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Chapter I 

INTRODUCTION 

Heme Oxygenase 

a) Biological function 

Heme oxygenase (HO) is an enzyme responsible for the catalytic degradation of 

heme to biliverdin, carbon monoxide (CO) and free iron [1]. Present in mammals, plants 

and bacteria, HO is highly unusual in that it uses heme as both its substrate and its 

prosthetic group. The catalytic cycle of HO, shown in scheme I, starts with the oxidation 

of heme to a-mesa-hydroxyheme, a reaction which requires a molecule of oxygen and 2 

reducing equivalents [2]. This is followed by the conversion of a-mesa-hydroxyheme to 

verdoheme, which consumes a second molecule of oxygen and 1 electron. Finally, 

verdoheme reacts with a third oxygen molecule and additional reducing equivalents to 

produce a-biliverdin while releasing a molecule of CO. The electrons required for this 

catalytic process are provided, by NADPH-cytochrome P450 reductase in mammals and 

by ferredoxin in plants [3]. 

HO in mammals is responsible for the physiological catabolism of heme. The 

heme oxygenation process removes free heme released from hemoglobin present in tissue 

when blood vessels rupture. Free heme is a nefarious oxidant but HO activity will 

convert it to biliverdin that will in tum yield bilirubin, a potent antioxidant that may play 

an important role in minimizing intracellular oxidative damage. Heme catabolism is also 
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Scheme I: Heme oxygenase catalytic cycle 
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of critical importance as it satisfies most of the iron requirements of the body where our 

daily diets furnish only 1-3% of the iron utilized in the synthesis of red blood cells. 

Another product of HO catalytic activity is carbon monoxide [ 4]. The role of CO, long 

considered a poisonous product of heme oxygenation, has now become a subject of 

increasing interest as a growing body of evidence suggests it may act as a neural 

messenger. The roles recently being attributed to CO include its function as a neural 

messenger in learning and memory, as a factor in neuroendocrine regulation, as an 

endogenous modulator of vascular tone, and as a protective agent in hypoxia and 

endotoxic shock [5-7]. 

In plants, HOs play a significant role in the synthesis of the tetrapyrrole

containing chromophores of photosynthetic organisms while in bacteria they seem to play 

a vital role in the acquisition of iron, an element essential for the organism's survival and 

pathogenicity [5]. 

b) Mammalian enzymes 

Two heme oxygenase isoforms are known to exist in mammals, H0-1 and H0-2, 

and a third form (H0-3) has been reported. H0-1, found in a variety of tissues, is the 

form that has been primarily examined because it is induced by a variety of agents. H0-2 

on the other hand, primarily localized in the brain and testes, is resistant to induction by 

exogenous factors. The molecular masses of human H0-1 and H0-2 are 33 and 36 kDa, 

respectively [3]. The protein sequences of these 2 isoforms have 43% identity and show 

regions of high sequence conservation, most notably in the regions corresponding to the 

proximal and distal sides of the heme binding pocket. These two enzymes have 
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hydrophobic sequences at their C-terminal ends that are involved in binding to 

microsomal membranes [3]. Consequently, in order to facilitate the structural studies of 

the enzymes, truncated forms, where the membrane binding domains have been removed, 

were constructed and introduced into bacterial systems allowing the over-expression of 

soluble forms of the proteins [8-10]. 

c) Bacterial enzymes 

In contrast to mammalian HOs, bacterial enzymes are not membrane bound and 

quite soluble with molecular masses that are on average significantly smaller. The heme 

oxygenase isolated from the gram-positive pathogen Corynebacterium diphtheriae (cd

HO) has a mass of approximately 24 kDa while the HOs from the gram-negative 

organisms Neisseriae meningitidis (nm-HO) and Pseudomonas aeruginosa (pa-HO) are 

roughly 23.5 and 22 kDa respectively [11-14]. 

The cd-HO, nm-HO and pa-HO enzymes have 35, 21 and 22% identity to H0-1 

and contain a highly conserved histidine residue that serves as the proximal ligand to the 

heme in all heme oxygenases characterized thus far (See Figure 1) [11, 14, 15]. In spite 

of the low percentage of identical amino acids, the crystal structures of nm-HO and cd

HO have revealed that these proteins have very similar folds [15]. Recent 

characterization of the Corynebacterium diphtheriae and Neisseriae meningitis bacterial 

HOs revealed that like all the previously characterized enzymes, they hydroxylate the 

heme exclusively at the a-mesa-position by a mechanism similar to their mammalian 

counterparts [12, 14]. In contrast, the heme oxygenase from Pseudomonas aeruginosa, 

hydroxylates heme predominantly at the 8-meso-position [11]. 
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Figure 1. Amino acid sequence alignment of the Neisseriae meningitidis (nm-HO), 

Corynebacterium diphtheriae (cd-HO) and Pseudomonas aeruginosa (pa-HO) heme 

oxygenases. Residues in bleu correspond to conserved residues. The conserved proximal 

histidine is indicated in red. The alignment was perfomed using the ClustalW 1.8 

program on the Baylor College of Medicine Search Launcher. 
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The First Step in the Catalytic Cycle of Heme Oxygenase 

a) Regioselectivity 

The heme oxygenase catalytic cycle begins with the exclusive hydroxylation of 

the porphyrin ring at the a-mesa position. This regioselectivity is not a property inherent 

to the heme group as the coupled oxidation of porphyrin in solution clearly shows the 

formation of all four regioisomers [4]. Coupled oxidation of the prosthetic heme groups 

of myoglobin and hemoglobin, which yield low amounts of biliverdin isomers, has been 

used as a model of the heme oxygenase reaction. The coupled oxidation of sperm whale 

myoglobin produces exclusively a-biliverdin but human hemoglobin gives both a- and 

f3-biliverdin isomers. These regiospecificities were postulated to be a consequence of 

steric interactions of the iron-bound dioxygen molecule with active site residues. 

However, further studies conducted with heme-containing bulky substituents at varying 

meso positions showed that myoglobin does not discriminate between the different meso

substitutions. In this context, it is interesting to consider the results obtained when hemes 

substituted with methyl groups at the f3-, y- and 8-mesa-positions were subjected to 

oxidation by HO. The heme was oxidized at the single mesa-substituted position or a 

combination of two positions while the f3-meso-methylheme did not react well. By 

placing methyl groups at the meso-positions the regiospecificity of heme oxygenation 

was shifted away from the a-mesa-position [ 4]. The steric effect of the methyl groups 

was not expected to be significant and therefore suggested that other factors were at play. 

It was then suggested that electronic effects might play a role in the regioselectivity of 

heme oxygenation. To test this hypothesis, heme was synthesized with formyl groups at 

different meso carbons. If the electron donating effect of a methyl group attached to a 
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meso carbon seemed to direct oxidation to that position, it was thought that an electron 

withdrawing substituent should produce the opposite effect. As expected, the oxidation 

of a-meso-formyl heme occurred at a position other than the formyl-substituted a-meso

carbon. These results strongly argue for a key role of electronic effects in the observed 

regioselectivity of heme oxygenase [5]. 

b) Formation of the activated oxygen species 

The first step in the catalytic cycle of HO requires one molecule of oxygen and 2 

reducing equivalents, which suggests that the same results might be obtained by direct 

reaction with H202. This was indeed found to be the case and indicated that a ferric 

peroxo complex might be an intermediate in the catalytic turnover of HO. Proof that the 

heme is hydroxylated by a hydroperoxy group axially coordinated to the heme iron was 

recently obtained by finding that radiolytic reduction of the Fen-02 complex at 77 K 

produces the Fem-OOH complex, as judged from the similarity between the EPR and 

ENDOR properties of the H0-1 complex and those of corresponding hemoglobin J3-chain 

complexes. Annealing this Fem-OOH complex at 200 K converts it into Fe(III) a-mesa

hydroxyheme thereby confirming that the ferric hydroperoxide is an obligatory 

intermediate in the first step of the HO catalytic cycle [16, 17]. 

Although the reactivity of the ferric hydroperoxide remains undefined, knowing 

that heme oxygenation takes place via an obligatory iron bound hydroperoxide has 

important consequences. In this context it becomes particularly important to consider a 

recent publication by Avila and co-workers. The studies conducted on axial mutants of 

mitochondrial cytochrome b5 revealed that although meso-hydroxyheme is formed during 

7 



the degradation of heme by the enzyme heme oxygenase or by the process known as 

coupled oxidation of model hemes and hemoproteins not involved in heme catabolism, 

the corresponding mechanisms by which mesa-hydroxyheme is generated are different. 

The authors concluded that in the coupled oxidation process, 0 2 is reduced to non

coordinated H20 2, which reacts with Fe11-heme to form mesa-hydroxyheme [18]. This 

sheds considerable doubt over the validity and usefulness of the conclusions drawn from 

the coupled oxidation studies conducted on model systems and reaffirms the need to 

elucidate the reactivity and regioselectivity of heme oxygenation. 

Research Direction 

The key role played by heme oxygenases in mammals, bacteria and plants has 

been described above. HOs possess a variety of functions: they participate in iron 

homeostasis and protect against oxidative damage in mammals while allowing bacteria to 

mine their hosts for the iron they need in order to drive their energy processes. In plants, 

heme oxygenases produce precursors to the photosynthetic pigments that allow the 

energy from light to be harvested. These functions, all critical to the well being of these 

different organisms depend on HO activity thereby underscoring the need for a thorough 

understanding of the heme oxygenase catalytic cycle. 

We have chosen to focus our attention on the first step in the catabolism of heme. 

Although, it has recently been corroborated that heme is hydroxylated by a hydroperoxy 

group axially coordinated to the ferric heme iron, almost nothing is known regarding the 

electronic nature of the crucial Fem-OOH intermediate. Furthermore, as mentioned 

above, the origin of a-regioselectivity in heme oxygenation is still undefined. 
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As the following chapters will show, we have demonstrated the pivotal role the 

electronic structure of the Fem-OOH heme oxygenase complex may play in dictating both 

the reactivity of and regioselectivity observed in the first step of the catalytic cycle of 

heme oxygenation. By virtue of the distal ligand field modulating effects conveyed by 

the network of hydrogen bonded water molecules present in the active site of heme 

oxygenases, the ferric hydroperoxy intermediate is capable of adopting novel electronic 

configurations which contribute to make the heme an active participant in its own 

hydroxylation. These novel electronic configurations prime the heme for oxidation by 

not only placing significant amounts of spin density at the meso positions but also by 

inducing deformations of the porphyrin ring from planarity. These deformations would 

place the terminal oxygen of the peroxy moiety closer to certain meso carbons thereby 

facilitating hydroxylation. Furthermore, by taking advantage of the unprecedented 8 

regioselectivity of HO from the Pseudomonas aeruginosa bacterium, we were able to 

identify the mechanism responsible for this novel regiospecificity. 

The studies conducted indicate that the reactivity and regioselectivity of the first 

step in the catalytic cycle of heme oxygenation are likely due to both the electronic 

structure of the heme in the Fem-OOH intermediate and the presence of heme orienting 

steric interactions m the active site of the heme oxygenase enzyme. 

9 



References 

1. Tenhumen, R., Marver, H.S., and Schmid, R.; J. Biol. Chem., (1969). 244: 6388-

6394. 

2. Wilks, A., Torpey, J., and Ortiz de Montellano, P.R.; J. Biol. Chem., (1994). 269: 

29553-29556. 

3. Yoshida, T. and Migita, C.T.; J. Inorg. Biochem, (2000). 33-41. 

4. Ortiz de Montellano, P.R. and Wilks, A., in Advances in Inorganic Chemistry. 

2000. p. 359-407. 

5. Ortiz de Montellano, P.R. and Auclair, K., in The Porphyrin Handbook, K.M. 

Kadish, K.M. Smith, and R. Guilard, Editors. 2003, Elsevier Science (USA). 

6. Otterbein, L.E. and Choi, A.M.K.; Am. J. Physiol. Lung Cell Mo!. Physiol., 

(2000). 279: Ll029-L1037. 

7. Baranano, D.E., Dore, S., Ferris, C.D., and Sololomon, H.S.; Clinical 

Neuroscience Research, (2001). 1: 46-52. 

8. Mansfield Matera, K., Zhou, H., Migita, C.T., Hobert, S.E., Ishikawa, K., and 

Katakura, K.; Biochemistry, (1997). 36: 4909-4915. 

9. Takahashi, S., Wang, J., Rousseau, D., Ishikawa, K., Yoshida, T., Host, J.R., and 

Ikeda-Saito, M.; J. Biol. Chem., (1994). 269: 1010-1014. 

10. Ishikawa, K., Mansfield Matera, K., Zhou, H., Fuji, H., and Sato, M.; J. Biol. 

Chem., (1998). 273: 4317-4322. 

11. Ratliff, M., Zhu, W., Deshmukh, R., Wilks, A., and Stojillovic, I.; J. Bacterial., 

(2001). 183: 6394-6403. 

· 12. Zhu, W., Wilks, A., and Stojillovic, I.; J. Bacterial., (2000). 182: 6783-6790. 

10 



13. Chu, G.C., Katakura, K., Zhang, X., Yoshida, T., and Ikeda-Saito, M.; J. Biol. 

Chem., (1999). 274: 21319-21325. 

14. Wilks, A. and Schmitt, M.P.; J Biol. Chem., (1998). 273: 837-841. 

15. Schuller, D.J., Zhu, W., Stojillovic, I., Wilks, A., and Poulos, T.; Biochemistry, 

(2001). 40. 

16. Davydov, R.M., Yoshida, T., Ikeda-Saito, M., and Hoffman, B.; J. Am. Chem. 

Soc., (1999). 121: 10656-10657. 

17. Davydov, R., Kofman, V., Fuji, H., Yoshida, T., Ikeda-Saito, M., and Hoffman, 

B.; J. Am. Chem. Soc., (2002). 124: 1798-1808. 

18. Avila, L., Huang, H.-w., Damaso, C.O., Lu, S., Moenne-Loccoz, P., and Rivera, 

M.; J Am. Chem. Soc., (2003). 125: 4103-4110. 

11 



Chapter II 

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPIC ANALYSIS OF 

PARAMAGNETIC HEMES AND HEME PROTEINS. 

Heme Proteins 

Heme containing proteins and enzymes are vital components of most living 

organisms [ 1]. A common feature among hemoproteins is the heme prosthetic group 

(protoheme IX) Figure 1, which upon interacting with the protein polypeptide, is capable 

of tuning its reactivity and performing a large variety of chemical functions. Hence, 

hemoproteins participate in electron transfer reactions (cytochromes) [2], oxygen 

activation and insertion reactions (monooxygenases) [3], oxygen transport and storage 

(hemoglobin and myoglobin) [4], oxygen sensing in nitrogen-fixing bacteria (FixL) [5], 

heme metabolism (heme oxygenase) [6, 7], and regulatory functions based on nitric oxide 

(guanylyl cyclase, nitrophorins) [8, 9], to name a few. It is therefore important to 

elucidate how nature tunes the redox properties and reactivity of the ubiquitous heme 

within a protein so that the resultant activity is that of oxygen binding, oxygen activation, 

oxygen sensing, or electron transport at different redox potentials. In this context, the 

heme active site is a chromophore that is amenable to be studied by a variety of 

spectroscopic techniques, such as nuclear magnetic resonance (NMR), · electron 

paramagnetic resonance (EPR), resonance Raman, electronic absorption, and magnetic 

circular dichroic (MCD) spectroscopies. 
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The oxidation state of the heme-iron is an important modulator of the physical, 

chemical and biochemical properties of hemoproteins. For instance, myoglobin and 

hemoglobin form an oxyferrous complex, whereas the ferric oxidation state of these two 

hemoproteins is non-functional. Electron transfer proteins ( cytochrome b5, cytochrome 

c) have evolved to rapidly shuttle between the ferric and ferrous oxidation states, and 

oxygen activating hemoproteins (cytochrome P450, peroxidases) exhibit changes in the 

oxidation state of the heme iron (Fen, Fem, Ferv) as the reaction progresses through the 

catalytic cycle. It is therefore desirable to probe the heme active site in the different 

oxidation states. 

The electronic structure of the heme changes with the oxidation and coordination 

state of the iron. Hemoproteins can adopt different spin states as the relative energies of 

the metal orbitals are disrupted by endogenous (protein donated) and exogenous ligands 

of varying field strengths (Figure 2). For example, the heme iron in the deoxy form of 

hemoglobin and myoglobin is pentacoordinated; four equatorial positions are occupied by 

the pyrrole nitrogens in the heme, and one of the axial positions is occupied by a 

proximal histidine ligand, as shown schematically in Figure 3-A. The pentacoordinated 

Fe(II) in deoxy-myoglobin adopts a high-spin, S = 2 state. However, if an additional 

strong-field ligand, like 0 2 or CO, coordinates opposite the proximal histidine (the distal 

side), the resulting hexacoordinated ferrous iron adopts a low-spin, S = 0 configuration. 

This is illustrated by a view of the active site of oxy-myoglobin in Figure 3-B. In a 

similar manner, ferric heme oxygenase, which is coordinated by an endogenous histidine 

and a weak-field water ligand on the distal side [10, 11] is found in the high-spin, S = 512 

state. 
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Isomer A lsomerB 

Figure 1. Protoheme IX. The numbering scheme follows the Fisher nomenclature more 

commonly used in the magnetic resonance literature [12, 13]. Using this nomenclature 

the heme substituents are identified by their common names and a number indicating 

their position on the heme macrocycle, e.g. 1 methyl, 2 vinyl, 6 propionate. The 

substituents with more than one carbon are further characterized by the use of greek 

letters to designate the number of bonds separating their carbons from the pyrrole ring, 

e.g. 2 vinyl-a, 6 propionate- ~- In the asymmetric polypeptide fold, two heme isomeric 

forms (A and B) result from a 180° rotation of the heme about the a-y meso axis. 
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Figure 2. Common spin states for the physiologically relevant oxidation states of iron. 
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Distal side 

A 

B C 

Figure 3. (A) Schematic representation of the Fe(II) heme in deoxy-myoglobin. (B) A 

view of the heme active site of oxy-myoglobin, where the proximal histidine ligand is 

yellow, the heme is red, and the distal 0 2 ligand is blue (PDB access code 1AJ6). A view 

of the active site of mitochondrial cytochrome bs, where the heme (red) is coordinated by 

two axial histidine ligands shown in yellow (PDB access code is 1B5M). 
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Replacement of the water molecule by a strong field ligand like cyanide produces a 

low-spin, S = 1/2 state. By comparison, hemoproteins that function in electron transfer 

are typically hexacoordinated in the ferric (S = 1/2) as well as in the ferrous (S = 0) 

oxidation states. The active site structure of the electron transfer protein cytochrome b5, 

where the heme is coordinated by two axial histidine ligands, is shown in the view of 

Figure 3-C. The coordination state of the heme iron often dictates the spin state, making 

the latter a useful tool to probe the ligation state of the metal center. More importantly, 

these coordination/spin state changes contribute to the mechanism of activity of all 

hemoproteins, thus underscoring the importance of their investigation by spectroscopic 

means. 

Nuclear Magnetic Resonance Spectroscopy of Paramagnetic Hemes and Heme 

Proteins 

Heme complexes and hemoproteins fall into the category of paramagnetic 

molecules, as all of the common iron electronic configurations, with the exception of 

Fe(II) low-spin, S = 0, possess one or more unpaired electrons (Figure 2). These unpaired 

electrons have a profound effect on the observed NMR chemical shifts as a consequence 

of the strong electron-nuclear hyperfine interaction. This interaction, which gives rise to 

the paramagnetic shift (Opara) is composed of a scalar or contact contribution (Ocon), that 

arises from unpaired spin delocalization onto nuclei on the ligands, and a dipolar or 

through-space contribution, odip (equation 1) [14]. The typically large chemical shifts 

observed for paramagnetically affected resonances (oobs) can be segmented into 

diamagnetic and paramagnetic contributions ( equation 2). 
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Opara = <>con + Octip (1) 

<>obs = <>ctia + Opara (2) 

Thus, in order to isolate and analyze the paramagnetic (<>para), also called isotropic (<>iso) or 

hyperfine (ohyp) shifts, the corresponding chemical shifts of an isostructural diamagnetic 

molecule (Octia) should be subtracted from the observed shifts (equation 3) [15]. 

Opara = <>obs - <>ctia (3) 

It is important to understand the nature of the contact and dipolar shift 

contributions in order to appreciate and interpret the information that can be obtained 

from paramagnetic shifts. The contact contribution to the paramagnetic shift is brought 

about by scalar coupling between electron spins and individual nuclei. When a single 

spin level with an isotropic g tensor is populated, and to the extent that Curie law is valid 

(usually approximately applicable for ferrihemes), the contact shift can be expressed by 

equation 4, where S is the total spin quantum number, g is the isotropic (average) g value, 

y is the magnetogyric ratio of the nucleus in question, T is the absolute temperature, /3 is 

the Bohr magneton, k is the Boltzmann constant, h is the Planck constant and A is the 

hyperfine (scalar) coupling constant for coupling the spin of the electron to the spin of the 

nucleus of interest [13, 16-19]. 

6 = Ag/JS(S + 1) 
con 3 hkT rN 

(4) 

Interpretation of the contact contribution to the 1 H paramagnetic shift in terms of 

metal ligand covalency is done in the context of the McConnell equation [20] ( equation 

5), which relates the hyperfine coupling for each individual proton in an aromatic 
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fragment (AH) to the unpaired spin density at the carbon to which the proton is attached 

(pc). QH is an empirical parameter (- 63 MHz). In the case of an aromatic carbon atom 

(5) 

the hyperfine coupling constant Ac can be related to the spin density centered on its 1t 

orbital (p1tc) and to the spin density centered on the 1t orbitals of the three atoms Xi bonded 

to it (p\;) (equation 6) [21]. ff accounts for spin polarization of the ls orbital by 

unpaired spin density located on the Pz ( 1t) orbital of the same carbon atom, Qcx; accounts 

for spin polarization of the 2s orbitals on neighboring carbons by unpaired 1t spin density 

on the observed carbon atom, and Qx;c for spin polarization of the 2s electrons on the 

observed carbon atom by 1t spin density on the neighboring carbons [19, 22-25]. 

(6) 

For a methyl carbon atom bound to the pyrrole-P carbon of heme, one obtains equation 

7, where C' denotes the aromatic carbon to which the methyl group is bound (Qc c'c - -39 

MHz) [17, 22, 26]. It is therefore clear that the <>con contribution to the observed shift for 

a heme methyl carbon depends only on the unpaired electron density on the pyrrole-P 

carbon to which the methyl carbon is bound. This point will play a key role in the 

discussion of Chapter V. 

AC QC 1r 
= ccPc· (7) 

The dipolar contribution to the isotropic shift results :from through-space 

interactions (dipole coupling) of the nuclear and electron magnetic moments. For 

heteronuclei (13C) the <>ctip contribution to the isotropic shift consists of two terms, a metal 

centered (oMdip) and a ligand centered (oLdip) contribution. The term OMctip results from 
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coupling between the nucleus under observation and the unpaired spin density on the 

metal, and the term oL dip results from coupling between the nucleus under observation and 

unpaired spin density on the p2 orbitals of the ligand. The oLdip term is known to be small 

in low-spin ferrihemes [27] and in the case of heme substituents such as heme methyls, 

which do not participate directly in the delocalized n orbtials, oL dip is negligible [26, 28]. 

A general expression for the predominant oM dip contribution is given by equation 8, where 

r is the metal nucleus distance vector, N is Avogadro's number, "tJ; are 

the principal components of the magnetic susceptibility tensor, 0 is the angle between the 

proton-metal vector and the z molecular axis, n is the angle between the projection of the 

r vector on the xy plane and the x axis, and µ0 is the vacuum permeability [12, 13, 29]. 

a) 1 H Shifts, axial ligands and axial ligand geometry 

The electron configuration of the ferric iron in heme, d5, typically requires two 

strong field ligands to stabilize the low-spin (S = 1/2) state. Thus, ferric heme proteins 

exhibiting a low-spin state typically employ the histidine-imidazole, the methionine 

thioether, or the cysteine thiolate as the axial ligands. Many of the cytochromes c and 

cytochrome b562 from E. coli exhibit a histidine and a methionine as axial ligands [30], 

whereas cytochromes b5, microsomal [31] or mitochondrial [32], and the four hemes of 

cytochrome c3 [33] possess a bis-histidine coordinated heme. By comparison, the 

globins, including the inactive, Fem (met) forms of hemoglobin, myoglobin [4], and 

monomeric hemoglobins [34], as well as heme oxygenase [10, 11], the NO carrying 
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nitrophorins [35], and the peroxidases [12] have only one histidine axial ligand. Most of 

the molecules in the latter group exhibit a water molecule (weak field ligand) coordinated 

at the sixth position, thus they are in the S = 5/2 high-spin state. NMR spectroscopic 

studies of the paramagnetic active site of these high-spin proteins are typically conducted 

in the presence of an exogenous strong-field ligand, that binds (or replaces the aqua 

ligand) at the sixth position, therefore converting the hemoprotein to its low-spin state. 

The S = 1/2, cLr spin state is most commonly attained and the discussion below pertains 

only to this electronic configuration. The exogenous strong-field ligands are typically 

cyanide, imidazoles, pyridines, or azide, although cyanide is sometimes preferred because 

its cylindrical symmetry does not introduce a perturbation of the symmetry of the 

porphyrin n molecular orbitals. 

Early work conducted with met-myoglobin-cyanide revealed that the heme 

methyl groups exhibit significant C2 symmetry in that the methyl group resonances 

appear to be grouped pairwise in the proton NMR spectrum [36]; two methyl resonances 

exhibit large hyperfine shifts (- 20 ppm) and the other two display significantly smaller 

shifts, resonating ca. 8 ppm. It is now days clear that the orientation of planar axial 

ligands exerts a large influence on the spread of the methyl resonances originating from 

low-spin ferric heme proteins, as well as in low-spin porphyrinates [18, 37, 38]. The 

fundamental property that brings about this spread in the chemical shift of heme 

substituents is the interaction of the proximal histidine ligand with the iron-centered e

symmetry d orbitals, which in tum, individually interact with porphyrin 3e(n) orbirtals. 

These interactions, which have been presented in pictorial form [13, 37, 39], can be 
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Figure 4. a) Electron density and nodal properties of porphyrin 3e(1t) orbitals [36], which 

interact with the du and <iyz orbitals of low spin Fe(III), respectively. b) Spin density for 

two angles of the proximal histidine plane (represented by a thick black line), 0° and 45°, 

with respect to the axis along the nitrogen atoms ofpyrrole rings II and IV. The size of 

the circles is proportional to the electron density at each position. Adapted from 

references 13 and 3 7. 
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readily understood by considering the degenerate pair of porphine 3e(n) molecular 

orbitals (Figure 4-a), which interact with the dxz and dyz orbitals of low-spin Fe(III). The 

histidine-imidazole 1t orbitals lie perpendicular to the plane of the imidazole ring, thus 

these orbitals interact with the iron dxz and dyz orbitals and the porphyrin 3e(n) orbitals. 

This interaction, which can be thought of as being modulated by the angle the imidazole 

plane makes with the axis along the nitrogen atoms of pyrrole rings II and N, lifts the 

degeneracy of the 3e(x) orbitals, modulates their relative energy difference, and largely 

determines the degree of uneven distribution of electron spin density among the four 

pyrrole rings in the porphyrin macrocycle (see Figure 4-b) [37, 40]. 

The effect of axial ligand nodal plane orientation on the contact and dipolar 1H 

shifts of low-spin ferrihemes has been calculated as a function of the angle of the axial 

ligand plane with respect to the axis along the nitrogen atoms on pyrrole rings II and N 

[ 41]. Estimates of the Ocon contribution to the isotropic shift were obtained from Hiickel 

methods. Calculations of g-anisotropy, assuming counter rotation of the g tensor [ 42] 

were used to estimate the contribution of Octip· It was found that for systems having one 

axial ligand, or two axial ligands in parallel planes, the Ocon and Octip contributions to the 

isotropic shift are comparable at the meso-hydrogen position, whereas the contact 

contribution dominates the isotropic shifts of heme methyl groups. The predicted 

isotropic shifts were plotted as a function of axial ligand nodal plane orientation for b and 

c type hemes (Figure 5) [41]. These plots, which represent a straightforward visual aid to 

estimate the orientation of the axial ligands, show very good agreement in the order of the 

predicted shifts, and reasonable agreement in the magnitude of the shifts. This approach 
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Figure 5. Right: Right-handed coordinate system and nomenclature used for describing 

the projection of the His-imidazole plane onto the porphyrin ring. The x axis is aligned 

along the nitrogen atoms of pyrrole rings II and IV of the heme, the y axis is along the 

nitrogen atoms of pyrrole rings I and III, and the z axis is normal to the heme. Left: 

Dependence of observed heme-methyl shifts on the angle cl> formed between the 

molecular x axis and the projection of the imidazole plane. Examples are given for the 

bis-histidine coordinated cytochrome bs and the histidine-cyanide coordinated human 

HO-I and cytochrome c. Adapted from reference 41. 
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has been made more quantitative with the finding of equations that describe the 

relationship between axial ligand geometry and 1H shifts for c and b hemes [43]. 

The plot shown in Figure 5 summarizes calculations in the case of b hemes axially 

coordinated by proximal histidine and distal cyanide ligands, or by two histidine ligands 

parallel to one another [41]. The plot permits the straightforward correlation of the 

observed shifts for the four heme methyl groups (lMe, 3Me, 5Me, and 8Me) as a 

function of the angle ~ formed between the axial ligand plane and the molecular x axis. 

Using the information in this plot and the NMR resonance assignments obtained for the 

heme methyl groups [44, 45], it was possible to correctly predict an angle~ of 125° for 

the proximal histidine imidazole plane of human heme oxygenase [41] before the X-ray 

crystal structure was obtained [10]. Thus, the calculations summarized in the plot of 

Figure 5 provide a straightforward predictive framework to study heme containing 

proteins and enzymes even if their structure is not available. More recently a study has 

been published that correlates the order of heme methyl resonances in the high-spin form 

of several ferriheme proteins [46]. There is an apparent 90° shift in the nodal plane of the 

orbital involved in spin delocalization compared to the histidine-imidazole plane. This 

90° rotation has been explained in terms of almost complete use of only one of the <lx ( dxz 

or dyz) metal orbitals to delocalize electron density into one of the two 4e(n*) porphyrin 

orbitals [ 46]. 

As will be shown in Chapter V, the dependency of heme methyl 1H chemical 

shifts on the endogenous axial histidine plane orientation, is a powerful concept. Its use 

· enabled us to elucidate the nature of the different heme seatings present in a mutant of the 

25 



pa-HO protein thereby explaining the mechanism underlying the previously unobserved 

8-meso-regioselectivity of the wild type enzyme. 

b) 13C NMR spectrosocopy in the analysis ofhemoproteins 

The high sensitivity of the proton has led to an overwhelming emphasis on the 

utilization of 1H NMR spectroscopy to study paramagnetic hemoproteins [14, 15, 47, 48]. 

For these molecules 1H NMR spectroscopy is capable of providing unique structural and 

electronic information for the heme active site and residues near the active site because of 

the large hyperfine shifts that result from unpaired electron density [12, 14, 18, 49-51]. 

Nevertheless, 1H NMR spectroscopy of paramagnetic proteins has some fundamental 

limitations: (a) Asymmetric delocalization of unpaired electron density results in large 

isotropic shifts for some of the heme substituents but small to negligible isotropic shifts 

for others. This means that some of the resonances originating from the heme are 

resolved from the diamagnetic envelope of resonances and thus are relatively easy to 

observe, whereas other heme resonances are not resolved from the diamagnetic envelope 

and consequently their observation and assignment are difficult. (b) Heme substituents in 

the reduced (usually diamagnetic) state lack isotropic shifts and are therefore difficult to 

examine by 1H NMR spectroscopy. (c) Efficient spin-spin relaxation often makes 

through-bond proton-proton correlations in COSY and TOCSY experiments 

unobservable. The development of cross peak coherence in these experiments (7tlt = n/2) 

requires that t = 1/(2J). Hence, 70 ms and 35 ms, respectively, are required to develop 

cross peak coherences for vicinal (J = 7 Hz) and geminal (J = 14 Hz) 1H-1H couplings. 

Since cross peak coherence must develop completely during the detection period, La Mar 
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has pointed out that in the case of paramagnetic systems, where the condition T2-1 > 3J88 

applies, the COSY cross peaks from signals with short T 2 values will be weak and some 

times undetectable [14, 52]. In fact, it has been proposed that the COSY cross peaks 

observed in paramagnetic systems originate from dipolar coupling and Curie spin-nuclear 

spin relaxation [52, 53]. By comparison, the larger heteronuclear coupling 1Jc8 - 140 Hz 

requires only - 4 ms for the development of cross peak coherence, thus making 

heteronuclear correlation experiments immensely attractive when one is interested in 

studying paramagnetic heme centers by NMR spectroscopy. In diamagnetic molecules, 

connectivities are detected across portions of molecules without the use of small 3 J88, 

using heteronuclear correlation experiments based on scalar 13C-13C and 13C-15N 

correlations. The relatively large value of the 1Jcc coupling constant (- 50 Hz) is much 

larger than typical 3 J88, hence, similar experiments should be directly applicable to the 

observation and assignment of paramagnetically-affected resonances. 

Despite the potential utility of 13C NMR spectroscopy in the study of 

paramagnetic proteins, the inherent lower sensitivity of 13C has largely limited the 

effective use of natural abundance 13C NMR spectroscopy to observe resonances 

originating from the paramagnetic heme cofactor. In the 1970s and 1980s the most 

common application of 13C NMR spectroscopy to the analysis of heme proteins involved 

the characterization of resonances originating from the distal carbonmonoxide (CO) 

ligand of hemoproteins coordinated by a 13C-enriched CO molecule [54, 55]. An early 

attempt to overcome the problems imposed by the low natural abundance of 13C nuclei 

was to develop synthetic methods to introduce 13C labels into the vinyl groups of the 
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heme macrocycle [48, 56]. These pioneering experiments, which permitted the 

observation of 13C resonances from heme vinyl groups in high- and low-spin myoglobin 

derivatives [ 48], demonstrated the practicality and importance of applying 13C NMR 

spectroscopy to the analysis of paramagnetic hemoproteins. More recently, the 1H-13c 

COSY spectra of natural abundance ferricytochrome c [57] and that of sperm whale 

myoglobin [58], were utilized to assign the 13C resonances originating from the heme 

methyl groups. Subsequently, the proton-detected heteronuclear multiple quantum 

coherence (HMQC) experiment [59] was utilized to identify several heme carbons and 

their corresponding proton resonances in the paramagnetic active site of cytochrome c550 

[60], which culminated in the assignment of most proton and carbon resonances for tuna 

ferricytochrome c [ 61]. This experiment has found widespread use in the identification 

of 1H and 13C resonances originating from protonated carbon atoms in paramagnetic 

heme centers [62-64]. However, resonances not resolved from the paramagnetic 

envelope are often times difficult to assign, even with the aid of the HMQC experiment 

[65, 66]. 

As will be shown in the following chapters, by taking advantage of biosynthetic 

methods that allow us to obtain 13C labeled hemes, the limitations of 13C NMR mentioned 

above can be largely attenuated while giving us access to information not readily 

obtained by 1H NMR alone. For example, the observation and assignment of core 

porphyrin quaternary carbons is a challenging task as their closer proximity to the heme

iron makes these carbons more strongly affected by the unpaired electron. However, 

there is a relatively straightforward correlation between the chemical shifts of these core 
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carbons and the coordination state and electronic structure of the heme. As will be shown 

in Chapters III, IV and V the efforts needed to observe and assign the resonances 

originating from the porphyrin core carbons is completely justified as it greatly facilitates 

the assessment of heme electronic structure. 
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Chapter III 

MODELS OF THE LOW-SPIN IRON(III) HYDROPEROXIDE INTERMEDIATE 

OF HEME OXYGENASE: MAGNETIC RESONANCE EVIDENCE FOR 

THERMODYNAMIC STABILIZATION OF THE dxy ELECTRONIC STATE 

AT AMBIENT TEMPERATURES 

Introduction 

The degradation of heme in mammalian cells is catalyzed by the enzyme heme 

oxygenase (HO) [1-,3]. In a molecular oxygen- and electron-dependent set of reactions 

HO cleaves the a-mesa bridge to produce CO, biliverdin and free iron. Not long ago, the 

HO system was regarded only in the context of the maintenance of cellular heme 

homeostasis as a catabolic enzyme, and the products of HO activity were considered 

toxic waste material. More recently this view has changed drastically after the discovery 

that all products of HO enzymatic action possess important biological activity. CO 

functions to regulate vasomotor tone and neurotransmission in a manner akin to NO,[ 4,5] 

iron released from HO-I activity upregulates ferritin expression,[6] and bilirubin, formed 

when biliverdin is reduced by biliverdin reductase, is a potent antioxidant [7]. Since the 

regulation of HO activity has ramifications for a variety of physiological functions, it is 

important to attain a detailed understanding of the mechanism by which heme is 

converted to CO, Fe and biliverdin. 

Although several important aspects of the mechanism of action of HO have not 

yet been elucidated, the evidence gathered so far demonstrates that HO acts via a 
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mechanism different from that currently accepted for other oxygen activating 

hemoproteins such as cytochromes P450, peroxidases, and catalases, (recently reviewed) 

[1-3,8] as well as the mitochondrial enzyme complex and cytochrome c oxidase (recently 

reviewed) [9]. Nevertheless, the reactions catalyzed by HO display some of the 

characteristic fundamental aspects shared by the catalytic mechanism of action of all 

oxygen-activating heme proteins. The ferric enzyme is initially reduced to its ferrous 

state [10], followed by formation of an oxyferrous complex (Fen-02), which accepts a 

second electron from NADPH cytochrome P450 reductase, and thereby is transformed 

into a ferric hydroperoxy (Fem-OOH) species [10]. Based on the reactivity of HO toward 

hydrogen peroxide and alkyl hydroperoxides, it was proposed that the nature of the 

species that oxidizes the HO-bound heme to a-mesa hydroxyheme is a ferric 

hydroperoxide (Fem-OOH) [3,10]. Strong evidence supporting this conclusion was 

recently produced by cryoreduction of the ferrous dioxygen complex of HO (Fen-02) in 

order to produce an intermediate that was identified by EPR spectroscopy as 

corresponding to the Fem-OOH complex [11]. Upon warming, this intermediate was 

converted into the corresponding a-meso hydroxyheme complex, thus confirming a ferric 

hydroperoxide intermediate as a precursor of a-mesa hydroxyheme. 

The EPR spectrum corresponding to the Fem-OOH complex of HO displays g

values of2.37 (or 2.38, depending on treatment), 2.19, and 1.93 at 77 K [11]. The sum of 

the squares of the principal g-values (:Eg2) for the hydroperoxy complex of HO is about 

14.1. It is interesting to consider this value in the context of recently reported studies of 

low-spin Fe(III) porphyrinates [1215 These reports demonstrated the presence of a novel 

electronic configuration, (dxz,dyz)\dxy)1, where the unpaired electron resides in the dxy 
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orbital. Interestingly, all model hemes known to possess the (dxz,dyz)4(dxy)1 electron 

configuration (hereafter abbreviated as dxy) displayed EPR spectra with ~g2 < 14. By 

comparison, low-spin Fe(III) hemes possessing the more common (dxy)2(dxz,dyz)3 electron 

configuration (hereafter abbreviated as d11:), display EPR spectra with the typical g,/ + 

gyy2 + g2/ ~ 16 [14,16]. 

On the basis of these arguments, it was possible to speculate that the electronic 

configuration of the Fem-OOH complex of HO might have an unpaired electron residing 

in the dxy orbital. What is noteworthy about a dxy electronic configuration is that it places 

a large amount of n-spin density on the porphyrin mesa carbons [12-16]. To delocalize 

spin density from the dxy orbital into the porphyrin 1t system, the macrocycle has to ruffle 

significantly, so that the components (projections) of the Pz orbitals of the macrocycle in 

the xy plane have the proper symmetry to interact with the dxy orbital [12]. The porphyrin 

orbital that has the proper symmetry to interact with the dxy orbital in this ruffled 

macrocycle conformation is the 3a2u(1e) orbital [12] shown in Figure 1. It is evident from 

the relative sizes of the circles in the schematic representation of the 3a2u(n) orbital that 

the mesa carbons possess large electron density. Large electron and spin density at the 

mesa positions, in turn, may explain the attack of the Fern-OOH intermediate on a heme 

mesa carbon, as discussed in more detail later in this work. Consequently, the main 

object of the investigations reported herein is to determine the electron configuration of 

hydroperoxide or alkyl peroxide complexes of Fem porphyrinates. 

Some years ago Tajima and coworkers showed that synthetic hemes in the 

presence of alkyl peroxides and a variety of sixth ligands, including methoxide,[17-19] 

imidazolate [20], or a second alkyl peroxide,19 as well as heme proteins with histidine 
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Figure 1. Representation of the 3a2u(n) porphyrin orbital. The sizes of the circles are 

proportional to the electron density. 
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[21,22] or cysteinate [23] sixth ligands, yield very similar EPR spectra with compressed 

g anisotropy (Lg2 - 14). These spectra are very similar to those obtained for the Fem

OOH complexes of various heme protein enzymes, which were prepared by 

cryoreduction and then annealing of the corresponding Ferr-02 complexes [11,24]. The 

g-values of the complexes of Tajima and coworkers (2.32, 2.16, 1.95, methoxide, t

butylperoxide [21]; 2.25, 2.15, 1.96, bis-t-butyl-peroxide [21]; 2.32, 2.19, 1.94, 

imidazolate, hydroperoxide [20]) are very similar to those of annealed hemoglobin

hydroperoxide (2.31, 2.18, 1.94) [11], heme oxygenase-hydroperoxide (2.37, 2.19, 1.93) 

[11], and cytochrome P450-hydroperoxide (2.29, 2.16, 1.96) [24]. We thus reasoned that 

magnetic resonance investigation of the Tajima model complexes could provide 

important information concerning the orbital of the unpaired electron, and hence the 

likely conformation of the porphyrinate ring of these model complexes, which could thus 

yield insights into the electronic and molecular structure of the catalytically active 

hydroperoxide complex of heme oxygenase. As will be shown below, we find that at 8 K 

the unpaired electron of [TPPFe(OCH3)(001Bu)r, [TPPFe(001Bu)2L and 

[TPPFe(OCH3)2r resides in one of the dn orbitals, while at physiological temperatures the 

unpaired electron of those complexes that are stable enough to investigate is indeed in the 

dxy orbital. 

Experimental Section 

a) Reagents. 

Tetramethylammonium hydroxide (TMAOH) 25% (w/w) in methanol and 70% 

(w/w) aqueous tert-butylhydroperoxide ('BuOOH) were purchased from Alfa Aesar. 
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TMAOH was used as received, whereas 1Bu00H was extracted into methylene chloride 

by swirling 2.5 mL of the aqueous peroxide solution with 6 mL of dichloromethane in a 

separatory funnel. The organic phase was separated and then dried over anhydrous 

MgS04 before being filtered into a brown glass container. Dichloromethane solutions of 

1Bu00H were prepared before each experiment. Chloroiron(III) tetraphenylporphyrin 

(TPPFeCl) and meso-13C-TPPFe111Cl were purchased from Porphyrin Products and used 

without further purification. 13C labeled perchlorato-iron(III) tetraphenylprophyrin 

(meso-13C-TPPC104) was prepared from meso-TPPFeCl according to a published 

procedure [25]. 

b) Synthesis of alkyl peroxide porphyrinate complexes. 

Alkyl peroxide complexes of TPPFe were synthesized by a modification of the 

synthetic procedures reported by Tajima and coworkers [17-23]. These investigators 

reported the synthesis and characterization (EPR and electronic absorption spectra) of 

[TPP(OCH3)2L [TPPFe(OCH3)(001Bu)]", and [TPPFe(001Bu)2r in frozen glasses at 77 

K. An important aim of the investigation reported here is the study of these complexes 

by 13C NMR spectroscopy in solution. Consequently, modifications were necessary to 

synthesize and characterize the complexes at temperatures above the melting point of 

CH2Ch. As a first step toward this goal, conditions were explored that allowed us to 

reproduce the electronic absorption spectra, previously obtained from frozen glasses at 77 

K [17-19], in solutions thermostatted at 195 K. In order to facilitate these experiments, 

the cell shown in Figure 2 was constructed out of glass. To assemble the cell, the "dip 

probe" (a) is inserted through the cap (b) and secured with 0-ring (c) and teflon® washer 
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( d). The cap is then threaded onto the main body of the cell ( e ), where it will push upon 

the washer, causing the 0-ring to expand, thereby making the assembly gas-tight. Two 

side-ports were built into the glass cell: the first (f) serves as an inlet for argon, needed to 

establish a water-free atmosphere; the second (g) is fitted with a rubber septum, which 

can be removed for the addition of reactants. Reagents are introduced into the cell with 

the aid of polyethylene capillary tubing (0.8 mm I.D., 1.8 mm O.D.) and a peristaltic 

pump. The dip probe (Ocean Optics) enables ultraviolet and visible light from the 

excitation source to be directed into the sample solution through a fiber optic (i). The 

light passes through the solution in the probe cavity (h) and is reflected by a mirror back 

to a second fiber optic (i'), to be sent to a detector where the signal is processed. The 

probe can be equipped with sampling cavities of varying path lengths. For the purposes 

of these studies a sampling cavity with a 0.2 cm path length was used. 

A typical procedure for synthesizing the alkyl peroxide complexes is described in 

what follows. A dichloromethane solution of TPPFeCl (6 mL, 0.2 mM), previously dried 

over MgS04, was added into the cell through the reagent port (g). The cell was then 

thermostated at -78 °C with the aid of an acetone-dry ice bath. It is important to maintain 

a constant stream of argon to avoid the condensation of atmospheric water inside the cell. 

A solution of TMAOH in methanol (104 µL, 2.4 M) was added to the solution containing 

TPPFeCl, thus generating [TPPFe(OCH3)zr. The resultant solution was frozen by 

immersing the cell in liquid nitrogen, followed by the addition of a solution of 1Bu00H 

in CH2Clz (125 µL, 1 M). The latter freezes almost instantaneously on the surface of the 

frozen solution of [TPPFe(OCH3)2r. The cell is then transferred back to an acetone-dry 

ice bath, where the solid solution is allowed to thaw at - 78 °C with continuous stirring. 
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Figure 2. Schematic cross-sectional representation of the cell used to obtain electronic 

absorption spectra at low temperatures: (a) dip probe, (b) threaded cell-cap, (c) 0-ring; 

when the cap is threaded into position the teflon® washer ( d) forces the o-ring to 

expand, thus producing an air tight seal. The cell body is outfitted with a port for argon 

inlet (f) and a port for reagent delivery and argon outlet (g). The latter can be sealed 

with a rubber septum. The sampling cavity (h) utilized in the experiments has a path 

length of 0.2 cm and the dip probe is connected to the excitation source and diode array 

detector via optical fibers (i and i'). 
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The color of the solutions changes to a cherry red. The electronic absorption spectrum 

recorded at - 78 °C in this "dip probe" cell is very similar to that reported for 

[TPPFe(OCH3)(00tBu)r at 77 K [19]. Similar experiments allowed us to determine that 

the molar proportions needed to obtain electronic absorption spectra characteristic of the 

different alkyl peroxide complexes at -78 °C are 1 TPPFeCl (0.2 mM): 200 OH : 100 

tBuOOH for [TPPFe(OCH3) (OOtBu)f, and 1 TPPFeCl (0.2 mM): 200 OH-: 600 

tBuOOH for [TPPFe(OOtBu)z]-. These proportions were subsequently utilized to 

synthesize the complexes for magnetic resonance spectroscopic studies. 

c) Sample preparation for magnetic resonance spectroscopic studies. 

The alkyl peroxide complexes were synthesized at - 78 °C in an EPR or NMR 

tube. A typical synthesis was carried out as follows: The NMR/EPR tube was flushed 

with argon through a polyethylene capillary tube. A solution of meso-13C-TPPFeCl (500 

µL, 3 mM) in CD2Ch was added into an NMR/EPR tube with the aid of a polyethylene 

capillary tube and a peristaltic pump. TMAOH (125 µL, 2.4 M) was then introduced into 

the NMR/EPR tube in a similar fashion, thus resulting in the formation of [meso- 13C

TPPFe(OCH3)zr. Mixing of the solutions was performed with the help of a thin (- 1 mm 

diameter) ceramic rod. The ceramic rod was left in the solution and the NMR tube 

immersed in liquid nitrogen, while constantly flushing with a stream of argon. To 

synthesize [meso-13C-TPPFe(OCH3)-(00tBu)L a solution of tBuOOH (50 µL, 3M) was 

then carefully added with the aid of a clean polyethylene capillary tube and a peristaltic 

pump. The solution of tBuOOH froze almost instantaneously on top of the frozen 

solution of [meso-13C-TPPFe(OCH3)2r. · The NMR/EPR tube was then transferred to an 
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acetone-dry ice bath and the solutions allowed to melt while mixing with the ceramic rod. 

The solution containing the alkyl peroxide complex was frozen in liquid nitrogen and 

transferred into a previously thermostatted NMR probe or EPR cavity. 

d) NMR spectroscopic investigations. 

13C NMR spectra of [meso-13C-TPPFe(OCH3)(001Bu)r was obtained on a Varian 

Unity Inova spectrometer operating at a 13C frequency of 100.576 MHz. The spectra 

were acquired over 16 k data points, with a spectral width of 8.6 kHz, 90 ms acquisition 

time, 40 ms relaxation delay and 40,000 scans. The baseline was flattened with a spline 

fitting of predefined baseline regions. The temperature of the sample was set and 

regulated through the use of a standard variable temperature unit furnished by Varian 

Instruments, which functions by controlling a heating element which is exposed to the 

stream of cooled gas. The variable temperature unit was calibrated by using the Wilmad 

temperature calibration sample, which utilizes the temperature-dependent difference in 

resonance frequency of the two peaks of methanol. 

e) EPR spectroscopic investigations. 

Continuous wave EPR spectra were recorded on a Bruker ESP-300E 

spectrometer, at 77 K using an immersion dewar. The pulsed ENDOR experiments were 

carried out on a home-built X/P-band pulsed EPR spectrometer equipped with a pulsed 

ENDOR accessory [26,27]. In these experiments, the Mims [28] and Davies [29] pulsed 

ENDOR techniques were employed. To minimize the Mims ENDOR spectrum 

distortions due to the blind spots [30,31], the spectra were detected at several time 
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intervals 't between the first and second microwave (mw) pulses of the three-pulse 

sequence, and then summed up. The measurement temperature, chosen to optimize the 

electron spin relaxation times for the pulsed EPR experiments, was about 8 K. 

Results and discussion 

a) Synthesis of alkyl peroxide complexes of Fe111TPP. 

Tajima and coworkers have described the synthesis of alkyl peroxide complexes 

of Fem-tetraphenylporphyrin, such as [TPPFe(OCH3)2L [TPPFe(OCH3)(001Bu)L and 

[TPPFe(001Bu)2r in several reports [17-23]. Three important aspects prompted us to 

reinvestigate the synthesis of alkyl peroxide complexes previously reported by Tajima et 

al.: (a) The stoichiometric proportions needed to prepare the alkyl peroxide complexes 

are significantly different from one report to another. In our hands, the stoichiometric 

proportions previously reported do not lead to the synthesis of the desired alkyl peroxide 

complexes. (b) The alkyl peroxide CBuOOH), utilized in the previous reports was 

distilled under reduced pressure, a step that is potentially hazardous, and at best could 

lead to significant decomposition of the peroxide. We have thus used aqueous 1BuOOH 

extracted into CH2Ch, followed by drying with MgS04• (c) The alkyl peroxide 

complexes prepared by Tajima have been studied only in frozen glasses at 77 K [17-23]. 

Because it was our intention to conduct 13C NMR spectroscopic studies of the alkyl 

peroxide complexes in solution, it was important to search for appropriate conditions for 

the preparation of the complexes at temperatures above the melting point of CH2Ch. 

Consequently, the alkyl peroxide complexes were prepared at -78 °C (195 K) and the 

formation of products was monitored with the aid of electronic absorption spectroscopy. 
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The appropriate stoichiometric proportions needed to prepare [TPPFe(OCH3)(001Bu)r 

were determined by comparing the electronic absorption spectrum obtained in solution at 

195 K with those reported by Tajima in frozen glasses at 77 K [17-19]. To ensure that 

the conditions found by electronic absorption spectroscopy could be more readily 

translated into the concentrations needed for the NMR and EPR spectroscopic 

experiments, the "dip probe" (see Methods) was outfitted with a 2.0 mm-path cavity and 

only the visible region (450-800 nm) of the spectrum was monitored. This allowed us to 

increase the concentration of porphyrin several-fold relative to what is possible if one 

utilizes an optical path of 1 cm and observes the Soret band. In fact, the concentration 

used to prepare the alkyl peroxide complexes for the NMR experiments is only four fold 

higher than that used with the electronic absorption spectroscopy studies. This increased 

concentration should maintain the thermodynamic stability of the complex, even in the 

face of increased temperature (178-218 K), by overcoming the expected decrease in Keq 

for complex formation as the temperature is raised. Experiments conducted in this 

fashion allowed us to establish that addition of a 200-fold molar excess of 

tetramethylammonium hydroxide in methanol to a solution containing TPPFeCl in 

CH2Ch results in the formation of a complex that displays the electronic spectrum shown 

in Figure 3-A. This spectrum, obtained at 195 K, is similar to that reported for 

[TPPFe(OCH3)2r in a frozen glass at 77 K [18], and is typical of low-spin Fe(III) 

porphyrinates having either the dxy or the drr electron configuration [32]. When the 

complex is prepared in an EPR tube (see Methods) and the resultant solution is frozen at 

77 K for spectroscopic analysis, an EPR spectrum (Figure 3-D, trace 1) identical to that 

reported by Tajima [18,19] for [TPPFe(OCH3)2]" is obtained. Addition of 100-fold 
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excess of 1BuOOH, with respect to TPPFeCl, to [TPPFe(OCH3)2r results in the formation 

of [TPPFe(OCH3)(001Bu)f. The electronic absorption spectrum of this complex at 195 

K (Figure 3-B) and EPR spectrum at 77 K (Figure 3-D, trace 2) are characteristic of a 

low-spin iron(III) porphyrinate and very similar to those reported for 

[TPPFe(OCH3)(001Bu)r at 77 K [18,19]. Addition of more 1Bu00H to a solution of 

[TPPFe(OCH3)(001Bu)L 600-fold excess with respect to TPPFeCl, results in the 

formation of [TPPFe(001Bu)2r. The EPR spectrum of this complex at 77 K (Figure 3-D, 

trace 3) is identical to that reported by Tajima and coworkers [18,19] for 

[TPPFe(001Bu)2r. It can also be seen from Figure 3-C that the electronic spectrum of 

[TPPFe(001Bu)2r at 178 K is characteristic of a low-spin porphyrinate, and clearly 

distinct from the electronic spectrum exhibited by [TPPFe(OCH3)(001Bu)r. The 

electronic spectrum of [TPPFe(001Bu)2r had not been reported previously. 

The results summarized above clearly indicate that the stoichiometric proportions of 

reactants utilized to synthesize the different alkyl peroxide complexes at 195 K produce 

solutions with optical signatures very similar to those obtained by Tajima at 77 K [18-

20]. In addition, EPR spectra of the low-spin complexes synthesized with these 

stoichiometric proportions are not only identical to those reported previously [18-20], but 

also do not contain the high-spin Fe(III) EPR signals, present in some of the previous 

reports [17,18,20,21]. Consequently, it can be concluded that the alkyl peroxide 

complexes, previously characterized only at 77 K [17-21], are also stable at 195 K. 

A second point of practical importance in the synthesis of these alkyl peroxide 

complexes is that it is not necessary to distill the alkyl hydroperoxide. It is sufficient to 
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Figure 3. Electronic absorption spectra of [TPPFe(OCH3)2r (A), 

[TPPFe(OCH3)(001Bu)r (B), and [TPPFe(001Bu)zr (C). The corresponding EPR 

spectra are shown in (D) by traces 1, 2 and 3, respectively. The small peaks at g = 2 in 

traces 2 and 3 are due to 1Bu00•. 
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extract 1Bu00H from its aqueous commercial solution into CH2Ch, followed by drying 

the organic phase with MgS04• The CH2Ch solution of tBuOOH obtained in this manner 

permits the successful synthesis of the alkyl peroxide complexes at 195 K if care is taken 

to exclude atmospheric water from the system. 

b) Pulsed ENDOR spectroscopy reveals that [TPPFe(OCH3)(001Bu)J- has a d11: 

electron configuration at 8 K. 

It is evident from the EPR spectra summarized in Figure 3 that l:g2 ~ 14 for all 

three complexes. This raised the possibility that these complexes might possess a dxy 

electron configuration. This possibility was investigated by pulsed ENDOR at 8 K 

and by 13C NMR spectroscopy at higher temperatures (see below). The Mims ENDOR 

[27] spectra of [meso-13C-TPPFe(OCH3)(00tBu)f, recorded at the low-field (gLF) and 

high-field (gHF) extrema of the EPR spectrum, are shown in Figure 4, traces 1 and 2. 

Traces 3 and 4 in the same figure show the spectra of [meso-13C-TPPFe(N-Melm)2J+, an 

example of a "pure" dn electron configuration [13-16]. The hyperfine splittings in all 

spectra do not exceed 1. 7 MHz. In the ENDOR spectra recorded at the intermediate 

positions of the EPR spectra the splittings are similar (not shown). Figure 5 shows for 

comparison the pulsed ENDOR spectra of [ meso-13C-TPPFeCBuNC)2t, an example of a 

"pure" dxy electron configuration [14,16], recorded at gLF = gx = gy (trace 1), gHF = gz 

(trace 5), and at intermediate g-values that correspond to different angles Bsz between the 

external magnetic field B0 and the normal Z to the heme plane (at gLF Bsz = 90°, and at 

gHF Bsz = 0°, as indicated in Figure 5). The spectra in Figures 4 and 5 are considerably 

different both in appearance and in the frequencies of the 13C transitions, and can be used 
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MHz 

Figure 4. Mims ENDOR spectra of meso-13C in [TPPFe(OCH3)(00tBuff (traces 1 and 

2) and in [TPPFe(N-Meim)2t (traces 3 and 4). The spectra were obtained as differences 

between those of the samples enriched with 13C and the samples with a natural abundance 

of isotopes (-1 % of 13C). Traces 1 and 2 are detected at B0 = 2920 G (gLF = gz) and B0 = 

3430 G (gHF = gx), respectively. They represent a result of summation of spectra 

recorded at the time intervals r between the first and second microwave (mw) pulses of 

300, 400, 500 and 600 ns. Traces 3 and 4 are detected at B0 = 2385 G (gLF = gz) and B0 = 

4425 G (gHF = gx), respectively. Trace 3 represents a result of summation of the spectra 

obtained at r = 250, 350, 450 and 550 ns, while trace 4 is a result of summation of the 

spectra at r = 250 and 350 ns. Experimental conditions: temperature, - 8 K; mw 

frequency, 9.445 GHz; time interval T between the second and third mw pulses, 60 µs; 

radiofrequency pulse duration, TRF = 30 µs (about 180° for weakly-coupled 13C). 
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Figure 5. Davies ENDOR spectra of meso-13C in [TPPFeCBuNC)2t. The spectra were 

obtained as differences between those of the samples enriched with 13C and the samples 

with a natural abundance of isotopes (-1 % of 13C). Traces 1 through 5 are detected at B0 

= 3035 G (gLF = g.L = gx = gv), 3325 G, 3375 G, 3425 G and 3495 G (gHF = g11 = gz), 

respectively. The angles t13z between B0 and Z corresponding to these B0 are shown at 

the left side of the Figure. Experimental conditions: temperature, about 8 K; mw 

:frequency, 9.445 GHz; mw pulse durations, 100 ns (180°), 50 ns (180°) and 100 ns 

(180°); time interval T between the first and second mw pulses, 60 µs; r = 700 ns; 

radiofrequency pulse duration, T RF= 30 µs. Dashed traces are simulated with Pc = 0.079, 

PFe = 1-4Pc = 0.68, Bi,z = 21 °. 
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"as is" to distinguish one type of the electronic configuration from the other. Thus, we 

can already make a conclusion that the ENDOR spectra clearly indicate that at 8 K the 

electron configuration of [TPPFe(OCH3)(00tBu)]" is d1r, and that the unusually small 

value of "f..g2 observed for this complex probably arises from orbital quenching in this 

relatively weak-field anionic ligand system. 

In order to understand the origin of the difference between the ENDOR spectra 

originating from Fem-porphyrinates with d1r and dxy electron configurations, we must 

consider in some detail the relation between the hyperfine interaction (hfi) parameters of 

meso-13C and the spin density distributions in the porphyrin n-systems. In the case of the 

dxy electronic configuration the main contributions to the meso-13C hfi come from two 

sources. First, there is a dipole interaction between the electronic spin density PFe 

localized in the dxy orbital and the magnetic moment of the meso-13C nucleus. This 

interaction can be reasonably accounted for by using the point dipole approximation, and 

is characterized by the anisotropic hfi coupling constant 

(1) 

which corresponds to the perpendicular component of the axially symmetric anisotropic 

hfi tensor. The axis of this tensor is directed along the radius-vector RFec connecting the 

central Fe3+ ion with the mesa-carbon. The parameters entering Equation (1) are as 

follows: g and gn are, respectively, the electronic and nuclear g-factors; /3 and f3n are the 

Bohr magneton and the nuclear magneton, h is Planck's constant, RFec ~ 3.4 A. The 

value of TFe corresponding to PFe = 1 is about -0.5 MHz (at g = 2). 
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The other contribution to the hfi is from the 1t-spin density Pc localized on the 

mesa-carbon itself. The anisotropic hfi is characterized by the axially symmetric tensor 

with the perpendicular component Tc - -50pc MHz (at g = 2) [33,34]. The axis of this 

tensor is directed along the carbon p-orbital, close to the heme normal Z, and is 

perpendicular (approximately, if the macrocycle is ruffled) to the axis of the hfi tensor 

determined by /JFe· The isotropic hfi constant ac resulting from Pc is about 100Pc MHz 

[33,34]. 

The contributions of spin densities on other atoms in the porphyrin ring and, 

possibly, in the ligands, may be neglected because these spin densities are close to zero, 

as is the case for the pyrrole carbons. fu addition, other atoms are at fairly large distances 

from a given mesa-carbon, and the spin densities on them are limited (p < 0.1 [35]). 

Somewhat stretching the model, the spin densities on pyrrole nitrogens that are located 

close to the central Fe can be included in the effective value of /JFe, which will only lead 

to a slight nonaxiality of the corresponding anisotropic hfi tensor and to a slightly 

overestimated value of /JFe· 

With the model formulated above, the total hfi constant A11 corresponding to B0 // Z can 

be written as: 

A11 = ac + TFe - 2Tc ::::; 100/JC - 0.25gzf)Fe + 50gz,ct: (2) 

where all numerical factors are in MHz, and the proportionality of the anisotropic hfi to 

the electronic g-value is factored out. If B0 1- Z, the hfi constant A1. varies from 
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(3) 

when Bo J_ RFeC, to: 

(4) 

when B0 // RFeC· In Equations (3) and (4) gi is gLF = gx = gy. 

To first order approximation in hfi, the two 13C ENDOR lines are located at the 

frequencies of I Ve ± A/2 I, where ve is the 13C Zeeman frequency. Two situations are 

possible. In the weak coupling limit, when Ve > A/2, the doublet of ENDOR lines will be 

centered at Ve and split by A. In the strong coupling limit, when Ve < A/2, the doublet 

will be centered at A/2 and split by 2vc. The doublet of 13C lines seen in spectrum 5 of 

Figure 5 (near gz, B0 = 3495 G, Ve~ 3.74 MHz), is centered at the frequency Vent~ 7.5 

MHz > Ve. It then clearly corresponds to the strong coupling case, and we can 

immediately estimate A11 ~ 2Vcnt ~ 15 MHz. Since the anisotropic hfi contribution from 

PFe is very small compared with A11 ( at g = gz ~ 1.93, TFe ~ 0.48 MHz, even at PFe = 1 ), it 

can be neglected in Equation (2), and Pc~ 0.076 can be readily estimated. lfwe include 

in the effective PFe all spin densities but those located on the mesa-carbons (and for the 

dxy system that virtually means only the spin densities on the pyrrole nitrogens), we may 

estimate PFe ~ 1 - 4pc ~ 0.7. Substituting Pc ~ 0.076 into Equation (3) or (4) where, 

again, TFe is neglected, we can easily find AJ_ ~ 3.4 MHz. Using this value, the position 

of the high-frequency 13C line, Ve + AJ_/2, in the ENDOR spectrum at gi ~ 2 [23] can be 

estimated. The estimated frequency is about 4.95 MHz, very close to the maximum of 
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the high-frequency line observed in the experimental spectrum 1 in Figure 5. Thus, it is 

seen that the ENDOR spectra recorded at both canonical orientations are successfully 

explained with this model for the hfi, which shows that it is reasonably accurate. 

The ENDOR spectra recorded at B0 values other than those corresponding to the 

turning points of the EPR spectrum show 13C transition frequencies intermediate between 

those observed at the turning points (see traces 2-4 in Figure 5). In addition, the high

frequency line in these spectra exhibits a splitting (we do not intend to discuss the low

frequency line, since it has a much lower intensity in· the experimental spectra, and its 

shape is considerably affected by noise). This feature is interpreted as indicative of the p

orbitals of the mesa-carbons (and their associated anisotropic hfi tensor axes) being not 

exactly parallel to Z. An alternative explanation with significantly inequivalent carbons 

fails because spectrum 5, recorded at gz, does not show resolved splittings, which 

indicates that the spin densities on all four mesa-carbons are nearly identical. 

To estimate the angle Bi,z between Z and the axis of the mesa-carbon p-orbital 

(assuming for simplicity Bi,z to be the same for all four mesa-carbons), numerical 

simulations of the ENDOR spectra have been performed with a variation of Bi,z, Pc and 

PFe = 1 - 4pc. A reasonable fit was obtained for pc R:: 0.079, {)Fe R:: 0.68, and Bi,z R:: 21 ° 

(dashed traces in Figure 5). The spin density Pc R:: 0.079 found in this work for [mesa-

13C-TPPFe(tBuNC)2t is close to Pc R:: 0.06 found earlier for another dxy system, 

[OEPFe(PhNC)2]+, using the ENDOR lines of the mesa-protons [36]. 

Now the mesa-13C ENDOR spectra of the d'l( systems shown in Figure 4 will be 

considered briefly. The spectra recorded at g2 show better (trace 1) or worse (trace 3) 

resolved sets of doublets (asymmetric in amplitude, probably, because of the implicit 

55 



TRIPLE effect [37,38]) centered at the 13C Zeeman frequency and split by the hfi 

constants Az. Different doublet splittings indicate some inequivalence of the spin density 

distributions "seen" by different mesa-carbons. 

The main contribution to the mesa-13C anisotropic hfi in these systems is made by 

PFe - 0.8 [39]. For example, for [mesa-13C-TPPFe(OCH3)(00'Bu)r (gz - 2.3), the 

corresponding anisotropic coupling constant TFe (see Equation (1)) is about 0.5 MHz. 

The spin densities on the mesa-carbons are very small(::;; 0.003, according to our Hi.i.ckel 

calculations), and may contribute no more than Tc - -0.17 MHz to the anisotropic hfi and 

ac - 0.3 MHz to the isotropic hfi constant. Another important contribution to the hfi 

parameters of mesa-13C is made by the 1t-spin density Pa on the adjacent pyrrole a

carbons. The contribution from Pa to the isotropic hfi of meso-13C may be estimated as aa 

- -35 Pa MHz [40]. With pa reaching 0.015 it maybe as large as -0.6 MHz, and with two 

pyrrole a-carbons neighboring each mesa-13C, aa - -1 MHz is a reasonable estimate. The 

anisotropic hfi contribution of Pa - 0.015 may be roughly estimated in the point dipole 

approximation to give the coupling constant Ta - -0.13 MHz. 

It can be seen that the main contributions to the total hfi constant Az of the meso-

13C are the isotropic contribution of spin densities Pa on adjacent pyrrole a-carbons (aa - -

1 MHz) and the anisotropic contribution from PFe (TFe - -0.5 MHz at g = gz - 2.3). The 

sum of these contributions gives Az - -1.5 MHz, which correlates with the maximal 

splitting of about 1. 7 MHz observed in spectrum 1 in Figure 4. In spectrum 3, which 

corresponds to that at g2 - 2.83 of [mesa-13C-TPPFe(N-Melm)2]\ the maximal splitting 

is very similar, about 1.6 MHz. In spectra 2 and 4 recorded at gHF = gx the maximal 

splittings are, naturally, of similar magnitude, about 1.05 MHz in trace 2 (gHF - 1.95) and 
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about 0.9 MHz in trace 4 (gHF - 1.53). The general structure of various meso-13C hfi 

contributions is thus understood. However, the numerous possible contributions prohibits 

any detailed analysis of the ENDOR spectra in Figure 4 aimed at extracting the exact spin 

densities on the mesa- and pyrrole a-carbons. 

An important parameter that will be used below in discussion of the 13C NMR 

isotropic shifts is the ratio of the isotropic hfi constants ameso ofmesa-13C in the dxy and d11: 

configurations. With Pc - 0.08 estimated above for the dxy configuration ameso is about 8 

MHz. For the d11: configuration, as discussed above, ameso is mostly determined by the 

spin polarization contributions from the pyrrole a-carbons and is close to -1 MHz. The 

ratio of the hfi constants is thus in the range of -8 to -10. 

To conclude the discussion of the mesa-13C ENDOR spectra it can be mentioned 

here that they, indeed, show in a very straightforward way the gross features of spin 

density distribution over the porphyrin ring related to the particular electronic 

configuration of the iron-porphyrin complex, and may be used to make the corresponding 

assignments. 

c) 13C NMR spectroscopy reveals that [TPPFe(OCH3)(001Bu)J- has a dxy electron 

configuration at 193 K, and, by extrapolation, at room temperature. 

The picture that emerges from 13C NMR spectroscopic studies over the 

temperature range 178-218 K is very different from that discussed above for the 13C 

pulsed ENDOR measurements carried out at 8 K. The 13C NMR spectrum obtained from 

a solution of [mesa-13C-TPPFe(OCH3)(001Buff at 193 K is shown in Figure 6-A. The 

observed chemical shift for the mesa-carbon is 422 ppm. The relevance of this chemical 
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shift becomes evident if one considers that it has recently been shown that the mesa

carbon chemical shift of 13C-labeled ferrihemes is an excellent diagnostic tool for 

differentiating between the dn and dxy electron configuration [41]. Complexes with the dn 

unpaired electron configuration have small chemical shifts (tens of ppm) [ 42], whereas 

those with the unpaired electron in the dxy orbital typically exhibit large chemical shifts 

(hundreds of ppm) [41,43]. For instance, the chemical shift observed for [mesa- 13C

TPPFe(ImH)zr is 12 ppm at 193 K (see below), while that of [mesa-13C

TPPFe('BuNC)zt is estimated [44] to be somewhat greater than 1000 ppm at 193 K (see 

below). The chemical shift observed for [meso-13C-TPPFe(OCH3)(00tBu)r is somewhat 

less than the average of the two (516 ppm), suggesting a significant population of the dxy 

electron configuration at 193 K, and a small energy difference between the d11: and dxy 

electron configurations [ 45]. 

Before the electronic configuration of [mesa-13C-TPPFe(OCH3)(00'Bu)r can be 

assigned with complete certainty at 193 K, it is important to consider alternative 

explanations of the large 13C chemical shift observed for this complex. For example, it is 

necessary to exclude the possibility that at 193 K [TPPFe(OCH3)(00'Buff is m 

equilibrium with a high spin species such as five-coordinate TPPFe(OCH3) or 

TPPFe(OOtBu). Fem porphyrinates coordinated by a single anionic ligand are known to 

display mesa-carbon chemical shifts in the range of 300 to 500 ppm at ambient 

temperatures [46,47]. Consequently, it must be established whether at 193 K 

[TPPFe(OCH3)(00'Bu)r is indeed a low-spin complex. 

Pertinent evidence is provided by the fact that the electronic absorption spectrum 

of [TPPFe(OCH3)(00tBuff at 195 K (Figure 6B-a), with well-resolved a and ~ bands, is 
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Figure 6. (A) 13C NMR spectrum of [mesa-13C-TPPFe(OCH3)(00'Bu)r obtained at 193 

K. (B) Electronic absorption spectra of [TPPFe(OCH3)(00'Bu)r at (a) 195 K, (b) after 

three hours at 231 Kand (c) spectrum obtained from TPPFeCl at 195 K. (C) Electronic 

absorption spectra of (a) [TPPFe(OCH3)(00'Buff, (b) [TPPFe(OCH3)2L and (c) 

[TPPFe(OO'Bu)zr. 
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clearly characteristic of a low-spin Fem porphyrinate [32], and distinct from the 

electronic spectrum of a high-spin Fem porphyrinate, such as that corresponding to 

TPPFeCl (Figure 6B-c). This electronic absorption spectrum is almost identical to that 

reported by Tajima and coworkers in a frozen glass at 77 K [18,19], while, at the same 

time, the EPR spectrum detected at 77 K is characteristic of a low-spin iron(III) 

porphyrinate complex. These observations unambiguously testify that [mesa-13C

TPPFe(OCH3)(001Bu)r is a low-spin complex at 195 K, as well as at 77 K [17,18]. The 

low-spin nature of the complex having been established, one can conclude that the 

chemical shift of the mesa carbon, 422 ppm at 193 K, clearly indicates that the 

[TPPFe(OCH3)(001Bu)r complex at this temperature has at least partial dxy electron 

configuration. The question of the degree of population of the dxy electronic state is dealt 

with in the next section. 

d) Variable temperature 13C NMR spectroscopy of [meso-TPPFe(OCH3)(0dBu)[ 

indicates a thermodynamic equilibrium between electron configurations. 

In order to explore the temperature dependence of the mesa-carbon resonance in 

[mesa-13C-TPPFe(OCH3)(00tBu)]" it was necessary to first establish the temperature 

range over which [TPPFe(OCH3)(00tBu)]" is stable. It was also necessary to determine 

whether changes in temperature result in equilibria of [TPPFe(OCH3)(001Bu)r with 

other species. Examples of such chemical species are the high-spin complexes 

TPPFe(OCH3) and TPPFe(001Bu) mentioned above, and the low-spin bis-ligand 

complexes [TPPFe(OCH3)zr and [TPPFe(001Bu)2r. Electronic absorption spectroscopy 

was again useful in answering these questions. The electronic absorption spectrum of 
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[TPPFe(OCH3)(001Bu)r at 212 K (CHCb-dry ice bath) is very similar to that obtained at 

195 K (Figure 6-B-a), thus providing strong evidence that the system does not undergo an 

equilibrium involving a change in spin state, and that it does not decompose at this 

temperature. The solution containing [TPPFe(OCH3)(00tBu)r was warmed to 231 K 

(CH3CN-dry ice) for three hours. The resultant electronic absorption spectrum (Figure 6-

B-b) is identical in features to those obtained at 212 and 195 K, but is less intense. We 

interpret these results as indicating that at temperatures above 212 Kit is likely that the 

alkyl peroxide reacts with the porphyrin to produce oxidation products that are much less 

intensely colored, hence decreasing the absorption intensity. Nevertheless, the spectrum 

in Figure 6B-b clearly indicates the absence of a high spin species at 212 K. On the basis 

of these observations it was decided to study [meso-13C-TPPFe(OCH3)(00tBu)r between 

218 and 178 K. The upper limit is imposed by the reactivity of the alkyl peroxide ligand 

and the lower limit by the freezing point of the solvent. 

Electronic absorption spectra obtained at different temperatures also allowed us to 

conclude that neither the 5-coordinate high-spin TPPFe(OCH3) and TPPFe(OOtBu), nor 

the six-coordinate low-spin [TPPFe(OOtBu)2r and [TPPFe-(OCH3)2r complexes exist in 

detectable concentrations under the conditions used to study [meso-13C-TPPFe(OCH3)

(001Bu)r. For example, the data summarized in Figure 6-B allowed us to rule out the 

presence of high-spin complexes (see above). Evidence supporting the absence of low

spin complexes other than [TPPFe(OCH3)(00tBu)r is shown in Figure 6-C. The 

electronic absorption spectrum of [TPPFe(OCH3)(00tBuff (Figure 6-C-a) is clearly 

distinct from the spectra originating from both [TPPFe(OCH3)2r and [TPPFe(OOtBu)2L 

Figures 6-C-b and 6-C-c, respectively. Furthermore, the spectrum characteristic of 

61 



[TPPFe(OOtBu)2r can only be observed upon addition of a 600-fold molar excess of 

tBuOOH with respect to TPPFeCl (1 TPPFeCl (0.2 mM): 200 OH-: 600 tBuOOH). By 

comparison, [TPPFe(OCH3)(00tBu)r is prepared by addition of 100-fold molar excess 

oftBuOOH with respect to TPPFeCl (1 TPPFeCl (0.2 mM): 200 OH-:100 tBuOOH). 

When [mesa-13C-TPPFe(OCH3)(00tBu)r is cooled between 218 and 193 K, the 

mesa-carbon shift increases, as is expected for a low-spin ferriheme center possessing the 

dxy electron configuration. However, below 193 K the direction reverses and the mesa

carbon chemical shift decreases rapidly and becomes increasingly broader (Figure 7). 

The temperature dependence of the mesa-carbon chemical shift, shown by • in Figure 8, 

was fitted to different models. To consider the possibility of a thermally-accessible 

excited state, the following equation for the contact shift was used [16,45]: 

(5) 

where 3n con is the contact shift of the mesa-carbon, F is the Curie factor that relates the 

contact shift to the orbital coefficients, T is the absolute temperature, W 1 and W 2 are the 

weighting factors for the ground and excited state orbitals, respectively ( equal in this case 

because both have spin S = Yi), Cn1 and Cn2 are the orbital coefficients for position n in 

the ground (1) and excited (2) states, respectively, ~E is the energy separation between 

ground and excited states, and k is the Boltzmann constant. For the present case, since 

the direction of shift is opposite for the dxy and d11: electronic states of low-spin Fe(III) 

(Figure 8a and b, respectively), the carbon orbital coefficients are obviously very 

different--of opposite sign, in fact. Thus, the coefficients Cn/ and Cn/ in Equation (5) 
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must include the product of the spin densities at the mesa position in each state and the 

sensitivity of the spin density to the various orbital contributions. Based on the ratio of 

the isotropic hfi constants of mesa-13C in dxy and d11: configurations estimated above 

from 13C ENDOR spectra and from spin polarization considerations [42,48], we can 

take Cn2 2/Cni 2 - -10, with Cn12 being negative. 

Fits of the temperature dependence of the 13C isotropic shifts to Equation (5), first of all 

for the two "pure" complexes, [mesa-13C-TPPFeCBuNC)2t (dxy) (o in Figure 8) and 

[TPPFe(ImH)it (d,.) (T in Figure 8), show that each has a thermally-accessible excited 

state of the opposite electron configuration, with the energy between ground and excited 

state, LiE - 97 and 417 cm-1, respectively. Thus, both of the 13C isotropic shift lines of 

the "pure" complexes in Figure 8 are slightly curved, with that for the dxy electron 

configuration (a) being more curved than that for the d_,. electron configuration (b). The 

average of the isotropic shifts of the two "pure" electron configurations is shown in 

Figure 8 by plot ( e ). Plot ( e) corresponds not only to the simple average of the chemical 

shifts for the two "pure" electron configurations, but also that calculated from Equation 

(5) for LiE - 50 cm-1.Not only the strict average (e) of the two "pure" electron 

configurations, but also the calculated temperature dependence based upon a variety of 

LiE values, including 20 cm-1 (d), 100 cm-1 (f), 150 cm-1 (g), 200 cm-1 (h), 300 cm-1 (i), 

and a very large LiE = 520 cm-1 (j) as possible values for the temperature dependence of 

[mesa-13C-TPPFe(OCH3)(00tBu)r are shown. All lines (d) - (j) were calculated from 

Equation (5) using the ratio Cn/lCn/ = -10, as discussed above. The markedly different 

behavior of the experimental mesa-carbon chemical shift ( • in Figure 8) and those 

expected for a thermally-accessible excited state clearly demonstrates that the 
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Figure 7. 13C NMR spectra of [meso- 13C-TPPFe(OCH3)(001Bu)]", obtained at different 

temperatures (listed at the right side of the Figure), over 16 k data points, with a 

spectral width of 8.6 kHz, 90 ms acquisition time, 40 ms relaxation delay and 40,000 

scans. 
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Figure 8. Temperature dependence of the meso-13C isotropic shift (Diso = chemical shift -

Ddia (120 ppm [42]) for several complexes (as indicated in the Figure), with fits for (a) a 

"pure" dxy electron configuration; (b) a "pure" d :r electron configuration; ( c) a chemical 

equilibrium between the two, data points (•) for the [meso-13C-TPPFe(OCH3)(001Bu)r 

complex; and a thermally-accessible excited state, either (d) 20 cm-1, (e) -50 cm-1, (f) 100 

cm-1, (g) 150 cm-1, (h) 200 cm-1, (i) 300 cm-1, or G) 520 cm-1 above the ground state. In 

plots (a)-(j), the diamagnetic chemical shift of the meso-13C was taken as 120 ppm, as 

obtained experimentally by Goff for [TPPCo(N-Meim)2t [ 40]. 
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temperature dependence of [ meso-13C-TPPFe(OCH3)-(001Bu)r is not that expected for a 

system having a thermally-accessible excited state. In particular, the isotropic shifts 

reach a maximum at a particular value of inverse temperature, and then decrease. The 

maximum isotropic shift is reached at a relatively low temperature, 193 K, unlike that for 

any possible value of ~E, for which only those cases having ~E =150 cm-1 or greater 

reach a very gentle maximum isotropic shift before decreasing, and the temperatures at 

which these maxima are reached are all greater than 193 K. However, the approximate 

similarity of the experimental data points for this complex to the calculated behavior if 

there were a thermally-accessible excited state with ~E = ca. I 00 cm-1 suggests that it is 

highly likely that these two electron configurations have a very small difference in 

energy. In fact, it was not possible to fit the experimental temperature dependence of 

[meso-13C-TPPFe(OCH3)(001Bu)r without also considering the existence of a 

thermodynamic equilibrium that shifts in favor of the dxy electron configuration as the 

temperature is raised. As a first estimation of the equilibrium constants for such a 

process, the meso-13C chemical shifts of this complex were compared to those of 

complexes with "pure" electron configurations, [TPPFe(ImH)2t for the dn:, and 

[TPPFe(tBuNC)2t for the dxy electron configuration. It can be readily shown that for the 

ring conformation interconversion, 

planar(dn:) !:. ruffled(dxy) (6) 

Keq = !(8(pure dn:) - 8(peroxo )lll8(pure dxy) - 8(peroxo )I (7) 
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Hence, Keq can be easily calculated, and then a van't Hoff plot (log Keq vs. 1/T) 

constructed to estimate the .!lH and .!lS for this interconversion. Values of .!lH - +2.53 ± 

0.5 kJ/mol and .!lS - + 12 ± 4 J/mol K are obtained from the best slope and intercept of 

this plot. These values can then be used in an expression similar to that of Equation (5), 

but appropriate for a thermodynamic equilibrium, with enthalpy .!lH and entropy .!lS, to 

calculate the contact shift for the mesa-carbon of the alkyl peroxide complex as a 

function of temperature: 

(8) 

Using the same values of Cn/ and Cnz2, and the estimated values of .!lH - +2.53 kJ/mol 

and LlS - +12 J/mol K, plot (c) in Figure 8 is obtained. This plot more closely follows 

the chemical shift dependence of the experimental data points than do the plots obtained 

from the assumption of a thermally-accessible excited state using any value of .!lE 

between ground and excited state (Eq. (5), in that the curve reaches a maximum at the 

point that the experimental data reach a maximum, and then decreases, albeit at a less 

rapid rate than do the experimental data (see below). 

Although both metal- and ligand-centered dipolar shifts are also expected to 

contribute to the isotropic shifts [42] of the low-spin Fe(III) complexes of this study, their 

contributions are much smaller than those of the contact shifts, and they likely mirror 

those of the contact shifts in these complexes in solution where the ligands within each 

complex ion, as well as the complex ions themselves, are rotating rapidly. Thus, it is felt 

that within the accuracy of the approximate calculations for lines ( c) - (j) of Figure 8, the 
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dipolar shift contributions will not change the overall picture. Therefore, the results 

summarized in Figure 8 are consistent with the fact that the temperature dependence of 

the chemical shift obtained from [mesa-13C-TPPFe(OCH3)(00'Bu)r results from a 

chemical equilibrium between planar (d1r) and ruffled (dxy) conformations, for which the 

energy of the two electronic configurations is very nearly the same, but there 1s a 

thermodynamic equilibrium between the planar and ruffled ring conformations. The 

small values of both ~H and ~S are consistent with such an equilibrium between species 

that differ in ring conformation. 

Both the extreme broadening and the stronger than predicted decrease in chemical 

shift at the lowest temperatures accessible in the solvent (188 - 178 K, last three points of 

line (c) in Figure 8) suggest an approach to the intermediate exchange regime. If this is 

the case, then at considerably lower temperatures, if the solvent did not freeze, the planar 

and ruffled conformers would be in slow exchange with respect to the NMR time scale, 

and two mesa-carbon signals, one from each complex, would be observed. One signal 

would approach the chemical shift of the planar d1r complex and would become more 

intense, while the other signal would approach the chemical shift of the ruffled dxy 

complex and become less intense, until it disappeared. Hence, the temperature 

dependence of the mesa-carbon chemical shift ( • in Figure 8) does not contradict the fact 

that at 8 K the pulsed ENDOR results (Figure 4) clearly indicate a d1r electron 

configuration. Thus, if the evidence gathered by electronic and magnetic spectroscopy is 

taken together, it can be concluded that at very low temperatures the electron 

configuration of [TPPFe(OCH3)(00'Bu)r is indeed d1r, but that the dxy configuration 

becomes highly favored at ambient temperatures via a chemical equilibrium. Over the 
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range of temperatures of the NMR measurements, both electronic states are present and 

rapidly interconverting, and at physiologically relevant temperatures the dxy electron 

configuration is expected to be strongly favored (~G310 = -1.19 kJ/mol, Keq - 6.9). 

e) Magnetic resonance spectroscopy of [TPPFe(OCH3)iJ and [TPPFe(OdBu)iJ. 

The EPR spectra of [TPPFe(OCH3)2r and [TPPFe(OOtBu)2r also display 

compressed g anisotropy {Lg2 - 14), as shown in Figure 3. This observation raised the 

possibility that the bis-methoxide and bis-alkyl peroxide complexes of TPPFe(III) might 

have dxy electron configurations. Hence, both complexes were also studied by pulsed 

ENDOR and 13C NMR spectroscopy. The pulsed ENDOR results show that the 

hyperfine splittings in the spectra obtained from [mesa-13C-TPPFe(OCH3)2r and [mesa-

13C-TPPFe(OOtBu)2r are very similar to those of [TPPFe(OCH3)(001Bu)r and 

[TPPFe(N-Melm)2t (d1,:) in Figure 4, and also do not exceed 1.7 MHz. The magnitude of 

these hyperfine splittings is thus typical of complexes having their unpaired electron 

residing in a d'IT: orbital, as discussed above for [TPPFe(OCH3)(00tBu)r. It is therefore 

evident that both [TPPFe(OCH3)2r and [TPPFe(OOtBu)2r have (dxy)2(dxz,dyz)3 electron 

configurations at 8 K. 13C NMR experiments performed with [mesa- 13C

TPPFe(OCH3)2r and [mesa-13C-TPPFe(OOtBu)2r at 193 K, however, indicate that these 

compounds have a largely dxy electron configuration at this temperature, as shown in 

Figure 9. 

The mesa-carbon chemical shifts obtained for [mesa-13C-TPPFe(OCH3)2r and 

[mesa-13C-TPPFe(OOtBu)2r at 193 Kare 361 and 444 ppm, respectively (arrows in 

Figure 9). The magnitude of these chemical shifts is again indicative of low-spin 
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ferriheme complexes possessing an electron configuration in which the dxy and d11: states 

are essentially isoenergetic. Both complexes were also studied by 13C NMR and 

electronic absorption spectroscopy as a function of temperature. The electronic 

absorption spectrum of a solution of [TPPFe(OCH3)2r was found to be temperature 

independent between 273 and 183 K; temperatures above 273 K were not investigated. 

In contrast, the electronic absorption spectrum of a solution of [TPPFe(OO'Bu)2r loses 

intensity relatively rapidly above 195 K. Consequently, 13C NMR spectra for [meso- 13C

TPPFe(OOtBu)2r were obtained only between 203 and 178 K, whereas [mesa- 13C

TPPFe(OCH3)2r was investigated between 273 and 178 K. The results of these 

experiments, together with those obtained from the variable temperature experiments 

performed with [meso-13C-TPPFe(OCH3)(00tBu)r, are all shown in Figure 9. It is 

interesting that the chemical shift of [mesa-13C-TPPFe(OCH3)2r displays a similar trend 

to that observed for [mesa-13C-TPPFe(OCH3)(00tBuff as the temperature is changed, 

except that the temperature at which the direction of the chemical shift reverses and 

begins to move toward a value expected for a da electron configuration is higher. The 

variable temperature behavior of the mesa-carbon chemical shift of [mesa- 13C

TPPFe(OCH3)2r is therefore in agreement with an equilibrium between a dxy (ruffled), 

and a d-;r; (planar) conformation. Using equation (6), values of ~H = 4.54 kJ/mol and ~S 

= 21 J/mol K were estimated for this complex, yielding ~G310 = -1.97 kJ/mol and Keq = 

24.4. As the temperature is lowered the equilibrium favors the planar conformer; hence 

at 8 K pulsed ENDOR clearly shows a d-;r; electron configuration. 

The temperature dependence of the meso-carbon in [mesa-13C-TPPFe(OOtBu)2r 

(• in Figure 9) indicates that in the temperature range accessible experimentally, the 
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Figure 9. Variable temperature meso-13C NMR spectroscopic data obtained for 

[TPPFe(OCH3) 2L [TPPFe(OCH3)(00tBu)L and [TPPFe(OOtBu)2L plotted as 

experimental chemical shifts. The arrows point to the data points obtained at 193 K ( see 

text). 

71 



mesa-carbon chemical shift moves to higher frequency as the temperature is decreased. 

This is what is expected for a low-spin ferriheme complex with a dxy electron 

configuration. However, since pulsed ENDOR indicates that the electron configuration 

of this complex at 8 K is d1r, it is anticipated that the direction of the mesa-carbon 

chemical shift will reverse at a lower (inaccessible) temperature. Hence, the plots in 

Figure 9 are qualitatively indicative of the relative position of the equilibrium between 

the dxy (ruffled) and d1r (planar) conformations. It is also evident from Figure 9 that as 

the number of alkyl peroxide axial ligands is increased from zero to two, the relative 

concentration of the dxy conformer is larger at the lowest temperatures accessible 

experimentally. This indicates that the alkyl peroxide ligand is more efficient in 

stabilizing the dxy conformer than is the alkoxide ligand. It is therefore likely that other 

ferriheme complexes with EPR spectra similar to those shown in Figure 3, including 

[TPPFe(Im)(OO'Bu)r [19] and [TPPFe(N-Melm)(OO'Bu)] [49] will also display 

variable temperature mesa-carbon chemical shifts similar to those observed for the 

alkoxide and alkoxide-alkyl peroxide complexes of TPPFem reported here, yet different 

in detail because of different ligand field strength of the unique axial ligand. This 

possibility is currently under investigation in our laboratories. 

Relevance to enzyme systems and concluding remarks. 

In addition to the complexes included as part of this study, the EPR spectrum of 

the Fem-OOH complex ofmyoglobin (Lg2 = 14.09) [11,24,50] and that of the Fem-OOH 

complex of cytochrome P450cam (Lg2 = 13.75) [23,24] display compressed g anisotropy 

and very similar g-values to those reported for the corresponding alkyl peroxide 

complexes. These molecules have in common a hydroperoxide or alkyl peroxide axial 
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ligand. Thus it seems obvious that the peroxide ligand induces the reduced anisotropy 

observed in the EPR spectra. Compressed g anisotropy could be correlated to a 

(dxz,dyz)4cdxy)1 electronic configuration in those cases, or, as in the model heme systems 

studied herein, the electron configuration at the very low temperatures utilized to carry 

out EPR spectroscopic studies is (dxy)2(dxz,dyz)3, with the possibility that some or all of 

these ferriheme centers coordinated by a peroxide ligand have a (dxz,dy2)4(dxy)1 electron 

configuration at ambient temperatures. This has important implications for the 

mechanism of action of the enzymes heme oxygenase, cytochromes P450 and the 

peroxidases, since the formation of an obligatory Fem-OOH intermediate, possessing 

large electron and spin density at the mesa positions can be expected to prime a protein 

or enzyme to oxygenate its heme. Therefore, the ability of a protein to form the 

important "Fe(V)" and ferryl (Fe1v =O) intermediates of cytochromes P450, the 

peroxidases [8], as well as the a3 heme of cytochrome oxidase [9], or to oxygenate its 

own heme, as in heme oxygenase [1-3], would be modulated by the electronic properties 

of the protein-provided heme ligand, as well as the heme-polypeptide interactions that in 

the case of cytochromes P450 and the peroxidases presumably retard the attack of the 

bound hydroperoxide on the mesa-carbons, and accelerate the decay toward FeN=O. 

Having the unpaired electron of low-spin Fe(III) in the dxy orbital causes the porphyrin 

ring to ruffle, hence positioning the mesa-carbons as much as 0.5 to 0.6 A above or 

below the porphyrin mean plane [13-16], and also creates large spin density at the meso

carbons. The end result is that either the a- and y-, or the ~- and o-meso carbons are 

placed closer to the terminal OH of the Fe111-00H moiety at any given moment, thus 

facilitating their attack by the peroxide ligand. Whether the a- and y-, or the ~- and o

meso carbons are placed closer to the terminal OH of Fern-OOH at the moment of attack 
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is likely to be dictated by steric interactions between the porphyrin ring and the 

polypeptide. Moreover, since heme ruffling positions pairs of mesa-carbons ( e.g. a- and 

y-) closer to the reactive Fem-OOH, if only the a-meso carbon is attacked, as is observed 

in HO, this implies that the other mesa carbons must be sterically protected. Hence, the 

regioselectivity of heme oxygenation may be controlled by electronic, as well as steric 

effects. 

It is interesting that the model complexes used in this study suggest a dynamic 

equilibrium between a ruffled (dxy) and a planar (d11:) conformation. Over the range of 

temperatures of the NMR measurements, both electronic states are present and rapidly 

interconverting, and at physiologically relevant temperatures the dxy electron 

configuration is favored (~G31o = -1.19 kJ/mol; Keq = 6.9). In fact, it may be that this 

dynamic equilibrium, which in an enzyme may be significantly affected by heme

polypeptide interactions, is an important modulatory mechanism that helps an enzyme 

channel the Fem -OOH intermediate toward the formation of a ferryl intermediate in 

some cases, or toward heme oxygenation in others. In this context, it is interesting to 

point out that the crystal structures of human [51] and bacterial [52] heme oxygenase 

strongly suggest that the flexibility of the distal pocket, provided by conserved glycine 

residues 139 and 143, is an important and conserved motif in these different heme 

oxygenases. It is therefore tempting to speculate that the flexibility of the distal pocket 

in heme oxygenase functions to facilitate the dynamic equilibrium between ruffled (dxy) 

and planar (d11:) conformers, thus channeling the reactivity of the Fem-OOH intermediate 

toward heme oxygenation, rather than ferryl formation. In fact, when Gly-139 of human 

H0-1 is mutated for a residue with a bulkier side chain, the resultant enzyme displays 
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peroxidase-type reactivity [53], and when similar mutations are introduced at position 

143, the mutant enzymes lose their oxygen activation activity [54]. 

Another important modulatory mechanism amongst the enzymes that react 

through the Fem-OOH intermediate is that provided by the proximal heme ligand, a 

histidine in the cases of heme oxygenase, the peroxidases, and cytochrome c oxidase, 

but a cysteinate in the cases of the cytochromes P450 and chloroperoxidase. It is thus 

possible that in addition to the dynamic equilibrium discussed above, an additional 

modulatory mechanism amongst the enzymes that react through the Fem-OOH 

intermediate is provided by the chemical nature of the proximal ligand, including 

histidine imidazole protonation state. For example, it is thought that in cytochrome 

P450, the proximal cysteinate ligand destabilizes the 0-0 bond through strong electron 

donation, in conjunction with electron withdrawal from a hydrogen bond network in the 

distal site of the heme binding domain [55]. In peroxidases, the same "push-pull" 

mechanism is thought to be operative because the proximal His ligand is ionized or 

strongly hydrogen bonded [55]. It has been previously proposed that in HO, the lack of 

effectiveness of the neutral His ligand as an electron donor, may actually lower the rate 

of 0-0 cleavage, hence channeling the reaction toward heme oxygenation rather than 

ferryl complex formation [10,56]. It is therefore important to investigate the effect that 

the protonation state of the proximal ligand might have on the dynamic equilibrium 

between planar (dn:) and ruffled (dxy) conformers, and such studies are in progress in our 

laboratories. 

If the Fe111-00H complex in HO indeed has the unpaired electron in the dxy 

orbital, then large spin density is expected to be present at the mesa-carbons [13-16]. A 

limiting resonance structure for such a specie~ may be represented as Fen(por·l, which 
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raises the possibility of involvement of a radical mechanism for this enzyme. A radical 

mechanism was considered previously, but discarded because the then proposed radical 

(•OH) was thought to be too indiscriminate to lead to well-controlled reactivity [10]. 

However, if the limiting structure Fen(por"-) is considered, then attack of •OH would 

produce Fen(O"-)(por-(H)(OH)), which would rapidly rearrange its Fe-0 electron 

configuration, lose the proton from the attacked mesa position to re-aromatize the 

porphyrin ring, and reprotonate the Fem-02- to yield the resting Fem aquo form of the 

enzyme. It is therefore evident that if the Fem-OOH intermediate of heme oxygenase 

does indeed have its unpaired electron residing in the dxy orbital, the electronic structure 

of the intermediate, which, as we have shown with the model ferriheme complexes, is 

accessible via a dynamic equilibrium that is influenced by the proximal ligand and the 

surrounding polypeptide, becomes a novel mechanism by which this obligatory 

intermediate is channeled to favor either heme oxygenation or monooxygenation 

activity. 

It is also noteworthy that bis-pyridine complexes of model mesa-hydroxyhemes 

such as OEPO, produced by coupled oxidation of OEPFe(III), [14,16,5759 have more 

compressed EPR spectra than do their OEPFe(III) counterparts. These observations 

suggest that that mesa-hydroxyheme complexes may favor the dxy electron configuration 

and its limiting Fen(OEPO) radical resonance structure, and thus facilitate the next step 

in the HO reaction, again by a radical mechanism. Magnetic resonance and chemical 

reactivity investigations of the alkylperoxide and hydroperoxide complexes of model 

meso-hydroxyhemes and several heme proteins are in progress in our laboratories. 
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Chapter IV 

THE HYDROXIDE COMPLEX OF PSEUDOMONAS AERUGINOSA HEME 

OXYGENASE AS A MODEL OF THE LOW-SPIN IRON(III) 

HYDROPEROXIDE INTERMEDIATE IN HEME CATABOLISM: 13C NMR 

SPECTROSCOPIC STUDIES SUGGEST THE ACTIVE PARTICIPATION OF 

THE HEME IN MACROCYCLE HYDROXYLATION 

Introduction 

The enzyme heme oxygenase (HO) is intimately involved in the catabolism of 

heme. In this process HO catalyzes the electron- and dioxygen-dependent breakdown of 

heme to biliverdin, iron and carbon monoxide [ 1]. The catalytic cycle of HO (Scheme 1) 

starts when the ferric enzyme is reduced by NADPH cytochrome P450 reductase to its 

ferrous form, followed by the coordination of 0 2, which leads to the formation of an 

oxyferrous complex (Fe11-02). The latter accepts a second electron from the reductase 

and is thereby transformed into the ferric hydroperoxy (Fem-OOH) oxidizing species [2], 

which adds a hydroxyl group to the a-meso carbon to form a-mesohydroxyheme 

(Scheme 1) [3, 4]. Investigations of the reactivity of HO toward peroxides and alkyl 

peroxides led to the conclusion that heme hydroxylation does not proceed via the 

formation of a high-valence compound I-like species [3]. Rather, the terminal oxygen of 

the coordinated peroxide adds to a porphyrin meso carbon, which results in the formation 

of a-hydroxyheme. In fact, spectroscopic evidence supporting this conclusion was 

recently obtained by cryoreduction of the oxyferrous complex of HO to produce an 
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intermediate, identified by EPR spectroscopy to be the Fem-OOH complex, which upon 

warming is converted into the a-hydroxyheme complex [5, 6]. The a-mesohydroxyheme 

complex of HO undergoes a subsequent 0 2-dependent elimination of the hydroxylated a

meso carbon as CO, with the simultaneous formation of verdoheme (Scheme 1). 

Verdoheme is subsequently oxidized to Fern-biliverdin, a reaction that is thought to 

require electrons and molecular oxygen. 

It is noteworthy that the formation of an obligatory Fem-OOH intermediate is 

shared by the catalytic mechanism of HO and that of monooxygenases ( cyt P450) and 

peroxidases. However, the nature of the structure-function relationships that must be 

operative to accelerate the meso hydroxylation reaction that commits the enzyme to 

conduct heme degradation, relative to cleavage of the 0-0 bond that is typical of 

monoxygenation reactions, are not yet understood. Evidence gathered from X-ray 

diffraction and spectroscopic studies conducted with HO revealed a distal heme binding 

site that exhibits unique chemical properties relative to other heme containing enzymes. 

For instance: (i) The distal pocket of HO is devoid of a polar side chain that might 

stabilize a dioxygen ligand [7-9], as is typically the case in the peroxidases and globins. 

(ii) The distal helix almost grazes the heme and places the backbone atoms of Gly-139 

and Gly-143 in human HO-I in direct contact with the heme [7]. (iii) The distal pocket 

of heme oxygenase harbors a relatively rigid network of hydrogen bonded water 

molecules [ 1 O], which is believed to ensure adequate proton delivery to the distal O atom 

of the Fen-02 complex, in order to facilitate its reduction to the Fem-OOH intermediate 

[6, 11]. 
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Scheme 1: Heme oxygenase catalytic cycle 
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Magnetic resonance spectroscopic studies conducted with models of the Fem

OOH complex of HO allowed us to suggest that the heme in this enzyme is likely an 

active participant in its own hydroxylation [12]. Moreover, the findings from these 

studies led us to propose that the Fem-OOH intermediate exists as an equilibrium mixture 

consisting of a planar heme with a (d.xy)2(dx2 ,dy2 ) 3 electronic configuration (dir hereafter) 

and a ruffled heme with a (dxz,dyz)4(d.xy)1 electron configuration [12] ((d.xy)1 hereafter). At 

the very low temperatures utilized to carry out the EPR spectroscopic studies the electron 

configuration is <Lt, whereas at the more elevated temperatures used to conduct NMR 

spectroscopic studies the ruffled heme with the (d.xy)1 electronic configuration is favored 

[12]. These findings prompted us to suggest that ferriheme centers coordinated by a 

peroxide ligand are likely to have the (d.xy)1 electron configuration at ambient 

temperatures. Significant about the (d.xy)1 electronic configuration is the fact that Fern

porphyrinates possessing an unpaired electron in the d.xy orbital are significantly ruffled 

and place a relatively large amount of spin and electron density on the porphyrin meso 

carbons [13-16]. Thus, at ambient temperatures, the ruffled porphyrinate ring is expected 

to aid the attack of the terminal oxygen of the Fem-OOH intermediate on the meso carbon 

[12]. 

The crystal structures of mammalian [7] and bacterial [8] HO enzymes strongly 

suggest that the :flexibility of the distal pocket imparted by conserved glycine residues 

139 and 143 is an important and unique structural motif that characterizes these enzymes. 

Therefore, it is reasonable to hypothesize that upon coordination of a hydroperoxide 

ligand in the distal site of HO the heme molecule tends to acquire a distorted (i.e. ruffled) 

conformation, which is accompanied by a corresponding change in heme electronic 
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structure; the deformation of heme from planarity would be facilitated by the flexible 

nature of the heme pocket in heme oxygenase. Hence, the conformational flexibility of 

the heme binding site is also expected to contribute to priming the heme for active 

participation in its own hydroxylation. These arguments suggest that it is important to 

test whether the HO fold readily permits macrocycle deformations that bring about 

changes in electronic structure when a hydroperoxide ligand binds in the distal site. Our 

studies with models of the Fem-OOH intermediate (see above) suggest that the 

equilibrium between planar and distorted porphyrins favor the latter at ambient 

temperatures; therefore, work aimed at studying the electronic structure of the Fern-OOH 

complex of HO should be conducted near ambient temperatures. An obvious problem 

with this approach is the very high reactivity of this key intermediate at ambient 

temperatures. In order to circumvent this problem, and as an initial attempt to study the 

chemical nature of the elusive Fem-OOH intermediate in HO, we have undertaken a study 

in which hydroxide was used as a model of the hydroperoxide ligand. As will be shown 

below, we find that the hydroxide complex of HO (Fem-OH) has properties that are 

distinct from the planar ( dir) hydroxide complexes characteristic of globins and 

peroxidases in that the heme in Fern-OH acquires significant unusual electronic structures 

that strongly suggest nonplanar distortions. 

Experimental Section 

a) Protein preparation and reconstitution with 13C-labeled heme. 

Heme oxygenase from Pseudomonas aeruginosa (pa-HO) was expressed and 

purified as described previously [17, 18]. 13C-Labeled 5-aminolevulinic acids (ALA) 
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were used as biosynthetic precursors for the preparation of pro to heme IX (heme) 

according to previously described methodology [19, 20]. [5-13C]-8-Aminolevulinic acid 

([5-13CJ-ALA) and [4-13C]-ALA were synthesized according to methodology described 

previously [21]. [5-13C]-ALA was used to prepare heme labeled at the meso (Cm) and a

pyrrole (Ca) carbons shown in Figure 5-A, and [4-13C]-ALA was utilized to prepare heme 

labeled at the Ca and P-pyrrole (C13) carbons shown in Figure 5-B. Isotopically labeled 

heme is initially purified in its complex with rat liver outer membrane (OM) cytochrome 

b5 [19, 20]. 13C-labeled heme was extracted from OM cytochrome b5 as follows: While 

maintaining the temperature at 4 °C, 15 mL of pyridine was added to 2.5 mL of rat OM 

cytochrome bs (1 mM) dissolved in phosphate buffer(µ= 0.1, pH= 7.0). Slow addition 

of chloroform (10-15 mL) typically resulted in the precipitation of the polypeptide, while 

maintaining the pyridine hemochrome in the supernatant. The latter is separated from the 

precipitate by centrifugation, allowed to equilibrate at room temperature, and then dried 

over anhydrous MgS04. The desiccant was separated by filtration and the solution 

evaporated to dryness with the aid of a rotary evaporator. The solid is redissolved in 3-4 

mL of dimethyl sulfoxide and the resultant solution was immediately used to reconstitute 

HO. To this end, a solution (20 mL) containing approximately 2 µmol of pa-HO was 

titrated with the solution containing 13C-labeled heme until the ratio A2so/Asoret no longer 

changed. The resultant solution was incubated at 4 °C overnight and subsequently 

purified using a Sephadex G-50 column (3 cm x 100 cm), previously equilibrated with 

phosphate buffer,µ= 0.10 and pH= 7.0. 
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b) Spectroscopic studies. 

1H and 13C NMR spectra were acquired on a Varian Unity Inova spectrometer 

operating at frequencies of 598.611 and 150.532 MHz, respectively. 1H spectra were 

referenced to the residual water peak at 4.8 ppm, and Be spectra were referenced to an 

external solution of dioxane (60% v/v in D20) at 66.66 ppm. 1H spectra from high spin 

HO were acquired with presaturation of the residual water peak over 137 kHz, with a 125 

ms acquisition time, a 25 ms relaxation delay and 2048 scans. Spectra from low spin HO 

were also acquired with presaturation of the residual water peak, with an acquisition time 

of 250 ms, and a 25 ms relaxation delay, over a spectral width of 30 kHz. Be NMR 

spectra were typically collected from solutions containing approximately 5 mM HO in 50 

mM borate buffer at pH 10.3; the pH readings have not been corrected for the deuterium 

isotope effect. The samples were concentrated to 250 µL in centrifugal concentrators 

equipped with 10,000 molecular weight cut-off membranes (Centricon-Millipore Co, 

Bedford, MA) and then transferred to Shigemi NMR tubes (5 mm) with susceptibilities 

matched to D20 (Shigemi, Inc., Allison Park, PA). 13C spectra were acquired over 48 K 

data points, with a spectral width of 300 kHz, an acquisition time of 80 ms, and no 

relaxation delay; typically 1,000,000 scans were obtained in approximately 24 h. 

The conversion of high spin aquo (Fem-H20) to low spin hydroxo (Fem-OH) pa

HO was also monitored by electronic absorption spectroscopy, with the aid of a UV-vis 

S2000 spectrophotometer (Ocean Optics, Dunedin, FL). To this end, a solution of Fem

H20 in water (pH 6.3) was placed in a quartz cuvette (1-cm path length) where it was 

stirred continuously with the aid of a magnetic bar. This solution was titrated with 0.2 M 

sodium hydroxide, monitoring the pH and the electronic absorption spectrum after the 
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addition of each aliquot of base. The data from this titration was fitted to the Henderson

Hasselbach equation in order to obtain the pKa for the deprotonation of the coordinated 

water. 

Circular dichroism spectra were measured with the aid of a JASCO J-810 

spectropolarimeter in the far UV-region (190-250 nm, 0.2 mm resolution, 1.0 mm 

bandwidth) at 25 °C in 10 mM potassium phosphate buffers at pH 6.0, 8.0 or 10.0 with a 

protein concentration of 5 µM. The molar ellipticity (degree cm2 dmor1) in the far UV 

region was calculated directly using the JASCO standard software analysis following 

subtraction of the baseline spectra. 

Results and Discussion 

a) Characterization of the hydroxide complex of pa-HO by 1 H NMR and electronic 

absorption spectroscopy. 

The electronic absorption spectra in Figure 1-A were obtained upon titrat~on of a 

solution of pa-HO from pH 6.3 to pH 10.3. The Soret band shifts from 406 nm at pH 6.3 

to 415 nm at pH 10.3, concomitant with the emergence of a and~ bands at 540 and 574 

nm, respectively. The band at 630 nm, which is typically considered a high spin marker, 

is clearly present at pH 6.3 but gradually disappears as the pH is increased, until it is no 

longer detectable at pH 10.3. These pH-dependent changes in the electronic absorption 

spectra of pa-HO exhibit well defined isosbestic points at 482, 524 and 610 nm that are 

indicative of the equilibrium between the high-spin Fem-H20 and the low-spin Fem-OH 

complexes shown in Figure 1; the pKa for the deprotonation of the coordinated water is 
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Figure 1. A: Electronic absorption spectra obtained during the titration of ferric HO with 

sodium hydroxide. B: CD spectra obtained at pH 6.5 (dashed line) and pH 10.0 (solid). 

The spectrum obtained at pH 8.5 is identical to those shown in the figure but has not been 

included for clarity. 
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8.3. The CD spectra obtained at pH 6.0 and 10.0 (Figure 1-B) are essentially 

superimposable and therefore demonstrate that the fold of pa-HO is not affected upon 

increasing the pH of the solution. On the basis of the above-described observations it is 

possible to conclude that a stable Fem-OH complex is formed at pH values above 9.3. 

The formation and properties of the hydroxide complex of pa-HO have also been 

studied by 1H NMR spectroscopy. Thus, the 1H NMR spectrum obtained at pH 6.3 

(Figure 2-a) displays heme-methyl resonances between 60 and 80 ppm, which are typical 

of high spin heme active sites, where the ferric ion is axially coordinated by a His and 

H20 ligands [22] (Fern-H20). As the pH of the solution is increased, the relative intensity 

of these peaks decreases with the concomitant emergence and growth of heme-methyl 

peaks near 20 ppm that originate from the low-spin Fem-OH complex. The fact that at 

pH values intermediate between 6 and 10 (Figure 2-b and -c) one can observe peaks 

originating from heme methyl groups in the high-spin Fem-H20, as well as those from the 

low-spin Fem-OH complexes in the same spectrum, indicates that these two species are in 

slow exchange relative to the NMR time scale. Considering the maximum and minimum 

differences between the high-spin and low-spin heme methyl 1H signals it is possible to 

estimate the NMR time scale to be - 7 x 104 s-1• On the other hand, the 1H NMR 

spectrum obtained at pH 10.3 (Figure 2-d) does not exhibit heme methyl peaks in the 

region between 60 and 80 ppm, thus demonstrating the quantitative conversion of the 

high-spin Fem-H20 species to the low-spin Fem-OH complex. 

The high- and low-frequency portions of the 1H NMR spectrum of the Fem-OH 

complex of pa-HO (pH 10.3) are shown in Figure 3-a. This spectrum is different from 
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Figure 2. Downfield portion of the 1H NMR spectra of pa-HO obtained at 25 °C and pH 

6.3 (a), 8.3 (b), 9.3 (c) and 10.3 (d). 
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Figure 3. 1H NMR spectra of (a) Fem-OH at pH 10, (b) Fem-CN at pH 7.4 and (c) Fem-

CN at pH 10.3 obtained at 25 °C. Me and me represent heme methyl resonances from 

major and minor heme orientational isomers, respectively 
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that obtained from the cyanide complex of pa-HO (Fern-CN) at pH 7.4 (Figure 3-b) in 

that the heme methyl peaks are shifted to lower frequencies (upfield) and the vinyl-~ 

resonances, which in the Fem-CN complex are near -8 ppm, are shifted to higher 

frequencies ( downfield) and therefore are no longer discemable from the large envelope 

of protein resonances. The 1H NMR spectrum of the Fem-CN complex at pH 7.4 

revealed the presence of heme methyl groups from major (Me) and minor (me) heme 

orientational isomers [18]. The 1H NMR spectrum of the Fem-OH complex at pH 10.3 

also suggests the presence of major and minor heme orientational isomers. The smaller 

shifts of the heme methyl and heme vinyl-~ protons from the Fern-OH complex can in 

principle be interpreted as an indication of a change in the conformation of the proximal 

His ligand. However, this hypothesis was discarded by studying the 1H NMR spectrum 

of the Fern-CN complex at pH 10.3 (see Figure 3-c), which was obtained after 3 

equivalents ofNaCN were added to a solution of the Fern-OH complex at pH 10.3. This 

spectrum shows that the chemical shifts corresponding to heme methyl and heme vinyl-~ 

protons of the Fem-CN complex at pH 10.3 are almost identical to the corresponding 

resonances of the Fern-CN complex at pH 7.4, therefore strongly suggesting that the 

conformation of the proximal His ligand and the seating of the heme have not been 

perturbed at pH 10.3. Furthermore, when these observations are taken together with 

those made from the electronic absorption and CD spectroscopic studies, it becomes 

evident that at pH 10.3 the Fem-OH complex must exhibit a fold nearly identical to that 

of the Fem-H20 complex. The more compressed shifts of the heme methyl and heme 

vinyl-~ proton~ in the spectrum of Fem-OH, therefore, are suggestive of an electronic 

structure different from the typical low-spin dx configuration. In fact, it will be shown 
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below that the core carbon resonances of Fe111-0H indicate that this species does not 

exist in the common low-spin d1t electronic structure typical of the hydroxide complex of 

globins. 

b) 13C NMR chemical shifts are diagnostic of heme electronic structure. 

13C NMR spectroscopy is emerging as a powerful experimental tool to study the 

electronic structure of model hemes. Studies conducted with low-spin ferriheme 

complexes established that chemical shifts originating from porphyrin core carbons, Ca, 

Cp, and Cm, permit the relatively straightforward assessment of electronic structure [23-

27]. The schematic representations of Figure 4 summarize the relationships between 13C 

chemical shifts and electronic configurations that are relevant to this study: (1) Spin 

delocalization in ferrihemes with the common S = 1/2, dn electronic structure, which are 

typically planar, is mainly into the porphyrin 3e(n) orbital shown schematically in Figure 

4. It can be seen from the relative sizes of the circles in the schematic representation of 

the 3e(n) orbital that the Cp carbons possess relatively large electron density, the Ca 

carbons possess relatively small electron density, and the Cm carbons have zero electron 

density. As a consequence, low-spin dn ferrihemes exhibit Cp resonances at -200 ppm, 

Ca resonances at -100 ppm and Cm signals near 50 ppm [20, 23] (Figure 4-a). (2) Spin 

delocalization in ferrihemes with the less common S = 1/2, (dxy) 1 electronic configuration 

is mainly into the 3a2u(n) orbital [28], which exhibits large electron density at the Cm 

carbons and small electron density at the Ca and Cp carbons (Figure 4). Ferrihemes 

possessing the (dxy)1 electron configuration (typically ruffled) exhibit large downfield Cm 
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Figure 4. Left: Typical porphyrin core carbon chemical shifts for (a) Fern-porphyrinates 

with the S = 1/2, dx electron configuration, (b) Fern-porphyrinates with the S = 1/2, (dxy)1 

electron configuration and (c) Fern-porphyrinates with the S = 3/2, (dxy)2(dxz,dy2)2(d/)1 

electron configuration. Right: schematic representation (adapted from reference [15]) of 

the 3a2u(7t) and 3e(1t) porphyrin orbitals. The relative size of the circles at each atom are 

proportional to the calculated electron density. The possible interactions between the dxy 

orbital and the porphyrin nitrogens of a ruffled porphyrin which allow spin delocalization 

into the 3a2u(7t) orbital are shown schematically next to this orbital. 
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shifts (- 1000 ppm), relatively large upfield Ca (- -300 ppm) and negligible C~ shifts (-

20-70 ppm) [24] (see Figure 4-b). The large downfield Cm shifts are a consequence of 

delocalization of unpaired electron density from the dxy orbital into the porphyrin 3a2u(n) 

orbital of the ruffled porphyrin [13]. Since the 3a2u(n) orbital has negligible spin density 

at the Ca position the relatively large upfield Ca shifts are a consequence of spin 

polarization from the Cm carbons [24]. Unpaired electron density from the dxy orbital can 

be delocalized into the 3a2u(n) orbital only if the macrocycle is significantly ruffled, so 

that the nodal planes of the p2 orbital are no longer in the xy plane and projections of 

these p2 orbitals have the proper symmetry to interact with the dxy orbital [13] (see Figure 

4). (3) Ferrihemes possessing the S = 3/2, (dxy)2(dx2,dy2)2(d/)1 spin state are also 

markedly non-planar and exhibit complicated distortions from nominal D4h symmetry 

[29, 30], which suggests that these ferriheme complexes might exist in solution as a 

complex mixture of interconverting conformers with similar energies. Nonplanar 

hexacoordinated Fem-porphyrinates possessing the S = 3/2 spin state exhibit a unique 

pattern of 13C NMR shifts [31 J with very large downfield C~ shifts (- 1000 ppm), large 

downfield Ca shifts (- 600 ppm) and large upfield Cm shifts (- -300 ppm) (Figure 4-c). 

The large downfield shifts of the Ca and C~ carbons are consistent with the presence of 

unpaired electron density in each of the dxz and dyz orbitals, which are de localized into the 

3e(,r) porphyrin orbital. Since this porphyrin orbital has zero electron density at the meso 

carbons, the large upfield Cm shift is a consequence of spin polarization from the 

neighboring Ca carbon [24, 27]. 

The application of 13C NMR spectroscopy to the study of heme electronic 

structure in proteins and enzymes is less common because the relatively low sensitivity 
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and low natural abundance of Be make the observation of paramagnetically-affected 13e 

resonances more demanding. This limitation is felt more strongly when one is interested 

in observing porphyrin Ca and C~ carbons because it is not possible to take advantage of 

directly attached protons to capitalize on the increased sensitivity of the inverse-detection 

experiments [32]. To overcome these problems we have developed a biosynthetic 

method that allows the efficient preparation of BC-labeled heme from judiciously labeled 

ALA [21], the first committed precursor in heme biosynthesis, by adequate manipulation 

of an expression system that overproduces the heme binding protein OM cytochrome b5 

[19, 33]. Heme in OM cytochrome b5 is not covalently attached to the polypeptide. 

Therefore, BC-labeled heme can be extracted and used to reconstitute other proteins of 

interest. This strategy has been successfully applied to study a complex mixture of heme 

orientational and heme-rotational isomers present in a solution of pa-HO mutants [18]. 

In the study reported herein we have used heme labeled with 13C at the core carbons to 

study the electronic structure of the Fem-OH complex. Observation of the corresponding 

core carbon resonances revealed the presence of a mixture of Fem-OH populations which 

differ in their electronic structure and degree of nonplanar porphyrin distortions. It is 

noteworthy that this information, which is directly attainable from the 13C NMR shifts, is 

not easily obtained by other spectroscopic means. 

c) 13 C NMR spectroscopy reveals the coexistence of at least three spin states exhibiting 

different degrees of population of the iron-d1r orbitals. 

A portion of the Be NMR spectrum of Fem-OH reconstituted with heme labeled 

at the Cm and Ca carbons is depicted in Figure 6-A. If the pH of the solution is decreased 
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Figure 5: 13C NMR spectra of paHO reconstituted with heme labeled with 13C at the 

meso and a postions. Spectra were collected at pH values of 6.3 ( a), 7.3 (b ), 8.3 ( c) and 

10.3 (d). 
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Figure 6. A portion of the 13C NMR spectra obtained at 37 °C from a solution of the Fem

OH complex of pa-HO (pH 10.3) reconstituted with heme labeled at Ca and Cm carbons 

(A) and at Ca and C13 carbons (B). The labeled carbons are highlighted by(•) in the 

structures shown to the left of each corresponding spectrum. The chemical shifts of the 

peaks highlighted by an arrow have been used to construct the temperature dependence 

plot of Figure 7. 
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from 10.3 to 6.3 the sets of highlighted resonances near 50 ppm and 450 ppm become 

less intense until at pH values below 7.0 they become unobservable (see Figure 5). 

Subsequent increase of the solution pH results in the appearance and growth of the set of 

resonances near 50 and 450 ppm and at pH 10.3 the spectrum shown in Figure 6-A is 

restored. This behavior is consistent with the reversible equilibrium between the Fem

H20 and Fem-OH complexes of pa-HO shown in Figure 1. The electronic absorption and 

1H NMR spectra of the Fem-OH complex suggest a low-spin electronic configuration for 

this species. However, the fact that resonances from core porphyrin carbons in Figure 6-

A appear near 450 ppm strongly suggests that the electronic configuration of the Fem-OH 

complex is not the common low-spin d1r. Indeed, model hemes and hemoproteins 

possessing a low-spin d1r electronic configuration give rise to 13C NMR spectra displaying 

Cm resonances between 5 and 50 ppm, Cu resonances between -10 and 100 ppm, and C13 

resonances between 150 and 250 ppm [18, 20, 23, 34] (see Figure 4-b). On the other 

hand, if the set of resonances at ca. 450 ppm can be attributed to meso carbons, it would 

then be possible to conclude that the electronic structure of the Fem-OH complex of pa

HO is S = 1/2, (dxy)1• However, it is important to note that when [5-13C]-ALA is used as a 

precursor for heme biosynthesis, the Cm and Cu carbons shown in Figure 6-A are labeled 

[20]. Consequently, in order to determine the electronic configuration of the Fem-OH 

complex it is necessary to elucidate whether the set of resonances at 450 ppm in Figure 6-

A originate from Cm or from Cu carbons. To this end, [4-13C]-ALA was used to label the 

Cu and Cp carbons shown in Figure 6-B, and the labeled heme was used to reconstitute 

the Fem-OH complex of pa-HO. The corresponding 13C NMR spectrum displays a set of 

resonances between 350 and 450 ppm, whereas the region near 50 ppm only shows peaks 
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originating from the polypeptide. These observations suggest that both the Ca and Cp 

carbons of the Fem-OH complex resonate between 350 and 500 ppm, therefore implying 

that the set ofresonances near 450 ppm in Figure 6-A originate from Ca carbons, and that 

the set of accompanying resonances near 50 ppm arise from Cm carbons. 

It is evident that the chemical shifts from the Ca, Cp and Cm carbons shown in 

Figure 6 are not consistent with a low-spin (dxy)1 electronic configuration because 

ferrihemes with this electronic structure place significant unpaired electron density at the 

Cm carbons. This results in large downfield (- 1000 ppm) Cm shifts, and by spin 

polarization, relatively large upfield (- -300 ppm) Ca shifts (see Figure 4-b). On the 

other hand, the Ca and Cp chemical shifts depicted in Figure 6 are reminiscent of the 

recently reported S = 1/2, S = 3/2 spin state crossover that is characterized by Ca and Cp 

carbon shifts between 300 and 600 ppm and Cm chemical shifts near zero ppm [27, 35]. 

The Ca and Cp resonances shown in Figure 6 exhibit a pronounced temperature 

dependence that shifts the Ca carbons from - 260 ppm at O °C to - 460 ppm at 3 7 °C, and 

the Cp carbons from - 250 ppm at O °C to - 400 ppm at 3 7 °C (Figure 6). It is therefore 

possible to rationalize the shifts in Figure 6 assuming that at 37 °C there is approximately 

1/3 S = 3/2, (dxy)2cdxz,dyz)2(d/)1 and approximately 2/3 S = 1/2, <lit contribution. As the 

temperature is lowered the contribution of S = 1/2, <lit increases and the core carbon 

chemical shifts approach the values expected for an S = 1/2, <lit Fem-porphyrinate. This 

behavior of the core carbon chemical shifts in response to changes in temperature is in 

agreement with that ofFem-porphyrinates known to exhibit the S = 1/2, S = 3/2 spin state 

crossover [31]. It is not yet clear why the chemical shifts of the Cm carbons exhibit a 

shallow temperature dependence. The alternative equilibrium between the S = 1/2, (dxy)1 
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Figure 7. Temperature dependence of the Ca(+), C~ (A), and Cm(•) chemical shifts for 

the Fem-OH complex of pa-HO. The plot was constructed with chemical shifts 

corresponding to those peaks highlighted with an arrow in Figure 6-A and -B. 
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Figure 8. A portion of the 13C NMR spectra obtained at 37 °C from a solution of the Fem-

OH complex of pa-HO (pH 10.3) reconstituted with heme labeled at Ca and Cm (A) and 

Ca and C~ carbons (B). Peaks corresponding to the population with the S = 1/2, S = 3/2 

spin state crossover are highlighted in a blue box (see Figure 6). 
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Figure 9. 13C NMR spectra (37 °C) of the Fe111-0H complex of pa-HO (pH 10.3) 

reconstituted with heme labeled at the the Ca and Cm (A) and Ca and Cp carbons (B). 

Peaks corresponding to the population exhibiting the S = 1/2, 3/2 spin state crossover are 

highlighted by blue boxes, peaks corresponding to the population with the S = 3/2 spin 

state are highlighted by red boxes and peaks corresponding to the population with S = 

1/2, dxy are highlighted by black boxes. 
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and S = 3/2, (dxz, dyi(dx_y)1(d./)1 can be ruled out on the basis of the temperature 

dependent changes of the core carbon chemical shifts because at the lower temperatures 

one would expect the main contribution to be from the S = 1/2, (dxy)1 ground state. Thus, 

at the lower temperatures the Cm shifts should be large and positive ( downfield) and the 

Ca shifts negative, with the Cp shifts near 50 ppm. 

Figure 8-A depicts a larger spectral window of the 13C NMR spectrum obtained 

from the Fe111-0H complex reconstituted with heme labeled at the Ca and Cm carbons. It 

is apparent that in addition to the peaks described above (blue box) there are additional 

resonances near 650 and -200 ppm. Although these resonances clearly originate from Ca 

and Cm carbons, it is not possible to assign them to their corresponding core carbons 

based solely on this spectrum. To circumvent this problem it is again useful to consider 

the spectrum obtained from the Fem-OH complex reconstituted with heme labeled at the 

Ca and Cp carbons (Figure 8-B). Inspection of this spectrum clearly shows that the region 

near -200 ppm is devoid of peaks, thus implying that the resonances near -200 ppm in the 

spectrum obtained from enzyme reconstituted with heme labeled at the Ca and Cm 

carbons (Figure 8A) can be assigned to meso carbons. In the same vein, the peaks near 

650 ppm in the spectra of Figure 8-A and 8-B must originate from Ca carbons, and the 

peaks centered near 1000 ppm in the spectrum of Figure 8-B must originate from Cp 

carbons. The large downfield shifts for a- and ~-pyrrole carbons, accompanied by 

upfield shifted meso carbons is characteristic of an S = 3/2 spin state [27], where unpaired 

electron density in the dxz and dyz orbitals is delocalized into the a- and ~-pyrrole carbons 

via the 3e(n) porphyrin orbital (see Figure 4). This orbital exhibits zero electron density 
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at the meso carbons, thus the large upfield Cm shifts have been ascribed to spm 

polarization from the neighboring Ca carbon atoms [24, 27]. 

Figure 9-A depicts the entire 13C NMR spectrum of the Fem-OH complex of pa

HO reconstituted with heme labeled at the Ca and Cm carbons. In this spectrum there are 

two new sets of peaks, one at ca. 1300 ppm and the other at ca. -500 ppm, in addition to 

the resonances corresponding to the S = 1/2, S = 3/2 spin crossover (blue box), and those 

corresponding to the population exhibiting the pure S= 3/2 spin state (red box). The 

significance of the resonances near 1300 ppm and -500 ppm is made clear once the 13C 

spectrum of the Fem-OH complex reconstituted with heme labeled at Ca and C~ carbons 

is considered. This spectrum (Figure 9-B) reveals the presence of a set of peaks ca. -500 

ppm, which can be attributed to Ca carbons on the basis that the spectrum of Fem-OH 

labeled at the Ca and Cm carbons (Figure 9-A) also displays peaks near -500 ppm. 

Consequently, the peaks near 1300 ppm in the spectrum of Figure 9-A must 

originate from Cm carbons. Large downfield Cm shifts (500-1300 ppm) and large upfield 

Ca shifts (-400 to -600 ppm) are diagnostic of Fem porphyrinates exhibiting the low-spin 

(dxy)1 electronic structure [12, 24]. These characteristically large downfield Cm shifts 

result from unpaired electron density delocalization from the iron dxy orbital into the 

porphyrin 3a2u(n) orbital [13] and the large upfield Ca shifts are a consequence of spin 

polarization from neighboring meso carbons [24]. Thus, the peaks at 1300 and -500 ppm 

in Figures 9-A and 9-B, respectively, indicate the presence of a population exhibiting the 

unusual (dxy)1 electronic structure. 

It is important to note that when CN is added to the Fern-OH complex of pa-HO 

at pH 10.3, the 13C NMR spectrum of the resultant Fem-CN complex does not display the 
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Figure 10: Carbon NMR spectra of pa-HO reconstituted with heme labeled with 13C at 

the Cm and Ca positions. Spectrum A is that of the hydroxide complex of pa-HO at pH= 

10.3 and 37 °C and B is the spectrum obtained after the addition of 4 equivalents of 

sodium cyanide under identical pH and temperature conditions. 
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Figure 11. 13C NMR spectra of the Fem-OH complex of pa-HO obtained at different 

temperatures. The temperature dependence of the major population exhibiting the spin 

crossover between S = 1/2 and S = 3/2 spins states is highlighted by a dotted line. The 

downfield peaks corresponding to the minor population with the S = 3/2 spin state. 
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peaks originating from the major population with the S = 1/2, S = 3/2 spin state crossover 

or from the minor populations with the S = 3/2 and S = 1/2 (dx;,)1 spin states (see Figure 

10). Instead, the spectrum is almost identical to that exhibited by the Fem-CN complex at 

pH 7.0, which has been shown to be S = 1/2, dn. It is therefore apparent that the 13C 

resonance in Figures 6, 8 and 9, which have been attributed to the presence of different 

populations with unusual spin states, are only present when hydroxide is coordinated in 

the distal site of pa-HO. Therefore, it is reasonable to conclude that the Fem-OH 

complex of pa-HO exists as a mixture of multiple (at least three) conformers, each 

exhibiting a different spin state, and probably different degrees of nonplanar distortions. 

At 37 °C the major population exhibiting the S = 1/2, S = 3/2 spin state crossover 

accounts for approximately 88% of the total population, whereas those species exhibiting 

the S = 3/2 and the S = 1/2 (dxy)1 electronic configurations account for - 10% and - 2% 

of the total population, respectively. Figure 11 illustrates the temperature dependence of 

the spectrum obtained from Fem-OH reconstituted with heme labeled at the Ca and C~ 

carbons. It has been pointed out (see above) that the resonances corresponding to the 

population exhibiting the S = 1/2, S = 3/2 spin state crossover exhibit a pronounced 

temperature dependence, with these resonances shifting upfield from ca. 400 ppm at 3 7 

°C to ca. 250 ppm at O °C. The magnitude of the temperature dependent shifts and the 

fact that the chemical shifts move in the direction of those expected for the planar, low 

spin dn complexes, suggest that low temperatures decrease the conformational flexibility 

of the heme pocket and shift the equilibrium toward the planar, S = 1/2, dn electronic 

configuration. At this time it is not possible to ascertain whether the S = 1/2, dn and S = 

3/2 spin states are quantum mechanically admixed or simply in fast exchange relative to 
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the NMR time scale. Assuming fast exchange relative to the NMR time scale it is 

possible to estimate that the rate of exchange should be faster than 2.7 x 105 s-1. This 

value was estimated at 37 °C from the difference in shifts between the Cp carbons in the 

pure S = 3/2 spin state (- 1000 ppm) and the Cp carbons in the pure S = 1/2, dir spin state 

(- 200 ppm). The resonances corresponding to the population with the pure S = 3/2 spin 

state, Ca carbons at ca. 650 ppm and Cp carbons at ca. 1000 ppm, exhibit a significantly 

less pronounced shift as the temperature is lowered. However, it is interesting to note 

that these resonances become less intense as the temperature is lowered and are 

undetectable below 10 °C. This behavior suggests that the populations with the highly 

nonplanar S = 1/2, (dxy)1 and S = 3/2 electronic configurations are in slow exchange with 

the major population exhibiting the S = 1/2, S = 3/2 crossover. For chemical exchange to 

be slow relative to the NMR time scale the exchange has to be much slower than 2. 7 x 

105 s-1• Thus, as the temperature is lowered, and the conformational flexibility of the 

heme binding site is decreased, these populations with highly nonplanar porphyrins 

decrease as the equilibrium shifts toward the planar S = 1/2, dir electronic configuration. 

Shelnutt has pointed out that multiple conformers can occur for biological 

porphyrins because several potential energy minima can result from the protein 

environment [36]. The observations described above, therefore, are in agreement with 

this prediction, and imply that in the confines of the protein the relative energy of the 

porphyrin conformers, as well as the barriers of interconversion, can be modulated by the 

protein and by the spin state of the macrocycle. 
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Relevance to the mechanism of heme hydroxylation carried out by HO. 

Axial ligand-metalloporphyrin interactions, among other things, are known to 

induce nonplanar distortions of the porphyrin ring [30, 37, 38]. For instance, it is well 

documented that the coordination of ligands that are poor a-donors and good n-acceptors 

induce significant porphyrin ruffling and stabilization of the ( dxy) 1 electronic 

configuration [13, 15, 25, 39]. Furthermore, crystal field theory indicates that decreasing 

axial ligand field strength leads to a transition from a low-spin to a high spin state. The S 

= 3/2 spin state is stabilized when the d/ orbital is singly occupied and relatively close in 

energy to the dxy, dxz, and dyz orbitals, and the d// orbital is vacant and at significantly 

higher energy [30, 40, 41]. The d/_/ orbital can be destabilized further by increasing the 

field strength of the equatorial ligand (porphyrin), a strategy that has been utilized by 

Simonato and coworkers to stabilize the S = 3/2 spin state of model ferrihemes [30]. 

Moreover, as the axial ligand field strength is decreased, a compensating increase in 

equatorial field strength occurs; the increase in equatorial field strength, in turn, typically 

results in shorter Fe-Np bond lengths and induces nonplanar distortions of the 

macrocycle. Therefore, axial ligands with the appropriate field strength are capable of 

stabilizing the unusual S = 1/2, (dXJi)1 and S = 3/2 spin states, which are typically 

associated with large nonplanar distortions of the porphyrin ring. 

It is evident from the 13C NMR spectra discussed above that the hydroxide ligand 

in the Fem-OH complex of pa-HO encourages the stabilization of the d/ and the 

destabilization of the d/_/ orbital, hence giving rise to two minor populations exhibiting 

a pure S = 1/2, (d.x:y)1 and a pure S = 3/2 electronic configuration and a major population 

exhibiting a spin crossover between S = 1/2 and S = 3/2. It is noteworthy that these 
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observations are in striking contrast to those made with the hydroxide complex of 

globins, in that the complexation of a hydroxide ligand results in the formation of S = 

1/2, dir globin complexes [22]. A plausible explanation for the unusual behavior of the 

hydroxide complex of HO stems from at least two unique chemical properties shared by 

all known HO enzymes: (1) the presence of a well organized hydrogen bonding network 

in the distal site, and (2) the conformational flexibility of the heme binding domain. The 

relevance of these properties is discussed below. 

(1) In addition to heme pocket flexibility ( discussed below) the chemical nature of 

the distal pocket is likely to contribute significantly to the properties exhibited by the 

Fem-OH complex. In this context, the distal pocket in heme oxygenase enzymes supports 

an extensive and well-defined network of hydrogen bonded water molecules [8, 10, 42]. 

It is possible that one of these water molecules, by virtue of donating a hydrogen bond to 

the coordinated OH- ligand, decrease its a-donating ability and thereby lower its field 

strength. As has been discussed above, lowering the axial ligand field strength leads to 

the stabilization of the d/ orbital and is also accompanied by a strengthening of the 

equatorial field. The latter induces nonplanar heme distortions and further destabilization 

of the d/_/ orbital. It is thus conceivable that the ligand field strength of the coordinated 

hydroxide, which in HO is modulated by accepting a H-bond from the distal network of 

water molecules, induces the stabilization of these unusual electronic configurations and 

nonplanar porphyrin conformations. (2) The different populations with their different 

electronic configurations and likely different types of nonplanar distortions appear to be 

in slow exchange with one another relative to the NMR time scale. The relatively slow 

rate of interconversion between populations with different types of nonplanar distortions 
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is likely a consequence of obligatory accompanying conformational changes in the heme 

pocket. Thus, the flexibility of the pocket in HO facilitates the relatively large nonplanar 

heme distortions induced by the binding of hydroxide. At the same time, heme

polypeptide interactions slow down the rate of interconversion between the different 

types of distortions (populations) relative to the interconversion of Fem-porphyrinates not 

bound to a protein, such that it becomes possible to observe the different populations of 

HO complexes in slow exchange. By comparison, the more rigid heme binding site of 

the globins does not facilitate relatively large nonplanar distortions of the heme, therefore 

the binding of hydroxide results in the formation of a homogeneous population of nearly 

planar low-spin dir complexes. 

It is apparent that the above-described properties of HO must act in synergism so 

that the distal network of water molecules serves to lower the ligand field strength of the 

coordinated peroxide, thus providing the necessary impetus for the heme to deform from 

planarity. This impetus is reinforced by the flexibility of the distal pocket in HO, which 

facilitates the conformational changes "dictated" by the field strength of the coordinated 

hydroxide. 

These findings suggest that if the field strength of the hydroperoxide ligand in the 

Fem-OOH intermediate could also be modulated by the distal network of hydrogen 

bonds, significant nonplanar deformations and large spin density at the meso carbons can 

indeed be expected for this complex. Thus, the efficient meso carbon hydroxylation 

reaction carried out by HO enzymes is likely a consequence of the chemical non

innocence of the macrocycle. Indeed, if this concept is operative in HO catalysis, it 

would expand the role currently attributed to the highly organized hydrogen bond 
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network in the distal pocket of HO to include modulation of the Hoo- ligand field 

strength. ENDOR spectroscopic studies have demonstrated that this hydrogen bond 

network efficiently delivers a proton to the terminal oxygen of Fem-00- in order to form 

the activated Fem-OOH intermediate [6]. The same study reported a second well defined 

1H signal (denoted H2), which only appears in the ENDOR spectrum upon annealing of 

the Fem-OOH intermediate to 200 K, and suggested that proton H2 is part of the 

activation that leads to meso hydroxylation [6]. We propose that proton H2, by virtue of 

forming a hydrogen bond with the coordinated oxygen in Fem-OOH can modulate the 

field strength of the hydroperoxo (hydroxo in the present studies) ligand and 

consequently induce the unusual spin states and nonplanar distortions that can make the 

heme macrocycle an active participant in its own hydroxylation. 
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ChapterV 

A NOVEL ELECTRONIC STRUCTURE IN THE AZIDE COMPLEX OF 

PSEUDOMONAS AERUGINOSA HEME OXYGENASE: MECHANISTIC 

IMPLICATIONS FOR HEME DEGRADATION. 

Introduction 

Heme oxygenase (HO) catalyzes the degradation of heme in a molecular oxygen 

and electron dependent fashion to produce biliverdin, free iron, carbon monoxide (CO) 

and biliverdin. In heme oxygenation, the first step in the catalytic cycle involves 

reduction of heme by NADPH cytochrome P450 reductase to its ferrous form. This is 

followed by the coordination of molecular oxygen to yield a metastable oxyferrous 

complex which is converted into ferric hydroperoxide after accepting a second electron 

from the reductase. The ferric hydroperoxide species is known to hydroxylate the heme 

at the a.-meso carbon producing a.-mesohydroxyheme [1]. The latter is then converted 

into verdoheme and CO in an oxygen dependent reaction. Finally a molecule of oxygen 

and additional electron equivalents will convert verdoheme into biliverdin which is the 

the end product of the HO catalytic cycle (see Scheme 1) [2]. 

Heme oxygenase is responsible for the the physiological catabolism of heme, 

which is known to be a strong oxidant in its free form. HO also plays an important role 

in iron homeostasis in mammals and the three heme oxygenation products have been tied 

to a variety of physiological functions. Plant and bacterial heme oxygenases have also 

been indentified and seem to function in a manner indentical to that of their mammalian 
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counterparts while playing a significant role in the synthesis of the tetrapyrrole

containing chromophores of photosynthetic organisms [3]. 

While the nature of the products of heme oxygenase activity has been known for 

some time it is only recently that the first step in the catabolic pathway of heme has been 

proven to go through a ferric hydroperoxide intermediate [l]. Evidence for the presence 

of this key intermediate was obtained by forming the oxygen complex of heme 

oxygenase followed by reduction at cryogenic temperatures (77 K). An EPR signal 

corresponding to the ferric hydroperoxide intermediate appears almost immediately while 

annealing to 214 K results in the appearance of a-meso-hydroxyheme [l, 4]. 

Interestingly, the catalytic cycles of peroxidases and monooxygenases also proceeds via 

the formation of an obligatory ferric hydroperoxy intermediate. In the latter case, 

however, the Fem-OOH species decays into an iron(IV) ferryl species, which is 

responsible for the oxidative chemistry performed by this class of enzymes. The reason 

behind the disctinct reactivity exhibited by the Fem-OOH, which leads to the 

hydroxylation of the heme macrocyle in the case of heme oxygenase and the formation of 

an Fe(IV)=O species in the case of monooxygenases and peroxidases is not yet 

completely understood. Recent studies conducted with a tert-butyl peroxide complex of 

tetraphenyl porphyrin [5] and with the hydroxide complex of the heme oxygenase from 

Pseudomonas. aeruginosa (pa-HO) [6] suggest that the critical Fem-OOH intermediate 

adopts non-planar porphyrin conformations and unusual heme electronic configurations 

that are thought to impart the heme macrocycle with reactive character, thereby activatig 

it to priming it to actively partcipate in its own hydroxylation [5, 6]. 
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The study conducted with the alkyl peroxide complex of tetraphenylporphyrin 

revealed the presence of an equilibrium between a planar ferriheme possessing the 

common S = 1/2, (dxy)2 (dxz, dyz)3 (d1t hereafter) electronic configuration and a ruffled 

ferriheme with the less common S = 1/2, (dxz,dyz)4 (dxy)1 ((dxy)1 hereafter) electronic 

configuration [5]; Ferrihemes with the. (dxy)1 electronic configuration are known to 

delocalize relatively large amounts of spin density at the meso carbons of the porphyrin 

ring [7, 8]. It was found that at physiological temperatures the observed equilibrium 

favors the non-planar ( dxy)1 electronic configuration [ 5]. This could justify the observed 

reactivity and regioselectivity of heme oxygenation as unpaired electron density at the 

meso positions would constitute an undeniable driving force for hydroxylation while the 

ruffled geometry of the macrocyle would place two meso carbons closer to the terminal 

oxygen of the iron-bound hydroperoxide. On the other hand, 13C NMR analysis of the 

hydroxide complex of pa-HO, which was used as a less reactive model of the ferric 

hydroperoxide complex, revealed the existence of a mixture of unusual heme electronic 

configurations at ambient temperatures. Three populations with unique electronic 

configurations were observed: 1) a S = 3/2, 1/2 spin-state crossover, 2) a pure S = 3/2 and 

3) a pure S = 1/2, (dxz,dyz)4 (dxy)1 [6]. Work conducted with model ferrihemes has 

demonstrated that the S = 1/2, S = 3/2 spin-state cross-over, the S = 3/2 and the S = 1/2, 

(dxy)1 electronic configurations are associated with significant distortions of the porphyrin 

ring from planarity [9-12]. The S = 3/2 iron electronic configuration is interesting in that 

the large amounts of positive spin density at the a positions of the macrocycle create 

negative spin density at the adjacent meso positions by polarization when the porphyrin 

3e(n) orbital is used for delocalization. Thus, three electronic configurations 
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Scheme 1: Heme oxygenase catalytic cycle 
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observed in the hydroxide complex of the pa-HO enzyme are associated with the 

presence of large amounts of spin density at the meso positions and significant distortions 

of the porphyrin ring from planarity. These observations led the authors to suggest that 

within the confines of the heme oxygenase pocket, the flexible nature of the latter in 

conjunction with the presence of an extended network of water molecules capable of 

hydrogen bonding to an axially bound hydroxide, or hydroperoxide, can alter the ligand 

field strength of the distal ligand, and stabilize unusual heme electronic configurations. 

This prompted us to investigate the possibility that the unusual nature of the heme 

binding site in HO would promote the distortion of the heme macrocycle and the 

stabilization of unusual electronic structures upon binding of azide. This ligand was 

chosen because it is capable of accepting a hydrogen bond by the coordinated N atom but 

has a field strength that, while higher than that of hydroxide, is not too far removed [13]. 

As will be shown below, azide binding was found to induce the formation of a novel 

heme-iron electronic configuration whose properties are distinct from the typical planar 

d1t configurations usually observed for the low spin complexes of globins and are 

reminiscent of the likely non-planar distortions present in the hydroxide complex of pa

HO. 

Experimental Section 

a) Protein preparation and reconstitution with 13 C-labeled heme. 

Heme oxygenase from Pseudomonas aeruginosa (pa-HO) was expressed and 

purified as described previously [14, 15]. 13C-Labeled 8-aminolevulinic acids (ALA) 

were used as biosynthetic precursors for the preparation of protoheme IX (heme) 
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according to previously described methodology [16, 17]. [5-13C]-<5-Aminolevulinic acid 

([5-13C]-ALA), [4-13C]-ALA and [l,2-13C]-ALA were synthesized according to 

methodology described previously [18]. [1,2-13C]-ALA was employed for the 

preparation of heme labeled at the methyl, 13-vinyl and !3-propionate carbons shown in 

Figure 4. [5-13C]-ALA was used to prepare heme labeled at the meso (Cm) and a-pyrrole 

(Ca) carbons shown in Figure 7-A, and [ 4-13C]-ALA was utilized to prepare heme labeled 

at the Ca and !3-pyrrole (C13) carbons shown in Figure 7-B. Isotopically labeled heme was 

initially purified in its complex with rat liver outer membrane (OM) cytochrome b5 [16, 

17]. 13C-labeled heme is then extracted from OM cytochrome b5 as follows: While 

maintaining the temperature at 4 °C, 15 mL of pyridine was added to 2.5 mL of rat OM 

cytochrome bs (1 mM) dissolved in phosphate buffer(µ= 0.1, pH= 7.0). Slow addition 

of chloroform (10-15 mL) typically resulted in the precipitation of the polypeptide, while 

maintaining the pyridine hemochrome in the supernatant. The latter was separated from 

the precipitate by centrifugation, allowed to equilibrate at room temperature, and then 

dried over anhydrous MgS04. The desiccant was separated by filtration and the solution 

evaporated to dryness with the aid of a rotary evaporator. The solid was redissolved in 1-

2 mL of dimethyl sulfoxide and the resultant solution was immediately used to 

reconstitute HO. To this end, a solution (40 mL) containing approximately 2 µmol of pa

HO was titrated with the solution containing 13C-labeled heme until the ratio A280/Asoret 

no longer changed. The resulting solution was incubated at 4 °C overnight and 

subsequently purified using a Sephadex G-50 column (3 cm x 100 cm), previously 

equilibrated with phosphate buffer,µ= 0.10 and pH= 7.0. 
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b) Spectroscopic studies. 

1H and 13C NMR spectra were acquired on a Varian Unity Inova spectrometer 

operating at :frequencies of 598.611 and 150.532 MHz, respectively. 1H spectra were 

referenced to the residual water peak at 4.8 ppm, and 13C spectra were referenced to an 

external solution of dioxane (60% v/v in D20) at 66.66 ppm. Spectra from low spin HO 

were acquired with presaturation of the residual water peak, with an acquisition time of 

250 ms, and a 25 ms relaxation delay, over a spectral width of 30 kHz. 13C NMR spectra 

were typically collected from solutions containing approximately 3 mM HO in phosphate 

buffer with an ionic strength of 0.1 at pH 7.4; the pH readings have not been corrected for 

the deuterium isotope effect. The samples were concentrated to 250 µL in centrifugal 

concentrators equipped with 10,000 molecular weight cut-off membranes (Centricon

Millipore Co, Bedford, MA) and then transferred to Shigemi NMR tubes (5 mm) with 

susceptibilities matched to D20 (Shigemi, Inc., Allison Park, PA). 13C spectra were 

acquired over 48 K data points, with a spectral width of 60 kHz, an acquisition time of 80 

ms, no relaxation delay and 250,000 scans. HMQC spectra were typically acquired with 

with spectrall widths of 30 kHz for 1H and 60 kHz for 13C and a 25 ms relaxation delay 

[19]. HMQC spectra obtained from samples containing HO reconstituted with heme 

labeled using [l,2-13C]-ALA as a heme precursor (see Figure 5) were acquired with 

refocusing delays based on 1JcH = 140 Hz. Data were collected as an array of 2k x 256 

points with 256 scans per t1 increment and processed by zero-filling twice in both 

dimensions. This was apodized with a 90°-shi:fted squared sine bell and Fourier 

transformed. NOESY spectra were acquired with 30 kHz in both dimensions, 2k data 

points in tz, 256 increments in ti, 256 scans, a 25 ms relaxation delay and a mixing time 
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of 30 ms. The data were processed by zero-filling in both dimensions, apodized with a 

90°-shifted squared sine bell and Fourier transformed. 

The conversion of ferric pa-HO in water at pH 7.4 to low spin (Fem-N3) pa-HO 

was effected by the addition of five molar equivalents of sodium azide from a 1 M 

solution prepared from the commercially available salt. The transformation of the aquo 

complex into its azido counterpart was monitored by electronic absorption spectroscopy, 

with the aid of a UV-Vis S2000 spectrophotometer (Ocean Optics, Dunedin, FL). To this 

end, a solution of (Fem) pa-HO in water (pH 7.4) was placed in a quartz cuvette (1-cm 

path length) where it was stirred continuously with the aid of a magnetic bar and a 

sodium azide solution was titrated in until a constant UV-Vis signature was obtained. 

Results 

a) Electronic Absorption and 1 H NMR Spectroscopic characterization of the azide 

complex of pa-HO. 

Electronic absorption spectroscopy was used to characterize the azide complex of pa-HO. 

Figure 1 shows the electronic absorption spectra of pa-HO at pH 7.4 (Figure 1-A) and in 

complex with cyanide and azide (Figure 1-B and -C respectively). The spectrum of pa

HO-CN is illustrative of a ferric low spin species with a Soret band at 419 nm and a. and 

~ bands at wavelengths of 534 and 568 nm respectively. The spectrum of pa-HO at 

pH=7.4 however has a maximum absorption at 406 nm and a series of bands at 504, 540, 

574 and 630 nm. The 504 and 630 nm absorption features are characteristic of high-spin 

ferric heme proteins while those at 530 and 570 correspond to the presence of a low-spin 

species (20]. The presence of these bands in the visible part of the spectrum is in 
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agreement with the presence of high-spin aquo (Fern-H20) and low-spin hydroxo (Fem

OH) species in equilibrium[6], because the aquo to hydroxo transition in pa-HO is 

characterized by pKa = 8.3. Addition of azide to the solution of Figure 1-A results in the 

formation of the azide complex of pa-HO, a phenomenon immediately apparent from the 

resultant electronic absorption spectrum (Figure 1-B) which is typical of low spin iron 

(III) hemoproteins; Soret band at 418 in addition to a. and p bands at 582 and 541 nm 

respectively. Excess azide (50 equivalents) is needed to stabilize the 1H NMR analysis of 

the formation and properties of pa-HO-N3 complex was also carried out. At pH 7.4, the 

high frequency portion of the 1H NMR spectrum of (Fem) pa-HO (Figure 2-a) displays a 

set of resonances between 80 and 40 ppm and another ranging from 25 to 10 ppm. The 

hyperfine shifted peaks observed above 40 ppm correspond to the high spin (Fem-H20) 

complex of pa-HO while those in the 25-10 ppm region belong to the low spin (Fern-OH) 

complex. The pKa of the Fern-H20 to Fem-OH transition is 8.3, thus the presence of 

resonances characteristic of the high spin Fem-H20 and low spin Fem-OH complexes in 

the spectrum at pH 7.4 is consistent with the previously established slow exchange 

between these complexes relative to the NMR time scale [6]. Upon addition of 0.5 

equivalents of sodium azide to the solution of pa-HO at pH 7.4, the resonances 

corresponding to the Fern-H20 and Fem-OH complexes decrease in intensity, with the 

concomitant appearance of a new set of peaks between 18 and 13 ppm(See Figure 2-b ). 

Addition of 1.0 and 1.5 equivalents of sodium azide, results in further decrease of the 

concentration of the Fern-H20 and Fern-OH species: in fact, when 1.5 equivalents have 

been added the conversion to Fem-N3 is quantitative. 
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Figure 1. Electronic absorption spectra of Pseudomonas aeruginosa heme oxygenase at 

pH=7.4 (A) and in complex with azide (B) and cyanide (C). Spectra were recorded at 

room temperature. 
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It is evident that the chemical shifts observed for Fem-N3 pa-HO (Figure 3-c) do 

not correspond to a high spin electronic configuration of the heme iron, as the five 

unpaired electrons in such cases produce much larger hyperfine shifts, typically ranging 

from 40 ppm to as much as 120 ppm [21]. The hyperfine shifted peaks present between 

10 and 18 ppm more typical of the low-spin S = 1/2 electronic configuration, such as that 

exhibited by myoglobin or hemoglobin in complex with a cyanide ligand [21] or the bis

histidine coordinated cytochromes b [7]. It is noteworthy that the quantitative formation 

of the pa-HO-N3 complex can be unambiguously determined from the complete 

dissapearance of resonances corresponding to the high-spin Fern-H20 and low-spin Fem

OH complexes. By comparison, the addition of azide to metmyoglobin from sperm 

whale and hemoglobin from Chironomus thumni thumni results in the formation of a low 

spin azide complex in fast exchange with the high-spin (Fem-H20) met-aquo form of the 

globins. Fast exchange is manifested in the relatively large chemical shifts of the heme 

methyl (o > 35 ppm) groups as a consequence of the weighted average between the high

spin and low-spin states [20, 22]. 

The 1H NMR spectrum of pa-HO in complex with cyanide at pH 7.4 is shown in Figure 

3 (a). This spectrum is representative of an S = 1/2 low spin iron in the (dxy)2 (dxz,dy2) 3 

electronic configuration. Three resonances corresponding to the porphyrin methyl groups 

and two corresponding to vinyl P protons are hyperfine shifted out of the diamagnetic 

protein envelope to high and low frequency, respectively. The high and low portions of 

the 1H NMR spectrum of the azide complex of pa-HO are shown in Figure 3 (c).This 

spectrum is different from that obtained for the pa-HO-CN complex in that the heme

methyl peaks are found at lower frequencies and the vinyl p resonances at higher 
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Figure 2. High frequency portion of the 1H NMR spectra of pa-HO obtained at 25 °C 

and pH 7.4. Spectra after the addition of O (a), 0.5 (b), 1 (c) and 1.5 (c) equivalents of 

sodium azide. 
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Figure 3. 1H NMR spectra of(a) (Fem-N3)pa-HO at pH 7.4, (b) (Fem-OH)pa-HO at pH 

10.3 and (c) (Fem-CN) pa-HO at pH 7.4. All spectra were acquired at 25 °C. 
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frequencies. The azide complex of pa-HO exhibits reduced hyperfine shifts just as the 

hydroxide complex of the same enzyme did at pH 10.3. It is important to note however 

that in the case of pa-HO-N3 the methyl shifts have been reduced to a much greater 

extent, in comparison to those of pa-HO-CN, than what was observed for the hydroxide 

complex. fudeed, the reduction in observed hyperfine shifts for the heme methyl 

substituents is such that instead of the three methyl resonances being resolved from the 

protein envelope of diamagnetic resonances, in the case of both pa-HO-CN and pa-HO

OH we see only two. 

b) 1 Hand 13 C NMR Resonance assignments for pa-HO in complex with azide. 

fu an effort to further characterize the pa-HO-N3 complex, partial assignement of 

the 1H and 13C NMR resonances of the heme prosthetic group was carried out with the 

aid of 1- and 2-dimensional, homo- and hetero-nuclear experiments. Resonance 

assignments in paramagnetic heme proteins are typically met with multiple challenges. 

Short nuclear relaxation times induced by the presence of unpaired electrons result in low 

cross peak intensities and the compromised effectiveness of pulse sequences with 

multiple delays [21]. The asymmetric distribution of electron density on the porphyrin 

macrocycle will produce large hyperfine shifts for certain resonances and small shifts for 

others [23, 24]. fu addition to the difficulties mentioned above, heme isomerism results 

in the doubling of resonances originating from the macrocycle [25, 26]. To attenuate 

these difficulties, heme labeled with 13C at different positions was used to reconstitute 

samples of pa-HO. Using a sample of pa-HO-N3 reconstituted with heme labeled as in 

Figure 4, a non-decoupled carbon and HMQC experiments were obtained at 25 °C. The 
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high and low frequency portions of the HMQC specrum thus obtained are shown in 

Figure 4. The portion of the 1H-coupled 13C NMR spectrum appended to the HMQC in 

Figure 4-A clearly shows that the heme methyl carbons (quartets) resonate between 5 and 

-20 ppm and that the corresponding 1H chemical shifts are found at 14.92, 13.84, 7.20 

and 6.8 ppm (Table 1). A similar appraisal of the high frequency portion of the carbon 

spectrum in Figure 4-B allows the relatively straightforward identification of the vinyl 

and propionate P carbons. The vinyl p resonances appear as triplets, with 1Je8 -140 Hz, 

due to the two scalarly coupled methylene protons attached to the labeled carbon. The p 

propionate carbons also show signs of scalar coupling, with a triplet (1Je8 - 140 Hz) of 

doublets (1 Jee - 40 Hz) resulting from the two attached protons and the neighbouring 13C 

labeled carbonyl carbon (Figure 4-inset). The heteronuclear correlations are well 

resolved and unambiguous allowing the proton chemical shifts corresponding to both the 

vinyl and propionate p groups to be obtained. The 1H and 13C chemical shifts for all four 

heme methyls as well as the two vinyl p and propionate p groups are summarized in 

Table 1. 

Similarly, a sample of pa-HO was reconstituted with the labeled heme shown in 

Figure 9-A to study the meso proton and carbon resonances. While this sample was used 

to determine the 13C chemical shifts of the meso carbons (Cm) as explained later on, the 

meso carbon to meso proton heteronuclear correlations could not be identified from the 

corresponding HMQC. With the aid of the previously determined 1H shifts of the four 

heme methyls as well as the two vinyl p and two propionate p protons, the dipolar 

correlations represented schematically by red lines were identified in the NOESY 

spectrum of pa-HO-N3, acquired at 25 °C (See Figure 5). The methyl groups found at 
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Table 1: 1H and 13C chemical shifts for heme substituents of pa-HO-N3 

Group 8 (ppm) 8 (ppm) 

-"-··---,··-"--·-----·-·---·--·--"·------,-·-
Methyl 14.92 -16.72 

13.84 -14.71 

7.20 -0.99 

6.8 -1.6 

Vinyl p -4.37, -4.85 187.68 

0.41, -0.16 152.49 

Propionate p 0.28, -0.38 110.37 

-0.99,-2.01 101.03 
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14.92 and 7.2 ppm in the HMQC of pa-HO-N3 reconstituted with heme labeled using 

[1,2-13C]-ALA as a precursor, are dipolarly coupled to vinyl~ proton resonances. This 

implies that these two methyl resonances correspond to heme methyl groups 1 and 3 in 

Figure 4, as they are the heme methyl substituents closest to the vinyl groups. The 

remaining two methyl resonances must correspond to heme methyl groups at positions 5 

and 8. The correlation observed between the methyl resonance at 13.48 ppm in the 

NOESY spectrum of Figure 5 and the resonances identified as a set of propionate ~ 

methylene protons confirms the latter conclusion, as methyls 5 and 8 are in close 

proximity to the 6 and 7 propionates, respectively. In the absence of identified meso 

proton resonances, the assignment of heme substituent resonances could not be taken any 

further. 

c) Heme methyl 1 H chemical shifts suggest that the heme electronic structure of pa

HO-N3 is not the common S = 1/2 ,d,, 

The effect of heme axial ligand orientation on the observed spread and intensity 

of heme methyl paramagnetic shifts in both heme proteins and porphyrin complexes is 

well known. It has been shown that the proton hyperfine shifts of heme methyl groups of 

Fe(III) heme complexes as well as those of ferric heme proteins are related to the angle ~. 

the axial histidine makes with the metal-pyrrole II nitrogen axis in histidine-cyanide low 

spin systems with dir electronic configurations and planar hemes [27-30]. This is due to 

the interaction of the histidine-imidazole n orbitals with the iron centered n orbitals that 

individually interact with the porphyrin 3e(n) molecular orbitals. As the histidine rotates, 

the interaction of its 1t orbitals with the iron dxz and dyz orbitals will change. This 
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resonances corresponding to the major heme rotational isomer are labeled. 
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varying interaction will be passed on to the porphyrin 3e(n) molecular orbitals, lift the 

degeneracy of the porphine orbitals by altering their energies thereby dictating the 

relative population of the same orbitals. The resulting differential in population of the 

3e(n) porphine orbitals is largely responsible for the asymmetric distribution of spin 

density on the macrocycle. 

Bertini et al. developed the following equation for heme proteins ligated by an 

endogenous histidine and an exogenous cyanide: 

(1) 

where Oi is the chemical shift of methyl i, 8i is the angle methyl i makes with the metal

pyrrole II nitrogen axis, ~ is the angle that the histidine imidazole plane makes with the 

metal-pyrrole II nitrogen axis and the coefficients a, b and c have values of 18.4 ± 2.4, -

0.8 ± 2.0 and 6.1 ± 1.9 ppm, respectively (See Figure 6-Top) [31]. Using this equation, 

the ~ values available from known crystal structures and the proton chemical shift 

assignments for the heme methyl groups of various proteins, the authors were able to 

construct a plot of the methyl chemical shifts calculated from their equation versus the 

chemical shifts observed in solution by 1H NMR. The plot thus constructed showed very 

good agreement between the observed and calculated values of the methyl shifts, 

confirming the nearly quantitative relationship between axial ligand geometry and 1 H 

methyl shifts. A similar plot is shown in Figure 6-A for the cyanide complexes of 

myoglobin [32],pa-HO and Corynebacterium diphtheriae HO (cd-HO) that were used as 

examples to illustrate the correlation between experimental and calculated chemical shifts 
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that is typical of heme proteins possessing the low spin S = 1/2, d1t electronic 

configuration [14]. 

In this context it is interesting to consider the azide complex of sperm-whale 

metmyoglobin that is known to exist in solution as a mixture of high and low spin states 

in fast exchange relative to the NMR time scale [20, 33]. When the 1H methyl shifts 

calculated for this species according to equation (1), are plotted against the values 

obtained from 1H NMR solution measurements, the entries represented by yellow circles 

are obtained (See Figure 8-B). It is apparent that all of the heme methyl chemical shifts 

observed for the azide complex of myoglobin are larger than those calculated by equation 

(1 ). This is a manifestation of the fact that the observed chemical shifts are <!- weighted 

average of the very large chemical shifts of high-spin (-15% character) and smaller 

chemical shifts (-85%) characteristic of low-spin ferrihemes. Consequently, all entries 

corresponding to the azide complex of myoglobin lie considerably below the diagonal 

correlating the experimental and calculated chemical shifts in pure low-spin, d1t 

ferrihemes. The entries corresponding to the myoglobin azide complex result in a 

behaviour that does not conform to that observed for pure low spin d1t complexes. 

The heme methyl resonances of the azide complex of pa-HO although only partially 

assigned can still be used in the context of the plot presented above and the graph shown 

in Figure 6. Assuming that the orientation of the axial histidine inpa-HO-N3 is the same 

as the one adopted by the histidine inpa-HO-CN, we can calculate the 1H chemical shifts 

expected for each of the four heme methyls in the azide complex from to equation (1 ). 

Assuming that the orientation of the axial histidine does not change upon binding of azide 

is reasonable because the crystal structures of rat HO in its resting state, and in complex 
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with azide show no changes in proximal histidine orientation [34]. As indicated 

previously we can group the heme methyl resonances into pairs. One pair (14.92, 7.20 

ppm) corresponds to lMe and 3Me while the other corresponds to 5Me and 8Me. For 

each pair of methyl groups we have two sets of possible assignments. It is therefore 

possible to plot the observed chemical shift for one of the methyl groups against two 

values of calculated chemical shift. For instance, the chemical shift at 14.92 ppm can be 

ascribed to lMe or 3Me, thus the 14.92 ppm value can be plotted against two calculated 

chemical shifts, 3.97 and 20.43 (filled circle and triangle in Figure 8). It is apparent that 

none of the corresponding entries fall within the expected correlation typiclal of a S = 

1/2, d1t electronic structure. Along the same vein, the second chemical shift in this pair 

(7.20 ppm) is plotted against the calculated chemical shift for lMe and 3Me (open circle 

and triangle in Figure 8). fu a similar manner, the observed chemical shifts for each 

methyl group in the pair that exhibit NOE crosspeaks with the heme propionates ( 6.80 

pmm and 13.84 ppm) were plotted against calculated values for the 5Me and 8Me groups. 

It is evident that these entries exhibit significant differences from the correlation that is 

typical of S = Yl, ctn complexes, an observation that strongly indicates that the electronic 

configuration of the heme in pa-HO-N3 is not the S=l/2, ctn. 

d) 13 C NMR Spectroscopy of the porphyrin methyl carbons suggests a change in the 

electronic structure of the heme. 

fu an effort to gain a better understanding of the unusual 1H chemical 

shifts observed for the heme methyl groups in pa-HO-N3, a sample of the enzyme was 

prepared with heme labeled at the methyl carbons (See Figure 4). Resonances 
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Figure 7. Schematic representation of the 13C NMR spectra of a) pa-HO-CN [14] , b) 

met-myoglobin cyanide [32] , c) pa-HO-N3 and d) pa-HO-OH [32]. All the spectra were 

obtained at 25 °C with the exception of the one corresponding to pa-HO-CN which was 

taken at 10 °C. 
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originating from the carbons are readily identified as J 1 cH-140 Hz quartets. As has been 

illustrated in Figure 4-B, the methyl carbon chemical shifts obtained for pa-HO-N3 are 

schematically summarized in a schematic fashion in Figure 7-c. Inspection of this figure 

reveals that the methyl carbon resonances occur at significantly higher frequencies than 

those observed for typical S = 1/2, 4c heme centers, such as met-myoglobin or pa-HO 

(Figurs 7-a and 7-b ). The latter complexes exhibit carbon chemical shifts that are 

centered around -40 ppm whereas those of azido pa-HO are clustered around -8 ppm 

In the case of ferrihemes with the S = 1/2, d11 electron configuration the dxz and dyz 

orbitals interact with the 3e(n) porphyrin molecular orbital shown in Figure 8 [7, 35]. 

The latter molecular orbital has large wave function coefficients at the p pyrrole carbons 

(C13). Thus, delocalization of the unpaired electron of the iron onto the porphyrin ring 

results in a large amount of positive n spin density at the C13 positions which is 

manifested in relatively large and positive C13 chemical shifts (-200 ppm) [16]. The 

attached methyl carbons will experience spin polarization, which is responsible .for the 

large and negative carbon chemical shifts in the 13C NMR spectra of low spin (S = 1/2, 

d11) ferric heme proteins (See Figures 7-a and 7-b) [35]. 

As previously noted, the average 13C chemical shift of the methyl resonances in 

the pa-HO-N3 complex is approximately 40 ppm higher than the average chemical shift 

typical of S = 1/2,d11 ferric heme centers such as those of pa-HO-CN or myoglobin

cyanide. In the context of the spin density delocalization mechanism described above it 

is apparent that the amount of unpaired n electron density present at the C13 positions in 

pa-HO-N3 is substantially smaller resulting in significantly smaller shifts for all the 

methyl carbon resonances in the spectrum of pa-HO-N3. A similar situation is observed 
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in the 13C-NMR spectrum of pa-HO-OH (Figure 7-d) which was previously found to 

exist as mixture of three electronic configurations [6]; A major population exhibits a spin 

cross over between S = 1/2 and S = 3/2, and two minor populations, one exhibiting a S = 

3/2 electronic configuration and the other with the unusual S = 1/2, ( dxy)1 electronic 

structure. These findings strongly suggest the electronic structure of pa-HO-N3 is not the 

common S = 1/2, d7t, 

e) 13C NMR Spectroscopy of porphyrin core carbons: An electronic configuration 

diagnostic tool 

Be NMR spectroscopy has been shown to be powerful approach to the 

characterization of heme electronic configurations. A number of studies conducted with 

ferriheme model complexes have illustrated the diagnostic prowess of studying the 

chemical shifts originating from the porphyrin core carbons, Cm, Ca and C~, to elucidate 

the electronic structure of ferric hemes [6, 36, 37]. This approach was recently employed 

to study the hydroxide complex of heme oxygenase from Pseudomonas aeruginosa 

reconstituted with heme containing Be labels at various core carbon positions [6]. 

Through a judicious choice of labeling schemes it was possible to identify core carbon 

resonances corresponding to three distinct electronic configurations of the heme iron. It 

was therefore decided to conduct a similar study with the azide complex of pa-HO in an 

attempt to gain a clearer understanding of the electronic structure of the heme in this 

complex. 

Figure 8 summanzes m a schematic fashion the relationship between 13C 

chemical shifts and the electronic configurations that are relevant to this study. In short, 
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ferrihemes with the common S = 1/2, d1e electronic structure, which are typically planar, 

and ferrihemes with the less common S = 3/2, (dxy)2 (dxz, dyz)2 (d/)1 spin state, which 

usually show marked distortions from planarity and nominal D4h symmetry make use of 

the 3e(n) porphyrin molecular orbital for spin delocalization [9, 38]. From the relative 

sizes of the circles in the schematic representation of the 3en orbital it can be seen that 

the Cp carbons possess relatively large electron density, the Ca. carbons relatively small 

electron density and the Cm carbons no electron density. Therefore in both the S = 1/2, 

d1e and S = 3/2 spin states the Cp carbons will exhibit large and positive (downfield) 

chemical shifts, and the Ca. carbons will display smaller chemical shifts relative to those 

exhibited by the Cp carbons. The overall magnitude of the observed Ca. and Cp shifts is 

greater in the S = 3/2 spin state because there are two unpaired electrons in the dxz and dyz 

orbitals, compared with only one unpaired electron in the S = 1/2, d1e spin state. An 

interesting consequence of the large spin density present on the Ca. carbons of ferrihemes 

with the S = 3/2 spin state is that spin polarization will result in significant negative 7t 

spin density at the Cm carbons, which is manifested in relatively large and negative Cm 

resonances [39]. In the case of ferrihemes with the less common S = 1/2, (dxy)1 electronic 

configuration, which typically adopt a ruffled geometry, spin delocalization onto the 

porphyrin ring involves the a2u(7t) orbital shown in Figure 8 [7]. This results in large spin 

density at the Cm carbons and relatively small spin density at the Ca ant Cp carbons. As a 

result the Cm carbons exhibit very large and positive shifts, whereas the 
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Figure 8. Left: Typical porphyrin core carbon chemical shifts for (a) Fem-porphyrinates 

with the S = 1/2, dn electronic configuration, (b) Fern-porphyrinates with the S = 1/2, 
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proportional to the calculated electron density. The possible interactions between the dxy 

orbital and the porphyrin nitrogens of a ruffled porphyrin which allow spin delocalization 

into the 3azu(7t) orbital are shown schematically next to this orbital. 
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Cp carbons experience negligible shifts. Polarization from the Cm carbons results in 

relatively large and negative shifts for the Ca carbons position. 

The Be NMR spectrum of a sample of pa-HO-N3 reconstituted with heme 

labeledat the Cm and Ca carbons is depicted in Figure 9. Two sets of peaks are easily 

recognized: the first set consists of relatively narrow signals between O and 50 ppm while 

the second set is comprised of broader peaks in the 150-275 ppm region. Although the 

electronic absorption and 1H NMR spectra are in agreement with an S = 1/2 low spin 

electronic configuration of the heme iron, the characteristics of the carbon spectrum 

shown in Figure 11-A are not: Low spin ferriheme complexes with an iron in the d1t 

electronic configuration typically result in Cm resonances between O and 50 ppm and Ca 

resonances below 100 ppm as depicted schematically in Figure 6-a. The presence of 

peaks corresponding to either Cm or Ca carbons above 150 ppm is unusual and strongly 

suggests a change in electronic structure of the heme iron. 

The use of [5-13C-ALA] as a precursor for labeling introduces 13C labels at both 

the alfa and meso positions of the heme. In order to elucidate the observed hyperfine 

shifts in terms of electronic structure we must be able to distinguish Cm from Ca 

resonances. To this end, [4-13C-ALA] was used to label the Ca and C13 carbons as shown 

in the inset of Figure 9-B and the labeled heme reconstituted into a sample of pa-HO 

which was subsequently converted into its azide complex. The 13C NMR spectrum 

resulting from pa-HO-N3 containing heme with Be labels at a and B positions is shown 

in Figure 9-B. While this new spectrum still shows a set of signals in the 150-275 ppm 

region, it has lost the resonances that were present below 50 ppm and acquired a new 
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group above 275 ppm. We can therefore assign this latter group of resonances to the c13 

carbons and by deduction the signals of lower frequency in the same spectrum must 

belong to the Ca carbons. This further implies that the signals in the 50-0 ppm region of 

the spectrum in part A of Figure 9 must correspond to the Cm carbons. 

At 35 °C, the azide complex of pa-HO has core carbon resonances which appear 

m the following order of increasing chemical shifts: Cm, Ca and c13. This order 

corresponds to that which would be expected in case of an S = 1/2, d7t electronic 

configuration. However as shown in Figure 9-a, the relative intensity of the observed 

chemical shifts for the heme a and ~ pyrrole core carbons of pa-HO-N3, does not agree 

with model values. Although the Cm resonances show chemical shifts compatible with an 

Fe(III) S = 1/2 - d1t, spin state - electronic configuration of the heme iron, the Ca and c13 

carbon resonances are found approximately 100 ppm downfield of their corresponding 

low spin d1t chemical shifts. This latter observation could be explained by invoking an S 

= 3/2 intermediate spin state with a (dxy)2 (dxz, dyz)2 (d/)1 electronic configuration. 

Unpaired spin density would still be delocalized onto the porphyrin ring via the 3e(1t) 

molecular orbital giving the same overall core carbon chemial shift order observed for the 

low spin d1t case while the additional unpaired electron density on the heme would shift 

the Ca and c13 carbon resonances to higher frequency. A 'pure' intermediate spin state is 

expected to shift Ca and C13 carbons to approximately 600 and 1000 ppm respectively 

while the negative spin density created by polarization at the meso position should shift 

the Cm carbons upfield to about-300 ppm [9, 10]. This is clearly not the case for pa-HO

N3. However, the observed chemial shifts for the Ca and C13 resonances are reminiscent 

of the rescently reported hydroxide complex of pa-HO whose major population was 

150 



A 

300 250 200 150 100 50 0 

13 C Chemical shift (ppm) 

B 

H02C 

300 250 200 150 100 50 

13 C Chemicalshift(ppm) 

Figure 9. 13C NMR spectra obtained at 35 °C from a solution of ferric azido- pa-HO 

reconstituted with labeled at the Ca. and Cm carbons (A) and Ca. and C~ carbons (B). The 

labeled carbons are highlighted by ( •) in the structures shown to the right of the 

corresponding spectrum. The chemical shifts labeled with asterisks were used to 

construct the temperature dependent plot of Figure 10. 
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found to exist in a S = 3/2, 1/2 spin state crossover. The study conducted on the latter 

complex of pa-HO revealed that at 10 °C, the a and~ carbons of the porphyrin could be 

found between 200 and 300 ppm which is similar to the 150-300 ppm range observed for 

the azide complex at 35 °C. Moreover, when the temperature dependent behaviour of the 

Ca and C~ resonances of the azide complex of pa-HO are compared to those of their 

hydroxo counterpart, almost identical slopes are found as shown in Figure 10. In addition 

to this it is interesting to notice that putting the two temperature dependent plots obtained 

for pa-HO-N3 and pa-HO-OH side by side it is possible to transition from the azide plot 

to that of the hydroxide relatively smoothly. This observation leads us to believe that the 

azide complex of heme oxygenase from Pseudomonas aeruginosa, just like the hydroxide 

complex of the same enzyme, shows evidence of an S = 3/2, 1/2 spin crossover, albeit 

with a much smaller intermediate spin state character at the temperatures used in this 

study. 

f) Deformations of the porphyrin ring from planarity allow a previously unobserved 

spin density delocalization mechanism. 

It is interesting to once again note the apparent continuity between the two Curie 

plots corresponding to pa-HO-N3 and pa-HO-OH shown in Figure 10. Not only does it 

strongly suggest that the Fe(III)-N3 complex of pa-HO behaves like the S = 3/2, 1/2 spin 

crossover component of the hydroxide complex of the same enzyme but it illustrates a 

key change that occurs with increasing S = 3/2 character: the chemical shift values of the 

Ca carbon resonances become higher than those of the C~ carbon resonances. This is 
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particularly noteworthy as to this date, the delocalization of electron density onto the 

porphyrin ring of model complexes and the recent Fern-OH complex of pa-HO which 

exhibit intermediate spin character has been interpreted in terms of the 3e(n) molecular 

orbital [6, 9]. This orbital, schematically depicted in Figure 8, has larger wave function 

coefficients at the C13 positions than at the Ca. positions. The amount of electron density 

delocalized through the use of that orbital being proportional to the aforementionned 

wavefunction coefficients, the f3 pyrrole carbons of the porphyrin should receive more 

spin density then their neighbouring a carbons and consequently exhibit higher chemical 

shifts. That is not what is observed for the S = 3/2, 1/2 spin crossover population present 

in both the azide and hydroxide complexes of heme oxygenase from Pseudomonas 

aeruginosa. In pa-HO-OH the major spin crossover population already has enough 

intermediate spin character at 10 °C to have a carbon chemical shifts above those of the 

f3 carbons. In the case of pa-HO-N3, the temperature dependent plot of Figure 10-A 

predicts that above 45 °C the complex would also see the order of the Ca. and C13 

resonances permutate. This change indicates an alteration in the relative amounts of 

unpaired electron density delocalized to the a and p carbons of the porphyrin which is in 

agreement with the unusually high chemical shifts observed for the heme methyl carbons 

of both the azido and hydroxo complexes of pa-HO that are presented in Figure 7. A 

smaller quantity of positive 1t spin density at the C13 carbon, relative to the Ca. carbon, 

would, by polarization, create less negative 1t spin density on the adjacent methyl carbon 

reducing the intensity of the upfield chemical shift while simultaneously inverting the 

order of the actual c13 and Ca. resonances in the 13C NMR spectrum. In this context it 

becomes interesting to consider a recent article by Ru-Jen Chen and co-workers where it 
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is noted that non-planar deformations of the porphyrin alter the symmetry representations 

of the molecular orbitals of the metalloporphyrin thereby creating novel symmetry 

allowed interactions with certain heme iron orbitals [41]. Particularly noteworthy is the 

example given of a heme with a D2a symmetry representation showing a symmetry 

allowed interaction of the metal dxy and porphyrin a1u(1t) orbitals. The a1u porphyrin 

molecular orbital, depicted in Figure 11 would place relatively large amounts of spin 

density at the Ca carbons, relatively small amounts at the C~ carbons and no unpaired 

electron density at the Cm carbons. This is precisely the pattern of spin density 

distribution on the heme macrocycle that would generate the relative order of chemical 

shifts observed for the core carbons resonances of the S = 3/2, 1/2 spin crossover 

component of pa-HO-OH. Although the relative order of the core carbon resonances in 

the case of the almost pure S = 3/2 spin states reported for the [Fe(OEtPP)(L)2t 

complexes, where L is 4-cyanopyridine or tetrahydrofuran, was left unaddressed, they 

match those observed for the spin crossover component in our study of the hydroxide 

complex of pa-HO as well as those predicted by the Curie plot of Figure 12-A for pa

HO-N3 at higher temperatures [9]. 

Model complex studies have well established the association of the S = 1/2, (dxy)1 

[8] electronic structure as well as that of the S = 3/2 and S =3 /2,112 electronic 

configurations of ferric heme iron with significant distortions of the porphyrin ring from 

planarity [ 42, 43]. As the porphyrin macrocycle deforms from planarity its symmetry is 

lowered from the nomimal D4h symmetry to D2a, in the case of ruffling. As a 

consequence both the metal dxy and porphyrin a2u orbitals will be ofb2 representation and 

can therefore interact [ 41]. This symmetry allowed interaction is born out by recent 
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Figure 11. Schematic representation of the a1u porphyrin 1t frontier molecular orbital. 

The relative size of the circles are proportional to the amount of spin density at the 

respective positions on the porphyrin ring. 
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evidence obtained from the study of certain six-coordinate ruffle-shaped 

metalloporphyrins in the low spin state that are found in the less common (dxy)1 electronic 

configuration [11, 12]. In the same vein, the decrease in symmetry that accompanies the 

geometrical distortions of the saddled type seen in model complexes with S = 3/2 

character could alter the symmetry representations of the iron orbitals containing 

unpaired electrons allowing these to interact with the a1u porphyrin frontier orbital. 

Mechanistic Implications for Heme Degradation and Concluding Remarks 

The importance of heme distortions from planarity in heme protein function has 

been pointed out by Shelnutt [ 44, 45] and model complex studies have also underscored 

key aspects of reactivity resulting from changes in electronic structure brought about by 

non-planar hemes [5]. While model studies have established the propensity for good 1t

acceptor ligands and poor sigma donor axial ligands to induce the ruffling of 

metalloporphyrins, it has been noted that biological porphyrins may be found in multiple 

conformations as several potential energy minima can result from the protein 

environment [11, 45]. The observations made in this study are well in agreement with 

the above-mentionned comments and have significant implications in the context of heme 

oxygenation. 

The mammalian and bacterial heme oxygenase enzymes catalyze the oxidative 

degradation of heme via a key ferric hydroperoxide intermediate responsible for the first 

step in the catalytic cycle [l, 4]. This crucial species has been shown by ENDOR 

spectroscopy to appear after cryoreduction of the heme oxygenase oxygen complex and 

protonation of the terminal oxygen atom belonging to the ferric peroxide adduct formed. 
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The proton delivered to the axially coordinated peroxide has been denoted Hl by the 

authors. While cryoreduction almost immediately results in the Fem-OOH complex at 77 

K annealing to temperatures above 200 K is necessary to produce a-hydroxyheme, the 

first product of heme oxygenation. Annealing below 200 K allows the detection of a new 

proton signal associated with the hydroperoxide moiety called H2. The delivery ofHl to 

the terminal oxygen atom of the peroxide takes place almost instantaneously at 77 K and 

implies a well defined and efficient protonation mechanism [4]. Recent crystal structures 

as well as solution state studies of heme oxygenases have revealed the presence of a very 

well defined network of hydrogen bonded water molecules in the distal pocket of the 

enzymes [34, 46, 47]. It has been proposed that the water molecule, denoted Watl, 

which is closest to the active site is responsible for the protonation of the coordinated 

peroxide [47]. While this is indeed in agreement with the ENDOR studies described 

above as well as the presence of the network of hydrogen bonded water molecules 

characteristic of heme oxygenases the driving force behind the regioselective attack of 

the porphyrin remains unclear. 

The results presented herein strongly suggest that binding of azide to the ferric 

resting state of heme oxygenase from Pseudomonas ae-rugi,nosa produces a novel 

electronic configuration corresponding to a S = 3/2, 1/2 spin crossover with a small 

amount of intermediate spin character at ambient temperatures. The relevance of this 

study to heme oxygenation lies in the capacity of azide to produce an unusual electronic 

structure associated with strong distortions of the porphyrin ring from planarity. We 

believe that while azide binding usually produces a low spin state of the ferric iron, the 

hydrogen network of water molecules present in heme oxygenases can by virtue of 
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donating a hydrogen bond to the coordinated azide nitrogen weaken this ligand's field 

strength. This weaker field strength being possibly accompanied by a compensating 

increase in the equatorial ligand field strength could produce porphyrin deformations 

from planarity which could find additional stability within the confines of the flexible HO 

pocket. These deformations of the heme placed in context of the symmetry allowed 

interactions emphasized by Chen and co-workers and the observed pattern of core carbon 

chemical shifts seen in the 13C NMR spectra of pa-HO-N3 at various temperatures, has 

led us to propose the novel use of the a1u porphyrin frontier orbital for delocalization of 

electron density from the heme iron in a S = 3/2, 1/2 spin crossover. Moreover, the 

presence of an electronic structure known to be associated with significant deformations 

of the porphyrin reinforces the notion put forth that the flexible nature of the HO distal 

pocket in conjunction with its well defined network of water molecules can modulate the 

ligand field strength of a distally bound ligand producing novel electronic configurations 

[6]. If the physiologically relevant hydroperoxide is subjected to similar interactions it is 

likely the heme iron will adopt a non-planar conformation as well as a novel electronic 

configuration not corresponding to the common S = 1/2, d1t. We propose that the 

significance of the network of water molecules present in heme oxygenases lies in its 

capacity to create a hydrogen bond to the coordinated peroxide oxygen via the H2 proton 

mentioned by Davidov et al. [4]. The altered ligand field strength of the peroxide could 

therefore result in novel non-planar heme electronic structures where the S = 1/2, (dxy)1 

and S = 3/2 would be of particular interest as both would result in the presence of 

siginificant amounts of spin density at the meso positions priming the heme to participate 

in its own hydroxylation. 
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Chapter VI 

THE OXIDATION OF HEME TO P- AND &-BILIVERDIN BY PSEUDOMONAS 

AERUGINOSA HEME OXYGENASE IS A CONSEQUENCE OF 

AN UNUSUAL SEATING OF THE HEME 

Introduction 

Heme oxygenase oxidatively cleaves heme to biliverdin with the release of iron 

and CO [l, 2]. The heme oxygenase reaction consumes three molecules of oxygen and a 

total of seven electron equivalents in the form ofNADPH to convert one heme molecule 

to biliverdin [2-4]. The transfer of electrons from NADPH to the mammalian enzyme is 

mediated by cytochrome P450 reductase [5]. The bacterial HOs, like their mammalian 

counterparts, are NADPH dependent enzymes that catalyze the oxidation of heme to 

biliverdin by a mechanism similar to that described for the mammalian enzymes [ 6-8]. 

Whereas HO in mammals functions to maintain heme homeostasis, the role of bacterial 

heme oxygenases appears to revolve around the breakdown of heme with the purpose of 

providing the bacterium with the ability to use heme as a source of iron [9-11]. Although 

the nature of several of the intermediates in the heme oxygenation reaction has been 

determined, the relationship between protein structure and factors such as ligand 

discrimination, oxygen activation, and regiospecificity are not yet well understood. The 

recent crystal structures of N. meningitidis HO [12] (nm-HO) and h-H0-1 [13] 

demonstrated that unlike the globins or the peroxidases, HOs do not have a distal 

histidine or a distal polar residue that may help stabilize an 02 or -ooH ligand. 

However, the crystal structures suggest that the carbonyl and NH groups of conserved 
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glycine residues (139 and 143 in h-H0-1) may carry out this role. Moreover, the 

flexibility imparted by these residues to the distal helix appears to be important for heme 

oxygenase catalytic activity. In agreement with this hypothesis, replacement of Gly-139 

or Gly-143 with bulkier amino acids suppresses heme oxygenase activity, and in some 

cases the mutants acquire peroxidase activity [3, 14]. 

Insights gained from the crystal structures of the bacterial [12] and mammalian 

HOs [13, 15] suggest that the regioselectivity of the reaction is likely to be controlled by 

steric interactions between the distal helix and the heme, which restrict attack of the Fem

OOH oxidizing species to the P-, y-, and 8-mesa carbons. Electronic factors have also 

been implicated in the control of regiospecificity on the basis that electron donating and 

electron withdrawing substituents located on a mesa-carbon exert a different influence on 

the regioselectivity of heme cleavage performed by HO [16, 17]. More recently, 

magnetic resonance studies conducted with models of the low-spin Fem-OOH 

intermediate of HO suggest that this key intermediate exists as an equilibrium mixture 

consisting of a planar heme with a (dxyf(dxz, dy2 ) 3 electron configuration and a ruffled 

heme with a (dxz, dy2)4{dxy)1 electron configuration [18]. At ambient temperatures the 

equilibrium favors the (dxy)1 electron configuration and the ruffled porphyrinate ring is 

expected to aid the attack of the terminal oxygen of the Fem-OOH intermediate on the 

mesa-carbon. In addition, the large spin density at the mesa-carbons of a low-spin ferric 

heme possessing a (dxy)1 electron configuration suggests the possibility of a radical 

mechanism for HO [18]. It is therefore conceivable that the regioselectivity of oxidative 

heme degradation is controlled by a combination of steric and electronic factors, where 

the ruffled (dxy)1 heme places a pair of mesa-carbons (a and y, or p and 8) closer to the 
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terminal OH of Fem-OOH at any given moment. Sterle interactions between the distal 

pocket and the heme are likely to determine which pair of mesa-carbons is positioned 

closer to the coordinated peroxide and steric interactions are also likely to determine 

which mesa-carbon from a pair (e.g. a or y) is attacked [18]. 

Recent characterization of heme oxygenases from Carynebacterium diphtheriae 

(cd-HO) [6] and Neisseriae meningitidis (nm-HO) [7] revealed that these enzymes 

hydroxylate heme exclusively at the a-meso position, like the previously characterized 

mammalian proteins. fu contrast, the Pseudamanas aeruginosa heme oxygenase (pa

HO) [8], which is 37% identical in amino acid sequence to nm-HO, hydroxylates heme 

predominantly at the o-meso position. The study of pa-HO, therefore, is likely to provide 

additional insights into the factors that control the regioselectivity of oxidative cleavage 

during the process of heme catabolism. 

As an initial step towards this goal, amino acid sequence alignments carried out in 

the context of the available X-ray crystal structures revealed that Lys-16 and Tyr-112 in 

nm-HO (Lys-16 and Tyr-134 in h-H0-1 and r-H0-1), which form hydrogen bonding and 

ionic interactions with the heme propionates, have been replaced by Asn-19 and Phe-117 

in pa-HO. These observations led us to hypothesize that if the fold in pa-HO is similar to 

that of the other bacterial and mammalian HOs, o-hydroxylation may be a consequence of 

alternative interactions experienced by the heme propionates that result in a heme seating 

different from that observed in the mammalian and nm-HOs. As will be shown below, 

NMR spectroscopic evidence strongly suggests that the heme seating in pa-HO is rotated 

- 110° from the heme seating common to the other known bacterial and mammalian 

heme oxygenases. It will also be shown that upon replacing Asn-19 and Phe-117 for Lys 
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and Tyr, respectively, the heme in the double mutant enzyme experiences a dynamic 

equilibrium between two heme seatings, one identical to that of wild type pa-HO, and the 

other typical of the previously characterized a-selective heme oxygenases. In addition 

the double mutant exhibits altered regioselectivity, in which both a and 8-biliverdin 

products are observed, reflecting the dynamic equilibrium of the two heme seatings in the 

double mutant. 

Experimental 

a) General methods. 

Deionized, doubly distilled water was used for all experiments. Plasmid 

purification, subcloning and bacterial transformations were carried out as previously 

described [19]. Oligonucleotides were obtained from Sigma-Genosys and used without 

further purification. All absorption spectra of the heme-HO complexes were recorded on 

a Cary Varian lE UV Spectrophotometer. 

b) Bacterial strains. 

E. coli strain DH 5a [F', ara D(lac-proAB) rpsL 080d/acZDM15 hsd Rl 7] was 

used for DNA manipulation and E. coli strain BL21 (DE3) pLysS [F- ompT hsdSB (IB-

IDB-) gal dcm (DE3)] was used for expression of both the wild type and mutant heme 

oxygenase constructs. 

c) Mutagenesis of pEHmuO. 

Mutagenesis was carried out by polymerase chain reaction using the Quickchange 

168 



Mutagenesis Kit from Stratagene (La Jolla, CA). Oligonucleotides were designed to have 

melting temperatures (Tm) between 65-75 °C. All mutations were verified by DNA 

sequencing, which was carried out at the Biopolymer Laboratory, School of Medicine, 

University of Maryland, Baltimore. 

d) Expression and purification of wild type and mutant pa-HOs. 

The wild type heme oxygenase proteins and their corresponding mutants were 

purified as previously described [8]. A single colony of freshly transformed E. Coli BL21 

(DE3) plysS cells was cultured overnight in 5 mL of LB-medium containing 100 µg/mL 

of ampicillin. The cells were subsequently sub-cultured into fresh LB-Ampicillin 

medium (100 mL) and grown at 37 °C to mid-log phase. The cells were then sub-cultured 

(10 mL) into LB-ampicillin media (1 L) and, on reaching mid-log phase, expression was 

induced by addition of isopropyl-1-thiol-(D)-galactopyranoside (IPTG) to a final 

concentration of 1 mM. The cells were grown further for 4-5 hours at 30 °C and 

harvested by centrifugation (10,000 x g for 20 min). Cells were lysed by sonication in 50 

mM Tris-HCI (pH 7.8) containing lmM EDTA and lmM phenylmethysulfonyl fluoride 

(PMSF). The cell suspension was then centrifuged at 27,000 x g for 40 min. The soluble 

fraction was applied to a Sepharose-Q Fast Flow column (1.5 x 10 cm) previously 

equilibrated with 20 mM Tris-HCl (pH 7.5). The column was washed with 3 volumes of 

20 mM Tris-HCl (pH 7.5) containing 50 mM NaCl. The protein was then eluted with the 

same buffer with a linear gradient of NaCl from 50 mM-500 mM. The protein eluted at a 

concentration of 150 mM NaCl and the peak fractions were pooled and dialyzed against 

10 mM potassium phosphate (pH 7.4) (2 x 4 L) at 4 °C. The pa-HO protein was then 

stored at-80 °C or reconstituted with heme as described below. 
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e) Reconstitution of the wild type and pa-HO mutants. 

The heme-HO complexes were prepared as described previously [20]. Hemin was 

added to the purified HO proteins at a final 2: 1 heme:protein ratio. The sample was then 

applied to a Q-sepharose column (1.5 x 6.0 cm) pre-equilibrated with 20 mM Tris-HCl 

(pH 7.8). The column was washed with equilibration buffer (5 volumes), followed by the 

same buffer containing 50 mM NaCl. The protein was then eluted with 20 mM Tris (pH 

7.8) containing 250 mM NaCl. The protein fractions were pooled and dialyzed (2 x 4 L) 

against 20 mM Tris-HCl (pH 7.8) at 4 °C. The protein was concentrated by an Amicon 

filtration unit and stored at -80 °C. Samples for NMR and Resonance Raman analysis 

were passed down a Sephacryl S-100 HR column (3.0 x 100 cm) following concentration 

on an Amicon Filtration unit. 

.I) Electronic absorption spectroscopy of the wild type and mutant pa-HOs. 

The UV-visible spectra of the wild type HOs and their respective mutants were 

recorded in 20 mM Tris (pH 7.5). The Fe(II)-CO spectra were obtained by saturating the 

solution with CO followed by the addition of a few grains of sodium dithionite. The 

Fe(II)-02 complexes were obtained by passage of the Fe(II)-CO complexes through a 

Sephadex G-25 column (1.0 x 3.0 cm). 

g) Determination of the extinction coefficient/or the heme:pa-HO complexes. 

The mM extinction coefficient (E405) for the heme:HO complexes was determined 

as previously described [21]. The absorbance of a purified heme-HO sample at 405 nm 

was measured. An excess of dithionite was added and the spectrum of the reduced 

ferrous pyridine hemochrome was then recorded. The concentration was calculated from 
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the absorbance maxima at 418.5, 526, and 555 nm using mM extinction coefficient 

values of 170, 17.5 and 34.4, respectively. 

h) Reaction of the heme:pa-HO complexes with NADPH cytochrome P450 reductase 

or ascorbate. 

The reaction of the heme-HO complexes in the presence of NADPH reductase 

was carried out as previously described [6]. Purified human cytochrome P450 reductase 

was added to the heme-HO complex (10 µM) at a molar ratio of reductase:HO equal to 

3:1 in a final volume of 1 mL of20 mM Tris-HCl (pH 7.5). The reaction was initiated by 

the addition of NADPH in 10 µM increments to a final concentration of 100 µM. The 

spectral changes between 300-750 nm were monitored over a 30 min time period at 1 min 

intervals. Following completion of the reaction, the product was extracted for HPLC 

analysis as described below. The ascorbic acid dependent conversion of heme to 

biliverdin was also monitored. Ascorbic acid at a final concentration of 5 mM was added 

directly to the heme-HO complex (10 µM) in 20 mM Tris-HCl buffer (pH 7.5). The 

spectral changes between 300 and 750 nm were recorded over a 20 min time period. The 

products of the reaction were extracted and subjected to HPLC analysis as described 

below. 

i) HPLC analysis of heme:pa-HO reaction products. 

Following the reaction of the heme-HO complexes with NADPH cytochrome 

P450 reductase or with ascorbate, glacial acetic acid (20 µL) and 3M HCl (20 µL) were 

added to the reaction (1 mL) before extracting into chloroform. The organic layer was 
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washed with distilled water (3 x 1 mL) and the chloroform layer removed under a stream 

of argon. The resultant residue was dissolved in 1 mL of 4% sulfuric acid in methanol 

and esterified for 12 h at room temperature. The esters were diluted ( 4-fold) with 

distilled water and extracted into chloroform. The organic layer was washed further with 

distilled water, dried over sodium sulfate, and the chloroform was again removed under a 

stream of argon. The residue was dissolved in 85:15 (v/v) methanol:water prior to HPLC 

analysis. The samples were analyzed by reverse phase HPLC on a ODS-AQ C18 (S-5) 

(YMC, Inc., Wilmington, NC) column (3.0 x 250 mm) eluted with 85:15 (v/v) 

methanol:water at a flow rate of 0.4 mL/min. The elutant was monitored at 380 nm and 

the biliverdin standards eluted in the order a (11.9 min), P (13.9 min), o (14.8 min), and 

y (18.5 min) [22]. The ratio of isomers was calculated by integration of the peaks within 

each experiment and averaged for five separate experiments. 

j) Preparation of HOs reconstituted with 13 C-labeled heme. 

BC-labeled o-aminolevulinic acids (ALA) were used as biosynthetic precursors 

for the preparation of protoheme IX (heme). [3-13C]-o-aminolevulinic acid ([3-BC-]

ALA), [5-13C]-ALA, and [1,2-13C]-ALA were synthesized utilizing methods described 

previously [23]. Heme labeled with Be was obtained utilizing previously reported 

methodology,[24] which was developed to take advantage of the fact that the first 

committed precursor in heme biosynthesis is o-aminolevulinic acid (ALA) [25, 26]. 

Thus, 13C-labeled heme, which is biosynthesized in E. coli upon addition of suitably 

labeled ALA, is trapped by simultaneously expressing rat liver outer mitochondrial 

membrane cytochrome b5 (OM cyt b5) [24]. The details of the biosynthetic protocol, 

which entail the expression and purification of OM cyt b5 harboring BC-labeled heme 
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have been presented previously [27]. Reconstitution of HO with 13C-labeled heme entails 

the removal of the isotopically labeled macrocycle from OM cyt b5, followed by the 

formation of the heme-HO complex. A typical protocol used to extract 13C-labeled heme 

from OM cyt bs follows: Pyridine (15 mL) was added to 2.5 mL of 1 mM OM cyt b5 in 

phosphate buffer(µ= 0.10, pH= 7.0), while maintaining the temperature at 4 °C. Slow 

addition of chloroform, typically 10-15 mL, resulted in the precipitation of the 

polypeptide, while maintaining the pyridine hemochrome in the supernatant. The latter 

was subsequently separated from the denatured polypeptide by centrifugation, allowed to 

equilibrate at room temperature, and then dried over anhydrous MgS04• The desiccant 

was removed by filtration and the filtered pyridine-chloroform solution transferred to a 

round-bottomed flask, where it was concentrated to dryness on a rotary evaporator. 

Finally, the resultant solid was redissolved in 3-4 mL of 0.1 M NaOH in the presence of a 

10-fold excess of NaCN, and the pH adjusted to 9.5 (adjusting the pH to 9.5 in the 

absence of CN- often results in heme aggregation and precipitation). HO was 

reconstituted with a freshly prepared solution of 13C-labeled heme by titrating it into a 20 

mL solution of 20 mM Tris containing ~2 µmol of HO until the ratio A2so/ Asoret no longer 

changed. The resultant solution containing the cyanide-inhibited enzyme was then 

incubated at 4 °C overnight, dialyzed against 2.0 L of 10 mM phosphate (pH 7.5) over a 

period of 24 h and then purified by chromatography. HO from C. diphtheriae was loaded 

onto a hydroxyapatite column (2 cm x 12 cm) equilibrated at 4 °C with 10 mM phosphate 

buffer, pH 7.5, and eluted with a linear phosphate gradient (10-150 mM). Those fractions 

containing pure protein were concentrated in Amicon centrifugal concentrators to 

approximately 1 mL and then transferred to smaller Centricon concentrators in order to 

exchange the protein into deuterated phosphate buffer, pH 7.5, not corrected for the 
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deuterium effect. Purification of freshly reconstituted pa-HO was accomplished by 

loading it onto a Q-sepharose column (3 x 5 cm) and eluting it with a linear salt gradient 

(10-500 mM). 

k) Resonance Raman spectroscopy. 

Resonance Raman spectra were obtained on a McPherson 2061/207 spectrograph 

(0.67 m with variable gratings) equipped with a Princeton Instrument liquid N2-cooled 

(LN-llOOPB) CCD detector. Kaiser Optical supemotch filters were used to attenuate 

Rayleigh scattering. Excitation sources consisted of an Innova 302 krypton laser (413 

nm), and a Liconix 4240NB He/Cd laser (442 nm). Spectra were recorded in a 90°

scattering geometry on samples at room temperature. Frequencies were calibrated 

relative to indene and CC4 standards and are accurate to ±1 cm-1• CCl4 was also used to 

check the polarization conditions. Electronic absorption spectra of the samples used for 

Raman spectroscopy were obtained on a Cary 50 Varian spectrophotometer, in order to 

monitor the samples both before and after laser illumination. 

I) NMR Spectroscopy. 

1H and 13C spectra were acquired on a Varian Unity Inova spectrometer operating 

at frequencies of 598.611 and 150.532 MHz, respectively. 1H spectra were referenced to 

the residual water peak at 4.8 ppm and 13C spectra were referenced to an external solution 

of dioxane (60% v/v in D20) at 66.66 ppm. Proton spectra were acquired with pre

saturation of the residual water peak over 15 k data points, a spectral width of 30 kHz, a 

250 ms acquisition time, a 200 ms relaxation delay and 1024 scans. 13C spectra were 

collected over 24 k data points, a spectral width of 59 kHz, a 200 ms acquisition time, a 
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25 ms relaxation delay and 400,000 scans. HMQC spectra [28] were typically acquired 

with spectral widths of 30 kHz for 1H and 50 kHz for 13C, respectively, and a 200 ms 

relaxation delay. HMQC spectra obtained from samples containing HO reconstituted 

with heme labeled using 1,2-13C ALA as a heme precursor (see Figure 3) were acquired 

with refocusing delays based on 1JcH = 140 Hz, while data obtained from HO 

reconstituted with heme labeled using 5-13C ALA as the heme precursor were acquired 

with 1JcH = 180 Hz. Data were collected as an array of 2 k x 128 points with 512 scans 

per t1 increment and processed by zero filling once in t2 and twice in t1 to obtain an 8 k x 

8 k matrix. This was apodized with a 90° shifted squared sine bell function and Fourier 

transformed. WEFT NOESY [29, 30] spectra were acquired with 29 kHz in both 

dimensions, 2 k data points in t2, 256 increments in t1, 512 scans per t1 increment, and 

(typically) a 40 ms mixing time. The data were processed by zero filling in both 

dimensions to obtain an 8k x 8k matrix, apodized with 90° shifted squared sine bell and 

Fourier transformed. EXSY [31] data were acquired in a similar manner except that the 

mixing time was set to 5 ms. 

Results 

a) Expression, purification and spectral characterization of the wild type and mutant 

pa-HOs. 

The wild type and mutant pa-HOs were expressed and purified as previously described 

[8]. Each of the proteins was estimated to be > 95% pure by SDS-PAGE (data not 

shown). The Soret maxima of the ferric (Fem) state of the wild type and mutant proteins 

were essentially identical (Table 1). Upon reduction to the ferrous (Fen) state the Fen-CO 
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and Ferr-02 complexes were in the range, 420-421 nm and 407-413 nm, respectively 

(Table 1). Characteristic visible bands for the Fem charge transfer bands and the Fen-CO 

or Fen-02 alp bands in all the mutant proteins remained relatively unchanged from those 

of the wild type protein (Table 1 ). These data suggest that the heme coordination in the 

mutant proteins was similar to that of the wild type protein, and were not grossly altered 

by the amino acid substitutions. 

b) Resonance Raman characterization. 

The high frequency region of RR spectra of hemoproteins obtained with Soret excitation 

is dominated by porphyrin skeletal modes, which are indicative of the oxidation state, 

spin state, and coordination state of the heme iron [32]. In the ferric heme-nm-HO 

complex the v3 and v2 modes at 1482 and 1560 cm·1, respectively, are characteristic of a 

six-coordinated high-spin (6cHS) configuration. A minor six-coordinated low-spin 

(6cLS) population is also evidenced by a red-shifted v10 at 1632 cm·1 (Figure 1-A). The 

ferric heme complexes of the wild type and the Asn-19Lys/Phe-117 Tyr double mutant of 

pa-HO exhibit nearly identical RR spectra, consistent with a mixture of 6cHS and 6cLS 

species (Figures 1-B and C). The combined V4 modes of the 6cHS and 6cLS species are 

observed at 1373 cm·1 in pa-HO rather than at 1370 cm·1 in nm-HO, and distinct 6cLS v3 

and v2 in pa-HO spectra at 1502 cm·1 and 1580 cm·1, respectively, are readily attributed to 

a greater content of 6cLS species in pa-HO than in nm-HO. Such mixtures of 6cHS I 

6cLS configurations are observed in the ferric H0-1 and cd-HO proteins and are 

attributed to the ligation of an ionizable water ligand in the distal pocket, trans to the 

proximal histidine ligand [33, 34]. Upon reduction to the ferrous state, all three heme 

protein complexes display RR spectra characteristic of pentacoordinated high-spin 
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Table 1. Characteristic features of the UV-visible spectra of wild type and mutant pa-HO 

complexes 

Soret 
Extinction 

Soret Maxima (nm) Visible bands (nm) coefficient 
(mM-1 cm-

1) 

Enzyme Fem Ferr-02 Fell-CO Fern Fell-02 Fell-CO 

Wild type 406 410 421 630 
577/54 

570/540 130 
1 

Asn-19 Lys 407 413 420 630 
577/54 

570/538 127 
1 

Phe-117 Tyr 406 412 420 629 
577/54 

570/537 112 
1 

Asn-19Lys/ 
406 412 420 631 

577/54 
570/539 138 

Phe-117 Tyr 1 
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(5cHS) species (Figure 2). The dissociation of the sixth ligand present in the ferric heme 

upon reduction to the ferrous state further identifies this labile ligand as a water molecule. 

Most importantly, using a 442-nm laser excitation known to favor the resonance 

enhancement of iron-histidine stretching vibration in ferrous HS species, both nm-HO and 

pa-HO complexes show a strong RR band at 222 cm-1 (inset Figure 2). This vibration is 

also observed with similar bandwidth and intensity in the double mutant of pa-HO 

although its frequency is shifted by -2 cm-I to 220 cm-I. The v(Fe-His) mode is 

influenced by the microenvironment of the NiHis and ranges from -200 cm-1 in the 

absence of hydrogen bonding interactions to -250 cm-1 when the imidazole is 

deprotonated [35]. The orientation of the imidazole ring relative to the Fe-N(pyrrole) 

axes is another factor that influences the v(Fe-His) stretch [36-38]. When the histidine 

ring is colinear with an axis along two heme meso carbons the v(Fe-His) is observed -20 

cm-1 lower than when the histidine ring is oriented along a N-Fe-N (pyrrole) axis. Thus, 

the identical v(Fe-His) observed in nm-HO and pa-HO demonstrate that in both proteins 

the heme iron is bound to a proximal histidine with similar electronegativity and 

orientation with respect to the Fe-N(pyrrole) axes. The recent X-ray structure of nm-HO 

showed that, as in H0-1, the proximal histidine is engaged in a hydrogen bonding 

interaction with a carboxylate side chain and that the imidazole ring is oriented along the 

heme P- 6-meso axis [12]. In pa-HO, the proximal histidine is likely to adopt a similar 

orientation and to be hydrogen bonded to Glu-30, in a manner analogous to Glu-29 in h

H0-1. No significant perturbation of these structural parameters appears to take place in 

the Asn-19 Tyr/Phe-117 Tyr double mutant of pa-HO, since the v(Fe-His) is only 2 cm-1 

lower than in the wild type protein. In contrast to the conserved v(Fe-His) observed in all 

three heme protein complexes, significant variations are observed in the 350 to 450 cm-1 
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Figure 1. High-frequency region of the RR spectra of ferric heme - protein complexes 

in wt nm-HO (A), wt pa-HO (B), and Nl9K/Fl 17Y pa-HO (C). 
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Figure 2. High-frequency region of the RR spectra of ferrous heme-protein complexes in 

nm-HO (A), wt pa-HO (B), and Nl9K/Fl l 7Y pa-HO (C). The inset shows the low-

frequency region obtained with 442-nm excitation. 
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region, where bending modes of the peripheral propionate and vinyl groups occur [39]. 

These changes reveal differences in the configurations of the heme peripheral groups that 

are particularly worth pointing out when comparing the wild type and double mutant pa

HO because the Asn-19 Lys/Phe-117 Tyr mutations are aimed at changing the 

interactions experienced by the heme propionate groups. 

c) Catalytic turnover of the paHO mutants. 

As previously reported for the wild type pa-HO the NADPH cytochrome P450 reductase 

catalyzed reaction yields ferric Fem-biliverdin as the product of the reaction (data not 

shown) [8]. Extraction ofbiliverdin from the reaction mixture, followed by esterification 

of the propionate groups and separation of the different isomers by HPLC, indicates the 

formation of o-biliverdin (70 %) and B-biliverdin (30 %) (Table 2). As will be detailed 

below the B-biliverdin isomer is formed from oxidation of the minor (m) heme 

orientational isomer, related to the major isomer (M) by 180° rotation of the heme along 

the a-y meso-axis, which places the B-meso-carbon of m in the site normally occupied by 

the o-meso-carbon ofM. Catalytic turnover of the single mutants Asn-19 to Lys and Phe-

117 to Tyr, in the presence of NADPH cytochrome P450 reductase, shows no change in 

regioselectivity (Table 2). In contrast, analysis of the products obtained from the reaction 

catalyzed by the pa-HO double mutant (Asn-19 Lys/Phe-117 Tyr) indicates a significant 

change in the regioselectivity of the reaction, as is evident from the formation of a

biliverdin (55 %), o-biliverdin (35%) and B-biliverdin (10%). The NMR studies outlined 

below demonstrate that the formation of a-biliverdin is a consequence of a dynamic 

equilibrium of two heme seatings in the double mutant. 
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Table 2. Regioselectivity of heme oxygenation 

Biliverdin isomer ratio(%)* 

pa-HO a y 

WT 0 30 70 0 

Asn-19 Lys 0 30 70 0 

Phe-117 Tyr 0 30 70 0 

Asn-19 Lys/Phe-117 Tyr 55 10 35 0 

*The % of each isomer was obtained by integration of 

the peaks within each chromatogram. The reported values 

are an average obtained from five separate experiments. 

The standard deviation is ±5% 
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d) Resonance assignments for cyanide-inhibited wild type pa-HO and cd-HO 

In addition to the difficulties inherent in obtaining NMR spectra of short-lived, 

paramagnetically affected signals, the assignment of resonances corresponding to the 

heme active site of ferric hemoproteins is typically met with challenges imposed by heme 

isomerism which results in the virtual doubling of resonances originating from the 

macrocycle [40, 41]. Further complication arises from the asymmetric distribution of 

unpaired electron density on the heme macrocycle, which is manifested in large isotropic 

shifts for some nuclei and negligible for others [ 42-44]. To circumvent these problems 

we have devised a biosynthetic method for the isotopic labeling of protoheme IX (heme), 

which can be used to introduce 13C to virtually any position in the macrocycle [24]. The 

availability ofhemoproteins reconstituted with 13C-labeled heme facilitates the resonance 

assignment process, as has been demonstrated by the complete assignment of 1H and 13C 

resonances in both heme orientational isomers of mitochondrial cytochrome b5 [27]. As 

will be shown below, unambiguous 1H and 13C assignments of resonances originating 

from the heme active site of wild type and mutant heme oxygenases have been obtained 

utilizing enzymes reconstituted with 13C-labeled heme. The assignment of heme 

resonances can be largely facilitated by judiciously labeling the heme macrocycle; this 

can be accomplished by carefully positioning the 13C label in the heme precursors 

utilized in the biosynthesis of labeled heme. We used [1,2-13C]-o-aminolevulinic acid 

([l,2-13C]-ALA) as a heme precursor for the preparation of heme labeled at the four 

methyl, two vinyl-P, and carbonyl carbons [24, 27] (Figure 3-A), and [5-13C]-ALA was 

used to prepare heme labeled at the mesa-carbons (Figure 3-B). The low-frequency 

portion of the 1-D 13C NMR spectrum {1H-coupled) obtained from wild type pa-HO 

reconstituted with heme labeled from [1,2-13C]-
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Figure 3. (A) Be labeling pattern obtained when protoporphyrin IX is biosynthesized 

from [1,2-13e]-ALA, (B) Be labeling pattern obtained from [513e]-ALA. (•) Positions 

labeled with Be. For details see references [24,27]. 
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ALA clearly shows that the heme methyl groups (quartets) resonate between-IO and-70 

ppm (Figure 4-A). More than four methyl signals are observed in the spectrum because 

wild type pa-HO exists in solution as a mixture of two heme orientational isomers, 

coexisting in a 70:30 ratio of major to minor isomer, M:m = 70:30. fu fact, the HMQC 

spectrum reveals the presence of 8 heterocorrelations in this region, which permit the 

identification of 1H resonances originating from heme methyl groups in the major and 

minor heme orientational isomers. The assignments described below will only be 

concerned with resonances originating from the major isomer. The high-frequency 

portion of the 13C-spectrum in Figure 4-B shows that the vinyl-P carbons (triplets) and 

carbonyl carbons (doublets) resonate between 190 and 140 ppm, and the 

heterocorrelations seen in the HMQC spectrum identify the corresponding vinyl-P 

protons. The doublets (1 Jee - 55 Hz) originating from each of the propionate carbonyl 

carbons are a consequence of the fact that the 13C-labeled carbonyl carbons are attached 

to a 13C-labeled P- propionate (see Figure 3-A). fu fact, this feature of the labeling pattern 

also permits the unambiguous identification of the P-propionate carbons because the 

corresponding resonances are triplets (1JeH - 140 Hz) of doublets (1Jee - 55 Hz) (data not 

shown); the corresponding P- propionate proton resonances are thus readily identified via 

heteronuclear HMQC correlations. It is therefore evident that the use of pa-HO 

reconstituted with heme labeled as shown in Figure 3-A permits the relatively 

straightforward identification of 1H and 13C resonances originating from all heme methyl, 

vinyl-P, and propionate-P groups. It is also readily apparent that the utilization of 13C

labeled heme is especially useful in the unambiguous identification of 1 H resonances that 

are buried under the intense envelope of diamagnetic resonances. The next step in the 

assignment strategy entails correlating these resonances with the aid of a WEFT-NOESY 
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type pa-HO-CN reconstituted with heme derived from [l,2-13C]-ALA (see Figure 3-A) 
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spectrum after a suitable entry point has been identified. fu this context, the labeling 

pattern of Figure 3-B is not only useful to identify the 1H and 13C resonances 

corresponding to the heme mesa positions, but it also provides a suitable entry point for 

the interpretation of NOESY cross correlations. Figure 5 depicts the 1-D 13C NMR 

spectrum obtained from pa-HO reconstituted with heme labeled as in Figure 3-B. This 

spectrum exhibits intense resonances at 84.8, 74.5 and -15.2 ppm devoid of HMQC 

correlations, which clearly indicates that these resonances must originate from the 

quaternary pyrrole-a carbons in the major isomer. In addition, the HMQC spectrum of 

Figure 5 reveals that four intense 13C resonances (42.46, 28.24, 6.47, -0.92 ppm) exhibit 

heterocorrelations; these resonances must therefore originate from mesa-carbons in the 

major isomer. Close inspection of the 1-D 13C-NMR spectrum of Figure 5 reveals that 

three of the mesa-carbon resonances (28.24, 6.47 and -0.92 ppm) are affected by 1Jcc 

coupling, whereas the fourth (42.46 ppm) is not. This observation indicates that the 

resonance at 42.46 ppm arises from mesa-carbon o because this is the only mesa-carbon 

that is not attached to a labeled pyrrole-a carbon (see Figure 3-B). The uniqueness of 

mesa-carbon o, which is conferred by the labeling pattern, makes this position an ideal 

entry point to interpret the NOESY cross correlations. Furthermore, NOESY cross 

correlations identifying heme resonances buried under the large envelope of diamagnetic 

resonances can be readily validated if they match the 1 H chemical shifts obtained from 

HMQCdata. 

As indicated above, the carbon resonance corresponding to mesa-Cr, facilitates the 

identification of mesa-Hr,, and provides a unique entry point for the interpretation of 

NOESY spectra. Thus, a WEFT-NOESY spectrum (Figure 6) reveals a correlation 
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between mesa-H0 (-2.51 ppm) and heme methyl 1 (lMe) at 22.69 ppm, which in tum is 

correlated to vinyl-~ proton 2 (2V13) at -0.80 ppm. Both 2V13 protons (-0.80 and -1.35 

ppm) are correlated to the 2Va proton at 10.74 ppm; the latter is correlated to the meso

Ha proton at 8.63 ppm and this mesa-hydrogen is correlated to the 3Me proton at 4.41 

ppm, which in tum, is correlated to 4V13 protons at-7.02 and- 7.97 ppm. One of the 4V13 

protons (-7.97 ppm) is correlated to the 4V u proton (12.06 ppm) and this is correlated to 

the mesa-H13 proton (-2.20 ppm), which can be correlated to the 5Me protons at 27.71 

ppm. The assignments obtained for pa-HO are summarized in Table 3. The assignments 

for cd-HO (Table 3), were carried out in a similar manner to that described above for pa

HO. In brief, a 1-D proton coupled 13C NMR spectrum obtained with cd-HO 

reconstituted with heme labeled as in Figure 3-A allowed us to identify the 13C resonance 

:frequencies corresponding to heme methyl, ~-propionates and ~-vinyl groups; the 

corresponding 1H resonances were obtained from the HMQC spectrum in Figure 7. 

Enzyme reconstituted with heme labeled as in Figure 3-B was used to identify the 

resonances arising from mesa-carbons and mesa-hydrogens with the aid of the HMQC 

map of Figure 8, and the WEFT-NOESY map of Figure 9 permitted the assignment of 

these resonances to the corresponding heme groups, as described above for pa-HO. 

e) Interpretive model for the NMR spectroscopic studies. 

The influence of the geometry and nature of axial ligands on the properties of low-spin 

ferric porphyrins and hemoproteins is well known. For instance, it has been known for 

quite some time that the orientation of planar axial ligands exerts a large influence on the 

spread of the methyl resonances originating from low-spin ferric heme in hemoproteins, 
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Table 3. 1H and 13C NMR chemical shifts for the cyanide complexes of pa-HO and cd-
HO 

pa-HO (10 °C) cd-HO (35 °C) 

Position IH (ppm) I~C (ppm) IH (ppm) gc (ppm) 

1 Me 22.69 -55.32 5.44 -13.14 

3Me 4.41 -11.10 19.18 -42.52 

5Me 27.71 -64.44 8.52 -20.06 

8Me 19.01 -51.45 10.59 -22.88 

2Va 10.74 76.23 15.73 

2V~ -0.80, -1.35 152.38 -3.69, -4.09 182.67 

4Va 12.06 31.11 10.10 

4V~ -7.02, -7.97 193.59 1.70, 1.28 147.08 

meso-a 8.63 6.47 -2.58 58.58 

meso-~ -2.20 28.24 8.19 18.75 

meso-y 8.95 -0.92 2.42 33.27 

meso-o -2.51 42.46 7.78 21.73 

6P-a 6.33 -14.5 

6P-~ 0.91, -0.15 130.42 

7P-a -1.20 -1.64 

7P-~ -0.28, -0.58 113.93 
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as well as in low-spin Fem porphyrinates [45-47]. The fundamental property that allows 

this mechanism to operate is the interaction of the proximal histidine with the iron

centered e-symmetry d orbitals, which in tum individually interact with porphyrin 3e(n) 

orbitals to reduce their degeneracy. The end result is the destabilization of one member 

of the porphyrin 3e(n) orbitals and the stabilization of another, hence leading to an 

uneven distribution of electron spin density among the four pyrrole rings in the porphyrin 

[ 45, 48]. More recently, the concept of counter-rotation of the g or 'X tensor with rotation 

of axial ligand planes away from one of the N-Fe-N axes in the heme has been used to 

predict the orientation of the in-plane magnetic axis utilizing 13C-NMR [ 49-53] and 1H 

NMR [54, 55] spectroscopic data. Shokhirev and Walker carried out Hiickel calculations 

of the effect of axial ligand nodal plane orientation, assuming counter-rotation of the g

tensor, to produce heme methyl shifts that provide consistent predictions of the order and 

magnitude of observed methyl shifts for a large number ofhemoproteins [55]. 

Figure 10 depicts schematically the orientation of the proximal histidine

imidazole plane projected onto the heme ring, where the imidazole plane forms an angle~ 

of 135° with the molecular x-axis, which is aligned along the nitrogen atoms of heme 

pyrrole rings II and IV [55]. Consequently, the molecular z-axis is aligned along the 

heme normal, and the molecular y-axis is aligned along the nitrogen atoms of pyrrole 

rings I and III. The plot shown in Figure 10, which is adapted from a plot summarizing 

the Ruckel calculations performed by Shokhirev and Walker [55], shows the isotropic 

shift patterns predicted for heme methyl groups 1,3,5, and 8 as a funcion of the angle~ 

formed between the axial ligand plane and the molecular x axis. From the plot in Figure 

10 it is possible to predict that for a histidine-imidazole plane angle of 178°, which 
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corresponds to the orientation of the proximal histidine-imidazole plane in the X-ray 

crystal structure of sperm-whale myoglobin [56], the heme-methyl isotropic shifts 

obtained experimentally for the cyano complex of sperm whale myoglobin [57] are: 5Me 

> lMe > 8Me > 3Me (27.0, 18.6, 12.9, 4.8 ppm). It is evident that the order of methyl 

resonances is correctly predicted and that the predicted shifts are acceptable. In a similar 

manner, Shokhirev and Walker utilized the predictive power of the plot in Figure 10 to 

correctly suggest an angle~ of 125° for the proximal imidazole plane of h-H0-1, on the 

basis of NMR assignments reported by La Mar and coworkers [58, 59]. These 

assignments demonstrated that the order of chemical shifts in cyanide-inhibited h-H0-1 is 

3Me > 8Me > 5Me > lMe (19.6, 10.5, 9.0, 4.9), which in the context of the plot shown in 

Figure 10, suggest an angle~ of 130°, a value that was corroborated by the X-ray crystal 

structure ofh-H0-1 [13] and r-H0-1 [15]. Similar types of comparisons carried out with 

many heme containing proteins clearly demonstrated the importance of axial ligand plane 

orientation on the observed proton shifts [55]. Consequently, the calculations of 

Shokhirev and Walker provide a predictive framework to study hemoproteins for which a 

structure has not yet been obtained. In this work we have made use of the predictive 

power of these calculations to estimate the angle of the histidine-imidazole plane in cd

HO,pa-HO and site directed mutants of pa-HO . 

.I) The orientation of the histidine plane in pa-HO is different from that of other known 

mammalian and bacterial heme oxygenases. 

The high frequency portion of the 1H NMR spectrum of cd-HO (Figure 11-a) is 

almost identical to that reported for r-H0-1 [58] and h-H0-1 [59], in that there is only 

one methyl resonance resolved from the diamagnetic envelope. The 1 H resonance 
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Figure 10. Right: Right-handed coordinate system and nomenclature used for describing 

the projection of the His-imidazole plane onto the porphyrin ring. The x axis is aligned 

along the nitrogen atoms of pyrrole rings II and IV of the heme, the y axis is along the 

nitrogen atoms of pyrrole rings I and III, and the z axis is normal to the heme. Left: 
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assignments summarized in Table 3 indicate that the order of heme methyl resonances is 

3Me > 8Me > 5 Me> lMe (19.05, 10.45, 8.39, 5.30 ppm), which in the context of the 

calculations summarized in Figure 10 strongly suggests that the proximal histidine

imidazole plane in cd-HO forms an angle of approximately 130° with the molecular x axis 

and is nearly parallel to the heme P-3-meso-axis. In comparison, the resolved portion of 

the 1 H NMR spectrum of pa-HO (Figure 11-b ), displays three resolved methyl resonances 

originating from the major isomer, and is clearly distinct from those corresponding to cd

HO, r-H0-1 and h-H0-1. This feature of the 1H spectrum strongly suggests that the 

histidine-imidazole plane in pa-HO is oriented at an angle ~ that is different from the 130° 

typically observed in all other heme oxygenases for which this information is available. 

In fact, the 1H resonance assignments of Table 3 indicate that the order of heme methyl 

resonances obtained from pa-HO is 5Me > lMe > 8Me> 3Me (27.71, 22.69, 19.01, 4.41 

ppm), consequently, the plot of Figure 10 predicts that the proximal histidine- imidazole 

plane forms an angle~ of-35° with the molecular x axis and is aligned almost parallel to 

the heme a-y-meso axis. It is interesting to note that in pa-HO, which forms P- and 3-

biliverdin, the histidine-imidazole plane is oriented along the a-y-meso axis, whereas in r

H0-1, h-H0-1 and cd-HO, which form a-biliverdin, the histidine-imidazole plane is 

oriented along the P-3-meso axis. The orientations of the heme imidazole planes in wild 

type pa-HO and cd-HO are consistent with the fact that both proteins display identical 

v(Fe-His) at 222 cm-1 since this stretching vibration is insensitive to the meso axis (a-y or 

P-3) that is collinear with the imidazole plane. 
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Figure 11. High frequency portion of the 1H NMR spectra of (a) cd-HO-CN and (b)pa

HO-CN reconstituted with heme derived from [l,2-13C]-ALA. The 1JcH doublets 

originate from methyl groups in the major (M) and minor (m) heme orientational isomers. 
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g) A dynamic exchange between two heme seatings in Asn-19 Lys/Phe-117 Tyr pa-HO 

is responsible for the altered regioselectivity of the double mutant. 

The crystal structures of N meningitidis heme oxygenase (nm-HO) [12] and h

H0-1 [13] revealed that conserved residues Lys-16 and Tyr-112 in nm-HO interact with 

the heme propionates. By comparison, the amino acid sequence of pa-HO, in the context 

of the three-dimensional structure of nm-HO, indicates that these residues in pa-HO are 

Asn-19 and Phe-117, respectively. This observation suggested to us that the unique value 

of the angle ~ formed between the histidine-imidazole plane and the molecular x axis, as 

well as the unique regioselectivity exhibited by pa-HO (P- and o-biliverdin), might be 

related to different interactions between the heme propionates and the polypeptide, which 

presumably promote an alternative heme seating that is conducive to P- and o-meso 

hydroxylation. This hypothesis was tested with the Asn-19 Lys/Phe-117 Tyr mutant, 

which was constructed with the aim of restoring the hydrogen bonding and ionic 

interactions observed between the heme propionates and these residues in h-H0-1, r-H0-

1 and nm-HO. The double mutant was found to hydroxylate the heme at the o- (35%), P

(10%), and u- (55%) meso positions. It will be shown below that this unusual pattern of 

regioselectivity is indeed a consequence of perturbing the microenvironment of the heme 

propionates, which results in the stabilization of two heme seatings related to one another 

by a 110° in-plane rotation of the heme. 

The resolved portion of the 1H NMR spectrum of Asn-19 Lys/Phe-117 Tyr 

pa-HO at 35 °C (Figure 12-a) displays broad and almost featureless peaks, however, as 

the temperature is lowered the peaks become gradually sharper and new peaks emerge. 

Below 15 °C the shapes of the spectra no longer change, except for the expected 

temperature-dependent shifts that are typical of paramagnetically affected 
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Figure 12. Variable temperature 1H NMR spectra of the Asn-19 Lys/Phe-117 Tyr double 

mutant of pa-HO-CN. Spectra were acquired at (a) 35, (b) 30, (c) 20, (d) 15 and (e) 10 

~C. The solid arrows in plot ( e) correspond to methyl resonances originating from the 

major orientational isomer exhibiting the wild type seating, while dashed arrows highlight 

the corresponding minor isomer. Asterisks highlight two methyl resonances originating 

from the major orientational isomer displaying the alternative heme seating. 
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resonances [47]. A striking characteristic of the 1H NMR spectrum of the double mutant 

at 10 °C (Figure 12-e) is the large number of resonances resolved from the diamagnetic 

envelope. The relative intensity of these resonances suggests that at least 5 of them are 

likely to originate from heme methyl groups. The large number of resonances originating 

from heme methyl groups suggests two possibilities: (a) the presence of two heme 

orientational isomers coexisting with almost identical concentrations or (b) two heme 

seatings exchanging with one another at a frequency which at 10 °C is slow relative to the 

NMR time scale but similar to it at 35 °C. Close inspection of the 1H NMR spectrum of 

the Asn-19 Lys/Phe-117 Tyr double mutant at 10 °C (Figure 12-e) allowed us to rule out 

the first possibility. In this spectrum black arrows highlight those methyl resonances that 

are also observed in the 1H NMR spectrum corresponding to the major isomer of WT pa

HO, and dashed arrows highlight the methyl resonances of the corresponding minor 

isomer. These observations, together with the temperature-induced changes in the NMR 

spectra, strongly suggest that the Asn-19 Lys/Phe-117 Tyr double mutant exists as a 

mixture of molecules harboring the heme in two distinct seatings. The two seatings, one 

of which is identical to the seating of the wild type enzyme, are related to one another by 

chemical exchange. Furthermore, the spectrum obtained at 10 °C also demonstrates that 

each of the heme seatings exists as a mixture of two heme orientational isomers. 

In order to probe the hypothesis suggesting that the resonances highlighted by 

arrows and asterisks in Figure 12-e originate from heme methyl groups in two distinct 

heme seatings, the Asn-19 Lys/Phe-117 Tyr double mutant of pa-HO was reconstituted 

with heme labeled as in Figure 3-A. The resolved portion of the 1H NMR spectrum of the 

double mutant reconstituted with labeled heme (Figure 13) demonstrates that, as 
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expected, those resonances with chemical shifts identical to the peaks originating from 

heme methyl groups in the major (solid arrows) and minor (dashed arrows) isomer of 

wild type pa-HO, exhibit - 140 Hz 1JcH splitting. It is also apparent that the peaks 

labeled with an asterisk in Figure 12-e and 13 are also split by - 140 Hz coupling 

constant, thus demonstrating that these peaks originate from heme methyl groups in the 

alternative heme seating. Furthermore, the 1 H NMR spectrum of Figure 13 also 

facilitates the identification of two heme resonances that originate from the minor heme 

orientational isomer in the alternative heme seating, as is evident from the 1JcH - 140 Hz 

doublets highlighted by an open circle. Additional evidence in support of the hypothesis 

that the resonances highlighted with arrows and asterisks in Figure 12-e correspond to 

heme methyl groups was obtained from 1-D 13C (1H-coupled) and HMQC spectra, 

because the 13C NMR spectrum (Figure 13) permits the identification of 1JcH - 140 Hz 

quartets, which can be correlated to the corresponding heme-methyl 1H resonances by 

HMQC. In fact, the latter spectrum displays at least 15 resolved resonances originating 

from heme methyl groups, thus providing ample confirmatory evidence that the Asn-19 

Lys/Phe-117 Tyr double mutant of pa-HO exists as a mixture of four different molecules; 

two different heme seatings create a set of two and heme isomerism creates a subset of 

two from each heme seating isoform. 

The nature of the several isoforms of Asn-19 Lys/Phe-117 Tyr coexisting in 

solution having been established, we turned our attention to assign the heme methyl 

resonances originating from the heme in the alternative heme seating (major isomer). 

Since the two heme seatings are in slow exchange at 10 °C we used Exchange 

Spectroscopy (EXSY) [31] to map out those resonances that are correlated by exchange; 
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Figure 13. HMQC spectrum of the cyanide inhibited Asn-19 Lys/Phe-117 Tyr pa-HO 

reconstituted with heme derived from [1,2-13C]-ALA. Only the low frequency (13C) 

region of the spectrum, which displays the heme methyl resonances, is shown. The 1-D 

1H and non-decoupled 13C spectra are shown to illustrate the JcH splitting. Arrows and 

dashed arrows, respectively, represent the major and minor orientational isomers 

exhibiting the wild type heme seating. Asterisks and open circles, respectively, represent 

the major and minor isomers exhibiting the alternative heme seating. 
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the data is summarized by the EXSY spectrum of Figure 14. fu this spectrum the 

exchange cross peaks can be identified readily because they are significantly more intense 

than the NOE cross peaks. Thus, the exchange correlations of Figure 14 (summarized 

below) allowed us to assign the resonances originating from methyl groups in the 

alternative heme seating. 

Wild Type seating Alternative Seating 

5 Me (27.71 ppm) !:; 5' Me (5.38 ppm) 

1 Me (22.69 ppm) !:; 1' Me (1.74 ppm) 

8 Me (19.01 ppm) !:; 8' Me (16.33 ppm) 

3 Me (4.41 ppm) !:; 3' Me (24.55 ppm) 

The assignments corresponding to heme methyl groups in the alternative heme 

seating reveal that the order of methyl shifts is 3'Me > 8'Me > 5'Me > I 'Me, therefore 

indicating that the proximal-histidine imidazole plane in the alternative heme seating of 

the Asn-19 Lys/Phe-117 Tyr mutant forms an angle ~ of approximately 100° with the 

molecular x-axis (See Figure 10). 

The orientation of the proximal histidine plane in the alternative heme seating, 

which is aligned along the nitrogen atoms of heme pyrrole rings II and N, should result 

in a different v(Fe-His) in the double mutant, relative to the wild type protein. fu the 
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absence of other determinant factors, the alternative seating is expected to display a v(Fe

His) above 222 cm-1, possibly as high as 230 cm-1 [36, 37]. However, the v(Fe-His) 

observed in the double mutant protein is practically unchanged, at 220 cm-1• Moreover, 

the relative intensity and bandwidth of the v(Fe-His) are unaffected, thus giving no 

indication of multiple heme seatings within the substrate pocket of the double mutant. 

Good agreement between NMR and RR spectroscopic studies of this kind has been 

observed with globins and peroxidases, despite the fact that one technique (NMR) 

characterizes the 6cLS ferric cyano complex and the other the ScHS ferrous heme. 

However, these systems were not in equilibrium between two seatings, as is the case of 

the pa-HO double mutant. It is therefore tempting to speculate that while the ferrous state 

favors a single heme seating, the ferric hydroperoxide (Fe111-00H) intermediate, which 

defines the regioselectivity, adopts both heme seatings observed by NMR spectroscopy. 

In what follows, the dynamic equilibrium between the two heme seatings in the mutant 

enzyme will be analyzed in the context of the fold of nm-HO, which is typical of the fold 

exhibited by heme oxygenases, and in the context of Scheme I, assuming that the heme 

rotates in-plane, while the proximal histidine-imidazole plane remains in place. It is felt 

that an in-plane rotation of the heme is more likely than a rotation of the proximal 

histidine-imidazole plane because the mutations that trigger the dynamic equilibrium 

described above are aimed at introducing hydrogen bonding and ionic interactions with 

the heme propionates, thus it is likely that the in-plane heme rotation is a result of the 

heme propionates sampling two environments that stabilize these groups to 

approximately the same extent. 
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Figure 14. EXSY spectrum of the double mutant of pa-HO-CN. The heme methyl 

resonances arising from the wild type and alternative heme seatings are labeled as 1, 3, 5, 

8 and 1 ', 3', 5', 8', respectively. 
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Until the recent discovery of pa-HO [8], a trademark of heme oxygenases from a 

variety of different sources (h-H0-1, r-H0-1, cd-HO, and nm-HO) has been their ability 

to degrade heme with exquisite a-regioselectivity. Consequently, pa-HO is unusual 

among heme oxygenases in that it is the only known heme oxygenase that degrades heme 

to o-biliverdin. The structures of h-H0-1 [13] and r-H0-1 [15] share a homologous, 

largely a-helical fold with the structure of the bacterial heme oxygenases (nm-HO [12] 

and cd-HO), despite the low sequence identity [12]. It is therefore not unreasonable to 

expect that the overall fold of pa-HO is likely to be similar to that of the heme 

oxygenases for which a structure is known, given the relatively high degree of sequence 

identity (37%) between nm-HO and pa-HO. In fact, assuming that the fold of pa-HO is 

typical of other heme oxygenases allowed us to conclude that Lys-16 and Tyr-112 in nm

HO (Lys-16 and Tyr-134 in h-H0-1), which form important hydrogen bonding and 

electrostatic interactions with the heme propionates, are replaced by Asn-19 and Phe-117 

in pa-HO. Also, by assuming that the overall fold of pa-HO is typical of other heme 

oxygenases, the amino acid alignments allowed us to hypothesize that in the absence of 

nearby residues capable of compensating for the lack of interactions between the heme 

propionates and Asn-19 and Phe-117 in pa-HO, replacing these residues for Lys and Tyr, 

respectively, would likely introduce the ionic and hydrogen bonding interactions typically 

experienced by the heme propionates of other heme oxygenases. Consistent with this 

hypothesis, the heme in the pa-HO double mutant experiences a dynamic equilibrium 

between two heme seatings, which at 10 °C coexist with approximately equimolar 

concentrations. The fold of nm-HO (Figure 15) makes it evident that the heme seating of 

the enzyme orients the heme propionates such that they can interact with Lys-16 and Tyr-

112; moreover, the heme seating results in the placement of the a-mesa carbon at the 
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bottom of the heme pocket, where it is susceptible to hydroxylation and the placement of 

the ()-meso carbon at the exposed heme edge. It is also noteworthy, that the 1.5 A

resolution structure of nm-HO indicates that the predominant heme orientational isomer 

places pyrrole ring II and the ~-meso carbon at the deep end of the heme pocket [12], an 

observation that is in agreement with our preliminary NMR spectroscopic investigations 

of nm-HO, which also indicate that one of the heme orientational isomers in this enzyme 

is largely predominant, M:m = 95:5 (data not shown). 

The phenomenon in which two heme seatings are related to one another by an in

plane rotation of the heme in the Asn-19 Lys/Phe-117 Tyr pa-HO can be summarized by 

the equilibria in Scheme 1. The scheme was constructed by placing the site of attack as is 

seen in the fold of nm-HO (see Figure 15) and by assuming that the major orientational 

isomer is the same as that favored by nm-HO. Results obtained from the NMR 

spectroscopic studies conducted with the Asn-19 Lys/Phe-117 Tyr pa-HO indicate that in 

the major heme orientational isomer exhibiting the wild type heme seating the molecular 

x axis forms an angle ~ of 35° with the imidazole-plane. This is illustrated by 1 in 

scheme I; consequently, the minor isomer exhibiting the wild type seating 2 is obtained 

by rotating 1 180° about the a-y-meso axis. Note that rotation of the heme about the a-y

meso axis only affects the macrocyle, leaving the axial ligand unperturbed so that in the 

minor isomer exhibiting the wild type seating 2 the molecular x axis makes an angle ~ of 

55° with the histidine-imidazole plane. The different value of~ in the major and minor 

isomers is consistent with the different patterns of resolved methyl resonances observed 

for the heme orientational isomers. The alternative heme seating corresponding to the 

major isomer can be obtained by considering that the NMR spectroscopic studies led us 
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Figure15. Stereoview of the heme binding environment in nm-HO. The heme is red, the 

proximal His-23 is yellow, Tyr-112 is green, Lys-16 is blue and Val 30 is orange. The a

meso carbon, which is susceptible to attack in all a.-hydroxylating heme oxygenases of 

known structure, is highlighted. PDB access code 1177. 
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to conclude that the angle~ in the alternative heme seating is 100°. Thus, starting from 

the major isomer exhibiting the wild type heme seating 1, it is possible to rotate the heme 

(hence, the x-y plane) 115° clockwise or 65° counterclockwise, in order to obtain 3 and 4, 

respectively. The heme seating represented by 3 places the a-meso carbon where it can 

be hydroxylated by the enzyme, hence it is consistent with the regioselectivity of heme 

oxygenation exhibited by the Asn-19 Lys/Phe-116 Tyr double mutant of pa-HO, which 

we found produces a- (55%), o- (35%), and P-(10%) biliverdin. On the other hand, the 

heme seating represented by 4 places the y-meso carbon where it is susceptible to be 

hydroxylated in order to form y-biliverdin. The fact that the double mutant enzyme does 

not oxidize heme to y-biliverdin clearly indicates that the alternative heme seating 

displayed by the major isomer in the double mutant pa-HO is best represented by 3. A 

similar analysis of the minor isomer is not possible because the relatively low intensity of 

the corresponding resonances precluded their unambiguous assignment. However, if we 

assume that the minor isomer rotates in-plane in a manner that is similar to that described 

for the major isomer, it is possible to estimate the angle ~ by rotating the major isomer 

displaying the alternative heme seating by 180° about the a-y-meso axis. In this manner, 

5 and 6 are obtained by rotating 3 and 4, respectively. It is apparent that 6 can be ruled 

out because it places the y-meso axis where it is susceptible for attack, while on the other 

hand, 5 is conducive to the formation of a-biliverdin. Consequently, it is possible to 

conclude that 1 and 2, respectively, represent the major and minor heme orientational 

isomers in the wild type seating, whereas 3 and 5, respectively, represent the major and 

minor heme orientational isomers in the alternative heme seating. 

Careful integration of 1 H NMR signals attributed to heme methyl groups in the 
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major and minor isomers of molecules displaying the wild type heme seating 1 and 2 

accounts for 45% of the total concentration, whereas the remaining 55% corresponds to 

major and minor isomers in the alternative heme seating 3 and 5. The 1H NMR spectrum 

also reveals that the ratio of heme orientational isomers 1:2 displaying the wild type heme 

seating is 87:13. This implies that 39% of the molecules harbor heme where the angle qi 

is 35° 1, which is conducive to attack at the o-meso carbon, therefore explaining the 

formation of approximately 35% o-biliverdin. 

The 87:13 ratio of major to minor orientational isomers displaying the wild type 

heme seating also implies that approximately 6% of the molecules harbor a macrocycle 

that is rotated 180° about the a-y-meso axis 2. This rotation places the ~-meso carbon in a 

position that is susceptible for attack, therefore explaining the formation of approximately 

10% ~-biliverdin (Table 2). a-Biliverdin, on the other hand, is derived from the 

alternative heme seating depicted by 3, which places the a-meso carbon in a position 

where it is susceptible for attack. The 1H NMR spectrum of the mutant reveals that the 

alternative heme seating, which accounts for 55% of the total concentration, is also 

heterogeneous in that two heme orientational isomers (3:4 = 80:20) coexist. However, 

since 180° rotation of 3 about the a-y-meso axis results in 5 but does not exchange the 

position of mesa-carbon a, it is apparent that only the a-meso position is susceptible for 

attack, a prediction that is consistent with the experimental observations. 

If 1 is incorporated into the fold of nm-HO, where Lys-16 and Tyr-112 have been 

replaced for Asn and Phe, respectively, a visual representation of the seating proposed for 

wild type pa-HO is obtained (Figure 16-A). This heme seating places the o-meso carbon 

in a position where it can be hydroxylated by the enzyme, and rotation of the heme about 
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the a-y-meso axis places the P-meso carbon where it is susceptible to hydroxylation, thus 

the proposed heme seating for wild type pa-HO is consistent with the characteristic o

(70%) and P- (30%) regioselectivity displayed by the wild type enzyme. Note that in the 

model displayed in Figure 16-A the imidazole plane is aligned nearly parallel with the a

y-meso axis and forms an angle <I> of 35° with the molecular x-axis; the latter is aligned 

along the nitrogen atoms ofpyrrole rings II (harboring 3Me) and N (harboring 8Me). 

The heme propionates point in the direction of the exposed heme edge, hence 

steric encumbrances between the relatively large (and charged) heme propionates and 

polypeptide residues is not anticipated. In a similar manner, a visualrepresentation of the 

alternative heme seating in the Asn-19 Lys/Phe-117 Tyr double mutant of pa-HO can be 

modeled by inserting 3 into the fold of nm-HO (Figure 16-B). It can be seen that the 

heme propionates interact with Lys-16 (Lys-19 in the double mutant) and Tyr 112 (Tyr-

117 in the double mutant), and that the a-mesa carbon is placed at the bottom of the heme 

pocket, where it is observed in the structure of nm-HO. Also note that the imidazole 

plane is aligned nearly collinear with the N-Fe-N axis of pyrroles I and ill and forms an 

angle <I> of 110° with the molecular x axis, which lies along the nitrogens of pyrrole ring II 

(harboring 3'Me) and N (harboring 8'Me). As discussed above, the NMR spectroscopic 

studies carrieo out with the double mutant led us to suggest that in the double mutant the 

heme seatings of Figure 16-A and Bare related by a dynamic 110° in-plane rotation of the 

heme. In fact, a NOESY spectrum of the Asn-19 Lys/Phe-117 Tyr double mutant reveals 

an NOE between a signal at -0.75 ppm and the resonances corresponding to lMe in the 

wild type seating (Figure 13-A) and 3'Me in the alternative seating (Figure 16-B). The 

signal at -0.75 ppm is tentatively attributed to one of they-methyl groups in Val-33 (Val 
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Figure 16. Stereoview of the predicted wild type (A) and alternative (B) heme seatings 

in mutant pa-HO-CN, modeled into the fold of nm-HO, where the heme is shown in red, 

Lys-16 and Tyr-112 in nm-HO have been replaced by Asn-19 (blue) and Phe-117 (green). 

Val 30 in nm-HO (orange) is Val-33 in pa-HO. The wild type seating of pa-HO (A) 

places the 6-meso carbon where it is susceptible to hydroxylation, whereas 110° in-plane 

rotation of the heme results in the alternative seating (B), thus positioning the a-meso 

carbon where it can be hydroxylated. 
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30 in nm-HO), hence the NOE between this side chain resonance and the lMe and 3'Me 

groups is consistent with the presence of two heme seatings, related by a 110° in-plane 

rotation of the heme. 

Relevance to the Mechanism of Action of HO and Concluding Remarks. 

The discussion above suggests a strong contribution from steric interactions in the 

distal helix in dictating the regioselectivity of oxidative degradation, however, it is 

important to point out that electronic contributions are probably equally important, but 

cannot be discerned from the data at hand. In this context, it is interesting to consider the 

results obtained from the oxidation of meso-methyl hemes [16] and meso-formyl hemes 

[17] by heme oxygenase. The y-meso-methylheme was oxidized exclusively at the y

meso position, 8-meso-methylheme was oxidized at the 8- and a-meso positions, and the 

~-derivative was found to be a poor substrate [16]. On the other hand, all four isomers of 

meso-formylheme are never oxidized at the meso carbon bearing the electron 

withdrawing formyl group [17]. These observations, which are not compatible with a 

simple steric steering of the iron bound peroxide, suggest that the regioselectivity of heme 

oxygenation is also affected by the electronic structure of heme in heme oxygenase. 

Moreover, recent experiments carried out with heme models of the ferric hydroperoxide 

(Fem-OOH) complex of HO [18] suggest that the electronic structure of this key 

intermediate is crucial to the meso-hydroxylation of the heme in HO. These studies 

suggested that at ambient temperatures the electronic structure of this important ferric 

hydroperoxide intermediate is low-spin with the unpaired electron residing in a dxy 

orbital. Work carried out with low-spin (dxy)1 complexes has clearly demonstrated that in 

order to delocalize spin density from the dxy orbital into the porphyrin n system, the 
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macrocycle has to ruffle significantly, so that the nodal planes of the Pz orbitals of the 

macrocycle are no longer in the .xy plane and the components (projections) of these Pz 

orbitals in the .xy plane have the proper symmetry to interact with the dxy orbital [60]. The 

porphyrin orbital with the right symmetry to interact with the ruffled macrocycle 3a2u(n) 

possesses large electron density at the mesa-carbons,[18, 61, 62]; therefore, it has been 

proposed that the large spin density at the mesa-carbons directs the attack of the Fem

OOH intermediate on a heme mesa-carbon [18]. If the porphyrin ring of the Fem-OOH 

intermediate is ruffled by virtue of its (dxy)1 electronic structure, it is expected to place 

pairs of mesa-carbons i.e. aly and W8 approximately 0.6 A above and below the heme 

plane,[60-62] where one will be susceptible to attack by the coordinated peroxide. 

Consequently, exclusive attack of the a-mesa carbon can only be explained if the y-mesa 

carbon is shielded from attack by steric protection, strongly suggesting that the outcome 

of heme oxygenation is governed by an interplay between electronic and steric 

contributions. 

Finally, it is also interesting to point out that the plane of the proximal histidine in 

pa-HO, which hydroxylates the ~-mesa carbon, is aligned along the a-y-mesa axis, 

whereas the proximal histidine-imidazole plane in all other heme oxygenases (a-mesa 

hydroxylation) is aligned along the ~-8-mesa axis. The data in Table 3 reveals that the 

mesa protons that lie on an axis that is perpendicular to the axis of the proximal ligand 

plane exhibit large isotropic shifts. For instance, mesa-H~ and mesa-H1> in pa-HO exhibit 

chemical shifts of -2.2 and -2.5 ppm, whereas mesa-Ha and mesa-H1 in cd-HO, r-H0-1 

[59] and h-H0-1 [58] exhibit similar shifts. Thus, a relatively large amount of unpaired 

electron density appears to reside at the mesa-hydrogens located along an axis that is 

perpendicular to that of the proximal ligand plane and might suggest a potential link 
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between the regioselectivity of oxidative cleavage and the orientation of the proximal 

histidine-imidazole plane. This potential correlation between regioselectivity and 

orientation of the proximal ligand, however, is not observed in the Asn-19 Lys/Phe-117 

Tyr mutant of pa-HO-CN, where the alternative heme seating, which leads to the 

formation of 55% a.-biliverdin, is likely to display a proximal histidine-imidazole plane 

that is oriented nearly parallel to the axis along the nitrogen atoms of pyrrole rings I and 

III (Figure 16-B). It is also important to point out that the cyanide complex of HO may 

not be the best system to study the effects of electronic structure on the reactivity and 

regioselectivity of the heme oxygenation reaction because the cyanide complexes of HO 

exhibit a ( dXJi)2( dxz,dy2 ) 3 electronic configuration, with the unpaired electron residing in 

one of the d1t obitals, dxz or dyz· Iron(III) porphyrinates exhibiting an unpaired electron in 

one of the <lit orbitals have been shown to possess small to negligible unpaired electron 

density at the mesa-carbons [61, 62]. On the other hand, magnetic resonance studies 

conducted with models of the Fem-OOH complex of HO, which is believed to be the 

oxidizing species that attacks a mesa carbon in the heme, have suggested that this 

intermediate possesses a (dxz,dy2)4(dxy)1 electronic structure [18]. As has been pointed out 

above, Fern porphyrinates exhibiting an unpaired electron in the dxy orbital place large 

unpaired electron density at the mesa positions [60-62]. Since this property of Fern 

porphyrinates helps to explain the attack on by the porphyrin mesa-carbons by the 

coordinated peroxide in the Fem-OOH complex of HO, it is important that future efforts 

aimed at explaining the regioselectivity of the reaction also address the nature of the 

electronic structure of the highly reactive Fem -OOH intermediate. 
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