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CHAPTER 1
1. INTRODUCTION

This dissertation presents a space-time finite element method for solving the
compressible Euler equations in a non-inertial reference frame. The methodology
developed here has been formulated with an emphasis on solving problems that are found
in aerospace applications. In particular, we are interested in modeling aeroservoelastic
interactions for complicated three-dimensional problems such as fighter aircraft.

In this Chapter we discuss the background behind our current interest in the
modeling of aeroservoelastic problems. This includes a discussion on the computafional
tools we seek. to enhance through the development of a non-inertial finite element
methodology. We then proceed by defining the objectives of this research effort, and

finish the introduction with a brief overview for the remaining Chapters of this document.

1.1 Background

Modern high-performance aerospace vehicles are highly maneuverable, operate
over a wide range of speeds, in some cases hypersonic speeds, and are designed to have
lightweight, sometimes flexible structures. Examples of such vehicles currently being
developed include the X-33 single stage to orbit vehicle, the X-43 or Hyper-X, and the X-

34 reusable launch vehicle technology demonstrator. Unfortunately, this type of vehicle



often encounters aeroservoelastic (ASE) instabilities during part of its flight profile as a
result of complicated aerodynamic, elastic, inertial, and control interactions. Hence, the
accurate prediction of such interactions prior to flight testing is a necessary part of the
design process.

In terms of accuracy, the most attractive model for the aerodynamic interaction in
an ASE analysis is a computational fluid dynamics (CFD) model. Unsteady CFD
solutions provide an accurate physical model of the flow field for all flight regimes. with
the ability to account for nonlinear generation and unsteady movement of shock waves
when dealing with compressible flows. Traditionally, the use of such models in an ASE
analysis has been limited to academic research due to long computational times,
especially for the three-dimensional models of complicated aerospace vehicles.
However, this limitation is rapidly diminishing as technological advances provide
affordable, faster computers each year. Additionally, research into synergistic
combinations of aerodynamic modeling techniques and CFD have demonstrated a
significant reduction in computational times for aeroelastic simulations.'* Thanks to
these developments, CFD is now more likely to be applied to ASE analysis not just by
academic researchers, but also by aircraft designers in an operational environment.

The capability for completely coupled, nonlinear aeroservoelastic analysis has
recently been integrated into STARS (STructural Analysis RoutineS) developed by Gupta
at the NASA Dryden Flight Research Center. STARS is an highly integrated, finite
element based code for multidisciplinary analysis of flight vehicles including static and
dynamic structural analysis, computational fluid dynamics, heat transfer, and

aeroservoelastic capabilities.4 The core of the nonlinear ASE analysis routine in STARS



is a finite element CFD- algorithm based on a time-marched solution to the unsteady,
compressible Euler equations. This routine is capable of simulating the time accurate
fluid-structure interactions for arbitrary three-dimensional geometries interacting with
inviscid, compressible flows. The accuraéy of this routine has been demonstrated in the
literature for both aeroelastic and aeroservoelastic analysis of several flight vehicle
configurations.s’6

One of the interesting features of the STARS ASE analysis routine is the
methodology used to apply the unsteady CFD boundary conditions for an elastically
deforming structure. Rather than utilizing a computationally expensive moving grid
algorithm or attempting to re-grid the problem at each time step, STARS uses
transpiration to simulate the correct boundary conditions for the deformed structure by
updating only the wall surface normals at each time step. Obviously, this methodoldgy is
more efficient fhan attempting to update all of the nodes in the computational domain by
some other method, such as a moving mesh algorithm. At the same time, research has
demonstrated that STARS CFD results employing the transpiration boundary condition
are in excellent agreement with those obtained using actually deformed grids for the
small deformations typically seen in ASE simulations.”

Unfortunately, the transpiration boundary condition will actually limit the type of
applications the STARS ASE routines are capable of analyzing. Simulations involving
large amplitude motion cannot be modeled accurately using this method. Common
examples of these appiications include spinning structures such as propellers and
turbines, rigid body translation and rotation of fighter aircraft under combatA and

maneuvering conditions, and free-to-roll oscillations of delta wings or “wing-rock.” For



such applications, it would be convenient to solve the governing CFD equations in a non-
inertial reference frame, thus allowing for uniform motion of the entire computational
grid. This formulation should still be substantially faster than updating each individual
node in an arbitrarily deforming grid, and may also be combined with the transpiration

boundary condition to include elastic deformation of the local surface geometry.

1.2 Research Objective

The objective of this research effort will be to extend the capabilities of the
STARS ASE analysis routine by incorporating the capability for unsteady CFD analysis
in a non-inertial reference frame. Hence, we will focus on the development of an
efficient and accurate finite element methodology for solving the compressible Euler
equations expressed in non-inertial coordinates. Although this is non-trivial and arguably
a complicated task, it also is not a unique or novel topic of research as it has been
accomplished in the past. Several finite volume based codes already exist which employ
a non-inertial reference frame, and at least one finite element based code allows for a
rotating (but non-accelerating) frame of reference.

The uni.que aspects of this project involve the more general goal of developing the
capacity for an aeroservoelastic analysis of a super-maneuvering or spinning structure.
This type of multidisciplinary analysis will rely on the integration of the aforementioned
finite element CFD algorithm into the existing STARS framework and require that the
algorithm developed be as general as possible. To solve the most general
aeroservoelastic problem, the finite element CFD algorithm will be required to account

not only for velocities and accelerations produced by rigid body motion of the non-



inertial reference frame, but also simulate elastic deformations and control surface
deflections thfough an appropriately modified transpiration boundary condition that
accounts for an arbitrarily rotating coordinate system. The resulting code is potentially a
general purpose flight simulator capable of accurately modeling an aircraft configuration
performing any sort of arbitrary dynamic flight maneuver. However, the simulation will
obviously not be performed in “real-time” due to the immense computational

requirements of a large-scale CFD analysis.

1.3 Overview

Our discussion begins in Chapter 2 with an examination of the equations we seek
to solve. This. includes a derivation of the non-inertial Euler equations in conservation
form. Chapter 3 then discusses the details of discretizing and numerically solving the
governing equations using advanced finite element methods. Although many aspects of
the current STARS unsteady CFD module will be retained, we do not simply start by
modifying the existing algorithm to accommodate a non-inertial frame. Rather, we seek
to develop a new algorithm by examining state of the art finite element methods currently
in use for computational fluid dynamics research. In fact, we will find that the current
STARS unsteady CFD module is unsuitable for our purposes due to the limitations of its
edge-based data structure.

After evaluating a variety of methods, we develop a space-time finite element
algorithm which re-uses some of the best aspects of the STARS methodology, but is
modified appropriately for a non-inertial formulation. In order to facilitate future

enhancements to this algorithm, Chapter 3 is intended to provide the reader with all of the



relevant theory and equations needed to reconstruct the methodology presented in this
document. Furthermore, Chapter 4 presents many of the details of how the finite element
methodology is implemented as a working computer algorithm, including details on the
solution of the structural dynamics equations not presented in Chapter 3. In Chapter 5,
we attempt a rigorous verification and validation of the CFD algorithm for a wide range
of flow problems. Finally, Chapter 6 presents conclusions and makes recommendations

for future research.



CHAPTER 2
2. PROBLEM DEFINITION

In this Chapter we review the governing equations that define our problem. We
begin by discussing the choice of governing equations used in this study, namely the
compressible Euler equations. This includes a brief literature review investigating the
trade-offs associated with using the Euler equations rather than the Navier-Stokes
equations for aeroelastic simulations. In the next section we present the classic form of
the compressible Euler equations which will serve as the basis for deriving our numerical
algorithm. This is followed by a discussion of the transformations necessary to re-cast
the equations for use in a non-inertial formulation, and the appropriate dimensionless

form of the governing equations needed for development of a numerical algorithm.

2.1 Choice of Governing Equations

The emphasis of the present work is to extend the capabilities of the STARS
nonlinear ASE module to include CFD analysis in a non-inertial reference frame. As
mentioned preQiously, the current unsteady CFD module uses a time-marched approach
to solving the unsteady, compressible Euler equations. Although the Navier-Stokes
equations represent the most precise mathematical model for fluid flow, the Euler

equations adequately model most of the physical characteristics of transonic and



supersonic flows with the obvious exception of substantial viscous effects. Flow features
of particular interest for compressible flows are the generation and motion of shock
waves, entropy increases across shocks, and vorticity production and convection behind
shocks, all of which can be successfully modeled using the Euler equations.g’9

One of the primary motivations for employing the Euler equations rather than the
full Navier-Stokes equations is computational efficiency. We expect that any numerical
solution to the Euler equations will be faster than a similar solution to the Navier-Stokes
equations since there are fewer terms to compute. In fact, Roache'? has suggested that,
“one could swallow up one order of magnitude (increase in computing power) with
Reynolds Averaged Navier-Stokes equations and a two-equation model of turbulence.”
This problem is compounded by the fact that Navier-Stokes solutions typically require
greater grid resolution, and even small increases in grid resolution swallow up enormous
amounts of computing pdwer.

If one were ambitious enough to be interested in direct numerical simuiation
(DNS) of aerospace flows using the Navier-Stokes equations and brute-force calculation
of turbulence, multiple references have suggested that the required number of grid points
is approximately proportional to the Reynolds number raised to the °/, power. With this
relationship in mind, Moin'! estimates that about 10" grid points would be required to
model a typical transport aircraft cruising at 250 meters per second. Furthermore, he
estimates that even with teraflop supercomputers it would take several thousand years to
compute the flow for one second of flight time. !

To date, only simple, low Reynolds number flows such as plate, channel, and step

flows have been successfully analyzed using DNS, and only at an extreme computational



1213 Because of this, any practical viscous

expense using parallel supercomputers.
solution employs the Reynolds Averaged Navier-Stokes (RANS) equations plus some
form of turbulence model. Although this averaged form of the Navier-Stokes equations
does relax the grid spacing requirements when compared to DNS, it still requires
significantly more grid points over comparable Euler solutions to accurately resolve the
boundary layer. Considering that many of the existing STARS CFD models consist of
several hundred thousand elements and take on the order of weeks or even months to
analyze using an Euler solution, increasing the computational time by incorporating a
Navier-Stokes model does not appear to be practical at this time.

It is important, however, to consider what physical aspects of the problem may be
lost when the viscous terms in the Navier-Stokes equations are neglected. Some of the
more interesting features that the full Navier-Stokes equations are capable of predicting
include boundary layer development and interaction with shocks, as well as turbulence
generation and vorticity shedding. In general, these flow features cannot be modeled by
the Euler equations since they are inherently viscous effects. This is a significant
problem if the expressed purpose for modeling a particular aircraft is to search for these
specific flow features. However, the primary use of the STARS unsteady CFD module is
in coupled aeroelastic and aeroservoelastic analysis. Hence it may be more relevant to
question what accuracy might be lost in a typical ASE analysis as a result of neglecting
the viscous terms from the Navier-Stokes equations.

In a typical CFD-based ASE analysis, the dynamic response of a structure is
computed by solving Equation (2.1), the matrix equation of motion for an arbitrary

structure in generalized coordinates.



(2.1) M (t)+ Cx(1)+ Kx(t) =1, (1)

In the above relation, x = {xy, xy, ..., x,,}T is a vector of n generalized displacements, f;, is
a vector of n generalized aerodynamic forces, and M, C and K are nxn matrices of
generalized mass, damping, and stiffness coefficients respectively.

Notice in Equation (2.1) that the dynamics of an aeroelastic problem is driven by
an unsteady aerodynamic force vector, the calculation of which involves an integration of
pressure over the surface of the structure. With this in mind, it is often argued that small
or localized pressure fluctuations due to viscous effects should not significantly impact
aeroelastic stability since their integrated effect would be negligible.

Obviously this will not be true for all classes of problems, but for many aerospace
applications, excluding high angle of attack problems, this does seem to be the case. One
example of such an application is the AGARD 445.6 aeroelastic test wing. Gupta’
modeled this wing configuration in order to demonstrate the capabilities of the STARS
ASE module. Although the results were not quantitatively precise, the qualitative trends
accurately matched those observed during the original wind tunnel testing at the Langley
Transonic Dynamics tunnel, including the transonic dip in the flutter boundary near Mach
1.0. These results seem to indicate that the Euler solution is capable of modeling the
dominant flow physics which drive this aeroelastic problem, while the small numerical
discrepancy is most likely the result of structural modeling uncertainty along with some
viscous effects. In addition to the AGARD, a variety of other aeroelastic simulations
have been performed using STARS, including the BACT wing.6 Recent efforts at NASA

are focused on modeling the Hyper-X supersonic vehicle using STARS.
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Another interesting numerical study was completed by Steger and Bailey.'* It
involved the prediction of a single degree-of-freedom aeroelastic phenomenon known as
buzz. One of the more interesting results from their simulation was a comparison
between the buzz boundary predicted by a viscous and inviscid flow solver. The viscous
solution predicted buzz at both Mach 0.82 and 0.83, while the inviscid solution predicted
buzz slightly later at Maéh 0.84. Furthermore, a limit cycle oscillation was predicted by
the viscous flow model while the inviscid model predicted exponential divergence; On
the difference between the observed limit cycle oscillations and exponential divergence,
Steger and Bailey concluded that: “...while inviscid unsteady shock wave motion is the
driving force of transonic aileron buzz, the viscosity is nevertheless crucial and can both
sustain and moderate the flap motion.”

Again, the conclusion is that an inviscid solution is entirely capable of predicting
the dominate flow physics which initially drive an aeroelastic problem, or at least enough
to obtain a reasonable approximation for a stability boundary. The viscosity, on the other
hand, seems to have a nonlinear effect on the rate of divergence for an unstable time
history, making limit cycles and other nonlinear behavior possible. That is not to say that
an inviscid solution cannot predict nonlinear behavior as well though. As discussed at
the beginning of this section, an Euler solution is entirely capable of predicting nonlinear
generation and motion of shock waves.

For the remainder of this research, it is assumed that an Euler solution is
appropriate for modeling many aeroelastic problems, and it is left for individual
researchers to decide whether viscosity will play a dominate role in their particular

problem.
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2.2 The Compressible Euler Equations

The compressible Euler equations are fundamental to the subject of inviscid flow.
As such, their derivation from the three conservation laws; conservation of mass,
momentum and energy; can be found in most introductory texts on fluid dynamics. Here,
the compressible Euler equations are presented in their most commonly used form, the
so-called conservative variables formulation. Using indicial notation, a single vector

equation representing the compressible Euler equations is written as follows:

(2.2) ?__I_J_ + 9-5 =0
ot  ox
where, in three dimensions,
r p \
v Py
2.3) U=1pu, r
Py
L pe 7
PU; 0
pu ;i pd,
(2.4) F, =qpuu, ;+pd, ¢
Pl pos;
pue ) Py

In the above equations, U is the Euler unknowns vector, F; is the it component of the
Euler flux vector, p is the fluid density, u = {u1, uo, ug}T is the fluid velocity vector, e is
the total energy per unit mass, p is the thermodynamic pressure, and d; is the Kronecker

delta (i.e. §;=1for i =j, and J; =0 for i ).
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Along with Equation (2.2), we will also require the following constitutive
equations relating the thermodynamic pressure and total enthalpy per unit mass, &, to the

Euler unknowns:
2.5) p=p(y-1le—tu’)

P

(2.6) h=e+p/p=—+lu2
oy

In the above equations, ¥is the ratio of specific heats, which is assumed to be constant for

a given problem.

2.3 Non-Inertial Formulation

The Euler equations presented in the previous section were formulated in terms of
an inertial or stationary reference frame. In this section we will extend these equations to
account for the arbitrary motion of a non-inertial reference frame. Consider the layout
presented in Figure 2.1, where XYZ represents an inertial reference frame and xyz
represents a non-inertial reference frame which is free to translate and rotate in all three

dimensions.

Figure 2.1: Vector relationship between inertial and non-inertial reference frames.
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The position vector, q, for a particle located in the non-inertial reference frame

can be expressed in terms of the inertial reference frame by Equation (2.7).

(2.7) Qyy; =Ry, +Br

xyz
In the above relation, B is a coordinate transformation matrix that maps a particular
coordinate location in the non-inertial frame, xyz, to the inertial frame, XYZ. In three-

dimensions, the matrix B may be defined as follows:

1CC, S,8,,-C,S, C,S,C,+S,S,
(2.8) B=|C,S, S,5,5,+C,C, C,S,S,-5,C,
-S, $;C C,Cy
where the angles 6, ¥ and ¢ are the classic Euler angles used in flight dynamics to

describe the orientation of an aircraft."”

Next, consider the time rate -of change of Equation (2.7).

dr . ,
2.9) My _ Ruy B g% _y  Br_ 4BV,
dt dr dt ” dt Y

In the above equation, Vj is the velocity vector for the origin of the non-inertial frame
expressed in inertial coordinates, and V, is the relative velocity vector for the fluid
particle expressed in non-inertial coordinates. For convenience, a matrix which has the

property giVen by Equation (2.10) is introduced.

(2.10) Q=B"'B
where
(2.11) B=BQ

For a rotating system, the angular velocity matrix, €2, is defined by Equation (2.12).
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0 -o, @, ||r,
(2.12) Qr , =oXxr,, =| o, 0 - jr,
-0, 0, 0 Iee

o

where the angular rates, @), @), and @, are the angular velocities of the non-inertial frame
expressed in non-inertial coordinates. These angular rates are equivalent to the body
angular rates, p, g and r, typically used to describe the motion of an aircraft in flight
15

dynamics.

Now consider the time rate of change of Equation (2.9).

d
Vy +-(—IEQr Z+Bi%r Z+Bﬂ-iyi+§V,+BdV'
d dt 7 dt ™ dt dt dt

(2.13)-37(% +BQr,, +BV, )=

Simplifying Equation (2.13) yields the equation needed to define a velocity derivative in

terms of its non-inertial components.

dv,
dt

(2.14) %Vt— =a, +BQ’r , +BQr_ +2BQV, +B

Notice -that the derivation of Equation (2.14) was based on a Lagrangian
description of motion and defines the total acceleration vector for a particle moving in a
non-inertial reference frame. This expression is also valid in an Eulerian description of
motion if the total time derivative is replace by the particle, or substantial derivative.

DV 2 -
(2.15) o a, +BQr  +BQr  +2BQV +B

DV,
Dt

For convenience, a transformation velocity vector, V;, and transformation acceleration
vector, a;, both expressed in the inertial frame, are defined as follows:

(2.16) ' V,=V,+BQr,,

!

(2.17) a, = -‘g—f =a,+BQ’r_ +BQr _, +BQV,
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The above equations allow us to rewrite the definition for the total velocity and
acceleration vectors, Equations (2.9) and (2.15), in a more compact form as follows:

(2.18) V=V +BY,

(2.19) DV . +Bav +B2Y:
Dt Dt

These equations will help us to cast the compressible Euler equations in terms of relative
quantities expressed in non-inertial coordinates. To do so, we must first define a relative
energy, e,, by substituting the definition for the total velocity into the perfect gas law,

Equation (2.5), as follows:

(2.20) pe=—7”j+5p(v,-V,)—%p(v,-v,)wV-V,=pe,+pV-V,

where
(221) e, =e=V.V,

Using this definition for the relative energy, we now write our constitutive
equations in terms of relative and transformation velocities as follows:
Vr

(2.22) p=ply- 1)(6, ~ 4V, [ +1], lz)

(2.23) ho=e +plp=—»if 41

plr-1)

where £, is a relative enthalpy per unit mass.

2 2
-1
Vil

\£

Through careful substitution of the above non-inertial definitions into the
compressible Euler equations for flow relative to an inertial frame, we are able to derive
the following vector equation for the compressible Euler equations for flow relative to a

non-inertial frame:
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dU OF,
=+ =

2.24 —+—==8
(2.24) ot ox;
where, in three dimensions,
[ p
PY,
(2.25) U =< puz >
PUs
LPe,
(pu ) [ 0]
puu, po,;
(2.26) F, =< puu,+1pd,
| Pu s PO
\puier L pui J
O .
(2.27) S=-p{ (B2, +QV,)
a,-(V,+BV,)

In the above relations, S is the non-inertial source vector, and u = {u, u, u3}T now
represents the relative fluid velocity vector expressed in non-inertial coordinates, which is
equivalent to the relative velocity vector, V,, appearing in the non-inertial source vector
and used in the derivation of the non-inertial quantities.

Notice that the fransforrnatién matrix, B, and its inverse, B, are required in order
to evaluate Equation (2.24). This is not a desirable definition to form the basis of an
efficient numerical algorithm. Instead, let us redefine the transformation velocity and
acceleration, V, and a,, respectively, so that they are vectors expressed in non-inertial
coordinates. From Equations (2.16) and (2.17) the non-inertial transformation velocity
and acceleration, V,” and a,” respectively, may be expressed in non-inertial coordinates as

follows:
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(2.28) V/=B'V,+Q r,

(2.29) a]=B7a, +Q’r, +Qr_ +QV,

Taking advantage of the above definitions, we also define the following definition for the
non-inertial source vector such that all vector quantitiés are expressed in terms of non-

inertial coordinates:

0
(2.30) S=-p! a +QV,
a;-(V/+V,)

In later sections, we will drop the prime notation and assume that all vector quantities are

appropriately expressed in terms of non-inertial coordinates.

2.4 Dimensionless Forms

The successful application of a numerical algorithm to solve the compressible
Euler equations requires that they first be cast in dimensionless form. This is
accomplished by defining a dimensionless density, velocity, pressure, energy, time, and

coordinate location as follows:

(2.31) P =plp,
(2.32) u, =u, /U,
(2.33) P =p/p.U,
(2.34) e ;e/Uj
(2.35) t'=tU,[L,
(2.36) x" =x/L,
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In the above expressions, p, is the reference density, U, is the reference velocity, L, is a
reference length, and the asterisk is used to denote dimensionless forms of the usual
quantities.

Next, the above definitions are used to derive dimensionless forms for the

unknowns vector and inviscid flux vectors.

— r "

p, 0 0
0 pU, 0 {|pu
(2.37) U=| 0 p U, 0 0 Rpv=[u,]u
0 0 pU, 0 ||p'w
|0 0 pUlpe
pU, 0 o pu
0 pU, 0 0 0 |l p'uju; +p’d,
(2.38) F =| 0 0 pU> 0 0 Kp'wu,+p's, r=I[F]F
0 0 p, 0 ||puju,+p°8,
0 0 pU|ulpe +p)

In the above expressions, U’ is the dimensionless Euler unknowns vector, F;" is the i
component of the dimensionless Euler flux vector, and [U,] and [F,] are matrices defined
such that they convert these dimensionless vectors back into their dimensional form.

Using Equations (2.37) and (2.38), the compressible Euler equations are now

written as follows:

w1 SR
L, ox,

H

=S

(2.39)

The dimensionless form of the compressible Euler equations in non-inertial coordinates

may then be expressed as follows:

*

oU"  OJF,
Tt ==
ot ox,

!

*
*

(2.40)
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where

(2.41) S==2[U,]s

For the remainder of this study, this dimensionless form will be used exclusively as the
basis of our numerical algorithm. Therefore, we will drop the asterisks when referring to
the compressible Euler equations and assume that all variables are in their appropriate
dimensionless form.

To conclude this section, we present three additional dimensionless forms that are
useful in the development of a solution for the compressible Euler equations. First, the

local acoustic speed, a, is written as follows:
(2.42) a’ =y&

Utilizing the above definition, the local Mach number, M, may be written as follows:

(2.43) M? :M:ﬂllﬂz—
a’>  yp

Finally, the perfect gas equation of state in inertial coordinates, may be written using the

local Mach number as follows:

(2.44) pe=P(_1—+ }LMZJ
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CHAPTER 3
3. METHODOLOGY

In this chapter we define the finite element methodology that will be employed in
our numerical solution for the unsteady, compressible Euler equations. We begin our
discussion with an overview of finite element methods along with an introduction to
some of the basic terminology for describing such methods. This includes an
introduction to the integral formulation that results when we apply the Galerkin method
to the governing equations. In the next section, we present the fully discrete space-time
formulation that will serve as the basis of our finite element methodology. This is
followed by a discussion on the discretization by finite elements of the space-time
integrals found in our formulation and numerical evaluation of those integrals using one,
two and three-dimensional finite elements.

Also included in this chapter is a discussion of relevant boundary conditions and
their practical implementation through the boundary integrals. This includes a derivation
of the transpiration boundary condition for elastic problems in both inertial and non-
inertial formulations. The next section discusses several predictor multi-corrector
algorithms for advancing the finite element solutions in time. The chapter concludes with
a review of techniques for stabilizing our finite element solution scheme, including the

rationale behind our choice of stabilization operator to adopt.
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3.1 Overview of Finite Element Methods

The partial differential equations presented in the previous chapter provide the
basis for describing a general, three-dimensional flow field. Since there is no general
analytical solution to these equations for threé-dimensional problems, numerical methods
for approximating their solution vhave been the topic of research for decades.
Traditionally, numerical methods for fluid dynamics were based on finite difference
approximations for derivatives in the governing equations. This type of formulation
required the use of carefully structured, body-conforming grids; the generation of which
is extremely laborious and often a practical impossibility for geometrically and
topologically complicated domains. Hence, finite difference methods have quickly
becomé obsolete as new methods without this geometric limitation have been developed.

Most state of the art computational fluid dynamics algorithms are based on either
finite volume or finite element formulations. Both of these formulations have the
necessary geometric flexibility to allow for the use of unstructured grids when analyzing
complicated domains. Finite volume methods currently dominate the field, but finite
element methods for fluid flow have matured rapidly over the past several years and are
beginning to gain more widespread acceptance by the CFD community, despite their
perception as strictly a structural modeling technique based on their origins in that field.
In reality, there is very little difference between the two formulations. It has even been
demonstrated that a finite element formulation based on the Galerkin method is entirely
equivalent to a finite volume formulation when a diagonal form of the finite element

mass matrix is used.'®
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For our purposes, we seek an efficient and accurate finite element formulation in
order to maintain a consistent framework for analysis within the finite element based
STARS routines. A standard finite element solution begins by dividing the spatial
domain, Q, into non-overlapping sub-domains called elements. The elements are either
line segments in one dimension, triangles/quadrilaterals in two dimensions, or
tetrahedrons/hexahedrons in three dimensions. Each element consists of nodes that are
typically located at the element’s vertices and are shared by neighboring elements. The
basic idea of the finite element method is to then construct in a piecewise manner the
solution for the fluid unknowns everywhere within Q using shape functions for each
element. These shape functions represent the variation of the solution over an element’s
sub-domain through an interpolation of discrete values at the element’s nodes.

With the geometry suitably defined, the next step is to write an integral
formulation for the governing equations, usually by applying some type of Galerkin
weighted residual procedure.  Applying the basic Galerkin formulation to the
dimensionless form of the compressible Euler equations over a closed spatial domain Q

results in the following integral equation:

JU JF,
3.1 O —+——L-SldQ=0
G-D ;!. [at +ax,. J

In the above expression, @ is a vector of element weighting functions, which are the
same as the finite element shape functions assumed in our discretization of the spatial
domain.

Next, we apply the Gauss divergence theorem, or integration by parts, and re-

write the integral expression in Equation (3.1) as follows:
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T
(3.2) j(qﬂ gg_a_@_Fi —(I)TSJCZ’Q-E- [@"F,dr=0
Q r

ot o
where
pPu,
pu, + pn
(3.3) F, =Fn = puu, +pn,
Pusu, + pn,
| (pe+plu, |

In the above expression, I is the boundary of the spatial domain, n = {n;, n,, n3}T 1s the
outward facing normal vector at the boundary, u, = u-n is the normal fluid velocity at the
boundary, and F,, is the normal flux vector.

The integrated by parts formulation in Equation (3.2) results in the conservation
of fluxes under inexact quadrature rules.!” This form also eliminates the flux derivatives
from Equation (3.1), which allows for a discontinuous represehtation of the Euler
fluxes.'® Furthermore, the introduction of a ‘boundary integral in Equation (3.2) provides
us with a natural means of enforcing the boundary conditions on the spatial domain.'®!’?

To complete our discrete formulation for the compressible Euler equations, it is
necessary to approximate the remaining time derivative in Equation (3.2). In most of the
existing finite element methods for fluid flow, this is accomplished through some sort of
finite difference approximation. The current literature abounds with methods that utilize
either forward, backward or central-difference formulas with varying orders of accuracy,
all of which lead to either explicit or implicit formulations depending on the choice of
differencing formula. In fact, the current STARS unsteady CFD module utilizes an
implicit, second-order accurate, backwards-difference operator for its time

discretization.'®
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While there is nothing fundamentally wrong with employing finite differences as
described above, this type of formulation is sometimes labeled as a semi-discrete
formulation due to the mixing of finite element and finite difference approximations
within one algorithm. In contrast, a fully discrete finite element formulation would
utilize element shape functions to represent both the spatial and temporal variation of
unknowns within the computational domain. This approach leads to an implicit
formulation ‘where the time discretization is derived directly from the Galerkin integrals.
The development of these so-called space-time finite element methods has been a major
contribution to the field and “should fqrever dispel the prevalent myth in finite difference
circles that somehow finite element methods are not appropriate for hyperbolic
problems.”'® Space-time finite element formulations represent the current state of the art
within the field and have been successfully employed in some of the more recently
developed algorithms.”?* As we will see later, the differences between the semi-discrete
and fully discrete formulations is, in most cases, a question of semantics. However, we
will pursue a fully discrete finite element formulation for this study due to the general
flexibility it offers when considering the discretization of temporal derivatives.

It is well documented through out the finite element literature that the Galerkin
method lacks stability. A solution scheme based on the methodology presented so far
will manifest spurious oscillations that are both non-physical and undesirable. To combat
this problem, the numerical scheme needs to be stabilized by adding some form of
stabilization operator. This is, in fact, the focus of most finite element CFD research, and
there are almost as many stabilization operators as there are finite element based CFD

codes.
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It is important to note that this instability is not a problem that is unique to finite
element methods. Stabilization techniques are also necessary for both finite difference
and finite volume methods as the instability is inherent to all discretization methods. In
fact, many of the stabilization techniques used for finite element methods are simply
extrapolations of similar techniques originally derived for finite difference solutions. The
remainder of this chapter will focus on developing a working numerical algorithm out of
the equations presented so far, including a discussion on the relevant stabilization

methods for such an algorithm.

3.2 Space-Time Formulation

The basis of our formulation is the time-discontinuous Galerkin method, which
employs finite elements that are piecewise continuous in space and discontinuous in time.
To begin our discretization of the problem, consider the space-time domain S, where the
time interval 7= [0, 7] is divided into N intervals I, = [t,, tn+1], where n=10, 1, ..., N- 1.
For each time interval, we then define a space-time sub-domain as S, = Q x I, and its
boundary B, =T x I,,, where Q is the spatial domain and I is its boundary.

The introduction of a space-time sub-domain in this discussion can very easily
lead to conceptual difficulties when deriving the Galerkin integral formulation. To avoid
this, it is useful to consider time as simply an additional dimension for the problem. This
works particularly well for a two-dimensional geometry where time can then be thought
as a third dimension for each element. The elements then encompass a space-time
volume which could be computed as the spatial area of the element times the size of the

time increment, or the height of the space-time sub-domain. In three-dimensions, this
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idea does not have a solid physical representation, but the mathematical implementation
is extended in the same rﬁanner.

It is now necessary to modify the previously defined Galerkin formulation,
Equation (3.1), to include integration over the entire space-time sub-domain rather than
just the spatial domain. Hence, we re-apply the basic Galerkin formulation to the
dimensionless form of the compressible Euler equations over a closed space-time sub-

domain S, to derive the following integral equation:

oU JdF,
3.4 O —+—_L_SldS=0
34 '[ [at ox; j

In the above expression, @ is now a vector of weighting functions that includes both the
spatial and temporal variation of the unknowns within the space-time sub-domain. The
weighting function is assumed to be continuous within S, but discontinuous across the
boundary of the space-time sub-domains.

As before, we apply the Gauss divergence theorem, or integration by parts, and

re-write the integral expression in Equation (3.4) as follows:

T
(3.5) j{—ag'; y-9®. F,— (I)TS]dS+ [@].U,,~@]U, JdiQ+ [®7F,dB=0
s"

n—
ox, 3

n

In the above expression, ®,+; and ®, are the weight functions evaluafed at the t,41 and ¢,
boundaries of S, respectively, U, is the value of the unknowns at the #,1; boundary of
S», and U, is the value of the unknowns at the #, boundary from the previous space-time
. sub-domain, S,-;.

The second integral in Equation (3.5) represents a time boundary integral, which

results from the integration by parts of the time flux term. Since our formulation is
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discontinuous in time across the space-time sub-domains, this integral serves as a
mechanism for information to jump from one sub-domain to the next. As such, it will be
referred to as the jump condition and has been formulated such that it imposes a weakly

enforced initial condition for the space-time sub-domains.’

3.3 Finite Element Discretization

We now decompose our space-time sub-domain S, into finite elements S,°, where
e=1,2, .., ng The result is a fully discrete finite element formulation where the
integrals of Equation (3.5) are assembled by summing the contributions of each

individual element within S, as follows:

oD

X

N,y a®T
(3.6) > —E—U—

e=1 S¢

F, —@Ts]dsﬁj [l u,, -olu, Ji

e=] Qf
+3 [@"F,dB=0
e=l pe
In the above expression, notice that the boundary integral is only computed for the
elements along the boundary of the computational domain, where #;, 1s the number of
boundary elements. This is because the boundary integral will identically cancel on
interior elements that have shared boundaries with other elements.
To accomplish the integration on an individual element, the solution for the vector
of fluid unknowns within an element is constructed through an interpolation of discrete
values at that element’s nodes. For our purposes, we will consider the spatial and

temporal interpolation within an element separately by defining different shape functions

for each. Furthermore, we will assume that the spatial sub-domain defining an element,
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Q,°, does not change with time, i.e. we have a non-deforming grid. For our application,
deforming grids will be simulated through a suitable modification of the boundary
conditions as is done with the current STARS unsteady CFD module. This approach is
more computationally efficient than employing a fully deforming grid. However, it
should be noted that a space-time formulation has been demonstrated for arbitrarily
deforming grids if this capability is desired later.>**

For our derivation in this section, it will be assumed thét the unknowns vector for
each element varies linearly in space and is piecewise constant in time. This constant-in-
time discretization can be modified later to account for higher-order temporal variation
without the need to modify the geometric transformations that will be derived here. For a
constant-in-time  discretization, the unknowns are considered constant along each
individual space-time sub-domain, but they are discontinuous across different sub-
domains. Figure 3.1 presents the notation used for describing the temporal variation of

the unknowns from one space-time sub-domain to the next when viewed with respect to

the current sub-domain S,,.
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Figure 3.1: Variation in time of unknowns using a constant-in-time approximation.
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For our finite element discretization, we define the vector of unknowns U within

an element e as follows:
(3.7) U=[®, - @,] : |=0,U

In the above expression, nd is the number of nodes for the element, ®, =[ @, ..., ®,,] is
a 1xnd vector of spatial shape functions for each node of the element, and U, = [U}, ...,
U.q ]T is a nd %1 vector of unknowns for each node of the element.

Substituting Equation (3.7) into Equation (3.6) and reducing the space-time
integrals to spatial integrals only using the transformations dS = At dQ and dB = At dI’

produces the following expression:

ny T n,
(38) —Atz —éqlg—Fi +‘I)ZSJdQ+Z J.(‘I)Zq)e(Ue)nH _‘I)Zq)e(Ue )n— )dQ
e=] e 24

i

e=1 Q_E

+Ar§ [®IF,dr=0

e=1 e
In the above expression, we have omitted the temporal subscripts wherever possible since
the shape functions and the geometry are now assumed to be constant in time.

It is possible to further simplify Equation (3.8) if the flux vectors are also
assumed to vary linearly within an element. This assumption leads to what is sometimes
called a mixed finite element method. One advantage of a mixed finite element
formulation is that the element flux integrals may be re-constructed by integrating over
only the edges of the elements. The current STARS unsteady CFD module takes
advantage of the edge—based data structure that results from this type of formulation to

improve its computational efficiency. In fact, an edge-based data structure is reportedly
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up to 30% more efficient than a similar element-based data structure for three-
dimensional problems.18 However, the improved computational efficiency is lost for
two-dimensional problems where we have observed that edge-based algorithms are
slower than similar element-based algorithms.

For our derivation, element integrals will not be evaluated using an edge-based
data structure for several reasons. First, an element-based data structure is required for a
consistent evaluation of the jump condition and non-inertial source integrals. The current
STARS unsteady CFD module actually uses an approximation for its time flux integrals
in order to rerﬁain within the context of its edge-based data structure. This
approximation, known as mass lumping, is required for edge-based data structures since
there is insufficient nodal connectivity information to re-construct the consistent finite
element mass matrix that will be derive in the next sections. Furthermore, an edge-based
data structure is only useful for approximating the Euler flux integrals for a mixed finite
element formulation. This type of formulation does not appear to be extendable to
viscous flows where an additional viscous flux integral must be assembled. Hence, the
generality and consistency of our formulation will be lost if an edge-based dafa structure
is utilized exclusively.

In order to maintain a consistent finite element formulation, the flux integrals on
element interiors will be approximated using Gauss quadrature rather than by making an
assumption about the variation of fluxes on element interiors. As discussed previously,
this is a significant deviation from the edge-based STARS unsteady CFD module.
However, we will follow the current STARS formulation and approximate the boundary

flux integrals of Equation (3.8) using a mixed finite element formulation. This is a
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reasonable approximation that has been proven to be sufficient for our applications, and it
eliminates the complexity of interpolating nodal boundary conditions to Gauss points on
the boundary elements. This will be particularly important later when we attempt to

implement the transpiration method to simulate deforming boundaries.

3.3.1 One-Dimensional Elements

In this section v;/e derive the geometric transformations necessary to compute the
integrals in Equation (3.8) for a one-dimensional element. Although a one-dimensional
finite element solver is not particularly useful for aerospace applications, the derivations
presented here will be necessary for evaluating boundary integrals in two-dimensions.
The non-inertial source and boundary flux integrals will be omitted in this section since
they are trivial for a one-dimensional problem and will not be needed. Figure 3.2
presents the general layout for a typical one-dimensional element in element natural
coordinates and the variation of the element shape functions over the length of the
element.

0
A /

T \CI>2=‘/2(1+§)

j- /q>1='/z(1-¢)

ndl | nd2

g =-1 ¢ =0 £ =+
Figure 3.2: Typical one-dimensional finite element in natural coordinates.

The shape function for a one-dimensional linear element is defined in terms of

element natural coordinates as follows:
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(3.9) ©,=41-¢ 1+¢]
In the above expression, ¢ is the element’s natural coordinate, which ranges from —1 to

+1 across the length of the element.
In order to convert from element natural coordinates to homogenous Cartesian

coordinates, we define the following scalar transformation:

(310) X = %‘ (xndl + xndZ )+ % x2]§
where
(31 l) x21 = xnd2 —xndl = Axe

In the above expressions, X4 and x5 are constants that are equal to the x-location for the
first and second node of the element respectively.
Using the chain rule for partial derivatives, the Jacobean, J, of the coordinate

transformation may be derived from Equation (3.10).

(3.12) 0/9& = dx/d& -9/ ox
J

where

(3.13) J=4x, =1Ax,

From Equation (3.12), the inverse relationship follows:
(3.14) | 3o =—2-3/3¢
Ax,

From Equation (3.14), spatial derivatives of the element shape function may be converted

from Cartesian coordinates into element natural coordinates as follows:

oD 2 00 1
3.15 e = e 1y
G.15) ox Ax, d¢ Axe{ J
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With the shape functions and geometric transformations suitably defined, we now
evaluate the integral expressions in Equation (3.8). First, the jump condition integral is

evaluated as follows:

(3.16) flol0,(u,),, -2, (U,) Jde=M,auU,
J
where
(3.17) _ M, :%Ax{]’(pjcpedg):%me[z 1}
ki 1 2
and
(3.18) av, =(u,),,-(U,),

In the above expressions, M. will be referred to as the finite element mass matrix. Next,

the flux integral is evaluated using Gauss quadrature as follows:

on” Lo’
< F Q= e
Q, ox JJ —'1[ o

(3.19) j[

where np is the number of Gauss points, w; are the Gauss weights, and & are the Gauss

wes - 18 wate)

points. Table 3.1 gives the appropriate values of the Gauss points and weights for one-

point and two-point approximations on a one-dimensional element.*®

Table 3.1: Gauss points and weights for one-dimensional elements.

Number of points, np Points, & Weights, w;
1 0.0 2.0
5 —0.5773502692 1.0
+0.5773502692 1.0
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3.3.2 Two-Dimensional Elements

In this section we derive the geometric transformations necessary to compute the
integrals in Equation (3.8) for a two-dimensional element. Since the boundary of a two
dimensional element is one-dimensional, this section will also utilize the transformations
from the previous section when deriving the boundary flux integrals for two-dimensional
elements. Figure 3.3 presents the general layout for a typical two-dimensional element in
element natural coordinates.

(0,0,1)

&, &, Hareaset
of natural coordinates
(0,1,0)

At any point within the element

(1,0,0) htbh+&=

Figure 3.3: Typical two-dimensional finite element in natural coordinates.

The shape function for a two-dimensional linear element is defined in terms of

element natural coordinates as follows:

(3.20) o =l & &

where

(3.21) & =1-¢,-¢,

In the above expression, & are the element’s natural coordinates, which range from 0 to 1

across the element.
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In order to convert from element natural coordinates to homogenous Cartesian

coordinates, we define the following transformation:

x Xodl  Xpaz  Xnas ¢

(3.22) Y=Vt Yuaz YVuaz ‘fz
h 1 1 1 '4,:3

where x,4;, X,2 and x,43 are constants that are equal to the x-location for the first, second
and third node of the element respectively. Alternatively, Equation (3.22) may be

reduced to a 2x2 transformation by substituting in the expression for &.

{x} {xmﬂ} [xw xz3}{§1}
(3.23) = +

y Va3 Yis Y é:z
where

xl_’j = xndi _xmﬁ

(3.24)
yl_',' :ymﬁ _yndj

Using the chain rule for partial derivatives, the Jacobean, J, of the coordinate

transformation may be derived from Equation (3.23).

(3.25) {a/a.fl}:[ax/a; ay/a'fIHB/ax}

oc,| ~|axjag, avfoc, ||ajoy
J
where
(3.26) J:[xw %3}
Xy Vn

From Equation (3.25), the inverse relationship follows:

d/ox ol ys s 0/d¢,
e {a/ay} ‘ELB Ha/afz}

where the area of an element 4, is computed as follows:
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(3.28)

24, = |detJl = |x13yz3 _xz3y13|

From Equation (3.27), spatial derivatives of the shape function may be converted from

Cartesian coordinates into element natural coordinates as follows:

(3.29)

where
(3.30)

and

(3.31)

where

(3.32)

All
D 1 [ oD acpj_ 1

e A F A, |=—
ox 24\ "o P& ) 24, A"

13

Ap=-A,—-A,

D 1 I ) 1|2
—— =5 | AugrtAnS |55 An
dy 24, ¢, 94, 24,

A

Ay=-A, -A,

With the shape functions and geometric transformations suitably defined, we now

evaluate the integral expressions in Equation (3.8). First, the jump condition integral is

evaluated as follows:

(3.33)

where

(3.34)

oo
0 1

J‘((I)Z(I)e (Ue )n+! - (I)Z(I)e (Ue )n— )dQ = MeAUe

Q¢

y 2
I

12

—_— N =
N bt et
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In the above expressions, M, is referred to as the finite element mass matrix, and AU, is
as defined previously by Equation (3.18). Next, the flux integrals are evaluated using

Gauss quadrature as follows:

(335) J(aq)r ]d I.E 57( H aaq; AIZQ(E;L !(§I’§Z)d§Id§2

Ay np
= A12 Z W,»Fl (fl,,-,fz,i)
A i=l

13

636 J(a(pr o [ a0 S o e £t

Ay p

=qAy Z w,F, (fx,i’é,i)
A |

23
where np is the number of Gauss points, w; are the Gauss weights, and & are the Gauss

points. Table 3.2 gives the appropriate values of the Gauss points and weights for one-

point and three-point approximations on a two-dimensional element.*

Table 3.2: Gauss points and weights for two-dimensional elements.

Number of points, np Points, & Weights, w;
1 173 0.5
2/3 1/6
3 1/6 1/6
1/6 1/6

The boundary integrals for a two-dimensional element are computed by assuming

the normal flux varies linearly along the one-dimensional edge of the element as follows:

(3.37) F,=4[1-¢ 1+f{((§")"‘”}=®be(lt )



Substitution of Equation (3.37) into the boundary edge integral results in an integral

identical to that used when defining the one-dimensional finite element mass matrix.

639 JlLE M=y ( for. ,,eaf] %Ax,,eﬁ ;}(Fn),,e

Finally, the non-inertial source integral is evaluated using Gauss quadrature as follows:

S
(3.39) j((l)’S)ﬂ'Q 24 jf‘f’@TS o eds, =245 w) &, I8(6,.5,)
Y

3.3.3 Three-Dimensional Elements

In this section we derive the geometric transformations necessary to compute the
integrals in Equation (3.8) for a three-dimensional element. Since the boundary of a three
dimensional element is two-dimensional, this section will also utilize the transformations
from the previous section when deriving the boundary flux integrals for three-
dimensional elements. Figure 3.4 presents the general layout for a typical three-

dimensional element in element natural coordinates.
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of natural coordinates

At any point within the element

b+&H+5H+4=1

Figure 3.4: Typical three-dimensional finite element in natural coordinates.

The shape function for a three-dimensional linear element is defined in terms of

element natural coordinates as follows:

(340) o=l & & 4l
where
(3.41) gy =1-¢,-&, =4,
In the above expression, & are the element’s natural coordinates, which range from 0 to 1
linearly across the element.
In order to convert from element natural coordinates to homogenous Cartesian

coordinates, we define the following transformation:

X X X

ndl xndZ nd4 fl
AVt Vuaz Vwazs  Viaa fz

nd3

(3.42)

Zpat Zpdz Zpas Zaaa 53

1 1 1 1 &,

SN =R
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where x,4 through x, are constants that are equal to the x-location for the four nodes of
the element. Alternatively, Equation (3.22) may be reduced to a 3x3 transformation by

substituting in the expression for &,.

x Xpda Xyg Xy Xy é:l
(3.43) V= Vmas (| Ve Yo Vi 162
z Zpa4 Zyy Zyy Zy ¢

where

X = Xodi ~ Xy

(3.44) Yi = Voti = Vug

ZI_'/' = ani - Zmlj
Using the chain rule for partial derivatives, the Jacobean, J, of the coordinate

transformation may be derived from Equation (3.43).

0/04, ox/dS, ay[d&, 09z/d¢, |[9/ox
(3.45) 0/9&, p=| 0x/d&, dy/dS, 0z/dS, |30/dy
0/9¢; \ax/afs dy/d&;  9z/d¢, | d/0z

J

where

Xy Y4 Zia

(3.46) J=|x, Yu 2y

X34 Vi 234

From Equation (3.45), the inverse relationship follows:

0/ ox V24234 T V34%24  V3aZi4a " V14%34 V14Z2 —V2Z14 a/afl
(BAT) $0/0yp=—r| 2y Xy =234 X5y ZyuXpy —ZiXay  ZyXgy —Zpe%y, [10/0E,
0/dz ) LX¥26V30 X34 Yoa Xaadia "XV X1ado m X241 | 0/0¢,

A

where the volume of an element 7, is computed as follows:

(3.48) 6V, =|det J]
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From Equation (3.47), the spatial derivatives of the shape function may be converted

from Cartesian coordinates into element natural coordinates as follows:

All
A
(3.49) ai’:A“ a£+A12 oD AL 0 1 |A,
ox ol &, o&, 6V, A,
A14
where
(350) ‘AA14 :_AII_AIZ_AB
and
A21
oP oP oP oD 1 [A,
(3‘51) —:AZI—_—._*’AZZ _+AZI——=— 2
ay a4':1 afz 853 6Ve A23
A24
where
(352) A24 = —1A21 _AZZ __Ak23
and
A31
A
(3.53) aBZAsl oD rA, oP FA, oP _ 1 2
P T T A
A34
where
(354) 1&34 :—A31 _1432 _1433

With the shape functions and geometric transformations suitably defined, we now
evaluate the integral expressions in Equation (3.8). First, the jump condition integral is

evaluated as follows:
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(355) j((I)T(I)e(Ue)nH -—(I)Z(I)e(Ue)n—)dQ:MeAUe

°

where

(336  M,= 6%[ I féz‘f’@Z@edédfzdéJ =

and

(3.57)

2 1 1 1
i1 21 1
2001 1 2 1

11 2

AU, = (Ue )n+1 - (U e )n—l

e

In the above expressions, M, is referred to as the finite element mass matrix and AU, is as

defined previously by Equation (3.18). Next, the flux integrals are evaluated using Gauss

quadrature as follows:

T
(3.58) j(aq’e
_ . a, ox

T
(3.59) j[aq’e
Q, dy
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where np is the number of Gauss points, w; are the Gauss weights, and & are the Gauss

points. Table 3.3 gives the appropriate values of the Gauss points and. wéights for one-

point and four-point approximations on a three-dimensional element.
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Table 3.3: Gauss points and weights for three-dimensional elements.

Number of points, np Points, & Weights, w;
1 0.25 1/6
0.58541 01966 249685 1724
0.13819 66011 250105 1724
4 0.13819 66011 250105 1/24
0.13819 66011 250105 1/24

The boundary integral for a three-dimensional element is computed by assuming
the normal flux varies linearly along the two-dimensional boundary face of the element

as follows:

(3.61) Fn:[§1 & 1-6-4, (Fn)ndz =(I)be(Fn)be

Substitution of Equation (3.61) into the boundary integral results in an integral identical

to that used when defining the two-dimensional finite element mass matrix.

2 11
(3'62) J-((I);Fn )ir 2Abe( J-J: 52 bed§1 d§2 ](Fn )be = :/14—;—8— 1 2 1 (Fn )be
1 1 2

Finally, the non-inertial source integral is evaluated using Gauss quadrature as follows:

S
(3.63) J-((DTS)C[Q 6V§ ?' (51,;':52,;‘:53,1’)
Say
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3.3.4 FElement Edge Data

While the edge-based method employed by STARS will not be used for
evaluating element integrals, element edge data will prove useful later for evaluating
other quantities such as local time steps and artificial dissipation. For this reason, it is
also prudent to discuss the nomenclature used to describe an edge-based data structure.
For the specific theory and justification behind an edge—based data structure, we refer to
the original FELISA manual.’® The basic idea is to lump the element geometry data to
the edges or segments asséciated with e;ch element. This will result in a vector of
geometric weights for each unique segment in the computational domain. As such we
define the weight vector for a segment s that connects node i to node j as follows:

(3.64) | W= w, my

The segment weight vectors are built-up by finding each element containing the
segment and adding in one sixth of the components of the element jacobian associated
with node 7 of the segment. For segments which lie on boundary elements, it will also be
necessary to add one sixth of the area weighted boundary element normal vector to the
segment weights. The result is a vector of weights that is useful for computing edge

gradients along the segments of an element as follows:

q; W,
. V = J y,s
(3.65) 9y {_ qu,y,:}

where g is some flow quantity and the subscripts i and j denote the values of g at the first

and second node of the segment respectively.
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3.4 Boundary Conditions and the Boundary Integral

As suggested in Section 3.1, the finite element boundary integral provides us with
a natural means for enforcing boundary conditions within our finite element framework.
Specifically, boundary conditions should be weakly enforced by modifying the boundary
flux during the integration over the boundary rather than by explicitly modifying the
nodal unknowns along the boundary. This is the most common method of enforcing
boundary conditions within a finite element algorithm, and typically yields the most
accuracy. Unfortunately, our experience has shown that weakly enforced boundary
conditions exhibit instabilities for solid wall boundary conditions in three dimensional
flows, especially when combined with the transpiration boundary condition used to
simulate elastic deformations of the grid. This fact will require us to explicitly impose
the solid wall boundary conditions, which will include the transpiration boundary
condition.

Regardless of our method for imposing boundary conditions, it is important to
note that the boundary flux integral should be computed. on the entire boundary.
Neglecting the boundary integral will lead to a loss of flux conservation in the finite

2 Also, the boundary integral must always be computed using the

element formulation.
original normal vector for the boundary element regardless of whether an elastic
deformation is being simulated using transpiration. This is again necessary to maintain
flux conservation within the solution methodology.

In the sub-sections that follow, we address the practical implementation of three

different boundary condition types: symmetry, far-field and solid wall. These are the

three types of boundary conditions currently supported by the STARS unsteady CFD
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module. Therefore, each boundary element, which is either a line segment in two-
dimensions or a triangular face in three dimensions, will have an associated boundary
condition flag that indicates which of the three boundary conditions should be applied on

that element.

3.4.1 Symmetry Boundary Condition

The symmetry boundary condition is the simplest to implement. For inviscid
flow, a symmetry condition will behave similar to a wall in that it requires the normal
component of the fluid velocity be zero. This will be the only condition imposed on
elements that are flagged with the symmetry boundary condition. Substitution of this
condition, u, = 0, into the definition of the boundary flux, Equation (3.3), results in the

following modified boundary flux:

N

(0
pm
(366) Fn = an ¢
pny,

0 ]

N

If the modified boundary flux given above is utilized in the calculation of the boundary
flux integral the symmetry condition will be weakly enforced on that boundary element.
Since the symmetry boundary condition is essentially the same as a rigid, inviscid
wall boundary condition, it would seem to make sense that the symmetry and wall
boundary conditions could be used interchangeably for rigid walls. However, when we
refer to a symmetry boundary condition, we are typically referring to a symmetry plane,

or a flat wall with a constant surface normal. In fact, the symmetry boundary condition
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has proven useful for flat walls that do not include any elastic effects. However, the
weakly enforced wall boundary condition used for defining a symmetry boundary
condition has proven to be mildly unstable for three-dimensional flows on curved walls
where the surface normal is not constant. Therefore the symmetry boundary condition

should only be used on boundary surfaces that represent flat planes.

3.4.2 Far-Field Boundary Condition

As with the symmetry boundary condition, the far field boundary condition will
be weakly enforced by modifying the boundary integral. Multiple references, for both
finite volume and finite element methods, suggest imposing far field boundary conditions
by computing the one-dimensional Riemann invariants for flow normal to the
boundary.®'®?® This methodology has proven to be quite robust and reliable as it is
implemented within the current STARS unsteady CFD module. Therefore, we will
simply review the current STARS far field boundary condition and modify it as necessary
to account for a non-inertial reference frame.

For a far field boundary element, the boundary conditions are enforced by
computing a modified boundary flux vector for each node and using the modified
boundary flux vectors to compute the boundary integral for that element. The modified
boundary flux vector is computed by comparing the specified free stream conditions with
the computed unknowns at each node. We begin by defining a density ratio for a far field

node as follows:

(3.67) pi=
. P.
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where p is the fluid density and the subscripts e and c refer to the free stream conditions
and the computed values, respectively.
The above density ratio is now used to computed appropriately scaled ratios for

the velocity components and enthalpy using the following relations:

(3.68) u, ==t
pitl

(3.69) =il the
p;+1

(3.70) a,= \/(7—1)(’1; ~4ful)

where u = {uy, u, u3}" is the fluid velocity vector, 4 is the total enthalpy per unit mass,
and a is the local speed of sound. However, Equations (3.68) and (3.69) represent
relative velocity and enthalpy for non-inertial problems. Based on the definition for
relative enthalpy given by Equation (2.23), we see that Equation (3.70) must be modified

to include the transformation velocity V, as follows:

(3.71) g, =f(y =1, = 3o,/ + 3V, )
Next, we compute three Riemann invariants and an Euler unknowns difference

vector for the boundary node as follows:

(3.72) A =[u; -n+aj
(3.73) A, =, -n-a
(3.74) 25 =[u; -n|
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(o)., = (puy),
(3.75) AU =4 (pu, ). —(pu,),
(puy). —(pusy),

(pe).. - (pe).

Using the above definitions, we next define the following “correction” factors:

(3.76) a, = (y—l)(%[uileUl ~uy AU, —u, AUy —uy , AU, + AUS)
(3.77) a, =n AU, + n,AU, +n,AU, —(u, -n)AU,
2 1 2 2

T+ A)a —Aa 34 -4)a,

(3.78) ¢, =2 . +2
a,. a,.

%(’11 -4, )al !

(3.79) : c, = - +E(/11 + /7’2)02 _ﬂsaz

a.

i

Notice that Equation (3.76) has the form of a scaled pressure difference. Hence, this
equation must be modified for non-inertial problems by including the transformation

velocity as follows:
(3.80) a = (y—l)(%[uileUl +1|V,[ AU, ~u, ,AU, ~u, AU, —u, AU, + AUS)
Finally, we define the corrected normal flux vector for a node on a far field

element as follows:

(381) £, =4(F,_ +F,, - AF)
where
AU, +¢, )
AU, + cy; +Comy
(3.82) AF =4 4LAU, +cyu,, +c,n,

AU, + Cylhy; + Cy 1
AAU, +c,h,+cz(u,. -n)
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If the modified boundary flux given above is utilized in the calculation of the boundary
flux integral the far field boundary condition will be weakly enforced on that boundary
element. This leads to a stable and accurate representation of inflow-outflow boundary

conditions for flow conditions ranging from subsonic to supersonic speeds.

3.4.3 Solid Wall Boundary Condition

Unlike the previous two boundafy conditions, the solid wall boundary condition
will be strongly enforced by directly modifying the unknowns at the end of each iteration.
This is the methodology currently implement within the STARS unsteady CFD module,
and seems to be necessary to prevent mild instabilities which arise along the solid wall
boundaries if this boundary condition were weakly enforced for three-dimensional flows.
Strongly enforced wall boundary conditions have also been utilized by Shapiro,?* and
Shakib'” reported that a strongly enforced pressure leads to a more stable solution with a
faster convergence rate.

The basic wall boundary condition for a rigid wall will require that the relative
velocity of the flow be tangent to the boundary surface, or alternatively that the normal
component of the flow velocity is zero as seen by an observer moving with the body.
This is implemented ny subtracting off the normal component of the fluid velocity at a
node as.follows:

(3.83) u=u-(u-n)n
Equation (3.83) is explicitly applied to every node which lies on a solid wall boundary
element using an appropriately averaged normal from the surrounding boundary

elements. However, nodes where the average surface normal is not well defined will
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present a problem. This includes wall nodes at the intersection of two surfaces where the
direction of the surface normal changes substantially, such as the trailing edge of an
airfoil as shown in Figure 3.5.

m

n

n2

Figure 3.5: llustration of an average surface normal for the trailing edge of an airfoil.

Obviously, the flow tangency condition would not be accurate for the node at the
trailing edge of this airfoil since it would require that the flow move in the vertical
direction. This is contrary to the requirement of the Kutta condition,?’ which states that
the flow must leave the upper and lower surface of the trailing edge smoothly and with a
finite velocity. The simplest way of handling this problem is to skip the enforcement of
flow tangency on these nodes. For a surface which is sufficiently discretized, this will
still result in flow which remains tangent to the body thanks to the boundary conditions
being applied at the neighboring nodes.

The rigid wall boundary condition discussed so far is sufficient for both inertial
and non-inertial problems. However, it is also necessary to account for elastic walls
when simulating aeroelastic problems. As suggested previously, this can be
accomplished by using transpiration to simulate a deformed surface using a modified

surface normal. For an elastic problem, the deformed state of the structure is defined by a
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set of structural mode shapes. The mode shapes define a deformation vector for each
solid wall node in the computational domain. Consider the deformed state given by
Figure 3.6, where the two nodes of an edge have been displaced from their initial position

by a deformation vector Ar.

Figure 3.6: Illustration of transpiration concept.

This static(ally deformed shape can be simulated without actually deforming the
surface grid by using the deformed normal vector, n’, when enforcing flow tangency.
The original normal vector is still used to evaluate the boundary integral and maintain
flux conservation, but the averaged normal vector used to explicitly enforce flow
tangency at each wall node is now based on the deformed shape of the structure. This
results in a situation where the normal component of the ﬂﬁid velocity on the wall
surfaces is no longer zero since the flow is forced to follow the deformed shape of the
surface.

In addition to statically deformed structures, it is also necessary to simulate
dynamically deforming structures for an aeroelastic. simulation. In this case, the elastic

surface is continuously changing its deformed shape and has an associated deformation
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velocity, V,, for each node on the boundary. The transpiration boundary condition for a
node on a solid wall that is dynamically deforming is given as follows:

(3.84) u=u-{u-n’-V,-n’)n’

Equation (3.84) simply ensures that the normal component of the fluid velocity is equal
to the normal component of the boundary velocity at each node using the deformed
normal vector.

The solid wall boundary condition described so far defines the transpiration
method currently implemented in STARS to simulate dynamically deforming structures
in an inertial frame of reference. Research has demonstrated that STARS CFD results
employing this transpiration boundary condition are in excellent agreement with those
obtained using actually deformed grids for the small deformations typically seen in
aeroelastic simulations.” However, it is not expected that this methodology will
accurately represent a deformed body in a non-inertial frame. Consider the two cases

illustrated in Figure 3.7.

Figure 3.7: Model problem for testing transpiration with non-inertial rotation.

The graphic on the left represents an airfoil in a rotating frame of reference with
the origin of rotation some vector distance R away from the midpoint of the airfoil, while

the graphic on the right is attempting to simulate the same rotating airfoil using
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transpiration to shift an airfoil rotating about its midpoint to the vector location R.
Obviously, these two problems are very different unless the transpiration method
accurately accounts for the non-inertial rotation for the shifted body. However, the
transpiration procedure presented so far would effectively do nothing because the body
has been shi‘fted uniformly, with no change in surface normals, to a new static position.

Consider what would happen if we rotated the coordinate system illustrated in
Figure 3.6. In this case, the mesh transformation velocity for the two nodes of the
boundary element would be given by the following equation:

(3.85) V,, =Q(r, +Ar, )= Qr, + QAr,

Since we are simulating the elastic deformation usirig transpiration, it will be necessary to
account for the QAr term in the transpiration boundary condition. This term will simply
be treated as an additional boundary velocity for each node, giving us the following
equation for our solid wall boundary condition:

(3.86) u=u-[u-n"—(V, +QAr)-n’]n’

Equation (3.86) now simulates the elastic deformations for a solid wall boundary in either
an inertial or non-inertial frame of reference.

As a brief verification for this non-inertial transpiration methodology, consider
the airfoil illustrated in Figure 3.7 where the displacement vector R is oriented in the
negative x-direction with a magnitude equal to half the chord of the airfoil, or R = { ¢,
0 }. This puts the origin of rotation at the trailing edge of the airfoil. The airfoil is then
forced to pitch sinusoidal with a dimensionless frequency of ® = 2.0, where the

‘dimensionless frequency is defined as follows:
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Figure 3.8 shows the time history of the pitch angle for this airfoil.

2.5 7 « (deg)
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Figure 3.8: Time history for the pitch angle of a rotating airfoil.

Now, three different simulations are performed for this airfoil. First, a baseline
solution is run, which consists of a non-inertial solution for the airfoil pitching at its
midpoint. Secondly, a “shifted” solution is run, which consists of a non-inertial solution
where the pitch location has been shifted a distance R from the midpoint. Finally, a
transpiration solution is run, which consists of a non-inertial solution for the airfoil
pitching about its midpoint with a simulated shift to the location R using the transpiration
method corrected for a rotating non-inertial frame. Figure 3.9 presents a comparison of
the surface pressure distribution predicted by these three solutions at four different

instants in time.
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Figure 3.9: Comparison of predicted pressure coefficient for a pitching airfoil.

Notice that both the shifted and transpiration solutions are in excellent agreement
even for this relatively large displacement. The baseline solution is presented only to
show that the shifted axis has a significant effect in the resulting pressure distributions.
Thus, we see that without the non-inertial correction to the transpiration method we
would have a significantly inaccurate representation for the shifted non-inertial solution.

Further verification of the transpiration method will be pursued in more detail later.

3.5 Predictor Multi-Corrector Algorithms

The basic finite element formulation -derived so far may be summarized as

follows:
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(3.88) M(U,, -U,)-At-FS(U,,, )+ At-B(U,,,)=0

The above equation is typically referred to as the global form of the finite element
formulation and is assembled by summing the nodal contributions from each element. In
the above expression, M is the assembled finite element mass matrix, U,+; and U, are
vectors of nodal unknowns for the current and previous time intervals respectively,
FS(U,+1) is the assembled flux and source integrals for the current time interval, and
B(U,+1) is the assembled boundary integrals for the current time interval. Notice that this
formulation is implicit in time since the values of the flux, source and boundary integrals
all depend on the unknowns for the current time interval. Furthermore, there is an
implicit coupling between the unknowns since the finite element mass matrix derived in
Section 3.3 is not diagonal.

There are a variety of numerical schemes documented in the current literature for
solving the nonlinear system of equations represented by Equation (3.88). Although
these equations have been formulated with an implicit coupling in time, it is still possible
to develop an explicit numerical scheme for iteratively advancing the solution. An
explicit method is definitely the most attractive option in terms of memory usage and
computational speed. However, the maximum allowable time step for explicit algorithms
is known to be limited by a stability criterion that is based on the element dimensions and
local fluid velocities.'®*® For our application, it will be necessary to accept the stability
limitations of explicit algorithms and work to extend their stability limit since we require
the speed and economy of such methods.

- In developing an explicit solution, we first notice that any iterative algorithm we

develop should drive Equation (3.88) to zero for each time interval. As such, we call
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Equation (3.88) the solution residual and denote it as R(U,+;, U,). Now, the solution

residual is driven to zero using a predictor multi-corrector algorithm written as follows:

(3.89) R(U:TPU")=R(U;+],Un)+a—R%iU—")AU:’M
where
(3.90) | AU, =UY, -U

Equation (3.89) represents what is known as a residual driven algorithm. The residual

R(U"+l U,,) on the left-hand side should be driven to zero by equating the right-hand

n+l>
side of the equation to zero and solving for U7,. As long as this iterative solution

converges, it will converge toward a solution of our original system of nonlinear
equations, and the order of accuracy for the final converged solution is preserved.”

As it is written, Equation (3.89) defines an implicit iterative algorithm due to
coupling in the tangent vector dR/QU. This coupling may be eliminated by
approximating the tangent vector with a lumped form of the finite element mass matrix.
The “lumped mass” matrix is obtained by summing each row of the previously derived
finite element mass matrix and lumping that sum on the diagonal of the matrix. In three-

dimensions, the lumped mass matrix is given by Equation (3.91).

110 0 O
yVio 1t 0 0
3.91 OI0, -0ID, JdQ ~ = =M
( ) QJ;( e e e e)d 4 O O 1 O L
0 0 0 1

Substitution of the lumped mass matrix into Equation (3.89) produces the

following explicit equation for advancing each iteration:

n+l

(3.92) R(U U )+ M,AU =0
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The iterative algorithm defined by this equation is explicit now because the lumped mass
matrix is diagonal and may be inverted directly to solve for the new nodal unknowns
vector. Also notice that this method retains all of the implicit terms in the solution
residual, so it is still considered an implicit formulation. As suggested above, the final
order of accuracy for the converged solution is not affected by our use of the lumped
mass matrix since it is only necessary to drive the solution residual to zero. This

approximation only affects the stability and convergence rate of the algorithm.

3.5.1 Steady Solutions

When computing a steady solution, it is possible to further simplify the predictor
multi-corrector algorithm given by Equation (3.92). At a converged steady state
condition, the jump éondition in the solution residual should vanish since the nodal
unknowns vector becomes constant. Because we are only interested in computing the
final converged state, it is common to approximate the finite element mass matrix, which
is multiplied by the jump condition in the solution residual, with the lumped form of the
mass matrix. This approximation eliminates some of the implicit coupling in the solution
residual at the expense of time accuracy, bﬁt does not affect the final converged state
since the jump condition 1s identically zero at steady state.

Substitution of the lumped mass matrix into Equation (3.92) allows us to write the

following iterative time advancement scheme:

(3.93) U¥ =U,-A-M; R, (U,
where
(3.94) R, =-Fs(Ui, )J+B(U’,)
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In the above expression, R; is the “steady” solution residual. Notice that the steady
solution residual now represents the difference between the nodal unknowns vectors from
the previous and current time intervals rather than the difference between two explicit
iterations on the current time interval.

When implementing the predictor multi-corrector algorithm give by Equation
(3.94), it is necessary to chose a suitable time increment for advancing the solution. It is
well known that explicit iterative methods are subject to a Courant type stability criteria
where the maximum allowable time increment is proportional to the time it takes for a
fluid particle to traverse the length of an element. Unfortunately, this means thz;t the time
increment will be limited by the smallest elements in the spatial domain if we use one
global time increment for the entire domain. Obviously this is not an optimal situation
since flow information will propagate at different rates throughout the domain based on
the local element size and fluid velocity. Therefore, it is common to compute local time
increments for each node in the spatial domain in order to advance the solution at the
most optimal rate. Obviously, this will further degrade the time accuracy of the multi-
corrector algorithm, but it does not affect the final converged state since the solution
residual Vanishes at steady state.

There are a variety of téchni(iues documented in the literature for computing the
local time increment for a node. For our application, we employ the methodology
currently implemented in the STARS CFD modules. The methodology is derived
according to an energy stability analysis, which relates the local time increment to the
eigenvalues for each segment connected to a node, when using the edge-based data

structure previously described.'®
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(395) Ati = ZCﬂ[ML ],l:i‘/?’ys }_

where

W,

i

+ay,

(3.96) Aie =0y, - Wy,
In the above expressions, cf! is the Courant stability factor, [M_]; is the value of the
global lumped mass matrix at node 7, zs is the number of segments connected to node i,
Ayj,s is the eigenvalues for the segment s connecting nodes 7 and j, and u;;;, W;;; and gy

are the fluid velocity vector, geometric weight vector and speed of sound for the same

segment.

3.5.2 1% Order Unsteady Solutions

If we are interested in a time-accurate unsteady solution, it will be necessary to
use the unmodified, implicit solution residual as the basis for our predictor multi-
corrector algorithm. Such a formulation will allow us to compute true transient flows
where the jump condition is nonzero. However, we will modify the original predictor
multi-corrector algorithm given by Equation (3.92) so that it resembles the steady
algorithm derived in the previous section with the time increment factored out of the

solution residual.

(3.97) U =UL, —ae M R,(U,U,)
where
(3.98) R,=-M(U},, ~U, )-Fs(U],, )+ B(UL.,)
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In the above expression, R; is the unsteady solution residual. This predictor multi-
corrector algorithm, which is based on a constant-in-time approximation, has been
demonstrated to be first-order accurate in time.*

Since we are now computing time-accurate unsteady solutions, it is typically
necessary to chose a global time increment for advancing the solution for the entire
computational domain. However, we could instead view Equation (3.97) as a modified
steady problem since we have factored the time increment out of the solution residual. In
this case, the solution residual represents the difference between two iterations for one
time increment and we utilize local time stepping to accelerate the convergence of this
residual to zero. This idea, where an unsteady problem is solved as a modified steady
problem using local time stepping, was first proposed by Jameson®® and is implemented
in the current STARS unsteady CFD module.'®

To implement this method, we select a global time increment for computing thé
solution residual given by Equation (3.98), and use a local time increment to update the
unknowns for each iteration in the predictor multi-corrector algorithm given by Equation
(3.97). The final converged state for each global time step will satisfy the condition that
the unsteady solution residual is_zerp. Thus we maintain the time accuracy of the
algorithm despite using local time stepping to drive the solutibn to convergence.
Furthermore, the stability of this algorithm is maintained eQen for large global time
increments since the algorithm is driven to convergence using a locally stable time
increment for each node. However, we do expect that the number of iterations necessary

to attain convergence will increase as the size of the global time increment increases.
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In the original work on this method, Jameson® proposed the use of a multistage
advancement scheme for each iteration in order to maximize the stability of the method
for large time increments. The same multistage advancement scheme was also adopted
within the STARS unsteady CFD module. The idea is-to use up to five stages to advance
the unknowns for each iteration. For example, one might use ten iterations for each
global time increment and five stages for each iteration, which means the algorithm must

’re-compute the unknowns a total of fifty times for each global time increment. Our
experience has shown that the same effect can be obtained by decreasing the Courant
stability factor and simply using more iterations with the basic one stage scheme already
presented. Furthermore, excessively large global time increments will exceed the time
resolution of the algorithm, which is only first-order accurate, and should not be used.
Therefore, we do not advocate the use of a multistage scheme here.

While the focus of this method is to increase the size of the maximum allowable
global time increment, an interesting numerical problem manifests itself for small global
time increments. Surprisingly, the current STARS unsteady CFD module becomes
unstable during a simple time increment convergence test where the global time
increment is successively decreased in size._ This is contrary to how a well formulated
numerical algorithm should behave, but it is easily explainable and corrected. Notice that
the first term of the unsteady solution residual defined by Equation (3.98) will be scaled
by a ratio of local to global time increments when it is substituted into the multi-corrector
algorithm defined by Equation (3.97). This ratio is analogous to a numerical relaxation
factor for the iterative algorithm and explains the numerical instability we observe for .

small global time increments.
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As long as the global time increment is larger than the computed local time
increments, the algorithm is using an under-relaxation factor. Conversely, an over-
relaxation factof results whenever the computed local time increment exceeds the size of
the global time increment. From a physical standpoint, over-relaxation is not expected to
be desirable since the algorithm would actually over-shoot the correct answer. This
insight concurs with our numerical tests, which showed that the STARS unsteady CFD
module has an obvious numerical instability when the global time increment is relatively
small. To our knowledge, this instability has not been documented in the current
literature, but it is now obvious how to remedy the problem.

Any time the computed local time increment exceeds the value of the global time
increment, the local time increment defaults to the value of the global time increment.
This guarantees that the ratio of local to global time increments does not exceed one, and

the multi-corrector algorithm always uses under-relaxation to advance the solution.

3.5.3 2™ Order Unsteady Solutions

The ur‘lsteady algorithm developed in the previous section is known to be only
first-order accurate in time.** Our tests have shown that this algorithm is sufficient for a
wide variety of unsteady problems as long as a sufficiently small global time increment is
used. However, an algorithm with a higher order of accuracy is needed if a large global
time increment is desired. The obvious procedure for increasing this order of accuracy is
to modify the finite element interpolation function used to represent time in our
derivation. Thus far, it has been assumed that the unknowns are piecewise constant in

time. Alternatively, a third-order accurate method can be developed if the unknowns are
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assumed to be piecewise linear in time.” This assumption leads to a significantly more
complicated algorithm with two sets of unknowns that must be updated for each space-
time sub-domain."’

In order to avoid this increase in complexity, we will attempt to increase the order
of accuracy by modifying our algorithm in a different manner. Notice in the previous
derivation that the jump condition is identical to a backwards difference operator when

Equation (3.88) is re-written as follows:

(3.99) M(E—f—) -Fs(U,,)+B(U,,)=0
With this in mind, we can consider increasing the order of accuracy for the algorithm by
substituting a higher-order difference operator for the jump condition. This would be
analogous to changing the initial conditions for the space-time sub-domain using a
higher-order interpolation of unknowns from the previous sub-domain, but without
actually changing the interpolation of unknowns within the sub-domain.

The current STARS unsteady CFD module uses the second-order accurate
backwards difference operator suggested by Jameson.”® Substitution of this difference
operator for the jump condition produces the following predictor multi-corrector

algorithm for unsteady problems:

—A-M; -R,(U,,U,)

(3.100) U::-ll = U;+1 n+l?
where |
(3101) RZ = iM(%U;H - 2Un +%U"_| )_FS(U:H—I )+B(U:+I )

The unsteady algorithm defined above is expected to be second-order accurate in time,

and the computational difference between the two unsteady algorithms is negligible.
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Notice that the only difference between the two algorithms is the form of the jump
condition. One of the side effects of modifying the jump condition is that the stability
characteristics of the two algorithms will be different. One of the roles the jump
condition plays is to add a consistent and higher-order numerical dissipation to the
algorithm.!” Our tests have shown that the second-order method is less stable and will

typically require more artificial dissipation than the first-order method.

3.6 Stabilization

It is well documented that any discrete CFD solution for the compressible Euler
equations will exhibit numerical instabilities in the form of spurious oscillations, despite
the fact that the analytical solution remains smooth, monotone and bounded. These
oscillations emanate from regions with sharp gradients and grow rapidly until the solution
is globally corrupted. As stated previously, this situation is not unique to our finite
element discretization. In fact, most of the stabilization techniques we will discuss in this
section were derived from similar techniques used to stabilize finite difference schemes.

There are a variety of techniques for improving the poor stability properties of our
discrete CFD solution, but all of them are based on adding some sort of dissipative
mechanism to the solution. Therefore it is necessary to modify the solution residuals
derived in the previous section to include an extra dissipative operator D. For example,
the first-order unsteady solution residual would now be expressed as follows:

(3.102) R, =£M(Ui,+1 -u,)-Fs(u., )+B(U’,)+D(UL,,)
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This dissipative mechanism may come from upwind differencing, explicit addition of
artificial diffusion, or a residual based dissipation operator. Within these broad
classifications, literally hundreds of algorithms exist, and we will review several of the
most advanced finite element methods here.

The current STARS CFD modules use a form of explicit artificial dissipation to
stabilize the solution scheme. While this method has proven reliable for a variety of
applications, it has some limitations that make it less than the optimal choice. In
particular, artificial dissipation methods violate the consistency of our weighted residual
formulation because the exact solution no longer satisfies the algorithmic residual.?? This

degrades the overall order of accuracy for the algorithm.

3.6.1 SUPG and GLS

The Streamline-Upwind/Petrov-Galerkin (SUPG) method and the Galerkin Least
Squares (GLS) method have been the topic of much research lately, especially with
regards to space-time finite element formulations. These methods are similar in that they
both rely on residual based dissipation mechanisms. One of the key advantages of such a
method is that the stabilization control is introduced directly within the weighted residual
expression. This maintains the consistency of the formulation since the dissipation
operator vanishes as the residual approaches zero.”> The following equations present the
SUPG and GLS stabilization operators for a conservation variables formulation in an

inertial frame using constant-in-time elements:

r 0@ oD
(3.103) ) ) J Zj (A )[A,QU}Q

elQ
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oD oD
(3.104) Dos=> || AT a—xi)tg{A,.a—XiU)dQ

e=l Q,

where

) 0}

(3.105) A

Notice in the above expressions that the two operators are very similar. The
fundamental difference between the two lies in the structure of the T matrix. The SUPG
methodology has been the most widely implemented of the two, in part because the
formulatién of the T matrix is fairly simple and straightforward. In fact, there are a
variety of recommendations for the structure of Tsype for the compressible Euler

equations. For example, Hughes suggests that Tsype should be a diagonal matrix whose

diagonal elements are given by the following equation:

h
(3 . 106) TsupG — maxl:O, m:l

where /4 is the minimum element dimension and a is the local speed of sound.

In contrast, the construction of Tg.s is neither simple nor straightforward for the
three-dimensional Euler or Navier-Stokes equations. In fact, the formulation for Tg.s
involves the inverse square root of the flux jacobian matrices, A;, for each element.!’
This is a very expensive computational operation as it requires the solution of an
eigenvalues problem for each element. Specifically, our tests showed that this increase in
complexity leads to a factor of ten increase in CPU time over stabilized artificial
dissipation methods for simple one-dimensional problems. The GLS methodology is
arguably the more accurate of the two methods and leads to a system of equations whose

stability and convergence characteristics can be rigorously analyzed.”® However, it is
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unlikely that this methodology will be widely accepted for complicated aerospace
applications unless a more direct formulation for 1.5 is developed.

Although the GLS method appears to be too numerically expensive for our
applications, the SUPG method still appears to be an efficient option that has the capacity
to stabilize the solution scheme while maintaining the order of accuracy of the algorithm.
However, both GLS and SUPG are linear methods that cannot produce monotone
solutions for discontinuities.! In practice, this means that overshoots and undershoots
still develop around shocks, but are controlled so that they no longer globally pollute the
solution.” Therefore, it becomes necessary to introduce non-linear operators to further
control these oscillations and produce smooth solutions for discontinuities.

It is also possible to formulate a residual based discontinuity capturing operator to
accomplish this. This type of non-linear operator maintains the consistency of the finite
element formulation as with the SUPG and GLS stabilization operators already presented.
Unfortunately, residual based discontinuity operators are formulated using the same least
squares operator from the GLS formulation, which involved the inverse square-root of a

1732 Thus, the computational performance of the SUPG method will be similar to

matrix.
that of the GLS method already discussed. It is unfortunate that both of these methods
suffer from such poor computational efficiency when compared with similar artificial
dissipation method since they would seem to offer a significant improvement in accuracy
over such methods. However, it is unlikely that the improved accuracy would be
welcomed if it accompanied an order of magnitude increase in computational time since

the current STARS artificial dissipation model has proven to be reliable for many

applications.
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3.6.2 Artificial Dissipation

The computational fluid dynamics literature abounds with artificial dissipation
models for compressible flows. In comparing several of these models for this research
effort, the STARS dissipation model performs comparably to other models in terms of its
ability to capture shocks over relatively small intervals while still sufficiently stabilizing
the solution. The STARS dissipation model is identical to the model employed by the
FELISA codes, and is an‘edge-based scheme that relies on the computation of flow

Y9 TInterested readers should

gradients along the segments of the computational domain.
refer to the FELISA research literature for the mathematical equations describing this
dissipation model. We will only describe its basic function and make some general
comments on its application to non-inertial solutions in this work since the dissipation
model is not our intellectual achievement.

STARS employs two different versions of its dissipation model, the so-called
low-order and high-order dissipation. Both versions are based on the same fundamental
set of equations, with the difference being that the high-order dissipation utilizes gradient
limiters to reduce the amount of dissipation that is added to the solution in regions where
there are real flow discontinuities. This is accomplished using a pre-processing step,
where first the spatial gradients for every node are computed using the segment weights
as discussed in Section 3.3.4. Next, a set of modified unknowns are computed using the
nodal gradient information. Using this set of modified unknowns, the amount of
dissipation for each node is then computed in the same way as the low-order dissipation.

Since the dissipation operates directly on relative flow quantities, the fundamental

dissipation equations used by STARS required essentially no modification for use with
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our non-inertial solutions. However, one significant change was required for the high-
order dissipation in the pre-processing stage where it computes the nodal gradients. The
original high-order dissipation methodology applied boundary conditions to the gradient
vectors it computed. This translated into the assumption of zero gradient across the far-
field boundaries. Therefore, the nodal gradients for every node on the far-field boundary
were set equal to zero. For a non-inertial problem, this is no longer a good or accurate
assumption. Consider the case of a non-translating, rotating domain where the relative
flow velocity is given by Equation (3.107).

(3.107) u=Qr

In the above expression, u = {u, us, ug,}T is the fluid velocity vector, Q is the angular
rotation matrix defined in Section 2.3, and r is a vector location within the computational
domain.

For this type of problem, the velocity gradient will be non-zero everywhere in the
computational domain, including at the far-field boundary. The simplest way to correct
for this is to skip the enforcement of any boundary conditions on the nodal gradients and
use whatever relative gradient the solver computes for the far field nodes of the domain.
Our tests have shown that this has no adverse effect on inertial or stationary domains, and
it corrects an observed problem with rotating non-inertial domains where too much
dissipation is added at the far-field boundaries due to a lack of accurate gradient
information. In fact, the modified high-order dissipation is a practical requirement for
non-inertial solutions because the low-order dissipation (with-out the gradient limiters)
will effectively smooth out all strong gradients produced by a rotating domain to the

point of converging on a solution where the relative velocity is zero everywhere.
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This is a rather unfortunate result because the high-order dissipation requires
more than twice as much computational time as the low-order dissipation. Furthermore,
solutions that use the high-order dissipation typically converge at a slower rate than the
same solution using the low-order dissipation. Based on its computational performance,
the low-order dissipation would be the ideal choice for efficient numerical solutions.
However, it is typically too dissipative, resulting in solutions with gradients that are
excessively smeared.

That is not to say the low-order dissipation is completely useless. For supersonic
problems, solutions using the high-order dissipation tend to be unstable for high Mach
numbers, while the low-order dissipation is actually quite stable and produces accurate
solutions. For subsonic and transonic flows, accurate solutions can sometimes be
obtained using the low-order dissipation by decreasing the amount of dissipation added to
the solution. This is accomplished by decreasing the dissipation scaling factor, which is a
constant scaling faétor applied in the calculation of the dissipation for each node.
However, this is a uniform decrease of the dissipation everywhere in the domain and
typically leads to a numerical instability before reaching the point of producing an
accurate solution. In contrast, the high-order dissipation uses a non-linear mechanism for

locally décreasing the amount of dissipation.
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CHAPTER 4
4. COMPUTER IMPLEMENTATION

This Chapter discusses the practical implementation of our finite element
methodology as a working computer algorithm. The first two sections discuss the details
of how the source code for the algorithm is structured. Specifically, we define the
fundamental data structures that are required by the algorithm and provide an overview of
the basic algorithm’s structure and timing. The next two sections provide some details on
the operation and control of the computer algorithm, including a definition of the
algorithmic control parameters and all of the available computer executables developed
for this research. This information is supplemented by Appendix A and Appendix B,
which define the format of all input and output data files used by our codes.

The next section discusses the structural dynamics solver that is currently
available for unsteady flow solutions. This discussion includes some key issues on
consistent non-dimensionalization of the structural parameters for a coupled unsteady
CFD analysis of aeroelastic or flight dynamics problems. The final section summarizes
the differences between the new algorithm that has been developed here and the old
STARS CFD modules. This includes details on memory usage and computational

performance for the two algorithms.
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4.1 Data Structures

Perhaps the most complicated aspect of any two or three-dimensional CFD
algorithm is the organization and interpretation of its data structures. As such, the
computational performance of our numerical algorithm will depend on how efficiently
these structures are organized. In order to develop an algorithm based on the
methodology presented so far, we require the following fundamental sets of data:

e COOR = real vectors of nodal coordinate data for nodes 1 through nnd
e IELM = integer vectors of element connectivity data for elements 1 through nel
e ISEG = integer vectors of segment connectivity data for segment 1 through nsg

e IBEL = integer vectors of boundary element connectivity data for boundary
elements 1 through nbe

e PHIA = real vectors of elastic deformations for each wall node

e G2D/G3D = real vectors of element geometry data for each element
e DM = real vector of inverse lumped mass values for each node

e WSG = real vectors of segment weights for each segment

e RBE = real vectors of boundary element geometry data for each boundary
element

e ANOR —> real vectors of averaged surface normals for wall nodes 1 to nw1l
e BVEL = real vectors of elastic boundary velocities for each wall node

e UN = real vectors of algorithm unknowns at ¢ = n for each node

e UN1 = real vectors of algorithm unknowns at z =n + 1 for each node

e TUNO = real vectors of algorithm unknowns at # = n — 1 for each node

e RHS = real vectors of assembled solution residuals for each node
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Only the first five sets of data listed above will actually be read in by the solver.
This is to allow for maximum compatibility with a wide range of unstructured grid
generation packages. However, some pre-processing of this geometry data is necessary
so that it is sorted appropriately. The algorithm developed here requires that the
boundary elements be sorted based on boundary condition type so that the boundary
integrals can be evaluated efficiently, i.e. with out complicated switches or if blocks..
Furthermore, nodes which lie on solid wall surfaces must be sorted to the front of the
nodal arrays, i.e. nodes 1 through nw/ are solid wall nodes and nodes nwl + 1 through nnd
are the rest of the nodes in the domain. This facilitates an efficient implementation of the
solid wall boundary condition, which is applied explicitly to each solid wall node. As
discussed in Section 3.4.3, some solid walls nodes are omitted from the enforcement of
boundary conditions due to ambiguity in the average surface normal for that node. These
nodes are flagged as singular aﬁd are sorted to be last nsd nodes of the solid wall nodes,
i.e. nodes 1 through nwl — nsd are the solid walls nodes on which the boundary conditions
will be enforced.

The next five sets of geometry data, G2D/G3D through ANOR, are assembled
once by the algorithm when it is initialized. The total computational time required for
this operation is approximately equal to the time required for one or two iterations of the
actual flow solver. The element geometry vectors, G2D/G3D, contain the element area
or volume for two or three-dimensional elements respectively and the coordinate
transformation matrix needed to convert gradients from Cartesian coordinates to element
natural coordinates. The lumped mass vector, DM, contains the inverse of the diagonal

elements of the lumped mass matrix for each node scaled such that it is proportional to
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the area or volume of the two or three-dimensional elements surrounding that node. This
is equivalent to multiplying the entire algorithmic equation by three for two-dimensional
problems or four for three-dimensional problems, and is purely a choice of convenience.
The segment weight vector, WSG, contains the appropriately scaled segment weight
vector for each segment as discussed in Section 3.3.4. The boundary element data vector,
RBE, contains the length or area for two or three-dimensional boundary elements
respectively, z’md-'the outward pointing, unit normal vector for each boundary element.
Finally, the averaged normal vector, ANOR, contains the length or area weighted average
normal vector for each node that lies on a two or three-dimensional solid wall boundary
respectively. These averaged wall normals are also unit vectors pointing outward from
the computational domain.

The last five sets of fundamental data represent vectors that are computed by the
algorithm during the iterative solution process presented thus far. BVEL is a vector of
computed velocities for each solid wall node that is used for the transpiration boundary
condition when solving elastic problems. UN, UN1, and UNO are vectors of algorithm
unknowns from the current, next, and previous time steps respectively, and RHS is the
computed solution residual for whichever predictor multi-corrector algorithm is being

used.

4.2 Basic Algorithm

With all of the fundamental data structures defined, the core finite element

methodology can be summarized in pseudo-code as follows:
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read solver control parameters
read geometry data: COOR, IELM, ISEG, IBEL
compute additional geometry data: G2D/G3D, DM, RBE, WSG, ANOR
read any elastic/dynamic data
set/read initial conditions for UN for 1 =0
compute initial aerodynamic loads for £ = 0
compute initial structural dynamics state for r =0
output initial conditions for =0
UNO = UN
UN1 = UN
do istp = l,nstp
advance structural dynamics fromzs=ntor=n+1
update ANOR and compute BVEL (transpiration) for f=n+ 1
compute local time step, DELT, for each node
do icyc =1, ncyc
initialize RHS
enforce flow tangency on UN1
add element integrals to RHS
add boundary integrals to RHS
add dissipation to RHS
enforce flow tangency on RHS
UN1 =UN1 - DELT-DM-RHS
enddo
output solution residuals
UNO = UN
UN =UN1
compute new aerodynamic loads for t=n+1
output forces and dynamics forz=n+ 1
if MOD(istp, nout) = 0, output solution unknowns
enddo

Figure 4.1: Pseudo-code summary of core CFD algorithm.

The above pseudo-code shows the overall timing of the code in terms of the defined data
structures. It also defines three solver control parameters: nstp, ncyc, and nout. The
total number of solution steps is controlled by the parameter nstp, the number of
iterative convergence cycles is controlled by the parameter ncyc, and the output
frequency .is controlled by the parameter nout. Solver control parameters will be

discussed in more detail in the Section 4.4. Additional information on all solver control
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parameters and other input/output data files for both the two-dimensional and three-
dimensional solvers is also present in Appendix A and Appendix B.

One final modification will be made to this algorithm in order to help maintain the
stability of the iterative procedure. It is possible during the iterative process that the
update equation in the above algorithm, UN1 = UN1 — A#DM-RHS, will predict a negative
value for the density or pressure due to a local instability in the algorithm. Such a value
is obviously a nonphysical representatioﬁ for either of these quantities aﬁd will cause the
program to crash when it computes other quantities that require the square-root of these
variables, such as the local speed of sound. The current STARS CFD modules use a
method originally developed for the FELISA CFD solver to force these quantities to

1 This helps maintain the stability of the algorithm in the face of mild

remain positive.
instabilities that might develop locally and extends the range of the maximum allowable
global time step and Courant stability factor, c£1.

In order to efficiently implement this method, it is necessary to use a set of
algorithmic unknowns that includes the pressure. As such, the algorithmic unknowns
vector will be defined as follows:

fp‘

@.1) Q=1u,

Notice that the algorithmic unknowns vector differs from the Euler unknowns vector
previously derived. To some extent, this will complicate the evaluation of element
integrals, but it streamlines the calculation of quantities that involve the pressure since the

Euler unknowns did not include pressure as an unknown. Furthermore, this modification
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will make the output from our new algorithm more compatible with the post-processors
developed to analyze data output by the STARS CFD solvers.

The equation for updating the density and pressure for each iteration is then as
follows:

q:+Aq Ag/q;2-0.1

(42) qi+1 = + Aq A < 0 1
4001+ Aq/q)) 9/9: <0.

In the above expression, ¢ is the unknown quantity being updated and Agq is the predicted
change in that quantity computed from the solution residual. Use of this equation for
updating the density and pressure will ensure that these quantities remain positive from
one iteration to the next. However, it will not universally guarantee the stability of the
algorithm. This process only prevents mild instabilities from globally polluting the

solution.

4.3 Available Codes

A variety of computer codes have been developed for this research effort.
Although the names may be changed in the near future, a summary of all the available
codes and a description of their function is provided here. As mentioned in the previous
section, refer to Appendix A and Appendix B for details on the input and output file
formats for most of these codes.

The following executables are available for two-dimensional CFD analysis:

e makeg2d.exe is a pre-processor used to convert a standard STARS
surface triangulation file and modified boundary conditions file into an

appropriately sorted two-dimensional geometry file.  The surface
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triangulation data must be restricted to one of the following coordinate
(planes: xy-plane, xz-plane, or yz-plane.

e eculer2d.exe is the finite element CFD algorithm used to perform a
two-dimensional steady or unsteady CFD analysis for the specified two-
dimensional computational domain.

e makecut2d.exe is a post-processor used to extract relevant flow
quantities along arbitrary cut-lines through the computational domain or
along the individual boundary curves of the computational domain.

e particle2d.exe is a post-processor used to generate steady particle
traces or stream lines through-out the computational domain for a given
set of solution unknowns.

e glplot2d.exe is a graphical post-processor used for visualization of
the two-dimensional geometry, flow solution, and particle traces.

The following executables are available for three-dimensional CFD analysis:

¢ makeg3d.exe is a pre-processdr used to convert a standard STARS
surface triangulation file, tetrahedral volume file, and boundary conditions
file into an appropriately sorted three-dimensional geometry file.

e eculer3d.exe is the finite element CFD algorithm used to perform a
three -dimensional steady or unsteady CFD analysis for the specified three
-dimensional computational domain.

e makecut3d.exe is a post-processor used to extract relevant flow

quantities along arbitrary cut-lines through the computational domain or
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along the intersection of cut-planes with the individual boundary surfaces
of the computational domain.

e particle3d.exe is a post-processor used to generate steady particle
traces or stream lines through-out the computational domain for a given
set of solution unknowns.

e glplot3d.exe is a graphical post-processor used for visualization of

the three -dimensional geometry, flow solution, and particle traces.

4.4 Algorithm Control

The behavior of the primary CFD algorithms, euler3d.exe and
euler2d.exe, is controlled through a set of control parameters that are read from a
Fortran namelist file. The following parameters and flags are available with their default
setting given in parentheses:

e dt = dimensionless global time step for unsteady solutions (0. 1)

e gamma = ratio of specific heats (1. 4)

e diss = artificial dissipation scaling factor (1. 0)

e cfl = courant stability factor for local time steps (0. 5)

e mach = free stream Mach number (0. 6)

e alpha = 1% free stream orientation angle (0. 0)

e beta = 2™ free stream orientation angle (0. 0)

e refdim = reference dimension for non-dimensionalization of problem (1. 0)
e ainf = dimensional free stream speed of sound (1. 0)

e rhoinf = dimensional free stream density (1. 0)
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nstp = total number of solution time steps (100)
nout = output frequency, number of steps per output (50)
ncyc = number of iterative cycles per solution step (3)
istrt = restart flag (. false.)
isol = solution type (0)
o steady solution: isol =0
o 1% order unsteady solution: isol = 1
o 2" order unsteady solution: isol =2
o piston perturbation solution: isol =3
idsol = structural dynamics solution type (2)
o zero-order integration: idsol =0
o 1% order integration: idsol =1
o 2M ordér integration: idsol =2
idiss = dissipation type (0)
o | low-order dissipation: idiss =0
o high-order dissipation: idiss =1
ipnt = number of points for numerical integration of flux/source vectors(1)
o one-point gauss quadrature: ipnt =1
o three-point symmetric gauss quadrature (2-D only): ipnt =3
o four-point symmetric gauss quadrature (3-D only): ipnt =4
iaero = aerodynamic forces flag (. false.)
idynm = dynamic/non-inertial solution flag ( A. false.)
ielast = elastic solution flag (. false.)

ifree = free-stream velocity flag (. txrue.)
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e nr = number of elastic modes (0)

Many of the solver control parameters listed above are, to some extent, self-
explanatory based on the structure of the algorithm presented thus far. However,
additional information about these parameters is provided in Appendix A and Appendix
B in the section that details the format of the control input files for each solver.
Furthermore, Chapter 5 will investigate the application of three-dimensional solver to
flow problems of interest. For each of these problems, the appropriate choice of control

parameters will be specified.

4.5 Aerodynamic Forces

For iaero = .true., fundamental aerodynamic forces and moments are
computed following each solution step. A vector of aerodynamic forces and moments is
computed by summing the force/moment contributions for every solid wall boundary

element as follows:

. LBE (2}
(4.3) f.= > 24(p,~ pue)m;
i=LBE (1)
. LBE (2)
(4.4) M, = > [24,(p, = puc)m,Ixr,
i=LBE (1)

In the above expression, LBE (1) and LBE(2) are the starting and stopping indexes for
solid wall boundary elements, 4; is the area for boundary element i, p; is the average
pressure acting on boundary element i, piys is the free-stream pressure, n; is the unit

normal vector for boundary element 7, and r; is a vector from the origin of rotation to the
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center of boundary element i. For two-dimensional problems, the element area in
Equations (4.3) and (4.4) is replaced with the element length.

Since the CFD algorithm solves for a dimensionless pressure as defined in Section
2.4, the aerodynamic forces and moments computed using Equations (4.3) and (4.4) will
be dimensionless force and moment coefficients respectively and are marked by an
asterisk. Both of these equations are multiplied by two so that they are non-
dimensionalized with respect to a dynamic pressure, since that is the aerodynamic
standard for non-dimensionalization of forces and moments. These dimensionless

quantities can be converted to dimensional forces and moments as follows:
(4.5) f, = (% Pinsthins L’ )f;
(4.6) M, =} il )M,
In the above expressions, pir is the free-stream density, uinr is the free stream velocity,
and L is the reference length or dimension.

In addition to the fundamental aerodynamic forces and moments, generalized
aerodynamic forces are also computed for elastic problems, ielast = .true. A
generalized aerodynamic force is computed for each elastic mode by summing nodal

contribution for every solid wall node as follows:

nwl

(4.7) fi=>[24(p, = pue)n,]- @,

i=1
In the above expression, nwl is the number of solid wall nodes and ®; is the elastic

deformation vector for node i. For two-dimensional problems, the element area in

Equation (4.7) is again replaced with the element length.
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Although Equation (4.7) is defined as a summation over solid wall nodes, the
generalized aerodynamic forces are actually assembled in the same manner as the
fundamental aerodynamic forces, i.e. by looping over solid wall boundary elements and
calculating their contribution to each node of that element. The dimensionless form of a
generalized aerodynamic force is similar to that of an aerodyﬁamic moment since the
elastic deformation vector has units of length. Therefore, the generalize aerodynamic
force given by Equation (4.7) can be converted to a dimensional force as follows:

(4.8) Jfa= (%pinfuiifLB )fa*

Both sets of aerodynamic forces described here will be required by the structural
dynamics solver described in the next section. The fundamental aerodynamic forces and
moments are used to compute the non-inertial or rigid-body dynamics of the system and
are stored in a six-element array (three-element for two-dimensional problems) called FD
by the algorithm, while the generalized aerodynamic forces are used to compute the
elastic deformation of the structure and are stored in a nr element array designated as FA

by the algorithm.

4.6 Structural Dynamics

Through-out most of this research effort, the structural dynamics algorithm
required for a couple unsteady CFD solution was considered to be a low risk area of
development. The existing STARS structural dynamics algorithm was thought to be
more than suitable for our application. It would simply be necessary to add the non-
inertial degrees of freedom to the existing algorithm. This assumption has proven to be

inaccurate as the structural dynamics solver exhibits an unfortunate sensitivity to time
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step, which will be investigated further in the following sections. Nevertheless, the focus
of this project remains the development of an efficient and stable unsteady CFD
algorithm that can be coupled to an existing structural dynamics solver.

It has been a fundamental design goal during development that the structural
dynamics solver and unsteady CFD solver should be maintained as two separate entities
so that either could be enhanced, upgraded, or replaced with out impacting the other.
Figure 4.2 presents a conceptual flow chart of how the structural dynamics solver and
unsteady CFD-solver are coupled together to advance the solution through time. This

flow chart illustrates what is referred to as a time-marched aeroelastic solution.

FEM Solids Steady State
Analysis CFD Soln.

Modal Params. CFDLC!s
A4 v
»| Dynamics

Aero. Solver
Loads

CFDB.C''s

h 4

Unsteady
CFD Solver

L]

Global Time Step

Figure 4.2: Unsteady Solution Flow Chart

Notiée that the dynamics solver updates the boundary conditions for the unsteady
CFD solver, while the unsteady CFD solver provides a set of aerodynamic loads to the
dynamics solver. In such a solution scheme, the unsteady CFD solver is typically the
more complicated module which requires the overwhelming majority of CPU cycles. In

the following sections, we will develop the core algorithm for a discrete dynamics solver,
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investigate the sensitivity of the algorithm to the time scale of the simulation, and

propose enhancements that will improve the accuracy of the algorithm.

4.6.1 Core Dynamics Algorithm

The core dynamics algorithm remains essentially unchanged from the
methodology used with the original STARS unsteady CFD module. The methodology
relies on converting the continuous-time equation of motion to a discrete state-space
representation that can be easily integrated to advance the solution one discrete time step.
We start by converting the basic aeroelastic equation of motion presented previously in

Equation (2.1) to state-space form as follows:

(4.9) {zgi} - A{zgi} +B1, (1)

where the continuous-time state matrix, A, and input matrix, B, are defined as follows:

(4.10) A= 0 I
' I-M'K -M'C

4.11 B= 0
(- ) —'M_l

Next, Equation (4.9) is converted to the zero-order hold equivalent system, which

has a discrete-time state equation with the following form:

(4.12) {’_‘(k i I)} - G{zg;} +Hf, (k)

where the discrete-time state matrix, G, and input matrix, H, are defined as follows:

(4.13) G=e™
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(4.14) H = [ Ie“d/iJB

0
If the continuous-time state matrix is not singular, the discrete-time input matrix
can be computed using the inverse of the state matrix as follows:
(4.15) H=(G-1)A"B
If the continuous-time state matrix is singular, the discrete-time input matrix must be
approximated numerically by first expanding the discrete-time state matrix into an

infinite series and simplifying equation (4.15) as follows:

(4.16) G=) A8 L+ AAT+ AT S+ AT+ + A"
=0
(4.17) H:(I+AAI+A2%2‘+A3-A'gi+...+A”A’+!"_I)A-'B
(4.18) H:(AI+AA121+A2'A§+...+A"_I%)B:ZA"IA"IT’&
i=0

Equation (4.18) represent a modification to the original STARS matrix assembler
that will allow us to analyze systems with rigid-body modes. Such modes have mass but
zero stiffness, which will result in a singular continuous-time state matrix.

In order to effectjvely couple the structural.dynamics solver with the unsteady
CFD solver, the two modﬁles must utilize the same dimensionless system of units. The
structural dynamics solver must be able to accept dimensionless aerodynamic forces from
the CFD solver and return dimensionless boundary conditions to the CFD solver. Rather
than maintaining two systems of measurement and converting back and forth, the
matrices derived for the structural dynamics algorithm will be converted to dimensionless

units that are consistent with the CFD solver.
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First, we define the dimensionless form of the generalized mass, damping and
stiffness matrices. In terms of units, a generalized degree of freedom resembles a
rotational degree of freedom since the finite element mass matrix is multiplied by the
elastic deformation vectors twice in its derivation.® Hence, the generalized mass matrix
will have units of inertia and its dimensionless form is defined as follows:

(4.19) M=} pu )M’
Similarly, _dimensionlésé forms of the generalized damping and stiffness matrices are
defined as follows:

(4.20) C = (& pgun L )C”

(4.21) K (_;_pinfuiifL})K‘
In the above expressions, pinr is the free-stream density, uiyr is the free stream velocity, L

is the reference length or dimension, and an asterisk indicates the dimensionless form of
each matrix.

Substituting the above definitions along with the definition of a dimensionless
aerodynamic force, Equation (4.8), into the aeroelastic equation of motion, Equation
(2.1), yields the following:

(4.22) MK )+ Cx )+ K< () =1 (")
where the dimensionless form of the generalized displacement, velocity, and acceleration
are defined as follows:

(4.23) x'(*)=x()

(4.24) £()= k(1)
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(4.25) ()= L—;i(t)

Notice that the dimensionless form of the generalized displacement is identical to its
dimensional form. This is because the elastic deformation vector itself is dimensionless
and the generalized displacement is simply a dimensionless scaling factor for the elastic
deformation vector.

All of the above dimensionless forms are used exclusively when assembling the
state space matrices and for advancing the structural dynamics through time. The
dimensionless elastic state vector is stored in an array with nr*2 elements. Two copies
of this array are needed for advancing the structural dynamics. The state vectors at time
nand n + 1 are stored in the arrays XN and XN1 respectively.

Following a similar process, it is possible to define dimensionless forms for the
non-inertial coefficient matrices. The matrix solution developed previously for the
aeroelastic equation of motion is not directly applicable to the non-inertial equation of
motion due to the non-linear coupling between the three rotational degrees of freedom.
However, a matrix of structural coefficients is a convenient way of defining the non-
inertial structural system. As such, we begin by defining a three-dimensional rigid-body

state vector as follows:

(4.26) x={x, », z ¢ 6 v}
In the above expression, x, is the x-displacement for the non-inertial frame, y, is the y-

displacement for the non-inertial frame, z, is the z-displacement for the non-inertial

frame, ¢ is the roll angle for the non-inertial frame in radians, 6 is the pitch angle for the
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non-inertial frame in radians, and Y is the yaw angle for the non-inertial frame in
radians.
Dimensionless forms for the rigid-body state vector and structural coefficient

matrices are defined as follows:

1 0 0 0 0 O]
010000
001 00 0./,
4.27 xlt)=L X
(427) ()000%00()
0000+ 0
0000 0 1
1 0 0 0 0 O]
01 000 0
001 0 0 0f./.
4.28 x(t)=u. X
() X()umfooo%oox()
0000+ 0
0000 0 4]
1 0 0 0 0 O]
01 000 O
2210 001 0 0 Of.,,/,
4.29 %(z) = —iof vl
(4.29) X()LOOO%OO()
0000 L0
0000 0 f]
(1 1 1 L L L]
1 1 1 L L L
(4.30) m=ipr DU M
* _ZpinfLLLLZLZLZ
L L L ! I I
L L L L} [} L]
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1 1 1 L L L
1 11 L L L
4.31) C:‘Epinfuinsz b Lz Lz Lz c’
L L L I[* I’ L ,
L L L I* I* I
L L L ' I} L]
't 1 1 L L L
1 11 L L L
(4.32) K:%pinfuiifL . Lz Lz Lz K’
L L L I} L
L L L [* [} L
L L L I} I’ I’

The dimensionless rigid-body state vector is stored in an array with twelve
elements. Two copies of this array are needed for advancing the structural dynamics.
The state vectors at time » and #+1 are stored in the arrays XD and XD1 respectively. As
a matter of convenience, the initial conditions for the three rotational degrees of freedom
are input by the user using degrees rather than radians, and the solver performs the
conversion to radians when deriving the dimensionless rigid-body state vector.

The implementation of a fully coupled dynamics solution where both the non-
inertial and elastic degrees of freedom are solved simultaneously is left for a topic of
future research. For the verification and validation of the non-inertial algorithm, we will
restrict ourselves to uncoupled non-inertial problems without elasticity. In this case, the
structural equation of motion for each non-inertial degree of freedom can be solved
separately. The non-inertial dynamics is solved with respect to the inertial frame and the
inertial vectors are transformed to the non-inertial coordinate system before they are
passed back to the CFD module. By convention, the solver outputs the rigid-body state

vector in the inertial frame following each step of the solution.
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4.6.2 Sampling Sensitivity

The algorithm presented in Section 4.6.1 was derived using the classic
methodology for converting a continuous-time system to its discrete-time equivalent,
which can be found in any textbook on discrete-time control systems. This methodology
assumes that the input force vector is held constant between any two consecutive
sampling instants. Provided that this assumption is true, Equation (4.12) is an exact
representation for the original continuous-time equation of motion. Such a discrete-time
model is typically sufficient for representing digital control systems where the input is
provided by the user for the purpose of controlling or stabilizing the system. In which
case, the control input provided to the system almost certainly is held constant across
consecutive sampling intervals and Equation (4.12) exactly matches the physical reality
of the real continuous-time system.

Unfortunately, the aeroelastic system that we are trying to simulate does not
perfectly fit the assumptions of this derivation. The input that we have defined for the
discrete-time structural equation certainly is not constant across consecutive sampling
intervals. As shown in Figure 4.3, the model we are using to represent an aeroelastic
system is made up of a structural dynamics block and an aerodynamics block connected

in a feedback loop.
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Figure 4.3: Block diagram representing a discrete-time aeroelastic system.

When representing an aeroelastic system in this fashion, it is natural to think of it
as simply a control system with a feedback loop. However, the reality of this problem is
that it consists of two complicated continuous-time systems where the output of each
system, which is the corresponding input to the complementary system, is not constant
across the sampling interval. Regardless, it is tempting to try and apply this solution
scheme to an aeroelastic problem. Certainly the error incurred by assuming a constant
input to the system may be offset by choosing a sufficiently small sampling interval. The
only question then is how small must the sampling inferval be?

In order to evaluate the accuracy of the discrete-time solution scheme, let us
consider the one-dimensional structural system given by equation (4.33).

(4.33) X+0.05%+ 2x = £(t)

The state-space form of equation (4.33) is as follows:

oo R

The natural frequency of this continuous-time system is 0.225 Hz with a damping ratio of

0.0177.
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The simplified aerodynamic force model that will be used to complete the
feedback loop for this one-dimensional model problem is given by equation (4.35).
(4.35) flt)=—x
The resulting coupled system has a modified natural frequency of 0.277 Hz and a
damping ratio of 0.144. Theses are the exact values for the natural frequency and
damping of the coupled system computed from the eigenvalues of the continuous-time

state matrix.
Following the methodology of Section 4.6.1, the zero-order hold equivalent of the

one-dimensional model problem is given by equation (4.36).

oo B

where,

4.37) fle)=—x(k)

Notice that the state matrix for the discrete-time system has a dependency on the
sampling time, Ar. As with the continuous-time system, the natural frequency and
damping of the system can be computed from the eigenvalues of the state matrix. Figure
4.4 presents plots of damping ratio, ¢, and percent error, &, versus sampling frequency, 7,

in samples per period of the structural system.
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Figure 4.4: Comparison between continuous and discrete models for a one-dimensional

aeroelastic model problem.

The data for Figure 4.4 was taken for sampling frequencies ranging from 22 to
1421 samples per period, and each successive data point was taken using fifty percent of
the previous data point’s sampling interval. If we extrapolate the error curve for this
problem, a sampling frequency of nearly 4500 samples per period would be required to
reach less than one percent error. It is important to note that the properties of the
discrete-time system without feedback exactly matched the properties of the continuous-
time system without feedback for each of sampling frequencies used to construct Figure
4.4. Hence, the sampling of the input force is solely responsible for the error that is
evident in these plots.

Clearly the discrete-time solution to this one-dimensional model problem has a
strong sensitivity to the size of the sampling interval. Surprisingly, it has not been
uncommon to use sampling intervals of 100 samples per period or less when solving
aeroelastic problems with the original STARS unsteady CFD algorithm. In light of the

results presented for this model problem, the accuracy of these solutions is questionable.
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It is expected that this model problem presents a best-case scenario since the
aerodynamic model is exactly represented and does not itself posses a sensitivity to the
sampling interval. If this is the case, then a problem that used a sampling interval of 100

samples/period would be off by more than 45%.

4.6.3 Higher Order Algorithms

A significant amount of effort was spent developing a CFD algorithm that would
be both stable and accurate for relatively large global time steps. In Section 3.5.3, a
second-order backwards difference operator was used to increase the time accuracy of the
unsteady CFD algorithm. The result is a second-order discretization of our continuous-
time aerodynamic model, the compressible Euler equations. A similar process can be
used to improve the accuracy of the discrete-time structural model.

The zero-order hold used in the derivation of the discrete-time structural model is
equivalent to using a zero-order integrator or a simple left-hand sum to integrate the input
force for each sampling interval. An obvious enhancement to this scheme would be to
substitute a higher order numerical integrator. Equations (4.38) and (4.39) define

discrete-time models that use first-order and second-order integrators respectively.

(4.38) {’.‘(k“)}=c{x(k)}+ﬂ[%fa (k)-4£, (k1)

(k)]

k+1 k
(4.39) MO g, ()31, (- 1)+ 41,6 -2)]
+ x(k)

Notice that the only real cost of implementing a higher-order integrator is the

small amount of additional memory required to store the force vectors from previous time

intervals. Furthermore, these models were derived such that the core discrete-time
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advancement scheme will remain essentially unchanged. All that is required is to swap in
the appropriate force integrator during the structural advancement to the next time
interval. Figure 4.5 presents a comparison of the error for the three different force

integrators when applied to the one-dimensional model problem from Section 4.6.2.
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Figure 4.5: Error comparison between several discrete-time models for the one-

dimensional aeroelastic model problem.

The results in Figure 4.5 show a significant improvement in the rate of
convergence for the two higher-order integrators. Notice that the error for both the first
and second-order methods is several orders of magnitude smaller than the zero-order
method at the highest sampling frequency. Furthermore, we see that the first and second-
order solution produce almost identical results. This result is somewhat expected for our
model problem with its over-simplified linear force model.

For a better evaluation of our three integrators, let us consider the two-

dimensional structural system defined by equation (4.40).
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%, 0 0 1 0 Jfx 0 0

(440) )'Cz _ 0 0 0 1 X, + 0 0 fi
i 1-00064 0 -00032 0 [J%| |26093 0 ||f
X, 0 -0.1011 0 -0.0127 || x, 0 8.7036

The structural coefficients for this system were taken from an actual aeroelastic model of
a wing with two dominant structural modes. Equation (4.41) defines the quasi-steady

aerodynamic model that will be used to complete this two-dimensional model problem.

X

(t)_{-o.oozo -0.0078 -0.0026 -0.0015} X,

4.41)

0.0011 0.0032 0.0015 -0.0009 || x,

‘XI:Z
The aerodynamic coefficients for this force model were computed by applying a unit
displacement and velocity to each degree of freedom and computing the resulting forces
using the unsteady CFD solver. This leaves us with a system that can still be solved
analytically, but is hopefully a closer approximation of a real aeroelastic system than the
previous one-dimensional model problem.

Figure 4.6 presents a comparison of the modeling error at various sampling

frequencies for the three force integrators when applied to the two-dimensional model

problem.
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Figure 4.6: Error comparison between several discrete-time models for the two-

dimensional aeroelastic model problem.

Once again, we see a similar trend in the convergence of the three models. The
higher-order models clearly provide better accuracy over the zero-order model.
However, we should note that the difference in rate of convergence between the three
models is not as significant. For the results in Figure 4.5, the slope of the error curve for
the higher-order models is approximately 200 percent greater than the slope for the zero-
order model. This compares to only a 75 percent difference for the two-dimensional
results of Figure 4.6.

The previous two model problems both relied on a linear force model where the
force could be directly computed based on the generalized displacement and velocity of
the structure at the current time step. This allowed us to compute the predicted response
of the system directly and compare it to an exact analytical solution. What we are really
interested in is the sensitivity of the system when we couple the structural dynamics
integrators with the unsteady CFD solution. Figure 4.7 presents a comparison between

the error of the zero-order and second-order integrator over a similar range of sampling
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frequencies when the unsteady CFD solver is instead used to compute the aerodynamic
forces acting on the structure. In this case an exact analytical solution for the damping
ratio of each mode is not available, so the error is actually a percent difference between
the computed value at each sampling frequency and an extrapolated value based on the
trend of the two solutions. Although the improvement of the second-order solution is Inot
as significant as the results shown in Figure 4.6, the trend here continues to be

convergence of the solution as the sampling frequency is increased.
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Figure 4.7: Error comparison between several discrete-time models for the two-

dimensional aeroelastic CFD problem.

It would seem that the accumulation of errors between the CFD solver and the
structural integrator has narrowed the gap between the two solutions. However, the
benefit of having multiple structural integrators becomes more obvious if we plot the
absolute difference between the damping ratio predicted by the zero-order and second-
order integrators for each sampling frequency. Figure 4.8 presents plots of absolute

difference, &, versus sampling frequency, 7, for each mode of the structural system.
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Figure 4.8: Plot of absolute difference between the zero-order and second-order

integrators for each mode of the aeroelastic CFD problem.

By comparing the plot in Figure 4.8 with the error comparisons of Figure 4.7, we
observe that the absolute difference between the two solutions is an indicator of the error
present at that sampling frequency. This observation provides us with a way of directly
evaluating the sensitivity of an aeroelastic system to the solution time step. A time step
convergence study can actually be performed by running two solutions at the same time
step with two different structural integrators and differencing the results rather than

‘running three or more solutions at different time steps with the same structural integrator
and searching for asymptotic convergence.

This is an important result because we expect that each aeroelastic system will
exhibit a different degree of sensitivity to the sampling frequency based on the unique
combination of structural and aerodynamic parameters that make up the system. At this
point there is not enough data to make a generalization about the minimum sampling
frequency required to attain a given level of convergence.' However, it does appear that
the best way of judging the convergence of the system is by comparing two solutions for

a given time step.
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4.7 Summary

We began this research with the goal of exténding the capabilities of the STARS

non-linear aeroelastic module by adding the capability for non-inertial CFD analysis. For

a variety of reasons, a completely new CFD module was developed with non-inertial

capabilities rather than simply modifying the existing CFD modules. Therefore, it is

prudent at this point to compare the algorithm presented in this document with the

previous CFD modules used by STARS. The fundamental differences between the two

algorithms are summarized as follows:

l.

The new CFD algorithm uses double precision for all floating-point calculations
rather than single precision.

Element data is used to evaluate the Euler flux integrals rather than edge data.

A consistent mass formulation is used to evaluate the unsteady time flux rather
than a lumped mass formulation.

The time advancement scheme has been re-worked, and no longer includes a
multi-stage time stepping algorithm.

A non-inertial source term has been added to the unsteady solution residual to
account for an arbitrarily rotating and accelerating frame of reference.

The transpiration boundary condition has been modified to correct for elastic
deformations relative to a rotating frame of reference.

Local time steps are compared to the global time step for unsteady solutions to
maintain stability for small global time steps.

Boundary conditions have been sorted and re-worked in order to achieve better

computational efficiency.
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9. Multigrid capability has not been included in the new solver since it is impractical
for unsteady aeroelastic applications.

10. The structural matrix assembler has been modified to account for singular state-
matrices in systems with rigid-body modes.

11. The structural dynamics algorithm was expanded to include the choice of three
different integrators to improve the accuracy of unsteady aeroelastic solutions.
A comparison of the memory requirements and computational performance of the

two codes is also provided the next two sections.

4.7.1 Memory Requirements

The CFD algorithm developed for this research actually requires more memory
than the previous STARS CFD algorithm for two reasons.” First, the new CFD algorithm
is written in double precision, which requires exactly twice as much memory for each
floating-point variable. In the new code, all floating-point variables are 8 bytes in size
rather than the default 4 byte floating-point variables used by the original STARS CFD
modules. Furthermore, the new algorithm requires both the element and edge data
structﬁres to accommodate the algorithmic enhancements indicated in the previous
section, while the old CFD module utilized an edge-based data structure exclusively.

Combine these two factors together, and the new algorithm would require about
four or five times the memory of the old algorithm. Fortunately, there were some
redundant or superficial sets of data maintained in the old algorithm. These were
removed to streamline our new memory requirements, but the resulting code still requires

about a factor of three and a half times more memory (depending on the problem).
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Equations (4.42) and (4.43) give the approximate memory requirements in bytes for the
two-dimensional and three-dimensional solvers respectively.

(4.42) memyp = 8-(37nnd + 8nel +4nsg +2-(2 +nr )nwl + 5-nbe )

(4.43)  mem3p=8(5l'nnd + 14-nel +5Snsg+3+(2+nr )nwl +7nbe )

In the above expressions, nnd is the total number of nodes, nel is the total number of
elements, nsg is the number of segments, nr is the number of elastic modes, nwl is the
number of wall nodes, and nbe is the number of boundary elements.

Note that the above equations actually assume that integers are 8 bytes as well,
which may or may not be the default on different systems. Regardless, the proportion of
integer arrays is small compared to the required floating-point arrays, so these equations
would still be close. Furthermore, the memory requirements calculated above are only
for the pointer workspace used to define the main data arrays. Obviously there are
additional intermediate variables used to calculate various quantities, but these should
also be a small proportion compared to the main data arrays. As an example, a problem
that has 461,575 elements, 84,448 nodes, 17,838 boundary elements, and 8,923 boundary
nodes requires about 105 MB of memory with the new algorithm, while it would have
required about 29 MB, or around a third of the memory, with the old STARS CFD
module. Fortunately, memory is less expensive than it was when the original STARS
CFD module was written, and this increase in memory requirements is not seen as a

major downfall of the new methodology.
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4.7.2 Computational Performance

In this section we investigate the computational performance of the new solver
and will compare and contrast its performance to the old STARS CFD solver. In
particular, we are interested in the raw number crunching abilities of the two codes, and
the overall rate of convergence of the two codes. For our comparison, we will run steady
solutions for a three-dimensional geometry that is representative; of the type of aerospace
application we are interested in analyzing. Since unsteady solutions invol?e the solution
of a modified steady problem at each step, we expect that the unsteady performance of
the two codes is similar to that observed for steady solutions.

First we examine the relative CPU time required for a solution. Figure 4.9
presents a comparison between the relative corﬁputational time for the old solver and the
new solver for various operating system/processor combinations. The relative CPU time
is computed by dividing the total run time of the new solver by the total run time of the
old solver for the same operating system. This simple normalization procedure provides

an easy means of evaluating the performance gap between the two solvers.
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Figure 4.9: Comparison of computational performance of old solver and new solver for

various operating system/processor combinations.

Notice that the new solver benefits from an improved computational performance
on all three operating systems. However, the size of the computational gap is different
for all three operating systems. This is most likely due to differences in how the compiler
optimizes on each system and fundamental architecture differences, such as the system
bus and floating point unit, between the three systems tested here.

The fact that the new solver is actually faster than the old solver is an interesting
result considering the old solver utilized the faster edge-based data structure exclusively.
Hence, the algorithmic enhancements that were made to the new code have more than
made up for the quoted 30% difference between the element and edge-based data
structures, since we have actually surpassed the performance of the old code. For our
performance comparison, each solver was run using an equivalent set of control
parameters so that the raw iterative speed is compared directly. In the case of the old

steady solver this means that three stages for each steady cycle were used, while the new

108



solver ran three iterative cycles for each solution step. Both solvers used the same
courant stability factor, c£1 = 0.7, and the high-order dissipation model.

Our next comparison considers the rate of convergence for each code. Figure
4.10 shows the residual convergence histories for the same problem run at two different
Mach numbers with both the new and old solvers. Notice in both cases that the new

solver convergences “farther” since it is coded using double precision variables.
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Figure 4.10: Comparison of residual convergence histories of old and new CFD solvers

for two different free stream mach numbers.

Of particular interest is the slope of the residual convergence histories for each
code. Notice that the new code actually converges faster than the old code for the
subsonic Mach number, i.e. it converge to the same point in fewer iterations. For the
supersonic Mach number, both codes converge at the same rate. Hence, the new code
converges at least as fast as the old code when run with the same set of control
parameters. This is not an entirely fair comparison though. | The old STARS CFD
module was written with a multi-stage time stepping algorithm and residual smoothing

capability specifically for the purpose of allowing higher values of c£1 to be used. If the
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old code is actually capable of running stably at higher values of ¢f£1, then its rate of
convergence would beat the new solver. However, the multi-stage time stepping
algorithm and residual smoothing require extra CPU time for each step.

It is unclear exactly how to compare the total performance of the two codes when
each is run with different sets of parameters. Esi)ecially because there is no way to factor
in the amount of additional user time that is required to tweak the additional parameters
available with the old solver. In fact, part of our design philosophy in developing the
new solver has been to eliminate potentially confusing free parameters and go for a more
direct solution of the fundamental equations. In this respect, the new solver should be
easier to use, and thus save time with debugging and parameter tweaking for each
individual problem.

Having compared the performance of the old and new steady solvers, we now
examine the performance of the new unsteady solver for different combinations of
control parameters.  Specifically, we are interested in determining how much
performance penalty is associated with non-inertial or higher-order accurate unsteady
solutions when compared against the basic first-order accurate, inertial solution using
one-point gauss quadrature for numerical integration. Table 4.1 summarizes the solver
control settings for each of eight different tests used to investigate the performance of the

unsteady solver.

Table 4.1: Summary of solver parameters for unsteady solution performance tests.

Label isol idiss npnt idynm
Ul1l 1 1 1 false.
U21 2 1 1 false.
Ul4 1 1 4 false.
u24 2 1 4 false.
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D11 1 1 1 true.
D21 2 1 1 .true.
D14 1 1 4 true.
D24 2 1 4 true.

Using the above set of control parameters, eight unsteady solutions were
completed for the geometry tested previously in the steady performance comparisons.
Figure 4.11 shows the relative performance for each test, where the relative performance
is computed by dividing the total CPU time for each solution by the total CPU time for

the U11 solution.

ull E
U2 B
Ul4 [B

U2t
DIl [

D21
D14
TR T—

0 0.5 1 1.5
Relative CPU Time

Figure 4.11: Comparison of computational performance for different types of unsteady

solutions with new CFD solver.

From Figure 4.11, we can readily see the relative “cost” of running a non-inertial
or higher-order accurate solution. Notice that the basic first-order accurate, non-inertial
solution only requires about 8% more CPU time than the similar inertial solution for this
problem. Considering the added functionality the non-inertial capability has added to the

basic solver, this is not a significant performance penalty.
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As a final performance comparison, Figure 4.12 presents a plot of CPU time
versus number of elements for different problems analyzed using the new steady solver.
There is some scatter in this data due to differences in type and number of boundary
elements for each unique problem, but this plot shows the general trend of increasing
CPU time as the number of elements in the computational domain increases. Figure 4.12

is intended to provide a gauge of the performance cost associated with grid refinement.
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Figure 4.12: Comparison of CPU time for different geometries.

112



CHAPTER 5
5. RESULTS

In this Chapter, we present numerical examples intended to demonstrate the
accuracy and performance of the finite element methodology presented thus far. Since
our primary interest lies in solving three-dimensional aerospace applications, results are
only presented for the new three-dimensional solver. The accuracy and performance of
the two-dimensional solver has also been fully evaluated, but its primary purpose is for
quick evaluation of simplified problems in preparation for a more complicated three-
dimensional analysis. Hence, two-dimensional results are not presented here so that we
may focus on more three-dimensional results.

The results in this section begin with a set of verification calculations for three-
dimensional, steady and unsteady problems. This seciion is intended to demonstrate that
the governing equations are being solved correctly and to investigate the order of
convergence for the algorithm where possible. Following our verification of the
algorithm, we examine validation problems. The validation problems are intended to
demonstrate that the relevant flow physics are modeled correctly for the applications we
are interested in solving. In particular, we investigate problems that demonstrate the

application of the non-inertial reference frame to flight dynamics and spinning structures.
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5.1 Verification

In the field of computational fluid dynamics, verification is typically referred to as
solving the equations right.'® We have adopted that definition here and will attempt to
demonstrate that our governing equations, the compressible Euler equations, are solved
correctly. For the purposes of verification, our algorithm will be used to analyze a set of
verification cases that have well known analytic solutions. Where ever possible, we will
also compare our solutions to published solutions from other CFD codes that employ
different algorithms. While this is a useful comparison to demonstrate accuracy, the
primary comparison for verification will be with the analytic solution for each problem.

The verification results in this section are intended to provide a reasonable
sampling of the verification problems that have been analyzed. A comprehensive
verification procedure requires that we investigate problems that exercise all of the
relevant flow physics and every possible combination of parameters for the algorithm.
Obviously, this is a rather complicated task for a three-dimensional, unsteady CFD
algorithm, and a comprehensive verification procedure will necessarily be a continuing
process. However, the results presented here do provide a compelling verification of the
accuracy for a variety of problems that are of interest.

The first several sub-sections pursue verification for steady problems. These
problems demonstrate that the spatial variation of the governing equations is represented
accurately for flow conditions ranging from supersonic down to subsonic. Next we
tackle verification for unsteady problems where the temporal variation of the governing
equations must be represented accurately. This is obviously a more complicated task,

and there are fewer problems with analytical solutions for comparison. Especially when
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we extend the verification to include non-inertial or elastic unsteady problems. However,
the sampling of problems presented here do form a compelling argument for unsteady
verification of the algorithm.

As much as possible, it is necessary .in our verification process to include a grid
convergence study that demonstrates the consistency of our discretization. A grid
convergence study is intended to demonstrate that the solution approaches an exact
solution to the governing equations as the measure of discretization for the problem
approaches zero.!? For steady problems this is accomplished by using multiple grids with
successively smaller elements. For unsteady problems this refinement will necessarily
need to include successively smaller time increments as well. |

A suitable grid convergence study will allow us to compute the observed order of
convergence for the algorithm. Roache'® derives the order of convergence from the
behavior of the error for the discrete solution, &, as defined by Equation (5.1).

(5.1) : €= f(A) = frue

In the equation above, f (A) represents the discrete solution and fe,, represents the exact
or analytic solution. For a well behaved problem, it is expected that the error in the
discrete solution, & will be asymptotically proportional to A?, where A is some measure
of discretization and p is the order of convergence for the method. The order of
convergence, p, can then be obtained from the slope of log(¢) versus log(A).

Roache'® also reports that a more direct evaluation for the observed order of
convergence may be obtained if the refinement is performed with a constant refinement
ratio ». Equation (5.2) then defines the observed order of convergence, p, using three

solutions that have been successively refined by a constant ratio 7.
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(5.2) p= ln[%)/lnr

In the above expression, f; refers to the solution on the finest grid, £ refers to the solution
on the intermediate grid, and f; refers to the solution on the coarsest grid.

Before beginning our verification it .is appropriate to make some general
comments about order of convergence. First, it is well known that the observed order of
convergence will be less than the theoretical order of convergence. Of particular interest
for our application, Roache'” cites a study on the observed order of convergence for the
Euler equations with shocks. The results indicated that the observed order of
convergence downstream of shocks is typically around p = 1 despite higher orders of
convergence upstream of the shock. Along with this observation, we should make the
distinction between local and global order of convergence. As the names imply, local
order of convergence refers to one location within the grid, while global order of
convergence involves the accumulation of errors throughout the entire grid. As such, the
global order of convergence is typically one degree less than the local order of

33
convergence.

5.1.1 Oblique Shock

This steady problem consists of supersonic flow over a wedge with a half angle of
15 degrees. The resulting flow field develops an oblique shock at the leading edge of the
wedge. The results will be compared to the exact solution computed using the perfect gas
equations. The first test will involve an upstream Mach number of 2.5, for which our

theory predicts a downstream Mach number of M; = 1.87353, an oblique shock angle of
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= 36.94 degrees, a pressure ratio across the shock of p,/p; = 2.46750, and a density ratio
across the shock of py/p; = 1.86655.

We take advantage of symmetry when defining this problem and represent only
the upper half of the wedge. The layout of the computational domain, which covers the
volume x € [0, 1.5], y € [0, 1] & z € [0, 0.1], is presented in Figure 5.1. Boundary
conditions for the seven boundary surfaces enclosing this domain are specified as
follows: surfaces 1, 2 and 3 are symmetry planes, surface 4 is a solid wall, and surfaces 5,
6, and 7 are far-field boundaries. Furthermore, all nodes on the line at the intersection of
surfaces 3 and 4 are specified as singular to avoid ambiguity in the enforcement of

boundary conditions.

=surface # F)

Figure 5.1: Layout of computational domain for oblique shock problem.

To solve this problem, we employ three grids that are refined successively using a
constant refinement ratio of » = 2. Table 5.1 presents the grid spacing A, number of nodes
nnd, number of elements nel, and the average computational time required per iteration

Aty for each grid. All three grids are made up of tetrahedral elements and are generated
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using a uniform grid spacing. Figure 5.2 shows the surface triangulation of the coarse

grid generated for this study.

Table 5.1: Summary of grid parameters for oblique shock problem.

h nnd nel At
coarse 0.04 3500 13743 0.0452 s
medium 0.02 21804 98580 0.3992 s
fine 0.01 145385 728564 | 3.6730s
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Figure 5.2: Representative surface triangulation for oblique shock.

The computational times presented in Table 5.1 are intended to show the relative
increase in computer resources required as the grid resolution increases and are quoted
for a steady solution using the low-order dissipation with one-point gauss quadrature.
With this information, the total computational time required for an analysis of any grid is
computed by multiplying the total number of iterations required for convergence, nstp,
by Af, for that grid. Unfortunately, the total computational time increases as the grid
resolution increases not only because of an increase in Afy,, but also because more
iterations are required for convergence on the finer grids due to greater restrictions placed

on local time increments for small elements.
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In our analysis of this prob'lem, four different solutions will be computed for each
grid in order to evaluate the performance of the low-order and high-order dissipation
models with both the one-point and four-point numerical integration options. A summary
of the relevant solver parameters for this problem is provided in Figure 5.3. The solver
control parameters are identical for all three grids except for the number of solution steps,
nstp, since the number of steps required for numerical convergence increases as the grid

resolution increases.

Low-1pt High-Ipt

gamma = 1.40d0 gamma = 1.40d40
mach = 2.50d0 mach = 2.50d0
diss = 0.80d0 diss = 1.00d40
cfl = 0.80d0 cfl = 0.80d0
nstp = 500 nstp = 500
nout = 500 nout = 500
ncyc = 3 ncyc = 3

isol =0 isol =0
idiss =0 idiss = 1

ipnt = 1 ipnt =1

Low-4pt High-4pt

gamma = 1.40d0 gamma = 1.40d0
mach = 2.50d0 mach = 2.50d0
diss = 0.80d0 diss = 1.0040
cfl = 0.80d0 cfl = 0.80d0
nstp. = 500 nstp = 500
nout = 500 nout = 500
ncyc =3 ncyc = 3

isol =0 isol =0
idiss =0 idiss =1

ipnt = 4 ipnt = 4

Figure 5.3: Summary of solver control parameters for oblique shock at Mach 2.5.

Figure 5.4 présents a plot of the residual convergence history for the four
solutions on each grid. Thé coarse, medium, and fine grids were run for 600, 800 and
1000 iterations respectively in order to achieve full numerical convergence for each

different solution.
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Figure 5.4: Plot of residual histories for oblique shock at Mach 2.5.

Results for these solutions are obtained along a cut-line defining the intersection
of an xy-plane down the center of the computational domain, z = 0.05, with surfaces 3

and 4. Values of the pressure and local Mach number are obtained from this cut-line

along the lower surfaces of the domain. Table 5.2 presents the average Mach error, £,,,
and average pressure error, £, , downstream of the shock for all twelve solutions. In each

case, the average error is computed as the integral of the percent error along the cut-line

divided by the length of the cut-line for x > 0.5.

120



Table 5.2: Summary of average error downstream of the shock for all solutions to the

oblique shock at Mach 2.5.
Coarse Medium Fine
Solution | £, (%) | £, (%) | &, (%) | £, (%) | &, (%) | &, (%)
Low-1pt 2.933 3.535 2.490 3.146 1.918 1.367
Low-4pt 2.933 3.607 2.497 3.182 1.923 1.388
High-1pt | 3.292 3.748 2.854 2.456 2.054 1.141
High-4pt | 3.171 3.722 2.788 2.469 1.978 1.122

Based on the data given in Table 5.2, it appears that all four solutions are
converging toward the correct theoretical value as the grid resolution increases. The
observed order of convergence for these solutions is found by computing the slope for the
plot of log(€) versus log(A) as discussed in Section 5.1. For the one-point, low-order
dissipation solution, the observed order of convergence is computed to be either p = 0.98
or p = 1.15 using the average Mach or pressure error respectively. This rate of
convergence is comparable to the value reported by Roache for Euler solutions with
shocks. The other three solutions also have a similar rate of convergence.

In éddition to the error data, plots of the Mach number and pressure distributions
along the cut-line are provided for the one-point low order and high-order dissipation
solutions in Figuré 5.5 aﬁd Figure 5.6 respectively. Both of the four-point solutions are

indistinguishable from the similar one-point solutions and are not presented here.
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Figure 5.5: Pressure and Mach distributions for one-point, low-order dissipation solution

to the oblique shock at Mach 2.5.
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Figure 5.6: Pressure and Mach distributions for one-point, high-order dissipation

solution to the oblique shock at Mach 2.5.

Notice that the high-order dissipation solution exhibits a severe overshoot in the

vicinity of the shock for all three solutions. Increasing the dissipation factor will not help

damp this overshoot because too much dissipation actually destabilizes the solution for

this case. Because of this, the low-order dissipation solution is actually preferred since it

produces a monotone shock profile. In fact, the high-order dissipation seems to be tuned

123




for subsonic and transonic applications, making it unsuitable for supersonic applications
unless some additional dissipation in the form of a bulk viscosity is included.”” A bulk
viscosity model was not implemented here since the low-order dissipation does perform
satisfactorily as seen above.

As a final test with this geometry, the free-stream Mach number will be increased
to 6.0 in order to investigate a solution in the upper Mach range for the solver. For an
upstream Mach number of 6.0, ideal gas theory predicts a downstream Mach number of

M, = 3.99179, an oblique shock angle of 8= 22.67 degrees, a pressure ratio across the

shock of po/p; = 6.07, and a density ratio across the shock of p,/p; = 3.10108. Only the
one-point, low-order dissipation solution will be presented for this problem because the
high-order dissipation is incapable of producing a reasonable approximation for the
strong shock that forms at Mach 6.0. Figure 5.7 presents a summary of the control
parameters used for the solution to the oblique shock at Mach 6.0. As before, the solver

control parameters are identical for all three grids except for the number of solution steps,

nstp.
Low-Ipt

gamma = 1.40d0
mach = 2.50d0
diss = 1.00d0
cfl = 0.60d0
nstp = 300
nout = 300
ncyc =3

isol =0
idiss =0

ipnt =1

Figure 5.7: Summary of solver control parameters for oblique shock at Mach 6.0.
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Figure 5.8 presents a plot of the residual convergence history for each grid. The
coarse, medium, and fine grids were run for 300, 400 and 500 iterations respectively in

order to achieve full numerical convergence.
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nstep

Figure 5.8: Plot of residual histories for oblique shock at Mach 6.0.

As with the Mach 2.5 solution, values of the local Mach number and pressure are
extracted along a cut-line on the lower surfaces of the domain. Table 5.3 presents a
summary of the average Mach and pressure error behind the shock along with the

computed value of the local Mach number and pressure ratio on the cut-line at a point

where at x =~ 1.46.

Table 5.3: Summary of one-point, low-order dissipation solution to the oblique shock at

Mach 6.0.

M, pYpi Ey (%) | &, (%)
coarse | 3.8163 5.5090 4.202 24,231

medium | 3.8233 5.8268 3.693 20.514
fine 3.8628 | 6.0182 3.588 10.873
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Notice that the average pressufe error is quite a bit higher than that observed for

the Mach 2.5 solution. The reason for this is evident in the computed Mach number and

pressure distributions plotted in Figure 5.9.
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Figure 5.9: Pressure and Mach distributions for one-point, low-order dissipation solution

to the oblique shock at Mach 6.0.

Unlike the Mach 2.5 solution, the pressure distributions in Figure 5.9 are in poor

agreement with the sharp theoretical solution. In this case, stabilization has been
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achieved at the expense of excessively smearing the shock. Despite this, the solution
does converge toward the theoretical values as the grid resolution increases and the order
of convergence is similar to that observed for the Mach 2.5 solution. This hypersonic

Mach number seems to be the practical limit for the low-order dissipation model.

5.1.2 Prandtl-Meyer Expansion

This steady problem consists of a supersonic flow through an expansion corner at
an angle of 15 degrees. The resulting flow develops a Prandtl-Meyer expansion fan on
the backside of the 15 degree corner. The results will be compared to the exact solution
computed using the perfect gas equations. This test will involve an upstream Mach
number of 2.5, which results in a downstream Mach number of 3.23684, an expansi(;n fan
angle of 20.58 degrees, a downstream pressure ratio of 0.32743, and a downstream
density ratio of 0.45046.

The layout of the computational domain, which covers the volume x € [0, 2], y €
[-0.402, 1] & z € [0, 0.1], is presented in Figure 5.10. Boundary conditions for the seven

~

boundary surfaces enclosing this domain are specified as follows: surfaces 1 and 2 are
symmetry planes, surfaces 3 and 4 are solid walls, and surfaces 5, 6, and 7 are far-field

" boundaries.
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Figure 5.10: Layout of computational domain for Prandtl-Meyer expansion.

To solve this problem, we employ three grids that are refined successively using a
constant refinement ratio of » = 2. Table 5.4 presents the grid spacing A, number of nodes
nnd, number of elements nel, and the average computational time required per iteration
Aty for each grid. All three grids are made up of tetrahedral elements and are generated
using a uniform grid spacing. In order to maintain a reasonable element count, the
thickness of the domain was cut in half when generating the fine grid. Figure 5.11 shows

the surface triangulation of the coarse grid generated for this study.

Table 5.4: Summary of grid parameters for Prandtl-Meyer expansion.

h nnd nel At
coarse 0.04 5886 23313 0.0379 s
medium 0.02 36345 165581 0.1792 s
fine 0.01 142789 659119 1 0.7749s
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Figure 5.11: Representative surface triangulation for Prandtl-Meyer expansion.

As with the oblique shock problem, four different solutions will be computed for
each grid in order to evaluate the performance of the low-order and high-order dissipation
models with both the one-point and four-point numerical integration options. A summary
of the relevant solver parameters for this problem is provided in Figure 5.12. The solver
control parameters are identical for all three grids except for the number of solution steps,
nstp, since the number of steps required for numerical convergence increases as the grid

resolution increases.
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Low-Ipt High-Ipt

gamma = 1.40d0 gamma = 1.40do0
mach = 2.50d0 mach = 2.50d0
diss = 0.60d0 diss = 0.90d0
cfl = 0.80d0 cfl = 0.70d0
nstp = 400 nstp = 500
nout = 400 nout = 500
ncyc =3 ncyc =3

isol =0 isol =0
idiss = 0 idiss =1

ipnt =1 ipnt =1

Low-4pt High-4pt

gamma = 1.40d0 gamma = 1.40d0
mach = 2.50d0 mach = 2.50d0
diss = 0.60d0 diss = 0.9%0d0
cfl = 0.80d0 cfl = 0.70d0
nstp = 400 nstp = 500
nout = 400 nout = 500
ncyc =3 ncyc =3

isol =0 isol =0
idiss =0 idiss = 1

ipnt = 4 ipnt = 4

Figure 5.12: Summary of solver control parameters for oblique shock at Mach 2.5.

Figure 5.13 presents a plot of the residual convergence history for the four
solutions on each grid. The low-order dissipation solution on the coarse, medium, and
fine grids required 400, 500 and 600 iterations respectively in order to achieve full

numerical convergence. The high-order dissipation solution required 500, 700, and 1200

iterations on the coarse, medium, and fine grids respectively.
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Figure 5.13: Plot of residual histories for Prandtl-Meyer expansion at Mach 2.5.

As with the oblique shock problem, results for these solutions are obtained for a
cut-line along surfaces 3 and 4 at z = 0.05. Table 5.5 presents the average Mach error,

£, and average pressure error, £,, downstream of the shock for all twelve solutions. In

each case, the average error is computed as the integral of the percent error along the cut-.

line divided by the length of the cut-line for x > 0.5.
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Table 5.5: Summary of average error downstream of the shock for all solutions to the

Prandtl-Meyer expansion at Mach 2.5.

Coarse Medium Fine
Solution | &, (%) | &, (%) | &, (%) | £, (%) | &,(%) | £, (%)
Low-1pt 5.890 13.166 5.247 8.660 4243 4.899
Low-4pt 6.731 16.407 5.942 11.136 4.691 6.119
High-Ipt 4,091 6.727 4.097 3.426 3.670 1.791
High-4pt 3.898 6.673 3.773 3.386 3.427 1.696

Based on the data given in Table 5.5, it appears that all four solutions are again
converging toward the correct theoretical value as the grid resolution increases. The
observed order of convergence for the one-point, low-order dissipation solution, is
computed to be p = 0.74 using the Mach error or p = 1.72 using the pressure error data.
In both cases, only the error data from the medium and fine grids was used.

In addition to the error data, plots of the Mach number and pressure distributions
along the cut-line are provided for the one-point low order and high-order dissipation
solutions in Figure 5.5 and Figure 5.6 respectively. Both of the four-point solutions are

indistinguishable from the similar one-point solutions and are not presented here.
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Figure 5.14: Pressure and Mach distributions for one-point, low-order dissipation

solution to the Prandtl-Meyer at Mach 2.5.
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Figure 5.15: Pressure and Mach distributions for one-point, high-order dissipation

solution to the Prandtl-Meyer at Mach 2.5.

For this problem, the high-order solution actually does a better job approximating
the sharp jump in the theoretical Mach and pressure distributions. It does falls short of
achieving the maximum Mach amplitude downstream of the expansion by approximately

4%. Despite this relatively large error, the solution is comparable to other CFD solutions
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for the same problem. The NPARC alliance reports an average Mach error of over 5%

for the WIND codes.>*

5.1.3 Converging-Diverging Nozzle

This steady problem consists of subsonic flow entering a converging-diverging

nozzle whose cross-sectional area is defined by Equation (5.3).

(x-2.5)
12.5

0<x<5

> pa -

(5.3) Alx)=1.0+

The objective of this problem is to verify the transonic shock capturing capabilities of the
solver by generating a solution where a shock wave forms between the throat and the exit
plane. Since we do not have direct control over the back pressure at the exit plane with
the three types of boundary conditions ‘implemented in the solver, we must choose an
initial condition that will lead to the formation of a shock wave in the nozzle. After some
experimentation, a free-stream Mach number of 0.5 was chosen as our initial condition,
which corresponds to enforcing an initial, dimensionless pressure as defined by Equation
(2.43). This initial condition leads to the formation of a shock in the nozzle with the inlet
and exit planes simply specified as far-field boundaries.

The layout of the computational domain, Whiéh covers the volume x € [0, 5], y €
[-0.75, 0.75] & z € [0, 1], is presented in Figure 5.16. Boundary conditions for the six
boundary surfaces enclosing this domain are speciﬁed as follows: surfaces 1 and 2 are
symmetry planes, surfaces 3 and 5 are solid walls, and surfaces 4 and 6 are far-field

boundaries.
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Figure 5.16: Layout of computational domain for converging-diverging nozzle.

To solve this problem, we employ two grids that are refined successively using a
constant refinement ratio of » = 2. Table 5.6 presents the grid spacing 4, number of nodes
nnd, number of elements nel, and the average computational time required per iteration
Atgy for each grid. Both grids are made up of tetrahedral elements and are generated
using a uniform grid spacing. Figure 5.17 shows the surface triangulation of the coarse

grid generated for this study.

Table 5.6: Summary of grid parameters for converging-diverging nozzle.

h nnd nel At
coarse 0.100 7116 32774 {1 0.1108s
fine 0.050 48219 243643 | 1.0456s
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Figure 5.17: Representative surface triangulation for converging-diverging nozzle.

Two different solutions will be computed for each grid in order to evaluate the

performance of the low-order and high-order dissipation models. A summary of the
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relevant solver parameters for this problem is provided in Figure 5.18. The solver control

parameters are identical for all three grids except for the number of solution steps, nstp.

Low-1pt High-1pt

gamma = 1.40d0 gamma = 1.40d0
mach = 0.50d0 mach = 0.50d0
diss = 0.60d0 diss = 1.00d0
cfl = 0.80do cfl = 0.70d0
nstp = 400 nstp = 500
nout = 400 nout = 500
ncyc =3 ncyc = 3

isol =0 isol =0
idiss =0 idiss =1

ipnt =1 ipnt =1

Figure 5.18: Summary of solver control parameters for converging-diverging nozzle.

Figure 5.13 presents a plot of the residual convergence history for the two
solutions on each grid. Both the low-order and high-order dissipation solutions on the
coarse and fine grids required 4500 and 8000 iterations respectively in order to achieve

full numerical convergence.
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Figure 5.19: Plot of residual histories for converging-diverging nozzle.

Results for this problem are taken along a cut-line through the center of the nozzle
on symmetry surface 1. The CFD results will be compared to the theoretical solution

computed using the one-dimensional equations of gas dynamics. Since the CFD
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geometry is not one-dimensional, we must consider the effect of the wall curvature when
comparing the results. Figure 5.20 shows a plot of the Mach profile within the nozzle
computed using the fine grid. As expected, the shock, as well as the overall Mach
profile, has a slight curvature to it. The theoretical solution using one-dimensional gas
dynamics will be valid along streamlines that are everywhere perpendicular to this curved
Mach profile. This means that the Mach on the inlet and exit surface of the
computational domain is not expected to be constant since they do not have the

appropriate curvature.

Figure 5.20: Colored Mach profile for converging-diverging nozzle.

Figure 5.21 shows a comparison of the computed Mach distribution and the
theoretical Mach distribution for all four solutions. Since we have no direct control over

the back pressure controlling the location of the shock in the nozzle, the theoretical
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solution is computed based on the average Mach number

converging-diverging nozzle for each case.
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Figure 5.21: Mach distributions for one-point, low-order and high-order dissipation

solutions to the converging-diverging nozzle.

Notice in Figure 5.21 that the high-order solutions predict the theoretical shock

location better than the equivalent low-order solution.

The low-order solution does

provide reasonable accuracy for the overall Mach profile, and it converges toward the

theoretical shock location as the grid resolution is increased. However, the low-order

solution is not useful for most practical transonic applications because it requires a low

value for the dissipation factor in order to provide accurate shock resolution. For this

problem, the dissipation factor for both low-order solutions is specified as 0.5. In
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practice, true three-dimensional solutions for more complicated geometries are not
sufficiently stabilized using this low dissipation factor. Hence the high-order dissipation
model will be preferred for most subsonic and transonic applications.

In order to quantify the order of convergence for this problem, we will consider
the computed value of the inlet Mach number. The theoretical value for the inlet Mach

number is directly related to the area ratio of the nozzle as defined by Equation (5.4).

A

2

M\/;(H%I—Mz

)(7+1)/(2—27)

A
(5.4) i

J(7+l)/(2—2 7)

Given that the ratio of the inlet area to the throat area is 4/4" = 1.5, the theoretical value
for the inlet Mach number is numerically computed to be 0.430262. This theoretical
value will be compared to the average Mach number at the inlet of the nozzle computed
using the integral definition for the average value of a function. Table 5.7 presents a
summary of the average Mach number at the inlet and exit of the nozzle for all four

solutions.

Table 5.7: Summary of Mach number at inlet and exit of converging-diverging nozzle.

Coarse Fine

Solution M, M,, M, M

in in exit

Low-Ipt | 0.43190 | 0.48656 | 0.43112 | 0.48463
High-1pt | 0.43059 | 0.48193 | 0.43059 | 0.48188

Notice that both the low-order and high-order dissipation solutions converge
toward the theoretical inlet Mach number as the grid resolution increases. Using the inlet
Mach number data in Table 5.7, the order of convergence for the high-order dissipation

solution is computed to be p = 2.10.
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5.1.4 Subsonic NACA-0012 Airfoil

This steady problem consists of a NACA 0012 airfoil in a subsonic, nearly
incompressible flow. The results will be compared to the theoretical solution from ideal
aerodynamics for a thin airfoil. The layout of the computational domain, which has the
x-axis running along the airfoil’s chord and y-axis along the span of the airfoil, is
presented in Figure 5.16. Boundary conditions for the eight boundary surfaces enclosing
this domain are specified as follows: surfaces 1 and 2 are solid walls, surfaces 3, 4, 5 and

6 are symmetry planes, and surfaces 7 and 8 are far-field boundaries.

=surface #

R =80
c=16

Ay =16

Figure 5.22: Layout of computational domain for NACA 0012 airfoil.

To solve this problem, we employ three grids that are refined successively using a
constant refinement ratio of » = 2. This results in nearly 3 million elements for the third
refinement. Hence, the width of the computational domain is cut in half for the fine grid

in order to maintain a reasonable element count. Table 5.6 presents the number of nodes
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nnd, number of elements nel, and the average computational time required per iteration
At for all three grids. Each grid is made up of tetrahedral elements and is generated
using a non-uniform grid spacing that concentrates elements near the surface of the airfoil
where the strongest flow gradients reside. Figure 5.23 shows the overall surface
triangulation of the coarse grid generated for this study, and Figure 5.24 shows a close-up

of the surface triangulation on the surface of the airfoil for the coarse and medium grids.

Table 5.8: Summary of grid parameters for NACA 0012 airfoil.

nnd | nel Alcpu
coarse 8,815 | 43,552 | 0.2132s

medium | 59,011 | 311,060 | 2.3609 s
fine 262,859 11,406,731 | 13.1228 s

VAV SEXK S
'#g#'%'%‘%‘é’%i.ﬂ;
N

Figure 5.23: Representative grid for the NACA 0012 airfoil.
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Figure 5.24: Close-up of coarse and medium surface grids near the NACA 0012 airfoil.

Only the high-order dissipation solution is investigated for this problem because
the low-order model is overly dissipative at this low Mach number for all useful values of
the dissipation factor. A summary of the relevant solver parameters for this problem is
provided in Figure 5.25. Since the airfoil has a chord of 16, the reference dimension is
specified as refdim = 16.0 for this problem. The solver control parameters are identical

for all three grids except for the number of solution steps, nstp.

gamma = 1.40d0
mach = 0.30d0
refdim = 16.0d0
diss = 1.00d0
cfl = 0.80do0
nstp = 3000
nout = 3000
ncyc = 3

isol =0
idiss = 1

ipnt =1
iaero = .true.

Figure 5.25: Summary of solver control parameters for NACA 0012 airfoil.
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Figure 5.26 presents a plot of the residual convergence history for the three
solutions. The solution on the coarse, medium and fine grids required 3000, 8000 and

16,000 iterations respectively in order to achieve numerical convergence.

rsd ——Coarse
LE-03 ——— Medium
1.E-05 4 Fine

1.E-17 ' ; T 1
0 4000 8000 12000 16000

Figure 5.26: Plot of residual histories for the NACA 0012 airfoil at Mach 0.3 and zero

angle of attack.

Results for this problem are taken along a cut-line defining the intersection of an
xz-plane at y = 8 and the two surfaces defining the airfoil, surfaces 1 and 2. Figure 5.27
presents a comparison of the computed pressure coefficient distribution along the surface
of the airfoil and the theoretical distribution computed using thin airfoil theory.”> The
theoretical solution has also been corrected for the effects of compressibility using the

Prandtl-Glauert relation given in Equation (5.5).

(5.5) Cl =
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Figure 5.27: Comparison of pressure coefficient distributions for NACA 0012 airfoil at

Mach 0.3 and zero angle of attack.
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Notice that the computed pressure coefficient distribﬁtion for both the medium
and fine grids are in excellent agreement with the theoretical solution. Even the coarse
grid matches the theoretical solution aft of the leading edge, but it exhibits a large amount
of scatter at the leading edge of the airfoil. Obviously the coarse grid does not have
sufficient grid resolution at the leading edge of the airfoil and is not capable of accurately
representing the strong flow gradients present there. In order to quantify the order of
convergence for this solution, we consider the sectional lift and drag coefficients along
the same cut-line used when extracting the pressure coefficient distributions in Figure
5.27. Table 5.9 presents a summary of the sectional lift and drag coefficients for each
grid. The theoretical value for both sectional coefficients is zero for a symmetric airfoil
in an ideal flow. Hence, the error in each case is simply the absolute value of the

computed sectional coefficient.

Table 5.9: Summary of sectional lift and drag coefficients for the NACA 0012 airfoil at

Mach 0.30 and zero angle of attack..

Grld C[ Cd EC/ EC,/

Coarse 0.08749 -0.58608 0.08749 0.58608
Medium 0.09775 -0.24861 0.09775 0.24861
Fine -0.08432 -0.15792 0.08432 0.15792

With the exception of the sectional lift coefficient for the coarse grid, the numbers
in Table 5.9 show convergence toward the correct theoretical values as the grid resolution
increases. The sectional lift coefficient actually increases when changing from the coarse
to the medium grid, but the large amount of scatter at the leading edge of the coarse
grid’s pressure distribution is an indication that this grid is probably beyond the lower

resolution limit required for asymptotic convergence of this value. The order of
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convergence for this problem is computed to be p = 2.07 using the sectional lift
coefficients from the medium and fine grids or p = 1.15 using the sectional drag
coefficients.

In addition to the zero angle of attack case, this airfoil geometry is also analyzed
for an angle of attack of 5 degrees. Thié nonzero angle of attack will allow us to verify
the steady transpiration boundary condition by simulating an angle of attack using elastic
deformation vectors. Based on the results from the previous tests, we generated a new
computational grid that is refined better than the medium grid, but uses fewer elements
than the fine grid. As with the fine grid of the previous solutions, the width of the
computational domain was also cut in half for this problem. The resulting grid consists
of 165,943 elements and 33,995 nodes.

Next, two elastic mode shapés representing rigid-body pitch and plunge are
manually generated. The mode shapes consist of a deformation vector for each solid wall
node. The first mode represents a uniform translation of one chord length along the z-
axis, while the second mode represents a rotation of one degree around the y-axis. These
two mode shapes allow us to simulate an angle of attack in two different ways. The
second mode with a generalized displacement, or scaling factor, of 5.0 is equivalent to a
static angle of attack of five degrees. Alternatively, the first mode with a dimensionless
generalized velocity of —0.087489, which is simply tan(5°), is also equivalent to an angle
of attacic of five degrees. Results from both of these transpiration solutions will be

compared to the theoretical solution from thin airfoil theory as well as a steady solution

using alpha =5.0.
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For an elastic problem, the are two important reference conditions that must be
specified in the solver control file: the free-stream speed of sound ainf and free-stream
density rhoinf. These reference conditions are used to non-dimensionalize the
structural matrices and initial conditions specified in the elastic vectors file. Since we are
not solving a coupled aeroelastic problem, we are only interested in the dimensionless
quantities output by the CFD solver. In this case, it makes sense to input dimensionless
quantities as our initial conditions as well. Specifically, we want to input a dimensionless
generalized velocity for mode one, which corresponds to a 5.0 degree angle of attack.
The reference conditions will have no affect on the other elastic solution for this problem
since the initial condition is a generalized displacement, and generalized displacements
are dimensionless by definition.

Using the non-dimensionalization given in Equation (4.24) for a generalized
velocity, a free-stream speed of sound is computed such that the dimensional and
dimensionless generalized velocity are equivalent, or L/uj,r = 1.0. Figure 5.28 provides a

summary of the solver control parameters required for the transpiration solutions.
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gamma = 1.40d0
mach = 0.30d0
alpha = 0.00d0
refdim = 16.0d40
diss = 1.00d0
cfl = 0.80d0
nstp = 5000
nout = 5000
ncyc =3

isol =0
idiss =1

ipnt =1
iaero = .true.
ielast = .true.
nr = 2

ainf = 53.3333d0
rhoinf = 1.0d0

Figure 5.28: Summary of solver control parameters for transpiration solutions with the

NACA 0012 airfoil.

With the free-stream speed of sound chosen appropriately, the dimensionless
generalized velocity corresponding to a five degree angle of attack is input directly as the
initial condition for mode one in the elastic vectors file. Figure 5.29 presents the head of

the elastic vectors file up to the comment line that the elastic mode vectors themselves

follow.
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$ Number of elastic modes (nr)
2
$ Mass matrix for elastic modes (nr x nr)
1.0d40 0.0doO
0.0d4d0 1.0dO
$ Damping matrix for elastic modes (nr x nr)
1.0d4d0 0.0doO
0.0d0 1.0dO
$ Stiffness matrix for elastic modes (nr x nr)
1.040 0.0do
0.0d0 1.0d0
$ ICs for elastic modes (x1....xn, vxl...vxn)
0.04d0 0.0d40 -0.087489 0.0d0
$ IBXN for elastic modes (nr)
2 1
$ Elastic modes vectors (nwl 2) X nr

Figure 5.29: Head of elastic vectors file for the NACA 0012 airfoil with a specified

mode one generalized velocity.

Figure 5.30 presents a plot of the residual convergence history for the three
solutions. The labels Alpha 5, Transpiration 5 and Transpiration A4 refer to the solution
using alpha = 5, the transpiration solution using a mode two generalized displacement
of 5.0, and the transpiration solution using a mode one generalized velocity of —-0.087489
respectively. All three solutions were run for 3000 total steps, which led to a sufficiently

converged numerical solution.
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Figure 5.30: Plot of residual histories for the NACA 0012 airfoil at Mach 0.3 and 5.0

degree angle of attack.

Results for this problem are again taken along a cut-line defining the intersection
of an xz-plane down the center of the domain and the two surfaces defining the airfoil,
surfaces 1 and 2. Figure 5.31 presents a comparison of the computed pressure coefficient
distributions along the surface of the airfoil and the theoretical distribution computed
using thin airfoil theory. Once again, the theoretical solution has been corrected for the

effects of compressibility using the Prandtl-Glauert relation.
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Figure 5.31: Comparison of pressure coefficient distributions for NACA 0012 airfoil at

Mach 0.3 and 5.0 degree angle of attack.
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Notice that all three solution are in excellent agreement with the theoretical
solution. There is some deviation in the pressure peaks at the leading edge of the airfoil
that could be improved by further refinement of the grid. However, the primary
comparison here should be between the three CFD solutions themselves. The two
transpiration solutions will not match the theoretical solutions any better than the solution
computed with the “real” angle of attack since the only difference is in how the angle of
attack is enforced. To that extent, these three solutions verify that the transpiration
boundary condition is accurately enforcing both generalized displacements and
generalized velocities since all three solutions are virtually indistinguishable.

In order to further quantify the comparison between the three solutions, we
consider the sectional lift coefficient computed by the solvgr. Table 5.10 presents a
summary of the sectional lift coefficient, C;, for each solution. The theoretical value for
the sectional lift coefficient is defined from thin airfoil theory using Equation (5.6).

’ 2
(5.6) C, = 2 = 0.5748

v1-M*

Table 5.10: Summary of sectional lift coefficients for the NACA 0012 airfoil at Mach

0.30 and 5.0 degree angle of attack..

Solution C &c, (%)

Alpha 5° 0.5788 0.698
Transpiration 5° 0.5816 1.179
Transpiration hgy 0.6133 6.707

The numbers in Table 5.10 show that even the integrated pressure distributions
for the three solution are in reasonable agreement. On first inspection, the error of the

transpiration solution using the enforced plunge velocity has grown to nearly 7%.
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However, this result is not entirely correct. By imposing an additional velocity
component on the airfoil, the local velocity has increased from a free-stream velocity of
1.0 to 1.00382. This means that the local Mach number seen by the airfoil is higher than
the free-stream velocity specified in the solver control file. Specifically, the local Mach
number of the airfoil is computed to be 0.301146. This discrepancy is relatively small in
terms of the Prandtl-Glauert relation, but it illustrates a significant difference between the
effects of static transpiration and dynamic transpiration. With dynamic transpiration, the
generalized velocity is changing the physics of the problem locally. Based on this
problem, it appears that the influence of a generalized velocity degrades the accuracy of
the solution more rapidly than generalized displacements.

Regardless, both elastic solutions are still reasonable considering that any small
errors in the pressure profile will be magnified when integrated across the surface of the
airfoil. Furthermore, the angle of attack chosen for this problem is relatively large for a
transpiration simulation. Transpiration is typically applied to aeroelastic problems with
small defections on the order of one degree or less. Realistically, the five degree angle of
attack used for this problem is approaching the limit of applicability for the transpiration
method, and larger deflections beyond this point will lead to poor accuracy for the

simulated deflections. -

5.1.5 Conical Shock on a 10 degree Cone

This is the first truly three-dimensional verification problem. It consists of a
steady supersonic flow over a cone with a semi-vertex angle of 10 degrees. The resulting

conical flow field consists of an attached shock at the vertex of the cone with conical rays
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of constant properties emanating from the vertex. The results will be compared to the
analytical solution which is obtained by fitting the oblique shock equations to each point
along the conical wave. The result is a set of nonlinear differential equations known as
the Taylor-Maccoll differential equations, the numerical solution of which is tabulated in
most books on compressible flows. This test will involve an upstream Mach number of
2.35, which produces a Mach number of M; = 2.1469, a pressure ratio of p,/p; = 1.4234,
and a density ratio of r»/r; = 1.2867 on the surface of the cone.

We take advantage of symmetry when defining this problem and represent only
the upper-half of the cone. The layout of the computational domain is presented in
Figure 5.32. Boundary conditions for the six boundary surfaces enclosing this domain
are specified as follows: surface 1 is a solid wall, surfaces 2 and 3 are symmetry planes,
and surfaces 4, 5 and 6 are far-field boundaries. Furthermore, the node at the apex of the

cone is specified as singular.
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Figure 5.32: Layout of computational domain for the 10 degree cone.

In order to accurately represent the curved surfaces of this geometry, a fine grid is
required near the surface of the cone with the grid spacing along the length of the cone
defined as a function of its local radius. Since the radius of the cone at its apex is zero,
the grid spacing would need to approach zero at that point. Obviously it is impossible to
generate elements with zero size, so the curvature of the cone at the apex will not be
accurately represented. This will be evident in the solutions we examine later in this
section. Figure 5.33 presents the surface triangulation generated for this cone and Figure
5.34 shows a close up of the surface triangulation at the apex of the cone. The grid
generated for this problem consists of 187,615 elements and 35,825 nodes. Grid
refinement will not be pursued for this problem since the current grid is at the limit of our

grid generator’s capabilities.
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Figure 5.33: Surface triangulation for 10 degree cone.

Figure 5.34: Close-up of surface triangulation at the apex of 10 degree cone.
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Two different solutions are again computed for this geometry in order to evaluate
the performance of the low-order and high-order dissipation models. A summary of the

relevant solver parameters for this problem is provided in Figure 5.18.

Low-Ipt High-1pt

gamma = 1.40d0 gamma = 1.40d0
mach = 2.35d0 mach = 2.35d0
diss = 0.80d0 diss = 1.00d0
cfl = 0.80d0 cfl = 0.80d0
nstp = 600 nstp = 800
nout = 600 nout = 800
ncyc = 3 ncyc =3

isol =0 isol =0
idiss =0 idiss =1

ipnt =1 ipnt =1

Figure 5.35: Summary of solver control parameters for 10 degree cone.

Figure 5.13 presents a plot of the residual convergence history for the two
solutions. The low-order dissipation solution required 600 iterations in order to achieve
full numerical convergence, while the high-order dissipation solution required 800

iterations.
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Figure 5.36: Plot of residual histories for 10 degree cone.
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Results for this problem are taken along a cut-line across the length of the cone,
which is surface 1 of our geometry. Figure 5.37 presents a comparison of the computed

and theoretical distributions of the pressure and Mach number along the surface of the

cone.
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Figure 5.37: Pressure and Mach distributions on the surface of the 10 degree cone at

Mach 2.35.

Both the low-order and high-order dissipation solutions show reasonable
agreement with the theoretical values. The Mach number deviates significantly at the
apex of the cone due its irregular surface triangulation, but asymptotically approaches the
theoretical value aft of the apex. In order to quantify the accuracy of this solution, the
average pressure and Mach number on the surface of the cone is computed using the

integral definition for the average value of a function. Table 5.11 presents a summary of
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the average pressure ratio and Mach number on the surface of the cone and the

corresponding percent error for both solutions.

Table 5.11: Summary of average pressure and Mach number on the surface of the 10

degree cone at Mach 2.35.

P,/ M &%) | & (%)
Low-Ipt | 0.1754 | 2.1321 | 4.747 0.688
High-Ipt | 0.1757 | 2.1421 | 4547 0212

Notice that the average Mach error is less than one percent, but the pressure error
is nearly five percent. Despite the relatively large error in the predicted pressure on the
surface of the cone, this solution is comparable to other CFD solutions for the same
problem. The NPARC alliance reports an average pressure error of approximately 3.5%

for the WIND codes, but an average Mach error of only 0.007%.%

5.1.6 Unsteady Shock Tube

Unlike the problems considered thus far, this verification problem will investigate
the time accuracy of our numerical algorithm for an unsteady flow problem. An unsteady
shock tube consists of a high pressure and low pressure gas initially separated by a
diaphragm in a tube. The solution starts when the diaphragm is removed, resulting in the
formation of a normal shock that moves from the high pressure region into the low
pressure region. The geometry consists of a simple rectangular tube, which covers the
volume x € [-0.5, 0.5], y € [-0.1, 0.1] and z € [-0.02, 0.02]. The layout of the

computational domain is presented in Figure 5.38. Boundary conditions for the six
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boundary surfaces enclosing this domain are specified as follows: surfaces 1 and 2 are

symmetry planes and surfaces 3, 4, 5 and 6 are solid walls.
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Figure 5.38: Layout of computational domain for unsteady shock tube.

The grid generated for this problem uses a constant grid spacing of 0.01 and
consists of 48,334 elements and 11,239 nodes. Grid refinement is neglected for this
problem in favor of investigating the effect of time step refinement for an unsteady

solution. Figure 5.39 shows the surface triangulation used to represent the shock tube

geometry.

Figure 5.39: Surface triangulation for unsteady shock tube.

Two different types of solutions are computed for this problem in order to
evaluate the performance of the first-order and second-order unsteady solutions. Both
solutions will use the low-order dissipation model with one-point numerical integration.
Figure 5.40 presents a summary of the control parameters used for the two solutions to

this problem.
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I”'-Order Unsteady 2"_Order Unsteady
dt = 0.001d0 dt = 0.001d0
gamma = 1.40d0 gamma = 1.40d0
diss = 0.50d0 diss = 0.50d0
cfl = 0.80do0 cfl = 0.80d0
nstp = 200 nstp = 200
nout = 200 nout = 200
ncyc = 20 ncyc = 20
isol =1 isol = 2
idiss =0 idiss =0
ipnt =1 ipnt =1
istrt = .true. istrt = .true.

Figure 5.40: Summary of solver control parameters for unsteady shock tube.

The initial conditions for this problem must be generated manually. The
dimensionless initial conditions for this problem are summarized in Figure 5.41. Every
node in the computational domain is assigned an appropriate value for the solution

unknowns based on its x-coordinate.

x <0.0 x >0.0
p =10 u=0.0 p =0.125 u =0.0
p=10 vy =0.0 p =0.1 v =0.0
h =35 w =0.0 h =28 w =0.0

Figure 5.41: Initial conditions for unsteady shock tube.

Our first two solutions use the exact set of control parameters given in Figure
5.40. The unsteady solutions restarts from the specified initial conditions and advances
200 steps using 20 iterative cycles per step. The large courant stability factor is
appropriate here due to the relatively small global time step that was chosen for
advancing the solution. Figure 5.42 presents a plot of the solution residuals for the two

unsteady solutions. Notice that the solution residuals do not converge as far as seen for
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the steady problems solved in the previous sections. For an unsteady solution, it is not
practical to solve for that level of convergence because several hundred iterative cycles,
or more depending on the size of the global time step, would be required for each step of
the solution. Rather, the number of cycles is chosen such that the unsteady solution
residual converge to some appropriate level at each step, typically around 1E-08 or 1E-
09. In practice, there is no significant change in the solution at each step beyond this
level of converge, so there is nothing to gain by increasing the number of cycles other

than the satisfaction of having a super-converged solution.

1.E-05 rsd 1°* Order L.E-05 7 rsd 2" Order
1.E-06 - 1.E-06 -
1.B-07 - ——dt=0.001 g7 - ——e @t = 0.001
1.E-08 1.E-08 -
1.E-09 1.E-09 -
1.E-10 A 1.E-10 -
nstep nstep
1.E-11 — T T ) 1.E-11 T T T )
0 50 100 150 200 0 50 100 150 200

Figure 5.42: Plot of residual histories for 1% and 2™ order solution to the unsteady shock

tube using a dimensionless time step of 0.001.

The final CFD results at ¢ = 0.2 will be compared to the theoretical solution using
the one-dimensional gas dynamics equations. Figure 5.43 presents a comparison of the
computed density, pressure and Mach profile in the shock tube with the theoretical

solution for each flow variable.
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Figure 5.43: Density, pressure, and Mach distributions for 1% and 2™ order solution to

the unsteady shock tube at =02 using a dimensionless time step of 0.001.

Notice that both the first-order and second-order unsteady solutions are in
excellent agreement with the theoretical solution for this small dimensionless time step.
Furthermore, the first-order and second-order solutions are virtually indistinguishable

from each other. In order to investigate the convergence characteristics for an unsteady
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solution, the first-order and second-order unsteady solutions are recomputed using
successively larger time steps. As the time step increases, the total number of solutions
steps will decrease, but the number of iterative cycles required to achieve a reasonable
level of numerical convergence for each step will typically increase. Furthermore, it is
often necessary to decrease the courant stability factor for large global time steps in order
to maintain the stability of the iterative algorithm. Table 5.12 presents a summary of the
relevant control parameters used for the five time steps used in this study as well as the
total computational time required for each solution. In each case, the number of cycles
was chosen such that all five solutions reached a similar level of convergence after each

step.

Table 5.12: Summary of solver control parameters used for time step refinement with

unsteady shock tube.
CPU-time
dt nstep ncyc cfl I* Order | 2" Order
0.001 200 20 0.8 441.16s | 575.44s
0.002 100 20 0.8 213.16 s | 287.83s
0.01 20 50 0.6 11045s | 141.19s
0.02 10 80 0.5 86.42 s 11295 s
0.05 4 200 0.4 85.04 s 112.03 s

In general, the total computational time decreases as the global time step is
increased since fewer number of steps are required to advance the solution to 7 = 0.2.
However, there is obviously a point of diminishing return as the number of cycles
increases dramatically for excessively large global time steps. Figure 5.44 presents a plot
of the residual convergénce histories for the first-order and second-order solutions using

the five different time steps.
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Figure 5.44: Plot of residual histories for 1 and 2™ order solution to the unsteady shock

tube using various dimensionless time steps.

Notice that the second-order solution typically achieves a higher level of
convergence at each step than the first-order solution for the same number of iterative
cycles. Although the second-order solution suffers from longer computational times
relative to the first-order solution, the higher-order accuracy seems to allow it to converge
faster. Thus the computational penalty can be alleviated through the use of fewer
iterative cycles with the second-order solution. In order to actually evaluate the
performance of the two solutions, Figure 5.45 presents a comparison of the density,
pressure and Mach distributions in the shock tube for the first-order and second-order

unsteady solutions using the four new values of the global time step.
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Figure 5.45: Density, pressure, and Mach distributions for 1% and 2™ order solution to

the unsteady shock tube at /* = 0.2 using various dimensionless time steps.

Notice that the solution accuracy decreases rapidly as the global time step

increases. For the time step dt = 0.002, which is double the size of our initial time step,

both the first-order and second-order unsteady solutions are in excellent agreement with

the theoretical density, pressure, and Mach distributions. However, the resolution of the
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sharp shock and expansion regions computed using the first-order unsteady solution is
degraded for the larger time steps. Use of the second-order unsteady solution does
improve the time accuracy of the solutions with the larger time steps. In fact, the second-
order unsteady solution is still in reasonable agreement with the theoretical distributions
for dt =0.01.

This problem clearly demonstrates the effect of increasing the global time step on
the accuracy of an unsteady solution. The strong unsteady effects of a moving shock
wave dominate the physics of this problem, making it very sensitive to the size of the
global time step. In order to quantify this effect, we compare the velocity of the shock to
the size of the global time step. At ¢ = 0.2, the shock is located at x* = 0.850431, or it
has traveled a total distance of Ax” = 0.350431. This equates to an average velocity of u"
= 1.75 for the shock during the total time interval of the solution. The computational grid
for this problem was generated using a uniform grid spacing of 0.01, which means the
shock moves across an average of one element in about Af = 0.006. Based on the
solution results presented in Figure 5.45, the best accuracy for this problem is achieved
when the global time step is smaller than the time it takes the shock to move across one
element.

Fortunately, other unsteady problems will not typically be this sensitive to the
global time step. This will allow the use of larger global time steps while still
maintaining the time accuracy of the solution. However, it is necessary to consider the
physics of each problem when selecting the global time step for an unsteady solution.
Otherwise the resulting solution might be inaccurate as demonstrated by the results of

this problem.
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5.1.7 TImpulsively Accelerated Airfoil

The unsteady variation of lift coefficient for an impulsively accelerated airfoil is
one of the most basic examples of unsteady aerodynamics. For this problem, the NACA
0012 airfoil geometry presented in Section 5.1.4 is suddenly accelerated to a constant
velocity corresponding to Mach 0.3 at an angle of attack of 5.0 degrees. The results will
be compared to the theoretical solution solved by Wagner’® for the infinite acceleration
of a two-dimensional, thin airfoil.

For this problem, the transient response of the airfoil is sensitive to the unsteady
wake that develops downstream. Therefore, the grids generated for the NACA 0012
airfoil in Section 5.1.4 are locally refined in the region downstream of the airfoil. Grid
convergence will not be attempted for this unsteady problem, so only one computational
grid is required. Figure 5.46 shows the overall surface triangulation generated for this
study, and Figure 5.47 shows a close-up of the surface triangulation on the surface of the

airfoil.
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Figure 5.47: Close-up of surface triangulation for impulsively accelerated airfoil.
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As with the unsteady shock tube, this problem is sensitive to our choice of global
time step. The theoretical solution involves an infinite acceleration at £ = 0.0. However,
our numerical solution to this problem uses finite time steps, which results in a finite
acceleration rate. This ﬁnite acceleration rate has been demonstrated to moderately
increase the lift.*® Furthermore, the large initial acceleration will cause some stability
and convergence problems for the initial solution steps. This will require the use of low
values for the courant stability factor and extra iterative cycles for convergence.

Figure 5.48 presents the solver control pararnetefs chosen for the first solution to
the impulsively accelerated airfoil. Since our reference dimension is equal to the chord
of the airfoil, the dimensionless time step measures the distance traveled by the airfoil in

chord lengths for each global time step.

dt = 0.05040
gamma = 1.40d0
mach = 0.30d0
alpha = 5.0d0
refdim = 16.0d40
diss = 1.00d0
cfl = 0.60d40
nstp = 140
nout = 20
ncyc = 50

isol = 2

idiss =1

ipnt =1
istrt = .false.
iaero = .true.

Figure 5.48: Summary of solver control parameters for impulsively accelerated airfoil.

As with the previous unsteady problem, the effects of time step refinement are
investigated here using several solutions with varying time steps. Table 5.13 presents the

combinations of time step size, solution steps, iterative cycles, and courant stability factor
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used for the four unsteady solutions. In each case, the number of cycles was chosen so

that the solution for each time step attained a similar level of convergence.

Table 5.13: Summary of solver control parameters used for time step refinement with the

impulsively accelerated airfoil.

dt nstep ncyc cfl CPU-time

| 0050 | 140 | 50 | 05 |661224s
0100 | 70 [ 70 | 05 4638.86 s
| 0200 | 35 | 100 | 04 |3305.47s
0.500 14 140 0.4 1892.38 s

Figure 5.49 presents a plot of the residual convergence histories for the unsteady
solutions using the four different time steps. As expected, the level of convergence for

the initial time steps is relatively low due to the large acceleration at = 0.0.
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Figure 5.49: Plot of residual histories for impulsively accelerated airfoil using various

dimensionless time steps.

The transient response of the airfoil for each solution is plotted as C;(7)/C;, where

Cy(r) is the instantaneous lift coefficient computed for the airfoil at time ¢, and C} is the
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lift coefficient of the airfoil at infinity or the steady state lift coefficient. The steady state
lift coefficient was computed directly using a steady CFD solution for this airfoil. Figure
5.50 presents a comparison of the transient lift coefficient computed using the four

different dimensionless time steps and the theoretical Wagner solution.

1 .
0.9

—dt=10.100
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C,=02879
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Figure 5.50: Plot of lift coefficient variation for the impulsively accelerated airfoil using

various dimensionless time steps.

The results in Figure 5.50 show reasonable agreement with the theoretical
solution. As expected, there is a large discrepancy in the initial transient resulting from
the sudden acceleration of the airfoil. This is in part due to our discretization of the
problem, but it is also affected by the applied initial condition for the solution, which is
simply free-stream velocity and pressure throughout the domain. The numerical
solutions do asymptotically approach the steady state lift coefficient, but do so more
rapidly than the theoretical response curve predicts. This discrepancy between the
numerical and theoretical solutions is most likely caused by the cumulative errors from

an imperfect initial condition, our spatial discretization, and compressibility. The effects
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of compressibility are small at this low Mach number. Nevertheless, compressibility has
the effect of stretching the coordinate system and would diminish the impact of the
unsteady wake more rapidly, which is consistent with the results presented in Figure 5.50.

In order to further visualize the unsteady behavior of this problem, Figure 5.51

shows the colored Mach profiles at six sequential times in the solution.

Figure 5.51: Colored Mach profile showing unsteady wake development for the

impulsively accelerated airfoil.
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The unsteady wake development is clearly visible in the six pictures of Figure 5.51. As
expected, the wake reaches the far-field boundary at approximately ¢+ = 5.0, since the far-
field boundary is exactly. five chord lengths from the trailing edge of the airfoil.

As a final verification using this geometry, the same impulsively accelerated
airfoil is also solved in a non-inertial formulation. This is accomplished by turning off
the free-stream velocity and applying a dynamic initial condition to the non-inertial frame
that corresponds to the identical conditions used in the inertial solution. Figure 5.52
presents the solver control parameters for the non-inertial solution, while Figure 5.53

presents the dynamics file with the correct initial conditions for the non-inertial frame.

dt = 0.100d0
gamma = 1.40d0
mach = 0.30d0
alpha = 0.0d40
refdim = 16.0d0
diss = 1.00d0
cfl = 0.50d0
nstp = 70

nout = 70

ncyc = 70

isol =2

idiss =1

ipnt =1

istrt = .false.
iaero = .true.
idynm = .true.
ifree = .false.
ainf = 3.333333d0

Figure 5.52: Summary of solver control parameters for impulsively accelerated airfoil in

a non-inertial frame.
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$ Position vector to origin of non-inertial frame (rx, ry, rz)
0.0d40, 0.0d0, 0.04d0

$ Mass matrix for non-inertial frame (6 x 6)
1.0d0 0.0do 0.0do 0.0do 0.0do 0.0d0
0.0do 1.0d0 0.0do 0.0do 0.0do 0.0do
0.0do 0.0do 1.0d0 0.0do 0.0do 0.0d0
0.0do 0.0do 0.0do0 1.0d0 0.0do 0.0do
0.0do 0.0do 0.0d0 0.0do0 1.0do 0.0do
0.0do 0.0d4do 0.0do0 0.0do 0.0do 1.0d0

$ Damping matrix for non-inertial frame (6 x 6)
1.0d0 0.0do 0.0do0 0.0do0 0.0do 0.0do
0.0do0 1.0d0 0.0do 0.0do 0.0do 0.0do
0.0do 0.0do 1.0d0 0.0do0 0.0do 0.0do
0.0do 0.0do 0.0do 1.0d0 0.0do 0.0do
0.0do 0.0do 0.0do0 0.0do 1.0d0 0.0d0
0.0do 0.0do 0.0do0 0.0do 0.0do 1.0d0

$ Stiffness matrix for non-inertial frame (6 x §6)
1.0d0 0.0do 0.0do 0.0do0 0.0do 0.0do
0.0d4o 1.0d0 0.0do 0.0do 0.0do 0.0do
0.0d0 0.0do 1.0do 0.0do 0.0do 0.0do
0.0do 0.0do 0.0d0 1.0d0 0.0do 0.0do
0.0do 0.0do 0.0do0 0.0do 1.0d0 0.0do
0.0do 0.0d0 0.0do0 0.0do 0.0do 1.0d0

$ IC's for non-inertial frame (6 positions, 6 rates, 6 accels
0.0d0, 0.0d0, 0.0d0, 0.0d0, 5.0d0, 0.0do0

-1.0do, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0dO

0.0d0o, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0dO

$ IBXD for non-inertial frame (6)

2, 1, 1, 1, 1, 1

)

Figure 5.53: Dynamics file for the impulsively accelerated airfoil in a non-inertial frame.

Notice that the initial velocity vector for the origin of the non-inertial frame is
specified as { —-1.0, 0.0, 0.0 7. The translational velocity and acceleration of the non-
inertial frame is always expressed relative to the inertial coordinate system. Furthermore,
the specified velocity for the non-inertial frame is dimensionless since the reference
velocity, Uy = mach-ainf, is identically one. For this problem, the non-inertial frame is

also oriented at a 5.0 degree pitch angle with respect to the inertial frame so that we

accourit for the angle of attack of the airfoil.

The non-inertial aspects of this problem are trivial since both the acceleration and
the angular rates are all zero. Hence, the inertial and non-inertial solutions are expected

to be identical. Figure 5.54 presents a comparison of the transient lift coefficient
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computed using the inertial and non-inertial formulations with the theoretical Wagner

solution.

0.7

——— Inertial

o Non-inertial
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Figure 5.54: Comparison of transient lift coefficient for the impulsively accelerated

airfoil solved using inertial and non-inertial formulations.

Notice that the inertial and non-inertial solutions are identical. This solution

verifies the non-inertial implementation for the simplest case of a solution with constant

velocity and orientation.

5.1.8 Pitching and Plunging Airfoil

For this problem, we use the NACA 0012 airfoil of Section 5.1.4 again to study
the unsteady variation of lift coefficient generated by a sinusoidal pitching and plunging
motion. The unsteady, harmonic motion of the airfoil is generated by dynamically
moving the computational domain in a non-inertial solution. The results will be
compared to the theoretical solution solved by Theodorsen’s method® for a thin airfoil

undergoing harmonic pitching and plunging motion in a uniform, incompressible flow.
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As with the problem of Section 5.1.7, the solution for this problem is sensitive to
the unsteady wake that develops downstream. Therefore, a grid similar to the one used in
Section 5.1.7 with local refinement in the region downstream of the airfoil is again
employed. The only grid used for this problem consists of 41,400 nodes and 182,076
elements. Grid convergence will not be investigated for this unsteady problem.

The first unsteady solution involves a dynamically plunging airfoil. A sinusoidal
plunging motion is generated by specifying an appropriate mass and stiffness for the z-
axis in the dynamics input file and clamping the other five degrees of freedom. If the
aerodynamic forces are tumed off in the dynamics solver and no structural damping is
specified, the airfoil will oscillate at its natural frequency with a plunge amplitude equal
to whatever displacement is specified in the initial conditions. Figure 5.55 presents the
solver control parameters chosen for the first solution to the plunging airfoil, while Figure

5.56 presents the dynamics input file utilized for the same solution.

dt = 0.050d0
gamma = 1.40d0
mach = 0.30d0
alpha = 0.0d0
refdim = 16.0d0
diss = 1.00d0
cfl = 0.60d0
nstp = 500
nout = 50
ncyc = 40

isol = 2

idiss =1

ipnt =1

istrt = .true.
iaero = .false.
idynm = _true.

Figure 5.55: Summary of solver control parameters for the plunging airfoil.
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$ Position vector to origin of non-inertial frame (rx, ry, rz)
8.0d40, 0.0d0, 0.0do
$ Mass matrix for non-inertial frame (6 X 6)
1.0d0 0.0d0 0.0do 0.0do 0.0do 0.0do
0.0do0 1.0d0 0.0do0 0.0do 0.0d0 0.0do
0.0do0 0.0d0 1200.0d0 0.0do 0.0do 0.0do0
0.0do0 0.0do 0.0do0 1.0do 0.0d0 0.0do
0.0d0 0.0do0 0.0do0 0.0do 1.0do 0.0do
0.0do 0.0d0 0.0do 0.0do0 0.0d0 1.0d0
$ Damping matrix for non-inertial frame (6 x 6)
0.0d0 0.0do 0.0do 0.0do 0.0d0 0.0do
0.0d0 0.0do 0.0do 0.0do 0.0do 0.0do0
0.0do 0.0do0 0.0do0 0.0do 0.0do 0.0d0
0.0d0 0.0d0 0.0do 0.0d0 0.0do 0.0do
0.0do0 0.0d0 0.0d0 0.0do 0.0d0 0.0do
0.0do 0.0do 0.0do0 0.0do 0.0do 0.0do0
$ Stiffness matrix for non-inertial frame (6 x 6)
1.0do 0.0d0 0.0do0 0.0d0 0.0d0 0.0do
0.0d0 1.0do 0.0do 0.0do 0.0do 0.0do0
0.0do0 0.0do 0.4d0 0.0do0 0.0d40 0.0do0
0.0d0 0.0do0 0.0do 1.0d0 0.0do 0.0do0
0.0do0 0.0do 0.0do0 0.0d40 1.0do 0.0do
0.0do 0.0do 0.0do0 0.0do 0.0do0 1.0d0
$ IC's for non-inertial frame (6 positions, 6 rates, 6 accels
0.0d0, 0.0do, 3.2d0, 0.0d0, 0.0d0, 0.0d0
0.0d0, 0.0do, 0.0d0, 0.0d0, 0.0d0, 0.0d0
0.0d0, 0.o0do, 0.0d0, 0.0d0, 0.0d0, 0.0d0
$ IBXD for non-inertial frame (6)
1, 1, 0, 1, 1, 1

)

Figure 5.56: Dynamics input file for the plunging airfoil.

The combination of parameters given in Figure 5.55 and Figure 5.56 define a

plunging airfoil with a reduced natural frequency approximately equal to 0.487, where

the reduced natural frequency, k, is defined by Equation (5.7).

(5.7) k

Figure 5.57 presents the plunge response time history computed for this combination of

physical parameters.
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Figure 5.57: Response time history for the plunging airfoil.

In addition to the time step presentéd in Figure 5.55, a second solution using a
larger time step of 0.20 combined with 80 iterative cyéles was also executed. A plot of
the residual time histories for each of the solutions is presented in Figure 5.58, while a
comparison of the theoretical and predicted lift coefficient time histories for the same

solutions is presented in Figure 5.59.
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Figure 5.58: Plot of residual time histories for the plunging airfoil solution.
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Figure 5.59: Comparison of lift coefficient time histories for the plunging airfoil.

Notice that the solution with the smaller time step, dt = 0.05, is in excellent
agreement with the theoretical solution computed using Theodorsen’s method. As
expected, the discrepancy visible in this plot for the first cycle of oscillation vanishes as a
proper wake develops downstream. Even the solution using the larger time step, dt =
0.20, shows reasonable agreement with the theoretical solution, but falls short of

capturing the proper amplitude. To quantify this comparison, the amplitude of the lift
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coefficient time history predicted using a time step of 0.05 was approximately 0.774.

This differs from the theoretical value of approximately 0.779 by only 0.64%.

For our next solution, we switch to

parameters used for the plunging airfoil.

a pitching airfoil with the same basic physical

The solver control parameters will remain

unchanged from the previous solution, while Figure 5.60 presents the new dynamics

input file for the pitching airfoil solution.

Notice that the airfoil is setup to pitch about a

non-inertial y-axis located at the midpoint of the airfoil, since the origin of the coordinate

system was originally setup at the leading edge of the airfoil. -

$ Position vector to origin of non-inertial frame (rx, ry, rz)
8.0d4d0, 0.0d0, 0.0do
$ Mass matrix for non-inertial frame (6 x 6)
1.0d0 0.0do 0.0d0 0.0d0 0.0do 0.0d0
0.0do 1.0d0 0.0do 0.0do 0.0do 0.0do0
0.0do 0.0d0 1.0d0 0.0do 0.0d0 0.0do
0.0do 0.0do 0.0do0 1.0d0 0.0do 0.0do
0.0do 0.0do 0.0d0 0.0d0 1200.0d0 0.0do
0.0do0 0.0do 0.0do 0.0do 0.0do 1.0d0
$ Damping matrix for non-inertial frame (6 x 6)
0.0do 0.0d0 0.0do 0.0do 0.0do 0.0do
0.0do 0.0do 0.0do 0.0do0 0.0do 0.0d0
0.0do0 0.0do 0.0do0 0.0do 0.0d0 0.0do
0.0d0 0.0do 0.0do 0.0do 0.0do 0.0do
0.0d0 0.0do 0.0do0 0.0do 0.0d0 0.0do
0.0do 0.0do 0.0do 0.0do 0.0d0 0.0do
$ Stiffness matrix for non-inertial frame (6 x 6)
1.0d0 0.0do0 0.0do0 0.0do 0.0d0 0.0do0
0.0do 1.0do0 0.0do 0.0do 0.0do 0.o0do
0.0d0 0.0do 1.0d0 0.0d0 0.0do 0.0do -
0.0do 0.0do 0.0do0 1.0do0 0.0do 0.0do
0.0d0 0.0do 0.0do0 0.0d0 0.4d0 0.0do
, 0.0do 0.0do 0.0d0 0.0do 0.0do 1.0do
$ IC's for non-inertial frame (6 positions, 6 rates, 6 accels )
0.0d0o, 0.o0do, 0.0d0, 0.0d0, 1.0d0, 0.0do0
0.0do, 0.o0do, 0.0do, 0.0do, 0.0d0, 0.0doO
0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0doO
$ IBXD for non-inertial frame (6)
1, 1, 1, 1, 0, 1

Figure 5.60: Dynamics input file for the pitching airfoil.
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Using the same time steps as the previous solutions, a plot of the residual time
histories is presented in Figure 5.61, while a comparison of the theoretical and predicted

lift coefficient time histories is presented in Figure 5.62.
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Figure 5.61: Plot of residual time histories for the pitching airfoil solution.
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Figure 5.62: Comparison of lift coefficient time histories for the pitching airfoil.

Once again, the solution for a time step of 0.05 is in excellent agreement with the
theoretical solution computed using Theodorsen’s method. For this problem, notice that
the wake effect has a more pronounced influence on the amplitude of the dynamic lift
coefficient. The initial conditions for this solution at { = 0 were obtained by solving a
steady solution for this airfoil pitched at a 1° constant angle of attack, which predicted a

steady state value of approximately 0.117 for the lift coefficient. For the pitching airfoil,
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the predicted amplitude of the dynamic lift coefficient is approximately 0.0780, or a
decrease of approximately 33% from the steady state lift coefficient. The theoretical
amplitude for the dynamic lift coefficient is approximately 0.0782, which means the

solution found here is within 0.32% of the expected value.

5.1.9 Spinning Centrifuge

The problems of the previous section demonstrated the capabilities of the non-
inertial algorithm for relatively small amplitude harmonic motion. This verification
problem investigates the accuracy of the non-inertial algorithm for a rapidly spinning
geometry that undergoes several complete revolutions. The shock tube geometry of
Section 5.1.6 is rotated about its z-axis in order to simulate a spinning centrifuge. It is
expected that the pressure distribution within the tube will follow an exponential profile

as defined by Equation (5.8).

by _ e%wer/RT
b,

(5.8)

Unfortunately, simply starting the tube rotating with an initially uniform pressure
distribution inside will result in a solution where pressure waves oscillate back and forth
along the length of thé tube. It is expected that these preésure waves would eventually
damp out under the influence of the artificial viscosity in the algorithm, but this may take
several thousand revolutions. Instead, we will start the solution with proper' initial
conditions, which represent the correct theoretical solution for the spinning tube. Using

Equation (5.8), a proper set of initial conditions is generated for each node of the
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computational domain using the following set of physical constants: p; = 101.33 kPa, p;=
1.225 kg/m®, R =286.9 J/kg'K, T=288.15 K, and @=91.8792 rad/s or 5264.29deg/s.
Figure 5.63 and Figure 5.64 present the solver control parameters and dynamics

input file used to analyze this problem.

dt = 0.005d0
gamma = 1.40d0
mach = 0.3040
diss = 1.00d4d0
cfl = 0.50d0
nstp = 5000
nout = 100
neyc = 20

isol = 2

idiss =1

ipnt =1

istrt = .true.
iaero = .false.
idynm = .true.
ifree = .false.
aint = 204.17640
rhoinf = 1.2254d0

Figure 5.63: Summary of solver control parameters for spinning centrifuge.
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$ Position vector to origin of non-inertial frame
0.0d0, 0.0do, 0.0do
$ Mass matrix for non-inertial frame (6 x 6)
1.0d0 0.0do 0.0d0 0.0do 0.0do 0
0.0do 1.0d0 0.0do 0.0do 0.0d0 0
0.0do 0.0do 1.0do0 0.0d0 0.0do 0
0.0do 0.0do 0.0d0 1.0d0 0.0do 0
0.0do 0.0do 0.0d0 0.0do 1.0d0 0
0.0do 0.0do 0.0do 0.0do 0.0do 1
$ Damping matrix for non-inertial frame (6 x 6)
1.0d0 0.0d0 0.0do 0.0do 0.0do 0
0.0do 1.0do 0.0do 0.0do 0.0do 0
0.0do 0.0do 1.0d0 0.0do 0.0d0 0
0.0do 0.0do 0.0do 1.0do 0.0do 0
0.0do 0.0do 0.0do 0.0d0 1.0d0 0
0.0do 0.0d0 0.0do 0.0do 0.0d0 1.
$ Stiffness matrix for non-inertial frame (6 x 6)
1.0do0 0.0do0 0.0do 0.0do 0.0do 0
0.0do 1.0do0 0.0d0 0.0d0 0.0d0 0
0.0do 0.0do 1.0d0 0.0do 0.0do 0
0.0do 0.0do 0.0do 1.0do0 0.0do 0
0.0do 0.0do 0.0do 0.0do 1.0do 0
0.0do 0.0do 0.0do 0.0d0 0.0do 1.
$ IC's for non-inertial frame (6 positions, 6 rat
0.0d0, 0.0d0, 0.0d0, 0.0dO0, 0.0d0, 0.0dO
0.0do, 0.0d0, 0.0d0, 0.0d0, 0.0dO0, 5264.29d0
0.0d40, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0do
$ IBXD for non-inertial frame (6)
1, 1, 1, 1, 1, 2

(rx,

.0do
.0do
.0do
.0do
.0do
.0do

.0do
.0do
.0do
.0do
.0do

0do

.0do
.0do
.0do
.0do
.0do

odo
es,

ry, rz)

6 accels )

Figure 5.64: Dynamics file for the spinning centrifuge.

The dimensionless angular rate specified for this problem is computed to be 1.5. Given

that the time step chosen for the solution is 0.005, the tube will complete one revolution

every 838 solution steps.

theoretical pressure and density distribution within the tube after 5000 steps or

approximately 6 revolutions. The results clearly demonstrates the accuracy of the non-

Figure 5.65 presents a comparison of the computed and

inertial algorithm for the extreme case of a spinning body that undergoes multiple

revolutions.
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Figure 5.65: Comparison of computed and theoretical pressure and density distributions

along the centerline of the spinning centrifuge after four revolutions.

5.2 Validation

Having completed numerous verification tests for both steady and unsteady
problems, our focus shifts to a validation of our numerical algorithm for practical
aerospace applications. In contrast to verification where we attempted to demonstrate
that the algorithm is solving the equations right, validation is typically referred to as

' We have adopted that definition here and will attempt to

solving the right equations.
demonstrate that our governing equations, the compressible Euler equations, are capable
of accurately representing the dominant flow physics for relevant aerospace applications.
In addition, we must demonstrate that the assumptions of our numerical approximations,
specifically the transpiration method, are accurate and applicable to the types of problems
we are solving.

Our primary comparison for validation solutions is experimental data. Often this

is a somewhat difficult comparison to make because there are just as many difficulties
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and inaccuracies associated with experiments as there are with numerical models.
Although many modem experiments typically take advantage of non-intrusive
measurement techniques, much of the experimental data available for our selected
aerospace applications is legacy data obtained before such techniques were widely in use
and or even available. Hence, it is necessary to be cautious in our evaluation of the
numerical results and take in to consideration any experimental uncertainties if such
information is even available. Roache'® borrowed an interesting quote from Aeschliman
and Oberkampf who said, “the general point is that as one progresses down the list to
more difficult quantities for CFD to predict, the experimental uncertainty generally
increases also.” This proves particularly true in our case for aeroelastic applications
where the combination of uncertainties in both the structural and fluid dynamics data can
couple adversely to magnify the differences between experiment and numerical
prediction.

The sections that follow present a sample of validation problems intended to
demonstrate the types of aerospace applications our numerical algorithm is capable of
solving. Our primary interest is in the modeling of transonic flow problems since good
theoretical models are not readily available for advanced three-dimensional applications
in this flow regime. As such, we begin with a steady validation case that demonstrates
the transonic shock capturing capabilities of the solver. This leads in to several unsteady
validation tests for aeroelastic problems in the transonic flow regime, as well as problems
that exercise the non-inertial terms in our formulation since that was the primary goal of

this research.
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5.2.1 RAE 2822 Transonic Airfoil

This steady problem consists of a RAE 2822 airfoil in a transonic flow. The
results will be compared to an experimental solution obtained for Mach 0.729 and an
angle of attack of 2.31 degrees.40 The layout of the computational domain, which is
similar to that of the NACA 0012 airfoil from Section 5.1.4, is presented in Figure 5.66.
Boundary conditions for the eight boundary surfaces enclosing this domain are specified
as follows: surfaces 1, 2, 3 and 4 are symmetry planes, surfaces 5 and 6 are far-field
boundaries, and surfaces 7 and 8 are solid walls. The curve defining the trailing edge of
the airfoil is also specified as singular since the local surface normals are undefined along

that curve.
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Figure 5.66: Layout of computational domain for the RAE 2822 transonic airfoil.

The computational grid generated for this problem consists of 198,528 elements
and 38,571 nodes, with local refinement of the elements near the surface of the airfoil.

Figure 5.67 shows a close-up of the surface triangulation near the airfoil.
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Figure 5.67: Close-up of surface grid near the RAE-2822 airfoil.

Our solution to this problem uses the high-order dissipation model with a
dissipation factor of 1.0. The complete set of solver control parameters used in the

solution of this problem is given in Figure 5.68.

gamma = 1.4040
mach = 0.729d0
alpha = 2.31d0
diss = 1.00d0
cfl = 0.80d0
nstp = 8000
nout = B000D
ncyc = 3

isol =0
idiss = 1

ipnt =i 4
iaero = .true.

Figure 5.68: Summary of solver control parameters for transonic airfoil solution.

Figure 5.13 presents a plot of the residual convergence history for the solution. A
total of 8000 iterations where required in order to attain a reasonable degree of numerical

convergence.
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Figure 5.69: Plot of residual histories for transonic airfoil solution.

Results for this problem are taken along a cut-line defining the intersection of an
xz-plane at y = —0.15625 and the two surfaces defining the airfoil, surfaces 7 and 8.
Figure 5.70 presents a comparison of the computed pressure coefficient on the surface of
the airfoil and the experimental data for Mach 0.729. Notice that the computed results
are in excellent agreement with the experimental data, including the predicted location of

the shock.
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Figure 5.70: Plot of pressure coefficient distribution on the surface of the transonic

airfoil at Mach 0.729 and angle of attack 2.31 degrees.

5.2.2 AGARD 445.6 Aeroelastic Test Wing

Having validated the CFD solver for steady transonic problems, we will now
investigate an unsteady transonic problem. The AGARD 445.6 wing configuration is an
aeroelastic test case that was investigated experimentally in the 16-foot Transonic
Dynamics Tunnel (TDT) at NASA Langley Research Center.*! Experimental flutter
boundaries are reported for transonic Mach numbers ranging from 0.499 up to 1.141.
The wing is made from an NACA 65A004 airfoil cross section with a chord of 1.833 feet,

a semi-span of 2.5 feet, a quarter-chord sweep angle of 45 degrees, a panel aspect ratio of

1.65, and a taper ratio of 0.66.
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This particular wing configuration was analyzed previously using the STARS

unsteady CFD solver.” For this validation problem, we will simply re-use the original

elastic CFD model generated for the previous STARS analysis of this wing geometry.

This will allow us to compare our results to the previous STARS solution and validate

our implementation of the transpiration boundary condition and elastic structural

The structural model

dynamics solver for a three-dimensional aeroelastic solution.

consists of two elastic mode shapes that represent the first bending and torsion modes of

the wing. The frequencies for these two modes are 9.60 and 38.20 Hz respectively. The

798 elements. Figure 5.71 shows a close-

]

630 nodes and 373

H

CFD model consists of 69

up of the surface triangulation on the wing. The wing is attached to the center of a

rectangular computational domain that measures approximately 32 feet long, 32 feet

high, and 16 feet wide.
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Close-up of surface grid for AGARD 445.6 aeroelastic test wing.
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The first step in an aeroelastic analysis is to generate proper initial conditions for
the problem by completing a steady solution for the CFD model. Figure 5.72 presents a

summary of the solver contro] parameters used for the Mach 0.96 steady solution for this

problem.

gamma = 1.40d0
mach = 0.96d0
diss = 1.00d0
cfl = 0.80d0
nstp = 4000
nout = 4000
ncyc = 3

isol =0
idiss =1

ipnt =1

Figure 5.72: Summary of solver control parameters for the AGARD steady solution.

Figure 5.73 presents plots of the steady pressure coefficient distribution along the
surface of the AGARD wing at Mach 0.96. Although there were no steady experimental
results published for this wing geometry, the results presented here are consistent with the

steady computational results published by Batina.*!
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Figure 5.73: Plot of steady pressure coefficient distribution on the surface of the

unsteady solution at Mach 0.96. Figure 5.74, Figure 5.75, and Figure 5.76 present the
solver control parameters, elastic vectors input file, and external force input file

respectively. All three of these input files are required for an unsteady aeroelastic

AGARD wing at Mach 0.96 for various spanwise locations, 77.

Having completed a steady solution at Mach 0.96, we are now ready to begin an

solution. The dimensionless time step and all other solver parameters specified here were

chosen to match those used in the original STARS analysis of this problem as close as

possible. This will allow us to make a direct comparison between time history data from

the two solvers as a verification of the aeroelastic predictions of the new solver.
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dt = 15.7140,
gamma = 1.404d0,
mach = 0.960d0,
refdim = 1.0d0,
cfl = 0.50d0,
diss = 1.0d0,
nstp = 500,
ncyc = 80,

nout = 500,
idiss =1,

isol = 2,

idsol = 0,

ipnt =1,

istrt = .true.,
iaero = .true.,
ielast = .true.,
idynm = .false.,
iforce = .true.,
nr = 2,

ainf = 12571.08,
rhoinf = 3.40E-09

Figure 5.74: Summary of solver control parameters for the AGARD aeroelastic solutibn.

$ Number of elastic modes (nr)

2

$ Mass matrix for elastic modes (nr x nr)
1.205600000000000E-003 0.000000000000000E+000
0.000000000000000E+000 3.614300000000000E~-004

$ Damping matrix for elastic modes (nr x nr)
2.908949000000000E-003 0..000000000000000E+000
0.000000000000000E+000 3.467299000000000E-003

$ Stiffness matrix for elastic modes (nr x nr)
4.38649000000000 0.000000000000000E+000
0.000000000000000E+000 20.7834000000000

$ ICs for elastic modes (x1....xn, vxl...vxn)

0.040 0.040 0.040 0.0do
$ IBXN for elastic modes (nr)
0 0
$ Elastic modes vectors (nwl 2) x nr
0.7326388801E-10 -0.5034722292E-10 0.6874974370E+00

Figure 5.75: Header of elastic vectors input file for the AGARD aeroelastic solution.
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0.0d0
0.0do
0.0d0
L 0do
10.0d0
10.0d0
0.0do
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0.0do
0.
0.0do

0do

0do

odo
0do

Figure 5.76: External force input file for the AGARD aeroelastic solution.

Based on the previous computational results generated using the STARS unsteady ;
solver, we expect that the flutter boundary for Mach 0.96 will occur at a dynamic
pressure of approximately 0.233 psi. The combination of parameters given in Figure 5.74
equate to a dynamic pressure of approximately 0.247 psi, so we expect that the response
time history will prove to be unstable. Our first comparison will be between a set of time
history data computed by the new euler3d and old STARS unsteady CFD solvers. Figure

5.78 presents a plot of generalized displacement and force for both modes as computed

by the two solvers.
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Figure 5.77: Comparison between time history data computed by STARS and euler3d

solvers for the AGARD wing at Mach 0.96.

The most noticeable difference between the time history data in the plots of
Figure 5.77 is caused by a discrepancy in the predicted steady state load condition. The
steady state load for mode two as predicted by the STARS steady solver differs from the
predicted value from the euler3d solver by nearly 200%. This has the obvious effect of
shifting the time history data so that the two solutions oscillate about different neutral
points, as well as impacting the relative amplitude of the generalized displacement time
histories. Aside from this difference, the two sets of time history data are qualitatively
the same. Both solutions show a system that is mildly unstable, with approximately the

same frequency and damping for each mode. At this point, there are enough differences
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between the two unsteady CFD solvers that we should expect some small differences
between the two solutions. Hence, the excellent agreement between the time history data
from each solver serves to verify the new aeroelastic solver.

The next step in predicting the flutter boundary for an aeroelastic problem would
normally be to run the same solution at a different dynamic pressure. Based on the
agreement between the euler3d and STARS time history data, we expect that the new
solver would predict approximately the same flutter boundary as the previously published
value. The more interesting test will come from a comparison between the predicted
flutter boundary using both the zero-order and new second-order structural dynamics
integrators. The previous solution used the zero-order integrator for comparison with the
old STARS solution, which uses the same integrator. Figure 5.78 presents a comparison
between time history data for mode one generalized displacement computed using the
new euler3d solver with both the zero-order and second-order structural dynamics
integrators. The only solver input parameter that differs between the two solutions is

idsol, which is equal to zero or two for the zero-order and second-order integrators

respectively.
04 1x: q =0.248 psi idsol = 0
idsol =2
0.3
0.2
0.1 1
*
0_'<M R - T H tl
2 4 6000
-0.1
<02 1
03 -

Figure 5.78: Comparison of time history data for AGARD wing at Mach 0.96.
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Notice that there is a relatively large discrepancy between the time history data
predicted by the zero-order and second-order structural dynamics solutions. The two sets
of time history data are not even qualitatively the same. The time history data from the
zero-order integrator shows a system that is mildly unstable, while the time history data
from the second-order integrator shows a system that is clearly stable. As discussed in
Section 4.6.3, this indicates that the time step chosen for this problem was too large. In
order to refine the solution and determine the correct flutter boundary, we will need to
decrease the time step. A complete set of time history data for dt = 16.0, 4.0, 1.0 and
0.25 is presented in Appendix C. Some of the solver control parameters necessarily
change as the time step is refined. Table 5.14 presents a summary of the relevant

parameters that were changed for each time step to construct the plots in Appendix C.

Table 5.14: Summary of solver control parameters used for time step refinement with

AGARD wing at Mach 0.96.
dt nstep ncyc cfl
16.0 500 80 0.40
4.0 2000 35 0.40
1.0 12000 12 0.50
0.25 32000 4 0.60

In order to compute the predicted flutter boundary for each set of solutions, we
approximate the relative damping factor for the mode one generalized displacement data,
and interpolate to find the dynamic pressure at which the system is neutrally stable.
Figure 5.79 presents a plot of the dimensionless flutter velocity, ¥y versus dimensionless

time step, dr¥, for the two different structural integrators, along with a reference line
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representing the experimental value for Mach 0.96. The dimensionless flutter velocity is

defined by the following equation:

(5 9) v, = Y
' T bw,

where, Uy is the flutter velocity, b is the root semi-chord, @ 1s the uncoupled natural

frequency of the wing first torsion mode, and # is the mass ratio.

035 ¥,
03 -
025 -
dr*
02 : . )
0.1 1 10 100

Figure 5.79: Plot of flutter velocity versus time step for the AGARD wing at Mach 0.96.

Based on these results, our initial choice of time step was too large by an order of
magnitude or more. Our initial solution, which used the zero-order integrator with dt =
16.0, was off by approximately 21% when compared to the experimental value, where as
the final solution differs from the experimental value by only 3%. This is a significant
refinement in the predicted flutter speed, with even further refinement a possibility with
an improved computational grid since we limited ourselves to the grid used in the original
STARS analysis. For a more direct comparison of each solution, Table 5.15 presents a

summary of the flutter velocity and percent error for each set of solutions.
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The total height of the wedge-shaped cylinder at the center of the computational
domain is equal to one unit, while its width is equal to five percent of the total height.
The outer radius of the computational domain was initially chosen to be six units, while
the thickness of the computational domain was set to 0.2 units. With these dimensions,
the computational grid generated for this study consists of 110,431 elements and 27,264
nodes. Boundary conditions for the ten surfaces enclosing this domain are specified as
follows: the surfaces 1 through 4 define the sides of the computational domain and are
symmetry planes, surfaces 5 and 6 are the far field boundaries along the outer radius of
the computational domain, and surfaces 7 through 10 define the surface of the wedge-
shaped body and are solid walls. Furthermore, the sharp edges at the top and bottom of
the wedge are specified as singular since the local surface normal is undefined along
those edges.

For this.unsteady solution, we sélect a low mach number such that the effects of
compressibility will be minimized. At a mach number of 0.3, it is expected that these
effects will be less than five percent. Figure 5.90 presents a summary of all solver

control parameters selected for this problem.

dt = 0.040d0,
gamma = 1.40do0,
mach = 0.30d0,
cfl = 0.50do,
diss = 1.0d0,
nstp = 4000,
ncyc = 50,

nout = 30,
idiss = 1,

isol = 1,

ipnt =1,

istrt = .false.,
iaero = .true.,
ielast = .false.,
idynm = .false.

Figure 5.90: Summary of solver control parameters for the wedge solution.
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Figure 5.91 presents a plot of pressure contours showing the vortex wake that
develops downstream of the wedge-shaped cylinder. The alternating vortices propagate
downstream as they are shed from the upper and lower edges of the body and eventually
pass through the outer edge of the computational domain, which uses the far-field
boundary condition. The fully developed flow reaches an oscillatory steady-state with a

constant vortex shedding frequency.

Figure 5.91: Contour plot showing vortex generation behind a wedge-shaped cylinder.

The vortex shedding frequency is exactly equivalent to the Strouhal number for

this flow, which is simply a dimensionless frequency as defined by Equation (5.10).

(5.10) Sx:f'D
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wherefis the frequency of vortices shed in a vortex street, D is the length scale, and U is
the fluid velocity. The frequency of the vortices is typically determined by measuring the
frequency of the lift coefficient time history data. Since the unsteady CFD solver already
outputs all time history data with dimensionless values, the Strouhal number for the flow
will be exactly equal to the frequency we measure for the time history data. Figure 5.92

presents a plot of the lift coefficient time history data for the wedge solution.
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Figure 5.92: Plot of lift coefficient time history data for the wedge solution.

The computed Strouhal number for the time history shown in Figure 5.92 is
0.164. This compares to the observed value of 0.15 for a thin plate oriented

perpendicular to the flow.”

Givg:n the differences in geometry between a flat plate and
the wedge-shaped body examined here as well as the lack of viscous effects in the
unsteady Euler solution, we do not expect the computed Strouhal number for this flow to
match the experimental rvalue for the thin plate. In this case, the comparison to an

experimental value is simply to verify that the computed Strouhal number for this

problem is reasonable.
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Based on the computed Strouhal number for this problem, we have approximately
150 discrete solution steps per cycle. No significant changes in the flow solution were
observed with further refinement of the time step or grid spacing. However, enlarging
the outer radius of the computational domain, which provides more space for the vortices
to propagate downstream before passing through the outer boundary, does yield
significant changes in the flow solution. Figure 5.93 presents a comparison between time

history data for outer radii ranging from six units to eighteen units.
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Figure 5.93: Comparison of lift coefficient time history data for the wedge solution with

various outer radius dimensions.
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As the outer radius of the computational domain increases, we observe a
significant change in the Strouhal number for the flow. The Strouhal number ranges
from the initially computed value of 0.164 for a radius of six units down to a value of
0.110 for a radius of twenty-two units. Table 5.18 presents a summary of the computed
Strouhal number for all outer radii used in this study, and Figure 5.94 presents a plot of
the raw numerical data. Figure 5.94 demonstrates proper convergence of the solution to
the final Strouhal number of 0.110, which still compares reasonably well to the observed

value of 0.15 for a thin plate oriented perpendicular to the flow.

Table 5.18: Summary of computed Strouhal numbers for the wedge solution.

R St
6 0.164
10 0.138
14 0.121
18 0.111
22 0.110
027 5t
0.15 4
0.1 1
0.05
R
0 T T T )
0 5 10 15 20 25

Figure 5.94: Plot of Strouhal number versus outer radius of the computational domain

for the wedge solution.
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The results of this section demonstrate the sensitivity of some solutions to the size
of the computational domain. In the case of this problem, the vortices appear to generate
a small disturbance as they pass through the outer boundary. This disturbance propagates
up stream through the subsonic flow field and influences the vortex shedding frequency.
The effect of the disturbance on the solution is minimized by choosing a sufficiently large
computational domain. Hence, care should be taken when choosing the size of the

computational domain for low mach number flows.

5.2.5 80 Degree Delta Wing

Having demonstrated the capacity to model vortex dominated flow problems in
the previous section, this section investigates a relevant aerospace application known as
wing-rock. The wing-rock phenomenon is a self-induced limit cycle rolling oscillation,
which occurs for delta wings at high angles of attack. There has been considerable
experimental and computational research into the basic physics of the unsteady, vortical
flow that drives the wing-rock phenomenon.”*’*** These studies indicate that the wing-
rock phenomenon persists in all flow regimes from subsonic to supersonic and will
provide us with the necessary daté to validate the results obtained in this section.

For this study, we select a sharp-edged delta wing with a leading-edge sweep of
80°, a root chord equal to one unit, and a thickness equal to 0.01504 units. Figure 5.95
shows the cylindrical computational domain and surface triangulation generated for this
geometry, while Figure 5.96 shows a close-up of the surface triangulation on the delta

wing.

220



= surface #

c,=1

=1.76327

Figure 5.96: Surface triangulation for 80 degree delta wing.

The computational grid generated for this study consists of 461,575 elements and

84,448 nodes. Boundary conditions for the nine surfaces enclosing this domain are
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specified as follows: surfaces 1 through 5 are solid walls and surfaces 6 through 9 are far-
field boundaries. Furthermore, the sharp edges around the top-side of the delta wing are
specified as singular since the local surface normal is undefined along those edges.

Our analysis of the delta wing configuration begins with a steady flow solution
for a fixed angle of attack and various roll angles. Experimental results for a similar 80°
delta wing are available for subsonic flow and an angle of attack of 30° from Arena.”’
These experimental measurements serve as a baseline to validate our computational
results and verify that the grid is sufficiently refined before performing and unsteady
analysis. The flow conditions for the initial subsonic solutions are defined by a
freestream Mach number of 0.3, an angle of attack of 30° and roll angles ranging from 0°
to 70°. Figure 5.97 presents a summary of the relevant solver control parameters for
these solutions, and Table 5.19 presents a summary of the proper combination of solver
angle parameters, alpha and beta, required to achieve the roll angles, ¢, ranging from

0° to 70° for a fixed angle of attack of 30°.

gamma = 1.40d0,
mach = 0.30d0,
alpha = 30.0d0,
beta = 0.0do0,
refdim = 1.0d0,
cfl = 0.70d0,
diss = 1.0d0,
nstp = 10000,
ncyc = 3,

nout = 500,
idiss = 1,

isol = 0,

ipnt = 1,
iaero = .true.

Figure 5.97: Summary of solver control parameters for the steady delta wing solutions.
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Table 5.19: Summary of solver angle parameters for various roll angles with a constant

30° angle of attack.

[ alpha beta
0° 30.000000 0.000000
10° 29.498704 5.725105
20° 28.481238 | 11.170229
30° 25.658906 | 16.102114
40° 22.521012 | 20.360575
50° 18.747237 | 23.858655
60° 14.477512 | 26.565051
70° 9.846552 28.481238

Figure 5.98 presents a plot of the velocity vectors along a normal cut plane at the
x/e = 0.60 chord location for roll angles 0° and 40°. These plots are used to visualize the

vortex structure that devolps over the wing.

Figure 5.98: Plot of velocity vectors along a normal cut plane at x/c = 0.60 for the Mach

0.30 delta wing.
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The approximate size and location of the primary vortices is consistent with the
experimental results published by Arena'’, as well as the computational results from
Gomier.”” A complete set of plots comparing the computed surface pressure with the
experimental measurements is also provided in Appendix E for all roll angles. These
plots demonstrate reasonable agreement between the computed and experimental results
for roll angles up to about 40°. The computed results capture the primary flow features,
with a slightly underpredicted pressure peak. For increasing roll angles, we see that the
computational model begins to diverge from the low Reynolds number experimental
results. This is due to the development of secondary and tertiary vortices, which the
inviscid flow solver is not capable of reproducing. Despite these differences, the
similarity of the primary flow features lends credibility to these steady-state
computational results.

Given that wing-rock behavior is expected to exist for high mach number flows as
well, we prefer to use a supersonic mach number for our unsteady solution in order to
take advantage of the better convergence characteristics of such a solution. Lee and
Batina®® have analyzed a similar 75° delta wing in Mach 1.2 flow with a conical euler
solution and demonstrated the existence of wing rock. Figure 5.99 presents a plot of the
velocity vectors for Mach 1.20 flow along a normal cut plane at the x/c = 0.60 chord
location for roll angles 0° and 40° at the same 30° angle of attack. Additionally,
Appendix E contains a set of steady surface pressure plots for Mach 1.20 flow at various
roll angles. Unfortunately, there are no experimental results available for comparison

with these solutions.
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Figure 5.99: Plot of velocity vectors along a normal cut plane at x/c = 0.60 for the Mach

1.20 delta wing at a 30° angle of attack.

The unsteady computational results of Lee and Batina®® indicate the existence of
limit cycle wing-rock motion for a 75° delta wing in Mach 1.20 flow at an angle of attack
of 30°. In contrast, their results predict that the same delta wing held at an angle of attack
of 10° in Mach 1.20 flow will exhibit a stable free-to-roll response. The primary goal
here will be to validate this physical phenomenon using the larger 80° delta wing
geometry generated for this study. Figure 5.100 and Figure 5.101 present a summary of
the relevant solver control parameters and dynamics inputs for the unsteady free-to-roll
solutions. Dimensional parameters where taken from the results of Lee and Batina and
scaled to match the physical dimensions of the delta wing generated for this study. The
initial conditions for the first solution are for a delta wing at a 30° pitch and 40° roll angle

with the roll axis free to rotate.
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dt =
gamma =
mach =
alpha =
beta =
refdim =
cfl =
diss =
nstp =
ncyc =
nout =
idiss =
isol =
idsol =
ipnt =
istrt =
iaero =
ielast =
idynm =
ainf =
rhoinf =

~

2
2
1,
.true.,
.true.,
.false.,
.true.,
312.04d0,
0.526d0

Figure 5.100: Summary of solver control parameters for the unsteady free to roll delta

wing solutions.

$ Position vector to origin of non-inertial frame (rx, ry, rz)
0.0d0, 0.0d0, 0.0d0
$ Mass matrix for non-inertial frame (6 x 6)
1.0d0 0.0do 0.0d0 0.0do0 0.0do 0.0do
0.0do0 1.0d0 0.0do 0.0do 0.0do 0.0do
0.0do 0.0d40 1.0do 0.0do0 0.0do 0.0do
0.0do0 0.0d40 0.0d0 0.00521140 0.0d0 0.0do
0.0do 0.0d0 0.0do 0.0do- 1.0d40 0.0do
0.0do 0.0do 0.0d0 0.0do 0.0do 1.0d0
$ Damping matrix for non-inertial frame (6 x 6)
1.0do 0.0d0 0.0do 0.0do 0.0do 0.0do
0.0d0 1.0d0 0.0do 0.0do 0.0do 0.0do
0.0do 0.0do 1.0d40 0.0d0 0.0do0 0.0d0
0.0do 0.0d40 0.040. - 0.0do 0.0do 0.0do
0.0do0 0.0d0 0.0d0 0.0do 1.0d0 0.0d0
0.0do 0.0do0 0.0do0 0.0do 0.0do 1.040
$ Stiffness matrix for non-inertial frame (6 x 6)
1.0do0 0.0do 0.0d0 0.0do 0.0do 0.0d0
0.0do 1.0do 0.0do0 0.0do 0.0do 0.0do
0.0do 0.0d0 1.0d0 0.0d0 0.0do 0.0d0
0.0do 0.0d0 0.0do 0.0d0 0.0do0 0.0d0
0.0do 0.0d40 0.0do 0.0do 1.0do0 0.0do
0.0d0 0.040 0.0d0 0.0do 0.0do 1.0d40
$ IC's for non-inertial frame (6 positions, 6 rates, 6 accels
0.0d40, 0.0d40, 0.0d0, 40.0d40, 30.0d0, 0.0d0
0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0do
0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0do
$ IBXD for non-inertial frame (6)
1, 1, 1, 0, 1, 1

)

Figure 5.101: Dynamics input file for the unsteady free to roll delta wing solution.
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The time step for this solution was chosen after some experimentation to find the
point at which the sensitivity of the roll dynamics to time step was effectively eliminated.
As in previous sections, this was accomplished by comparing time history data from the
zero-order and second-order dynamics integrators for increasingly smaller time steps
until the two solutions approximately matched. Figure 5.102 presents two plots of roll
tiﬁe history data for Mach 1.20 delta wing using initial roll angles of 40° and 10°. These
two plots show the solution converging to the same limit cycle wing-rock motion with an

amplitude of 23° and dimensionless frequency of 0.095.

6010 o= 40° 60 10 go=10°
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Figure 5.102: Roll time history data for the Mach 1.20 delta wing at a 30° angle of

attack.

For wing-rock cases, it is typically more enlightening to study a plot of roll
moment versus roll angle such as the plot presented in Figure 5.103. This plot illustrates
the driving physics behind the delta-wing’s limit cycle rolling motion. Clockwise
oriented loops in the plot produce an unstable response, while counter-clockwise loops
have a stabilizing effect on the roll response. For an initial roll angle of 40°, the area of
counter-clockwise loops at the extreme values of roll angle is greater than the clockwise

loop at the center of the plot for smaller roll angles. This causes the amplitude of the
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response to decay until it eventually reaches an equilibrium point where the unstable and

stable loops balance each other.

Figure 5.103: Plot of roll moment coefficient versus roll angle for the Mach 1.20 delta

wing at a 30° angle of attack.

The last set of unsteady delta wing solutions is for a 10° angle of attack. In this
case, the same basic set of solver parameters is reused with different initial conditions.
Figure 5.104 presents a plot of roll time history data for this solution using an initial roll
angle of 40°, while Figure 5.105 presents the plot of roll moment versus roll angle from
the same solution. As expected this solution exhibits a stable response that eventually
converges to a neutral roll angle. In this case, the plot of roll moment versus roll angle
consists entirely of counter-clockwise, stabilizing loops, which become successively

smaller with time.
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Figure 5.104: Roll time history data for the Mach 1.20 delta wing at a 10° angle of

attack.
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Figure 5.105: Plot of roll moment coefficient versus roll angle for the Mach 1.20 delta

wing at a 10° angle of attack.

The results of this section show reasonable qualitative agreement with the
expected dynamic properties of a rolling delta wing. Further consideration should be
given to this problem to determine its sensitivity to grid resolution and overall size of the
computational domain. Some time was spent optimizing the grid for the initial steady

solutions, but only time step sensitivity was considered for the unsteady solutions.
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5.2.6 Hovering Rotor

Our final validation problem investigates the unsteady dynamics of a hovering
rotor. This type of flow problem is consider to be suitable for Euler codes because the
essential physics are expected to be inviscid and separation does not typically occur.”
The geometry for this problem is the two-bladed rotor used in the experiments of
Caradonna and Tung.®® Since the publication of their original experimental results, this
rotor has been the basis of numerous computational simulations ranging from panel
methods®” to fully three-dimensional CFD solutions.”** One might even consider this to
be the standard validation case for a non-inertial CFD solution considering the wealth of
computational data that is available for it.

The rotor consists of two cantilever-mounted, rectangular blades with NACA
0012 cross-sections. The blades are untwisted and untapered with an aspect ratio of six
and a precone of one-half degree. Figure 5.106 shows the cylindrical computational
domain and surface triangulation generated for this geometry, while Figure 5.107 shows a
close-up of the surface triangulation for the rotor. The total diameter of the rotor disk is
7.5 feet, the chord of the blades is 0.625 feet, and and the cut-out radius at the center of
the rotor is equal to one chord. The rotor is positioned in the computational domain such
that two-thirds of the volume is below the plane of the rotor for capturing the unsteady

wake that will develop in that region.
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Figure 5.106: Layout of computational domain for hovering rotor.

Figure 5.107: Close-up of surface grid for hovering rotor.

The computational grids generated for this study consist of approximately 1.5
million elements. The highest density of elements are in the region below the plane of
the rotor for accurate representation of the wake. Initial tests with fewer elements

showed that the wake would not be accurately modeled, and the problem behaved more
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like a simple rectangular wing in a non-uniform, linear velocity field. Boundary
conditions for the fourteen surfaces enclosing this domain are specified as follows:
surfaces 1 through 10 are solid walls and surfaces 11 through 14 are far-field boundaries.
Furthermore, the sharp edges at the two trailing edges of the rotor are specified as
singular since the local surface normal is undefined along those edges.

The geometry for the rotor is defined such that the collective pitch angle for the
rotor blades can be easily modified prior to generating the computational grid by
adjusting a single parameter in a spreadsheet. Our first solution will be for a hover case
with a tip Mach number of 0.520 and a collective pitch angle of two degrees. Figure

5.108 and Figure 5.109 present a summary of the solver control parameters and dynamics

input file used for this solution.

dt = 0.04040,
gamma = 1.40d40,
mach = 0.5204d0,
alpha = 0.0d0,
beta = 0.0do,
refdim = 0.6254d0,
cfl = 0.60d0,
diss = 0.90do,
nstp = 10000,
ncyc = 16,

nout = 50,
idiss =1,

isol = 2,

ipnt =1,

istrt = .false.,
iaero = .true.,
ielast = .false.,
idynm = .true.,
ifree = .false.,
ainf = 1.0d0

Figure 5.108: Summary of solver control parameters for the hovering rotor with tip

Mach 0.520.
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$ Position vector to origin of non-inertial frame (rx, ry, rz)
0.040, 0.0d0, 0.0d0
$ Mass matrix for non-inertial frame (6 x 6)
1.0d0 0.0do 0.040 0.0d0 0.0do 0.0do
0.0do 1.0do 0.0do 0.0do 0.0d0 0.0do
0.0do 0.0do 1.0do 0.0do 0.0do 0.0do
0.0do 0.0do 0.0do 1.0do 0.0do 0.0do
0.0do 0.0do0 0.0do 0.0do 1.0do 0.0do
0.0d0 0.0d0 0.0d40 0.0do 0.0do 1.0d0
$ Damping matrix for non-inertial frame (6 x 6)
1.0do 0.0do 0.0d0 0.0do 0.0d0 0.0d0
0.0d0 1.0do 0.0do 0.0d0 0.0d0 0.0do
0.0d0 0.0do 1.0d0 0.0d0 0.0do0 0.0do
0.0do 0.0d0 0.0do 1.0d0 0.0do 0.0do
0.0d0 0.0do 0.0do 0.0do 1.0d0 0.0d0
0.0do0 0.0do 0.0do 0.0do 0.0do 1.0d0
$ Stiffness matrix for non-inertial frame (6 x 6)
1.0d0 0.0do 0.0do 0.0d0 0.0do 0.0do
0.0do0 1.0do 0.0do 0.0d0 0.0do 0.0do
0.0do 0.0d0 1.0d0 0.0do0 0.0do 0.0do0
0.0d0 0.0do 0.0do 1.0d0 0.0do 0.0do
0.0do 0.0do 0.0do 0.0d0 1.0d40 0.0do
0.0do0 0.0do 0.0do 0.0do 0.0do 1.0do
$ IC's for non-inertial frame (6 positions, 6 rates, 6 accels )
0.0d0, 0.0do, 0.0do, 0.0do, 0.0d0, 0.0d0
0.0do, 0.0d0, 0.0do, 0.0do, 0.0d0, 7.94501
0.0d0, 0.0do, 0.0d0, 0.0dgo, 0.0d0, 0.0d0
$ IBXD for non-inertial frame (6)
1, 1, 1, 1, 1, 2

Figure 5.109: Dynamics input file for the hovering rotor with tip Mach 0.520.

In this case, we have disabled the usual free-stream velocity with ifree =
.false., since the velocity field will be generated exclusively by spinning the
computational domain. The required tip Mach number is achieved by specifying mach
= 0.520, and then computing a rotational velocity that will produce a dimensionless
velocity of one unit at the tip of the rotor blade. The yaw rate that satisfies this condition
1s 7.94501 degrees per second, which equates to a dimensionless rate of 0.16667. Given
this rate of rotation, the dimensionless time step chosen here equates to a resolution of
approximately 942 global steps for each complete revolution of the rotor blades.

Figure 5.110 presents two plots of z-force time history data for this solution. The
first plot shows a close-up of the convergence characteristics exhibited by this problem.

After one-half revolution, we see a relatively large jump in the force time history data,
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which coincides with the rotor blades’ first encounter with the wake generated by the
opposite blade. The discrete jumps in the time history data continue every half revolution
until final convergence is achieved after approximately eight revolutions. Figure 5.111
shows the corresponding change in surface pressure distribution at the 0.68 span location

for three points along the convergence profile.
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Figure 5.110: Plots of z-force time history for the hovering rotor with a 2° collective

pitch angle and a tip Mach number of 0.520.
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Figure 5.111: Comparison of surface pressure distributions after various revolutions for a

hovering rotor with a 2° collective pitch and tip Mach number of 0.520.
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The results of Figure 5.110 and Figure 5.111 illustrate the importance of
allocating sufficient grid resolution to resolve the rotor wake. Preliminary tests with
fewer elements produced convergence bproﬁles that behaved more like the impulsively
accelerated airfoil previously investigated in Section 5.1.7. Unfortunately, the grid
resolution required for this problem has quickly reached the effective limits of our
computer resources. The current problem consumes approximately 300 Meg of RAM
and requires 27 hours of CPU time on a 2.4 GHz Pentium 4 to complete one revolution.
Further refinement of the grid is impractical at this time, however the results of Figure

5.112 show reasonable agreement with the experimental data for all span stations.
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Figure 5.112: Plot of surface pressure distribution for a hovering rotor with a 2°

collective pitch and tip Mach number of 0.520 after eight revolutions.
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Our next solution will be for a hover case with a collective pitch angle of eight
degrees and tip Mach number of 0.439, which corresponds to yaw rate of 6.70743
degrees per second. Figure 5.113 presents two plots of z-force time history data for this
solution, and Figure 5.114 shows the corresponding change in surface pressure
distribution at the 0.68 span location for three points along the convergence profile. The
convergence trend is similar to the previous solution, except that final convergence is
achieved in fewer revolutions. Figure 5.115 presents a comparison of the converged set
of computed pressure distributions with the experimental values at four span stations.
Once again we have reasonable agreement between the computed and experimental
pressure distributions for all span stations. We expect that further refinement of the grid
would enhance the agreement with experiment for both the two-degree and eight-degree
solutions. Ideally, a grid similar to the fine grid used for the NACA 0012 verification
solution of Section 5.1.4 would be used for this problem. However, this would require an
estimated 24 million elements, which is obviously impractical at this time.

47 C, 41Cy

N P
wn e e L e e LD

1
I
!
1
i
!
I
1
1
|
I
)
i
i
|
I
T
i
I
1
H
H
|
T

U
RO o — — = mm o o o m o e e

|
!
1
H
1
(
1
1
i
1
i
i
i
!
)
1
i
i
i
1
1
T
'
T

revolutions revolutions

Figure 5.113: Plots of z-force time history for the hovering rotor with an 8° collective

pitch angle and a tip Mach number of 0.439.
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Figure 5.114: Comparison of surface pressure distributions after various revolutions for a

hovering rotor with an 8° collective pitch and tip Mach number of 0.439.
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Figure 5.115: Plot of surface pressure distribution for a hovering rotor with an 8°

collective pitch and tip Mach number of 0.439 after five revolutions.
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Our next test with this model will use the transpiration boundary condition to
simulate the previous two solutions using a baseline grid with a zero degree collective
pitch. The required collective pitch angle for each solution is applied through an user
generated mode shape that represents a uniform twisting of each blade to the proper
orientation. We then perform an elastic solution with the structure clamped at an initial
generalized displacement of one unit. Figure 5.116 presents a comparison of the
computed surface pressure coefficient for a two degree collective pitch using
transpiration to simulate the collective pitch angle and the previous solution where the

blades were actually twisted.
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Figure 5.116: Comparison of computed surface pressure distribution for a hovering rotor

using an actual and simulated 2° collective pitch angle for a tip Mach number of 0.520.
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The results of Figure 5.116 are for the fully converged case after approximately
eight revolutions of the rotor blade. Figure 5.117 presents a similar comparison for an
eight degree collective pitch after approximately one revolution of the rotor blades. Even
for this relatively large pitch angle, the transpiration solution is in reasonable agreement
with the actual twist case. The primary comparison for both of these solutions is between
the two sets of computational results. We are interested in the extent to which the
transpiration boundary condition is capable of simulating an actual deformation of the

surface grid. Hence, the experimental results have been neglected from these plots.
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Figure 5.117: Comparison of computed surface pressure distribution for a hovering rotor

using an actual and simulated 8° collective pitch angle for a tip Mach number of 0.439.
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CHAPTER 6

6. CONCLUSIONS

The general goal of this research was to develop an efficient finite element
methodology for non-inertial unsteady CFD solutions that would serve as the foundation
for aeroservoelastic analysis of a super-maneuvering or spinning structure. To achieve
this goal, the STARS ASE analysis routine was re-formulated based on a space-time
finite element formulation for the compressible Euler equations expressed in non-inertial
coordinates. The new algorithm takes advantage of the dissipation model and boundary
conditions from the original STARS unsteady CFD algorithm, modified to account for a
non-inertial coordinate system. This includes a modified transpiration boundary
condition for simulating elastic deformations of the surface grid in a rotating frame of
reference.

Additional enhancements in the new solver include improved structural
integration techniques, increased stability for small time steps, and a general
improvement in computational efficiency. We conclude this research effort with a
general discussion of results to summarize experiences gained from analyzing the
numerous problems presented in Chapter 5. In addition, the final section of this chapter

outlines the remaining challenges for future work.
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6.1 Discussion of Results

The verification and validation of a three-dimensional, unsteady CFD algorithm is
never totally finished. Rather it is an on going process where we eventually achieve a
certain level of confidence in the accuracy and validity of the algorithm, and that level of
confidence continues to rise asymptotically as more verification and validation work is
completed successfully. When we consider the number of componerits, parameters and
boundary conditions, as well as the wide range of flow regimes that must be tested,
verification and validation of the algorithm for all possible solutions is an imposing task.
However, the verification and validation results presented in Chapter 5 make a
compelling case for the accuracy and validity of the numerical algorithm developed here.

The verification cases analyzed here illustrate the performance and applicability
of the algorithm for a wide range of flow regimes and a variety of different geometries.
These solutions were for carefully controlled problems where the exact theoretical
solution was known beforehand. Unfortunately, exact theoretical solutions for
complicated three-dimensional, unsteady flow problems are rare, so most of our
verifications problems were essentially two-dimensional solutions with a trivial third
dimension used only to define the thickness of the computational domain. Regardless,
these verification solutions demonstrate the accuracy of the implemented algorithm under
carefully executed grid convergence studies as well as time step refinement studies for
unsteady solutions. In all cases, convergence to the exact theoretical solution has been
demonstrated with the exception of some difficulties resolving shocks at hypersonic
Mach numbers, which continues to remain beyond of the realistic limit of the current

algorithm.
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The dissipation model of the current algorithm seems best suited for transonic and
subsonic applications, although the rate of convergence is relatively slow when using a
compressible algorithm to analyze subsonic flow fields. Subsonic solutions also seem to
require a higher grid density than comparable transonic solutions to accurately resolve
relevant flow gradients. However, subsonic verification solutions do demonstrate
superior agreement between computed and theoretical results given sufficient refinement
of the computational grid.

The validation solutions analyzed here demonstrate the applicability of the current
algorithm for more complicated three-dimensional steady and unsteady problems.
Difficulties arise in the validation of aeroelastic solutions where modeling errors for
complicated fluid-structure interactions accumulate into the final result. Significant
tuning of aeroelastic parameters within the level of uncertainty is typically necessary to
achieve even a reasonable agreement with experiment. As a result, obtaining high quality
experimental results that include a proper uncertainty analysis will continue to be one of

the primary challenges in validating aeroelastic CFD algorithms.

6.2 Future Challenges

Brute force unsteady CFD solutions for complicated three-dimensional aeroelastic
problems, such as those presented in Section 5.2, will continue to be impractical without
significant reduction of the overall CPU requirements for such a solution. It is estimated
that the verification and validation problems presented here required well over 12,000
CPU hours to generate. This includes failed solutions used to determine grid resolution

and unsteady time step requirements for each problem, as well as experimentation with
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the other solver control parameters that are used to tune the convergence and accuracy of
the solution. Obviously, the main burden associated with time-marched aeroelastic CFD
solutions is the processing time required to run multiple convergence and tuning solutions
as well as multiple unsteady solutions for interpolating the instability boundary.

Although processing power has been increasing at an exponential rafe since the
introduction of the personal computer 25 years ago, the increased power has simply
increased the size of the problems we are trying to solve. It is expected that we will
continue to use up increases in processor speeds by increasing the grid density of our
current problems, since we are constantly striving for more accurate solutions. The rotor
model of Section 5.2.6 is a perfect example of a problem where we could easily add
several million more elements to improve the wake resolution and overall accuracy of the
solution. Hence, it will not be possible to simply wait for processor speeds to catch-up
with the size of our current problems. With this in mind, we conclude this research effort
with suggestions for improving the performance and accuracy of the solution scheme as
well as extending its current capabilities.

o Parallel Processing: In the near future, the most significant advances in
processing power will likely be gained fro.m parallel processing. This trend is
already becoming apparent in the interactive entertainment industry, where the
next generation of Sony’s consumer hardware may be based on the new “cell
microprocessor” technology being developed jointly by Sony, IBM and Toshiba.
This would mark the first intrusion of large scale parallel processing into the
mainstream consumer market. Of course, even the most basic personal computer

benefits from the performance savings of splitting some processing between the
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graphics processor and CPU. In order to benefit from the trend toward parallel
processing, our CFD algorithm will need to be written to take advantage of the
extra processors by splitting the computational work into multiple tasks or
threads. This area of research has the potential to provide the most significant
reduction in overall processing time for a single CFD solution.

Convergence Requirements: Iterative convergence of the unsteady solution for
each time step is currently controlled by two constant control parameters: c£1,
which affects the stability and rate of convergence, and ncycl, which simply
specifies the number of iterative cycles for each global step. The choice of values
for these two constants has a significant impact on the accuracy and processing
requirements for an unsteady solution. Using fewer iterative cycles significantly
reduces the cumulative processing time for an unsteady solution at the expense of
degrading the overall accuracy of the solution, and the opposite is true when using
more iterative cycles. However, there is a point of diminishing return, where
extra iterative cycles will require extra processing time without significantly
improving the overall accuracy of the solution. With the current implementation,
the only precise method for choosing an acceptable value for the iterative
convergence parameters is to run multiple solutions with different parameters and
compare results. The solution residuals output by the solver are not a sufficient
indicator of the level of convergence because it is unclear how small the residuals
must be for the solution to be adequately converged. Future efforts should focus
on determining a generic convergence criteria using a properly scaled set of

solution residuals that is an accurate indicator of how much the solution is
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actually changing for each iterative cycle. Given a proper convergence criteria,
the number of iterative cycles could then be variable, such that the minimum
number of iterative cycles are used for each global step, and the solution runs at
the optimum accuracy to performance ratio.

Time Step Requirements: Even if the unsteady CFD solution is properly
converged for each global step, we have observed that the accuracy of time-
marched aeroelastic solutions is dependent on the sensitivity of the structural
integration to the global time step. This often means that we must use smaller
global time steps than would normally be necessary for a time-accurate unsteady
CFD solution with a rigid structure. It also means that several solutions must be
run to determine the optimum time step for each problem. Future efforts should
focus on developing a general technique for identifying the optimum time step for
each problem without requiring multiple unsteady CFD solutions, as well as
developing improved numerical algorithms for increasing the size of the
minimum time step. It should be possible to use a simplified aerodynamic model
along with the actual structural parameters fof each problem to estimate the
expected integration error and identify the largest allowable time step.

Grid Generation: The accuracy of oﬁr solutions is oftéh limited by our ability to
generate high quality computational grids that do not exceed the available
computer resources. It is necessary to find a balance between adding more
elements to gain accuracy and removing more elements to save processing time.
Furthermore, the processing time required to generate these grids, which was as

high as eight hours for the largest problems evaluated here, has not been included
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in the estimated processing cost provided at the beginning of this section. The
current set of grid generation tools used in conjunction with STARS are out dated
and should be updated or replaced with newer tools that use faster grid generation
algorithms and use interfaces that allow better control over the local concentration
of elements. The generic data format used by the new CFD algorithm was
designed to allow easier conversion of models from the data format used by any
readily available grid generation tool. Of course, we will always be limited by
our own ability to accurately model the complex features of a three-dimensional
aircraft, which is why most research problems are restricted to simple wing
geometries.

Improved Dissipation Model: As discussed in Section 3.6, some sort of artificial
stabilization is a necessity for any discrete solution to the fluid dynamics
equations of motion. Despite the general agreement of the solutions presented
here with theoretical and experimental results, the artificial dissipation model
adopted for this research effort is a source of error in our weighted residual
formulation because the exact solution does not satisfy the algorithmic residual. %
Future research into improved stabilization methods should .focus on identifying
residual based dissiﬁation models that are suitable for large-scale, unsteady CFD
solutions. Residual based methods maintain the consistency of the finite element
formulation and would eliminate a source of error in the algorithm.

Rigid-Body Dynamics: A fully coupled rigid-body dynamics solver was not
implemented for this work due to the need for further research into optimized

non-inertial solutions for flexible structures. The non-inertial form of the

246



transpiration boundary condition implemented here should continue to be
applicable to such a solution. The primary challenge will be updating the center
of gravity for the structure, as well as the origin of the rotating coordinate system,
if necessary.

Aerodynamic Modeling: One of the primary limitations of aeroelastic CFD
solutions is the processing time necessary to complete not just one unsteady CFD
solution for a complicated three-dimensional problem, but multiple solutions at
various dynamic pressures.  Aerodynamic modeling techniques used in
conjunctions with unsteady CFD results are beginning to make this limitation
essentially disappear. The primary challenge will be to extend such a technique to
the current non-inertial formulation for future research into aeroelastic solutions
for spinning structures. Even if non-inertial aeroelastic solutions are neglected,
such a technique could be valuable for extracting stability derivatives from a set

of unsteady CFD time history data for a rigid-body non-inertial solution.
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APPENDIX A: Summary of 2-D File Formats

This Appendix provides a summary of the input/output file formats used by the

two-dimensional CFD solver developed for this research.

The following input files are defined:

case.g2d (required) contains the geometry data structures representing the
computational mesh as required by the flow solver. (ASCII)

case.con (required) contains values for the solver control parameters and flow
conditions. (ASCII)

case.unk (optional) contains the nodal values of the primitive flow variables
(density, velocity, and pressure) for each node of the computational mesh to be
used as the initial conditions for the flow solution. (Binary)

case.dyn (optional) contains the non-inertial matrices and initial conditions as
required for a dynamic solution. (ASCII)

case .vec (optional) contains the elastic mode matrices, initial conditions, and
vectors for the boundary surfaces as required for an aeroelastic solution. (ASCII)

The following output files are defined:

case.unl contains the nodal values of the primitive flow variables (density,
velocity, and pressure) for each node of the computational mesh. (Binary)

case.rsd contains a history of the solution residuals for the conservation
variables (density, momentum, and total energy). (ASCII)

case.lds contains a history of the dimensionless aerodynamic forces acting on
the solid walls of the CFD geometry. (ASCII)

xd.dat contains a history of the non- inertial displacements, velocities, and
accelerations for a dynamic solution. (ASCII)

xn .dat contains a history of the generalized displacements and velocities for an
unsteady, aeroelastic solution. (ASCII)
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Geometry Input File (case .g2d)

Basic File Format Definition of Terms
Line of Text nnd: (int) number of nodes
nel: (int) number of elements
nnd nel nsg nbe nbp nwl nsd | pgg: (int) number of segments

nbe: (int) number of boundary elements
nbp: (int) number of boundary points
nwl: (int) number of wall nodes

nsd: (int) number of singular nodes

Line of Text
( LBE(i), i=1,6 )

Line of Text .
LBE (1) : (int) boundary element

COOR(i,1) COOR(i,2) starting/stopping indexes for three BC types

COOR (i, 1) : (real) x-coordinate for node i

Line of Text COOR (1, 2) : (real) y-coordinate for node i
IELM(i,1) IELM(i,2) IELM(i,3) IELM(1i,1) : (int) node 1 for element i
(i =1,.,nel ) | IELM(i,2) : (int) node 2 for element i

IELM(1i, 3) : (int) node 3 for element ;
Line of Text
ISEG(i,1) : (int) node 1 for segment i
ISEG(i,1) TISEG(L,2) ISEG(i,2) : (int) node 2 for segment i

(i=1,..,ns9 )
IBEL(i,1) : (int) node 1 for boundary elem. i
IBEL (i, 2) : (int) node 2 for boundary elem. i
IBEL (i, 3) : (int) boundary curve containing
boundary element i

Line of Text

IBEL(i,1) IBEL (i,2)
(i

]
Y
o]
o
(1]

Comments

e This is a plain text (ASCII) file.

e Nodal data is sorted such that the first nwl nodes are defined as solid wall nodes.
Out of the first nwl nodes, the last nsd nodes are defined as singular nodes.

¢ The nodal coordinates in this file are treated as dimensional values and are non-
dimensionalized using the reference dimension specified in the solver control file.

o The element connectivity data must define elements that are oriented clockwise.

¢ Boundary element data is sorted based on the starting/stopping indexes for the
three BC types, i.e. boundary elements LBE (1) through LBE (2) are solid wall
elements, LBE(3) through LBE(4) are symmetry elements, and LBE(5)
through LBE (6) are far-field elements.

e The program makeg2d is used to convert a standard STARS surface triangulation
file and modified boundary conditions file into an appropriately sorted two-
dimensional geometry file.
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Sample File

$ nnd, nel, nsg, nbe,
8 6 13 8
$ LBE(6)
1 2 3 2
$ Nodal coordinates
~.100000E+01 -.100000E+01
0.100000E+01 -.100000E+01
0.000000E+00 -.100000E+01
0.100000E+01 0.100000E+01
~.100000E+01 0.100000E+01
0.100000E+01 0.000000E+00
0.000000E+00 0.100000E+01
-.100000E+01 0.000000E+0O
$ Element connectivity
1 3 8
3 2 6
5 8 7
6 4 7
8 3 6
6 7 8
$ Segment connectivity
1 3
1 8
2 3
2 6
3 8
3 6
4 6
4 7
5 8
5 7
6 7
6 8
7 8
$ Boundary edge data
1 3
3 2
2 6
6 4
4 7
7 5
5 8
8 1

nbp,
8

nwl,
3
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Solver Control Input File (case . con)

Basic File Format Definition of Terms
&control dt : (real) dimensionless global time step
dt = 0.1do, gamma : (real) ratio of specific heats
gamma = 1.440, diss: (real) dissipation factor or constant
diISLS = J(S : ggg ' cfl: (real) local time step stability factor
c = 0. .
mach: (real) free-stream mach number
r:?;ga : 8 : ggg ! alpha: (real) free-stream angle of attack
refdim -1 0d0: refdim: (real) reference dimension
nstp = 100, nstp: (int) total solution steps
nout = 50, nout : (int) output frequency, steps/output
neyc = 3, ncyc: (int) iterative cycles per solution step
isol = 0, isol: (int) CFD solution type
idiss = 0, idiss: (int) dissipation type
ipnt =1, ipnt : (int) number of points for numerical
integration of flux/source vectors
istrt = .false.,
iaero = .false., istrt: (logical) restart flag
idynm = .false., iaero: (logical) aerodynamic forces flag
;;izzt T iii:e " idynm: (logical) dynamic/non-inertial flag
i force - falsé o ielast: (logical) elastic flag
ifree: (logical) free-stream velocity flag
nr =0, iforce: (logical) external force flag
ainf = 1.0do,
rhoinf = 1.0do, nr: (int) number of elastic modes
/ ainf: (real) dimensional free-stream sonic speed
rhoinf : (real) dimensional free-stream density

Comments

e This is a plain text (ASCII) file formatted as a Fortran namelist.

o The default values for each parameter are given in the basic file format above.

e The global time step is only used for unsteady solutions.

e Appropriate values for the dissipation factor are in the range 0.0 < diss < 2.0.
Some dissipation is required to stabilize the solution, but too much dissipation
will corrupt the solution and possibly be a destabilizing influence.

e The local time step stability factor is a safety factor used to compute local time
steps for each solution step. For steady solutions, a stability factor of 0.8 is
typically acceptable for most problems. For unsteady solutions, the stability
factor is typically in the range 0.3 < c£1 <0.8.

e The values of refdim, mach, ainf, and rhoinf are used to non-
dimensionalize all values read in by the flow solver.

e The free-stream angle of attack is ignored for dynamic (non-inertial) problems.
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The number of iterative cycles should be set to 3 for steady solutions. For
unsteady solutions, use a sufficient number of cycles to allow for an appropriate
level of convergence at each step.
There are four available CFD solution types defined as follows:

o 1isol =0 is a steady solution (not time accurate)

o 1isol =1 is a first-order unsteady solution

o 1sol =2 is asecond-order unsteady solution

o 1isol =3 is asupersonic piston perturbation solution
There are two available dissipation types defined as follows:

o 1idiss =0 isa low order dissipation

o idiss =1 is a high order dissipation with gradient limiters
The low-order dissipation is typically overly diffuse and should be used in
conjunction with low values of the dissipation factor. Low-order dissipation
works best for problems without strong vortices and for supersonic/hypersonic
flows.
The high-order dissipation is more CPU intensive than the low-order dissipation
and less stable. Larger values for the dissipation factor are typically required for
stabilization. The high-order dissipation works best for subsonic to transonic
flows with strong gradients or vortices. Rotating domains will typically require
high-order dissipation to resolve the circulating pattern of the relative flow
velocities.
There are two types of numerical integration defined as follows:

o 1ipnt =1 uses a one-point gauss quadrature

o 1ipnt =3 uses a three-point symmetric gauss quadrature
When the restart flag is set to . true., the solver will read one set of solution
unknowns from the case.unk file and apply this set of unknowns as the initial
conditions for the new iterative solution.
A restarted solution assumes that the time gradient of the initial state is zero, i.e.
the solution stored in the case.unk file is a converged, steady state solution.
This has a significant impact on the second-order unsteady solution since it relies
on two sets of solution unknowns for advancement to the next time step, i.e. a
second-order unsteady solution should not be restarted from the last time step of a
similar unsteady solution that was stopped because both sets of unsteady data
from the last solution step are not available for accurate evaluation of the time
gradients in the flow. .
If the free-stream velocity flag is set to . false., the free-stream velocity is set
to zero, and relative flow velocities must be generated through dynamic rotation
or translation of the non-inertial coordinate system.
If the external force flag is set to . true., the solver will read the user defined
external force vector for each global time step from the input file case. frc. If
the solver reaches the end of the input file before completing the solution, the last
force vector in the file carries over to each of the remaining global time steps if it
was non-zero.
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Solution Unknowns Input/Output File (case .un*)

Basic File Format Definition of Terms
nnd gam xmi alp ref ¢t nnd: (int) number of nodes
gam: (real) ratio of specific heats
( (UN(i,3), i=1,nnd ), j=1,5 ) xmi: (real) free stream mach number

alp: (real) free-stream angle of attack
ref : (real) reference dimension
t : (real) dimensionless time

UN (i, 1) : (real) density for node i
UN (1, 2) : (real) x-velocity for node i
UN (1, 3) : (real) y-velocity for node i
UN (i, 4) : (real) pressure for node i
UN (i, 5) : (real) enthalpy for node i

Comments

¢ This is an unformatted (binary) file.

¢ The solution unknowns stored in this file are dimensionless quantities.

e For dynamic (non-inertial) problems, the solution unknowns stored in this file are
relative quantities referenced to the body-fixed coordinate system.
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Dynamic Mesh Input File (case .dyn)

Basic File Format

Line of Text
( RO(1i), i=1,2 )

Line of Text

i=1,3 )

( ( RM1(i,3), j=1,3 ),

Line of Text

( ( RC1(i,3), j=1,3 ), i=1,3 )
Line of Text

( ( RK1(i,3j), j=1,3 ), i=1,3 )
Line of Text

X, ¥, 4, VX, vy, vq, ax, ay, aq
Line of Text

( IBXD(1), i=1,3 )

Comments
This is a plain text (ASCII) file.

All values entered into this file should be dimensional.

Definition of Terms

RO (1) : (real) x-coordinate for origin of rotation
RO (2) : (real) y-coordinate for origin of rotation

RM1 (i, 7) : (real) dimensional mass matrix
RC1(1i,7) : (real) dimensional damping matrix
RK1 (1, 3) - (real) dimensional stiffness matrix

x : (real) initial x-position of coord. system

y: (real) initial y-position of coord. system

q: (real) initial orientation of coord. system

vx: (real) initial x-velocity of coord. system

vy : (real) initial y-velocity of coord. system

vq: (real) initial angular velocity of coord. system
ax: (real) initial x-acceleration of coord. system
ay: (real) initial y-acceleration of coord. system
aq: (real) initial angular accel. of coord. system

IBXD (1) : (int) dynamics flag for x-DOF
IBXD(2) : (int) dynamics flag for y-DOF
IBXD (3) : (int) dynamics flag for rotational DOF

The solver will

automatically non-dimensionalize the values using the reference conditions
specified in the solver control file.
The vector defining the origin of rotation is subtracted directly from the nodal
coordinates defined in the geometry input file after it is non-dimensionalized by
the reference dimension.
The mass matrix defined in this file cannot be singular.
Initial conditions for the two translational degrees of freedom are specified
relative to the inertial coordinate system, i.e. as seen by a stationary observer on
the ground.
Initial conditions for the rotational degree of freedom should have units of
degrees, degrees/sec, etc.
The dynamics of each degree of freedom is controlled separately using the
following values for IBXD:

o IBXD =0 is a free/forced response calculation, .i.e. uses mass, stiffness,

and damping to compute position, velocity, and acceleration of system.
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IBXD = 1 is a clamped condition, i.e. hold at initial position with zero

velocity and acceleration.
IBXD = 2 is a constant acceleration, uncoupled response, i.e. integrates

acceleration and velocity to compute new position.
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Sample File

$ Position vector to oriéin of non-inertial frame (rx, ry)
0.0d0 0.0do
$ Mass matrix for non-inertial frame (3 x 3)

1.0d0 0.0do 0.0do
0.0do 1.0d0 0.0do
0.0do 0.0do 1.0do
$ Damping matrix for non-inertial frame (3 x 3)
0.0d0 0.0do 0.0do
0.0do 0.0do 0.0do
0.0do 0.0do 0.0do
$ Stiffness matrix for non-inertial frame (3 x 3)
1.0d0 0.0do 0.0do
0.0do 1.0do 0.0do
0.0do 0.0do 1.0d0

$ IC's for non-inertial frame (x, y, g, vx, vy, vq, ax, ay, aq)
0.040 0.00d0 0.0do
0.040 0.00d0 0.0do
0.0d0 0.00d0 0.0do
$ IBXD for non-inertial frame (3)
1 1 1
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Elastic Vectors Input File (case.vec)

Basic File Format

Line of Text

nr
Line of Text

( ( RM(i,3), j=1,nr ), i=1,nr )
Line of Text

( ( RC(i,3), j=1,nr ), i=1,nr )
Line of Text

{ ( RK(i,j), Jj=1,nr ), i=1,nr )
Line of Text

( XN(1), i=1,nr*2 )
Line of Text

{ IBXN(i), i=1,nr )
Line of Text

( ( PHIA(i,j), i=1,nwl*2 ),

Comments

o This is a plain text (ASCII) file.

e All values entered into this file should be dimensional.

j=1,nr )

Definition of Terms
nr: (int) number of elastic modes
RM(1,3) : (real) dimensional mass matrix

RC(1i,J) : (real) dimensional damping matrix
RK(1,3) : (real) dimensional stiffness matrix

XN (1) : (real) initial gen. displ. for mode i
XN (i+nr) : (real) initial gen. vel. for mode i

IBXN (i) : (int) dynamics flag for i mode
PHIA(i*2-1,J) : x-component of
displacement vector for mode j at node i

PHIA(i*2 ,Jj) : y-component of
displacement vector for mode j at node i

The solver will

automatically non-dimensionalize the values using the reference conditions

specified in the solver control file.

o The mass matrix defined in this file cannot be singular.
o The dynamics of each degree of freedom is controlled separately using the

following values for IBXN:

o IBXN = 0 is a free/forced response calculation, .i.e. uses mass, stiffness,
and damping to compute generalized displacement and velocity.

o IBXN =

1 is a clamped condition, i.e. hold at initial generalized
displacement with zero velocity.

o IBXN = 2 is a constant velocity, uncoupled response, i.e. integrates
generalized velocity to compute new displacement.
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o IBXN = 3 is a forced multistep response used for system identification
purposes.
Do not combine IBXN = 0 with IBXN # 0 for different modes if there are
coupling or off-diagonal terms in the mass, damping or stiffness matrices.
A limited set of simple modal vectors representing standard rigid-body degrees of
freedom can be generated using the program makevec2d.
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Sample File

$
$

Number of elastic modes (nr)

3

Mass matrix for elastic modes (nr x nr)
1.0d0 0.0d0 0.0do0

0.0do 1.0d0 0.0do0

0.0d0 0.0d0 1.0d0

Damping matrix for elastic modes {(nr x nr)
0.0do 0.0do0 0.0do0

0.0do 0.0d0 0.0do

0.0d0 0.0d0 0.0do0

Stiffness matrix for elastic modes (nr x nr)
1.0d0 0.0do0 0.0do

0.0d0 1.0d0 0.0d0

0.0d0 0.0d0 1.0d0

IC's for elastic modes (x1....xXn, vxl...vxn)

0.040 0.0d0 0.0d0 0.0d40 0.0d0 0.0d0
IBXN for elastic modes {(nr)

1 1 1
Elastic modes vectors (nwl*2) x nr

0.0do 1.040
0.0do 1.0d40
0.0do 1.040
0.040 1.0d40
0.0do 1.0do
0.0d0 1.040
0 1

.0do .0do
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Solution Residuals Output File (case . rsd)

Basic File Format Definition of Terms

1 ( RSD(i), i=1,4 ) istp: (int) current solution step
: : nstp: (int) total or last solution step
istp ( RSD(i), i=1,4)

RSD (1) : (real) density solution residual

nstp ( RSD(i), i=1,4 ) RSD(2) : (real) x-momentum solution residual
RSD(3) : (real) y-momentum solution residual
RSD (4) : (real) energy solution residual

Comments

e This is a plain text (ASCII) file.

e For steady problems, the solution residuals indicate the degree of convergence to
the final steady state solution. All four solution residuals should converge to
approximately the same order of magnitude.

e For unsteady problems, the solution residuals indicate the degree of convergence
for each global step of the solution, or the degree of convergence for the steady
solution that is solved at each step.
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Sample File

(ol oleloleloleBolosBolcNoeNoNoNeNeoNoNoNeoNol

.57348E-08
.44739E-08
.34518E-08
.26323E-08
.19826E-08
.14732E-08
.10788E-08
.77813E-09
.55413E-09
.39393E-09
.28851E-09
.23033E-09
.20827E-09
.20688E-09
.21322E-09
.22042E-09
.22583E-09
.22883E-09
.22955E-09
.22840E-09

(e eleloleBoleoRoEoRoNoNoNoNoNeoNoNeoNo e Nel

.25187E-07
.18578E-07
.13871E-07
.10501E-07
.80732E-08
.63101E-08
.50186E-08
.40643E-08
.33531E-08
.28190E~-08
.24147E-08
.21061E-08
.18682E-08
.16825E-08
.15354E-08
.14165E-08
.13186E-08
.12363E-08
.11656E-08
.11038E-08

267

el ejelelelNeNeNoNoNeolecNoNoNoNsNeoNeNeoNeNel

.16390E-07
.12373E-07
.96347E-08
.77174E-08
.63226E-08
.52640E-08
.44300E-08
.37547E-08
.31987E-08
.27371E-08
.23530E-08
.20339E-08
.17699E-08
-15525E-08
.13745E-08
.12294E-08
.11114E-08
.10156E-08
.93758E-09
.87375E-09

OOOOOOOOO'OOOOOOOOOOO

.90629E-07
.67703E-07
.50632E-07
.37989E-07
.28663E-07
.21805E-07
.16766E-07
.13063E-07
.10335E-07
.83161E-08
.68136E-08
.56868E-08
.48346E-08
.41839E-08
.36818E-08
.32900E-08
.29802E-08
.27318E-08
.25294E-08
.23617E-08



Aerodynamic Loads Output File (case.1ds)

Basic File Format

Definition of Terms

0 0.0 ( FD(1), i=1,3 ) istp: (int) current solution step

: . nstp: (int) total or last solution step
istp Eietp { FD(1), i=1,3 ) ty: (real) dimensionless time at step 7
nstp Eretp ( FD(i), i=1,3 ) FD (1) : (real) x-force coefficient

FD(2) : (real) y-force coefficient
FD(3) : (real) moment coefficient

Comments

e This is a plain text (ASCII) file.

e The force coefficients in this output file are dimensionless values based on the
reference conditions specified in the solver control file.

e For dynamic (non-inertial) problems, the force coefficients stored in this file are
referenced to the body-fixed coordinate system.
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Sample File

[o INEN o)W 62 I S VS I VR i

I e e = S
FOoOV OOV A WNKHE OV

OO0 OO O0O0O0O0OO0O0O00O00O0O0O00O0O00O0OO0 oo

.00000E+00
.10000E-01
.20000E-01
.30000E-01
.40000E-01
.50000E-01
.60000E-01
.70000E-01
.80000E-01
.90000E-01
.10000E+00
.11000E+00 .
.12000E+00
.13000E+00
.14000E+00
.15000E+00
.16000E+00
.17000E+0Q0
.18000E+0O0
.19000E+00
.20000E+00

[eleNelelNelNelNeNeNelNeNeNeNoloNoNeNeleBolhel el

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+0O
.00000E+00
.00000E+00
.00000E+00

269

e elelelNelNeNoeleNeleNeoleoBoleNelo e NoNo oMol

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

O OO OO O0OO0OO0OO0OO0OO0OO0O00O0O0O0O00O00O oo

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00



Dynamic Output File (xd . dat)

Basic File Format
0 0.0 (XD (i), i=1,6) (Ao(i), i=1,3)

istp tiep (XD(1), i=1,6) (AO(i), i=1,3)

nstp taep (XD(1), i=1,6) (AO(i), i=1,3)

Comments
e This is a plain text (ASCII) file.

Definition of Terms

istp: (int) current solution step
nstp: (int) total or last solution step
t;: (real) dimensionless time at step i

XD (1) :
: (real) y- position
: (real) pitch angle
) : (real) x-velocity
XD (5) :
) : (real) pitch rate

XD (2)
XD (3)
XD (4

XD (6

A0 (1) :
A0 (2) :
A0 (3):

(real) x-position

(real) y- velocity

(real) x-acceleration
(real) y- acceleration
(real) pitch acceleration

e The dynamic data in this output file are dimensionless values based on the

reference conditions specified in the solver control file.

e The position, velocity, and acceleration vectors in this file are defined relative to
the global coordinate system, while the rotational quantities are defined as
rotations about the local or body-fixed coordinate system.
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Sample File

OV ~J U IxWNRE O

o

eNeoNeoNoNoNoNoNoNoNoNeoNoNoNoNoNoNoNoNoNol

.000C00E+0C0
.10000E-01
.20000E-01
.30000E-01
.40000E-01
.50000E-01
.60000E-01
.70000E-01
.80000E-01
.90000E~01
.10000E+00
.11000E+00
.12000E+00
.13000E+00
.14000E+00
.15000E+00
.16000E+00
.17000E+00
.18000E+00
.19000E+00
.20000E+00

OO OO OO0 OO OO0 DO ODOOOOOO

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

[eNeoNoNoNeoNoNoNoNeoNoNoloNoNoNolNoNoNeNoNolo]

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

[oNeoRBeNeNoeNoNoleNoNolollolNolNo oo RN RoRN o Rl

.00000E+00
.00C00E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

leNeoNoNeoNoNoNeoNoNoNoNoNoNeNoNoNeoNoNoN ool

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

eNeoNeoNoNoNoNeoNoNoNoNeNeoNoNoNeNoNoNoNoNolNol

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+0Q0
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

OO OO0 OODOOOODOODODDOOOOO0O

.00000E+00
.00000E+00
.C0000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

eNeoNoNoNoNeoNeoNoNoNoNoNoReNoNoNeoNoNoNolNeNol

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

.

[eNeoNoNeoNoNoNeoNoNoNoNoNoNoNoNoNeoNoNoNeNo el

e

.C0000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00



Elastic Output File (xn.dat)

Basic File Format

0 0.0 (XN(i), i=1,nr*2) (FA(i), i=1,nr)
iStp tiep (XN(i), i=1, nr*2) (FA(i), i=1,nr)

nstp tpep (XN(i), i=1, nr*2) (FA(i), i=1,nr)

Comments

¢ This is a plain text (ASCII) file.

Definition of Terms

istp: (int) current solution step
nstp: (int) total or last solution step
t;: (real) dimensionless time at step i

XN (1) : (real) gen. displ. for mode i
XN (i+nrx) : (real) gen. vel. for mode i

FA (i) : (real) gen. force for mode i

e The elastic data in this output file are dimensionless values based on the reference

conditions specified in the solver control file.

e The sample file on the following page is for a two mode solution.
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Sample File

® NV W N o

O 0000000000 O0

OO0 000 OoO00 o

.00000E+00
.10000E-01
.20000E-01
.30000E-01
.40000E-01
.50000E-01
.60000E-01
.70000E-01
.B80000E-01
.90000E-01
.10000E+00
.11000E+00
.12000E+00
.13000E+00
.14000E+00
.15000E+00
.16000E+00
.17000E+00
.18000E+00
.13000E+00
.20000E+00

.00000E+00
.00000E+00
.00000E+0Q0
.00000E+0Q0Q
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00Q
.00000E+00Q
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+0Q0
.00000E+00

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

.00000E+00
.00000E+00
.00000E+00
.00000E+0Q0
.00000E+0Q0Q
.00000E+00Q
.00000E+00
.00000E+00
.00000E+00Q
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
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.00000E+00
.00000E+00
.00000E+00
.00000E+0Q0
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+0Q0
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
-00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
-00000E+00



APPENDIX B: Summary of 3-D File Formats

This Appendix provides a summary of the input/output file formats used by the

three-dimensional CFD solver developed for this research.

The following input files are defined:

case.g3d (required) contains the geometry data structures representing the
computational volume mesh as required by the flow solver. (Binary)

case.con (required) contains values for the solver control parameters and flow
conditions. (ASCII)

case.unk (optional) contains the nodal values of the primitive flow variables
(density, velocity, and pressure) for each node of the computational mesh to be
used as the initial conditions for the flow solution. (Binary)

case.dyn (optional) contains the non-inertial matrices and initial conditions as
required for a dynamic solution. (ASCII)

case.vec (optional) contains the elastic mode matrices, initial conditions, and
vectors for the boundary surfaces as required for an aeroelastic solution. (ASCII)

case . frc (optional) contains external forces to be applied to each solution step -
in a dynamic or aeroelastic solution. (ASCII)

The following output files are defined:

case.unl contains the nodal values of the primitive flow variables (density,
velocity, and pressure) for each node of the computational mesh. (Binary)

case.rsd contains a history of the solution residuals for the conservation
variables (density, momentum, and total energy). (ASCII)

case.lds contains a history of the dimensionless aerodynamic forces acting on
the solid walls of the CFD geometry. (ASCII)

xd.dat contains a history of the non- inertial displacements, velocities, and
accelerations for a dynamic solution. (ASCII)

xn.dat contains a history of the generalized displacements and velocities for an
unsteady, aeroelastic solution. (ASCII)
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Geometry Input File (case .g3d)

Basic File Format Definition of Terms

nnd nel nsg nbe nbp nwl,nsd nsf nnd : (int) number of nodes
nel: (int) number of elements
nsg: (int) number of segments

nbe: (int) number of boundary elements

( LBE(i), 1 = 1,6 )

( ( COOR(i,j), i=1,nnd ), J=1,3 ) nbp : (int) number of boundary points
.o . . nwl : (int) number of wall nodes
’ ’ =1 ’ 1 ’ =1 ’ 4 . .
( (IELM(i,3), 1 nel ). 3 ) nsd: (int) number of singular nodes
( ( ISEG(i,§), i=1l,nsg ), j=1,2 ) nsf : (int) number of boundary surfaces
( ( IBEL(i,j), i=1,nbe ), j=1,4 ) LBE (i) : (int) boundary element

starting/stopping indexes for three BC types

: (real) x-coordinate for node i

: (real) y-coordinate for node i
: (real) z-coordinate for node i

: (int) node 1 for element i
: (int) node 2 for element i
: (int) node 3 for element i
: (int) node 4 for element i

: (int) node 1 for segment ¢
: (int) node 2 for segment i

: (int) node 1 for boundary elem. i
: (int) node 2 for boundary elem. {
: (int) node 3 for boundary elem. i
IBEL (1, 4) : (int) boundary surface containing
boundary element i

Comments

o This is an unformatted (binary) file.

o Nodal data is sorted such that the first nwl nodes are defined as solid wall nodes.
Out of the first nwl nodes, the last nsd nodes are defined as singular nodes.

e The nodal coordinates in this file are treated as dimensional values and are non-
dimensionalized using the reference dimension specified in the solver control file.

e Boundary element data is sorted based on the starting/stopping indexes for the
three BC types, i.e. boundary elements LBE (1) through LBE (2) are solid wall
elements, LBE(3) through LBE (4) are symmetry elements, and LBE(5)
through LBE (6) are far-field elements.
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e The program makeg3d is used to convert a standard STARS surface
triangulation file, tetrahedral volume file, and modified boundary conditions file
into an appropriately sorted three-dimensional geometry file.
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Solver Control File (case . con)

Basic File Format Definition of Terms

&control dt : (real) dimensionless global time step
dt = 0.1do, gamma : (real) ratio of specific heats
gamma = 1.4d0, diss: (real) dissipation constant
diss = 1.0d0, cfl: (real) local time step stability factor
cfl = 0.5do0,

mach: (real) free-stream mach number

mach = 0.6d0, st . .
alpha - 0.0d0, alpha: (real) 1Cl free-stream orientation angle
beta = 0.0d0, betaf (real) 2° free-strean? orieqtation angle
refdim = 1.0do, refdim: (real) reference dimension
nstp = 100, nstp: (int) total solution steps
nout = 50, nout : (int) output frequency, steps/output
ncyc = 3, ncyc: (int) iterative cycles per solution step
isol = 0, isol: (int) CFD solution type

0
idsol = 2, idsol: (int) dynamics solution type
idiss = 0, idiss: (int) dissipation type
1

ipnt = b ipnt : (int) number of points for numerical
istrt false integration of flux/source vectors
laero = .false., istrt: (logical) restart flag
;:{ZZt : gz%:: ! iaero: (logical) aerodynamic forces flag
ifree - true., ' idynm: (logical) dynamic/non-inertial flag
iforce = .true., ielast: (logical) elastic flag
ifree: (logical) free-stream velocity flag
nr = 0, iforce: (logical) external force flag
ainf = 1.0d0,
rhoinf = 1.0d40, nr: (int) number of elastic modes
/ ainf: (real) dimensional free-stream sonic speed
rhoinf : (real) dimensional free-stream density
Comments

e This is a plain text (ASCII) file formatted as a Fortran namelist.

e The default values for each parameter are given in the basic file format above.

¢ The global time step is only used for unsteady solutions.

e Appropriate values for the dissipation factor are in the range 0.0 < diss < 2.0.
Some dissipation is required to stabilize the solution, but too much dissipation
will corrupt the solution and possibly be a destabilizing influence.

e The local time step stability factor is a safety factor used to compute local time
steps for each solution step. For steady solutions, a stability factor of 0.8 is
typically acceptable for most problems. For unsteady solutions, the stability
factor is typically in the range 0.3 < cf1 < 0.8.
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The wvalues of refdim, mach, ainf, and rhoinf are used to non-
dimensionalize all values read in by the flow solver.
The free-stream orientation angles are ignored for dynamic (non-inertial)
problems.
The number of iterative cycles should be set to 3 for steady solutions. For
unsteady solutions, use a sufficient number of cycles to allow for an appropriate
level of convergence at each step.
There are four available CFD solution types defined as follows:

o 1isol =01is a steady solution (not time accurate)

o 1sol =1 1s a first-order unsteady solution

o 1sol =2 is a second-order unsteady solution

o isol =3 is a supersonic piston perturbation solution
There are three available dynamics solution types defined as follows:

o idsol =0 uses a zero-order integrator for the applied forces

o 1idsol =1 uses a first-order integrator for the applied forces

o 1idsol =2 uses a second-order integrator for the applied forces
There are two available dissipation types defined as follows:

o 1idiss =0 isalow order dissipation

o 1diss =1 is a high order dissipation with gradient limiters
The low-order dissipation is typically overly diffuse and should be used in
conjunction with low values of the dissipation factor. Low-order dissipation
" works best for problems without strong vortices and for supersonic/hypersonic
flows.
The high-order dissipation is more CPU intensive than the low-order dissipation
and less stable. Larger values for the dissipation factor are typically required for
stabilization. The high-order dissipation works best for subsonic to transonic
flows with strong gradients or vortices. Rotating domains will typically require
high-order dissipation to resolve the circulating pattern of the relative flow
velocities.
There are two types of numerical integration defined as follows:

o 1ipnt =1 uses a one-point gauss quadrature

o 1ipnt =4 uses a three-point symmetric gauss quadrature
When the restart flag is set to . true., the solver will read one set of solution
unknowns from the case.unk file and apply this set of unknowns as the initial
conditions for the new iterative solution.
A restarted solution assumes that the time gradient of the initial state is zero, i.e.
the solution stored in the case.unk file is a converged, steady state solution.
This has a significant impact on the second-order unsteady solution since it relies
on two sets of solution unknowns for advancement to the next time step, i.e. a
second-order unsteady solution should not be restarted from the last time step of a
similar unsteady solution that was stopped because both sets of unsteady data
from the last solution step are not available for accurate evaluation of the time
gradients in the flow.
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If the free-stream velocity flag is set to . false., the free-stream velocity is set
to zero, and relative flow velocities must be generated through dynamic rotation
or translation of the non-inertial coordinate system.

If the external force flag is set to . true., the solver will read the user defined
external force vector for each global time step from the input file case. frc. If
the solver reaches the end of the input file before completing the solution, the last
force vector in the file carries over to each of the remaining global time steps if it
Wwas non-zero.
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Solution Unknowns Input/Output File (case . un*)

Basic File Format Definition of Terms
nnd gam xmi alp bet ref t nnd: (int) number of nodes
i gam: (real) ratio of specific.heats
( ( UN(i,3j), i=1i,nnd ), j=1,6 ) xmi: (real) free stream mach number

alp: (real) 1* free-stream orientation angle
bet : (real) 2™ free-stream orientation angle
ref : (real) reference dimension

t : (real) dimensionless time

UN(i,1) : (real) density for node i
UN (1,2) : (real) x-velocity for node i
UN (i, 3) : (real) y-velocity for node i
UN (i, 4) : (real) z-velocity for node i
UN (1, 5) : (real) pressure for node i
UN(i,6) : (real) enthalpy for node i

Comments

e This is an unformatted (binary) file.

e The solution unknowns stored in this file are dimensionless quantities.

e For dynamic (non-inertial) problems, the solution unknowns stored in this file are
relative quantities referenced to the body-fixed coordinate system.
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Dynamic Mesh Input File (case . dyn)

Basic File Format

Line of Text
( RO(1i), 1i=1,3 )

Line of Text

( ( RM1(i,3), j=1,6 ), 1i=1,6 )
Line of Text

( ( RC1(i,3), j=1,6 ), 1i=1,6 )
Line of Text

( ( RK1(1i,73), j=1,6 ), i=1,6)
Line of Text

X, Y, 2, P, 4, T,

vx, vy, vz, Vvp, vq, VI,

ax, ay, az, ap, aq, ar
Line of Text

( IBXD(i), i=1,6 )
Comments

o This is a plain text (ASCII) file.

e All values entered into this file should be dimensional.

Definition of Terms

RO (1) : (real) x-coordinate for origin of rotation
RO (2) : (real) y-coordinate for origin of rotation
RO (3) : (real) z-coordinate for origin of rotation

RM1 (i, 3) : (real) dimensional mass matrix
RC1(i,7) : (real) dimensional damping matrix
RK1 (i, 7) : (real) dimensional stiffness matrix

: (real) initial x-position of coord. system

: (real) initial y-position of coord. system

: (real) initial y-position of coord. system

: (real) initial roll angle of coord. system

: (real) initial pitch angle of coord. system

: (real) initial yaw angle of coord. system

: (real) initial x-velocity of coord. system

: (real) initial y-velocity of coord. system

: (real) initial z-velocity of coord. system

: (real) initial roll rate of coord. system

: (real) initial pitch rate of coord. system

: (real) initial yaw rate of coord. system

: (real) initial x-acceleration of coord. system
: (real) initial y-acceleration of coord. system
: (real) initial z-acceleration of coord. system
: (real) initial roll accel. of coord. system

: (real) initial pitch accel. of coord. system

: (real) initial yaw accel. of coord. system

B QT NN X

IBXD (i) : (int) dynamics flag for /" DOF

automatically non-dimensionalize the values using the reference conditions

specified in the solver control file.

e The vector defining the origin of rotation is subtracted directly from the nodal
coordinates defined in the geometry input file after it is non-dimensionalized by

the reference dimension.

o The mass matrix defined in this file cannot be singular.
¢ Initial conditions for the three translational degrees of freedom are specified
relative to the inertial coordinate system, i.e. as seen by a stationary observer on

the ground.
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e Initial conditions for the three rotational degrees of freedom should have units of
degrees, degrees/sec, etc., and are true Euler angles and rates expressed relative to
the body-fixed coordinate system.

e The dynamics of each degree of freedom is controlled separately using the
following values for IBXD:

O

IBXD = 0 is a free/forced response calculation, .i.e. uses mass, stiffness,
and damping to compute position, velocity, and acceleration of system.
IBXD = 1 is a clamped condition, i.e. hold at initial position with zero
velocity and acceleration.

IBXD = 2 is a constant acceleration, uncoupled response, i.e. integrates
acceleration and velocity to compute new position.
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Sample File

$
$

Position vector to origin of

non-inertial frame

283

0.0d0 0.0do 0.0do
Mass matrix for non-inertial frame (6 x 6)
1.0d0 0.0do0 0.0d0o 0.0d0 0.0do 0.0d0
0.0do 1.0d0 0.0do 0.0d0 0.0do 0.0do
0.0do 0.0do0 1.0d0 0.0do 0.0do 0.0do
0.0do 0.0do0 0.0do 1.0d0 0.0do 0.0do
0.0do 0.0d0 0.0do 0.0do 1.0d0 0.0do
0.0d0o 0.0do0 0.0do 0.0do 0.0do0 1.0d0
Damping matrix for non-inertial frame (6 x 6)
0.0do 0.0d0 0.0do 0.0do 0.0do 0.0do
0.0do 0.0d0 0.0do 0.0do 0.0do 0.0do
0.0do 0.0d0 0.0do 0.0do 0.0do0 0.0do
0.0do 0.0do0 0.0do 0.0do 0.0do0 0.0do
0.0do 0.0do 0.0do 0.0do 0.0d0 0.0do
0.0do 0.0dO, 0.0do 0.0do0 0.0do 0.0do
Stiffness matrix for non-inertial frame (6 x 6)
1.0d0 0.0d0 0.0do 0.0do 0.0do 0.0do
0.0do 1.0d0 0.0do 0.0do 0.0do 0.0do
0.0do 0.0do0 1.0d0 0.0d0 0.0do 0.0do
0.0do 0.0do0 0.0do 1.0d0 0.0do0 0.0d0o
0.0do 0.0d0 0.0do 0.0do 1.0d0 0.0do
0.0do 0.0do0 0.0do 0.0do 0.0do 1.0d0
"IC's for non-inertial frame (6 positions, & rates,
0.0do0 0.0do 0.0do 0.0d0 0.0d0 0.0do
0.0d4d0 0.0do 0.0do 0.0d0 0.0d0 " 0.0dO
0.0do 0.0do 0.0d0 0.0d0 0.0d0 0.0do
IBXD for non-inertial frame (6)

1 1 1 1 1 1

(rx, ry, rz)

6 accels

)



Elastic Vectors Input File (case .vec)

Basic File Format

Line of Text

nr
Line of Text

( ( RM{i,3), j=1l,nr ), i=1,nr )
Line of Text

( ( RC(i,3), j=1,nr ), i=1,nr )
Line of Text

( { RK(i,3), j=1,nr ), i=1i,nr )
Line of Text

( XN(i), i=1,nr*2 )
Line of Text

( IBXN(i), i=1,nr )
Line of Text

( ( PHIA(i,j), i=1,nwl*3 ),

Comments
e This is a plain text (ASCII) file.

e All values entered into this file should be dimensional.

j=1,nxr )

Definition of Terms

nr: (int) number of elastic modes

RM(1i,J) : (real) dimensional mass matrix
RC(i,J) : (real) dimensional damping matrix
RK(1i,J) : (real) dimensional stiffness matrix

XN (1) : (real) initial gen. displ. for mode i
XN (i+nr) : (real) initial gen. vel. for mode i

IBXN (i) : (int) dynamics flag for i mode

PHIA(i*3-2,7) : x-component of
displacement vector for mode j at node i
PHIA(i*3-1,J) : y-component of
displacement vector for mode j at node i
PHIA(i*3 ,J) : z-component of
displacement vector for mode j at node i

The solver will

automatically non-dimensionalize the values using the reference conditions

specified in the solver control file.

e The mass matrix defined in this file cannot be singular.
e The dynamics of each degree of freedom is controlled separately using the

following values for IBXN:

o IBXN =0 is a free/forced response calculation, .i.e. uses mass, stiffness,
and damping to compute generalized displacement and velocity.
o IBXN = 1 is a clamped condition, ie. hold at initial generalized

displacement with zero velocity.

o IBXN = 2 is a constant velocity, uncoupled response, ie. integrates
generalized velocity to compute new displacement.
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o IBXN = 3 is a forced multistep response used for system identification
purposes.
Do not combine IBXN = 0 with IBXN # 0 for different modes if there are
coupling or off-diagonal terms in the mass, damping or stiffness matrices.
A limited set of simple modal vectors representing standard rigid-body degrees of
freedom can be generated using the program makevec3d.
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Sample File

$
$

Number of elastic modes (nr)

3

Mass matrix for elastic modes (nr x nr)
1.0d0 0.0do 0.0do

0.0do 1.0d0 0.0do

0.0do 0.0do 1.0d0

Damping matrix for elastic modes (nr x nr)
0.0do 0.0do 0.0do

0.0do 0.0do 0.0do

0.0do 0.0do 0.0d0

Stiffness matrix for elastic modes (nr x nr)
1.0d0 0.0do 0.0do

0.0do 1.0d0 0.0do

0.0do 0.0d0 1.0d0

IC's for elastic modes (x1....xn, vxl...vxn)

0.04d0 0.0d0 0.040 0.0d0 0.0d0 ©0.0doO
IBRXN for elastic modes (nr)

1 1 1
Elastic modes vectors (nwl*3}) x nr

0.0d0 1.0d40 1.0do
0.0do 1.0d0 1.0do
0.0do 1.0do 1.0d0
0.0do 1.0d40 1.0d0
1.040 0.0do 1.0d0
0.0do 1.0d0 1.0do
0 1 1

.0do .0do .0do
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External Force Input File (case . frc)

Basic File Format
1 (FD(i), i=1,6) (FE(3j), j=1,nr)

ist}; (FD(i); i=1,6) (FE(3), j=1,nr)

nst}; (FD(i); i=1,6) (FE(3), J=1,nr)

Comments

e This is a plain text (ASCII) file.

Definition of Terms

istp: (int) current solution step
nstp: (int) total or last solution step
nr: (int) number of elastic modes

(1) : (real) x force applied at iszp
(2) : (real) y force applied at iszp
(3) : (real) z force applied at istp

FD (4) : (real) roll moment applied at istp
(5) : (real) pitch moment applied at istp
(6) : (real) yaw moment applied at istp
(3) : (real) force applied to elastic mode j

e All values entered into this file should be dimensional. The solver will
automatically non-dimensionalize the values using the reference conditions

specified in the solver control file.

e Forces applied to the three translational degrees of freedom are specified relative

to the inertial coordinate system.

e The specified forces are read one line at a time following each solution step.
e Up to nstp forces may be specified, but are not required. The last force read in
by the solver will be applied for all remaining solution steps.
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Sample File

N s W

O OO OO0 OO0

.0do
.0do
.0do
.0do
.0do
.0do
.04d0

O OO OO O o

.0do
.0do
.0do
.0do
.0do
.0do
.odo

OMHHKHRPRRFROO

.0do
.0do
.0do
.0do
.0do
.0do
.0do

O O 0O OO oo

.0do

.0do
.o0do
.0do
.040
.0do
.0do
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OO+ NMRE OO

.0do
.o0do
.0do
.0do
.0do
.0do
.o0do

O OO OO O o

.0do
.0do
.0do
.o0do
.0do
.0do
.04do



Solution Residuals Output File (case . rsd)

Basic File Format Definition of Terms

1 {( RSD(i), i=1,5) istp: (int) current solution step

: nstp: (int) total or last solution step

istp ( RSD(i), i=1,5 )
: : (1) : (real) density solution residual

nstp ( RSD(i), i=1,5 ) RSD(2) : (real) x-momentum solution residual

RSD(3) : (real) y-momentum solution residual
(4) : (real) z-momentum solution residual
(5) : (real) energy solution residual

Comments

e This is a plain text (ASCII) file.

e For steady problems, the solution residuals indicate the degree of convergence to
the final steady state solution. All four solution residuals should converge to
approximately the same order of magnitude.

e For unsteady problems, the solution residuals indicate the degree of convergence
for each global step of the solution, or the degree of convergence for the steady
solution that is solved at each step.

289



Sample File

W3O U WP

NP R RRRPRE PP
OV O IV WN R O W

QOO OO0 OO0 O0ODO0OOOOOOOO0O OO

.12222E-07
.11570E-07
.10921E-07
.10275E-07
.96242E-08
.89786E~-08
.83298E-08
.76831E-08
.70441E-08
.64162E-08
.57970E-08
.51854E-08
.45869E-08
.40076E-08
.34579E-08
.29562E-08
.25236E-08
.21945E-08
.20227E-08
.20517E-08

[« elolelNeNeNe e Ne e Ne e No oo Neo Ne No o Nol

.10626E-07
.10062E-07
.95097E-08
.89463E-08
.83818E-08
.78260E-08
.72699E-08
.67176E-08
.61708E-08
.56360E-08
.51153E-08
.46001E-08
.40968E-08
.36189E-08
.31776E-08.
.27873E-08
.24650E-08
.22406E-08
.21516E-08
.22121E-08

[eNeNeNolNoNeNoloNoNolNololeNeoNoNoleNo ool

.16687E-07
.15729E-07
.14773E-07
.13814E-07
.12854E-07
.11892E-07
.10929E-07
.99662E-08
.90087E-08
.80584E-08
.71208E-08
.61957E-08
.52837E-08
.43870E-08
.35119E-08 .
.26754E-08
.19320E-08
.14353E-08
.14507E-08
.19558E-08
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(= eliellelNeNeNe Ne e e Neo o NeNo o NeoNeoNo ool

.12295E-07
.11602E-07
.10908E~-07
.10215E-07
.95216E-08
.88276E-08
.81336E-08
.74405E-08
.67538E-08
.60769E-08
.54130E-08
.47627E-08
.41320E-08
.35263E-08
.29571E-08
.24518E-08
.20618E-08
.18541E-08
.18860E-08
.21498E-08

[eleleNelNelNe oo NelNeo e o NeoNeoNe o NoNo e No

.22126E-07
.20890E-07
.19662E~-07
.18436E-07
.17203E-07
.15977E-07
.14748E-07
.13527E-07
.12320E-07
.11139E-07
.99765E-08
.88260E-08
.76967E-08
.66145E-08
.56028E-08
.47029E-08
.39779E-08
.35322E-08
.34857E-08
.38474E-08



Aerodynamic Loads Output File (case.1ds)

Basic File Format Definition of Terms
0 0.0 ( FD(1), 1i=1,6 ) istp: (int) current solution step
: nstp: (int) total or last solution step
istp ticep ( FD(1i), i=1,6 ) " t;: (real) dimensionless time at step i
nstp Epstp ( FD(i), i=1,6 ) FD (1) : (real) x-force coefﬁc%ent
FD(2) : (real) y-force coefficient
FD (3) : (real) z-force coefficient
FD (4) : (real) x-moment coefficient
FD (5) : (real) y-moment coefficient
FD (6) : (real) z-moment coefficient
Comments

e This is a plain text (ASCII) file.

o The force coefficients in this output file are dimensionless values based on the
reference conditions specified in the solver control file.

¢ For dynamic (non-inertial) problems, the force coefficients stored in this file are
referenced to the body-fixed coordinate system.
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Sample File

WOV WNREO

[ N S R R S g )
FOVW DIV A WNREOW

0.00000E+00
0.10000E-01
0.20000E-01
0.30000E-01
0.40000E-01
0.50000E-01
0.60000E-01
0.70000E-01
0.80000E-01
0.90000E-01
0.10000E+00
0.11000E+00
0.12000E+00
0.13000E+00
0.14000E+00
0.15000E+00
0.16000E+00
0.17000E+00
0.18000E+00
0.19000E+00
0.20000E+00

.00000E+00
.00000E+00
.00000E+0Q0
.00000E+0Q0
.00000E+00
.00000E+00
.00000E+0Q0
.00000E+0QO0
.00000E+0Q0
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+0Q0
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+0Q0
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+0Q0
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+0Q0
0.00000E+00
0.00000E+00

.00000E+00
.00000E+00
.00000E+0Q0
.00000E+00
.00000E+00
.00000E+0Q0
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+0Q0
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+0Q0
.00000E+00
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0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+0Q0
0.00000E+00
0.00000E+00
.00000E+00
.00000E+00
.00000E+0Q0
.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+0Q0
0.00000E+00
0

0

0

0
0
0
0

.00000E+00
.00000E+00
.00000E+00

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+0Q0
0.00000E+00
0.00000E+0Q0
0.00000E+0Q0
0.00000E+0Q0
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+0Q0
0.00000E+0Q0
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+0Q0

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+0Q0
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00



Dynamic Output File (xd . dat)

Basic File Format Definition of Terms
0 0.0 (XD(i), i=1,12) (A0(i), i=1,6) istp: (int) current solution step
: : : : nstp: (int) total or last solution step
istp ‘tiep (XD(1), i=1,12) (AO0(i), i=1,6) t;: (real) dimensionless time at step i
NStp Cnep (XD(1), i=1,12) (A0(i), i=1,6) | XD{1): (real)x-position
XD (2) : (real) y- position
XD(3) : (real) z- position
XD (4) : (real) roll angle
XD (5) : (real) pitch angle
XD (6) : (real) yaw angle
XD (7) : (real) x-velocity
XD (8) : (real) y- velocity
XD (9) : (real) z- velocity
XD (10) : (real) roll rate
XD(11) : (real) pitch rate
XD (12) : (real) yaw rate
A0 (1) : (real) x-acceleration
A0 (2) : (real) y- acceleration
A0 (3) : (real) z- acceleration
A0 (4) : (real) roll acceleration
A0 (5) : (real) pitch acceleration
AQ (6) : (real) yaw acceleration

Comments

o This is a plain text (ASCII) file.

e The dynamic data in this output file are dimensionless values based on the
reference conditions specified in the solver control file.

e The position, velocity, and acceleration vectors in this file are defined relative to
the global coordinate system, while the rotational vectors are defined as rotations
about the local or body-fixed coordinate system.
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v6¢C

Sample File

[ Y N R

OO0 0000OO0O0CDOOOOOO0O

.0000E+00
.1000E-01

2000E-01
3000E~01
4000E-01
5000E-01
6000E~C1
7000E-01
8000E-01
9000E-01
1000E+00
1100E+00
1200E+00
1300E+00
1400E+00
1S00E+00
1600E+00
1700E+00
1800E+00
18300E+00

+2000E+00

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.00C0E+00
0.
[
0
0
0
0
Qo
Qo
0
0
0

0000E+00

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
. 0000E+00
.0000E+00
.0000E+00

OO0 0O00000OO00O0C0O0ODO0 0O

0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
C000E+00
000CE+00
0000E+00
0000E+C0
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00

.0000E+00

.0000E+00

0000E+00

.0000E+00
.0000E+00
. 0000E+00
. 0000E+00
.0000E+00
. 0000E+00

0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00

C0CO000O0O0OO0O000O0OO0COOO0.

.0000E+00

0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0C00E+C0
0000E+00
0000E+00
0000E+00
0000E+00
C000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00D
0000E+00
0000E+00

.0000E+00

.0000E+C0
.0000E+00

0000E+00
0000E+00
0000E+00
0Q000E+00

.0000E+00
.0000E+00

0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00

.0000E+00

CO0OO0D000DO0O0BO0000O0OOC0OOO

.0000E+00
.0000E+00
.0C00E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
000Q0E+00
0000E+00
0000E+00
0000E+00
0000E+00

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.00Q0E+00
.0000E+00
.0000E+00
.0000E+00

0000E+00
0000E+00
0000E+00
0000E+00Q
COOOE+00
0000E+00
0000E+00
Q000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00

[ e R R R R R - )

0000E+00

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0C00E+00
.0000E+00
.0C00E+00

C0COE+00
C0CO0E+00
Q0Q00E+00
0000E+00
00C0O0E+00
0000E+00
0000E+00

.0CQ0E+00

.0000E+00

0000E+00

.0000E+00
.0000E+00
.0000E+00
.0000E+C0O
.0000E+00
.0000E+00
.0000E+00

0000E+00

.0000E+00
.0000E+00
.0C00E+00

0000E+00
C0COE+00
C0QO0E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00

o R R R N e R R o N N N R =)

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0C00E+00
.0000E+00
.0000E+00

0000E+00

.0000E+00

00C00E+0C

.0000E+00

00C0E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0Q00E+00

0.00C0E+00
0.0000E+00
0.000CE+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.C000E+00
0.0000E+00
0.C000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

[ e R R N R R R R R S N - X=X =)

.0000E+00
.0000E+00
.0000E+C0Q
.0000E+C0
.0000E+00
.0000E+00
.0000E+00
.0000E+00

0000E+00
0000E+00

.0000E+00

0000E+00
0000E+00
0000E+00
00CO0E+00
00C00E+00
0000E+C0
0000E+00
0000E+00
0000E+00
0000E+00

O 0O DOODOODODO0ODOOOO0OOOO

.0000E+C0
.0C0QE+C0
.00Q0E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00Q
.0000E+00
.0C00E+00
.0C00E+CO
.0C0CE+C0

0000E+00

.0C00E+C0

00C0E+00
C0C00E+0C
Q0O0OE+00
C000E+00
0000E+00
0000E+00
0000E+00

.0CQO0E+00

e R R R N e R o ===

0000E+C0
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00

.0000E+00

0000E+00

-0000E+00
.0000E+00
.0000E+00
-0000E+00
.0000E+00
.0000E+00
.0000E+C0
.0000E+00

COO0O000O000OOOCDOOOO0OO0CO

.0C00E+00
.0000E+00

0000E+00
000CE+00
Q000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0000E+00
0C000E+00
0000E+00
0000E+00
000CE+00
0000E+00
C0C0CE+00
0000E+00
0000E+00
0000E+00

.0000E+00
.0000E+00
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Lo R R R = - R N R R R e = ==~

0000E+00
0000E+00
0000E+00
Q0C00E+00
0000E+00
QOCOE+00
0000E+00
0000E+00
000QE+00
0000E+00
0000E+00
0000E+00
0C00E+00

.0000E+00
.0000E+00
.Q000E+00
.C000E+00
.0000E+00
.0000E+00
.0C0CE+00
.0C00E+00

0.0000E+00
0.0000E+00
0.000QE+00
0.0000E+00Q
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+C0
0.,0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+CD
0.C000E+00
0.C000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.C000E+00
0.0000E+00



Elastic Output File (xn .dat)
Basic File Format

0 0.0 (XN(i), i=1,nr*2) (FA{i), i=1,nr)
ist;; tis;P (XN(i), i=1, nr#2) (FA(i), i=1,nr)

nstp ELnep (XN(i), i=1, nr*2) (FA(i), i=1,nr)

Comments

e This is a plain text (ASCII) file.

Definition of Terms

istp: (int) current solution step
nstp: (int) total or last solution step
t;: (real) dimensionless time at step i

XN (i) : (real) gen. displ. for mode i
XN (1+nr) : (real) gen. vel. for mode i

FA (1) : (real) gen. force for mode i

e The elastic data in this output file are dimensionless values based on the reference

conditions specified in the solver control file.

e The sample file on the following page is for a two mode solution.
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Sample File

O~y WO

o

[cNeoNeoNoNoNoNoNoNoRoRoNeRoRoNollolollolleio]

.00000E+00
.10000E-01
.20000E-01
.30000E-01
.40000E-01
.50000E-01
.60000E-01
.70000E-01
.80000E-01
.90000E-01
.10000E+00
.11000E+00
.12000E+00
.13000E+00
.14000E+00
.15000E+00
.16000E+00
.17000E+00
.18000E+00
.19000E+00C
.20000E+00

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

00000E+00

.00000E+00
.00000E+00 *
.00000E+00
-00000E+0Q0
.00000E+00
.00000E+00
.00000E+00
.00000E+0Q0
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

.00000E+00C
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+CO
.00000E+00
.00000E+00
.00000E+0Q0
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
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OO OO0 0O OO OO0OO0ODOODOOOODODOOOOO

.0000CE+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+CO
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
-00000E+00
.00000E+00
.00Q9QF+OO
.0000DE+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

.00000E+00
.00000E+00
.00000E+00
.00000E+0C0
.00000E+00
.000C0E+00
.00000E+00
-00000E+00
.00000E+0C0
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
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APPENDIX C: Time History Data For AGARD Wing

This Appendix provides a complete set of time history data for the AGARD wing
at Mach 0.96 from Section 5.2.2. The time history data presented in this Appendix is for
time steps ranging from df = 16.0 through 0.25 using both the zero-order, idsol = 0, and

second-order, idsol = 2, structural dynamics solvers.
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Time History Data for Mach 0.96, dt = 16.0
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ry Data for Mach 0.96, dt = 4.0
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Time History Data for Mach 0.96, dt = 1.0
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Time History Data for Mach 0.96, dt = 0.25
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APPENDIX D: Steady Validation Data For BACT Wing

This Appendix provides a set of steady validation data for the BACT wing at each
of the Mach numbers investigated in the unsteady aeroelastic analysis of Section 5.2.3.
This data is important for two reasons. First, it demonstrates that the grid resolution is
sufficient for an accurate representation of the flow field whether the solution is steady or
unsteady. Second, steady data serves as the initial conditions for any unsteady solution
that is computed. The data presented in this Appendix shows chordwise surface pressure
distributions at two span locations for the wing, the 60% and 95% span locations. Each

set of results is compared to the appropriate experimental data from reference 43.
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C, Data for Mach 0.51
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C, Data for Mach 0.67
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C, Data for Mach 0.71
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C, Data for Mach 0.77
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C, Data for Mach 0.80
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C, Data for Mach 0.82
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APPENDIX E: Steady Validation Data For 80 Degree Delta Wing

This Appendix provides a set of steady validation data for the delta wing of
Section 5.2.5 at an angle of attack of 30 degrees and various roll angles from 0 degrees
up to 70 degrees. This data is important for two reasons. First, it demonstrates that the
grid resolution is sufficient for an accurate representation of the flow field whether the
solution is steady or unsteady. Second, steady data serves as the initial conditions for any
unsteady solution that is computed. The data presented in this Appendix shows spanwise
surface pressure distributions at one chord location for the wing, the 60% root chord
location. The computed data for Mach 0.3 is compared to the experimental data from
reference 47 corrected for the effects of compressibility using the Prandtl-Glauert
relation, Equation (5.5). There is no experimental data for comparison with the computed

data for Mach 1.2.
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C, Data for Mach 0.30, Roll Angles of 0 and 10 Degrees
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C, Data for Mach 0.30, Roll Angles of 20 and 30 degrees
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C, Data for Mach 0.30, Roll Angles of 40 and 50 degrees
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C, Data for Mach 0.30, Roll Angles of 60 and 70 degrees
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C, Data for Mach 1.20, Roll Angles of 0 and 10 Degrees
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C, Data for Mach 1.20, Roll Angles of 20 and 30 Degrees
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C, Data for Mach 1.20, Roll Angles of 40 and 50 Degrees
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C, Data for Mach 1.20, Roll Angles of 60 and 70 Degrees
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