mode one generalized velocity of-0.087489

respectively. All three solutions were run for 3000 total steps, which led to a sufficiently

converged numerical solution.

150

l.E-02 rsd --Alphas

l.E-03 --Transpiration 5

l.E-04 --Transpiration h dot

l.E-05

l.E-06

l.E-07

l.E-08

l.E-09

l.E-10

l.E-11

l.E-12

0 1000 2000 3000
nstep

Figure 5.30: Plot ofresidual histories for the NACA 0012 airfoil at Mach 0.3 and 5.0

degree angle of attack.

Results for this problem are again taken along a cut-line defining the intersection

of an xz-plane down the center of the domain and the two surfaces defining the airfoil,

surfaces I and 2. Figure 5.31 presents a comparison of the computed pressure coefficient

distrib:utions along the surface of the airfoil and the theoretical distribution computed

using thin airfoil theory. Once again, the theoretical solution has been corrected for the

effects of compressibility using the Prandtl-Glauert relation.

151

-2.5 Cp 0 Euler

-2
--Theoretical

Alpha5"
-1.5

-1

-0.5

0

0.5

x/c
1.5

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

-2.5 Cp 0 Euler

-2
--Theoretical

Transpiration 5°
-1.5

-1

-0.5

0

0.5

xlc
1.5

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

-2.5 Cp 0 Euler

-2
--Theoretical

Transpiration h dot

-1.5

-1

-0.5

'Lt: 0.5 ~

I
xlc

1.5

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

Figure 5.31: Comparison of pressure coefficient distributions for NACA 0012 airfoil at

Mach 0.3 and 5.0 degree angle of attack.

152

Notice that all three solution are in excellent agreement with the theoretical

solution. There is some deviation in the pressure peaks at the leading edge of the airfoil

that could be improved by further refinement of the grid. However, the primary

comparison here should be between the three CFD solutions themselves. The two

transpiration solutions will not match the theoretical solutions any better than the solution

computed with the "real" angle of attack since the only difference is in how the angle of

attack is enforced. To that extent, these three solutions verify that the transpiration

boundary condition is accurately enforcing both generalized displacements and

generalized velocities since all three solutions are virtually indistinguishable.

In order to further quantify the comparison between the three solutions, we

consider the sectional lift coefficient computed by the solver. Table 5.10 presents a

summary of the sectional lift coefficient, C1, for each solution. The theoretical value for

the sectional lift coefficient is defined from thin airfoil theory using Equation (5.6).

(5.6) C1 = 21'Ca = 0.5748
.J1-M 2

Table 5.10: Summary of sectional lift coefficients for the NACA 0012 airfoil at Mach

0.30 and 5.0 <;.legree angle of attack..

Solution c, Ee,(%)

Alpha 5° 0.5788 0.698
Transpiration 5° 0.5816 1.179

Transpiration hdot 0.6133 6.707

The numbers in Table 5.10 show that even the integrated pressure distributions

for the three solution are in reasonable agreement. On first inspection, the error of the

transpiration solution using the enforced plunge velocity has grown to nearly 7%.

153

However, this result is not entirely correct. By imposing an additional velocity

component on the airfoil, the local velocity has increased from a free-stream velocity of

1.0 to 1.00382. This means that the local Mach number seen by the airfoil is higher than

the free-stream velocity specified in the solver control file. Specifically, the local Mach

number of the airfoil is computed to be 0.301146. This discrepancy is relatively small in

terms of the Prandtl-Glauert relation, but it illustrates a significant difference between the

effects of static transpiration and dynamic transpiration. With dynamic transpiration, the

generalized velocity is changing the physics of the problem locally. Based on this

problem, it appears that the influence of a generalized velocity degrades the accuracy of

the solution more rapidly than generalized displacements.

Regardless, both elastic solutions are still reasonable considering that any small

errors in the pressure profile will be magnified when integrated across the surface of the

airfoil. Furthermore, the angle of attack chosen for this problem is relatively large for a

transpiration simulation. Transpiration is typically applied to aeroelastic problems with

small defections on the order of one degree or less. Realistically, the five degree angle of

attack used for this problem is approaching the limit of applicability for the transpiration

method, and larger deflections beyond this point will lead to poor accuracy for the

simulated deflections. ·

5 .1. 5 Conical Shock on a 10 degree Cone

This is the first truly three-dimensional verification problem. It consists of a

steady supersonic flow over a cone with a semi-vertex angle of 10 degrees. The resulting

conical flow field consists of an attached shock at the vertex of the cone with conical rays

154

of constant properties emanating from the vertex. The results will be compared to the

analytical solution which is obtained by fitting the oblique shock equations to each point

along the conical wave. The result is a set of nonlinear differential equations known as

the Taylor-Maccoll differential equations, the numerical solution of which is tabulated in

most books on compressible flows. This test will involve an upstream Mach number of

2.35, which produces a Mach number of M2 = 2.1469, a pressure ratio of p2/p1 = 1.4234,

and a density ratio of r2/r1 = 1.2867 on the surface of the cone.

We take advantage of symmetry when defining this problem and represent only

the upper-half of the cone. The layout of the computational domain is presented in

Figure 5.32. Boundary conditions for the six boundary surfaces enclosing this domain

are specified as follows: surface l is a solid wall, surfaces 2 and 3 are symmetry planes,

and surfaces 4, 5 and 6 are far-field boundaries. Furthermore, the node at the apex of the

cone is specified as singular.

155

0 ==surface#

R = 1.0

L = 1.0

Figure 5.32: Layout of computational domain for the 10 degree cone.

In order to accurately represent the curved surfaces of this geometry, a fine grid is

required near the surface of the cone with the grid spacing along the length of the cone

defined as a function of its local radius. Since the radius of the cone at its apex is zero,

the grid spacing would need to approach zero at that point. Obviously it is impossible to

generate elements with zero size, so the curvature of the cone at the apex will not be

accurately represented. This will be evident in the solutions we examine later in this

section. Figure 5.33 presents the surface triangulation generated for this cone and Figure

5.34 shows a close up of the surface triangulation at the apex of the cone. The grid

generated for this problem consists of 187,615 elements and 35,825 nodes. Grid

refinement will not be pursued for this problem since the current grid is at the limit of our

grid generator's capabilities.

156

Figure 5.33: Surface triangulation for 10 degree cone.

Figure 5.34: Close-up of surface triangulation at the apex of 10 degree cone.

157

Two different solutions are again computed for this geometry in order to evaluate

the performance of the low-order and high-order dissipation models. A summary of the

relevant solver parameters for this problem is provided in Figure 5.18.

Low-lpt High-lpt

gamma 1.40d0 gamma 1.40d0
mach 2.35d0 mach 2.35d0
diss 0.80d0 diss 1.00dO
cfl 0.80d0 cfl 0.80d0
nstp 600 nstp 800
nout 600 nout 800
ncyc = 3 ncyc 3
isol = 0 isol = 0
idiss = 0 idiss = 1
ipnt = 1 ipnt = 1

Figure 5.35: Summary of solver control parameters for 10 degree cone.

Figure 5.13 presents a plot of the residual convergence history for the two

solutions. The low-order dissipation solution required 600 iterations in order to achieve

full numerical convergence, while the high-order dissipation solution required 800

iterations.

1.E-06

1.E-08

1.E-10

l.E-12

1.E-14

l.E-16

rsd --Low-lpt

--High-pt

l.E-18 +----~---~-------'-"T---~

0 200 400
nstep

600 800

Figure 5.36: Plot of residual histories for 10 degree cone.

158

Results for this problem are taken along a cut-line across the length of the cone,

which is surface 1 of our geometry. Figure 5.37 presents a comparison of the computed

and theoretical distributions of the pressure and Mach number along the surface of the

cone.

0.2 2.4 M p
0 Low-I pt

0

-Theory
0.18 r·~· m,tuzn dtc.Af$~000~ 0 2.3

0.16

0 Low-Ip!
2.2 l

0.14 • -Theory 0
0 - ""

y,c; r¢:z:.:r'DooDOOooo• 0 r·- -· 2.1
0.12

3>
X X

0.1 2

-0.2 0 0.2 0.4 0.6 0.8 -0.2 0 0.2 0.4 0.6 0.8

0.2 "r1 p
0 High-I pt

0.18 1~
-Theory ·--· .. IIIIIIOH'' O 2.3

0.16 r ,, I I 0 High-I pt
0.14 I -Theory aaaoooo....-• ,: __ r 0

0.12

X X

0.1 ·,

-0.2 0 0.2 0.4 0.6 0.8 -0.2 0.2 0.4 0.6 0.8

Figure 5.37: Pressure and Mach distributions on the surface of the 10 degree cone at

Mach 2.35.

Both the low-order and high-order dissipation solutions show reasonable

agreement with the theoretical values. The Mach number deviates significantly at the

apex of the cone due its irregular surface triangulation, but asymptotically approaches the

theoretical value aft of the apex. In order to quantify the accuracy of this solution, the

average pressure and Mach number on the surface of the cone is computed using the

integral definition for the average value of a function. Table 5.11 presents a summary of

159

the average pressure ratio and Mach number on the surface of the cone and the

corresponding percent error for both solutions.

Table 5.11: Summary of average pressure and Mach number on the surface of the 10

degree cone at Mach 2.35.

Notice that the average Mach error is less than one percent, but the pressure error

is nearly five percent. Despite the relatively large error in the predicted pressure on the

surface of the cone, this solution is comparable to other CFD solutions for the same

problem. The NPARC alliance reports an average pressure error of approximately 3.5%

for the WIND codes, but an average Mach error of only 0.007%.36

5.1.6 Unsteady Shock Tube

Unlike the problems considered thus far, this verification problem will investigate

the time accuracy of our numerical algorithm for an unsteady flow problem. An unsteady

shock tube consists of a high pressure and low pressure gas initially separated by a

diaphragm in a tube. The solution starts when the diaphragm is removed, resulting in the

formation of a normal shock that moves from the high pressure region into the low

pressure region. The geometry consists of a simple rectangular tube, which covers the

volume x E [-0.5, 0.5], y E [--0.1, 0.1] and z E [-.:..0.02, 0.02]. The layout of the

computational domain is presented in Figure 5.38. Boundary conditions for the six

160

boundary surfaces enclosing this domain are specified as follows: surfaces I and 2 are

symmetry planes and surfaces 3, 4, 5 and 6 are solid walls.

0.2 GJ = surface#

0.1

0

0 0.6

-0.2

Figure 5.38: Layout of computational domain for unsteady shock tube.

The grid generated for this problem uses a constant grid spacing of 0.01 and

consists of 48,334 elements and 11 ,239 nodes. Grid refinement is neglected for this

problem in favor of investigating the effect of time step refinement for an unsteady

solution. Figure 5.39 shows the surface triangulation used to represent the shock tube

geometry.

Figure 5.39: Surface triangulation for unsteady shock tube.

Two different types of solutions are computed for this problem m order to

evaluate the performance of the first-order and second-order unsteady solutions. Both

solutions will use the low-order dissipation model with one-point numerical integration.

Figure 5.40 presents a summary of the control parameters used for the two solutions to

this problem.

161

J81 -Order Unsteady 2nd-Order Unsteady

dt O.OOldO dt O.OOldO
gamma 1.40d0 gamma l.40d0
diss O.SOdO diss O.SOdO
cfl 0.80d0 cfl 0.80d0
nstp 200 nstp 200
nout 200 nout 200
ncyc 20 ncyc 20
isol 1 isol 2
idiss 0 idiss 0
ipnt = 1 ipnt = 1
istrt . true. istrt .true .

Figure 5.40: Summary of solver control parameters for unsteady shock tube.

The initial conditions for this problem must be generated manually. The

dimensionless initial conditions for this problem are summarized in Figure 5.41. Every

node in the computational domain is assigned an appropriate value for the solution

unknowns based on its x-coordinate.

p = 1.0
p = 1.0
h =3.5

X <0.0

u =0.0
V =0.0
w =0.0

X >0.0

p = 0.125
p =0.1
h =2.8

u =0.0
V =0.0
w =0.0

Figure 5.41: Initial conditions for unsteady shock tube.

Our first two solutions use the exact set of control parameters given in Figure

5.40. The unsteady solutions restarts from the specified initial conditions and advances

200 steps using 20 iterative cycles per step. The large courant stability factor is

appropriate here due to the relatively small global time step that was chosen for

advancing the solution. Figure 5.42 presents a plot of the solution residuals for the two

unsteady solutions. Notice that the solution residuals do not converge as far as seen for

162

the steady problems solved in the previous sections. For an unsteady solution, it is not

practical to solve for that level of convergence because several hundred iterative cycles,

or more depending on the size of the global time step, would be required for each step of

the solution. Rather, the number of cycles is chosen such that the unsteady solution

residual converge to some appropriate level at each step, typically around lE-08 or lE-

09. In practice, there is no significant change in the solution at each step beyond this

level of converge, so there is nothing to gain by increasing the number of cycles other

than the satisfaction of having a super-converged solution.

1.E-05 rsd 151 Order l.E-05 1 rsd 2nd Order

1.E-06 l.E-06

1.E-07 --dt=0.001 l.E-07 --dt =0.001

1.E-08 l.E-08

I
1.E-09 1$09

1.E-10 1.E-10
nstep ! nstep

1.E-11 l.E-11 +---
0 50 100 150 200 0 50 100 150 200

Figure 5.42: Plot ofresidual histories for 1st and 2nd order solution to the unsteady shock

tube using a dimensionless time step of 0.001.

The final CFD results at l = 0.2 will be compared to the theoretical solution using

the one-dimensional gas dynamics equations. Figure 5.43 presents a comparison of the

computed density, pressure and Mach profile in the shock tube with the theoretical

solution for each flow variable.

163

151 Order -Exact
1.2 density

-Exact

--dt = 0.001 --dt = 0.001

Q8 Q8

M M

0 0.2 0.4 0.6 0.8 0
x-coord.

1.2 pressure 1" Order --Exact

--dt=0.001

0.8

0.2 0.4 0.6 0.8 0
x-coord.

1.2 1 mach 151 Order --Exact 1.2 mach

1 ~
l

0.8 ~
i

::: 1
0.2 ~

J
I

--dt=0.001

0.8

0.6

0.4

0.2

0.2

0.2

O~·~. __ .,......,.c,-,~~~~~~~~~1-+-.,.......,.--, 0 -!-, -,-,.-,-,-,.""{:J-~-

0 0.2 0.4 0.6 0.8 0 0.2
x-coord.

0.4 0.6 0.8
x-coord.

2nd Order --Exact

--· dt = 0.001

0.4 0.6 0.8
x-coord.

2nd Order --Exact

--dt=0.001

0.4 0.6 0.8
x-coord.

Figure 5.43: Density, pressure, and Mach distributions for 151 and 2nd order solution to

the unsteady shock tube at l = 0.2 using a dimensionless time step of 0.001.

Notice that both the first-order and second-order unsteady solutions are m

excellent agreement with the theoretical solution for this small dimensionless time step.

Furthermore, the first-order and second-order solutions are virtually indistinguishable

from each other. In order to investigate the convergence characteristics for an unsteady

164

solution, the first-order and second-order unsteady solutions are recomputed usmg

successively larger time steps. As the time step increases, the total number of solutions

steps will decrease, but the number of iterative cycles required to achieve a reasonable

level of numerical convergence for each step will typically increase. Furthermore, it is

often necessary to decrease the courant stability factor for large global time steps in order

to maintain the stability of the iterative algorithm. Table 5.12 presents a summary of the

relevant control parameters used for the five time steps used in this study as well as the

total computational time required for each solution. In each case, the number of cycles

was chosen such that all five solutions reached a similar level of convergence after each

step.

Table 5.12: Summary of solver control parameters used for time step refinement with

unsteady shock tube.

CPU-time
dt nstep ncyc cfl F 1 Order 211d Order

0.001 200 20 0.8 441.16 s 575.44 s - --
0.002 100 20 0.8 213.16 s 287.83 s

-· """'-·-="-----
0.01 20 50 0.6 110.45 s 141.19s -~-~---·--=--· ----~----·--· ~--"--·-=·--~ •·•--,e·-·-=----·--"
0.02 10 80 0.5 86.42 s 112.95 s _,,_·-·--~- -------·----------· ·--"---------·-·~ "·---.. -·-~-"-----
0.05 4 200 0.4 85.04 s 112.03 s

In general, the total computational time decreases as the global time step is

increased since fewer number of steps are required to advance the solution to i* = 0.2.

However, there is obviously a point of diminishing return as the number of cycles

increases dramatically for excessively large global time steps. Figure 5.44 presents a plot

of the residual convergence histories for the first-order and second-order solutions using

the five different time steps.

165

1.E-05 rsd 1st Order -- dt =0.001
-- dt =0.002

l.E-05 rsd 2°d Order - - dt = 0.001
--dt = 0.002

l.E-06 -- dt=0.01 l.E-06 -- dt = 0.01
--dt =0.02 --dt =0.02

l.E-07 --dt =0.05 l.E-07 --dt = 0.05

l.E-08 1.E-08 ·

l.E-09 l.E-09

l.E-10 1.E-10
nstep nstep

l.E-11 -r-· -- -·--~-...., l.E-11 ------ - --,-·-- - --- -,

10 100 10 100

Figure 5.44: Plot ofresidual histories for 1st and 2nd order solution to the unsteady shock

tube using various dimensionless time steps.

Notice that the second-order solution typically achieves a higher level of

convergence at each step than the first-order solution for the same number of iterative

cycles. Although the second-order solution suffers from longer computational times

relative to the first-order solution, the higher-order accuracy seems to allow it to converge

faster. Thus the computational penalty can be alleviated through the use of fewer

iterative cycles with the second-order solution. In order to actually evaluate the

performance of the two solutions, Figure 5.45 presents a comparison of the density,

pressure and Mach distributions in the shock tube for the first-order and second-order

unsteady solutions using the four new values of the global time step.

166

1.2 : density

0.8

0.6

0.4

0.2

0 0.2

1.2 . pressure

0.8

0.6

0.4

0.2 -

0

0

1.2

0.8

0.6

0.4

0.2

0

0

0.2

mach

0.2

--Exact
dt = 0.002

· dt = 0.01

0.4 0.6
x-coord.

--Exact
dt = 0.002

• dt = 0.01

0.4 0.6
x-coord.

0.4

--Exact
dt = 0.002
dt = 0.0 I

0.6
x-coord.

0.8

0.8

0.8

dt = 0.02
dt = 0.05 1.2 density

dt = 0 .02
dt = 0.05

151 Order

dt = 0.02
dt = 0.05

151 Order

····.\
: \\

: '-l.
~ ' .. ,

0.8

0.6

0.4 .

0.2

0

1.2

0.8

0.2

0

0

1.2

l -

0.8 ·

0.6

0.4

0.2

0

0

0.2

pressure

0.2

mach

0.2

--Exact
dt = 0.002

· dt = 0.01

0.4 0.6
x-coord.

--Exact
dt = 0.002

• dt = 0.01

0.4 0.6
x-coord.

0.4

--Exact
dt = 0 .002
dt = 0 .01

0.6
x-coord.

0.8

0.8

0.8

dt = 0.02
dt = 0.05

2nd Order

dt = 0.02
dt = 0.05

2nd Order

dt = 0.02
dt = 0.05

2nd Order

Figure 5.45: Density, pressure, and Mach distributions for 1st and 2nd order solution to

the unsteady shock tube at t" = 0.2 using various dimensionless time steps.

Notice that the solution accuracy decreases rapidly as the global time step

increases. For the time step dt = 0.002, which is double the size of our initial time step,

both the first-order and second-order unsteady solutions are in excellent agreement with

the theoretical density, pressure, and Mach distributions. However, the resolution of the

167

sharp shock and expansion regions computed using the first-order unsteady solution is

degraded for the larger time steps. Use of the second-order unsteady solution does

improve the time accuracy of the solutions with the larger time steps. In fact, the second

order unsteady solution is still in reasonable agreement with the theoretical distributions

for dt = 0.01.

This problem clearly demonstrates the effect of increasing the global time step on

the accuracy of an unsteady solution. The strong unsteady effects of a moving shock

wave dominate the physics of this problem, making it very sensitive to the size of the

global time step. In order to quantify this effect, we compare the velocity of the shock to

the size of the global time step. At l = 0.2, the shock is located at x * = 0.850431, or it

has traveled a total distance of&* = 0.350431. This equates to an average velocity of u *

= 1.75 for the shock during the total time interval of the solution. The computational grid

for this problem was generated using a uniform grid spacing of 0.01, which means the

shock moves across an average of one element in about 1'..l = 0.006. Based on the

solution results presented in Figure 5.45, the best accuracy for this problem is achieved

when the global time step is smaller than the time it takes the shock to move across one

element.

Fortunately, other unsteady problems will not typically be this sensitive to the

global time step. This will allow the use of larger global time steps while still

maintaining the time accuracy of the solution. However, it is necessary to consider the

physics of each problem when selecting the global time step for an unsteady solution.

Otherwise the resulting solution might be inaccurate as demonstrated by the results of

this problem.

168

5.1.7 Impulsively Accelerated Airfoil

The unsteady variation of lift coefficient for an impulsively accelerated airfoil is

one of the most basic examples of unsteady aerodynamics. For this problem, the NACA

0012 airfoil geometry presented in Section 5.1.4 is suddenly accelerated to a constant

velocity corresponding to Mach 0.3 at an angle of attack of 5.0 degrees. The results will

be compared to the theoretical solution solved by Wagner37'38 for the infinite acceleration

of a two-dimensional, thin airfoil.

For this problem, the transient response of the airfoil is sensitive to the unsteady

wake that develops downstream. Therefore, the grids generated for the NACA 0012

airfoil in Section 5.1.4 are locally refined in the region downstream of the airfoil. Grid

convergence will not be attempted for this unsteady problem, so only one computational

grid is required. Figure 5.46 shows the overall surface triangulation generated for this

study, and Figure 5.47 shows a close-up of the surface triangulation on the surface of the

airfoil.

169

Figure 5.46: Surface triangulation with wake refinement for impulsively accelerated

airfoil.

Figure 5.47: Close-up of surface triangulation for impulsively accelerated airfoil.

170

As with the unsteady shock tube, this problem is sensitive to our choice of global

time step. The theoretical solution involves an infinite acceleration at t = 0.0. However,

our numerical solution to this problem uses finite time steps, which results in a finite

acceleration rate. This finite acceleration rate has been demonstrated to moderately

increase the lift.38 Furthermore, the large initial acceleration will cause some stability

and convergence problems for the initial solution steps. This will require the use of low

values for the courant stability factor and extra iterative cycles for convergence.

Figure 5.48 presents the solver control parameters chosen for the first solution to

the impulsively accelerated airfoil. Since our reference dimension is equal to the chord

of the airfoil, the dimensionless time step measures the distance traveled by the airfoil in

chord lengths for each global time step.

dt
gamma
mach
alpha
ref dim
diss
cfl
nstp
nout
ncyc
isol
idiss
ipnt
istrt
iaero

0 .. OSOdO
1. 40d0
0.30d0
5.0dO
16.0dO
l.OOdO
0.60d0
140
20
50

= 2
= 1
= 1

.false.

.true.

Figure 5.48: Summary of solver control parameters for impulsively accelerated airfoil.

As with the previous unsteady problem, the effects of time step refinement are

investigated here using several solutions with varying time steps. Table 5.13 presents the

combinations of time step size, solution steps, iterative cycles, and courant stability factor

171

used for the four unsteady solutions. In each case, the number of cycles was chosen so

that the solution for each time step attained a similar level of convergence.

Table 5.13: Summary of solver control parameters used for time step refinement with the

impulsively accelerated airfoil.

dt nstep ncyc cfl CPU-time
0.050 140 50 0.5 6612.24 s ---- -----------~·---
0.100 70 70 0.5 4638.86 s -----f--

0.200 35 100 0.4 3305.47 s
0.500 14 140 0.4 1892.38 s

Figure 5.49 presents a plot of the residual convergence histories for the unsteady

solutions using the four different time steps. As expected, the level of convergence for

the initial time steps is relatively low due to the large acceleration at l = 0.0.

l.E-03 rsd

l.E-04

l.E-05

[----- --

--- dt = 0.050

--dt = 0.100

--dt = 0.200

dt = 0.500
--··-- ---------·

l .E-06

l.E-07

I.E-08 -

I.E-09 I --- T

0 2 3 4 5 6 7

Figure 5.49: Plot of residual histories for impulsively accelerated airfoil using various

dimensionless time steps.

The transient response of the airfoil for each solution is plotted as CL(t)ICL, where

CL(t) is the instantaneous lift coefficient computed for the airfoil at time t, and CL is the

172

lift coefficient of the airfoil at infinity or the steady state lift coefficient. The steady state

lift coefficient was computed directly using a steady CFD solution for this airfoil. Figure

5.50 presents a comparison of the transient lift coefficient computed using the four

different dimensionless time steps and the theoretical Wagner solution.

0.9

0.8

0.7
(J
--- 0.6 ,-._
C,

(J
0.5

0.4 /1
/

0.3

0.2

0 2 3 4 5

·················· dt = 0.050

--dt=0.100

dt = 0.200

·················· dt = 0.500

--Wagner

CL =0.2879

6 7

Figure 5.50: Plot oflift coefficient variation for the impulsively accelerated airfoil using

various dimensionless time steps.

The results in Figure 5.50 show reasonable agreement with the theoretical

solution. As expected, there is a large discrepancy in the initial transient resulting from

the sudden acceleration of the airfoil. This is in part due to our discretization of the

problem, but it is also affected by the applied initial condition for the solution, which is

simply free-stream velocity and pressure throughout the domain. The numerical

solutions do asymptotically approach the steady state lift coefficient, but do so more

rapidly than the theoretical response curve predicts. This discrepancy between the

numerical and theoretical solutions is most likely caused by the cumulative errors from

an imperfect initial condition, our spatial discretization, and compressibility. The effects

173

of compressibility are small at this low Mach number. Nevertheless, compressibility has

the effect of stretching the coordinate system and would diminish the impact of the

unsteady wake more rapidly, which is consistent with the results presented in Figure 5.50.

In order to further visualize the unsteady behavior of this problem, Figure 5.51

shows the colored Mach profiles at six sequential times in the solution.

t=0.1 r = 1.4

,. = 2.1 t=2.8

f =3.5

Figure 5.51: Colored Mach profile showing unsteady wake development for the

impulsively accelerated airfoil.

174

The unsteady wake development is clearly visible in the six pictures of Figure 5.51. As

expected, the wake reaches the far-field boundary at approximately l = 5.0, since the far-

field boundary is exactly five chord lengths from the trailing edge of the airfoil.

As a final verification using this geometry, the same impulsively accelerated

airfoil is also solved in a non-inertial formulation. This is accomplished by turning off

the free-stream velocity and applying a dynamic initial condition to the non-inertial frame

that corresponds to the identical conditions used in the inertial solution. Figure 5.52

presents the solver control parameters for the non-inertial solution, while Figure 5.53

presents the dynamics file with the correct initial conditions for the non-inertial frame.

dt O.lOOdO
gamma l.40d0
mach 0.30d0
alpha O.OdO
ref dim 16.0dO
diss l.OOdO
cfl 0.50d0
nstp 70
nout 70
ncyc 70
isol 2
idiss = 1
ipnt = 1
istrt .false.
iaero .true.
idynm .true.
ifree .false.
a inf 3.333333d0

Figure 5.52: Summary of solver control parameters for impulsively accelerated airfoil in

a non-inertial frame.

175

$ Position vector to origin of non-inertial frame (rx, ry, rz)
O.OdO, O.OdO, O.OdO

$ Mass matrix for non-inertial frame (6 x 6)
l.OdO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO
O.OdO
O.OdO
O.OdO
O.OdO

l.OdO
O.OdO
O.OdO
O.OdO
O.OdO

O.OdO O.OdO O.OdO O.OdO
l.OdO O.OdO O.OdO O.OdO
O.OdO l.OdO O.OdO O.OdO
O.OdO O.OdO l.OdO O.OdO
O.OdO O.OdO O.OdO l.OdO

$ Damping matrix for non-inertial frame (6 x 6)
1. OdO O. OdO
o. odo 1. odo
O.OdO
O.OdO
O.OdO
O.OdO

O.OdO
O.OdO
O.OdO
O.OdO

$ Stiffness matrix
1. odo o. odo
O.OdO
O.OdO
O.OdO
O.OdO
O.OdO

l.OdO
O.OdO
O.OdO
O.OdO
O.OdO

O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO
l.OdO
O.OdO
O.OdO

O.OdO
l.OdO
O.OdO

O.OdO
O.OdO
l.OdO

O.OdO
O.OdO
O.OdO

O.OdO O.OdO O.OdO l.OdO
for non-inertial frame (6 x 6)

O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO
l.OdO
O.OdO
O.OdO
O.OdO

O.OdO
l.OdO
O.OdO
O.OdO

O.OdO
O.OdO
l.OdO
O.OdO

O.OdO
O.OdO
O.OdO
l.OdO

$ IC's for non-inertial frame (6 positions, 6 rates, 6 accels)
O.OdO, O.OdO, O.OdO, O.OdO, 5.0dO, O.OdO

-1.0dO, O.OdO, O.OdO, O.OdO, O.OdO, O.OdO
0.0dO, O.OdO, 0.0dO, O.OdO, O.OdO, O.OdO

$ IBXD for non-inertial frame (6)
2, 1, 1, 1, 1, 1

Figure 5.53: Dynamics file for the impulsively accelerated airfoil in a non-inertial frame.

Notice that the initial velocity vector for the origin of the non-inertial frame is

specified as { -1.0, 0.0, 0.0 } r_ The translational velocity and acceleration of the non-

inertial frame is always expressed relative to the inertial coordinate system. Furthermore,

the specified velocity for the non-inertial frame is dimensionless since the reference

velocity, U0 = mach·ainf, is identically one. For this problem, the non-inertial frame is

also oriented at a 5.0 degree pitch angle with respect to the inertial frame so that we

accourit for the angle of attack of the airfoil.

The non-inertial aspects of this problem are trivial since both the acceleration and

the angular rates are all zero. Hence, the inertial and non-inertial solutions are expected

to be identical. Figure 5.54 presents a comparison of the transient lift coefficient

176

computed using the inertial and non-inertial formulations with the theoretical Wagner

solution.

I +
0.9 ' I

i i

0.8 I
I

\ 0.7 I --Inertial rj \ >-- 0.6 0 Non-inertial -:::.
rj

0.5
--Wagner

dt=0.100
0.4

0.3 • t
0.2 '

0 2 3 4 5 6 7

Figure 5.54: Comparison of transient lift coefficient for the impulsively accelerated

airfoil solved using inertial and non-inertial formulations.

Notice that the inertial and non-inertial solutions are identical. This solution

verifies the non-inertial implementation for the simplest case of a solution with constant

velocity and orientation.

5 .1.8 Pitching and Plunging Airfoil

For this problem, we use the NACA 0012 airfoil of Section 5.1.4 again to study

the unsteady variation of lift coefficient generated by a sinusoidal pitching and plunging

motion. The unsteady, harmonic motion of the airfoil is generated by dynamically

movmg the computational domain in a non-inertial solution. The results will be

compared to the theoretical solution solved by Theodorsen's method39 for a thin airfoil

undergoing harmonic pitching and plunging motion in a uniform, incompressible flow.

177

As with the problem of Section 5 .1. 7, the solution for this problem is sensitive to

the unsteady wake that develops downstream. Therefore, a grid similar to the one used in

Section 5.1.7 with local refinement in the region downstream of the airfoil is again

employed. The only grid used for this problem consists of 41,400 nodes and 182,076

elements. Grid convergence will not be investigated for this unsteady problem.

The first unsteady solution involves a dynamically plunging airfoil. A sinusoidal

plunging motion is generated by specifying an appropriate mass and stiffness for the z-

axis in the dynamics input file and clamping the other five degrees of freedom. If the

aerodynamic forces are turned off in the dynamics solver and no structural damping is

specified, the airfoil will oscillate at its natural frequency with a plunge amplitude equal

to whatever displacement is specified in the initial conditions. Figure 5.55 presents the

solver control parameters chosen for the first solution to the plunging airfoil, while Figure

5.56 presents the dynamics input file utilized for the same solution.

dt 0.050d0
gamma 1. 40d0
mach 0.30d0
alpha O.OdO
ref dim 16.0dO
diss 1. OOdO
cfl 0.60d0
nstp 500
nout 50
ncyc 40
isol 2
idiss = 1
ipnt = 1
istrt .true .
iaero . false.
idynm .true.

Figure 5.55: Summary of solver control parameters for the plunging airfoil.

178

$ Position vector to origin of non-inertial frame (rx, ry, rz)
8.0dO, O.OdO, O.OdO

$ Mass matrix for non-inertial frame (6 x 6)
1.0dO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO 1.0dO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO 1200.0dO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO 1.0dO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO 1.0dO O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO 1.0dO

$ Damping matrix for non-inertial frame (6 x 6)
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO
O.OdO

Q;OdO
O.OdO

O.OdO
o:oao

O.OdO
O.OdO

$ Stiffness matrix for non-inertial
1.0dO O.OdO O.OdO 0.0dO
O.OdO
O.OdO
O.OdO
O.OdO
O.OdO

1.0dO
O.OdO
O.OdO
O.OdO
O.OdO

O.OdO
0.4d0
O.OdO
O.OdO
O.OdO

O.OdO
O.OdO
1.0dO
O.OdO
O.OdO

O.OdO O.OdO
O.OdO O.OdO

frame (6 x 6)
O.OdO O.OdO
O.OdO
O.OdO
O.OdO
1.0dO
O.OdO

O.OdO
O.OdO
O.OdO
O.OdO
1.0dO

$ IC's for non-inertial frame (6 positions, 6 rates, 6 accels)
O.OdO, O.OdO, 3.2d0, O.OdO, O.OdO, O.OdO
O.OdO, O.OdO, O.OdO, O.OdO, O.OdO, O.OdO
O.OdO, O.OdO, O.OdO~ O.OdO, 0.0dO, O.OdO

$ IBXD for non-inertial frame (6)
1, 1, 0, 1, 1, 1

Figure 5.56: Dynamics input file for the plunging airfoil.

The combination of parameters given in Figure 5.55 and Figure 5.56 define a

plunging airfoil with a reduced natural frequency approximately equal to 0.487, where

the reduced natural frequency, k, is .defined by Equation (5.7).

(5.7) k = ox:
2U_

Figure 5.57 presents the plunge response time history computed for this combination of

physical parameters.

179

0.25

0.2

0.15

0.1

0.05 •
~

t
.,:: 0

-0.05

-0.1

-0.15

-0.2

-0.25

Figure 5.57: Response time history for the plunging airfoil.

In addition to the time step presented in Figure 5.55, a second solution using a

larger time step of 0.20 combined with 80 iterative cycles was also executed. A plot of

the residual time histories for each of the solutions is presented in Figure 5.58, while a

comparison of the theoretical ~d predicted lift coefficient time histories for the same

solutions is presented in Figure 5.59.

l.E-03 rsd --dt=0.050

--dt=0.200

l.E-04

l.E-05

l.E-06

• t
l.E-07 +----------·---

0 5 IO 15 20 25

Figure 5.58: Plot of residual time histories for the plunging airfoil solution.

180

... <> dt=0.050
--Theodorsen

0.8

0.6

0.4

-'-'
(5

-0.4

-0.6

-0.8

-1

b° ~~::a~~~en

0.8

0.6

0.4

0.2

;:::,
(5

0

-0.2

-0.4

-0.6

-0.8

-1

Figure 5.59: Comparison of lift coefficient time histories for the plunging airfoil.

Notice that the solution with the smaller time step, dt = 0.05, is in excellent

agreement with the theoretical solution computed using Theodorsen's method. As

expected, the discrepancy visible in this plot for the first cycle of oscillation vanishes as a

proper wake develops downstream. Even the solution using the larger time step, dt =

0.20, shows reasonable agreement with the theoretical solution, but falls short of

capturing the proper amplitude. To quantify this comparison, the amplitude of the lift

181

coefficient time history predicted using a time step of 0.05 was approximately 0.774.

This differs from the theoretical value of approximately 0. 779 by only 0.64%.

For our next solution, we switch to a pitching airfoil with the same basic physical

parameters used for the plunging airfoil. The solver control parameters will remain

unchanged from the previous solution, while Figure 5.60 presents the new dynamics

input file for the pitching airfoil solution. Notice that the airfoil is setup to pitch about a

non-inertial y-axis located at the midpoint of the airfoil, since the origin of the coordinate

system was originally setup at the leading edge of the airfoil.

$ Position vector to origin of non-inertial frame (rx, ry, rz)
8.0dO, O.OdO, O.OdO

$ Mass matrix for non-inertial frame (6 X 6)
1.0dO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO 1.0dO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO 1.0dO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO 1.0dO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO 1200.0dO O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO 1.0dO

$ Damping matrix for non-inertial frame (6 X 6)
O.OdO O.OdO O.OdO O.OdO O.OdO 0. OdO
0.0dO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO 0. OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO

$ Stiffness matrix for non-inertial frame (6 X 6)
l.OdO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO 1.0dO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO 1.0dO O.OdO O.OdO O.OdO
0.0dO O.OdO O.OdO 1.0dO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO 0.4d0 O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO l.OdO

$!C's for non-inertial frame (6 positions, 6 rates, 6 accels)
O.OdO, O.OdO, O.OdO, O.OdO, 1.0dO, O.OdO
O.OdO, O.OdO, 0. OdO, O.OdO, 0. Odo, O.OdO
O.OdO, O.OdO, O.OdO, O.OdO, O.OdO, O.OdO

$ IBXD for non-inertial frame (6)
1, 1, 1, 1, 0, 1

Figure 5.60: Dynamics input file for the pitching airfoil.

182

Using the same time steps as the previous solutions, a plot of the residual time

histories is presented in Figure 5.61, while a comparison of the theoretical and predicted

lift coefficient time histories is presented in Figure 5.62.

l.E-03 rsd --dt=0.200

-dt=0.050

1.E-04

l.E-05

l.E-06

l.E-07

l.E-08

0 5 JO 15 20 25

Figure 5.61: Plot of residual time histories for the pitching airfoil solution.

183

0.15 -• dt = 0.050

--Theodorsen

0.1
~

0.05

,,...._
~

G 0

-0.05

-0.1

0.151
-~- dt = 0.200

--Theodorsen

0.1 ~

0.05

~
0 G

-0.05

-0.1

Figure 5.62: Comparison of lift coefficient time histories for the pitching airfoil.

Once again, the solution for a time step of 0.05 is in excellent agreement with the

theoretical solution computed using Theodorsen's method. For this problem, notice that

the wake effect has a more pronounced influence on the amplitude of the dynamic lift

coefficient. The initial conditions for this solution at i* = 0 were obtained by solving a

steady solution for this airfoil pitched at a I O constant angle of attack, which predicted a

steady state value of approximately 0.117 for the lift coefficient. For the pitching airfoil,

184

the predicted amplitude of the dynamic lift coefficient is approximately 0.0780, or a

decrease of approximately 33% from the steady state lift coefficient. The theoretical

amplitude for the dynamic lift coefficient is approximately 0.0782, which means the

solution found here is within 0.32% of the expected value.

5.1.9 Spinning Centrifuge

The problems of the previous section demonstrated the capabilities of the non-

inertial algorithm for relatively small amplitude harmonic motion. This verification

problem investigates the accuracy of the non-inertial algorithm for a rapidly spinning

geometry that undergoes several complete revolutions. The shock tube geometry of

Section 5.1.6 is rotated about its z-axis in order to simulate a spinning centrifuge. It is

expected that the pressure distribution within the tube will follow an exponential profile

as defined by Equation (5.8).

(5.8)
p 2 lai2r2/RT -=e,
P1

Unfortunately, simply starting the tube rotating with an initially uniform pressure

distribution inside will result in a solution where pressure waves oscillate back and forth

along the length of the tube. It is expected that these pressure waves would eventually

damp out under the influence of the artificial viscosity in the algorithm, but this may take

several thousand revolutions. Instead, we will start the solution with proper initial

conditions, which represent the correct theoretical solution for the spinning tube. Using

Equation (5.8), a proper set of initial conditions is generated for each node of the

185

computational domain using the following set of physical constants: p 1 = 101.33 kPa, p1=

1.225 kg/m3, R = 286.9 J/kg·K, T= 288.15 K, and OJ= 91.8792 rad/s or5264.29deg/s.

Figure 5.63 and Figure 5.64 present the solver control parameters and dynamics

input file used to analyze this problem.

dt
gamma
mach
diss
cfl
nstp
nout
ncyc
isol
idiss
ipnt
istrt
iaero
idynm
ifree
a inf
rho inf

O.OOSdO
1.40d0
0.30d0
1.00dO
O.SOdO
5000
100
20

= 2
= 1

= 1
.true.
.false.
.true.
.false.
204.176d0
1. 225d0

Figure 5.63: Summary of solver control parameters for spinning centrifuge.

186

$ Position vector to origin of non-inertial frame (rx, ry, rz)
O.OdO, O.OdO, O.OdO

$ Mass matrix for non-inertial frame (6 x 6)
1.0dO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO 1.0dO O.OdO O.OdO O.OdO O.OdO
O.OdO
O.OdO
O.OdO
O.OdO

O.OdO
0.0dO
O.OdO
O.OdO

$ Damping matrix
1. odo o. odo
0. OdO 1. OdO
O.OdO
O.OdO
O.OdO

O.OdO
O.OdO
O.OdO

1.0dO O.OdO O.OdO O.OdO
O.OdO 1.0dO 0.0dO O.OdO
O.OdO O.OdO 1.0dO O.OdO
O.OdO O.OdO O.OdO 1.0dO

for non-inertial frame (6 x 6)
O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO
1.0dO O.OdO O.OdO O.OdO
O.OdO 1.0dO O.OdO O.OdO
O.OdO O.OdO 1.0dO O.OdO

O.OdO O.OdO O.OdO O.OdO O.OdO 1.0dO
$ Stiffness matrix for non-inertial frame (6 x 6)

1.0dO O.OdO O.OdO O.OdO O.OdO o.qdo
O.OdO
O.OdO
O.OdO

.0. OdO
O.OdO

1.0dO
O.OdO
O.OdO
O.OdO
O.OdO

O.OdO
1.0dO
O.OdO
O.OdO
O.OdO

O.OdO
O.OdO
1.0dO
O.OdO
O.OdO

O.OdO
O.OdO
O.OdO
1.0dO
O.OdO

O.OdO
O.OdO
O.OdO
O.OdO
1.0dO

$ IC's for non-inertial frame (6 positions, 6 rates, 6 accels)
O.OdO, O.OdO, O.OdO, O.OdO, O.OdO, O.OdO
O.OdO, O.OdO, O.OdO, O.OdO, O.OdO, 5264.29d0
O.OdO, O.OdO, O.OdO, O.OdO, O.OdO, O.OdO

$ IBXD for non-inertial frame (6)
1, 1, 1, 1, 1, 2

Figure 5.64: Dynamics file for the spinning centrifuge.

The dimensionless angular rate specified for this problem is computed to be 1.5. Given

that the time step chosen for the solution is 0.005, the tube will complete one revolution

every 838 solution steps. Figure 5.65 presents a comparison of the computed and

theoretical pressure and density distribution within the tube after 5000 steps or

approximately 6 revolutions. The results clearly demonstrates the accuracy of the non-

inertial algorithm for the extreme case of a spinning body that undergoes multiple

revolutions.

187

103 p (kPa) --Euler 1.25 p (kg/mJ) --Euler

- - - - - - - Theory -------Theory

1.24

102

1.23

X X

IOI 1.22

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

Figure 5.65: Comparison of computed and theoretical pressure and density distributions

along the centerline of the spinning centrifuge after four revolutions.

5.2 Validation

Having completed numerous verification tests for both steady and unsteady

problems, our focus shifts to a validation of our numerical algorithm for practical

aerospace applications. In contrast to verification where we attempted to demonstrate

that the algorithm is solving the equations right, validation is typically referred to as

solving the right equations. 10 We have adopted that definition here and will attempt to

demonstrate that our governing equations, the compressible Euler equations, are capable

of accurately representing the dominant flow physics for relevant aerospace applications.

In addition, we must demonstrate that the assumptions of our numerical approximations,

specifically the transpiration method, are accurate and applicable to the types of problems

we are solving.

Our primary comparison for validation solutions is experimental data. Often this

is a somewhat difficult comparison to make because there are just as many difficulties

188

and inaccuracies associated with experiments as there are - with numerical models.

Although many modem experiments typically take advantage of non-intrusive

measurement techniques, much of the experimental data available for our selected

aerospace applications is legacy data obtained before such techniques were widely in use

and or even available. Hence, it is necessary to be cautious in our evaluation of the

numerical results and take in to consideration any experimental uncertainties if such

information is even available. Roache10 borrowed an interesting quote from Aeschliman

and Oberkampf who said, "the general point is that as one progresses down the list to

more difficult quantities for CFD to predict, the experimental uncertainty generally

increases also." This proves particularly true in our case for aeroelastic applications

where the combination of uncertainties in both the structural and fluid dynamics data can

couple adversely to magnify the differences between experiment and numerical

prediction.

The sections that follow present a sample of validation problems intended to

demonstrate the types of aerospace applications our numerical algorithm is capable of

solving. Our primary interest is in the modeling of transonic flow problems since good

theoretical models are not readily available for advanced three-dimensional applications

in this flow regime. As such, we begin with a steady validation case that demonstrates

the transonic shock capturing capabilities of the solver. This leads in to several unsteady

validation tests for aeroelastic problems in the transonic flow regime, as well as problems

that exercise the non-inertial terms in our formulation since that was the primary goal of

this research.

189

5.2.1 RAE 2822 Transonic Airfoil

This steady problem consists of a RAE 2822 airfoil in a transonic flow. The

results will be compared to an experimental solution obtained for Mach 0.729 and an

angle of attack of 2.31 degrees.40 The layout of the computational domain, which is

similar to that of the NACA 0012 airfoil from Section 5.1.4, is presented in Figure 5.66.

Boundary conditions for the eight boundary surfaces enclosing this domain are specified

as follows: surfaces 1, 2, 3 and 4 are symmetry planes, surfaces 5 and 6 are far-field

boundaries, and surfaces 7 and 8 are solid walls. The curve defining the trailing edge of

the airfoil is also specified as singular since the local surface normals are undefined along

that curve.

190

EJ = surface #

Figure 5.66: Layout of computational domain for the RAE 2822 transonic airfoil.

The computational grid generated for this problem consists of 198,528 elements

and 38,571 nodes, with local refinement of the elements near the surface of the airfoil.

Figure 5.67 shows a close-up of the surface triangulation near the airfoil.

191

Figure 5.67: Close-up of surface grid near the RAE-2822 airfoil.

Our solution to this problem uses the high-order dissipation model with a

dissipation factor of 1.0. The complete set of solver control parameters used in the

solution of this problem is given in Figure 5.68.

gamma l.40d0
mach 0 . 729d0
alpha 2 . 31d0
diss 1.00dO
cfl 0 . 80d0
nstp 8000
nout 8000
ncyc = 3
isol = 0
idiss = 1
ipnt = 1
iaero .true .

Figure 5.68: Summary of solver control parameters for transonic airfoil solution.

Figure 5 .13 presents a plot of the residual convergence history for the solution. A

total of 8000 iterations where required in order to attain a reasonable degree of numerical

convergence.

192

1.E-03 rsd

l.E-05

I.E-07

l.E-09

l.E-11

l.E-13

l.E-15 +-----~---~-~-~--~

0 2000 4000

nstep

6000 8000

Figure 5.69: Plot of residual histories for transonic airfoil solution.

Results for this problem are taken along a cut-line defining the intersection of an

.xz-plane at y = -0.15625 and the two surfaces defining the airfoil, surfaces 7 and 8.

Figure 5.70 presents a comparison of the computed pressure coefficient on the surface of

the airfoil and the experimental data for Mach 0.729. Notice that the computed results

are in excellent agreement with the experimental data, including the predicted location of

the shock.

193

-1

-0.5

0

0.5

•••••
• e e • • • • • O 00 .,,.... • •• oeooo•o o

~· c,oeocd»O • •oo J--
i
• • I

•

.o
~ .

o~,to
_,,. ••• •o0 0. _ _....- •o. ...

$.,... - e~

o EulerCFD

• Experiment

~ • o•o e /• "a ·~
• 00•4 •.,._

o~o• • 8 °0o<11>• 0

0t ••o•o O o

• o, .
1 . -···. -............................ . . ~--,-·-· .. c.·· .. :.:: :.: :

------.............. - • -· • - ••••• r# •••••••••••

1.5 -<----~---~---~----~---~---~

-0.1 0.1 0.3 0.5
x/c

0.7 0.9 1.1

Figure 5.70: Plot of pressure coefficient distribution on the surface of the transonic

airfoil at Mach 0. 729 and angle of attack 2.31 degrees.

5.2.2 AGARD 445.6 Aeroelastic Test Wing

Having validated the CFD solver for steady transonic problems, we will now

investigate an unsteady transonic problem. The AGARD 445.6 wing configuration is an

aeroelastic test case that was investigated experimentally in the 16-foot Transonic

Dynamics Tunnel (TDT) at NASA Langley Research Center.41 Experimental flutter

boundaries are reported for transonic Mach numbers ranging from 0.499 up to 1.141.

The wing is made from an NACA 65A004 airfoil cross section with_a chord of 1.833 feet,

a semi-span of 2.5 feet, a quarter-chord sweep angle of 45 degrees, a panel aspect ratio of

1.65, and a taper ratio of 0.66.

194

This particular wing configuration was analyzed previously using the STARS

unsteady CFD solver.5 For this validation problem, we will simply re-use the original

elastic CFD model generated for the previous STARS analysis of this wing geometry.

This will allow us to compare our results to the previous STARS solution and validate

our implementation of the transpiration boundary condition and elastic structural

dynamics solver for a three-dimensional aeroelastic solution. The structural model

consists of two elastic mode shapes that represent the first bending and torsion modes of

the wing. The frequencies for these two modes are 9.60 and 38.20 Hz respectively. The

CFD model consists of 69,630 nodes and 373,798 elements. Figure 5.71 shows a close

up of the surface triangulation on the wing. The wing is attached to the center of a

rectangular computational domain that measures approximately 32 feet long, 32 feet

high, and 16 feet wide.

Figure 5.71: Close-up of surface grid for AGARD 445.6 aeroelastic test wing.

195

The first step in an aeroelastic analysis is to generate proper initial conditions for

the problem by completing a steady solution for the CFD model. Figure 5.72 presents a

summary of the solver control parameters used for the Mach 0.96 steady solution for this

problem.

gamma l.40d0
mach 0.96d0
diss 1. OOdO
cfl 0.80d0
nstp 4000
nout 4000
ncyc 3
isol = .Q
idiss = 1
ipnt = 1

Figure 5. 72: Summary of solver control parameters for the AGARD steady solution.

Figure 5. 73 presents plots of the steady pressure coefficient distribution along the

surface of the AGARD wing at Mach 0.96. Although there were no steady experimental

results published for this wing geometry, the results presented here are consistent with the

steady computational results published by Batina.41

196

n=0.260 n= 0.504

. .
-0.2

0

0.2

-0.2 i\e.,,,.,,_.----~. --....
\

0

0.2

0.4 0.4

icaC • ._ •- • • ••••• • • • .,,.._ • •••- • • ~Ir•- -:::::: -···---··:r.••-
0.6 +--~--~-~--~-~-~ 0.6 +--~--~-~--~-~-~

-0.4

-0.2

0

0.2

0.4

0.6

-0.1

CP

-0.1

0.1 0.3 0.5
x!c

n= 0.755

0.7 0.9

~-·----~.
: --........... '-

..
-=-----·=.:·-:::.:: ·::.-.: .. -:::::.::::::.~ •.-., _.

0.1 0.3 0.5 0.7 0.9
x!c

I.]

I.]

-0.1

-0.4 CP

-0.2

0

0.2

0.4

0:6

-0.1

0.1 0.3 0.5
xlc

n= 0.960

0.7 0.9

.,::::::: :-·:;: ::: ·:·. :: : :·:. :- ;:! :-. =· :: .:.•

0.1 0.3 0.5
x/c

0.7 0.9

I.I

I.I

Figure 5.73: Plot of steady pressure coefficient distribution on the surface of the

AGARD wing at Mach 0.96 for various spanwise locations, 17.

Having completed a steady solution at Mach 0.96, we are now ready to begin an

unsteady solution at Mach 0.96. Figure 5.74, Figure 5.75, and Figure 5.76 present the

solver control parameters, elastic vectors input file, and external force input file

respectively. All three of these input files are required for an unsteady aeroelastic

solution. The dimensionless time step and all other solver parameters specified here were

chosen to match those used in the original STARS analysis of this problem as close as

possible. This will allow us to make a direct comparison between time history data from

the two solvers as a verification of the aeroelastic predictions of the new solver.

197

dt 15. 71d0,
gamma 1.40d0,
mach 0.960d0,
ref dim 1. OdO,
cfl 0.50d0,
diss l.OdO,
nstp 500,
ncyc 80,
nout 500,
idiss 1,
isol 2'
idsol 0'
ipnt 1,
istrt . true.,
iaero . true.,
ielast . true.,
idynm . false.,
iforce . true.,
nr 2'
a inf 12571. 08,
rho inf 3.40E-09

Figure 5.74: Summary of solver control parameters for the AGARD aeroelastic solution.

$ Number of elastic modes (nr)
2

$ Mass matrix for elastic modes (nr x nr)
1.205600000000000E-003 0.000000000000000E+OOO
O.OOOOOOOOOOOOOOOE+OOO 3.614300000000000E-004

$ Damping matrix for elastic modes (nr x nr)
2.908949000000000E-003 O.OOOOOOOOOOOOOOOE+OOO
O.OOOOOOOOOOOOOOOE+OOO 3.467299000000000E-003

$ Stiffness matrix for elastic modes (nr x nr)
4.38649000000000 0.000000000000000E+OOO
O.OOOOOOOOOOOOOOOE+OOO 20.7834000000000

$ ICs for elastic modes (xl xn, vxl ... vxn)
O.OdO O.OdO O.OdO O.OdO

$ IBXN for elastic modes (nr)
0 0

$ Elastic modes vectors (nwl 2) x nr
0.7326388801E-10 -0.5034722292E-10 0.6874974370E+OO

Figure 5.75: Header of elastic vectors input file for the AGARD aeroelastic solution.

198

0 O.OdO O.OdO
1 O.OdO O.OdO
2 0.0dO O.OdO
3 10'.octo 10.0dO
4 10.0dO 10.0dO
5 10.0dO 10.0dO
6 0.0dO O.OdO

Figure 5.76: External force input file for the AGARD aeroelastic solution.

Based on the previous computational results generated using the STARS unsteady

solver, we expect that the flutter boundary for Mach 0.96 will occur at a dynamic

pressure of approximately 0.233 psi. The combination of parameters given in Figure 5.74

equate to a dynamic pressure of approximately 0.247 psi, so we expect that the response

time history will prove to be unstable. Our first comparison will be between a set of time

history data computed by the new euler3d and old STARS unsteady CFD solvers. Figure

5.78 presents a plot of generalized displacement and force for both modes as computed

by the two solvers.

199

0.4 XI --euler3d - STARS 0.6 X2 - euler3d - STARS

0.3
0.4

0.2

0.1 0.2 t*
0 T - ·- 1

-0.1 . 6000 0

-0.2
-0.2

-0.3

-0.4 -0.4

10 /1 - euler3d - STARS 6 /2 --euler3d --STARS

5 4

*
0 2 ·

-5 0

-10 -2

-15 -4 -

Figure 5. 77: Comparison between time history data computed by STARS and euler3d

solvers for the AGARD wing at Mach 0.96.

The most noticeable difference between the time history data in the plots of

Figure 5.77 is caused by a discrepancy in the predicted steady state load condition. The

steady state load for mode two as predicted by the STARS steady solver differs from the

predicted value from the euler3d solver by nearly 200%. This has the obvious effect of

shifting the time history data so that the two solutions oscillate about different neutral

points, as well as impacting the relative amplitude of the generalized displacement time

histories. Aside from this difference, the two sets of time history data are qualitatively

the same. Both solutions show a system that is mildly unstable, with approximately the

same frequency and damping for each mode. At this point, there are enough differences

200

between the two unsteady CFD solvers that we should expect some small differences

between the two solutions. Hence, the excellent agreement between the time history data

from each solver serves to verify the new aeroelastic solver.

The next step in predicting the flutter boundary for an aeroelastic problem would

normally be to run the same solution at a different dynamic pressure. Based on the

agreement between the euler3d and STARS time history data, we expect that the new

solver would predict approximately the same flutter boundary as the previously published

value. The more interesting test will come from a comparison between the predicted

flutter boundary using both the zero-order and new second-order structural dynamics

integrators. The previous solution used the zero-order integrator for comparison with the

old STARS solution, which uses the same integrator. Figure 5.78 presents a comparison

between time history data for mode one generalized displacement computed using the

new euler3d solver with both the zero-order and second-order structural dynamics

integrators. The only solver input parameter that differs between the two solutions is

idsol, which is equal to zero or two for the zero-order and second-order integrators

respectively.

0.4 XI q = 0.248 psi -idsol=O

-idso/=2
0.3

0.2

0.1

0
t*

6000
-0.1

-0.2

-0.3

Figure 5.78: Comparison of time history data for AGARD wing at Mach 0.96.

201

Notice that there is a relatively large discrepancy between the time history data

predicted by the zero-order and second-order structural dynamics solutions. The two sets

of time history data are not even qualitatively the same. The time history data from the

zero-order integrator shows a system that is mildly unstable, while the time history data

from the second-order integrator shows a system that is clearly stable. As discussed in

Section 4.6.3, this indicates that the time step chosen for this problem was too large. In

order to refine the solution and determine the correct flutter boundary, we will need to

decrease the time step. A complete set of time history data for dt = 16.0, 4.0, 1.0 and

0.25 is presented in Appendix C. Some of the solver control parameters necessarily

change as the time step is refined. Table 5.14 presents a summary of the relevant

parameters that were changed for each time step to construct the plots in Appendix C.

Table 5.14: Summary of solver control parameters used for time step refinement with

AGARD wing at Mach 0.96.

dt nstep ncyc cfl
16.0 500 80 0.40 -~----·=-
4.0 2000 35 0.40

!--·-------~
1.0 12000 12 0.50 f>-¥·--~----·--- --

0.25 32000 4 0.60

In order to compute the predicted flutter boundary for each set of solutions, we

approximate the relative damping factor for the mode one generalized displacement data,

and interpolate to find the dynamic pressure at which the system is neutrally stable.

Figure 5. 79 presents a plot of the dimensionless flutter velocity, Vj, versus dimensionless

time step, dt*, for the two different structural integrators, along with a reference line

202

representing the experimental value for Mach 0.96. The dimensionless flutter velocity is

defined by the following equation:

(5.9)

where, u1 is the flutter velocity, b is the root semi-chord, lVa is the uncoupled natural

frequency of the wing first torsion mode, andµ is the mass ratio.

Experiment ..
0.3 -~

-tr- idso! = 0

0.25 -idso/=2

dt*
0.2 -+-------~---~---~-----~

0.1 IO 100

Figure 5.79: Plot of flutter velocity versus time step for the AGARD wing at Mach 0.96.

Based on these results, our initial choice of time step was too large by an order of

magnitude or more. Our initial solution, which used the zero-order integrator with dt =

16.0, was off by approximately 21 % when compared to the experimental value, where as

the final solution differs from the experimental value by only 3%. This is a significant

refinement in the predicted flutter speed, with even further refinement a possibility with

an improved computational grid since we limited ourselves to the grid used in the original

STARS analysis. For a more direct comparison of each solution, Table 5.15 presents a

summary of the flutter velocity and percent error for each set of solutions.

203

Figure 5.88: Surface triangulation around wedge-shaped body.

Figure 5.89: Close-up of surface triangulation near wedge-shaped body.

214

The total height of the wedge-shaped cylinder at the center of the computational

domain is equal to one unit, while its width is equal to five percent of the total height.

The outer radius of the computational domain was initially chosen to be six units, while

the thickness of the computational domain was set to 0.2 units. With these dimensions,

the computational grid generated for this study consists of 110,431 elements and 27,264

nodes. Boundary conditions for the ten surfaces enclosing this domain are specified as

follows: the surfaces 1 through 4 define the sides of the computational domain and are

symmetry planes, surfaces 5 and 6 are the far field boundaries along the outer radius of

the computational domain, and surfaces 7 through 10 define the surface of the wedge-

shaped body and are solid walls. Furthermore, the sharp edges at the top and bottom of

the wedge are specified as singular since the local surface normal is undefined along

those edges.

For this unsteady solution, we select a low mach number such that the effects of

compressibility will be minimized. At a mach number of 0.3, it is expected that these

effects will be less than five percent. Figure 5.90 presents a summary of all solver

control parameters selected for this problem.

dt
gamma
mach
cfl
diss
nstp
ncyc
nout
idiss
isol
ipnt
istrt
iaero
ielast
idynm

0.040d0,
l.40d0,
0.30d0,
O.SOdO,
l.OdO,
4000,
50,
30,
1,
1,
1,
. false.,
.true.,
. false.,
.false.

Figure 5.90: Summary of solver control parameters for the wedge solution.

215

Figure 5.91 presents a plot of pressure contours showing the vortex wake that

develops downstream of the wedge-shaped cylinder. The alternating vortices propagate

downstream as they are shed from the upper and lower edges of the body and eventually

pass through the outer edge of the computational domain, which uses the far-field

boundary condition. The fully developed flow reaches an oscillatory steady-state with a

constant vortex shedding frequency.

Figure 5.91: Contour plot showing vortex generation behind a wedge-shaped cylinder.

The vortex shedding frequency is exactly equivalent to the Strouhal number for

this flow, which is simply a dimensionless frequency as defined by Equation (5.10).

(5.10)
f · D

St =--
Uo

216

where/is the frequency of vortices shed in a vortex street, Dis the length scale, and U0 is

the fluid velocity. The frequency of the vortices is typically determined by measuring the

frequency of the lift coefficient time history data. Since the unsteady CFD solver already

outputs all time history data with dimensionless values, the Strauhal number for the flow

will be exactly equal to the frequency we measure for the time history data. Figure 5.92

presents a plot of the lift coefficient time history data for the wedge solution.

0.06 cl

0.04

0.02 .
t

-0~ t
-0.04

-0.06 J

Figure 5.92: Plot of lift coefficient time history data for the wedge solution.

The computed Strauhal number for the time history shown in Figure 5.92 is

0.164. This compares to the observed value of 0.15 for a thin plate oriented

perpendicular to the flow. 43 Given the differences in geometry between a flat plate and

the wedge-shaped body examined here as well as the lack of viscous effects in the

unsteady Euler solution, we do not expect the computed Strauhal number for this flow to

match the experimental value for the thin plate. In this case, the comparison to an
(

experimental value is simply to verify that the computed Strauhal number for this

problem is reasonable.

217

Based on the computed Strouhal number for this problem, we have approximately

150 discrete solution steps per cycle. No significant changes in the flow solution were

observed with further refinement of the time step or grid spacing. However, enlarging

the outer radius of the computational domain, which provides more space for the vortices

to propagate downstream before passing through the outer boundary, does yield

significant changes in the flow solution. Figure 5.93 presents a comparison between time

history data for outer radii ranging from six units to eighteen units.

0.06 CL R =6 0.06 CL R=IO

0.04 0.04

0.02 0.02

0 0

150

-0.02 -0.02

-0.04 -0.04

-0.06 -0.06

0.06 CL R =14 0.06 CL R =18

0.04 0.04

0.02 0.02 .
t

0 0

0

-0.02 -0.02

-0.04 -0.04

-0.06 -0.06

Figure 5.93: Comparison of lift coefficient time history data for the wedge solution with

various outer radius dimensions.

218

As the outer radius of the computational domain increases, we observe a

significant change in the Strouhal number for the flow. The Strouhal number ranges

from the initially computed value of 0.164 for a radius of six units down to a value of

0.110 for a radius of twenty-two units. Table 5.18 presents a summary of the computed

Strouhal number for all outer radii used in this study, and Figure 5.94 presents a plot of

the raw numerical data. Figure 5.94 demonstrates proper convergence of the solution to

the final Strouhal number of 0.110, which still compares reasonably well to the observed

value of 0.15 for a thin plate oriented perpendicular to the flow.

Table 5.18: Summary of computed Strouhal numbers for the wedge solution.

R St
6 0.164
10 0.138

------- --------1
14 0.121

--+--------!
18 0.111
22 0.110

0.2 St

0.15

0.1

0.05

R
0 -r------------,---~-------,------~---

0 5 10 15 20 25

Figure 5.94: Plot of Strouhal number versus outer radius of the computational domain

for the wedge solution.

219

The results of this section demonstrate the sensitivity of some solutions to the size

of the computational domain. In the case of this problem, the vortices appear to generate

a small disturbance as they pass through the outer boundary. This disturbance propagates

up stream through the subsonic flow field and influences the vortex shedding frequency.

The effect of the disturbance on the solution is minimized by choosing a sufficiently large

computational domain. Hence, care should be taken when choosing the size of the

computational domain for low mach number flows.

5.2.5 80 Degree Delta Wing

Having demonstrated the capacity to model vortex dominated flow problems in

the previous section, this section investigates a relevant aerospace application known as

wing-rock. The wing-rock phenomenon is a self-induced limit cycle rolling oscillation,

which occurs for delta wings at high angles of attack. There has been considerable

experimental and computational research into the basic physics of the unsteady, vortical

flow that drives the wing-rock phenomenon.9•47•48•49 These studies indicate that the wing

rock phenomenon persists in all flow regimes from subsonic to supersonic and will

provide us with the necessary data to validate the results obtained in this section.

For this study, we select a sharp-edged delta wing with a leading-edge sweep of

80°, a root chord equal to one unit, and a thickness equal to 0.01504 units. Figure 5.95

shows the cylindrical computational domain and surface triangulation generated for this

geometry, while Figure 5.96 shows a close-up of the surface triangulation on the delta

wmg.

220

0 =surface#

c, = I

Figure 5.95: Layout of computational domain for 80 degree delta wing.

Figure 5.96: Surface triangulation for 80 degree delta wing.

The computational grid generated for this study consists of 461,575 elements and

84,448 nodes. Boundary conditions for the nine surfaces enclosing this domain are

221

specified as follows: surfaces 1 through 5 are solid walls and surfaces 6 through 9 are far-

field boundaries. Furthermore, the sharp edges around the top-side of the delta wing are

specified as singular since the local surface normal is undefined along those edges.

Our analysis of the delta wing configuration begins with a steady flow solution

for a fixed angle of attack and various roll angles. Experimental results for a similar 80°

delta wing are available for subsonic flow and an angle of attack of 30° from Arena.47

These experimental measurements serve as a baseline to validate our computational

results and verify that the grid is sufficiently refined before performing and unsteady

analysis. The flow conditions for the initial subsonic solutions are defined by a

freestream Mach number of 0.3, an angle of attack of 30° and roll angles ranging from 0°

to 70°. Figure 5.97 presents a summary of the relevant solver control parameters for

these solutions, and Table 5 .19 presents a summary of the proper combination of solver

angle parameters, alpha and beta, required to achieve the roll angles, ¢, ranging from

0° to 70° for a fixed angle of attack of 30°.

gamma
mach
alpha
beta
ref dim
cfl
diss
nstp
ncyc
nout
idiss
isol
ipnt
iaero

1. 40d0,
0.30d0,
30.0dO,
O.OdO,
1. OdO,
0.70d0,
1. OdO,
10000,

3'
500,
1,
0,
1,
.true.

Figure 5.97: Summary of solver control parameters for the steady delta wing solutions.

222

Table 5.19: Summary of solver angle parameters for various roll angles with a constant

30° angle of attack.

(/) alpha beta
oo 30.000000 0.000000
10° 29.498704 5.725105
20° 28.481238 11.170229
30° 25 .658906 16.102114
40° 22.521012 20.360575
50° 18.747237 23 .858655
60° 14.477512 26.565051
70° 9.846552 28.481238

Figure 5.98 presents a plot of the velocity vectors along a normal cut plane at the

x/c = 0.60 chord location for roll angles 0° and 40°. These plots are used to visualize the

vortex structure that devolps over the wing.

Figure 5.98: Plot of velocity vectors along a normal cut plane at x/c = 0.60 for the Mach

0.30 delta wing.

223

The approximate size and location of the primary vortices is consistent with the

experimental results published by Arena47, as well as the computational results from

Gornier.49 A complete set of plots comparing the computed surface pressure with the

experimental measurements is also provided in Appendix E for all roll angles. These

plots demonstrate reasonable agreement between the computed and experimental results

for roll angles up to about 40°. The computed results capture the primary flow features,

with a slightly underpredicted pressure peak. For increasing roll angles, we see that the

computational model begins to diverge from the low Reynolds number experimental

results. This is due to the development of secondary and tertiary vortices, which the

inviscid flow solver is not capable of reproducing. Despite these differences, the

similarity of the primary flow features lends credibility to these steady-state

computational results.

Given that wing-rock behavior is expected to exist for high mach number flows as

well, we prefer to use a supersonic mach number for our unsteady solution in order to

take advantage of the better convergence characteristics of such a solution. Lee and

Batina48 have analyzed a similar 75° delta wing in Mach 1.2 flow with a conical euler

solution and demonstrated the existence of wing rock. Figure 5. 99 presents a plot of the

velocity vectors for Mach 1.20 flow along a normal cut plane at the x/c = 0.60 chord

location for roll angles 0° and 40° at the same 30° angle of attack. Additionally,

Appendix E contains a set of steady surface pressure plots for Mach 1.20 flow at various

roll angles. Unfortunately, there are no experimental results available for comparison

with these solutions.

224

Figure 5.99: Plot of velocity vectors along a normal cut plane at x/c = 0.60 for the Mach

1.20 delta wing at a 30° angle of attack.

The unsteady computational results of Lee and Batina48 indicate the existence of

limit cycle wing-rock motion for a 75° delta wing in Mach 1.20 flow at an angle of attack

of 30°. In contrast, their results predict that the same delta wing held at an angle of attack

of 10° in Mach 1.20 flow will exhibit a stable free-to-roll response. The primary goal

here will be to validate this physical phenomenon using the larger 80° delta wing

geometry generated for this study. Figure 5.100 and Figure 5.101 present a summary of

the relevant solver control parameters and dynamics inputs for the unsteady free-to-roll

solutions. Dimensional parameters where taken from the results of Lee and Batina and

scaled to match the physical dimensions of the delta wing generated for this study. The

initial conditions for the first solution are for a delta wing at a 30° pitch and 40° roll angle

with the roll axis free to rotate.

225

dt O.OlOdO,
gamma 1. 40d0,
mach 1. 20d0,
alpha O.OdO,
beta O.OdO,
ref dim l.OdO,
cfl 0.60d0,
diss 1. OdO,
nstp 25000,
ncyc 8,
neut 200,
idiss 1,
isol 2'
idsol 2,
ipnt 1,
istrt .true.,
iaero .true.,
ielast .false.,
idynm .true.,
a inf 312.0dO,
rho inf 0.526d0

Figure 5.100: Summary of solver control parameters for the unsteady free to roll delta

wing solutions.

$ Position vector to origin of non-inertial frame (rx, ry, rz)
a.ado, a.ado, a.ado

$ Mass matrix for non-inertial frame (6 x 6)
1.odo a.ado a.ado a.ado a.ado
a.ado 1.odo a.ado a.ado a.ado
a.ado a.ado 1.odo a.ado a.ado
a.Odo O.OdO a.ado 0.005211d0 O.OdO
a.ado O.OdO a.ado O.OdO· 1.0dO
a.ado a.ado a.ado a.ado a.ado

$ Damping matrix for non-inertial frame (6 x 6)

a.ado
a.ado
a.ado
a.ado
a.ado
1.0dO

1.odo a.ado a.ado a.ado a.ado a.ado
a.ado 1.odo a.ado a.ado a.ado a.ado
a.ado a.ado 1.odo a.ado a.ado a.ado
a.ado a.ado a.ado. a.ado a.ado a.ado
a.ado a.ado a.ado a.ado 1.odo a.ado
a.ado a.ado a.ado· o.odo a.ado

$ Stiffness matrix
1. ado o. ado
0. Odo 1. OdO
a.ado a.ado
O.OdO O.OdO
a.ado
a.ado

O.OdO
O.OdO

for non-inertial
a.ado a.ado
a.ado a.ado
1. ado o. ado
a.ado a.ado
0.0dO
a.ado

a.ado
a.ado

frame (6
a.ado
a.ado
a.ado
a.ado
1.0dO
a.ado

$!C's for non-inertial frame
O.OdO, a.ado, O.OdO, 40.0dO,
0. Odo, 0. OdO, 0. OdO, 0. Odo,
o . ado, o. ado, o. ado, o. ado,

(6 positions,
30.0dO, O.OdO
a.ado, a.ado
a.ado, a.ado

(6) $ IBXD for non-inertial frame
1, 1, 1, 0, 1, 1

1.0dO
X 6)

a.ado
a.ado
a.ado
O.OdO
O.OdO
1.0dO

6 rates, 6 accels)

Figure 5.101: Dynamics input file for the unsteady free to roll delta wing solution.

226

The time step for this solution was chosen after some experimentation to find the

point at which the sensitivity of the roll dynamics to time step was effectively eliminated.

As in previous sections, this was accomplished by comparing time history data from the

zero-order and second-order dynamics integrators for increasingly smaller time steps

until the two solutions approximately matched. Figure 5 .102 presents two plots of roll

time history data for Mach 1.20 delta wing using initial roll angles of 40° and 10°. These

two plots show the solution converging to the same limit cycle wing-rock motion with an

amplitude of 23° and dimensionless frequency of 0.095.

60 cJ>

40

cj>o =40° 60 t
40 l

20 20

</Xi= 100

Figure 5.102: Roll time history data for the Mach 1.20 delta wing at a 30° angle of

attack.

For wing-rock cases, it is typically more enlightening to study a plot of roll

moment versus roll angle such as the plot presented in Figure 5.103. This plot illustrates

the driving physics behind the delta-wing's limit cycle rolling motion. Clockwise

oriented loops in the plot produce an unstable response, while counter-clockwise loops

have a stabilizing effect on the roll response. For an initial roll angle of 40°, the area of

counter-clockwise loops at the extreme values of roll angle is greater than the clockwise

loop at the center of the plot for smaller roll angles. This causes the amplitude of the

227

response to decay until it eventually reaches an equilibrium point where the unstable and

stable loops balance each other.

0.02 c,

-45 -30 -15 15 30 45

-0.01

-0.02

Figure 5.103: Plot ofroll moment coefficient versus roll angle for the Mach 1.20 delta

wing at a 30° angle of attack.

The last set of unsteady delta wing solutions is for a 10° angle of attack. In this

case, the same basic set of solver parameters is reused with different initial conditions.

Figure 5.104 presents a plot of roll time history data for this solution using an initial roll

angle of 40°, while Figure 5.105 presents the plot of roll moment versus roll angle from

the same solution. As expected this solution exhibits a stable response that eventually

converges to a neutral roll angle. In this case, the plot of roll moment versus roll angle

consists entirely of counter-clockwise, stabilizing loops, which become successively

smaller with time.

228

50 <I> cj>o = 40°
40

30

20

10 t*

0

-10 200

-20

-30

-40

Figure 5.104: Roll time history data for the Mach 1.20 delta wing at a 10° angle of

attack.

0.006 C 1

-45 45

<j>o =40°
-0.006

Figure 5.105: Plot ofroll moment coefficient versus roll angle for the Mach 1.20 delta

wing at a 10° angle of attack.

The results of this section show reasonable qualitative agreement with the

expected dynamic properties of a rolling delta wing. Further consideration should be

given to this problem to determine its sensitivity to grid resolution and overall size of the

computational domain. Some time was spent optimizing the grid for the initial steady

solutions, but only time step sensitivity was considered for the unsteady solutions.

229

5.2.6 Hovering Rotor

Our final validation problem investigates the unsteady dynamics of a hovering

rotor. This type of flow problem is consider to be suitable for Euler codes because the

essential physics are expected to be inviscid and separation does not typically occur.51

The geometry for this problem is the two-bladed rotor used in the experiments of

Caradonna and Tung.50 Since the publication of their original experimental results, this

rotor has been the basis of numerous computational simulations ranging from panel

methods52 to fully three-dimensional CPD solutions. 53•54 One might even consider this to

be the standard validation case for a non-inertial CPD solution considering the wealth of

computational data that is available for it.

The rotor consists of two cantilever-mounted, rectangular blades with NACA

0012 cross-sections. The blades are untwisted and untapered with an aspect ratio of six

and a precone of one-half degree. Figure 5.106 shows the cylindrical computational

domain and surface triangulation generated for this geometry, while Figure 5.107 shows a

close-up of the surface triangulation for the rotor. The total diameter of the rotor disk is

7.5 feet, the chord of the blades is 0.625 feet, and and the cut-out radius at the center of

the rotor is equal to one chord. The rotor is positioned in the computational domain such

that two-thirds of the volume is below the plane of the rotor for capturing the unsteady

wake that will develop in that region.

230

Figure 5.106: Layout of computational domain for hovering rotor.

Figure 5.107: Close-up of surface grid for hovering rotor.

The computational grids generated for this study consist of approximately 1.5

million elements. The highest density of elements are in the region below the plane of

the rotor for accurate representation of the wake. Initial tests with fewer elements

showed that the wake would not be accurately modeled, and the problem behaved more

23 1

like a simple rectangular wing m a non-uniform, linear velocity field. Boundary

conditions for the fourteen surfaces enclosing this domain are specified as follows:

surfaces 1 through 10 are solid walls and surfaces 11 through 14 are far-field boundaries.

Furthermore, the sharp edges at the two trailing edges of the rotor are specified as

singular since the local surface normal is undefined along those edges.

The geometry for the rotor is defined such that the collective pitch angle for the ·

rotor blades can be easily modified prior to generating the computational grid by

adjusting a single parameter in a spreadsheet. Our first solution will be for a hover case

with a tip Mach number of 0.520 and a collective pitch angle of two degrees. Figure

5.108 and Figure 5.109 present a summary of the solver control parameters and dynamics

input file used for this solution.

dt
gamma
mach
alpha
beta
ref dim
cfl
diss
nstp
ncyc
nout
idiss
isol
ipnt
istrt
iaero
ielast
idynm
ifree
a inf

0.040d0,
l.40d0,
0.520d0,
O.OdO,
O.OdO,
0.625d0,
0.60d0,
0.90d0,
10000,
16,
so,
1,
2,
1,
.false.,
.true.,
. false.,
.true.,
. false.,
l.OdO

Figure 5.108: Summary of solver control parameters for the hovering rotor with tip

Mach 0.520.

232

$ Position vector to origin of non-inertial frame (rx, ry, rz)
o. odo, o. odo, o. odo

$ Mass matrix for non-inertial frame (6 x 6)
l.OdO O.OdO O.OdO o.odo o.~d~ O.OdO
O.OdO l.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO l.OdO O.OdO O.OdO O.OdO
0.0dO O.OdO O.OdO l.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO l.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO l.OdO

$ Damping matrix for non-inertial frame (6 x 6)
l.OdO O.OdO O.OdO O.OdO 0.0dO O.OdO
O.OdO l.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO l.OdO O.OdO O.OdO 0.0dO
O.OdO O.OdO O.OdO l.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO l.OdO O.OdO
O.OdO O.OdO O.OdO o.odo O.OdO l.OdO

$ Stiffness matrix for non-inertial frame (6 x 6)
l.OdO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO l.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO l.OdO O.DdO O.OdO 0.0dO
O.OdO O.OdO O.OdO l.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO l.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO l.OdO

$!C's for non-inertial frame
0. Odo, 0. Odo, 0. OdO, 0. Odo,
0. Odo, 0. Odo, 0. OdO, 0. Odo,
o. odo, o. odo, o. odo, o. odo,

$ IBXD for non-inertial frame
1, 1, l, 1,

(6 positions, 6 rates, 6 accels)
O.OdO, O.OdO
O.OdO, 7.94501
O.OdO, O.OdO

(6)
l, 2

Figure 5.109: Dynamics input file for the hovering rotor with tip Mach 0.520.

In this case, we have disabled the usual free-stream velocity with ifree

. false., since the velocity field will be generated exclusively by spinning the

computational domain. The required tip Mach number is achieved by specifying mach

= O • 5 2 O, and then computing a rotational velocity that will produce a dimensionless

velocity of one unit at the tip of the rotor blade. The yaw rate that satisfies this condition

is 7.94501 degrees per second, which equates to a dimensionless rate of 0.16667. Given

this rate of rotation, the dimensionless time step chosen here equates to a resolution of

approximately 942 global steps for each complete revolution of the rotor blades.

Figure 5 .110 presents two plots of z-force time history data for this solution. The

first plot shows a close-up of the convergence characteristics exhibited by this problem.

After one-half revolution, we see a relatively large jump in the force time history data,

233

which coincides with the rotor blades' first encounter with the wake generated by the

opposite blade. The discrete jumps in the time history data continue every half revolution

until final convergence is achieved after approximately eight revolutions. Figure 5.111

shows the corresponding change in surface pressure distribution at the 0.68 span location

for three points along the convergence profile.

1 Cz 1 Cz

0.8 0.8

0.6

0.4

0.2

0 0.5 1.5 2 0
revolutions

2 4
revolutions

6 8

Figure 5.110: Plots of z-force time history for the hovering rotor with a 2° collective

pitch angle and a tip Mach number of0.520.

-0.8

-0.6

-0.4

-0.2

0

0.2

-0.1

cp

0
0
)C

0.1 0.3 0.5
x/c

0.7

o O.SRev

o 1 Rev

x 8Rev

• Experiment

r!R=0.68.

0.9 1.1

Figure 5.111: Comparison of surface pressure distributions after various revolutions for a

hovering rotor with a 2° collective pitch and tip Mach number of 0.520.

234

The results of Figure 5.110 and Figure 5.111 illustrate the importance of

allocating sufficient grid resolution to resolve the rotor wake. Preliminary tests with

fewer elements produced convergence profiles that behaved more like the impulsively

accelerated airfoil previously investigated in Section 5.1.7. Unfortunately, the grid

resolution required for this problem has quickly reached the effective limits of our

computer resources. The current problem consumes approximately 300 Meg of RAM

and requires 27 hours of CPU time on a 2.4 GHz Pentium 4 to complete one revolution.

Further refmement of the grid is impractical at this time, however the results of Figure

5.112 show reasonable agreement with the experimental data for all span stations.

-0.8 cp 0 Euler -0.8 CP 0 Euler

-0.6 • &perirnent -0.6 • &periment
.r ...

r/R =0.50 o°t•••• r/R =0.68
-0.4 \o•,,.o:~••0o -0.4 'o• 00"' ~ •• ,. o

0 ... =·, • 0 -~~ ••

-0.2
0

-0.2 •• 'II • 0 ••••
.. ti,

• ,t It
0 ... 0 .,

a I: ,,,
0.2 0.2 •
0.4 0.4

0

< ... - - .••• ... • -. . ..
0.6 : .: : ... 0.6 < - ... ·:.:. ·. :.:.. '
0.8 0.8

-0.1 0.1 0.3 0.5 0.7 0.9 1.1 -0.1 0.1 0.3 0.5 0.7 0.9 I.I
xlc xlc

-0.8 CP • Euler -0.8 cp 0 Euler

-0.6 • &periment
-0.6 0 • &periment

-0.4
,-. •• t r/R =0.80 .. ~ .. r/R =0.96
·...,-.: • •• ~ .# -0.4 ··-0·· .:..,-... ,• .. ! t 0. ~00

-0.2 . ~ ., -0.2 . ,.,., ..
t : . ····-· 0 ... 0 0
0 ... ' 0.2 0 •• 0.2 . ..

0.4 0.4 •
0.6 <::::.:: :.·.· 0.6 -·- - - ::::t• .··:.: ::, ... - ~-- -
0.8 0.8

-0.1 0.1 0.3 0.5 0.7 0.9 l.l -0.1 0.1 0.3 0.5 0.7 0.9 I.I
x/c xlc

Figure 5.112: Plot of surface pressure distribution for a hovering rotor with a 2°

collective pitch and tip Mach number of 0.520 after eight revolutions.

235

Our next solution will be for a hover case with a collective pitch angle of eight

degrees and tip Mach number of 0.439, which corresponds to yaw rate of 6.70743

degrees per second. Figure 5.113 presents two plots of z-force time history data for this

solution, and Figure 5.114 shows the corresponding change in surface pressure

distribution at the 0.68 span location for three points along the convergence profile. The

convergence trend is similar to the previous solution, except that final convergence is

achieved in fewer revolutions. Figure 5.115 presents a comparison of the converged set

of computed pressure distributions with the experimental values at four span stations.

Once again we have reasonable agreement between the computed and experimental

pressure distributions for all span stations. We expect that further refinement of the grid

would enhance the agreement with experiment for both the two-degree and eight-degree

solutions. Ideally, a grid similar to the fine grid used for the NACA 0012 verification

solution of Section 5.1.4 would be used for this problem. However, this would require an

estimated 24 million elements, which is obviously impractical at this time.

4 Cz 4 Cz

3 3

2 2

0 +-------+----+------+----+·--- 0 +----+----+----+---+-----!

0 0.5 1.5 2 0 2 3 4 5
revolutions revolutions

Figure 5.113: Plots of z-force time history for the hovering rotor with an 8° collective

pitch angle and a tip Mach number of0.439.

236

-1.4

-1

-0.6

-0.2

-0.1 . 0.1 0.3 0.5
xlc

o 0.5 Rev

"lRev

X 4Rev

• Experiment

r/R =0.68

0.7 0.9 1.1

Figure 5.114: Comparison of surface pressure distributions after various revolutions for a

-1.4 CP

-1

-0.6

-0.2

0.2

0.6

-0.1

-1.4 CP

-1

-0.6

-0.2

0.2

0.6

-0.1

hovering rotor with an S0 collective pitch and tip Mach number of 0.439.

.... · .. .

<---~··. "
~....

0.1 0.3 0.5
xlc

0.7

i~······-··· .. ·-·-······ ·-... - - ..

0.1 0.3 0.5
xlc

0.7

• Euler

• Experiment

r/R = 0.50

0.9 J.I

• Euler

• Experiment

r/R =0.80

. · .: ::: ·-
0.9 J.I

-1

-0.6

-0.2

0.2

0.6

-0.1

-1.4 l cp

.J 1 ..
-0.6

-0.2

0.2

0.6 ~
-0.1

. .

................
<~.-

0.1

•
'~ ...

•• .,

0.3

...

0.5
xlc

.. • 0 ••

......
.........

0.7

• Euler

• Experiment

. :·:·1-

0.9 I.I

• Euler

• Experiment

r/R =0.96

o• ~•oo .. ._.: ~.,,,.

~· Hoo C:: '°°°o
O lib. 0 . -

0.1

. - ..

0.3 0.5
x/c

. -·
0.7 0.9 I.I

Figure 5.115: Plot of surface pressure distribution for a hovering rotor with an S0

collective pitch and tip Mach number of 0.439 after five revolutions.

237

Our next test with this model will use the transpiration boundary condition to

simulate the previous two solutions using a baseline grid with a zero degree collective

pitch. The required collective pitch angle for each solution is applied through an user

generated mode shape that represents a uniform twisting of each blade to the proper

orientation. We then perform an elastic solution with the structure clamped at an initial

generalized displacement of one unit. Figure 5.116 presents a companson of the

computed surface pressure coefficient for a two degree collective pitch usmg

transpiration to simulate the collective pitch angle and the previous solution where the

blades were actually twisted.

-0.8 cp

-0.6

-0.4

-0.2

0

o Actual

x Transp

r/R =0.50

0.2 ~ :

0.4 L------~--~---
-0.1

-0.8 C P

-0.6

-0.4

0.1 0.3

~ ..
~~Xx

0.5
x!c

-~ox ~>O..
~ ~X:tr,;;><o

0.7 0.9

o Actual

x Transp

r!R = 0.80

-0.21 i ~~~-,
oJ * --~,:ii.a

I O ';g

0.2~ o ~
i

1.1

0.4 -l·--··-·-X-------,-------------

-0.1 0.1 0.3 0.5
x/c

0.7 0.9 l.l

-0.8 Cµ

-0.6

-0.4

-0.2

0

0.2

0.4

-0.1

-0.8 cp

-0.6

-0.4

-0.2

0

0.2

0.4

-0.l

X

0.1 0.3 0.5
x/c

0

''b ~1*~:Sx>&

0.7

o Actual

X Transp

0.9

o Actual

x Transp

r/R =0.96

Sl~

j '~
0.1 0.3 0.5 0.7 0.9

x/c

LI

LI

Figure 5.116: Comparison of computed surface pressure distribution for a hovering rotor

using an actual and simulated 2° collective pitch angle for a tip Mach number of 0.520.

238

The results of Figure 5.116 are for the fully converged case after approximately

eight revolutions of the rotor blade. Figure 5.117 presents a similar comparison for an

eight degree collective pitch after approximately one revolution of the rotor blades. Even

for this relatively large pitch angle, the transpiration solution is in reasonable agreement

with the actual twist case. The primary comparison for both of these solutions is between

the two sets of computational results. We are interested in the extent to which the

transpiration boundary condition is capable of simulating an actual deformation of the

surface grid. Hence, the experimental results have been neglected from these plots.

0.4

-0.1 0.1 0.3 0.5 0.7 0.9 I.I
x/c

-1.6 Cµ o Actual

X x Transp

-1.2

-0.8

-0.4

0

0.4 +--U---.---~-----.---~--.-----,
-0.1 0.1 0.3 0.5

x/c
0.7 0.9 I.I

-1.2

-0.8

-0.4

0

0.4

-0.1 0.1

-1.2 CP

-0.8

-0.4

0

0.4

0.8

-0.1 0.1

0.3

0.3

0.5
xlc

0.5
xlc

0.7

0.7

0.9 I.I

oActual J
x Transp

r/R =0.%

0.9 I.I

Figure 5.117: Comparison of computed surface pressure distribution for a hovering rotor

using an actual and simulated 8° collective pitch angle for a tip Mach number of 0.439.

239

CHAPTER6

6. CONCLUSIONS

The general goal of this research was to develop an efficient finite element

methodology for non-inertial unsteady CFD solutions that would serve as the foundation

for aeroservoelastic analysis of a super-maneuvering or spinning structure. To achieve

this goal, the STARS ASE analysis routine was re-formulated based on a space-time

finite element formulation for the compressible Euler equations expressed in non-inertial

coordinates. The new algorithm takes advantage of the dissipation model and boundary

conditions from the original STARS unsteady CFD algorithm, modified to account for a

non-inertial coordinate system. This includes a modified transpiration boundary

condition for simulating elastic deformations of the surface grid in a rotating frame of

reference.

Additional enhancements in the new solver include improved structural

integration techniques, increased stability for small time steps, and a general

improvement in computational efficiency. We conclude this research effort with a

general discussion of results to summarize experiences gained from analyzing the

numerous problems presented in Chapter 5. In addition, the final section of this chapter

outlines the remaining challenges for future work.

240

6.1 Discussion of Results

The verification and validation of a three-dimensional, unsteady CFD algorithm is

never totally finished. Rather it is an on going process where we eventually achieve a

certain level of confidence in the accuracy and validity of the algorithm, and that level of

confidence continues to rise asymptotically as more verification and validation work is

completed successfully. When we consider the number of components, parameters and

boundary conditions, as well as the wide range of flow regimes that must be tested,

verification and validation of the algorithm for all possible solutions is an imposing task.

However, the verification and validation results presented in Chapter 5 make a

compelling case for the accuracy and validity of the numerical algorithm developed here.

The verification cases analyzed here illustrate the performance and applicability

of the algorithm for a wide range of flow regimes and a variety of different geometries.

These solutions were for carefully controlled problems where the exact theoretical

solution was known beforehand. Unfortunately, exact theoretical solutions for

complicated three-dimensional, unsteady flow problems are rare, _ so most of our

verifications problems were essentially two-dimensional solutions with a trivial third

dimension used only to define the thickness of the computational domain. Regardless,

these verification solutions demonstrate the accuracy of the implemented algorithm under

carefully executed grid convergence studies as well as time step refinement studies for

unsteady solutions. In all cases, convergence to the exact theoretical solution has been

demonstrated with the exception of some difficulties resolving shocks at hypersonic

Mach numbers, which continues to remain beyond of the realistic limit of the current

algorithm.

241

The dissipation model of the current algorithm seems best suited for transonic and

subsonic applications, although the rate of convergence is relatively slow when using a

compressible algorithm to analyze subsonic flow fields. Subsonic solutions also seem to

require a higher grid density than comparable transonic solutions to accurately resolve

relevant flow gradients. However, subsonic verification solutions do demonstrate

superior agreement between computed and theoretical results given sufficient refmement

of the computational grid.

The validation solutions analyzed here demonstrate the applicability of the current

algorithm for more complicated three-dimensional steady and unsteady problems.

Difficulties arise in the validation of aeroelastic solutions where modeling errors for

complicated fluid-structure interactions accumulate into the final result. Significant

tuning of aeroelastic parameters within the level of uncertainty is typically necessary to

achieve even a reasonable agreement with experiment. As a result, obtaining high quality

experimental results that include a proper uncertainty analysis will continue to be one of

the primary challenges in validating aeroelastic CFD algorithms.

6.2 Future Challenges

Brute force unsteady CFD solutions for complicated three-dimensional aeroelastic

problems, such as those presented in Section 5.2, will continue to be impractical without

significant reduction of the overall CPU requirements for such a solution. It is estimated

that the verification and validation problems presented here required well over 12,000

CPU hours to generate. This includes failed solutions used to determine grid resolution

and unsteady time step requirements for each problem, as well as experimentation with

242

the other solver control parameters that are used to tune the convergence and accuracy of

the solution. Obviously, the main burden associated with time-marched aeroelastic CFD

solutions is the processing time required to run multiple convergence and tuning solutions

as well as multiple unsteady solutions for interpolating the instability boundary.

Although processing power has been increasing at an exponential rate since the

introduction of the personal computer 25 years ago, the increased power has simply

increased the size of the problems we are trying to solve. It is expected that we will

continue to use up increases in processor speeds by increasing the grid density of our

current problems, since we are constantly striving for more accurate solutions. The rotor

model of Sectjon 5.2.6 is a perfect example of a problem where we could easily add

several million more elements to improve the wake resolution and overall accuracy of the

solution. Hence, it will not be possible to simply wait for processor speeds to catch-up

with the size of our current problems. With this in mind, we conclude this research effort

with suggestions for improving the performance and accuracy of the solution scheme as

well as extending its current capabilities.

• Parallel Processing: In the near future, the most significant advances in

processing power will likely be gained from parallel processing. This trend is

already becoming apparent in the interactive entertainment industry, where the

next generation of Sony's consumer hardware may be based on the new "cell

microprocessor" technology being developed jointly by Sony, IBM and Toshiba.

This would mark the first intrusion of large scale parallel processing into the

mainstream consumer market. Of course, even the most basic personal computer

benefits from the performance savings of splitting some processing between the

243

graphics processor and CPU. In order to benefit from the trend toward parallel

processing, our CFD algorithm will need to be written to take advantage of the

extra processors by splitting the computational work into multiple tasks or

threads. This area of research has the potential to provide the most significant

reduction in overall processing time for a single CFD solution.

• Convergence Requirements: Iterative convergence of the unsteady solution for

each time step is currently controlled by two constant control parameters: cfl, .
which affects the stability and rate of convergence, and ncycl, which simply

specifies the number of iterative cycles for each global step. The choice of values

for these two constants has a significant impact on the accuracy and processing

requirements for an unsteady solution. Using fewer iterative cycles significantly

reduces the cumulative processing time for an unsteady solution at the expense of

degrading the overall accuracy of the solution, and the opposite is true when using

more iterative cycles. However, there is a point of diminishing return, where

extra iterative cycles will require extra processing time without significantly

improving the overall accuracy of the solution. With the current implementation,

the only precise method for choosing an acceptable value for the iterative

convergence parameters is to run multiple solutions with different parameters and

compare results. The solution residuals output by the solver are not a sufficient

indicator of the level of convergence because it is unclear how small the residuals

must be for the solution to be adequately converged. Future efforts should focus

on determining a generic convergence criteria using a properly scaled set of

solution residuals that is an accurate indicator of how much the solution is

244

actually changing for each iterative cycle. Given a proper convergence criteria,

the number of iterative cycles could then be variable, such that the minimum

number of iterative cycles are used for each global step, and the solution runs at

the optimum accuracy to performance ratio.

• Time Step Requirements: Even if the unsteady CFD solution is properly

converged for each global step, we have observed that the accuracy of time

marched aeroelastic solutions is dependent on the sensitivity of the structural

integration to the global time step. This often means that we must use smaller

global time steps than would normally be necessary for a time-accurate unsteady

CFD solution with a rigid structure. It also means that several solutions must be

run to determine the optimum time step for each problem. Future efforts should

focus on developing a general technique for identifying the optimum time step for

each problem without requiring multiple unsteady CFD solutions, as well as

developing improved numerical algorithms for increasing the size of the

minimum time step. It should be possible to use a simplified aerodynamic model

along with the actual structural parameters for each problem to estimate the

expected integration error and identify the largest allowable time step.

• Grid Generation: The accuracy of our solutions is often limited by our ability to

generate high quality computational grids that do not exceed the available

computer resources. It is necessary to find a balance between adding more

elements to gain accuracy and removing more elements to save processing time.

Furthermore, the processing time required to generate these grids, which was as

high as eight hours for the largest problems evaluated here, has not been included

245

in the estimated processing cost provided at the beginning of this section. The

current set of grid generation tools used in conjunction with STARS are out dated

and should be updated or replaced with newer tools that use faster grid generation

algorithms and use interfaces that allow better control over the local concentration

of elements. The generic data format used by the new CFO algorithm was

designed to allow easier conversion of models from the data format used by any

readily available grid generation tool. Of course, we will always be limited by

our own ability to accurately model the complex features of a three-dimensional

aircraft, which is why most research problems are restricted to simple wing

geometries.

• Improved Dissipation Model: As discussed in Section 3.6, some sort of artificial

stabilization is a necessity for any discrete solution to the fluid dynamics

equations of motion. Despite the general agreement of the solutions presented

here with theoretical and experimental results, the artificial dissipation model

adopted for this research effort is a source of error in our weighted residual

formulation because the exact solution does not satisfy the algorithmic residual. 22

Future research into improved s_tabilization methods should focus on identifying

residual based dissipation models that are suitable for large-scale, unsteady CFD

solutions. Residual based methods maintain the consistency of the finite element

formulation and would eliminate a source of error in the algorithm.

• Rigid-Body Dynamics: A fully coupled rigid;.body dynamics solver was not

implemented for this work due to the need for further research into optimized

non-inertial solutions for flexible structures. The non-inertial form of the

246

transpiration boundary condition implemented here should continue to be

applicable to such a solution. The primary challenge will be updating the center

of gravity for the structure, as well as the origin of the rotating coordinate system,

if necessary.

• Aerodynamic Modeling: One of the primary limitations of aeroelastic CFD

solutions is the processing time necessary to complete not just one unsteady CFD

solution for a complicated three-dimensional problem, but multiple solutions at

various dynamic pressures. Aerodynamic modeling techniques used in

conjunctions with unsteady CFD results are beginning to make this limitation

essentially disappear. The primary challenge will be to extend such a technique to

the current non-inertial formulation for future research into aeroelastic solutions

for spinning structures. Even if non-inertial aeroelastic solutions are neglected,

such a technique could be valuable for extracting stability derivatives from a set

of unsteady CFD time history data for a rigid-body non-inertial solution.

247

BIBLIOGRAPHY

1. Hunter, J.P. and Arena, A.S., "An Efficient Method for Time-Marching Supersonic
Flutter Prediction Using CFD," A/AA Paper 97-0733, January 1997.

2. Ballhaus, W.F. and Goorjian, P.M., "Computation of Unsteady Transonic Flows by
the Indicial Method," A/AA Journal, February 1978, pp. 117-124.

3. Cowan, T.J., Arena, A.S., and Gupta, K.K., "Accelerating CPD-Based Aeroelastic
Predictions Using System Identification," A/AA Paper 98-4152, August 1998.

4. Gupta, K.K., "An Integrated, Multidisciplinary Finite Element Structural, Fluids,
Aeroelastic, and Aeroservoelastic Analysis Computer Program," Users and
Verification Manual, December 1995.

5. Gupta, K.K., "Development of a Finite Element Aeroelastic Analysis Capability,"
Journal of Aircraft, Vol. 33, No. 5, September-October, 1996: pp. 995-1002.

6. Stephens, C.H., Arena, A.S., and Gupta, K.K., "CPD-Based Aeroservoelastic
Predictions With Comparisons To Benchmark Experimental Data," A/AA Paper 99-
0766, January 1999.

7. Stephens, C.H., and Arena, A.S., "Application of the Transpiration Method for
Aeroservoelastic Prediction Using CFD," A/AA Paper 98-2071, April 1998.

8. Kandil, O.A., and Chuang, H.A., "Unsteady Transonic Airfoil Computation Using
Implicit Euler Scheme on Body-Fixed Grid," A/AA Journal, Vol. 27, No. 8, August
1989:pp. 1031-1037.

9. Kandil, O.A., and Chuang, H.A., "Computation of Vortex-Dominated Flow for a
Delta Wing Undergoing Pitching Oscillation," A/AA Journal, Vol. 28, No. 9,
September 1990: pp. 1589-1595.

10. Roache, P.J., Verification and Validation in Computational Science and Engineering,
Hermosa Publishers, 1998.

11. Moin, P. and Kim, J., "Tackling Turbulence with Supercomputers," Scientific
American, January 1997: pp. 62-68.

12. Moin, P. and Mahesh, K., "Direct Numerical Simulation: A Tool in Turbulence
Research," Annual Review of Fluid Mechanics, Vol. 30, 1998: pp. 539-579.

248

13. Le, H., Main, P., and Kim, J. "Direct Numerical Simulation of Turbulent Flow Over a
Backward Facing Step," Journal of Fluid Mechanics, Vol. 330, January 1997: pp.
349-374.

14. Steger, J.L. and Bailey, H.E., "Calculation of Transonic Aileron Buzz," AIAA Paper
79-0134, 1979.

15. Nelson, R.C., Flight Stability and Automatic Control, Second Edition, McGraw-Hill,
1998.

16. Peiro, J., "A Finite Element Procedure for the Euler Equations on Unstructured
Meshes," Ph.D. Thesis, University College of Swansea, September 1989.

17. Shakib, F., "Finite Element Analysis of the Compressible Euler and Navier-Stokes
Equations," Ph.D. Dissertation, Stanford University, November 1988.

18. Morgan, K., Peraire, J, and Peir6, J., "Unstructured Grid Methods for the Simulation
of 3D Transient Flows," Final Report NASA Research Grant No. NAGW-2962, Jun
1994.

19. Peiro, J., Peraire, J., and Morgan, K., "FELISA System Reference Manual: Basic
Theory," December 3, 1993.

20. Shapiro, R.A., and Murman, E.M., "Higher-Order and 3-D Finite Element Methods
for the Euler Equations," AIAA Paper 89-0655, 1989.

21. Katz, J. and Plotkin, A., Low Speed Aerodynamics: From Wing Theory to Panel
Methods, McGraw-Hill, Inc., 1991.

22. Hughes, T.J.R., "Recent Progress in the Development and Understanding of SUPG
Methods with Special Reference to the Compressible Euler and Navier-Stokes
Equations," International Journal for Numerical Methods in Fluids, Vol. 7, 1987.

23. Shakib, F., Hughes, T.J.R., and Johan, Z., "A New Finite Element Formulation for
Computational Fluid Dynamics: X. The Compressible Euler and Navier-Stokes
Equations," Computer Methods in Applied Mechanics and Engineering, Vol. 89,
1991.

24. Masud, A. and Hughes, T.J.R., "A Space-Time Galerkin/Least-Squares Finite
Element Formulation of the Navier-Stokes Equations for Moving Domain Problems,"
Computer Methods in Applied Mechanics and Engineering, Vol. 146, 1997.

25. Aliabadi, S.K. and Tezduyar, T.E., "Space-Time Finite Element Computation of
Compressible Flows Involving Moving Boundaries and Interfaces," Computer
Methods in Applied Mechanics and Engineering, Vol. 107, 1993.

26. Chandrupatla, T.R. and Belegundu, A., Introduction to Finite Elements in
Engineering, Prentice Hall, 1991.

249

27. Jinyun, Y., "Symmetric Gaussian Quadrature Formulae for Tetrahedronal Regions,"
Computer Methods in Applied Mechanics and Engineering, Vol. 43, 1984.

28. Keast, P., "Moderate Degree Tetrahedral Quadrature Formulas," Computer Methods
in Applied Mechanics and Engineering, Vol. 55, 1986.

29. Shakib, F. and Hughes, T.J.R., "A New Finite Element Formulation for
Computational Fluid Dynamics: IX. Fourier Analysis of Space-Time Galerkin/Least
Squares Algorithms," Computer Methods in Applied Mechanics and Engineering,
Vol. 87, 1991.

30. Jameson, A., "Time Dependent Calculations Using Multigrid, with Applications to
Unsteady Flows Past Airfoils and Wings," AIAA Paper 91-1596, 1991.

31. Hughes, T.J.R., "Finite Element Methods for Fluids," AGARD Special Course on
Unstructured Grid Methods for Advection Dominated Flows, AGARD-R-787, May
1992.

32. Le Beau, G.J., Ray, S.E., Aliadabi, S.K., and Tezduyar, T.E., "SUPG Finite Element
Computation of Compressible Flows with the Entropy and Conservation Variables
Formulations," Computer Methods in Applied Mechanics and Engineering, Vol. 104,
1993.

33. NP ARC Alliance, "Performing a Grid Convergence Study," CFD Verification and
Validation Website, http://www.grc.nasa.gov/www/wind/valid/gridconv.html.

34. NPARC Alliance Validation Archive, "Prandtl-Meyer 15 Degree Comer Expansion
at Mach 2.5," http://www.grc.nasa.gov/www/wind/valid/pm15/pml5.html.

35. Abbott, I.H. and Von Doenhoff, A.E., Theory of Wing Sections: Including a Summary
of Airfoil Data, Dover Publications, New York: 1959.

36. NPARC Alliance Validation Archive, "10 Degree Cone at Mach 2.35,"
http://www.grc.nasa.gov/www/wind/valid/cone 10/ cone 1 O.html. -

37. Wagner, H. "Uber die Entstehung des Dynamischen Auftriebes von Tragflugeln,"
Zeitschriftfur Angewandte Mathematik und Mechanik, Vol. 5, No. 1, pp. 17-35, 1925.

38. Katz, J. "Calculation of the Aerodynamic Forces on Automotive Lifting Surfaces,"
ASME Journal of Fluids Engineering, Vol. 107, pp. 438-443, 1985.

39. Bisplinghoff, R., Ashley, H., and Hal:fman, R., Aeroelasticity, Dover Publications,
Inc., 1996.

40. Cook, P.H., McDonald, M.A. and Firmin, M.C.P., "Aerofoil RAE 2822 - Pressure
Distributions, and Boundary Layer and Wake Measurements," Experimental Data
Base for Computer Program Assessment, AGARD Report AR 138, 1979.

250

41. Lee-Rausch, E.M. and Batina, J.T., "Calculation of AGARD Wing 445.6 Flutter
Using Navier-Stokes Aerodynamics," AIAA Paper 93-3476, American Institute of
Aeronautics and Astronautics, 1993.

42. Stephens, C.H., "CFD-Based Aeroservoelastic Predictions on a Benchmark
Configuration Using the Transpiration Method," Masters Thesis, Oklahoma State
University, 1998.

43. Rivera, J.A., Dansberry, B.E. and Durham, M.H., "Pressure Measurements on a
Rectangular Wing with a NACA 0012 Airfoil During Conventional Flutter," NASA
TM 104211, National Aeronautics and Space Administration, 1992.

44. Rivera, J.A., Dansberry, B.E. Bennett, R.M. and Durham, M.H., "NACA 0012
Benchmark Model Experimental Flutter Results With Unsteady Pressure
Distributions," NASA TM 107581, National Aeronautics and Space Administration,
1992.

45. Waszak, M.R., "Modeling of the Benchmark Active Controls Technology Wind
Tunnel Model for Application to Flutter Suppression," A/AA Paper 96-3437,
American Institute of Aeronautics and Astronautics, 1996.

46. Naudascher, E. and Rockwell, D., Flow~Induced Vibrations: An Engineering Guide,
A.A. Balkema Publishers, 1993.

47. Arena, A.S., "An Experimental and Computational Investigation of Slender Wings
Undergoing Wing Rock," Ph.D. Dissertation, Department of Aerospace and
Mechanical Engineering, Notre Dame, April 1992.

48. Lee, E.M. and Batina, J.T., "Conical Euler Methodology for Unsteady Vortical Flows
About Rolling Delta Wings," AIAA Paper 91-0730, January 1991.

49. Gordnier, R.E. and Visbal, M.R., "Numerical Simulation of Delta-Wing Roll," A/AA
Paper 93-0554, January 1993.

50. Caradonna, F.X. and Tung, C. "Experimental and Analytical Studies of a Helicopter
Rotor in Hover," NASA TM 81232, September 1981.

51. Caradonna, F.X. and Tung, C. "Finite-Difference Computations of Rotor Loads,"
NASA TM86682, April 1985.

52. Katz, J. and Maskew, B., "Unsteady Low-Speed Aerodynamic Model for Complete
Aircraft Configurations," Journal of Aircraft, pp. 302-310, April 1988.

53. Yang, G. and Zhuang, L., "Numerical Simulation of Rotor Flow in Hover," Journal
of Aircraft, Vol. 37, No.2, pp. 221-226, March-April 2000.

251

54. Modi, A., Sezer-Uzol, N., Long, L.N. and Plassmann, P.E., "Scalable Computational
Steering System for Visualization of Large-Scale CFD Simulations," A/AA Paper
2002-2750, June 2002.

252

APPENDICES

253

APPENDIX A: Summary of2-D File Formats

This Appendix provides a summary of the input/output file formats used by the

two-dimensional CPD solver developed for this research.

The following input files are defined:

• case. g2d (required) contains the geometry data structures representing the
computational mesh as required by the flow solver. (ASCII)

• case. con (required) contains values for the solver control parameters and flow
conditions. (ASCII)

• case. unk (optional) contains the nodal values of the primitive flow variables
(density, velocity, and pressure) for each node of the computational mesh to be
used as the initial conditions for the flow solution. (Binary)

• case. dyn (optional) contains the non-inertial matrices and initial conditions as
required for a dynamic solution. (ASCII)

• case. vec (optional) contains the elastic mode matrices, initial conditions, and
vectors for the boundary surfaces as required for an aeroelastic solution. (ASCII)

The following output files are defined:

• case. unl contains the nodal values of the primitive flow variables (density,
velocity, and pressure) for each node of the computational mesh. (Binary)

• case. rsd contains a history of the solution residuals for the conservation
variables (density, momentum, and total energy). (ASCII)

• case. lds contains a history of the dimensionless aerodynamic forces acting on
the solid walls of the CPD geometry. (ASCII)

• xd . da t contains a history of the non- inertial displacements, velocities, and
accelerations for a dynamic solution. (ASCII)

• xn . da t contains a history of the generalized displacements and velocities for an
unsteady, aeroelastic solution. (ASCII)

254

Geometry Input File (case. g2d)

Basic File Format

Line of Text

nnd nel nsg nbe nbp nwl nsd

Line of Text

(LBE(i), i=l,6

Line of Text

COOR(i,l) COOR(i,2)
(i l, ... ,nnd)

Line of Text

IELM(i,l) IELM(i,2) IELM(i,3)
(i = l, ... ,nel

Line of Text

ISEG(i,l) ISEG(i,2)
(i l, .. ,,nsg)

Line of Text

IBEL(i,l) IBEL (i,2)
(i l, ... ,nbe)

Comments

• This is a plain text (ASCII) file.

Definition of Terms

nnd : (int) number of nodes
nel : (int) number of elements
nsg : (int) number of segments
nbe : (int) number of boundary elements
nbp: (int) number of boundary points
nwl: (int) number of wall nodes
nsd: (int) number of singular nodes

LBE (i) : (int) boundary element
starting/stopping indexes for three BC types

COOR (i, 1) : (real) x-coordinate for node i
COOR (i , 2) : (real) y-coordinate for node i

IELM (i, 1) : (int) node 1 for element i
IELM (i , 2) : (int) node 2 for element i
IELM (i , 3) : (int) node 3 for element i

I SEG (i , 1) : (int) node 1 for segment i
ISEG (i, 2) : (int) node 2 for segmenti

IBEL (i , 1) : (int) node 1 for boundary elem. i
IBEL (i, 2) : (int) node 2 for boundary elem. i
IBEL (i, 3) : (int) boundary curve containing
boundary element i

• Nodal data is sorted such that the first nwl nodes are defined as solid wall nodes.
Out of the first nwl nodes, the last nsd nodes are defined as singular nodes.

• The nodal coordinates in this file are treated as dimensional values and are non
dimensionalized using the reference dimension specified in the solver control file.

• The element connectivity data must define elements that are oriented clockwise.
• Boundary element data is sorted based on the starting/stopping indexes for the

three BC types, i.e. boundary elements LBE (1) through LBE (2) are solid wall
elements, LBE (3) through LBE (4) are symmetry elements, and LBE (s)

through LBE (6) are far-field elements.

• The program makeg2d is used to convert a standard STARS surface triangulation
file and modified boundary conditions file into an appropriately sorted two
dimensional geometry file.

255

Sample File

$ nnd, nel, nsg, nbe, nbp, nwl, nsd
8 6 13 8 8 3 0

$ LBE (6)
1 2 3 2 3 8

$ Nodal coordinates
-.lOOOOOE+Ol -.lOOOOOE+Ol
O.lOOOOOE+Ol -.lOOOOOE+Ol
O.OOOOOOE+OO -.lOOOOOE+Ol
O.lOOOOOE+Ol O.lOOOOOE+Ol
-.lOOOOOE+Ol O.lOOOOOE+Ol
O.lOOOOOE+Ol O.OOOOOOE+OO
O.OOOOOOE+OO O.lOOOOOE+Ol
-.lOOOOOE+Ol O.OOOOOOE+OO

$ Element connectivity
1 3 8
3 2 6
5 8 7
6 4 7
8 3 6
6 7 8

$ Segment connectivity
1 3
1 8
2 3
2 6
3 8
3 6
4 6
4 7
5 8
5 7
6 7
6 8
7 8

$ Boundary edge data
1 3
3 2
2 6
6 4
4 7
7 5
5 8
8 1

256

Solver Control Input File (case. con)

Basic File Format Definition of Terms

&control dt : (real) dimensionless global time step
gamma: (real) ratio of specific heats
diss: (real) dissipation factor or constant
cfl: (real) local time step stability factor

dt
gamma
diss
cfl

mach
alpha
ref dim

nstp
nout
ncyc
isol
idiss
ipnt

istrt
iaero
idynm
ielast
ifree
iforce

nr
a inf
rho inf

I

O.ldO,
1. 4d0,
l.OdO,
O.SdO,

0.6d0,
O.OdO,
l.OdO,

100,
50,
3,
0,
0,
1,

.false.,

. false.,

.false.,

. false.,

.true.,

. false.,

0,
1. OdO,
1. OdO,

mach: (real) free-stream mach number
alpha: (real) free-stream angle of attack
ref dim: (real) reference dimension

nstp: (int) total solution steps
nout: (int) output frequency, steps/output
ncyc : (int) iterative cycles per solution step
isol: (int) CFD solution type
idiss: (int) dissipation type
ipnt: (int) number of points for numerical
integration of flux/source vectors

istrt: (logical) restart flag
iaero: (logical) aerodynamic forces flag
idynm: (logical) dynamic/non-inertial flag
ielast: (logical) elastic flag
ifree: (logical) free-stream velocity flag
iforce: (logical) external force flag

nr : (int) number of elastic modes
ainf: (real) dimensional free-stream sonic speed
rhoinf: (real) dimensional free-stream density

Comments

• This is a plain text (ASCII) file formatted as a Fortran namelist.
• The default values for each parameter are given in the basic file format above.
• The global time step is only used for unsteady solutions.
• Appropriate values for the dissipation factor are in the range 0.0 < diss $ 2.0.

Some dissipation is required to stabilize the solution, but too much dissipation
will corrupt the solution and possibly be a destabilizing influence.

• The local time step stability factor is a safety factor used to compute local time
steps for each solution step. For steady solutions, a stability factor of 0.8 is
typically acceptable for most problems. For unsteady solutions, the stability
factor is typically in the range 0.3 $ cfl $ 0.8.

• The values of refdim, mach, ainf, and rhoinf are used to non
dimensionalize all values read in by the flow solver.

• The free-stream angle of attack is ignored for dynamic (non-inertial) problems.

257

• The number of iterative cycles should be set to 3 for steady solutions. For
unsteady solutions, use a sufficient number of cycles to allow for an appropriate
level of convergence at each step.

• There are four available CFD solution types defined as follows:
o isol = 0 is a steady solution (not time accurate)
o isol = 1 is a first-order unsteady solution
o isol = 2 is a second-order unsteady solution
o isol = 3 is a supersonic piston perturbation solution

• There are two available dissipation types defined as follows:
o idiss = 0 is a low order dissipation
o idiss = 1 is a high order dissipation with gradient limiters

• The low-order dissipation is typically overly diffuse and should be used in
conjunction with low values of the dissipation factor. Low-order dissipation
works best for problems without strong vortices and for supersonic/hypersonic
flows.

• The high-order dissipation is more CPU intensive than the low-order dissipation
and less stable. Larger values for the dissipation factor are typically required for
stabilization. The high-order dissipation works best for subsonic to transonic
flows with strong gradients or vortices. Rotating domains will typically require
high-order dissipation to resolve the circulating pattern of the relative flow
velocities.

• There are two types of numerical integration defined as follows:
o i pn t = 1 uses a one-point gauss quadrature
o ipnt = 3 uses a three-point symmetric gauss quadrature

• When the restart flag is set to . true . , the solver will read one set of solution
unknowns from the case. unk file and apply this set of unknowns as the initial
conditions for the new iterative solution.

• A restarted solution' assumes that the time gradient of the initial state is zero, i.e.
the solution stored in the case . unk file is a converged, steady state solution.
This has a significant impact on the second-order unsteady solution since it relies
on two sets of solution unknowns for advancement to the next time step, i.e. a
second-order unsteady solution should not be restarted from the last time step of a
similar unsteady solution that was stopped because both sets of unsteady data
from the last solution step are not available for accurate evaluation of the time
gradients in the flow.

• If the free-stream velocity flag is set to . false . , the free-stream velocity is set
to zero, and relative flow velocities must be generated through dynamic rotation
or translation of the non-inertial coordinate system.

• If the external force flag is set to . true . , the solver will read the user defined
external force vector for each global time step from the input file case. frc. If
the solver reaches the end of the input file before completing the solution, the last
force vector in the file carries over to each of the remaining global time steps if it
was non-zero.

258

Solution Unknowns Input/Output File (case. un*)

Basic File Format

nnd gam xmi alp ref t

((UN (i, j} , i=l, nnd) , j =1, 5

Comments

• This is an unformatted (binary) file.

Definition of Terms

nnd: (int) number of nodes
gam: (real) ratio of specific heats
xmi : (real) free stream mach number
alp: (real) free-stream angle of attack
ref: (real) reference dimension
t : (real) dimensionless time

UN (i, 1} : (real) density for node i
UN (i , 2} : (real) x-velocity for node i
UN (i , 3 } : (real) y-velocity for node i
UN (i, 4} : (real) pressure for node i
UN (i, 5} : (real) enthalpy for node i

• The solution unknowns stored in this file are dimensionless quantities.
• For dynamic (non-inertial) problems, the solution unknowns stored in this file are

relative quantities referenced to the body-fixed coordinate system.

259

Dynamic Mesh Input File (case . dyn)

Basic File Format

Line of Text

(RO(i), i=l,2

Line of Text

((RMl (i , j) , j = 1 , 3) , i = 1 , 3)

Line of Text

((RCl(i,j), j=l,3), i=l,3)

Line of Text

((RKl (i , j) , j = 1 , 3) , i = 1 , 3)

Line of Text

x, y, q, vx, vy, vq, ax, ay, aq

Line of Text

(IBXD(i), i=l,3)

Comments

• This is a plain text (ASCII) file.

Definition of Terms

RO (1) : (real) x-coordinate for origin of rotation
RO (2) : (real) y-coordinate for origin of rotation

RMl (i, j) : (real) dimensional mass matrix
RCl (i, j) : (real) dimensional damping matrix
RKl (i, j) : (real) dimensional stiffness matrix

x: (real) initial x-position of coord. system
y: (real) initial y-position of coord. system
q: (real) initial orientation of coord. system
vx : (real) initial x-velocity of coord. system
vy: (real) initial y-velocity of coord. system
vq: (real) initial angular velocity of coord. system
ax: (real) initial x-acceleration of coord. system
ay: (real) initial y-acceleration of coord. system
aq: (real) initial angular accel. of coord. system

IBXD (1) : (int) dynamics flag for x-DOF
IBXD (2) : (int) dynamics flag for y-DOF
IBXD (3) : (int) dynamics flag for rotational DOF

• All values entered into this file should be dimensional. The solver will
automatically non-dimensionalize the values using the reference conditions
specified in the solver control file.

• The vector defining the origin of rotation is subtracted directly from the nodal
coordinates defined in the geometry input file after it is non-dimensionalized by
the reference dimension.

• The mass matrix defined in this file cannot be singular.
• Initial conditions for the two translational degrees of freedom are specified

relative to the inertial coordinate system, i.e. as seen by a stationary observer on
the ground.

• Initial conditions for the rotational degree of freedom should have units of
degrees, degrees/sec, etc.

• The dynamics of each degree of freedom is controlled separately using the
following values for IBXD:

o IBXD = 0 is a free/forced response calculation, .i.e. uses mass, stiffness,
and damping to compute position, velocity, and acceleration of system.

260

o IBXD = I is a clamped condition, i.e. hold at initial position with zero
velocity and acceleration.

o IBXD = 2 is a constant acceleration; uncoupled response, i.e. integrates
acceleration and velocity to compute new position.

261

Sample File

$ Position vector to origin of non-inertial frame (rx, ry)
O.OdO O.OdO

$ Mass matrix for non-inertial frame (3 x 3)
l.OdO O.OdO O.OdO
O.OdO l.OdO O.OdO
O.OdO O.OdO l.OdO

$ Damping matrix for non-inertial frame (3 X 3)
O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO

$ Stiffness matrix for non-inertial frame (3 X 3)
l.OdO O.OdO O.OdO
O.OdO l.OdO O.OdO
O.OdO O.OdO l.OdO

$!C's for non-inertial frame (x, y, q, vx, vy, vq, ax, ay,
O.OdO O.OOdO O.OdO
O.OdO O.OOdO O.OdO
O.OdO O.OOdO O.OdO

$ IBXD for non-inertial frame (3)

1 1 1

262

aq)

Elastic Vectors Input File (case. vec)

Basic File Format

Line of Text

nr

Line of Text

((RM (i , j) , j = 1, nr) , i = 1 , nr)

Line of Text

((RC(i,j), j=l,nr), i=l,nr)

Line of Text

((RK (i , j) , j = 1 , nr) , i = 1 , nr)

Line of Text

(XN(i), i=l,nr*2

Line of Text

(IBXN(i), i=l,nr)

Line of Text

((PHIA(i,j), i=l,nwl*2) , j=l,nr)

Comments

• This is a plain text (ASCII) file.

Definition of Terms

nr: (int) number of elastic modes

RM (i , j) : (real) dimensional mass matrix
RC (i , j) : (real) dimensional damping matrix
RK (i, j) : (real) dimensional stiffness matrix

XN (i) : (real) initial gen. displ. for mode i
XN (i+nr) : (real) initial gen. vel. for mode i

IBXN (i) : (int) dynamics flag for i'11 mode

PHIA (i * 2 -1 , j) : x-component of
displacement vector for mode j at node i
PHIA (i * 2 , j) : y-component of
displacement vector for mode j at node i

• All values entered into this file should be dimensional. The solver will
automatically non-dimensionalize the values usmg the reference conditions
specified in the solver control file.

• The mass matrix defined in this file cannot be singular.
• The dynamics of each degree of freedom is controlled separately usmg the

following values for IBXN:

o IBXN = 0 is a free/forced response calculation, .i.e. uses mass, stiffness,
and damping to compute generalized displacement and velocity.

o IBXN = 1 is a clamped condition, i.e. hold at initial generalized
displacement with zero velocity.

o IBXN = 2 is a constant velocity, uncoupled response, i.e. integrates
generalized velocity to compute new displacement.

263

o IBXN = 3 is a forced multistep response used for system identification
purposes.

• Do not combine IBXN = 0 with IBXN -:f:. 0 for different modes if there are
coupling or off-diagonal terms in the mass, damping or stiffness matrices.

• A limited set of simple modal vectors representing standard rigid-body degrees of
freedom can be generated using the program makevec2d.

264

Sample File

$ Number of elastic modes (nr)
3

$ Mass matrix
l.OdO

for elastic modes (nr x nr)

O.OdO
O.OdO

O.OdO O.OdO
l.OdO
O.OdO

O.OdO
l.OdO

$ Damping matrix for elastic modes (nr x nr)
O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO

$ Stiffness matrix for elastic modes (nr x nr)
l.OdO O.OdO O.OdO
0.0dO
O.OdO

l.OdO
O.OdO

O.OdO
l.OdO

$!C's for elastic modes (xl xn, vxl ... vxn)
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO

$ IBXN for elastic modes (nr)
1 1 1

$ Elastic modes vectors (nwl*2) x nr
O.OdO l.OdO
O.OdO l.OdO
O.OdO l.OdO
O.OdO l.OdO
O.OdO 1. OdO
O.OdO l.OdO
O.OdO l.OdO

265

Solution Residuals Output File (case . rsd)

Basic File Format

1 RSD(i), i=l,4

istp RSD(i), i=l,4

nstp RSD(i), i=l,4

Comments

• This is a plain text (ASCII) file.

Definition of Terms

istp: (int) current solution step
nstp: (int) total or last solution step

RSD (1) : (real) density solution residual
RSD (2) : (real) x-momentum solution residual
RSD (3) : (real) y-momentum solution residual
RSD (4) : (real) energy solution residual

• For steady problems, the solution residuals indicate the degree of convergence to
the final steady state solution. All four solution residuals should converge to
approximately the same order of magnitude.

• For unsteady problems, the solution residuals indicate the degree of convergence
for each global step of the solution, or the degree of convergence for the steady
solution that is solved at each step.

266

Sample File

1 0.57348E-08 0.25187E-07 0.16390E-07 0.90629E-07
2 0.44739E-08 0.18578E-07 0.12373E-07 0.67703E-07
3 0.34518E-08 0.13871E-07 0.96347E-08 0.50632E-07
4 0.26323E-08 O.lOSOlE-07 0.77174E-08 0.37989E-07
5 0.19826E-08 0.80732E-08 0.63226E-08 0.28663E-07
6 0.14732E-08 0.63101E-08 0.52640E-08 0.21805E-07
7 0.10788E-08 0.50186E-08 0.44300E-08 0.16766E-07
8 0.77813E-09 0.40643E-08 0.37547E-08 0.13063E-07
9 0. 55413E-09 0.33531E-08 0.31987E-08 0.10335E-07

10 0.39393E-09 0.28190E-08 0. 27371E-08 0.83161E-08
11 0.28851E-09 0.24147E-08 0.23530E-08 0. 68136E-08
12 0.23033E-09 0.21061E-08 0.20339E-08 0.56868E-08
13 0.20827E-09 0.18682E-08 0.17699E-08 0.48346E-08
14 0.20688E-09 0.16825:E-08 0.15525E-08 0.41839E-08
15 0. 21322E-09 0.15354E-08 0.13745E-08 0.36818E-08
16 0.22042E-09 0.14165E-08 0.12294E-08 0.32900E-08
17 0.22583E-09 0.13186E-08 0 .11114E-08 0.29802E-08
18 0.22883E-09 0.12363E-08 0.10156E-08 0.27318E-08
19 0.22955E-09 0.11656E-08 0.93758E-09 0.25294E-08
20 0.22840E-09 0.11038E-08 0.87375E-09 0.23617E-08

267

Aerodynamic Loads Output File (case. lds)

Basic File Format

0 0.0 (FD(i) I i=l,3)

istp tistp FD(i) I i=l,3

nstp tnstp FD(i) I i=l,3

Comments

• This is a plain text (ASCII) file.

Definition of Terms

istp: (int) current solution step
nstp: (int) total or last solution step
t 1 : (real) dimensionless time at step i

FD (1) : (real) x-force coefficient
FD (2) : (real) y-force coefficient
FD (3) : (real) moment coefficient

• The force coefficients in this output file are dimensionless values based on the
reference conditions specified in the solver control file.

• For dynamic (non-inertial) problems, the force coefficients stored in this file are
referenced to the body-fixed coordinate system.

268

Sample File

0 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
1 O.lOOOOE-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
2 0.20000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
3 0.30000E-Ol O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
4 0.40000E-Ol O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
5 O.SOOOOE-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
6 0.60000E-Ol O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
7 0.70000E-Ol O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
8 O.BOOOOE-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO

9 0.90000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OCiOOOE+OO
10 O.lOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
11 O.llOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
12 0.12000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
13 0.13000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
14 0.14000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
15 O.lSOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
16 0.16000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
17 0.17000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
18 0.18000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
19 0.19000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
20 0.20000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO

269

Dynamic Output File (xd . da t)

Basic File Format

0 0.0 (XD(i), i=l,6) (AO (i),

istp tistp (XD(i), i=l,6) (AO (i),

nstp tnstp (XD(i), i=l,6) (AO (i),

Comments

• This is a plain text (ASCII) file.

i=l,3)

i=l,3)

i=l,3)

Definition of Terms

istp: (int) current solution step
nstp: (int) total or last solution step
ti: (real) dimensionless time at step i

XD (1) : (real) x-position
XD (2) : (real) y- position
XD (3) : (real) pitch angle
XD (4) : (real) x-velocity
XD (s) : (real) y- velocity
XD (6) : (real) pitch rate

AO (1) : (real) x-acceleration
AO (2) : (real) y- acceleration
AO (3) : (real) pitch acceleration

• The dynamic data in this output file are dimensionless values based on the
reference conditions specified in the solver control file.

• The position, velocity, and acceleration vectors in this file are defined relative to
the global coordinate system, while the rotational quantities are defined as
rotations about the local or body-fixed coordinate system.

270

Sample File
0 0.00000E+OO O.OOOOOE+OO O.OOOOOE+OO 0.00000E+OO
1 O.lOOOOE-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
2 0.20000E-01 O.OOOOOE+OO O.OOOOOE+OO 0.00000E+OO
3 0.30000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
4 0.40000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
5 O.SOOOOE-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
6 0.60000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
7 0.70000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
8 O.SOOOOE-01 O.OOOOOE+OO 0.00000E+OO O.OOOOOE+OO
9 0.90000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO

10 O.lOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
11 O.llOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
12 0.12000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
13 0.13000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
14 0.14000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
15 0.15000E+OO 0.00000E+OO O.OOOOOE+OO O.OOOOOE+OO
16 0.16000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
17 0.17000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
18 0.18000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
19 0.19000E+OO 0.00000E+OO O.OOOOOE+OO O.OOOOOE+OO
20 0.20000E+OO O.OOOOOE+OO O.OOOOOE+OO 0.00000E+OO

N
-.:i _..

O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 0.00000E+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
0.00000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
0.00000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO

O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO

'-.
. ,,'\ ..

O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO

Elastic Output File (xn . da t)

Basic File Format
0 0.0 (XN(i) I i=l,nr*2) (FA(i) I

istp tistp (XN(i) I i=l, nr*2) (FA(i) I

nstp tnstp (XN(i) I i=l, nr*2) (FA(i) I

Comments

• This is a plain text (ASCII) file.

i=l,nr)

i=l,nr)

i=l,nr)

Definition of Terms
istp: (int) current solution step
nstp: (int) total or last solution step
ti : (real) dimensionless time at step i

XN (i) : (real) gen. displ. for mode i
XN (i+nr) : (real) gen. vel. for mode i

FA (i) : (real) gen. force for mode i

• The elastic data in this output file are dimensionless values based on the reference
conditions specified in the solver control file.

• The sample file on the following page is for a two mode solution.

272

Sample File
0 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
1 O.lOOOOE-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
2 0.20000E-Ol O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 0.00000E+OO O.OOOOOE+OO O.OOOOOE+OO
3 0.30000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
4 0.40000E-Ol O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
5 O.SOOOOE-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
6 0.60000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
7 0.70000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 0.00000E+OO
8 O.BOOOOE-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
9 0.90000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO

10 O.lOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
11 O.llOOOE;1-00 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
12 0.12000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
13 0.13000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
14 0.14000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
15 O.lSOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
16 0.16000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
17 0.17000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
18 O.lBOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 0.00000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
19 0.19000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
20 0.20000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO

273

APPENDIX B: Summary of 3-D File Formats

This Appendix provides a summary of the input/output file formats used by the

three-dimensional CFD solver developed for this research.

The following input files are defined: ·

• case. g3d (required) contains the geometry data structures representing the
computational volume mesh as required by the flow solver. (Binary)

• case. con (required) contains values for the solver control parameters and flow
conditions. (ASCII)

• case. unk (optional) contains the nodal values of the primitive flow variables
(density, velocity, and pressure) for each node of the computational mesh to be
used as the initial conditions for the flow solution. (Binary)

• case. dyn (optional) contains the non-inertial matrices and initial conditions as
required for a dynamic solution. (ASCII)

• case. vec (optional) contains the elastic mode matrices, initial conditions, and
vectors for the boundary surfaces as required for an aeroelastic solution. (ASCII)

• case. frc (optional) contains external forces to be applied to each solution step
in a dynamic or aeroelastic solution. (ASCII)

The following output files are defined:

• case. unl contains the nodal values of the primitive flow variables (density,
velocity, and pressure) for each node of the computational mesh. (Binary)

• case. rsd contains a history of the solution residuals for the conservation
variables (density, momentum, and total energy). (ASCII)

• case. lds contains a history of the dimensionless aerodynamic forces acting on
the solid walls of the CFD geometry. (ASCII)

• xd . da t contains a history of the non- inertial displacements, velocities, and
accelerations for a dynamic solution. (ASCII)

• xn . da t contains a history of the generalized displacements and velocities for an
unsteady, aeroelastic solution. (ASCII)

274

Geometry Input File (case. g3d)

Basic File Format

nnd nel nsg nbe nbp nwl 1 nsd nsf

LBE(i) I i = 1,6

COOR(i, j) I i=l,nnd) I j =1, 3

IELM(i, j) I i=l,nel) I j=l, 4

ISEG (i, j) I i=l,nsg) I j=l, 2

IBEL (i, j) I i=l,nbe) I j=l, 4

Comments

• This is an unformatted (binary) file.

Definition of Terms

nnd: (int) number of nodes
nel: (int) number of elements
nsg : (int) number of segments
nbe: (int) number of boundary elements
nbp: (int) number of boundary points
nwl: (int) number of wall nodes
nsd: (int) number of singular nodes
nsf: (int) number of boundary surfaces

LBE (i) : (int) boundary element
starting/stopping indexes for three BC types

COOR (i, 1) : (real) x-coordinate for node i
COOR (i , 2) : (real) y-coordinate for node i
COOR (i, 3) : (real) z-coordinate for node i

IELM (i, 1) : (int) node 1 for element i
IELM (i, 2) : (int) node 2 for element i
IELM (i, 3) : (int) node 3 for element i
!ELM (i, 4) : (int) node 4 for element i

ISEG (i, 1) : (int) node 1 for segmenti
I SEG (i , 2) : (int) node 2 for segment i

IBEL (i, 1) : (int) node 1 for boundary elem. i
IBEL (i , 2) : (int) node 2 for boundary elem. i
IBEL (i , 3) : (int) node 3 for boundary elem. i
!BEL (i, 4) : (int) boundary surface containing
boundary element i

• Nodal data is sorted such that the first nwl nodes are defined as solid wall nodes.
Out of the first nwl nodes, the last nsd nodes are defined as singular nodes.

• The nodal coordinates in this file are treated as dimensional values and are non
dimensionalized using the reference dimension specified in the solver control file.

• Boundary element data is sorted based on the starting/stopping indexes for the
three BC types, i.e. boundary elements LBE (1) through LBE (2) are solid wall
elements, LBE (3) through LBE (4) are symmetry elements, and LBE (5)

through LBE (6) are far-field elements.

275

•

• The program makeg3 d is used to convert a standard STARS surface
triangulation file, tetrahedral volume file, and modified boundary conditions file
into an appropriately sorted three-dimensional geometry file .

276

Solver Control File (case. con)

Basic File Format Definition of Terms

&control dt : (real) dimensionless global time step
gamma: (real) ratio of specific heats
diss: (real) dissipation constant

dt
gamma
diss
cfl

mach
alpha
beta
ref dim

nstp
nout
ncyc
isol
idsol
idiss
ipnt

istrt
iaero
idynm
ielast
ifree
iforce

nr
a inf
rho inf

I

O.ldO,
l.4d0,
1. OdO,
O.SdO,

0.6d0,
0. OdO,
O.OdO,
1. OdO,

100,
50,

3'
0,
2,

0'
1,

. false.,

. false.,

.false.,

. false.,

.true.,

.true.,

0'
l.OdO,
1. OdO,

cfl: (real) local time step stability factor

mach: (real) free-stream mach number
alpha: (real) 1 •1 free-stream orientation angle
beta: (real) 2"d free-stream orientation angle
ref dim: (real) reference dimension

ns tp : (int) total solution steps
nout: (int) output frequency, steps/output
ncyc: (int) iterative cycles per solution step
isol: (int) CFO solution type
idsol : (int) dynamics solution type
idiss: (int) dissipation type
ipnt: (int) number of points for numerical
integration of flux/source vectors

istrt: (logical) restart flag
iaero: (logical)aerodynamic forces flag
idynm: (logical) dynamic/non-inertial flag
ielast: (logical) elastic flag
ifree: (logical) free-stream velocity flag
iforce: (logical) external force flag

nr: (int) number of elastic modes
ainf : (real) dimensional free-stream sonic speed
rhoinf : (real) dimensional free-stream density

Comments

• This is a plain text (ASCII) file formatted as a Fortran namelist.
• The default values for each parameter are given in the basic file format above.
• The global time step is only used for unsteady solutions.
• Appropriate values for the dissipation factor are in the range 0.0 < diss $ 2.0.

Some dissipation is required to stabilize the solution, but too much dissipation
will corrupt the solution and possibly be a destabilizing influence.

• The local time step stability factor is a safety factor used to compute local time
steps for each solution step. For steady solutions, a stability factor of 0.8 is
typically acceptable for most problems. For unsteady solutions, the stability
factor is typically in the range 0.3 $ cfl $ 0.8.

277

• The values of refdim, mach, ainf, and rhoinf are used to non
dimensionalize all values read in by the flow solver.

• The free-stream orientation angles are ignored for dynamic (non-inertial)
problems.

• The number of iterative cycles should be set to 3 for steady solutions. For
unsteady solutions, use a sufficient number of cycles to allow for an appropriate
level of convergence at each step.

• There are four available CFD solution types defined as follows:
o isol = 0 is a steady solution (not time accurate)
o i sol = 1 is a first-order unsteady solution
o isol = 2 is a second-order unsteady solution
o isol = 3 is a supersonic piston perturbation solution

• There are three available dynamics solution types defined as follows:
o idsol = 0 uses a zero-order integrator for the applied forces
o idsol = 1 uses a first-order integrator for the applied forces
o idsol = 2 uses a second-order integrator for the applied forces

• There are two available dissipation types defined as follows:
o idiss = 0 is a low order dissipation
o idiss = 1 is a high order dissipation with gradient limiters

• The low-order dissipation is typically overly diffuse and should be used in
conjunction with low values of the dissipation factor. Low-order dissipation

· works best for problems without strong vortices and for supersonic/hypersonic
flows.

• The high-order dissipation is more CPU intensive than the low-order dissipation
and less stable. Larger values for the dissipation factor are typically required for
stabilization. The high-order dissipation works best for subsonic to transonic
flows with strong gradients or vortices. Rotating domains will typically require
high-order dissipation to resolve the circulating pattern of the relative flow
velocities.

• There are two types of numerical integration defined as follows:
o i pn t = 1 uses a one-point gauss quadrature
o ipnt = 4 uses a three-point symmetric gauss quadrature

• When the restart flag is set to . true . , the solver will read one set of solution
unknowns from the case. unk file and apply this set of unknowns as the initial
conditions for the new iterative solution.

• A restarted solution assumes that the time gradient of the initial state is zero, i.e.
the solution stored in the case . unk file is a converged, steady state solution.
This has a significant impact on the second-order unsteady solution since it relies
on two sets of solution unknowns for advancement to the next time step, i.e. a
second-order unsteady solution should not be restarted from the last time step of a
similar unsteady solution that was stopped because both sets of unsteady data
from the last solution step are not available for accurate evaluation of the time
gradients in the flow.

278

• If the free-stream velocity flag is set to . false . , the free-stream velocity is set
to zero, and relative flow velocities must be generated through dynamic rotation
or translation of the non-inertial coordinate system.

• If the external force flag is set to . true . , the solver will read the user defined
external force vector for each global time step from the input file case. frc. If
the solver reaches the end of the input file before completing the solution, the last
force vector in the file carries over to each of the remaining global time steps if it
was non-zero.

279

Solution Unknowns Input/Output File (case. un*)

Basic File Format

nnd gam xmi alp bet ref t

((UN(i,j), i=l,nnd), j=l,6

Comments

• This is an unformatted (binary) file.

Definition of Terms

nnd: (int) number of nodes
gam: (real) ratio of specific. heats
xmi : (real) free stream mach number
alp: (real) I st free-stream orientation angle
bet: (real) 2°d free-stream orientation angle
ref: (real) reference dimension
t : (real) dimensionless time

UN (i, 1) : (real) density for node i
UN (i , 2) : (real) x-velocity for node i
UN (i, 3) : (real) y-velocity for node i
UN (i, 4) : (real) z-velocity for node i
UN (i, 5) : (real) pressure for node i
UN (i, 6) : (real) enthalpy for node i

• The solution unknowns stored in this file are dimensionless quantities.
• For dynamic (non-inertial) problems, the solution unknowns stored in this file are

relative quantities referenced to the body-fixed coordinate system.

280

Dynamic Mesh Input File (case . dyn)

Basic File Format

Line of Text

(RO (i), i=l, 3

Line of Text

((RMl(i,j), j=l,6), i=l,6)

Line of Text

((RCl(i,j), j=l,6), i=l,6)

Line of Text

((RKl(i,j), j=l,6), i=l,6)

Line of Text

x, y, z, p, q, r,
vx, vy, vz, vp, vq, vr,
ax, ay, az, ap, aq, ar

· Line of Text

(IBXD (i) I i=l,6)

Comments

• This is a plain text (ASCII) file.

Definition of Terms

RO (1) : (real) x-coordinate for origin of rotation
RO (2) : (real) y-coordinate for origin of rotation
RO (3) : (real) z-coordinate for origin of rotation

RMl (i, j) : (real) dimensional mass matrix
RCl (i, j) : (real) dimensional damping matrix
RKl (i , j) : (real) dimensional stiffness matrix

x : (real) initial x-position of coord. system
y: (real) initial y-position of coord. system
z : (real) initial y-position of coord. system
p : (real) initial roll angle of coord. system
q : (real) initial pitch angle of coord. system
r : (real) initial yaw angle of coord. system
vx : (real) initial x-velocity of coord. system
vy: (real) initial y-velocity of coord. system
vz : (real) initial z-velocity of coord. system
vp : (real) initial roll rate of coord. system
vq : (real) initial pitch rate of coord. system
vr: (real) initial yaw rate of coord. system
ax : (real) initial x-acceleration of coord. system
ay: (real) initial y-acceleration of coord. system
az : (real) initial z-acceleration of coord. system
ap : (real) initial roll accel. of coord. system
aq: (real) initial pitch accel. of coord. system
ar: (real) initial yaw accel. of coord. system

IBXD (i) : (int) dynamics flag for /h DOF

• All values entered into this file should be dimensional. The solver will
automatically non-dimensionalize the values using the reference conditions
specified in the solver control file.

• The vector defining the origin of rotation is subtracted directly from the nodal
coordinates defined in the geometry input file after it is non-dimensionalized by
the reference dimension.

• The mass matrix defined in this file cannot be singular.
• Initial conditions for the three translational degrees of freedom are specified

relative to the inertial coordinate system, i.e. as seen by a stationary observer on
the ground.

281

• Initial conditions for the three rotational degrees of freedom should have units of
degrees, degrees/sec, etc., and are true Euler angles and rates expressed relative to
the body-fixed coordinate system.

• The dynamics of each degree of freedom is controlled separately using the
following values for IBXD:

o IBXD = 0 is a free/forced response calculation, .i.e. uses mass, stiffness,
and damping to compute position, velocity, and acceleration of system.

o IBXD = 1 is a clamped condition, i.e. hold at initial position with zero
velocity and acceleration.

o IBXD = 2 is a constant acceleration, uncoupled response, i.e. integrates
acceleration and velocity to compute new position.

282

Sample File

$ Position vector to origin of non-inertial frame (rx, ry, rz)
O.OdO O.OdO O.OdO

$ Mass matrix for non-inertial frame (6 X 6)
1.0dO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO 1.0dO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO 1.0dO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO 1.0dO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO 1.0dO O.OdO
O.OdO 0. OdO O.OdO O.OdO O.OdO 1.0dO

$ Damping matrix for non-inertial frame (6 X 6)
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO o.odo O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO o.odo O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO

$ Stiffness matrix for non-inertial frame (6 X 6)
1.0dO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO 1.0dO O.OdO 0.0dO O.OdO O.OdO
O.OdO 0. OdO 1.0dO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO 1.0dO O.OdO O.OdO
O.OdO O.OdO O.OdO O. OdO l.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO 1.0dO

$ IC's for non-inertial frame (6 positions, 6 rates, 6 accels)
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO O.OdO O.OdO . 0. OdO
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO

$ IBXD for non-inertial frame (6)
1 1 1 1 1 1

283

Elastic Vectors Input File (case. vec)

Basic File Format

Line of Text

nr

Line of Text

((RM (i, j) , j =l, nr) , i=l, nr)

Line of Text

((RC(i,j), j=l,nr) , i=l,nr)

Line of Text

((RK(i,j), j=l,nr) , i=l,nr)

Line of Text

(XN(i), i=l,nr*2

Line of Text

(IBXN(i), i=l,nr)

Line of Text

((PHIA(i,j), i=l,nwl*3), j=l,nr)

Comments

• This is a plain text (ASCII) file.

Definition of Terms

nr: (int) number of elastic modes

RM (i, j) : (real) dimensional mass matrix
RC (i, j) : (real) dimensional damping matrix
RK (i, j) : (real) dimensional stiffness matrix

XN (i) : (real) initial gen. displ. for mode i
XN (i + nr) : (real) initial gen. vel. for mode i

IBXN (i) : (int) dynamics flag for ;th mode

PHIA (i * 3 - 2, j) : x-component of
displacement vector for mode j at node i
PHIA (i * 3 -1, j) : y-component of
displacement vector for mode j at node i
PHIA (i * 3 , j) : z-component of
displacement vector for modej at node i

• All values entered into this file should be dimensional. The solver will
automatically non-dimensionalize the values using the · reference conditions
specified in the solver control file.

• The mass matrix defined in this file cannot be singular.
• The dynamics of each degree of freedom is controlled separately using the

following values for IBXN:

o IBXN = 0 is a free/forced response calculation, .i.e. uses mass, stiffness,
and damping to compute generalized displacement and velocity.

o IBXN = 1 is a clamped condition, i.e. hold at initial generalized
displacement with zero velocity.

o IBXN = 2 is a constant velocity, uncoupled response, i.e. integrates
generalized velocity to compute new displacement.

284

o r'BXN = 3 is a forced multistep response used for system identification
purposes.

• Do not combine IBXN = 0 with IBXN :f:. 0 for different modes if there are
coupling or off-diagonal terms in the mass, damping or stiffness matrices.

• A limited set of simple modal vectors representing standard rigid-body degrees of
freedom can be generated using the program makevec3d.

285

Sample File

$ Number of elastic modes (nr)
3

$ Mass matrix for elastic modes (nr x nr)
l.OdO O.OdO O.OdO
O.OdO l.OdO O.OdO
O.OdO O.OdO l.OdO

$ Damping matrix for elastic modes (nr x nr)
O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO
O.OdO O.OdO O.OdO

$ Stiffness matrix for elastic modes (nr x nr)
l.OdO O.OdO O.OdO
O.OdO l.OdO O.OdO
O.OdO O.OdO l.OdO

$!C's for elastic modes (xl xn, vxl ... vxn)
O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO

$ IBXN for elastic modes (nr)
1 1 1

$ Elastic modes vectors (nwl*3) x nr
O.OdO l.OdO l.OdO
O.OdO l.OdO l.OdO
O.OdO l.OdO l.OdO
O.OdO l.OdO l.OdO
1.0dO O.OdO l.OdO
O.OdO l.OdO l.OdO
O.OdO l.OdO l.OdO

286

External Force Input File (case. frc)

Basic File Format

1 (FD (i) , i = 1 , 6) (FE (j) , j = 1 , nr)

istp (FD(i), i=l,6) (FE(j), j=l,nr)

nstp (FD(i), i=l,6) (FE(j), j=l,nr)

Comments

• This is a plain text (ASCII) file.

Definition of Terms

istp: (int) current solution step
nstp: (int) total or last solution step
nr : (int) number of elastic modes

FD (1) : (real) x force applied at istp
FD (2) : (real) y force applied at istp
FD (3) : (real) z force applied at istp
FD (4) : (real) roll moment applied at istp
FD (5) : (real) pitch moment applied at istp
FD (6) : (real) yaw moment applied at istp
FE (j) : (real) force applied to elastic mode j

• All values entered into this file should be dimensional. The solver will
automatically non-dimensionalize the values using the reference conditions
specified in the solver control file.

• Forces applied to the three translational degrees of freedom are specified relative
to the inertial coordinate system.

• The specified forces are read one line at a time following each solution step.
• Up to nstp forces may be specified, but are not required. The last force read in

by the solver will be applied for all remaining solution steps.

287

Sample File

1 0. OdO O.OdO O.OdO O.OdO O.OdO O.OdO
2 O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO
3 0 .OdO O.OdO l.OdO O.OdO l.OdO O.OdO
4 O.OdO O.OdO l.OdO O.OdO 2.0dO O.OdO
5 O.OdO O.OdO l.OdO O.OdO l.OdO O.OdO
6 O.OdO O.OdO l.OdO O.OdO O.OdO O.OdO
7 O.OdO O.OdO O.OdO O.OdO O.OdO O.OdO

288

Solution Residuals Output File (case. rsd)

Basic File Format

1 RSD(i), i=l,5

istp RSD(i), i=l,5

nstp RSD(i), i=l,5

Comments

• This is a plain text (ASCII) file.

Definition of Terms

istp: (int) current solution step
nstp: (int) total or last solution step

RSD (1) : (real) density solution residual
RSD (2) : (real) x-momentum solution residual
RSD (3) : (real) y-momentum solution residual
RSD (4) : (real) z-momentum solution residual
RSD (5) : (real) energy solution residual

• For steady problems, the solution residuals indicate the degree of convergence to
the final steady state solution. All four solution residuals should converge to
approximately the same order of magnitude.

• For unsteady problems, the solution residuals indicate the degree of convergence
for each global step of the solution, or the degree of convergence for the steady
solution that is solved at each step.

289

Sample File

1 0.12222E-07 0.10626E-07 0.16687E-07 0.12295E-07 0.22126E-07
2 0.11570E-07 0.10062E-07 0.15729E-07 0.11602E-07 0.20890E-07
3 0.10921E-07 0.95097E-08 0.14773E-07 0.10908E-07 0.19662E-07
4 0.10275E-07 0.89463E-OB 0.13814E-07 0.10215E-07 0.18436E-07
5 0.96242E-08 0.83818E-08 0.12854E-07 0.95216E-08 0.17203E-07
6 0.89786E-08 0.78260E-08 0 .11892E-07 0.88276E-08 0.15977E-07
7 0.83298E-08 0.72699E-08 0.10929E-07 0.81336E-08 0.14748E-07
8 0.76831E-08 0.67176E-08 0.99662E-08 0.74405E-OB 0 .13527E-07
9 0.70441E-08 0.61708E-08 0.90087E-08 0.67538E-08 0.12320E-07

10 0.64162E-08 0.56360E-08 0.80584E-08 0.60769E-08 0.11139E-07
11 0.57970E-08 0.51153E-08 0. 71208E-08 0.54130E-08 0.99765E-08
12 0.51854E-08 0.46001E-08 0.61957E-08 0.47627E-08 0.88260E-08
13 0.45869E-08 0.40968E-08 0.52837E-08 0.41320E-08 0.76967E-08
14 0.40076E-08 0.36189E-08 0.43870E-08 0.35263E-08 0.66145E-08
15 0.34579E-08 0.31776E-08 ci. 35119E-08 · 0.29571E-08 0.56028E-08
16 0.29562E-08 0.27873E-08 0.26754E-08 0.24518E-08 0.47029E-08
17 0.25236E-08 0.24650E-08 0.19320E-08 0.20618E-08 0.39779E-08
18 0.21945E-08 0.22406E-08 0.14353E-08 0.18541E-08 0.35322E-08
19 0.20227E-08 0.21516E-08 0.14507E-08 0.18860E-08 0.34857E-08
20 0.20517E-08 0.22121E-08 0.19558E-08 0.21498E-08 0.38474E-08

290

Aerodynamic Loads Output File (caf:!e. lds)

Basic File Format

0 0.0 (FD(i) I i=l,6)

istp tistp FD(i) I i=l,6

nstp tnstp FD(i) I i=l,6

Comments

• This is a plain text (ASCII) file.

Definition of Terms

istp: (int) current solution step
nstp: (int) total or last solution step

· ti: (real) dimensionless time at step i

FD (1) : (real) x-force coefficient
FD (2) : (real) y-force coefficient
FD (3) : (real) z-force coefficient
FD (4) : (real) x-moment coefficient
FD (5) : (real) y-moment coefficient
FD (6) : (real) z-moment coefficient

• The force coefficients in this output file are dimensionless values based on the
reference conditions specified in the solver control file.

• For dynamic (non-inertial) problems, the force coefficients stored in this file are
referenced to the body-fixed coordinate system.

291

Sample File
0 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
1 O.lOOOOE-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 0.00000E+OO O.OOOOOE+OO
2 0.20000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
3 0.30000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
4 0.40000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
5 O.SOOOOE-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
6 0.60000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
7 0.70000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
B O.BOOOOE-01 O.OOOOOE+OO O.OOOOOE+OO .0. OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
9 0.90000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO

10 O.lOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
11 O.llOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 0.00000E+OO
12 0.12000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
13 0.13000E+OO O.OOOOOE+OO 0.00000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
14 0.14000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
15 O.lSOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
16 0.16000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
17 0.17000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
18 O.lBOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
19 0.19000E+OO O.OOOOOE+OO 0.00000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
20 0.20000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 0.00000E+OO O.OOOOOE+OO

292

Dynamic Output File (xd. da t)

Basic File Format

0 0.0 (XD(i), i=l,12) (AO (i),

istp tistp (XD(i), i=l,12) (AO (i),

nstp tnstp (XD(i), i=l,12) (AO (i),

Comments

• This is a plain text (ASCII) file.

i=l, 6)

i=l,6)

i=l,6)

Definition of Terms

istp: (int) current solution step
nstp: (int) total or last solution step
ti: (real) dimensionless time at step i

XD (1) : (real) x-position
XD (2) : (real) y- position
XD (3) : (real) z- position
XD (4) : (real) roll angle
XD (5) : (real) pitch angle
XD (6) : (real) yaw angle
XD (7) : (real) x-velocity
XD (8) : (real) y- velocity
XD (9) : (real) z- velocity
XD (1 O) : (real) roll rate
XD (11) : (real) pitch rate
XD (12) : (real) yaw rate

AO (1) : (real) x-acceleration
AO (2) : (real) y- acceleration
AO (3) : (real) z- acceleration
AO (4) : (real) roll acceleration
AO (5) : (real) pitch acceleration
AO (6) : (real) yaw acceleration

• The dynamic data in this output file are dimensionless values based on the
reference conditions specified in the solver control file.

• The position, velocity, andacceleration vectors in this file are defined relative to
the global coordinate system, while the rotational vectors are defined as rotations
about the local or body-fixed coordinate system.

293

N

'° ~

Sample File
0. OOOOE+OO O OOOOE+OO O OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O, OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O. OOOOE+OO
0 lOOOE-01 0 OOOOE+OO O OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O. OOOOE+OO O, OOOOE+OO O, OOOOE+OO O, OOOOE+OO O. OOOOE+OO
0 2000E-01 0 OOOOE+OO O OOOOE+OO O. OOOOE+OO O, OOOOE+OO O, OOOOE+OO O, OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO
0 3000E-01 0. OOOOE+OO O OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO
0 4000E-Ol O OOOOE+OO O OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OODOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO
0 SOOOE-01 0 OOOOE+OO O OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO
0. 6000E-01 0 OOOOE+OO O OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO
0. ?OOOE-01 0 OOOOE+OO O OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O. OOOOE+OO O. OOOOE+OO
0. SOOOE-01 0 OOOOE+OO O OOOOE+OO O OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO

9 0. 9000£-01 0 OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO
10 0 lOOOE+OO O OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O. OOOOE+OO
11 0 llOOE+OO O OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O. OQOOE+OO O. OOOOE+OO
12 0 .1200£+00 0. OOOOE+OO O, OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO
13 0 .13 OOE+OO O, OOOOE+OO O, OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO
14 0. 1400E+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO
15 0 .1500E+OO O OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. 0000£+00 0. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO
16 0 1600£+00 0 OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO
17 0 .1700E+OO O OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO
18 0 .1800E+OO O. OOOOE+OO O OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O. OOOOE+OO O. OOOOE+OO 0. OOOOE+OO
19 0 .1900E+OO O OOOOE+OO O OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+oo O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO
20 0. 2000£+00 0. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO O, OOOOE+OO O. OOOOE+OO O. OOOOE+OO O. OOOOE+OO

,'
·\'

Elastic Output File (xn. dat)

Basic File Format
0 0.0 (XN(i) I i=l,nr*2) (FA(i) I

istp tistp (XN(i) I i=l, nr*2) (FA(i),

nstp tnstp (XN(i) I i=l, nr*2) (FA(i) I

Comments

• This is a plain text (ASCII) file.

i=l,nr)

i=l,nr)

i=l,nr)

Definition of Terms
istp: (int) current solution step
nstp: (int) total or last solution step
ti: (real) dimensionless time at step i

XN (i) : (real) gen. displ. for mode i
XN (i+nr) : (real) gen. vel. for mode i

FA (i) : (real) gen. force for mode i

• The elastic data in this output file are dimensionless values based on the reference
conditions specified in the solver control file.

• The sample file on the following page is for a two mode solution.

295

Sample File
0 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
1 O.lOOOOE-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
2 0.20000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
3 0.30000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
4 0.40000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
5 0.50000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
6 0.60000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
7 0.70000E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
8 O.BOOOOE-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
9 0.90000E-01 O.OOOOOE+OO O.OOOOOE+OO ·O.OOOOOE+OO o.oooooE+oo O.OOOOOE+OO O.OOOOOE+OO

10 O.lOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 0. OOtljl)lE+OO O.OOOOOE+OO
11 O.llOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO o. oooo-0-E+oo O.OOOOOE+OO
12 0.12000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
13 0.13000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
14 0.14000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
15 0.15000E+00 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
16 0.16000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
17 0.17000E+00 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
18 0.18000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
19 0.19000E+00 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
20 0.20000E+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO

296

APPENDIX C: Time History Data For AGARD Wing

This Appendix provides a complete set of time history data for the AGARD wing

at Mach 0.96 from Section 5.2.2. The time history data presented in this Appendix is for

time steps ranging from dt = 16.0 through 0.25 using both the zero-order, idsol = 0, and

second-order, idsol = 2, structural dynamics solvers.

297

Time History Data for Mach 0.96, dt = 16.0

0.3 XI q = 0.218 psi

0.2

0.1

20 40

-0.1

-0.2

-0.3

0.3 y1 q = 0.255 psi

02 j
I

OJ I

600

--idsol= 0

--idsol=2

t*

000

1--idsol= 0
!

i--idsol=2

t*

0 f1 --+--l---l----J---+-+---l;---l-----l----1------l----1-

~ 2 0 0 8 00

I
-OJ 1
-0.2 l

I
-0.3 J

298

0.3 XI q = 0.278 psi --idsol= 0

--idsol=2

0.2

0.1

t*

2 00 0 000

-0.l

-0.2

-0.3

0.3 XI q =0.328psi

000 4000 600

-0.1

~2 i
-0.3 J

299

Time History Data for Mach 0.96, dt = 4.0

0.3 Xl q =0.291 psi --idsol= 0

--idso/=2

0.2

-0.1

-0.2

0.3 XI q = 0.328 psi --idsol= 0

--idso/=2

0.2

-0.2

300

0.3 XI q =0.364psi --idsol= 0

--idsol=2

0.2

-0.1

-0.2

0.2 XI q = 0.437psi --idsol= 0

--idsol = 2

0.1

I
I

t*
o~1----+-~-,---+--1~-+--1-~+--~---'1--,+----!-~l----+~i1----r--+--+~-1--~~

~
I

40 0 6000 8 0

I
-0.1 -j

• I
-0.2 .J

301

Time History Data for Mach 0.96, dt = 1.0

0.3 XI q = 0.291 psi --idsol= 0

--idso/=2

0.2

-0.2

0.3 XI q =0.328psi --idsol= 0

--idsol =2

0.2

0.1 ~ A
0

000 4000

-0.1

-0.2

302

0.3 XI q =0.364psi --idsol= 0

--idso/=2

0.2

-0.1

-0.2

0.2 XI q =0.437 psi --idsol= 0

--idso/=2

0.1

t*
0+--+--!--~+---+----1,--+--+---,t----+--.+~-t--t-~+---J-.-----lr-+---+-----cl----h

40 0 6000 8 0

-0.1

-0.2

303

Time History Data for Mach 0.96, dt = 0.25

0.3 XI

0.2

0.1

-0.2

0.2-, XI

0.1

0 I --

t
I

-0.1 ~

I

-0.2 J

q =0.328psi

000

q =0.364psi

2000

304

--idsol= 0

--idsol =2

t*

sdoo

--idsol= 0

--idso/=2

0.2 XI q =0.437psi --idsol= 0

--idsol=2

0.1 \
I

t*
0

6000 8 00

-0.1

-0.2

0.3 XI q = 0.473 psi --idsol= 0

--idsol=2

0.2

0.1

0
r t*

000 6 0

-0.1

-0.2

-0.3

305

APPENDIX D: Steady Validation Data For BACT Wing

This Appendix provides a set of steady validation data for the BACT wing at each

of the Mach numbers investigated in the unsteady aeroelastic analysis of Section 5.2.3.

This data is important for two reasons. First, it demonstrates that the grid resolution is

sufficient for an accurate representation of the flow field whether the solution is steady or

unsteady. Second, steady data serves as the initial conditions for any unsteady solution

that is computed. The data presented in this Appendix shows chordwise surface pressure

distributions at two span locations for the wing, the 60% and 95% span locations. Each

set ofresults is compared to the appropriate experimental data from reference 43.

306

Cp Data for Mach 0.51

-1 cp
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

--.o0 ••

r
I

•
0

• •
•

•

..

a =Odeg.

......... 11
I oo-

• -o ...
0 0 11b

• • 0 'I, Cbd!,
• Oc:ao• 1

I ml~
• Cb~

0 Euler

• Experiment

60%, span

• ,P
•1

x/c
1.2 +-----~---~----~----~--------~

-0.l

-1 l C P

-0.8 i
-0.61

1

-0.4

-0.2

0 ~
i

0.2-!
I
I

:: 1
I

0.8 ~

I ~
1.2 ~

-0.l

0.1

•

•

0.1

0.3 0.5 0.7

a =Odeg.

0.3 0.5 0.7

307

0.9 1.1

0.9

o Euler

• Experiment

95% span

x/c

1.1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1

-0.8

-0.6

0.2

0.4

0.6

0.8

1.2

-0.1

cp

•

)(

•

0.1 0.3

)(

.,,
)(

)(

•

0.1 0.3

a = 1 deg.

0.5
xlc

a = 1 deg.

--, -

0.5

x/c

308

0.7

0.7

o Euler

x Transpiration

• Experiment

60% span

0.9

o Euler

x Transpiration

• Experiment

95% span

1.1

0.9 1.1

Cp Data for Mach 0.67

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

cp

-0.1

cp

0

0
I

e

0

•

0

•

a =Odeg.

0.1 0.3 0.5

a =Odeg.

1.2 -+-----------------

-0.1 0.1 0.3 0.5

309

0.7 0.9

0.7 0.9

0 Euler

• Experiment

60% span

•Do•
0

o Euler

x/c

1.1

• Experiment

95% span

x/c

1.1

-1 cp

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.2

-0.1

-1 cp

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4 .

0.6

0.8

1.2

-0.1

0

-
0

0

0

•

0

•
0

0

0

•

a = 1 deg.

•

0.1 0.3 0.5

a = 1 deg.

0.1 0.3 0.5

310

0.7 0.9

0.7 0.9

o Euler

• Experiment

60% span

x/c

1.1

o Euler

• Experiment

95% span

x/c

1.1

Cp Data for Mach 0.71

-1 cp

-0.8

~o.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.1

-1 cp
-0.8

-0.6

-0.4

-0.2

a =Odeg.

..,,..._
• .- I ,,

Cb di
o • • •o~

• 0 "'""·
1• • CIID Gib• o •

• • • • 0

0

•

8

I

0

0

0

•

0.1 0.3 0.5

a =Odeg.

• I •

0.7

~ oo..•

0.9

o Euler

• Experiment

60% span

x/c

1.1

o Euler

• Experiment

95% span

0
• Cbo O 4o •

• Q)o~ • . . " 0.2

0.4

0.6

0.8

i
•

0
0

0

•
1.2 -+---

-0.1 0.1

o, . ~

x/c

0.3 0.5 0.7 0.9 1.1

311

-1 cp
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

"'1°"'1
0 "'b

D • 900

0 .ctP•. Oo O Oo :o 1:90

•• ,,,• • •q, 0 o,
0 • O

• fl
••

0

•
0

0

0

•

••

a = 1 deg.

...
'II, CD •

• 0. 'IP 'l,

•
•

B 8 I
•

• Euler

• Experiment

60% span

x/c
1.2 -+-----~-----.------~------r-----~----~

-0.1

-1 cp
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4.

0.6

0.8

1.2

-0.1

0.1 0.3

o<Pd~lio...._
0 • -v

0 • .- 4' 0GDo<oo Gib O ~
.o<> • • QI) 8 <>~

9<> • •

!:·
.15
!

0

•
0
0

0

0.1 0.3

0.5 0.7 0.9

a = 1 deg.

1.1

o Euler

• Experiment

95% span

x/c
---,--------,-----.--------,

0.5 0.7 0.9 1.1

312

Cp Data for Mach 0.77

-1 cp
-0.8

-0.6
.. ----0

~;' I iilbo •q,

a =Odeg. o Euler

• Experiment

60% span

-0.4
0 • • q..

I D~D \,_.
-0.2

0

0.2

0.4

0.6

0.8

B
•

I

• • • •
B

I

D
D

D

•

<lb •
• Clb ••

• • D
D II I . .., ., ...

0lo • •
"'

1.2+-----r-------,---------.-----.-----r---------,

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.1

CP

•

•

0
0

0

•

0.1 0.3

•

0.5
x/c

a =Odeg.

0.7 0.9 1.1

o Euler

• Experiment

95% span

1.2 +-------------------~-------,-----~

-0.l 0.1 0.3 0.5
xlc

313

0.7 0.9 1.1

-1 cp
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.2

-0.1

-1 cp
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.2

-0.1

. .,.
0

0

0
0 • •
0

•
0

0

0

•

•

0.1

•

~-OOo

0.3

0 : Oo
o o"'•~-o~ o

0 go • • o o~
.a • •

Cb• -8
a
0

•
0
0

0

•

0.1 0.3

a = 1 deg.

• • •
' CD

•

0.5
x/c

0 ""'. • 16 •

a = 1 deg.

0.5
x/c

314

•
a • I

•

0.7

0.7

o Euler

• Experiment

60"/o span

0.9 1.1

o Euler

• Experiment

95% span

0.9 1.1

CP Data for Mach 0.80

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.1

-I , C
I P

-0.8 l
-0.6 ~

i
-0.4 1

-0.2 ~
0 j

0.2 ~
0.4 ~
0.6 1

!
0.8 1

I ~
j

1.2 +-
-0.I

• • I . .
•

8

I

0
0

•

• •• ..
'

8
•

0
0

0

•

0.1

•

0.1

0.3

0.3

ct =Odeg.

• • •
'ID Q,> •

• Clo ••

0.5

x/c

• • 0

a Euler

• Experiment

60% span

• ! •

0.7 0.9 1.1

a = 0 deg. o cut y/b = 0.8

0.5
x/c

315

0.7

• Experiment

T-~·--------,

0.9 I. I

-1 cp
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.2

-0.1

-1 cp
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.2

-0.1

0

0 •
0

0

•
0

•
0

0

0

•

-
0

•
0
0

0

•

•

0.1 0.3

•
•

0.1 0.3

a = 1 deg.

0

'-o • ...
• mo c9'o • • •

• • o • I

0.5
x!c

a = 1 deg.

'lJ>o II>
• •• . -• •

0.5
x/c

316

•

0.7

0.7

• ..

o Euler

• Experiment

60% span

...... .,.,.
0 •
• o • • ~

0.9

o Euler

• Experiment

95% span

0.9

1.1

1.1

Cp Data for Mach 0.82

-1 CP
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.2

-0.1

-1 cp
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

a =Odeg. o Euler

• Experiment

• •
8
•

0
0

I

8

0

•

0.1 0.3 0.5
x/c

a =O deg.
•

;-,.~
•• • • q,

o • o<lt.,.. . . ·~

0.7

• • <t,."'• Oo.
i,,• • • q,o.._ I

60% span

0.9

o cut y/b = 0.8

• Experiment

95% span

rl' • - ~ • 0 • oa,. • • • . ~~

••••
•

•
0

•

1.1

1.2 +-----~----~-

-0.1 0.1 0.3 0.5
x/c

317

0.7 0.9 I.I

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

•

•

a = 1 deg. o Euler

x Transpiration

• Experiment

60% span

1.2 -t--------,---------,~--.-------.--------.----

-0.l

-1 cp
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.1

• •

•

)I(

•

0.3 0.5
x/c

a = 1 deg.

0.7

1.2 -t-------,,------,-----,----

-0.l 0.1 0.3 0.5

x/c

318

0.7

0.9 1.1

0 Euler

X Transpiration

• Experiment

95% span

0.9 1.1

APPENDIX E: Steady Validation Data For 80 Degree Delta Wing

This Appendix provides a set of steady validation data for the delta wing of

Section 5.2.5 at an angle of attack of 30 degrees and various roll angles from O degrees

up to 70 degrees. This data is important for two reasons. First, it demonstrates that the

grid resolution is sufficient for an accurate representation of the flow field whether the

solution is steady or unsteady. Second, steady data serves as the initial conditions for any

unsteady solution that is computed. The data presented in this Appendix shows spanwise

surface pressure distributions at one chord location for the wing, the 60% root chord

location. The computed data for Mach 0.3 is compared to the experimental data from

reference 47 corrected for the effects of compressibility using the Prandtl-Glauert

relation, Equation (5.5). There is no experimental data for comparison with the computed

data for Mach 1.2.

319

Cp Data for Mach 0.30, Roll Angles of O and 10 Degrees

-2.0 cp rp =O deg. o Euler

-1.5
• • • • • •

. (Pooo oo

- o'IP<I> -1.0
0

-0.5 •
0

~Oo
i 0

0.0

0.5

•
• • 0

• • • • •

I ·""lftcx_x_x xx xxx x x x

o•
•

• •

• Experiment

x!c =0:6
•••••

(I

0 •

8>'°
- a oaO•oO.

•• 00

X >OOC >C XX X* X ~_..llf<
>OK X X >OC X)0()()00(X ,-

y/s

•oa 411 oa
M..l>Cll* _,ooooc)0(•. xx x x *

1.0 -1------, ---------------~

-1 -0.5 0

-2.0 l CP rp = IO deg.

• • -1.5 • • • • • •
oO o0 •

oO • 0

- o.,,o 0
•

-1.0
o<:1$

0

I
-0.5 j

I •••

0.01i~oo

0

• •
•

•

0.5

o Euler

• Experiment

x!c =0.6

o\ o
0

8

0 5 j ~ .. ~. eoao.o• •oa ea O.
" ~*XXX)0(X XX X X llC X >ClOC X XX X* X~

I
·""lftcx>e>OOCX>OOC X >OC X >OC X X)C >alt X)(>OC X >oc>C>OOCX,-

y/s
1.0 -+-~~~~~-~~~~~~~~~~~~~~~~~~~~

-1 -0.5 0 0.5

320

Cp Data for Mach 0.30, Roll Angles of 20 and 30 degrees

-2.0 cp </J =20deg. o Euler

...... • •
-1.5

• 00

-1.0
0

-0.5

•

• •
•

•
o <>co

•••

• Experiment

xlc =0.6

8

oo~o
ofl> .o • • •

00 • ~
0 • • O"'"o o • '6

0

0.0 0~
0 0

0

.,o
,,Po

8

0.5

1.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

• . "' .o•o•dl
•'-• eo•o.O• •O. 0,, 0 • ->M6<">C10C•oooococcc>0cocc,x, >OC • xx x x • x >00< x xx Xll< x-..:..-,

X>OOCX>OOC X XX X)0()(X X >OIC X X)0(X)O(X)OO(X.,,.

-1 -0.5

cp
•

• • • • • • • • • • oo
0 di 0

o<>
t <1>0°

o"'"
0

-1 -0.5

yls

0 0.5

</J =30deg. o Euler

•
0 •

~

0

321

• Experiment

x/c =0.6

0
<>c:o _,.o

• ood>- <"o
• 0 00 0- 0 8 ,_

• • • • • • • • l>o o

X >00< X XX Xll< X~
>Oil X X >OC X >OCX>OICX,.

yls

0.5

Cp Data for Mach 0.30, Roll Angles of 40 and 50 degrees

-2.0 CP ¢ =40 deg. o Euler

-1.5 • •••••• • •
• •

• Oo
0

-1.0 • -.
0

-0.5

0.0

0.5

0~ .
o, ooo.

OOOQ)O(IOC) 0 '° .of'>w • • •
-·--- ... -· .

• Experiment

x/c =0.6

lC lOOC X lClC X* lC)()()OC-,c..11f'

- X X >O< X >OCX>OOCX.,.

y!s I
>09000DOOCX >OC X XX X X •

. lC-X- lC)()(X >OC lC lC X

1.0 +------~------~-----~-----~
-1 -0.5

-2.0 cp

-1.5

• • • • •
•

-1.0 • • • Cl> • Oo i ooOO
d>o

o"1'
0

-0.5

0.0

0.5

• •
0

0 0.5

¢ =50deg. o Euler

• •

• • ..
•
0

• Experiment

x!c =0.6

i~ ~"
• •o oo o~ o~\ o ,o. 9':) 0

d>o • • •• ~: ..
0 0 0 •• - .o.o • •

• • •

*
)()()(

X >C>OC XX>CXSX~

- X X >O< X >OCX)OO(X,.

y/s
1.0 -+------~----~-----~-----~

-1 -0.5 0 0.5

322

Cp Data for Mach 0.30, Roll Angles of 60 and 70 degrees

-2.0

-1.5

-1.0

-0.5

0.0

0.5

CP 'P =60deg. o Euler

• •
0 • • • • • 0 • • • • • •

O Oqp<»,t:>000 00 e Oo O

O(boOCOOO 00 oCO•
0~ •••••••

O•

0

0 0
•••

• Experiment

x/c =0.6

• - .
0 ~ ~8

0 00 0. O: -:_ _A 0

• "7-F~ 0

• • "' • I .:,
; 0 :. • •

O • .-• • o.o • e

-~OOOC)OC)C)()0(X XX X X llC X X>OC X '111:X X* X~..llf'
,_ X X >OC X)O(X)OO(>C,. X>OOCX>OOC >C)()(>C)0(>C X X

y/s

-1 -0.5 0 0.5

-2.0 C P tp =70 deg. o Euler

-1.5

0
0

-1.0
0 0

• • 0. ••••

-0.5 <>ocoooo
Oo °" •

0.0

• • •

Oo O

• •
•

0

O 0 •••

CD

0.5 O -CCCCC >OC X XX X X llC

X>OOCX>OOC>C XX X>OC X >C >C

-1 -0.5 0

323

• Experiment

x/c =0.6

•

>C >C>OC >C XX XS X~~
,_ X X >OC X)O(>C>OOC>C~-

yls

0.5

Cp Data for Mach 1.20, Roll Angles of O and 10 Degrees

-1.0

oooo<> oe> • oo,;I» <>o
-0.5

0
0

0.01· ~
0 k. 0.5 ,. q,o O 00

0 OC> 1~-;)C)C)C

)C)C)C

1.0

-1 -0.5

0.5

1.0

-1 -0.5

¢ =Odeg. o Euler

0 •

0 0 0
X *)C)C)C

0

0

..

x/c =0.6

0

r;,,1>8
0

0

)C)C)O()C)C)C-)C~

,. X x >OC x >ocx>00ex,-·

y/s

0.5

¢ = IO deg. o Euler

C> 0 0

X *
)C)C)C

0

324

xlc =0.6

00<1>
0

-)C)C)O()C)C)C_)C.._

MIC X X >OC X >OC>C>OOCX~·

y!s

0.5

Cp Data for Mach 1.20, Roll Angles of 20 and 30 Degrees

-1.5

-1.0

-0.5

0.0

0.5

cp r/J =20deg. <> Euler

• ~¢0 • <><> <>
0

~

<>

\

'<><>
QII)•-<> <><> <>¢0 <> <> <>

, aioeocoooc,c >OC • XX X X a
X)OOCX)OOC X XX X >OC X X X

x/c =0.6

<> <><11> <> <><> o$
o<>oeo-•<>

~<>

<> 09

...
X >ClOC XXXX*X~

>OIC X X >OC X >OC>C)00(X .,,.

y!s
1.0 +-----~-----,--------.----~

-1.0

-0.5

0.0

0.5

-1 -0.5 0 0.5

(/J =30deg. <> Euler

• <><> <> 0

0

'OCIOl>OOCO O o0 O OO
<> <> <>

)(900()00()()(>OC X XX X X *
X>OOCX>OOCX XX X>OC X X X

x!c =0.6

<> <><11>
<> 'lo.•

<><> 0. <> <><>oc,eo<:e'f> <>
<> o<> •

<>

<> <>

X >ClOC XXXX*X~
>NC X X)CC X)0()(>OOC X .,.

yls
1.0 +-----~------,--------,----~

-1 -0.5 0 0.5

325

Cp Data for Mach 1.20, Roll Angles of 40 and 50 Degrees

-1.0

-0.5

0.0

0.5

r/J =40deg. o Euler

·~00
e oo O 0

0

i
"'-o<Xl>•-o oo oOO

0 0 0

XX X X llC

XlOC X X X

0 0(1)

0 0 00 0

x/c =0.6

.,,o
d>o

0

X >OOC X XX X* X~
>olC: X)(0

>0C X)O(X)OO(X,.

y!s rx-:::':..c>ocx ,:
1.0 +------,~----~----~----~

-1 -0.5 0 0.5

r/J =50deg. o Euler

x/c =0.6

-1.0

-o~-00 • 00 0 0 - 0 ~ -0.5 0(1)
0

Oo 0
0 o'b

0 o~o~0
0 •

0.0 . ~
00

0 d>

al> 0 0

0 0 0

i ·-·-0 00
0 00

0.5 "¥

--)0(
• XX X X - x >C>OC xxxx•x~

X)OOCX)OOCX XX X lOC X X X >IK X X >OC X)0()()00()(

y!s
1.0

-1 -0.5 0 0.5

326

Cp Data for Mach 1.20, Roll Angles of 60 and 70 Degrees

¢> =60deg. o Euler

x/c =0.6

-1.0

-0.5 e 00 O o ... 0
00
00

0

0.0

o.s Jw·· .. ·-· ~ r~-lOCx,:
1.0 I

-1 -0.5

-1.5 C P

-1.0

-0.5

0
0

oo
0

OO(boooo0

ooo O O 0

XX X X llC

X)O(X X X

0

0- 0

X>C>OC xxxx•x~
>OIi' X X >OC X)OC>C)00(X .,..

y/s

0.5

¢> =70deg. o Euler J
xlc =0.6

~ e Oo
0 0 ...

0.0
O<IQ)OGlO O 00

0

~
0.5 0

0
)0(• x-x-x xx

1.0

-1 -0.5

0~ 0 0 0

XX X X llC

>C>OC X X X

0

327

0000 . "i9
o oo oe oooc,0~ o

O o:>Ofl:/>o O 0

qp 00 00 •

X >OOC X XX XS X~
MIC X X >OC X >OCX>OOCx,·

y/s

0.5

VITA

I);, Timothy John Cowan

Candidate for the Degree of

Doctor of Philosophy

Thesis: FINITE ELEMENT CFD ANALYSIS OF SUPER-MANEUVERING AND
SPINNING STRUCTURES

Major Field: Mechanical Engineering

Biography:

Personal Data: Born in Tulsa, Oklahoma March 31, 1973. The son of Timothy
M. and Marsha L. Cowan. Maried Leslie Ann Graham on July 26, 1997.
Father of Zachary Andrew born on Augst 29, 1999, and Nathan Riley born
February 1, 2002.

Education: Graduated from Union High School, Tulsa, Oklahoma in May 1991;
received a Bachelor of Science degree in Mechanical Engineering from
Oklahoma State University in May 1996; received a Master of Science
degree with a major in Mechanical and Aerospace Engineering at
Oklahoma State University in May, 1998. Completed the requirements for
the Doctor of Philosophy degree at Oklahoma State University in August,
2003.

Experience: Graduate Research Assistant, Oklahoma State University School of
Mechanical and Aerospace Engineering, 1996-2001; Lecturer, Oklahoma

. State University Department of Mathematics, 1999-2000; Visiting
Researcher, NASA Dryden Flight Research Center, 1998-1999; Software
Engineer, Electronic Arts, 2001-2003.

Professional Memberships: American Institute of Aeronautics and Astronautics,
Phi Kappa Phi, Tau Beta Pi, Pi Tau Sigma, and Golden Key National
Honor Society.

