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PREFACE 

All chapters of this dissertation were written as manuscripts that will be submitted 

to peer-reviewed journals. Therefore, each chapter follows the style and guidelines of the 

respective journal in which it was intended to be submitted. 
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CHAPTER I 

POPULATION DYNAMICS OF HISPID COTTON RA TS (SIGMODON 
HISPIDUS) ACROSS A NITROGEN-AMENDED LANDSCAPE 

Abstract: Population dynamics of some small-mammal species appear to be 

regulated by plant-community structure, vegetation cover, plant diversity, and food 

quality. Thus, changes in the plant community associated with nitrogen amendments 

would likely affect dynamics and structure of small-mammal populations. We conducted 

a mark-recapture experiment to examine population dynamics ofhispid cotton rats 

(Sigmodon hispidus) in response to low-level nitrogen amendments (16.4 kg N/ha/yr) in 

an old-field grassland. The experimental design consisted of 16, 0.16-ha plots with 4 

replicates of each treatment combination (fenced, nitrogen amendment; unfenced, 

nitrogen amendment; fenced, control; unfenced, control). We predicted that densities, 

reproductive success, movement probabilities, and survival of cotton rats would be 

greater on nitrogen-amended plots because of greater aboveground biomass and cover. 

Population densities of cotton rats tended to be highest on nitrogen-fenced plots, but 

densities on unfenced-nitrogen plots were similar to control and fenced plots. We 

observed no distinct patterns in survival, reproductive success, or movement probabilities 

with regard to nitrogen treatments. However, survival and reproductive success tended to 

be higher for cotton rats on fenced plots compared with unfenced plots and likely was 

attributed to decreased predation on fenced plots. As low-level nitrogen amendments 

continue to be applied, we predict survival, reproduction, and population growth rates of 

cotton rats on control plots, especially fenced plots with no nitrogen amendment, will 
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eventually exceed those on nitrogen-amended plots as a result of higher plant species 

diversity, food availability, and better quality cover. 

Introduction 

Humans have modified the global nitrogen cycle to the extent that we annually fix 

more nitrogen than all natural pathways combined (Vitousek 1994, Vitousek et al. 

1997 b ). Future atmospheric deposition of nitrogen from anthropogenic activities is 

expected to increase as global human population and reliance upon fossil fuels increases 

(Galloway et al. 1994, U.S. Environmental Protection Agency 1995). Thus, the amount 

ofunretained nitrogen cycling through ecosystems is likely to increase and can 

reasonably be expected to cause future environmental problems. These biogeochemical 

alterations of the nitrogen cycle could have significant effects on ecological processes at 

population, community, and ecosystem levels (Vitousek 1994, Chapin et al. 1997, 

Vitousek et al. 1997a, Fenn et al. 1998). 

Nitrogen is the primary nutrient limiting terrestrial plant production (Wedin and 

Tilman 1996). Nitrogen additions can change dominance hierarchies among species and 

decrease overall biodiversity of ecosystems by altering species composition, species 

diversity, and structure of food webs (Vitousek et al. 1997a, 1997b). For example, 

nitrogen amendments converted heathlands to species-poor grasslands and forest in the 

Netherlands (Aerts and Berendse 1988), caused shifts from forb- to grass-dominated 

communities in alpine tundra in Colorado (Bowman et al. 1993, 1995), and may have led 

to the conversion of slow-growing, slow N-cycling spruce-fir forests to faster growing, 

fast N-cycling deciduous forests in New England (McNulty et al. 1996). 

2 



Nitrogen enrichment also has caused qualitative and quantitative changes in 

grassland vegetation. These changes resulted in an increase in biomass and decrease in 

plant species diversity (Grant et al. 1977, Tilman 1987, 1996, Carson and Barrett 1988, 

Hall et al. 1991 ). For example, after 9 years of annual nutrient enrichment, Carson and 

Barrett (1988) reported 3 contrasting types of old-field communities with regard to 

structure and composition and a decrease in species diversity on nutrient-rich plots. 

Furthemiore, long-term nitrogen amendments in artificially constructed plant 

communities dominated by C4 prairie grasses resulted in nitrogen-mediated shifts to C3 

nonnative grasses (Wedin and Tilman 1996). These alterations in plant communities 

affect trophic relationships and nutrient cycling within the ecosystem. 

Causal effects attributed to changes in nitrogen availability in ecosystems are 

more clearly seen in plant than animal communities. Research exploring effects of 

nitrogen enrichment on consumer communities is rare (Grant et al. 1977, Anderson and 

Barrett 1982, Hall et al. 1991). Population dynamics of some small-mammal species 

appear to be regulated by plant-community structure, plant cover, plant diversity, and 

food quality (Hall et al. 1991 ). Thus, plant community changes associated with nitrogen 

additions would likely affect dynamics and structure of small-mammal populations. As 

with plants (Tilman 1987, 1988; Wedin and Tilman 1996), small-mammal communities 

may experience a decrease in species richness and become dominated by a few successful 

competitors that respond to a plant community modified by increased nitrogen 

availability. 

Our objective was to examine how population dynamics of the hispid cotton rat 

(Sigmodon hispidus), the dominant member of the small-mammal assemblage at our 
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study site, respond to a landscape altered by low-level nitrogen amendment (16.4 kg 

N/ha/yr) and exclosure fencing (i.e., constraints on herbivory). If nitrogen amendments 

had the hypothesized effects on the plant community of our study plots (i.e., increased 

aboveground live plant mass and canopy cover on nitrogen-amended plots; Tilman 1987, 

1988; Wedin and Tilman 1996), then several demographic consequences were possible. 

We predicted densities, reproductive success, and survival rates of cotton rats would be 

higher on nitrogen-amended plots because of increased aboveground plant biomass (i.e., 

enhanced concealment from predators). We also predicted that movements by male 

cotton rats would be biased toward nitrogen-amended plots. Although exclosures were 

designed to constrain herbivory (i.e., decrease competition from larger primary 

consumers), we expected population dynamics to be affected by nitrogen amendments 

rather than exclosures because densities oflarger herbivores (e.g., lagomorphs and 

artiodactyls) were low at the onset of our study. 

Study Area 

The field research was conducted at the Environmental Protection Agency's 

Center for Subsurface and Ecological Assessment Research (CSEAR) near Garr Corner, 

Pontotoc County, Oklahoma. The study area was an old-field site composed of 16 square 

0.16-ha experimental plots surrounded and separated from adjacent plots by a 5-m 

uninhabitable mowed strip (total area= 3 .45 ha; Figure I.1 ). The area had not been 

cultivated since 1950 but was heavily grazed during the last half-century before January 

1998. Dominant vegetation consisted of early to mid-successional grasses and forbs, 

including old-field threeawn (Aristida oligantha), broomsedge bluestem (Andropogon 
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virginicus), western ragweed (Ambrosia psilostachya), and heath aster (Aster ericodes). 

Preliminary sampling of small mammals at CSEAR identified existing populations of 

mice (i.e., Reithrodontomys spp. and Peromyscus spp.) and least shrews (Cryptotis 

parva ), but cotton rats were absent on our experimental plots before our study (E. E. 

Jorgensen, unpublished data). This initial absence of cotton rats was not unexpected, 

because adequate concealment cover was lacking across our experimental plots at the 

onset of our study. Furthermore, Phillips (1936) had previously reported an absence of 

hispid cotton rats in overgrazed pastures in central Oklahoma. 

The experimental design consisted of 2 treatments ( exclosure fencing and 

nitrogen amendment) randomly applied to the study plots in a 2 x 2 factorial with 4 

replicates per treatment (fenced, nitrogen amendment; fenced, control; unfenced, nitrogen 

amendment; unfenced, control). Fenced plots were surrounded by a 2-m high, 2.5-cm 

chain-link fence that allowed free movement of small mammals between plots but 

restricted access by terrestrial predators and larger mammalian herbivores ( e.g., 

lagomorphs, artiodactyls ). To ensure free movement of adult cotton rats between plots, 

7 .5-cm triangular holes were cut at ground level and spaced at 2-m intervals around 

fenced plots. Beginning in February 1999, we added nitrogen fertilizer (34% ammonium 

nitrate) to nitrogen-amended plots at a rate of 3.1, 5.1, 4.1, and 4.1 kg N/ha in February, 

May, August, and November, respectively. Nitrogen amendment rates corresponded to 

seasonal rainfall proportions for central Oklahoma. Oklahoma receives approximately 10 

kg/ha/yr of nitrate via atmospheric deposition (National Atmospheric Deposition 

Program (NRSP-3)/National Trends Network 2002). Nitrogen amendments of 16.4 kg 

N/ha/yr were chosen for the study because rates of atmospheric deposition of nitrogen in 
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excess of this occur in industrialized regions of the globe and are projected to focrease for 

the foreseeable future (Brimblecombe and Stedman 1982, Galloway et al. 1994, U.S. 

Environmental Protection Agency 1995, Vitousek et al. 1997b). 

Methods 

Vegetation sampling and analyses 

We collected aboveground live mass in August 1998, 1999, and 2000. Current 

year's growth was clipped at the soil surface within 5, 0.1-m2 quadrats/plot and separated 

by monocots and dicots. We dried clipped samples at 60°C in a forced-air oven to a 

constant weight. Samples were weighed and recorded as monocot, dicot, and total mass. 

We estimated canopy cover in May and September 1999 and 2000 within 25, 0.1-m2 

quadrats per plot using the Daubenmire cover class method (Bonham 1989). Canopy 

cover was estimated by species and later summarized as monocot, dicot, and total cover. 

We tested for pre-treatment differences in monocot, dicot, and total aboveground 

live mass and canopy cover across our treatment plots using 2-way analysis of variance 

(PROC MIXED; SAS 2000). Although we did not sample canopy cover before initial 

nitrogen amendments (February 1999), we used our sampling period from May 1999 to 

test for "pre-treatment" differences in canopy cover. To test for post-treatment 

differences, we tested for a nitrogen effect between amended and non-amended plots for 

total canopy cover and aboveground live mass using 2-way analysis of variance with 

repeated measures (PROC MIXED; SAS 2000). We fitted a multiple variance model and 

used the Kenward-Roger approximation to calculate effective degrees of freedom (PROC 
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MIXED, SAS 2000; Kenward and Roger 1997). We used least-squared means separation 

tests for all significant main effects with a significance level of P < 0.05. 

Small-mammal sampling 

We sampled small mammals with Sherman live traps (7.6 x 8.9 x 22.9 cm) for 3 

consecutive days at 3-5-week intervals from July 1999 to December 2000. Each study 

plot had 25 traps systematically spaced at 7-m intervals for a potential of 1,200 trap 

nights/sampling period. Traps were set each afternoon, baited with rolled oats, provided 

with cotton for warmth during cold weather, and checked between 0600 and 1200 hours. 

We released captured animals immediately after marking with a unique number via toe 

clipping. We conducted trapping following standards established by the Animal Care 

and Use Committee of the American Society ofMammalogists (1998) and operated 

under Animal Care and Use Protocol 723, Oklahoma State University. We recorded the 

trap station, species, mass, sex, and reproductive status (scrotal or non-scrotal for males; 

pregnant, lactating, and open or closed vagina for females) for each individual. 

Additionally, we recorded instances of accidentally sprung traps (i.e., sprung traps not 

resulting in capture). 

We used minimum number known alive (MNKA; Krebs 1966) as an index to 

abundance and number of juveniles (::S 45g) per female as an index to reproductive 

success for each plot at each sampling period. We compared MNKA and reproductive 

success between treatment plots using 2-way analysis of variance with repeated measures 

(PROC MIXED, SAS 2000). We fitted a multiple variance model and used the 

Kenward-Roger approximation to calculate effective degrees of freedom (PROC 

MIXED, SAS 2000; Kenward and Roger 1997). We used least-squared means separation 
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tests for all significant main effects. Because cotton rats were colonizing experimental 

plots during the first few sampling periods and number of captures for all species was 

low, statistical comparisons ofMNKA and reproductive success were limited to October 

1999-December 2000 (i.e., 16 trapping periods). A significance level of P :'.S 0.05 was 

used for all analyses. 

Population Modeling 

We used a multi-strata model (Hestbeck et al. 1991, Brownie et al. 1993) in 

Program MARK (White and Burnham 1999) to estimate apparent survival, capture 

probabilities, and movement probabilities of cotton rats across our study plots. Modeling 

for potential differences in survival between strata was our primary interest, thus we 

examined models with varying strata effects (i.e., no treatments, nitrogen only, fence 

only, and combination of fence and nitrogen) for survival. Models were ranked using 

Akaike's Information Criterion (AICc) and were averaged to determine final parameter 

estimation using AICc weights (Burnham and Anderson 1998). Our global model (i.e., 

most parameterized) included sex and strata effects for all parameters and time effects 

(i.e., nonbreeding and breeding seasons) for survival and recapture probabilities. We 

used trapping data to determine breeding and nonbreeding seasons and defined an 

interval between trapping periods as breeding season if~10% of females were in 

reproductive condition (i.e., pregnant, lactating, or open vagina) during the latter trapping 

period. 

We also modeled for differences in transition probabilities ofcotton rats between 

strata with emphasis on male movement. Using the most parsimonious model from the 

survival analysis, we examined models with varying sex and strata effects for transition 
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probabilities. Additionally, we examined models accounting for unequal distances 

between treatment plots by adjusting transition probabilities with the average distance 

between plot-center of each plot to plot-center of all plots in a different stratum. 

Transition probabilities were held constant across time in all models. 

For all models, we accounted for varying time intervals between sampling periods 

(3-5 weeks) by adjusting parameter estimates to a 30-day interval between periods. We 

adjusted capture probabilities for varying sampling effort among strata by accounting for 

sprung traps (i.e., traps that captured animals and those accidentally sprung) in all 

models. Lacking specific information on timing of trap-springing, we assumed that each 

trap was sprung halfway between trap-setting and trap-checking (Nelson and Clark 1973, 

Beauvais and Buskirk 1999). Thus, sampling effort for each reproductive season was 

calculated for each stratum as: 

L t; - (s; x 0.5) 
i 

b 

where t was the maximum number of potential trap nights within trapping period i (i.e., 

maximum = 300 trap nights/stratum), s was the number of sprung traps at trapping period 

i, and b was the maximum number of potential trap nights during a season (i.e., breeding 

or nonbreeding). 

Examination of instantaneous sampling assumption 

Similar to the standard Jolly-Seber model, the multi-strata model assumes all 

samples are instantaneous (i.e., all mortality and movement occurs between, not within, 

sampling periods; Hestbeck et al. 1991); however, this assumption can never be strictly 

met (Hestbeck et al. 1991 ). We examined departures from this assumption by identifying 
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all occasions when an individual cotton rat was captured in multiple strata within a 

sampling period. The encounter histories in the original analysis for those individuals 

were coded by recording the stratum where each cotton rat was initially captured as the 

encounter for a given sampling period. To investigate violations of the instantaneous 

sampling assumption, we performed 2 additional analyses with the original candidate set 

of models to determine if model rankings, identified patterns, and estimates of survival 

and male movement from the original analysis were robust to departures from this 

assumption. One analysis {Test-I) was performed by changing the encounter history for 

every cotton rat captured on multiple strata within a sampling period to the alternative 

stratum; the other analysis (Test-2) used the same encounter histories from Test- I but 

changed the encounter histories for the 9 observations where cotton rats were captured on 

3 strata within a sampling period to the third alternative stratum. 

Results 

Vegetation analyses 

· We detected no pretreatment differences in monocot, di cot, and total aboveground 

live mass or canopy cover (P > 0.2 for all tests); thus, we assumed homogeneity among 

experimental plots with respect to aboveground live mass and canopy cover before 

nitrogen amendments. Although no difference in total canopy cover was observed 

among treatment plots following nitrogen amendments (nitrogen effect: F1.12.B = 0.42, P = 

0.28; fence effect: F 1,12.8 = 0.42, P = 0.53; Figure 1.2), we observed a nitrogen effect on 

total aboveground live mass (F1.17.9 = 7.61, P = 0.01; Figure 1.3) but no fence effect 

(F1,17.9 = 1.46, P = 0.24). Total aboveground live mass was greater on nitrogen-amended 
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plots than on non-amended plots in 1999 (t35_7 = -2.19, P = 0.04) and 2000 (t35.7 = -2.24, P 

= 0.03; Figure 1.3); however, nitrogen treatment and year did not interact (F1,24.8 = 0.42, P 

> 0.24). 

Small-mammal sampling and modeling 

Between July 1999 and December 2000, we recorded 7,955 small-mammal 

captures in 20 sampling periods (i.e., 24,000 potential trap nights). Cotton rats accounted 

for 5,468 captures of982 individuals (males= 538, females= 444) and were the most 

abundant small-mammal species on our experimental plots. 

We observed 2-way interactions for MNKA of cotton rats between the fenced 

treatment and time (F15, 110 = 1.91, P = 0.024) and between nitrogen and fence treatments 

(F1, 24.3 = 10.87, P = 0.003). Tests of effect slices (PROC MIXED, SAS 2000) identified 

statistical differences across fenced and unfenced plots when amended with nitrogen (F1, 

24.3 = 31.30, P < 0.001) and across nitrogen and control plots when fenced (F1,24.3 = 

21.45, P < 0.001). Abundance of cotton rats tended to be higher on nitrogen-fenced plots 

(x = 18.4, SE= 0.8) compared with other treatment plots (control: x = 9.8, SE= 1.0; 

fenced control: x = 11.2, SE= 0.8; unfenced nitrogen: x = 9.7, SE= 1.0; Figure I.4). 

Similarly, we observed a fence effect for reproductive success (F1, 42.8 = 4.81, P = 0.03) 

with higher success on fenced plots (fenced: x = 1.5, SE= 0.2; unfenced: x = 0.9, SE= 

0.1; Figure 1.5); however, we observed no evidence to support a nitrogen effect on 

reproductive success (nitrogen: x = 1.3, SE= 0.2; control: x = 1.2, SE= 0.2; F1, 42.8 = 

0.24, P = 0.62). 
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The minimum AICc multi-strata model provided estimates of survival on fenced 

and unfenced plots, regardless of nitrogen amendments, for males and females across 

breeding seasons, and movement for males among all strata with average distance 

between strata as a covariate (Table 1.1 ). Model-averaged estimates of survival for males 

and females tended to be higher on fenced plots except during the breeding season in 

2000 (Figure 1.6). Model-averaged transition probabilities of males between strata 

ranged from 0.01 (control to fenced control) to 0.10 (fenced control to nitrogen) and 

showed no clear patterns of movement toward a particular strata (Figure I. 7). 

Examination of instantaneous sampling assumption 

Cotton rats were captured on multiple strata within a sampling period (Table 1.2); 

thus, we evaluated effects of violating the instantaneous sampling assumption by 

performing 2 additional analyses with the original candidate set of models. The 2 

minimum AICc models and respective AICc weights varied across analyses. Model

averaged estimates of survival for males and females during the first breeding season 

(Breed 1 = 2 August 1999-21 November 1999) varied between fenced and unfenced 

strata (Table 1.3), but patterns with respect to the treatments were the same (i.e., higher 

survival in fenced plots). The percent differences in estimates of survival between the 

original analysis and Test-I or Test-2 were~ 5.7 % in all other seasons, and patterns with 

respect to the treatments were the same. Although transition probabilities for males 

varied between the 3 analyses, probabilities in all models were low (~ 0.1) and displayed 

no clear patterns. Thus, we assumed that our original analysis was robust to violations of 

the instantaneous sampling assumption. 
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Discussion 

Nitrogen amendments to old-field plots at CSEAR caused increases in total 

aboveground live mass of vegetation during the first year following application (i.e., 

1999), but there was no evidence for an effect on canopy cover; thus, vegetation was 

thicker on nitrogen-amended plots. Similarly, increases in aboveground plant biomass 

within 1 year of nitrogen amendments were reported for grasslands in Minnesota (Tilman 

1987). Although the effect of nitrogen amendments on aboveground live mass was 

additive (i.e., no interaction with time), aboveground live mass remained greater on 

nitrogen-amended plots in 2000; thus, testing of our a priori predictions concerning 

changes in population characteristics of cotton rats was valid. Future studies on our 

experimental plots should account for potential differences in nutritional quality of 

vegetation (e.g., nitrogen availability in plant foods). However, given the lack of 

adequate habitat to support cotton rat populations at the onset of our study, our 

predictions concerning population parameters were based primarily on increased 

concealment capability (i.e., increased canopy cover or thicker cover to protect from 

predation) on nitrogen-amended plots. 

We did not observe predicted patterns in survival, reproductive success, or 

transition probabilities regarding nitrogen amendments, although we observed limited 

evidence for our prediction that cotton rat densities would be higher on nitrogen-amended 

plots. The combination of increased aboveground live mass and protection from 

predation on nitrogen-fenced plots likely accounted for differences in population density 

of cotton rats among the treatment plots. That conclusion was partially supported by 
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higher survival rates (Figure 1.6) and reproductive success (Figure 1.5) of cotton rats on 

fenced plots compared with open plots, regardless of nitrogen additions. 

Exclosures that control access to predators have been used to address hypotheses 

and effects of predation on population characteristics of small mammals (Schnell 1968, 

Desy and Batzli 1989, Klemola et al. 2000). Exclosures at CSEAR were designed 

primarily to decrease competition between small mammals and larger herbivores; 

however, in the absence of a fence effect on vegetation, we attribute differences in 

survival, abundance, and reproductive success between unfenced and fenced plots to 

differential predation rather than exclusion of larger herbivores. Although variable across 

seasons, survival tended to be higher on fenced plots for male and female cotton rats with 

the most pronounced effect during autumn (September-December; Breed 1 and Non 2, 

Figure I. 7). Similarly, our measure of reproductive success (juveniles/female), which 

reflects juvenile survival, was higher on fenced plots, regardless of nitrogen additions. 

Thus, our results for survival, reproduction, and abundance exhibited more of a fence 

effect than the predicted nitrogen effect. 

Predation has regulatory effects on population densities of small mammals (Desy 

and Batzli 1989, Tait and Krebs 1983, Reid et al. 1995, Klemola et al. 2000). Sign and 

observations of terrestrial and avian predators, especially coyotes (Canis latrans), red

tailed hawks (Buteo jamaicensis), and northern harriers (Circus cyaneus), were prevalent 

at CSEAR but not inside fenced plots. The only potential predators observed inside 

fenced plots were black rat snakes (Elaphe obsoleta) and speckled king snakes 

(Lampropeltis getula holbrooki). The most common and frequently observed predator at 

CSEAR, especially in autumn, was the northern harrier. Cotton rats are common prey of 
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northern harriers (Carter 1984), and high densities of northern harriers have been 

associated with high densities of cotton rats (Baumgartner and Baumgartner 1944, Odum 

1947). We frequently observed northern harriers hunting across our experimental plots 

but never observed them landing inside a fenced plot. Northern harriers widely forage 

and hunt with a low coursing flight frequently pouncing on prey located via visual and 

acoustical cues (Rice 1982, 1983); thus, size of the exclosures (0.16 ha) and height of the 

fences (2 m) likely limited access to northern harriers, as well as other aerial predators, 

and accounted for discrepancies in survival between fenced and unfenced plots during the 

autumn migration of northern harriers. However, we did not collect empirical data on 

predator abundance and activity, so our observations were only anecdotal. 

Movement probabilities of male cotton rats displayed no clear trends (Figure I. 7) 

and did not support our predictions related to movements toward nitrogen-amended plots. 

Transition probabilities were relatively low for all strata to strata movements(~ 0.1) and 

agreed with other studies that have demonstrated low movement probabilities for cotton 

rats in fragmented landscapes (Diffendorfer et al. 1995, Diffendorfer et al. 1999). We 

note that transition probabilities were calculated for strata-to-strata movements (i.e., not 

plot-to-plot) and held constant across time. Because movement rates of cotton rats may 

vary temporally (Diffendorfer et al. 1995), a more detailed examination of cotton rat 

movements incorporating seasonal effects and plot-to-plot movements could provide 

important information pertaining to dispersal and distribution across our experimental 

plots relative to nitrogen additions. 

Hall et al. (1991) reported changes in populations of meadow voles (Microtus 

pennsylvanicus) resulting from changes in plant community structure, cover, and 
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diversity after supplementation of nitrogen. Although aboveground biomass was higher 

on nitrogen-amended plots, non-amended plots had higher plant diversity and quality of 

cover, resulting in positive population growth rates and higher population densities, rates 

ofrecruitment, and survivorship for voles (Hall et al. 1991). Similarly, Anderson and 

Barrett (1982) reported increased aboveground biomass and decreased plant species 

diversity on nutrient-amended sites, resulting in decreased densities and survivorship of 

meadow voles. Although our study incorporated lower levels of nitrogen amendments 

(16.4 kg N/ha/yr) and was shorter in duration (<2 yr) than the above studies, we still 

expected to observe increases in aboveground live mass resulting from nitrogen 

amendments and subsequent effects on small-mammal population dynamics. However, 

because changes in plant species richness and abundance lag behind changes in 

aboveground biomass (Tilman 1987, 1988; Wedin and Tilman 1996), we did not expect 

to observe a detectable decrease in species diversity of plants on nitrogen-amended plots 

and subsequent shift of the cotton rat population from nitrogen to non-amended plots 

given the duration of our study. As low-level nitrogen amendments continue to be 

applied at CSEAR, we predict nitrogen-mediated shifts in the distribution of cotton rats to 

occur as a result of the cumulative effect of nitrogen amendments and decreased plant 

species diversity on nitrogen-amended plots. Specifically, we predict that cotton rat 

densities on control plots, especially fenced plots with no nitrogen amendment, will 

eventually exceed those on nitrogen-amended plots as a result of higher plant species 

diversity, food availability, and better-quality cover. 
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Table 1.1. Model parameters and AICc values for multi-strata models examining survival (S) and transition probabilities (PSI) of 

hispid cotton rats (Sigmodon hispidus) across a landscape manipulated with nitrogen amendments and exclosure fencing at the Center 

for Subsurface and Ecological Assessment Research, Pontotoc County, Oklahoma, 1999-2000. Capture probabilities (p) varied by 

sex and breeding season across all strata in all models. 

AI Cc Number of 

Model ~AI Cc weights parameters Deviance 

{S(sex*breeding)FENCE p(sex*breeding)ALL PS/(male)ALL distance}a 0.00 0.90 54 4,030.100 
N w 

{ S(sex*breeding)FENCE p( sex*breeding)ALL PS/(male )ALL} b 5.45 0.06 59 4,025.095 

{S(sex*breeding)FENCE p(sex*breeding)ALL PSJ(sex)ALL distancet 7.46 0.02 60 4,025.010 

{ S(sex*breeding)FENCE p(sex*breeding)ALL PS/(sex)ALL} d 8.28 0.01 69 4,006.892 

a Survival varies by sex and breeding season for fenced and unfenced plots (i.e., no nitrogen effect) and transition probabilities vary 

for males across all strata with distance as a covariate and are held constant for females (i.e., no strata effects). 

b Survival varies by sex and breeding season for fenced and unfenced plots (i.e., no nitrogen effect) and transition probabilities vary 

for males across all strata and are held constant for females (i.e., no strata effects). 



N 
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Table 1.1. (Continued) 

c Survival varies by sex and breeding season for fenced and unfenced plots (i.e., no nitrogen effect) and transition probabilities vary 

by sex across all strata with distance as a covariate. 

d Survival varies by sex and breeding season for fenced and unfenced plots (i.e., no nitrogen effect) and transition probabilities vary 

by sex across all strata. 



Table 1.2. Total individual hispid cotton rats captured and number captured on multiple 

strata within each sampling period at the Center for Subsurface and Ecological 

Assessment Research, Pontotoc County, Oklahoma, 1999-2000. 

Sampling 

date 

99 Oct 18 

99 Nov 21 

99 Dec 11 

00 Jan 9 

00 Feb 6 

00 Mar 5 

00 Apr 2 

00 May5 

00 May22 

00 Jun 29 

00 Jul 28 

00 Aug 20 

00 Sep 10 

00 Oct 8 

00 Oct 29 

00 Dec 3 

Number of 
individuals 

captured 

75 

108 

139 

118 

95 

107 

78 

107 

111 

157 

235 

287 

315 

348 

302 

200 

Individuals captured Individuals captured 

on 2 strata on 3 strata 

11 

9 

10 

3 

3 

10 

11 

7 

18 2 

22 3 

24 1 

18 1 

12 2 

6 

10 

16 

25 



Table 1.3. Model-averaged survival estimates from the original analysis and analyses 

(Test-I and -2) examining violations to the instantaneous sampling assumption for male 

and female hispid cotton rats on unfenced and fenced plots during the first breeding 

season (Breed 1 = 2 August 1999-21 November 1999) at the Center for Subsurface and 

Ecological Assessment Research, Pontotoc County, Oklahoma. 

Survival estimate % difference between 

Original vs. Original vs. 

Strata Original Test-I Test-2 Test-I Test-2 

Unfenced 

Male 0.377 0.472 0.466 25.2 23.6 

Female 0.671 0.584 0.584 14.9 14.9 

Fenced 

Male 0.626 0.570 0.568 9.8 10.2 

Female 0.891 0.884 0.884 0.8 0.8 
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Figure 1.1. Layout of nitrogen and exclosure treatments for experimental plots at the 

Center for Subsurface and Ecological Assessment Research, Pontotoc County, 

Oklahoma, 1999-2000. 

Figure 1.2. Percent canopy cover of vegetation on control and nitrogen-amended plots in 

spring (SP) and fall (FA) at the Center for Subsurface and Ecological Assessment 

Research, Oklahoma, 1999-2000. Error bars represent 1 standard error from the mean. 

Figure 1.3. Total aboveground live mass (g/m2) of vegetation on control and nitrogen

amended plots at the Center for Subsurface and Ecological Assessment Research, 

Oklahoma, August 1998-2000. Error bars represent 1 standard error from the mean. 

Figure 1.4. Estimates and standard errors of minimum number known alive (MKNA) for 

hispid cotton rats (Sigmodon hispidus) across a landscape manipulated with nitrogen and 

exclosure fencing at the Center for Subsurface and Ecological Assessment Research, 

Pontotoc County, Oklahoma, 1999-2000. Each treatment comprised 4 replicate plots. 

Figure 1.5. Estimates and standard errors of juveniles/female for cotton rats (Sigmodon 

hispidus) across a landscape manipulated with nitrogen and exclosure fencing at the 

Center for Subsurface and Ecological Assessment Research, Pontotoc County, 

Oklahoma, 1999-2000. Each treatment comprised 4 replicate plots. 

27 



Figure 1.6. Model-averaged survival estimates and standard errors of a) male and b) 

female hispid cotton rats (Sigmodon hispidus) on fenced and unfenced plots at the Center 

for Subsurface and Ecological Assessment Research, Pontotoc County, Oklahoma, 1999-

2000. We adjusted survival estimates to a 30-day interval. We used trapping data to 

determine breeding and nonbreeding seasons and defined an interval between trapping 

periods as breeding season if2:10% of females were in reproductive condition (i.e., 

pregnant, lactating, or open vagina) during the latter trapping period (Breed 1 = 2 August 

1999-21 November 1999; Non 1 = 22 November 1999-6 February 2000; Breed 2 = 7 

February 2000 - 10 September 2000; Non 2 = 11 September 2000 - 3 December 2000). 

Figure I. 7. Model-averaged transition probabilities of male hispid cotton rats (Sigmodon 

hispidus) across a landscape manipulated with nitrogen amendments and exclosure 

fencing at the Center for Subsurface and Ecological Assessment Research, Pontotoc 

County, Oklahoma, 1999-2000. The larger the arrow between each treatment-to

treatment combination, the greater the probability of movement toward a particular strata. 

We adjusted transition probabilities to a 30-day interval. 
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CHAPTER II 

POPULATION DYNAMICS OF HARVEST MICE (REITHRODONTOMYS 
FULVESCENS AND REITHRODONTOMYS MONTANUS) ACROSS A 

NITROGEN-AMENDED LANDSCAPE 

Abstract: Population dynamics of some small-mammal species appear to be 

regulated by plant-community structure, vegetation cover, plant diversity, and food 

quality. Thus, changes in the plant community associated with nitrogen amendments 

would likely affect dynamics and structure of small-mammal populations. We conducted 

a mark-recapture experiment to examine population dynamics of the fulvous harvest 

mouse (Reithrodontomys fulvescens) and plains harvest mouse (Reithrodontomys 

montanus) in response to low-level nitrogen amendments (16.4 kg N/ha/yr) in an old-

field grassland. The experimental design consisted of 16, 0.16-ha plots with 4 replicates 

of each treatment combination (fenced, nitrogen amendment; unfenced, nitrogen 

amendment; fenced, control; unfenced, control). We predicted that densities, survival, 

and transition probabilities would be greater for both species on nitrogen-amended plots 

because of greater aboveground biomass and cover. Population densities of R. montanus 

tended to be highest on nitrogen plots, but lowest on nitrogen-fenced plots during winter 

1999-2000. This was opposite the pattern observed for hispid cotton rats (Sigmodon 

hispidus; Clark et al. in review) and may represent interspecific interaction between R. 

montanus and cotton rats. Survival of R. montanus did not exhibit any distinct patterns 

over time except for the non-breeding season in 2000, when survival was greater on 

fenced plots, regardless of nitrogen amendments. We observed no distinct patterns in 

survival or density of R. fulvescens with regard to treatments. Likewise, transition 

probabilities for both species did not vary across treatments. As low-level nitrogen 

36 



amendments continue to be applied, we predict survival and densities of R. montanus and 

R. fulvescens on control plots, especially fenced plots with no nitrogen amendment, will 

eventually exceed those on nitrogen-amended plots as a result of higher plant species 

diversity, food availability, and better quality cover; however, we postulate that the 

distribution of harvest mice, especially R. montanus, may be affected more by indirect 

effects (i.e., avoidance of areas with high densities of cotton rats) from nitrogen 

amendments. 

Introduction 

Future atmospheric deposition of nitrogen from anthropogenic activities is 

expected to increase as the global human population and reliance upon fossil fuels 

increases (Galloway et al. 1994, U.S. Environmental Protection Agency 1995). Thus, the 

amount of unretained nitrogen cycling through ecosystems is likely to increase and 

reasonably can be expected to cause future environmental problems. These 

biogeochemical alterations of the nitrogen cycle can dramatically change dominance 

hierarchies among species and decrease overall biodiversity of ecosystems by altering 

species composition, species diversity, and structure of food webs (Vitousek et al. 1997a, 

Vitousek et al. 1997b). 

Nitrogen enrichment causes qualitative and quantitative changes in grassland 

vegetation. These changes result in an increase in biomass and decrease in plant species 

diversity (Grant et al. 1977, Tilman 1987, Carson and Barrett 1988, Hall et al. 1991, 

Tilman 1996, Wilson and Tilman 2002, Clark et al. in review). For example, after 9 

years of annual nutrient enrichment, Carson and Barrett (1988) reported 3 contrasting 
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types of old-field communities with regard to structure and composition and a decrease in 

species diversity on nutrient-rich plots. Furthermore, long-term nitrogen amendments in 

artificially constructed plant communities dominated by C4 prairie grasses resulted in 

nitrogen-mediated shifts to C3 nonnative grasses (Wedin and Tilman 1996). 

Population dynamics of some small-mammal species appear to be regulated by 

plant-community structure, vegetative cover, plant diversity, and food quality (Hall et al. 

1991). Thus, plant community changes associated with nitrogen amendments would 

likely impact dynamics and structure of small-mammal populations. Hall et al. ( 1991) 

reported changes in meadow vole (Microtus pennsylvanicus) populations resulting from 

changes in plant community structure, cover, and diversity after supplementation of 

nitrogen. Although aboveground biomass was higher on nitrogen-amended plots, non

amended plots had higher plant diversity and quality of cover, resulting in positive 

population' growth rates and higher population densities, rates of recruitment, and 

survivorship for voles (Hall et al. 1991). Similarly, Anderson and Barrett (1982) reported 

increased aboveground biomass and decreased plant species diversity on nutrient

amended sites, resulting in decreased densities and survivorship of meadow voles. 

Populations of fulvous harvest mice (Reithrodontomys fulvescens) and plains 

harvest mice (R. montanus) are sympatric and common in old-field habitats of central 

Oklahoma (Goertz 1963). Both species rely heavily on invertebrates and seeds (Brown 

1946, Gaertner 1968, Kincaid and Cameron 1982), and Goertz (1963) reported a 

tendency toward habitat segregation with R. Julvescens using areas of heavier grassy 

cover than R. montanus. Although dynamics of R. fulvescens and R. montanus have not 

been examined with respect to nitrogen amendments, increases in aboveground biomass 
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and cover resulting from nitrogen amendments would likely influence population 

distribution and dynamics. In Texas, Spencer and Cameron (1985) reported higher use of 

unmowed compared to mowed habitats by R. fulvescens and attributed this difference to 

removal of the vertical component (i.e., shrub layer) of habitat structure. Similarly, 

densities of R. fulvescens were higher in unmowed patches compared to mowed patches 

(Spencer and Cameron 1985). 

Our objective was to examine how population dynamics of R. fulvescens and R. 

montanus responded to an old-field landscape altered by low-level nitrogen amendments 

(16.4 kg N/ha/yr) and exclosure fencing (i.e., constraints on herbivory). Because changes 

in plant species richness and abundance are not as speedily observed as changes in 

aboveground biomass (Tilman 1987, 1988; Wedin and Tilman 1996), we did not expect 

to observe a decrease in plant species diversity on nitrogen-amended plots given the 

duration of our study (<2 yr). However, we did expect increases in aboveground biomass 

and cover on nitrogen-amended plots. Thus, we predicted that densities, survival rates, 

and transition probabilities of both species of harvest mice would be higher on nitrogen

amended plots as a result of increased aboveground plant biomass and cover. 

Study Area 

The field research was conducted at the Environmental Protection Agency's 

Center for Subsurface and Ecological Assessment Research (CSEAR) near Garr Corner, 

Pontotoc County, Oklahoma. The study area was an old-field site composed of 16 square 

0.16-ha experimental plots surrounded and separated from adjacent plots by a 5-m 

uninhabitable mowed strip (total area= 3.45 ha; Figure 11.1). The area had not been 

cultivated since 1950 but was heavily grazed during the last half-century. Dominant 
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vegetation consisted of early to mid-successional grasses and forbs, including old-field 

threeawn (Aristida oligantha), broomsedge bluestem (Andropogon virginicus), western 

ragweed (Ambrosia psilostachya ), and heath aster (Aster ericodes ). Preliminary sampling 

of small mammals at CSEAR identified existing populations of mice (i.e., 

Reithrodontomys spp. and Peromyscus spp.) and least shrews ( Cryptotis parva ), but 

hispid cotton rats (Sigmodon hispidus) were absent on our experimental plots before 

sampling for our study (E. E. Jorgensen, unpublished data). This initial absence of cotton 

rats was not unexpected, because Phillips (1936) had previously reported an absence of 

hispid cotton rats in overgrazed pastures in central Oklahoma. 

The experimental design consisted of 2 treatments ( exclosure fencing and 

nitrogen amendment) randomly applied to the study plots in a 2 x 2 factorial with 4 

replicates per treatment (fenced, nitrogen amendment; fenced, control; unfenced, nitrogen 

amendment; unfenced, control). Fenced plots were surrounded by a 2-m high, 2.5-cm 

chain-link fence that allowed free movement of small mammals between plots but 

restricted access by terrestrial predators and larger mammalian herbivores ( e.g., 

lagomorphs, artiodactyls). To ensure free movement between plots, 7.5-cm triangular 

holes were cut at ground level and spaced at 2-m intervals around fenced plots. 

Beginning in February 1999, we added nitrogen fertilizer (34% ammonium nitrate) to 

nitrogen-amended plots at a rate of 3 .1, 5 .1, 4.1, and 4.1 kg N/ha in February, May, 

August, and November, respectively. Nitrogen amendment rates corresponded to 

seasonal rainfall proportions for central Oklahoma. Oklahoma receives approximately 10 

kg/ha/yr of nitrate via atmospheric deposition (National Atmospheric Deposition 

Program (NRSP-3)/National Trends Network 2002). Nitrogen amendments of 16.4 kg 
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N/ha/yr were chosen for the study because rates of atmospheric deposition of nitrogen in 

excess of this occur in industrialized regions of the globe and are projected to increase for 

the foreseeable future (Brimblecombe and Stedman 1982, Galloway et al. 1994, U.S. 

Environmental Protection Agency 1995, Vitousek et al. 1997b). Clark et al. (in review) 

sampled aboveground live-mass and canopy cover throughout the current study and 

reported differences in aboveground live-mass between nitrogen-amended and non

amended plots following initiation of nitrogen applications. 

Methods 

Small-mammal sampling- We sampled small mammals with Sherman live traps 

(7.6 x 8.9 x 22.9 cm) for 3 consecutive days at 3-5-week intervals from July 1999 to 

December 2000. Each plot consisted of 25 traps systematically spaced at 7-m intervals; 

thus, we had a potential of 1,200 trap nights/sampling period. Traps were set each 

afternoon, baited with rolled oats, checked between 0600 and 1200 hours, and provided 

with cotton for warmth during cold weather. We released captured animals immediately 

after marking with a unique number via toe clipping. We recorded the trap station, 

species, mass, sex, and reproductive status (scrotal or non-scrotal for males; pregnant, 

lactating, and open or closed vagina for females) for each individual. Additionally, we 

recorded instances of accidentally sprung traps (i.e., sprung traps not resulting in 

capture). 

We used minimum number known alive (MNKA; Krebs 1966) as an index to 

abundance for each plot at each sampling period. We made statistical comparisons of 

MNKA between treatment plots using 2-way analysis of variance with repeated measures 
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(PROC MIXED, SAS 2000). We fitted a multiple variance model using the Kenward

Roger approximation to calculate effective degrees of freedom (PROC MIXED, SAS 

2000; Kenward and Roger 1997) and used least-squared means separation tests for all 

significant main effects. Because small mammals were colonizing experimental plots 

during the first few sampling periods and number of captures for all species was low, 

statistical comparisons of MNKA were limited to October 1999-December 2000 (i.e., 16 

trapping periods). A significance level of P ~0.05 was used for all analyses. 

Population modeling.- We used a multi-strata model (Hestbeck et al. 1991, 

Brownie et al. 1993) in Program MARK (White and Burnham 1999) to estimate apparent 

survival, capture probabilities, and transition probabilities of R. montanus and R. 

Julvescens across our study plots. Modeling for potential differences in survival between 

strata was our primary interest; thus, we examined models with varying strata effects 

(i.e., no treatments, nitrogen only, fence only, and combination of fence and nitrogen) for 

survival. Models were ranked using Akaike's Information Criterion (AICc) and were 

averaged to determine final parameter estimation using AICc weights (Burnham and 

Anderson 1998). Our global model (i.e., most parameterized) included strata effects for 

all parameters and time effects (i.e., breeding or non-breeding season) for survival and 

recapture probabilities, but did not include sex effects. We used trapping data for each 

species to determine breeding and nonbreeding seasons and defined an interval between 

trapping periods as breeding season if~l0% of females were in reproductive condition 

(i.e., pregnant, lactating, or open vagina) during the latter trapping period. 

For all models, we accounted for varying time intervals between sampling periods 

(3-5 weeks) by adjusting parameter estimates to a 30-day interval between periods. We 
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adjusted recapture probabilities for varying sampling effort among strata by accounting 

for sprung traps (i.e., traps that captured animals and those accidentally sprung) in all 

models. Lacking specific information on timing of trap-springing, we assumed that each 

trap was sprung halfway between trap-setting and trap-checking (Nelson and Clark 1973, 

Beauvais and Buskirk 1999). Thus, sampling effort was calculated for each stratum as: 

L t; - (s; x 0.5) 
i 

b 

where t was the maximum number of potential trap nights within trapping period i (i.e., 

maximum= 300 trap nights I stratum), s was the number of sprung traps at trapping 

period i, and b was the maximum number of potential trap nights during a season (i.e., 

breeding or nonbreeding). 

Examination of instantaneous sampling assumption.- Similar to the standard 

Jolly-Seber model, the multi-strata model assumes all samples are instantaneous (i.e., all 

mortality and movement occurs between, not within, sampling periods; Hestbeck et al. 

1991); however, this assumption can never be strictly met (Hestbeck et al. 1991). We 

examined departures from this assumption by identifying all occasions when an 

individual harvest mouse was captured in multiple strata within a sampling period. The 

encounter histories in the original analysis for those individuals were coded by recording 

the stratum where each mouse was initially captured as the encounter for a given 

sampling period. To investigate violations of the instantaneous sampling assumption, we 

performed an additional analysis (Test-I) for each species of harvest mouse with the 

original candidate set of models to determine if model rankings, identified patterns, and 

estimates of survival from the original analysis were robust to departures from this 
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assumption. The Test-I analyses were performed by changing the encounter history for 

each harvest mouse captured on multiple strata within a sampling period to the alternative 

stratum. 

Results 

Small-mammal sampling and modeling.- Between July 1999 and December 

2000, we recorded 7,955 small-mammal captures in 20 sampling periods (i.e., 24,000 

potential trap nights). R. montanus accounted for 1,229 captures of 308 individuals 

(males = 178, females = 130) and R. fulvescens accounted for 742 captures of 182 

individuals (males= 87, females= 95). Cotton rats accounted for 5,468 captures of982 

individuals (males = 538, females = 444) and were the most abundant small-mammal 

species on our experimental plots. Abundance of R. montanus tended to be highest on 

nitrogen plots, but lowest on nitrogen-fenced plots during winter 1999-2000 (3-way 

interaction: nitrogen x fence x time, Fis, 111 = 2.22, P = 0.007; Figure 11.2). We observed 

no distinct patterns (i.e., significant effects) in relation to the treatment plots for MNKA 

estimates of R.fulvescens (Figure 11.3). 

The minimum AICc multi-strata model for R. montanus provided estimates of 

survival on fenced and unfenced plots with transition probabilities constant across strata 

(Table 11.1 ). Survival probabilities exhibited no distinct pattern over time except for the 

non-breeding season in 2000 when survival was greater on fenced plots (Figure 11.4a). 

The minimum AICc model for R.Ju/vescens included survival and transition probabilities 

constant across strata (Table 11.2). Monthly survival estimates for R. Julvescens ranged 

from 0.70 (SE= 0.09; breeding season 1999) to 0.80 (SE= 0.04; non-breeding season 
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1999-2000; Figure Il.5). Transition probabilities among strata from the minimum AICc 

model for R. montanus and R. fulvescens were 0.07 and 0.08, respectively. 

Examination of instantaneous sampling assumption- Both species of harvest 

mice were captured on multiple strata within a sampling period; thus, we evaluated 

effects of violating the instantaneous sampling assumption by performing an additional 

analysis (Test-I) for each species with the original candidate set of models. The 

minimum AI Cc models and respective AI Cc weights for R. fulvescens were similar 

across analyses. Percent differences in estimates of survival for R. fulvescens between 

the original analysis and Test-I in all other seasons were:::; 5.2%, and patterns with 

respect to the treatments were the same. Thus, we assumed that our original analysis for 

R. fulvescens was robust to violations of the instantaneous sampling assumption. 

The minimum AICc models and respective AICc weights for R. montanus varied 

across analyses. Unlike the original analysis, the Test- I analysis did not support a fence 

effect (i.e., higher survival in fenced plots), and model-averaged estimates for the second 

non-breeding season (Non 2 = 11 September 2000-3 December 2000) varied across 

analyses (Table II.3; Figure 11.4b). However, the percent differences in estimates of 

survival between the original analysis and Test- I in all other seasons were :::; 10 %, and 

patterns with respect to the treatments were the same. Thus, we assumed that our original 

analysis for R. montanus was robust to violations of the instantaneous sampling 

assumption, but caution that survival estimates for the second non-breeding season did 

not conclusively support a fence effect. 
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Discussion 

Our predictions concerning changes in population parameters of harvest mice at 

CSEAR were based primarily on increased cover availability on nitrogen-amended plots. 

Although nitrogen amendments to old-field plots at CSEAR caused increases in total 

aboveground live mass (Clark et al. in review), we observed little evidence to support our 

predictions concerning changes in population dynamics of harvest mice and nitrogen 

amendments. During the current study, Clark et al. (in review) found that population 

dynamics of cotton rats at CSEAR were influenced more by the presence of fences than 

nitrogen amendments. Although densities tended to be higher on nitrogen-fenced plots 

compared to other plots, survival and reproductive success of cotton rats were higher on 

fenced plots, regardless of nitrogen amendments (Clark et al. in review). 

Evidence supporting our prediction of higher abundances of R. montanus on 

nitrogen-amended plots was limited. Abundances of R. montanus tended to be highest on 

nitrogen plots but lowest on nitrogen-fenced plots (Figure 11.3). The opposite pattern was 

observed for cotton rats (Clark et al. in review) and may be attributed to negative 

interference and avoidance of cotton rats by R. montanus. Post-hoc exploration of the 

data identified a negative relationship between abundances of cotton rats and R. 

montanus (Figure 11.6). For example, plots with high densities of cotton rats tended to 

have decreased densities of R. montanus compared to plots with lower densities of cotton 

rats (Figure 11.6). 

Avoidance of contact with cotton rats by sympatric species has been reported 

(Terman 1974, Glass and Slade 1980). Although interactions between cotton rats and R. 

montanus are unknown, sympatric populations of R. fulvescens and cotton rats are known 
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to coexist with little evidence of competition (Cameron 1977, Joule and Cameron 1980). 

Cameron and Kincaid (1982) reported larger proportions of captures in aboveground 

traps for R. fulvescens in the presence of cotton rats and suggested increased use in 

aboveground vegetation strata may be a response to avoid encounters with cotton rats. 

Although R. fulvescens and other species in the genus Reithrodontomys are scansorial 

(Rosenzweig et al. 1975, Meserve 1976), it is unclear whether R. montanus is a prolific 

climber. If not, R. montanus may not be as efficient as R. fulvescens at avoiding cotton 

rats, thus, forcing R. montanus to occupy habitats where cotton rats are less dense. 

Despite a clear negative relationship between cotton rats and R. montanus across our 

study area (Figure 11.6), we caution that our inference was based on post-hoc exploration 

and should be investigated in future experiments with sympatric populations of these 

species. 

Survival of R. montanus did not vary across treatments except during the second 

non-breeding season when survival appeared to be higher on fenced plots (Figure 11.4a). 

Clark et al. (in review) reported a similar "fence-effect" for cotton rats and suggested 

decreased predation on fenced plots. However, we caveat against drawing strong 

inference from the apparent fence effect for R. montanus, because results of the analysis 

to test violations of the instantaneous sampling assumption (i.e., Figure 11.4b) and 

original analysis were conflicting. Our Test-1 analysis represented the most conservative 

(i.e., worst case scenario) approach to addressing violations of the instantaneous 

assumption. Although results were conflicting between analyses in relation to the fence 

treatment, results from the 2 analyses were consistent with respect to nitrogen 

amendments and did not support a nitrogen effect; thus, we considered inferences with 
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respect to nitrogen-amendments to be robust to violations of the instantaneous sampling 

assumption. 

We observed no distinct relationships between population characteristics of R. 

fulvescens and experimental plots; thus, it appears that population characteristics of R. 

Julvescens were not influenced by changes in habitat following nitrogen amendments or 

presence of fences. Monthly survival estimates of R. fulvescens at CS EAR were higher 

than estimates of survival from populations in coastal Texas (ca. 0.25-0.43; Spencer and 

Cameron 1985) and Mexico (0.5-0.75 I 3weeks; Petersen 1978). Abundances of R. 

Julvescens remained low throughout our study (Figure 11.3) compared to R. montanus 

(Figure 11.2) and cotton rats (Clark et al. in review); however, average monthly density 

across the study area for R. Julvescens (9.5/ha) was comparable to population estimates 

from other studies (peaks of 11/ha and 28/ha, Cameron 1977; maximum of 18.1/ha, 

Spencer and Cameron 1985; 5.8/ha, Packard 1968). Additionally, we observed a bimodal 

density pattern with peaks in summer and winter as reported in other studies (Packard 

1968, Cameron 1977, Spencer and Cameron 1985). 

Transition probabilities for R. montanus and R. Julvescens displayed no clear 

trends and did not support our predictions related to movements toward nitrogen

amended plots. We note that transition probabilities were calculated for strata-to-strata 

movements (i.e., not plot-to-plot) and held constant across time. Because movement 

rates may vary temporally (e.g., increased movements during breeding activities), a more 

detailed examination of movements incorporating seasonal effects and plot-to-plot 

movements could provide important information pertaining to dispersal and distribution 
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across our experimental plots. Furthermore, these estimates would provide possible 

explanations for temporal differences in survival of harvest mice at CSEAR. 

As with plants (Tilman 1987, 1988; Wedin and Tilman 1996), it is possible that 

small-mammal communities will decrease in species richness and become dominated by 

a few successful competitors that respond to increased nitrogen availability. Interactions 

between hispid cotton rats, the dominant species of small mammal at CSEAR, and other 

species of small mammals may influence population dynamics across our experimental 

plots. As low-level nitrogen amendments continue to be applied at CSEAR, Clark et al. 

(in review) predicted nitrogen-mediated shifts in the distribution of cotton rats from 

nitrogen-amended to non-amended plots as a result of the cumulative effect of nitrogen 

amendments on habitat quality (i.e., decreased species diversity, food availability, and 

quality of cover on nitrogen-amended plots). Likewise, we predict nitrogen-mediated 

shifts in the distribution of harvest mice; however, we postulate that the distribution of 

harvest mice, especially R. montanus, may be affected more by indirect effects (i.e., 

avoidance of areas with high densities of cotton rats) than direct effects of nitrogen 

amendments. 
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Table II. I. Model parameters and AICc values for multi-strata models examining survival (S) and transition probabilities (PSI) of 

plains harvest mice (Reithrodontomys montanus) across a landscape manipulated with nitrogen amendments and exclosure fencing at 

the Center for Subsurface and Ecological Assessment Research, Pontotoc County, Oklahoma, 1999-2000. Capture probabilities {p) 

varied by breeding season across all strata in all models. 

Model 

{S(breeding)FENCE p(breeding)ALL PSINO STRATA} 8 

{S(breeding)NO STRATA p(breeding)ALL PSINO STRATA}b 

{S(breeding)NO STRATA p(breeding)ALL PSI ALLt 

{S(breeding)NITRO p(breeding)ALL PSI ALL}d 

6AICc 

0.00 

2.60 

4.53 

5.15 

AI Cc 

weights 

0.67 

0.18 

0.07 

0.05 

Number of 

parameters Deviance 

23 1,601.236 

22 1,605.958 

31 1,588.571 

34 1,582.644 

a Survival varies by breeding season for fenced and unfenced plots (i.e., no nitrogen effect), and transition probabilities are constant 

across all strata. 

b Survival is constant across all strata and varies by breeding season, and transition probabilities are constant across all strata. 
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Table II. l. (Continued) 

c Survival is constan.t across all strata and varies by breeding season, and transition probabilities vary across all strata. 

d Survival varies by breeding season for nitrogen-amended and non-amended plots (i.e., no fence effect), and transition probabilities 

vary across all strata. 
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Table Il.2. Model parameters and AICc values for multi-strata models examining survival (S) and transition probabilities (PSI) of 

fulvous harvest mice (Reithrodontomys fulvescens) across a landscape manipulated with nitrogen amendments and exclosure fencing 

at the Center for Subsurface and Ecological Assessment Research, Pontotoc County, Oklahoma, 1999-2000. Capture probabilities (p) 

varied by breeding season across all strata in all models. 

Model 

{S(breeding)NO STRATA p(breeding)ALL PS/NO STRATA}3 

{S(breeding)FENCE p(breeding)ALL PS/NO STRATA} b 

{ S(breeding)NITRO p(breeding)ALL PSI NO STRATA t 
{S(breeding)ALL p(breeding)ALL PS/NO STRATA}d 

~AI Cc 

0.00 

4.36 

7.89 

13.16 

AI Cc 

weights 

0.88 

0.10 

0.02 

0.00 

Number of 

parameters Deviance 

19 1,395.286 

25 1,386.416 

23 1,394.395 

31 1,381.636 

a Survival is constant across all strata and varies by breeding season, and transition probabilities are constant across all strata. 

b Survival varies by bieeding season for fenced and unfenced plots (i.e., no nitrogen effect), and transition probabilities are constant 

across all strata. 
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Table II.2. (Continued) 

c Survival varies by breeding season for nitrogen-amended and non-amended plots (i.e., no fence effect), and transition probabilities 

are constant across all strata. 

d Survival varies by breeding season across all strata, and transition probabilities are constant across all strata. 



Table 11.3. Model-averaged survival estimates from the original analysis and analysis 

(Test-I) examining violations to the instantaneous sampling assumption for 

Reithrodontomys montanus across experimental plots during the second non-breeding 

season (Non 2 = 11 September 2000-3 December 2000) at the Center for Subsurface and 

Ecological Assessment Research, Pontotoc County, Oklahoma. 

Survival estimate 

% difference between 

Strata Original Test-I Original vs. Test- I 

Control 0.528 0.674 27.7 

Fenced 0.890 0.749 18.8 

Nitrogen 0.507 0.652 28.6 

Fenced Nitrogen 0.864 0.736 17.4 
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Figure 11.1. Layout of nitrogen and exclosure treatments for experimental plots at the 

Center for Subsurface and Ecological Assessment Research, Pontotoc County, 

Oklahoma, 1999-2000. 

Figure 11.2. Estimates and standard errors (±1 SE) of minimum number known alive 

(MKNA) for plains harvest mice (Reithrodontomys montanus) across a landscape 

manipulated with nitrogen and exclosure fencing at the Center for Subsurface and 

Ecological Assessment Research, Pontotoc County, Oklahoma, 1999-2000. Each 

treatment comprised 4 replicate plots. 

Figure 11.3. Estimates of minimum number known alive (MKNA) for fulvous harvest 

mice (Reithrodontomysfulvescens) across a landscape manipulated with nitrogen and 

exclosure fencing at the Center for Subsurface and Ecological Assessment Research, 

Pontotoc County, Oklahoma, 1999-2000. Each treatment comprised 4 replicate plots. 

Figure 11.4. Model-averaged survival estimates and standard errors (±1 SE) from the a) 

original and b) Test-I analyses for the plains harvest mouse (Reithrodontomys montanus) 

across experimental plots at the Center for Subsurface and Ecological Assessment 

Research, Pontotoc County, Oklahoma, 1999-2000. Breeding and non-breeding seasons 

were determined from reproductive data (Breed 1 = 7 July 1999-11 December 1999, Non 

1 = 12 December 1999-6 February 2000, Breed 2 = 7 February 2000-10 September 

2000, Non 2 = 11 September 2000-3 December 2000). 
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Figure II.5. Model-averaged survival estimates and standard errors (±1 SE) for the 

fulvous harvest mouse (Reithrodontomysfulvescens) across experimental plots at the 

Center for Subsurface and Ecological Assessment Research, Pontotoc County, 

Oklahoma, 1999-2000. Breeding and non-breeding seasons were determined from 

reproductive data (Breed 1 = 7 July 1999-21 November 1999, Non 1 = 22 November 

1999-6 February 2000, Breed 2 = 7 February 2000-8 October 2000, Non 2 = 9 October 

2000-3 December 2000). 

Figure 11.6. Relationship of minimum number known alive (MNKA) for the plains 

harvest mouse (Reithrodontomys montanus) and hispid cotton rat (Sigmodon hispidus) 

across experimental plots at the Center for Subsurface Ecological Assessment Research, 

Pontotoc County, Oklahoma, 1999-2000. Points represent the estimate of MK.NA/plot 

for each species during each sampling period. 
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CHAPTER III 

NITROGEN CONCENTRATION OF STOMACH CONTENTS AS AN INDEX OF 
DIETARY NITROGEN FOR HISPID COTTON RATS (SIGMODON HISPIDUS) 

Abstract: We examined the reliability of using nitrogen concentration of stomach 

contents from hispid cotton rats (Sigmodon hispidus) as an index of dietary nitrogen. 

Stomach contents ofhispid cotton rats fed pelleted diets varying in nitrogen concentration 

were analyzed for stomach nitrogen. Regression analysis revealed a positive linear 

relationship between stomach and dietary nitrogen, but the relationship was not 1: 1. 

Thus, inverse estimation of the regression equation can be used to adjust for a lack of a 

1: 1 ratio and obtain more reliable and accurate estimates of diet quality. Although we 

expected this relationship to be robust to its application in field studies, model evaluation 

experiments with natural forages provided limited support for using our pelleted diet 

model to estimate dietary quality of cotton rats in field studies. The pelleted diet model 

consistently underestimated dietary nitrogen and was sensitive to estimates pertaining to 

cotton rats fed specific forages. We suggest developing multiple models with forages 

known to occur in the diet and at different stages of growth to account for variation in 

seasonal nitrogen availability and succulence of vegetation. We conclude that the 

applicability of using nitrogen concentration of the stomach contents of cotton rats as an 

index to dietary nitrogen is dependent on the level of accuracy and precision required in 

estimating nitrogen concentration of foods consumed. 

69 



INTRODUCTION 

Availability of nitrogen-containing nutrients (e.g., protein) is an important factor 

in determining food quality for herbivores (White 1993). Therefore, estimates of 

nitrogen in diets of herbivorous mammals can assess quality of their food resources. 

Reliable estimation of dietary quality can provide insights into seasonal and annual 

variation in diet and habitat quality, requirements for maintenance and reproductive 

processes, and factors limiting distribution and abundance of animal populations. 

Numerous methods have been used to assess dietary quality in small mammals. 

Analysis of forages known to occur in the diet of free-ranging small mammals are 

frequently used to estimate nutri~ional quality (Choo et al. 1981, Lindroth and Batzli 

1984, Randolph et al. 1991). However, these analyses are subject to biases associated 

with selective feeding and may underestimate quality of food actually consumed (Sinclair 

et al. 1982, Peitz and Lochmiller 1993, Magomedov et al. 1996). Other potential biases 

from analyses of known forages include misidentification of forages consumed, temporal 

changes in quality of forages analyzed, and botanical diversity of diets (Peitz and 

Lochmiller 1993). 

Indices of dietary quality from concentrations of fecal nitrogen have been widely 

advocated for herbivores (Leslie and Starkey 1985) and applied to a variety of wild 

ruminants (Leslie and Starkey 1985, Howery and Pfister 1990, Jenks et al. 1996, Osborn 

and Jenks 1998), hares (Lepus spp.; Sinclair et al. 1982, Magomedov et al. 1996), and 

rodents (Magomedov et al. 1996). Although indices of fecal nitrogen have been used to 

assess dietary quality in rodents, analysis of stomach contents has been suggested as a 

more reliable index (Magomedov et al. 1996). 
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Chemical analysis of stomach contents offers many advantages and eliminates 

biases associated with other techniques used to assess dietary quality in small mammals. 

For example, stomach contents provide an estimate of dietary quality that accounts for 

the relative proportion of each forage species in the diet (Servello et al. 1983). Analysis 

of stomach contents has been investigated in small mammals to estimate digestibility 

(Servello et al. 1983, MacPherson et al. 1985, MacPherson et al. 1988, Millar et al. 

1991), nitrogen concentration (Bergeron and Jodoin 1994, Magomedov et al. 1996), and 

amino acid composition (Peitz and Lochmiller 1993) of the diet. We examined the 

relationship between nitrogen concentration of stomach contents from hispid cotton rats 

(Sigmodon hispidus) and the amount of crude protein (i.e.,% nitrogen x 6.25) known to 

be in their diets. Our primary objective was to determine if the nitrogen concentration of 

stomach contents could be used as an index of dietary nitrogen. We created a model 

based on pelleted diets to examine this relationship. Although we predicted a positive 

relationship between nitrogen concentration in the diet and stomach contents, we did not 

expect this relationship to be 1: 1 because of endogenous sources of protein found in the 

stomach ( e.g., pepsin). Additionally, we tested our model with natural forage diets to 

determine if our model could accurately predict estimated nitrogen consumption from 

these diets. 

METHODS 

Laboratory procedures.- Our research colony was formed using wild-caught 

cotton rats trapped at various sites in Payne County, Oklahoma, using Sherman live-traps 

(7.6 by 8.9 by 22.9 cm), following standards established by the Animal Care and Use 

Committee of the American Society of Mammalogists (1998). Animals were housed at 
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the Laboratory Animal Resources facility at Oklahoma State University after capture at a 

temperature range of20-25°C under 12L:12D. Cotton rats were housed individually in 

48- by 25- by 20-cm wire-topped plastic cages with corn-cob bedding. We operated 

under Animal Care and Use Protocol 723, Oklahoma State University. 

Cotton rats were bred and offspring raised to weaning (18 days; Parsons 2001). 

Weanling cotton rats were assigned randomly to 1 of7 pelleted, isocaloric (18.0 - 18.4 

kJ/g by formulation) experimental diets (Zeigler Brothers, Inc., Gardners, Pennsylvania) 

formulated to represent a range of nitrogen levels from 1.0-3.2%. Each diet was 

formulated identically except for relative amounts of soybean meal and com meal, which 

were adjusted to achieve rations of 6, 8, 10, 12, 14, 16 and 20% crude protein (Table 

III. I). Diet formulations also included crystalline lysine and methionine to prevent these 

amino acids from becoming limiting, as they often are in com-soy diets fed to 

monogastrics (D'Mello 1994). 

Juvenile cotton rats were fed experimental rations until 6 weeks post-weaning at 

an age of 60 days. For the first 3 weeks post-weaning, they were housed in 28- by 18- by 

13-cm plastic cages similar to those of adults. For the final 3 weeks of the feeding trial, 

juveniles were moved to larger cages (48 by 25 by 20 cm). Water and experimental diets 

were offered ad libitum throughout the entire 6-week period. 

Each cotton rat was put under general anesthesia with Metofane (methoxyflurane, 

Mallinckrodt Veterinary, Inc., Mundeleine, Illinois) and euthanized via cervical 

dislocation at 6 weeks post-weaning. All animals were terminated at the same time of 

day (0800) to preclude influences of daily fluctuations in gut fill and water intake. 

Immediately after termination, the peritoneal cavity was opened and the stomach was 
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removed, cutting the stomach from the esophagus at the cardiac sphincter and from the 

proximal small intestine at the pyloric sphincter. The stomach was cut lengthwise along 

the lesser curvature, and contents were removed with a laboratory scoop (taking care to 

scoop out digesta without scraping the mucosa). Stomach contents were immediately 

placed in a labeled plastic test tube and frozen. 

Stomach contents were freeze-dried (Model 77540 Freeze Drier, Labconco, Inc., 

Kansas City, Missouri) for 24 h, homogenized with a mortar and pestle, and weighed. 

Samples were analyzed for nitrogen content in duplicate with the macro-Kjeldahl 

technique (Foss Tecator 2400 Kjeltec Analyzer Unit, Foss North America, Eden Prairie, 

Minnesota). Stomach contents with a dry weight > 0.1 g were considered for analysis. 

Samples also were taken from each experimental ration and ground in a mortar and 

pestle. Two sets of aliquots were taken simultaneously; 1 was oven-dried to constant 

mass (using duplicate samples) at 60°C to determine percent dry matter and the other was 

analyzed for nitrogen using the same technique as for stomach contents. Results of feed 

analyses subsequently were corrected for dry matter. 

Statistical analysis.-We modeled the relationship between nitrogen content of 

the pelleted diets and stomach contents using simple linear regression (PROC REG; SAS 

Institute Inc. 2000). If a linear relationship existed, we examined whether the 

relationship was 1: 1 by testing whether the slope was different than 1.0 (PROC REG; 

SAS Institute Inc. 2000). We performed diagnostic analyses using the residuals to 

investigate potential outliers and departures from linearity, constant variance, 

independence of observations, and normality. Additionally, we investigated use of the 
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dry weight of stomach contents for each rat as an independent variable (i.e., covariate) in 

a multiple regression equation to adjust the slope in the regression equation. 

Forage Experiments.-We tested our model created from pelleted diets by 

conducting feeding trials with natural and agricultural forages. Cotton rats were bred and 

offspring were weaned at 18 days. After weaning, rats were offered a pelleted diet 

(A&M 20% Range and Breeder Cubes-Natural Protein, Stillwater Milling Company, 

Stillwater, OK) and water ad libitum and housed in 36- by 18.5- by 15-cm plastic cages 

(1-2 rats/cage) until the onset of the forage experiments. All rats used in the experiments 

were >60 g. During the experiments, rats were housed individually in 21- by 13- by 9-cm 

or 36- by 18.5- by 15-cm plastic cages. We assigned rats to 1 of 7 natural or agricultural 

forage diets: alfalfa (Medicago sativa), prairie hay composed primarily of Bermuda grass 

( Cynodon dactylon ), German millet (Setaria italica stramineofructa ) hay, white clover 

(Trifolium repens), or 1 of 3 samples of common wheat (Triticum aestivum) collected at 

3 different locations during different stages of growth. The wheat-I and -2 diets were 

collected prior to senescence (i.e., turning brown), whereas the wheat-3 diet was collected 

after some browning of the stems and leaves had occurred. 

Three subsamples of each forage plant were analyzed for crude protein by the dry 

combustion method using a Leco CN-2000 carbon and nitrogen analyzer (Zhang et al. 

1998) to estimate the mean nitrogen concentration of each diet. We weighed each 

individual forage sample before the experiment and offered forage samples and water ad 

libitum to experimental animals. Additionally, we weighed a subsample of each forage 

and oven-dried it to constant mass at 60°C for ~48 h to estimate percent dry matter and 

moisture. 
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We euthanized each rat after of period of >40 h, removed the stomach, and 

collected stomach contents. All animals were killed between 0800-11 OOh. Preparation 

of stomach contents and subsequent nitrogen analyses were performed following 

procedures described in the pelleted diet experiment; however, samples containing <0.1 g 

dry weight were not analyzed in duplicate (n = 9). Additionally, orts were collected from 

each cage, oven-dried to constant mass at 60°C for ~48 h, and analyzed for crude protein 

by the dry combustion method. Subsamples of each forage and orts from each rat were 

analyzed for crude protein at the Soil, Water and Forage Analytical Laboratory at 

Oklahoma State University. Percent dietary nitrogen (N), hereafter referenced as known 

dietary nitrogen, was measured for each rat by subtracting the amount of crude protein 

(g) in the orts from the total amount of crude protein offered and adjusting for dry matter 

consumed. 

Model Evaluation.- We evaluated the predictive capabilities of our pelleted diet 

model using the inverse estimation of the linear regression model (i.e., calibration; 

Graybill and Iyer 1994:425). Therefore, we used our model to predict percent dietary 

nitrogen ( x0 ), hereafter referenced as predicted dietary nitrogen, for rats fed forage diets 

as a function of the percent nitrogen concentration of stomach contents (y) by solving for 

dietary nitrogen in the linear regression equation 

wherey0 is the observed value ofy, and Po and /J, are estimates ofthe intercept and 

slope, respectively. A confidence interval for £0 can be computed following Graybill 

and Iyer ( 1993 :429). To investigate the predictability of our model, we calculated the 
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A 

mean and 95% confidence interval for the difference ( d) between known dietary 

nitrogen and predicted dietary nitrogen (i.e., J = N - x0 ) to determine whether our model 

provided an unbiased estimate of dietary quality. Additionally, we calculated the mean 

A 

and 95% confidence interval for the absolute difference ( d ABs ) to determine the average 

error in our estimate of dietary quality (i.e., J ABs = IN -x0 I). 

Post-hoc analyses.-The analyses described above were true a priori analyses. 

The following analyses were performed following detailed investigation and 

identification of patterns prevalent in the data and represent exploratory analyses. 

We modeled the relationship between nitrogen content of the forage diets and 

stomach contents using simple linear regression (PROC REG; SAS Institute Inc. 2000). 

We performed 2 separate analyses because we identified values from 2 of the forage diets 

(wheat-2 and clover) as outliers. One regression analysis included all data from the 

forage trials and the other did not include data from rats assigned to the wheat-2 or clover 

diets. We performed diagnostic analyses for both models using residuals to investigate 

potential outliers and departures from linearity, constant variance, independence of 

observations, and normality. Transformations were investigated when necessary. 

RESULTS 

Pelleted diet model.- Stomach contents from 57 individual cotton rats fed 

pelleted diets were analyzed for nitrogen content. A positive linear relationship existed 

between nitrogen concentration of the stomach contents and diet [% stomach nitrogen = 

0.67 + 0.82(% dietary nitrogen); r2 = 0.81, d.f. = 55, P < 0.001; Fig. 111.1]. However, the 

slope ( b1 = 0.82 ± 0.05) from the regression analysis was different than 1.0 (F = 11.55, 

d.f. =l, 55, P = 0.001). Diagnostic procedures did not reveal any departures from model 
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assumptions, but identified 1 observation as a potential outlier. We investigated potential 

effects of this observation on our results and found no influences that would change our 

inferences from the data. Thus, we included the observation in all analyses. 

Dry mass of the stomach contents for individual rats ranged from 0.15 - 1.80 g 

( x = 0.51, S.E. = 0.05). The addition of dry mass in the regression equation had little 

effect on the estimated slope ( b1 = 0.82 ± 0.05; stomach nitrogen= 0.69 + 0.82( dietary 

nitrogen)- 0.03(dry mass); r2 = 0.81) and did not influence the relationship between 

stomach and dietary nitrogen. Thus, our model was created using the simple linear 

regression model above. 

Model Evaluation with forages.- Stomach contents from 41 individual cotton 

rats fed natural or agricultural forage diets were analyzed for nitrogen content. Average 

nitrogen content of forages ranged from 0.72 to 5.04 % N (Table 111.2) and nitrogen 

consumption (i.e., known dietary nitrogen) for rats on forage diets ranged from 0.23 to 

5.37 % N. Although some measures of known dietary nitrogen (N) were outside the 

range of nitrogen concentrations of the pelleted diets (1.07-3.67 % N), we used only 

values of known dietary nitrogen that were within range of the nitrogen concentrations of 

our pelleted diets to evaluate the model (Table 111.3). Values within this range 

corresponded to rats fed a wheat diet or Bermuda hay. Our pelleted diet model (inverse 

regression: x0 = ( Yo - 0.67) I 0.82) consistently underestimated predicted dietary nitrogen; 

thus, the 95% confidence interval of the difference between known dietary nitrogen (N) 

and predicted dietary nitrogen ( x0 ) did not include O ( J = 0.86 ± 0.22, 95% CI = 0.40-

1.32; Table III.3; Fig. III.2). The average error ( J Aas ) between known dietary nitrogen 

and predicted dietary nitrogen was 0.97 (± 0.20, 95% CI= 0.55-1.38). 
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Forage Models.-Post-hoc examination of the natural forage data revealed 

increased variation in the relationship between stomach and dietary nitrogen 

concentration as dietary nitrogen increased (Fig. 111.3); however, much of the variation 

appeared to be attributed to 2 diets (wheat-2 and clover). Thus, we created 2 regression 

models to examine,the relationship of stomach and dietary nitrogen using natural forage 

diets. 

The model including all forage data did not meet the assumption of constant 

variance; thus, we used the inverse transformation of the dependent variable (i.e., 

nitrogen content of the stomach contents). The model with the inverse transformed data 

exhibited a negative relationship [ I/stomach nitrogen= 1.18 - 0.17( dietary nitrogen), SE 

of the slope= 0.03, d.f. = 40, P < 0.001] and explained 43% of the variation in the data. 

The regression model that did not incorporate data from rats fed the clover or 

wheat-2 diet did not require a transformation and had a positive relationship [stomach 

nitrogen= 0.37 + 0.82(dietary nitrogen), SE of the slope= 0.06, r2 = 0.88, d.f. = 31, P < 

0.001; Fig. 111.3]. Furthermore, the slope of this model was similar to the slope of the 

pelleted diet model ( b1 = 0.82 ± 0.05). 

DISCUSSION 

Our initial model from pelleted diets provided evidence for using nitrogen 

concentration of the stomach contents as an index to dietary quality for cotton rats. We 

observed a strong positive relationship between the nitrogen concentration of the stomach 

contents and known diets with 81 % of the variation explained by the regression model. 

Similar to our study, Magomedov et al. ( 1996) examined the use of stomach contents to 

estimate the qualitative composition of food consumed by 6 rodent species and the 
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European hare (Lepus europaeus ). They concluded that the chemical composition of the 

stomach contents almost entirely reflected the composition of food consumed with 

respect to protein (Magomedov et al. 1996). However, it is important to note that the 

relations~ip between nitrogen concentration in the stomach and known diets was not 1 : 1 

in our pelleted model. 

Presence of endogenous stomach nitrogen in the form of digestive enzymes and 

sloughed mucosa} cells has 2 effects on the estimation of dietary quality from stomach 

contents. First, all measurements of ingested crude protein are elevated, resulting in the 

intercept being >O. Second, the response of stomach nitrogen to dietary nitrogen is 

altered by differential dilution of ingesta. At low levels of dietary nitrogen, a larger 

proportion of the crude protein measured in the stomach is derived from endogenous 

sources. At high nitrogen intakes, the ratio between ingested and endogenous nitrogen is 

much higher, and a closer relationship exists between dietary and stomach crude protein. 

A similar relationship is seen with apparent digestibility of protein (Robbins 1993:294). 

The result is a "flattening" of the relationship between these 2 variables and a slope <1.0. 

Our analysis and subsequent regression model for the pelleted diets corrected for these 

confounding influences and provided a more reliable and accurate estimate of dietary 

nitrogen. 

Regression equations based on chemical analyses of stomach contents from voles 

(Microtus) fed known diets in the laboratory have been used to estimate digestibility of 

diets in wild populations (Servello et al. 1983, MacPherson et al. 1985). Our rationale for 

using regression analysis was not only to investigate reliability of using nitrogen 

concentration of the stomach contents as an index to dietary quality, but also to provide a 
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means to estimate dietary nitrogen in future studies of wild populations of cotton rats. 

Reliable estimates and confidence intervals of dietary nitrogen from stomach contents of 

wild populations can be obtained from the inverse estimation of the linear regression 

model (i.e., calibration; Graybill and Iyer 1994:425); therefore, making it possible to 

predict dietary quality as a function of stomach contents. 

Studies investigating digestibility or nutrient consumption of small mammals 

from the analysis of stomach contents often use homogenized pelleted diets to formulate 

models or draw inferences that are then assumed applicable to examining these 

relationships in field studies (Servello et al. 1983, MacPherson et al. 1985, Peitz and 

Lochmiller 1993). Thus, it is assumed that relationships in these models hold for natural 

forages. Similarly, we expected this relationship to be robust in its application to field 

studies but realize the derived relationship in our pelleted diet model says nothing about 

nitrogen availability, which may vary substantially in foods with the same nitrogen 

content. For example, coniferous browses and leaves of many trees and shrubs contain 

tannins that reduce apparent digestibility of protein relative to grasses and legumes 

(Robbins et al. 1987, 1991). Because cotton rats feed primarily on low-tannin grasses 

and forbs (Randolph et al. 1991), we suspected an index of dietary nitrogen developed 

from pelleted diets likely would be positively correlated with protein availability in field 

studies. 

Model evaluation experiments with natural forages provided limited support for 

using our pelleted diet model to estimate dietary quality of cotton rats in field studies. 

The pelleted diet model consistently underestimated dietary nitrogen and was sensitive to 

estimates pertaining to rats fed the wheat-2 diet (Table 111.3; Fig. 111.2). When data from 
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the wheat-2 diet were removed from the difference analyses, the means and 95% 

confidence intervals for the difference ( dw 2 ) and absolute difference ( d Answz ) between 

known dietary nitrogen and predicted dietary nitrogen were more accurate and precise 

A A 

(dw 2 = 0.36 ± 0.12, 95% CI= 0.10-0.61; dAnswz = 0.49 ± 0.08, 95% CI= 0.32-0.67). 

Thus, deficiencies in accuracy and overall precision of the predicted estimates were 

largely attributed to the wheat-2 diet. 

Why did our model based on pelleted diets underestimate nitrogen in forage diets? 

We posit that the main reason was differences in passage rate dynamics between the 2 

types of foods. A similar mechanism was hypothesized by Servello et al. (1983) to 

account for differences in nutritional quality between stomach and diet contents in pine 

voles (Microtus pinetorum ). As ingested pellets are reduced in size in the stomach by 

enzymatic, mechanical, and chemical processes, small particles passing into the small 

intestine and larger particles being retained in the stomach are similar in nutrient 

composition because of the homogeneity of pelleted diets. Conversely, natural forages 

are highly heterogeneous. In ruminants, breakdown rates of plant particles were inversely 

related to cell wall thickness and content (Spalinger and Robbins 1986). In some plants, 

highly digestible plant parts (which are commonly high in nitrogen) appeared to 

disintegrate more rapidly in the rumen, leaving behind more resistant, less digestible parts 

(Spalinger and Robbins 1986). Similar processes occurring in a monogastric stomach 

coupled with rapid overall passage rates (as low as 4 hours in highly succulent foods; 

Reid and Brooks 1994), would result in an increased likelihood of collecting stomach 

samples that are lower in nutritional quality, including nitrogen, than the fed-diet sample. 

In our post-hoc analyses, nitrogen content of the wheat-2 and clover diets were 
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underestimated the most (Fig. IIl.3), and these forages may have had the most 

heterogeneity in composition because of the combination of structural and actively

growing tissues. This postulate remains to be tested. 

Other possible reasons for bias of our model include selective feeding by cotton 

rats, endogenous substances in the stomach, and time since feeding. Cotton rats may 

have fed on parts of plants that were lower in nitrogen, an unlikely scenario. In any case, 

we controlled for selective feeding by measuring nitrogen in fed forage and in orts, 

allowing us to adjust for actual nitrogen consumed. Endogenous substances in the 

mammalian stomach include hydrochloric acid, pepsin, gastrin, and mucus (Guyton and 

Hall 2001 ). The latter 3 of these compounds are proteins or protein-based and would 

elevate the nitrogen concentration of stomach contents, which is opposite to what we 

observed. Time since feeding may have affected our measure of nitrogen consumption 

and the predictive capabilities of our model; however, rats were euthanized during similar 

times of day to minimize influences of daily fluctuations in gut fill. Furthermore, time 

since feeding is impossible to determine in field application of our technique and requires 

assumptions similar to those we made in formulating and testing our model. 

The inability to accurately estimate dietary quality in wild populations has been a 

recurring obstacle in assessing the role of nutrition in the ecology of small mammals. 

The applicability of using nitrogen concentration of the stomach contents of cotton rats as 

an index to dietary nitrogen is dependent on the level of accuracy and precision required 

in estimating nitrogen concentration of foods consumed. Our techniques for estimating 

dietary quality were based on simple models from laboratory trials that could be 

conducted for most species of small mammals and subsequently applied to wild 
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populations. However, we suggest developing such models with forages known to occur 

in the diet and at different stages of growth (i.e., during and after the growing season) to 

account for variation in seasonal nitrogen availability and succulence of vegetation. 

Therefore, it may be necessary to create more than one model to account for seasonal 

variation in digestibility. Future nutritional studies can use these techniques to gain more 

reliable estimates of dietary quality and its effects on the population ecology of small 
' 

mammals. 
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Table III. I. Formulation of experimental rations (Zeigler Brothers, Gardners, Pennsylvania) differing in nitrogen concentration (N) 

for captive hispid cotton rats (Sigmodon hispidus). 

Percentage of each ingredient in diets 

Ingredient 0.96%N l.28%N 1.60% N l.92%N 2.24%N 2.56%N 3.20%N 

Com starch 54.88 50.82 46.77 42.71 38.66 34.61 26.50 
00 
00 

Soybean meal 5.75 10.00 14.25 18.50 22.75 27.00 35.50 

Cellulose fiber 13.50 13.50 13.50 13.50 13.50 13.50 13.50 

Alfalfa 10.00 10.00 10.00 10.00 10.00 10.00 10.00 

Soy oil 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

Calcium phosphate 2.50 2.50 2.50 2.50 2.50 2.50 2.50 



Table III. I. Continued. 

Percentage of each ingredient in diets 

Ingredient 0.96%N l.28%N l.60%N 1.92%N 2.24%N 2.56%N 3.20%N 

Fish meal 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

Lignin sulfonate (pellet binder) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 
00 
\0 

Cane molasses 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

Salt 0.50 0.50. 0.50 0.50 0.50 0.50 0.50 

L-lysine (98.5%) 1.16 1.00 0.83 0.67 0.50 0.33 

Vitamin premix 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

Mineral premix 0.15 0.15 0.15 0.15 0.15 0.15 0.15 



IO 
0 

Table III. I. Continued. 

Ingredient 

Choline chloride (70%) 

DL-methionine (99%) 

% Nitrogen (by analysist 

8Mean(SE). 

Percentage of each ingredient in diets 

0.96%N l.28%N l.60%N 1.92%N 2.24%N 2.56%N 3.20%N 

0.10 0.10 0.10 0.10 0.10 0.10 0.10 

0.21 0.18 0.15 0.12 0.09 0.06 

1.17 (0.05) 1.58 (0.03) 1.88 (0.05) 2.34 (0.10) 2.46 (0.04) 2.87 (0.02) 3.48 (0.07) 



Table III.2. Percent nitrogen (% N) and dry matter of natural forage diets fed to hispid 

cotton rats (Sigmodon hispidus). Wheat forages were collected at 3 different locations 

during different stages of growth. 

Forage Species % N of F oragea % Dry Matter of Forage 

Alfalfa 4.76 (0.15) 46.0 

Bermuda hay 1.09 (0.06) 89.9 

Millet hay 0.72 (0.01) 90.2 

Wheat-I 2.18 (0.05) 35.2 

Wheat-2 2.85 (0.14) 45.7 

Wheat-3 1.30 (0.06) 62.6 

White clover 5.04 (0.07) 42.2 

aMean (SE). 
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Table IIl.3. Predicted dietary nitrogen estimated from the pelleted diet model [stomach 

nitrogen= 0.67 + 0.82(dietary nitrogen)] for hispid cotton rats (Sigmodon hispidus) fed 

forage of known nitrogen content. Wheat forages were collected at 3 different locations 

during different stages of growth. 

%Nof Known Predicted 

Forage Stomach % DietaryN % Dietary Na 

Rat ID Species Contents (N) (xo) Differenceb 

B3 Bermuda 1.11 1.07 0.53 0.53 

B6 Bermuda 1.33 1.17 0.81 0.36 

B7 Bermuda 1.35 1.01 0.83 0.18 

B8 Bermuda 1.34 1.02 0.83 0.19 

WI Wheat 1 2.94 2.06 2.78 -0.72 

W2 Wheat 1 2.05 1.92 1.68 0.23 

W3 Wheat 1 1.83 1.95 1.42 0.54 

W4 Wheat 1 1.68 1.91 1.24 0.68 

W5 Wheat 1 2.29 2.17 1.99 0.18 

W6 Wheat 1 2.66 2.05 2.43 -0.39 

W7 Wheat 1 2.08 1.91 1.72 0.19 

W8 Wheat 1 1.83 2.03 1.42 0.61 

W62 Wheat2 0.96 2.91 0.35 2.56 

W63 Wheat2 1.14 2.90 0.58 2.32 

W64 Wheat2 0.91 2.86 0.30 2.57 
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Table 111.3. Continued 

%Nof Known Predicted 

Forage Stomach % DietaryN % Dietary Na 

Rat ID Species Contents (N) (xo) Differenceb 

W65 Wheat2 0.90 2.91 0.28 2.63 

W66 Wheat2 1.21 2.96 0.66 2.30 

W71 Wheat3 1.46 1.32 0.97 0.35 

W72 Wheat3 1.29 1.24 0.76 0.49 

W73 Wheat 3 1.00 1.15 0.40 0.76 

W74 Wheat3 0.73 1.57 0.07 1.50 

a Calculated using the inverse regression equation from the pelleted diet model to 
predict dietary quality ( x0 ) 

A A 

where Yo is the observed value ofy, and Po and p1 are estimates of the intercept and 

slope, respectively. 

b Difference = (Known Dietary N - Predicted Dietary N). 
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Fig. 111.1. The observed (-) and 1: 1 (---) relationships between nitrogen concentration 

in the stomach contents ofhispid cotton rats (Sigmodon hispidus) fed pelleted diets of 

known nitrogen concentration. 

Fig. 111.2. Observed values of nitrogen concentration in the stomach contents at known 

levels of dietary nitrogen from hispid cotton rats (Sigmodon hispidus) fed natural forage 

diets and the predicted relationship(-) from the pelleted diet model ( x0 =( Yo - 0.67) I 

0.82). Only measures of known dietary nitrogen within the range of nitrogen 

concentrations used to create the pelleted diet model (1.07-3.67% N) were included in 

the analysis. Open diamonds correspond to rats assigned to the wheat-2 diet. 

Fig. 111.3. The relationships between nitrogen concentration in the stomach contents and 

known levels of dietary nitrogen of hispid cotton rats (Sigmodon hispidus) fed natural 

forage diets. The dashed trendline represents the graphical relationship among all diets 

(---); however, the estimated regression model required an inverse transformation 

[ I/stomach nitrogen = 1.18 - 0.17( dietary nitrogen); SE slope = 0.03, r2 = 0.43 ]. The 

solid trendline excludes data from the wheat-2 and white clover diets (-) and 

corresponds to the estimated regression model (stomach nitrogen= 0.37 + 0.82(dietary 

nitrogen); SE slope = 0.06, r2 = 0.88). Open diamonds correspond to rats fed the wheat-2 

or white clover diet. 
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CHAPTER IV 

NITROGEN OUTPUTS OF SMALL MAMMALS FROM FECAL AND URINE 
DEPOSITION: IMPLICATIONS FOR NITROGEN CYCLING? 

Abstract: The contribution of small mammals to nitrogen cycling is poorly 

understood, but it could have reverberations back to the producer community by 

maintaining or even magnifying nitrogen availability. Our objective was to model 

nitrogen outputs ( deposition of feces and urine) of small mammals in. an old-field 

ecosystem and estimate the amount of fecal and urinary nitrogen deposited annually. To 

address this objective, we used models from laboratory studies combined with data from 

field studies to estimate dietary nitrogen and daily and annual nitrogen outputs from fecal 

and urine deposition of 5 small-mammal species at the Environmental Protection 

Agency's Center for Subsurface and Ecological Assessment Research (CSEAR) during 

2000. The models accounted for monthly fluctuations in density and average body mass 

of small-mammal populations. We estimated that small mammals deposited 1.15 and 

3.21 kg N•ha-1•yr·1 from feces and urine, respectively, for a total contribution of 4.36 kg 

N•ha-1•yr"1• Hispid cotton rats (Sigmodon hispidus) accounted for >75% of the total 

nitrogen outputs by small mammals. Our estimates of annual fecal and urinary nitrogen 

deposited by small mammals were comparable to nitrogen deposits by larger herbivores 

and other nitrogen fluxes in grassland ecosystems. 

98 



Introduction 

Herbivores have a variety of direct and indirect effects on plant communities 

(Huntly 1991, Davidson 1993, Jefferies et al. 1994, Ritchie et al. 1998) and may 

indirectly control form and function of ecosystems (Pastor and Naiman 1992, Jones and 

Lawton 1994, Lawton 1994). These include direct effects on plants by herbivory and 

deposition of feces and urine (McNaughton 1985) and indirect effects on plant 

community composition by seed dispersal and soil impacts (Gessaman and MacMahon 

1984, Heske et al. 1994). 

Deposition of urine and feces by herbivores significantly contributes to cycling of 

nitrogen and other nutrients in the ecosystem. The effect of fecal and urine deposition on 

vegetation is well documented for various herbivores, such as lesser snow geese (Anser 

caerulescens caerulescens; Bazely and Jefferies 1985, Ruess et al. 1989, Wilson and 

Jefferies 1996, Wilson et al. 1999), American bison (Bison bison; Day and Delting 1990), 

wildebeest (Connochaetes taurinus; Ruess and McNaughton 1987, 1988), moose (Alces 

alces; Pastor et al. 1993), and other ungulates (Woodmansee 1978, McNaughton 1985, 

Steinauer and Collins 1995). Deposits by large or gregarious herbivores created patches 

of increased nitrogen availability (Jaramillo and Detling 1992a,b), increased rates of 

nutrient cycling (Woodmansee 1978, Floate 1981 ), altered species composition (Day and 

Detling 1990), and increased plant growth within deposition patches (Gessaman and 

MacMahon 1984). 

Small mammals also may create "islands of disturbance within plant 

communities" through deposition of feces and urine (Gessaman and MacMahon 1984). 

Batzli (1975) stated that small-mammal deposition of urine and feces combined with 
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increased rates of decomposition could result in rapid accumulation of nutrients at the 

soil surface. However, studies of effects of small mammals on nutrient cycling from 

urine and feces deposition are mostly correlative and based on observations of enhanced 

plant growth in the presence of high densities of small mammals (Pastor et al. 1996). 

Future atmospheric deposition of nitrogen from anthropogenic activities is 

expected to increase as the global human population and reliance upon fossil fuels 

increase (Galloway et al. 1994, U.S. Environmental Protection Agency 1995). Thus, the 

amount of unretained nitrogen cycling through ecosystems is likely to increase and can 

reasonably be expected to cause future environmental problems. The contribution of 

small mammals in nitrogen cycling is poorly understood and could have reverberations to 

the producer community by maintaining or even magnifying increased nitrogen 

availability (Vitousek 1994). In addition, the rapid turnover rates of nutrients in small

mammal feces may introduce different temporal and spatial scales to nutrient cycling 

(Pastor et al. 1996). Our objective was to model nitrogen outputs ( deposition of feces 

and urine) of small mammals in an old-field ecosystem and estimate the amount of fecal 

and urinary nitrogen (kg N•ha-1•yf1) deposited annually. 

Study Area 

Field research was conducted at the Environmental Protection Agency's Center 

for Subsurface and Ecological Assessment Research (CSEAR) near Garr Comer, 

Pontotoc County, Oklahoma. The study area was an old-field site composed of 16 square 

0.16-ha experimental plots surrounded and separated from adjacent plots by a 5-m 

uninhabitable mowed strip (total area= 3.45 ha; Figure IV.1). The experimental design 

consisted of 2 treatments (exclosure fencing and nitrogen amendment) randomly applied 
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to the study plots in a 2 x 2 factorial with 4 replicates per treatment (fenced, nitrogen 

amendment; fenced, control; unfenced, nitrogen amendment; unfenced, control). Fenced 

plots were surrounded by a 2-m high, 2.5-cm chain-link fence that allowed free 

movement of small mammals between plots but restricted access by terrestrial predators 

and larger mammalian herbivores (e.g., lagomorphs, artiodactyls). To ensure free 

movement of small mammals between plots, 7.5-cm triangular holes were cut at ground 

level and spaced at 2-m intervals around fenced plots. 

Beginning in February 1999, we added nitrogen fertilizer (34% ammonium 

nitrate) to nitrogen-amended plots at a rate of 3.1, 5.1, 4.1, and 4.1 kg N•ha-1 in February, 

May, August, and November, respectively. Nitrogen amendment rates corresponded to 

seasonal rainfall proportions for central Oklahoma. Oklahoma receives about 10 kg•ha-

1·yr-1 of nitrate via atmospheric deposition (National Atmospheric Deposition Program 

(NRSP-3)/National Trends Network 2002). Nitrogen amendments of 16.4 kg N•ha-1•yr-1 

were chosen for the study because rates of atmospheric deposition of nitrogen in excess 

of this occur in industrialized regions of the globe and are projected to increase for the 

foreseeable future (Brimblecombe and Stedman 1982, Galloway et al. 1994, U.S. 

Environmental Protection Agency 1995, Vitousek et al. 1997). Clark et al. (in press) 

sampled aboveground live-mass and canopy cover throughout the current study and 

reported differences in aboveground live-mass between nitrogen-amended and non

amended plots following initiation of nitrogen applications. 

Methods 

We parameterized our nitrogen output model with field data where possible. 

Clark et al. (in press) and Clark et al. (in review) described detailed methods used to 
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sample small mammals at CSEAR. We included 5 species of small mammals in nitrogen 

calculations: hispid cotton rat (Sigmodon hispidus), plains harvest mouse 

(Reithrodontomys montanus ), fulvous harvest mouse (Reithrodontomys fulvescens ), 

white-footed mouse (Peromyscus leucopus), and deer mouse (Peromyscus maniculatus). 

We used estimates of minimum number known alive (MNKA; Krebs 1966) for cotton 

rats (Clark et al. in press) and Reithrodontomys spp. (Clark et al. in review) as indices of 

abundance on each plot at each sampling period. Additionally, we used our trapping data 

to estimate the average mass of an individual for each species of small mammal on each 

plot at each sampling period. We pooled estimates of abundance and mass for P. 

leucopus and P. maniculatus because captures of both species were uncommon and their 

mass is similar. 

Dietary nitrogen estimation.- We estimated dietary nitrogen in the field for 

cotton rats, which comprised >90% of small mammal biomass at CSEAR. We live

trapped wild cotton rats at various locations in Payne County, Oklahoma, using Sherman 

live traps (7.6 x 8.9 x 22.9 cm). Captured animals were returned to the laboratory and 

housed in cages with water only for a period of 24-30 hours to allow pre-capture digesta 

to be excreted. We transported rats to CSEAR and randomly assigned rats to small, 

temporary enclosures (1.8 x 1.8 x 0.6 m) randomly placed within the experimental plots 

in April, May, and August 2000. We placed 2 rats in each enclosure and moved 

enclosures to a new location on the study area daily. After an acclimation period (18-24 

h), we collected animals from the enclosures with snap traps baited with the scent of 

peanut butter. We checked snap traps 1-2 times/h to _ensure that captured animals did not 

spoil. If cotton rats were not collected in snap traps after a period of 2-3 h, they were 
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visually located within the enclosure, captured by hand, and killed via cervical 

dislocation. All cotton rats captured from enclosures were immediately taken to a 

laboratory at CSEAR where stomachs were removed by cutting the stomach from the 

esophagus at the cardiac sphincter and from the proximal small intestine. After removal, 

stomachs were frozen and transported to Oklahoma State University. 

We collected stomach digesta from each cotton rat by cutting the stomach 

lengthwise along the lesser curvature and removing the contents with a laboratory scoop 

(taking care to scoop out only digesta without scraping the mucosa). After we removed 

helminthes from the stomach digesta, the remaining stomach contents were placed in a 

labeled plastic test tube and frozen. Stomach contents were subsequently freeze-dried 

(Model 77540 Freeze Drier, Labconco, Inc., Kansas City, Missouri) for 24 h, 

homogenized with a mortar and pestle, and weighed. Samples were analyzed for 

nitrogen content in duplicate with the macro-Kjeldahl technique (Foss Tecator 2400 

Kjeltec Analyzer Unit, Foss North America, Eden Prairie, Minnesota). If individual 

cotton rats did not produce adequate amounts of stomach digesta for nitrogen analysis 

(i.e., >0.15 g), we composited stomach contents by sampling period and plot. 

We estimated dietary nitrogen of cotton rats at CSEAR for each sampling period 

from the nitrogen concentration of the stomach contents using an inverse regression 

model: 

D = m0 -0.67 
0.87 

where D was the estimate of percent dietary nitrogen (i.e., dietary quality), m0 was a 

specified average percent of the nitrogen concentration of stomach contents, and 0.67 and 

0.87 were estimates of the intercept and slope, respectively (Clark et al. in press). That 
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model was constructed from laboratory trials with known levels of nitrogen in the diet 

and accounted for endogenous sources of nitrogen in the stomach (Clark et al. in press). 

We obtained an estimate of dietary nitrogen from the literature for Peromyscus leucopus 

( 4 % N; Derting and Hornung in press) and used this estimate for R. fulvescens, R. 

montanus, and P. manicu/atus because diets of these species primarily comprise insects 

and seeds (Wilkins 1986, Stancampiano and Caire 1995). 

Nitrogen-output models- Using our estimates of dietary nitrogen, we estimated 

field rates of urine and fecal nitrogen deposition from models derived in laboratory 

experiments of the relationship between nitrogen intake and outputs (Parsons 2001 ). We 

estimated nitrogen outputs from fecal deposition (F= mg fecal N•day-1) for a single 

cotton rat, Peromyscus spp., and Reithrodontomys spp., respectively, as: 

F = W; 0·75 [122.02 + (69.32 X D)], 

F= W; 0·75 [63.16 + (123.68 X D)], 

F= W; 0·75 [156.56 + (154.48 X D)], 

where W was the average body. mass (kg) at trapping period i and D was the species

specific estimate of dietary nitrogen (Parsons 2001 ). Likewise, we estimated nitrogen 

outputs from urine deposition (U= mg urine N•daf1) for a single cotton rat, Peromyscus 

spp., and Reithrodontomys spp., respectively, as: 

U= W; 0·75 [-101.87 + (329.32 X D)], 

U= W; 0·75 [15.78 + (290.97 X D)], 

U= W; 0·75 [-118.05 + (623.84 x D)], 

where Wand D were defined above. Using results from equations 2-7, we estimated 

monthly and annual nitrogen outputs on each plot for each species of small mammal as: 
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where d was the MNKA for a given species at trapping period i on a given plot and t was 

the number of days between trapping period i and i+ I. We calculated the species-

specific and overall contribution of small mammals for the entire study area by summing 

across plots and converted to kg N•ha-1 by dividing by 3.45 ha (i.e., area of the study 

area). 

Results 

Dietary nitrogen of cotton rats- We collected stomach contents from 52 cotton 

rats placed in temporary enclosures at CSEAR and obtained 30 estimates of dietary 

nitrogen (error between duplicates< 10.0%) using equation 1. We pooled estimates of 

dietary nitrogen across months because 95% confidence intervals overlapped (April = 

2.69-3.67, May= 1.21-4.49, August= 1.21-4.49). Thus, we used the overall mean (x = 

3 .16, SE = 0.25) as our estimate of dietary nitrogen for cotton rats in the nitrogen output 

model. 

Nitrogen output models- Estimates of fecal and urinary nitrogen outputs (kg 

N•ha-1) of all species of small mammals within a given sampling interval ranged from 

0.03 to 0.15 and 0.09 to 0.42, respectively (Figure IV.2). Estimates of annual output (kg 

N•ha-1•yr-1) for fecal, urinary, and total nitrogen of all small mammals were 1.15, 3.21, 

and 4.36, respectively. Cotton rats accounted for >75% of the total nitrogen outputs by 

small mammals (Figure IV.3), and nitrogen output peaked in fall concomitant with cotton 

rat densities (Clark et al. in press). Similarly, spatial distribution of nitrogen outputs was 

heterogeneous across our experimental plots and was largely dependent on distribution of 

cotton rats (Figure IV.I; Clark et al. in press). 
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Discussion 

The contribution of small mammals to nitrogen cycling is unclear. Although it is 

generally assumed that small mammals contribute to nitrogen cycling within ecosystems 

(Hayward and Phillipson 1979, Inouye et al. 1987, Pastor et al. 1996), the actual impact is 

difficult to assess. Pastor et al. (1996) examined mineralization and fungal spore 

composition of fecal pellets of meadow voles (Microtus pennsylvanicus) and red-backed 

voles ( Clethrionomys gapperi) in mixed deciduous-conifer forests of the Great Lakes 

region. They reported faster turnover rates of nutrients for microtine pellets than for 

moose pellets (Pastor et al. 1993) and suggested that effects on localized nutrient 

availability from small mammals are probably at least as significant as those of large 

mammals in the boreal forest ecosystem. Furthermore, the rapid turnover rates of 

nutrients in feces of small mammals may introduce different temporal and spatial scales 

to nutrient cycling. For example, densities of cotton rats at CSEAR increased rapidly 

from April 2000 (30.l rats•ha"1) into October 2000 (112.5 rats•ha-1; Clark et al. in press); 

thus, large increases in population density during summer, coupled with a rapid fecal 

mineralization rate, may have resulted in higher plant-available nitrogen late in the 

growing season than would occur in the absence of cotton rat activity (Pastor et al. 1996). 

How does our estimate of nitrogen outputs by small mammals (total N = 4.36 kg 

N•ha"1•yr"1) compare with other nitrogen fluxes in grassland ecosystems? Compared to 

estimates of other nitrogen fluxes in tallgrass prairie, our estimate of small-mammal 

outputs was equivalent to at least 87% ofN2 fixation (1-5 kg N•ha"1•yr·1), 9-11 % of plant 

uptake of nitrogen (40-50 kg N•ha"1•yr"1), and 22-44% of atmospheric deposition of 

nitrogen (10-20 kg N•ha-1•yr"1) at Konza Prairie in Kansas (Blair et al. 1998). Our peak 
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nitrogen output of 8.5 kg N/ha/yr on one plot (Figure 1 ), corresponded to an equivalent of 

3 7 .6 kg/ha/yr if all nitrogen was available as or functionally equivalent to N0-3. This is 

essentially equivalent to doses that occur in high nitrate deposition regions (National 

Atmospheric Deposition Program (NRSP-3)/National Trends Network 2002) and is well 

within the range ofbioavailable nitrogen exposure where ecosystem effects are most 

pronounced (Wedin and Tilman 1996, Jorgensen et al. 2002). Additionally, our estimate 

of annual fecal and urinary nitrogen deposited by small mammals was within the range of 

estimates for larger herbivores (cattle: 1.3-4.7 kg N•ha-1•yr-1, Schimel 1986; elk: 0.0-

14.1 kg N•ha-1•yf1, Schoenecker et al. 2002). Thus, outputs of small mammals may 

represent a significant nitrogen flux and contribution to nitrogen cycling of grassland 

ecosystems. 

Estimates of nitrogen outputs from small mammals on individual plots were 

heterogeneous across our study area (Figure IV.I). Clark et al. (in press) examined 

population abundance of cotton rats across the nitrogen-amended landscape at CSEAR 

and reported higher densities on fenced plots, especially nitrogen-fenced plots. Because 

cotton rats accounted for most of the nitrogen outputs from small mammals, the same 

patterns observed in Clark et al. (in press) were observed in the current study with regard 

to the treatments. Therefore, heterogeneity of nitrogen outputs across the landscape at 

the plot-level largely can be attributed to the distribution of cotton rats. At a finer scale, 

distribution of fecal and urine deposition within a plot may be concentrated at micro-sites 

(e.g., along runways) and create heterogeneity in nitrogen availability across each plot. 

Our models were based on empirical data, but assumptions related to our 

estimates of dietary quality for cotton rats should be acknowledged. Our reasoning for 
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using temporary enclosures and non-resident cotton rats to assess dietary quality (i.e., 

nitrogen consumption) was to avoid interfering with an on-going study of population 

dynamics at CSEAR; thus, we did not want to remove resident animals from our study 

area. By using enclosures, we assumed nitrogen consumption by cotton rats placed in the 

enclosures reflected that of resident animals. Furthermore, our inverse regression model 

( equation 1; Clark et al. in press) was formulated from estimates of nitrogen consumption 

\ 

based on laboratory diets. Clark et al. (in press) tested this model with natural forage 

diets and found limitations to its applicability in field studies; however, estimates of 

nitrogen consumption in the current study were within the range of previously recorded 

estimates for cotton rats in central Oklahoma (2.6-4.3% nitrogen; Schetter et al. 1998). 

We also assumed that percent nitrogen consumption (Din equations 2-7) for each 

species was constant throughout our trapping periods. Although our estimate of nitrogen 

consumption for cotton rats was an average of our samples from April, May, and August, 

it does not reflect potential temporal variation in dietary quality. For example, dietary 

quality likely is lower during dormant seasons (e.g., winter), which would cause variation 

in nitrogen consumption. However, Schetter et al. (1998) found that nitrogen content of 

cotton rat diets remained high {>2.5% N) throughout the year in central Oklahoma. 

Finally, our models did not account for a number of potentially important sources of 

nitrogen outputs, such as carcass decomposition and increased nitrogen availability from 

decomposition of plant clippings not consumed. 

The contribution of small mammals to nitrogen cycling of grasslands could have 

implications in predicting future changes in ecosystem structure and function following 

nitrogen-mediated shifts in the small-mammal community. Two contrasting hypotheses 
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have been proposed pertaining to herbivore modification of feedback between dominant 

plant species and nutrient cycling. The hypothesis that herbivores indirectly decelerate 

nitrogen cycling assumes that herbivores selectively consume and decrease the 

abundance of plant species with nitrogen-rich tissues, thus reducing aboveground 

productivity and rate of nitrogen cycling (Tilman 1988, Leibold 1989, Pastor and Naiman 

1992, Wilson and Agnew 1992, Wedin 1994, Ritchie et al. 1998). In contrast, the 

hypothesis that herbivores accelerate nitrogen cycling assumes that dominant nutrient

rich plants are tolerant of and not limited by herbivory (McNaughton 1976, 1985; Tilman 

1982, 1988; DeAngelis et al. 1989, Ruess et al. 1989, Holland et al. 1992, Sterner 1994). 

Determining whether small mammals accelerate or decelerate nitrogen cycling in old

field ecosystems was beyond the scope of our study; however, our estimates of fecal and 

urinary nitrogen were based on models using empirical data and provided an important 

piece of the puzzle in assessing the contribution of small mammals to nitrogen cycling. 
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Figure IV .1. Layout of nitrogen (N) and ex closure treatments and spatial distribution of 

nitrogen outputs (i.e., fecal and urinary nitrogen) from small mammals across 0.16-ha 

plots at the Center for Subsurface and Ecological Assessment Research, Pontotoc 

County, Oklahoma, 2000. Estimates of nitrogen outputs for each plot were extrapolated 

to kg N•ha-1•yr-1• 

Figure IV .2. Monthly estimates of fecal and urinary nitrogen outputs (kg N•ha-1) of 5 

species of small mammals at the Center for Subsurface and Ecological Assessment 

Research, Pontotoc County, Oklahoma, 2000. 

Figure IV.3. Monthly estimates of nitrogen outputs (kg N•ha-1) ofhispid cotton rats 

(Sigmodon hispidus ), fulvous harvest mice (Reithrodontomys fulvescens ), plains harvest 

mice (Reithrodontomys montanus), and Peromyscus spp. (P. leucopus and P. maniculatus 

combined) at the Center for Subsurface and Ecological Assessment Research, Pontotoc 

County, Oklahoma, 2000. 
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CHAPTERV 

CATASTROPHIC DECLINE OF A HIGH-DENSITY POPULATION OF HISPID 
COTTON RATS (SIGMODON HISPIDUS) IN CENTRAL OKLAHOMA 

The geographic distribution of the hispid cotton rat (Sigmodon hispidus) extends 

northward from South America into the southern U.S. (Cameron and Spencer, 1981). 

Along the northern periphery of their range, populations of S. hispidus are vulnerable to 

major reductions in density and occasional local extinctions as a result of severe winter 

weather (Schendel, 1940; Cockrum, 1948; Goertz, 1964; Dunaway and Kaye, 1961; 

Fleharty et al., 1972; Sauer, 1985; Langley and Shure, 1988). We report on a high-

density population of hispid cotton rats in central Oklahoma that declined to near 

extinction following consecutive severe winter weather events during December 2000. 

Furthermore, we present evidence of populations ofhispid cotton rats being affected at a 

statewide scale as a result of the weather in December 2000. 

The field research was conducted at the Environmental Protection Agency's 

Center for Subsurface and Ecological Assessment Research (CSEAR) near Garr Comer, 

Pontotoc County, Oklahoma. The study area was an old field composed of 16 square 

0.16-ha plots surrounded and separated from adjacent plots by a 5-m mowed strip (total 

area = 3.45 ha). As part of an investigation of the role of small mammals in nitrogen 

cycling of old fields, 2 treatments (exclosure fencing and nitrogen addition) were applied 

to the study plots in a 2 x 2 factorial with 4 replicates per treatment combination. Fenced 

plots were surrounded by 2-m high, 2.5-cm chain-link fence that allowed free movement 

of small mammals between plots but restricted access to larger herbivores ( e.g., 

lagomorphs, artiodactyls). 
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We sampled small mammals with Sherman live-traps (7.6 x 8.9 x 22.9 cm) for 3 

consecutive days at 3-5-week intervals from July 1999 to July 2001 and at 3-month 

intervals thereafter. Each plot contained 25 traps systematically spaced at 7-m intervals 

for a total of 1,200 trap nights/sampling interval. Traps were baited with rolled oats, 

checked between 0600 and 1200 hours, and stuffed with cotton during cold weather 

(<10°C) to provide warmth for captured animals. We released captured animals 

immediately after marking with a unique number via toe-clipping. We used minimum 

number known alive (MNKA; Krebs, 1966) to estimate abundance of hispid cotton rats 

on the study area at each sampling period. 

Between July 1999 and November 2001, we sampled at CSEAR 29 times and 

recorded 8,417 captures of small mammals in 34,800 trap nights. Hispid cotton rats 

accounted for 5,562 captures of 1,010 individuals. Density estimates ranged from 0.0 

cotton rats/ha in July 1999 to 112.5 cotton rats/ha in October 2000 (Fig. V.l). 

Populations of hispid cotton rats typically experience an annual bimodal density 

pattern in southern portions of their range with peaks in spring and autumn (Cameron 

1977). However, densities in northern areas do not exhibit a bimodal pattern and 

typically have an autumn peak followed by a spring low (Fleharty et al. 1972). Although 

hispid cotton rats reproduce year round in warmer parts of their range, northern 

populations usually do not reproduce from November-March (Glass and Slade 1980, 

Stokes 1994, Wilson and Lochmiller 2002) and decline during winter (Stokes 1994). 

Densities ofhispid cotton rats in our study were not bimodal and exhibited a pattern more 

similar to those reported for northern populations (Fig. V.1). 
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Between our sampling periods on 3 December 2000 and 14 January 2001, 3 

independent winter weather events, in conjunction with the state's coldest month since 

1983 (December 2000 statewide average temperature= -0.7°C; National Climatic Data 

Center 2000), affected central and eastern Oklahoma, including Pontotoc County. These 

winter storms resulted in accumulations of2.5-5.0 cm of snow on 13 December, 2.5-5.0 

cm of ice on 26 December, and > 12. 7 cm of snow on 31 December (National Climatic 

Data Center 2000). We recorded a drastic decline in the population of hispid cotton rats 

at CSEAR following these winter weather events. Densities dropped from 58.6 cotton 

rats/ha on 3 December 2000 to 1.2 cotton rats/ha on 14 January 2001 (Fig. V.1). 

Although hispid cotton rat densities were declining before these winter weather events 

occurred, we attributed the dramatic decrease to severe winter weather and below-normal 

temperatures. The ice accumulations on 26 December followed by snow on 31 

December could have been especially damaging to the population because the layer of ice 

and snow persisted for >5 days and likely restricted foraging. 

Langley and Shure ( 1988) attributed a crash of a population of hispid cotton rats 

in Georgia to extreme winter temperatures and spring-summer drought conditions. This 

population had not recovered after 22 months. As of 19 November 2001, the population 

of hispid cotton rats at CSEAR had not recovered. Abundances between January and 

November 2001 ranged between 0.6-2.6 cotton rats/ha compared with a range of 30.1-

112.5 during the same period in 2000 (Fig. V.1). 

Our study area had been grazed for >40 years before 1999. Thus, at the onset of 

our study, CSEAR contained little available habitat and hispid cotton rats were absent 

from our experimental plots. This initial absence ofhispid cotton rats was not 
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unexpected, because Phillips (1936) had previously reported an absence ofhispid cotton 

rats in overgrazed pastures in central Oklahoma. However, in the absence of grazing, 

habitat quality improved and hispid cotton rats colonized and increased rapidly via 

reproduction and immigration from surrounding areas. Unlike the manner in which the 

population ofhispid cotton rats established in 1999, we attributed the slow recovery of 

the population during 2001 to the wide area affected by the weather events of December 

2000 and subsequent lack of immigration from suitable habitats surrounding our study 

plots. Furthermore, reproduction of hispid cotton rats at CSEAR occurred primarily 

between March and October (J.E. Clark, unpublished data), thus increases in density 

from reproduction will not likely occur until at least summer 2002. 

The winter weather events and below-normal temperatures of December 2000 

appeared to affect not only the population of hispid cotton rats at CSEAR, but also 

populations in other areas of the state. Before December 2000, we frequently trapped an 

area in Payne County, Oklahoma ( ca. 169 km N of CS EAR), to obtain hispid cotton rats 

for laboratory experiments and had capture successes as high as 20-30 captures/I 00 trap 

nights. In October 2001, we trapped the same area and had a capture success of 1.2 

captures/100 trap nights (J.E. Clark, personal observation). Hispid cotton rats at the 

Tallgrass Prairie Preserve, Osage County, Oklahoma ( ca. 241 km N of CSEAR) also 

experienced a dramatic decline in numbers. Capture success at the Tallgrass Prairie 

Preserve declined from 2.2 captures/100 trap nights in December 2000 to 0.0 

captures/100 trap nights during monthly sampling periods from January to November 

2001 (K. L. Soeder, Oklahoma State University, unpublished data). 
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Expansion of the geographic distribution of the hispid cotton rat has been 

documented along the northern periphery of its range (Cameron 1977). As hispid cotton 

rats extend northward, they are subjected to more pronounced changes in seasonal 

climates, leading to shorter breeding seasons and harsher winters. Thus, selective 

pressures related to reproductive output may be constrained by requirements for 

surviving harsher winters (Doonan and Slade, 1995). Although our observations were 

anecdotal and northern populations of hispid cotton rats tend to decline precipitously 

during winter (Stokes 1994), our conclusion regarding the drastic decline of the 

population at CS EAR was warranted given the magnitude of the decline, severity of the 

weather events of December 2000, and drastic reductions in other populations from 

Oklahoma. As suggested by Cockrum (1952), we suspect that severe winters, such as the 

events described above, may slow the northward advance of hispid cotton rats and serve 

to regulate populations along the intermediate and northern fringes of its range. 
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