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CHAPTER
THE RESEARCH PROBLEM
Introduction

Many interesting and important optimization applications arise in the study of
networks. Networks have been used to model science, engineering, and business
applications of transportation, communication, mechanical, hydraulic, electrical and |
economic systems. Additionally, networks have been used to model systems based on
logical connections and states of a discrete system [15].

In modeling systems as networks, solutions may be found for many problems
associated with that system. Optimization techniques are used to find solutions for
matching problems, assignment problems, analysis of flows, feasibility problems, routing
optimization problems, critical path problems, and mininﬁum/shortest path problems.

Traditional nefwork applications are based on constant-valued arc costs. However,
this assumption is often unrealistic and netwo_rk optimization has been criticized
extensively for the use of assumptions like this. A solution with a minimum number of
assumptions is highly sought after and is extremely useful. Discrete event simulation
may yield results that accurately describe a system without such stringent assumptions.

The simulation clock is the center of a discrete event simulation. As an event is
scheduled to occur, the simulation clock advances to the time of the next event. The next
event in the simulation is determined frorﬁ a selection of different activities of the model.
The information regarding the time between specific activities, e.g. arrivals, are generally

given as a specific probability distribution, e.g. EXPO (5 min). The simulation generates



a random number from the distribution to generate the time of the next event specific to
that activity. The inputs to a discrete event simulation are generally stochastic in nature
and if empirical data is not available, it may be difficult to accurately define the
appropriate probability distributions that describe the stochastic activities [8].

If empirical data is not available, assuming that the arc length is contained in a
specific interval would reduce the number of assumptions and would generally yield a
more beneficial analysis. However, interval-valued arc lengths complicate our ability to
solve the problem. As the size of the problem increases, the time and effort required to
obtain the solution increases exponentially [7]. In solving this type of problem, decisions
must be made which depend on the value on the arc. Figure 1 shows an “ENTER-
SERVICE-EXIT” model with interval-valued inputs. Assuming that one entity is already
in the system, the simulation does not know the next event. The next event in the
simulation could either be another entrance into the model, which will occur between 3 to
8 time units from now, or an exit which may occur between 4 to 6 time units from now.
A Qualitative Discrete Event Sim.ulation creates a “thread” for every possible next event,

e.g. ENTER in [3, 4] time units, EXIT in [4, 6] time units, or ENTER in [4, 6] time units

Figure 1:ENTER-SERVICE-EXIT Model



[7]. As the simulation progresses, the number of threads grows exponentially. Numerous
threads must be created to appropriately describe all possible scenarios.

Qualitative Simulation is an ideal technique to analyze this problem with interval
valued arc lengths [5]. Qualitative Simulatiop predicts all possible behaviors of a system.
Qualitative Discrete Event Simulation, (QDES), is an area of study that is
groundbreaking and still in its early stages of development. QDES has been used to
generate threads on the model similar to Figure 1 and in PERT scheduling [7]. Ingalls
has suggested that additional work is needed to appropriately analyze th¢ output of this
simulation techni.que [7].

Finding the shortest path of a network from an originating node to a terminating node
is a well-established problem. However, this problem has not been solved with arc
values that are contained in some known interval. The primary objective of this research
was the development of an algorithm for the interval-valued problem that will ensure that
all possible shortest paths have been generated. However, while the traditional problem
is apt to have a unique shortest path, it is likely that there will be multiple solutions for
the interval-valﬁed problem. Therefore, a second objective of this‘ research was the
development of a methodology that would provide for an intelligent consolidation of the
initial set of solutions. However, since it is unlikely that this reduction in the set of
solutions will result in a unique path, it was useful to compare the resulting solutions in
the consolidated solution set. Additionally, different decision-makers may not agree of
what defines the "best" shortest path solution. Thus, a sub-objective of the second
objective was to develop a methodology that would allow the evaluation of alternative

attributes of the consolidated set of solutions. Each attribute of a shortest path solution



gives the decision-maker information with regard to the quality of each path given a
specific objective. A decision-maker may choose one single attribute or combine the
qualitie's of several attributes to determine the "best” among the consolidated set of
solutions. Based on the decision-maker's own specific definition of "best," he/she will be
able to select the "best" path from among the set of shortest paths.
The objectives of this research effort were:
1) To solve the shortest path problem with interval-valued arc lengths:
a. Formulate a qualitative optimization algorithm using the concepts and
techniques of Qualitative Discrete Event Simulation.
b. Generate the set of all possible shortest paths.
2) To develop a methodology for the analysis of the ohtput of the qualitative
optimization: |
a. Create a combined thread set by reducing the size of the initial thread set.
b. Identify specific attributes of the solution set.
i. Identify non-dominated threads.
- ii. Minimize the maximum regret associated with the selection of a particular
thread.
iii. Rank the combined thread set by each thread’s relative occurrence.

iv. Identify shared sub-paths.
Problem

To appropriately review similar areas of research, some elementary graph theory

notation and definitions are necessary. Definitions below are by R. T. Rockefeller [15].



e NETWORK: Two abstract sets N and A and a function that assigns each je A to a
pair (i, i’) eNxN. The elements of N are called NODES and are represented
pictorially by small circles. The cardinality of the node set N is conventionally given
as n. The elements of A are ARCS, each arc is denoted by an ordered pair (i, j),
where i, j € N. Arcs are represented pictorially by arrows where the direction of the
arrow shows the orientation of the arc. The cardinality of the arc set A is
conventionally given as m.

e PATH: A path P in a Network G is a finite sequence ig, (ig, i1 ) i15eees ir-1, (ir-15 Ir )sir
where each i;jis a node and (jj, ix) is an arc. The initial node of P is iy and the terminal
node is .

e CIRCUIT: A path in a network with the same initial node and terminal node.

e SIMPLE PATH: A simple (or elementary) path is one that uses no node more than
once.

e POSITIVE PATH: A path. containing only arcs aj; traversed in the directioﬁ from
node i to node j.

e CONNECTED: A network G is connected if for every pair of different nodes s and s’,
there is a path P: s - s’. (P need not be a positive path.)

e ACYCLIC: A network G is acyclic if G possesses no positive circuits.

Consider an acyclic connected network G = (N, A, C) with node set N, arc set A, and

arc performance measure set C. Node set N contains nodes N = {1, 2,..., n}. Arc set A

contains m arcs, a;j from Node i to Node j. Associated with traversing each arc a;; is a

measure of performance cjj, such that ¢;j e[l, u]. 11is the lower bound of the performance

measure associated with traversing arc a;;. u is the upper bound of the performance



measure associated with traversing arc aj. Network N contains one source node, x, and
one sink node, y. P(x, y) is defined as a unique positive, simple path with initial node x
and terminal node y.
1) To solve the shortest path problem with interval-valued arc lengths:
a. Formulate a qualitative optimization algorithm using the concepts and
techniques of Qualitative Discrete Event Simulation.
b. Generate the set of all possible shortest paths, P*(x, y), such that the total

measure of performance of the path which is equal to Y. C;; is minimized.
aij- € P‘

2) To develop a methodology for the analysis of the output of the qualitative
optimization:
a. Create a combined thread set by reducing the size of the initial thread set.
b. Identify specific attributes of the solution set.
i. Identify non-dominated threads.
ii. Minimize the maximum regret associated with the selection of a particular
thread.
iii. Rank the combined thread set by each thread’s relative occurrence.

iv. Identify shared sub-paths.

Research Contributions

Systems have been modeled and optimized using traditional network optimization

techniques. The implementation of interval-valued performance measures for traversing



an arc is necessary to yield robust solutions. Figure 2 shows a graph with nodes A, B, C,
and D. The enumeration of all possible paths from A to D resulits in the following paths:

Path 1 =Node A—NodeB — NodeD =2+ 3 = § units.

Path 2 = Node A —Node D = 7 units.

Path 3 = Node A > Node C—>Node D =3 + 3 = 6 units [1].

Figure 2: Transportation Network I: Nodes A-D

Path 1 is the shortest path with cumulative measure of performance of 5 units.
However, variability exists in almost all realistié models. Assuming that the measures of
performance of traversing arcs were as shown in Figure 3, Path 1 would not be the
shortest path of the network. This trivial example does not fully show the possible
problems with choosing' the “wrong” optimal path. However, even a slight change to the
measure'of performance values along an arc can yield a dramatically different optimal
path. Generally speaking, if the assumptions of the model are invalid, so-called optimal
solutions can be far from optimal.

Other research has attempted to generate solutions to network optimization problems
considering inherit variability innate to real-life applications. Chabini and Lan give a
solution for shortest path problems in dynamic networks, in which travel times are
discrete and time-dependent [3]. Okada and Soper solve the shortest path problem on a

network with fuzzy arc lengths, where fuzzy numbers are a very specific type of



Figure 3: Transportation Network II: Nodes A-D

stochastic numbers [13]. Sudharasan has used fuzzy distances in a routing algorithm
analysis for optimal web path estimation for performance measures like distance, mean
packet delay and network throughput [18]. Yaman, Karasan, and Pinar analyze the
robust spanning tree problem with interval data [20]. Chen and Lin use interval arc
values in determining the optimum location of the 1-median of a tree [4].

Work in the area of optimizing networks that contain minimal assumptions is well-
documented and an important area of research [4, 5, 13, 18, 20]. However, research has
not yet been explored in finding a shortest path with interval arc values. This research
effort will expand the realm of knowledge to include the formulation of an algorithm for
the shortest path of a netwbrk with interval arc values. Additionally, this research effort
will formulate a systematic approach for output analysis of the algorithm, which finds all

shortest paths of such a network.
Research Objectives

Engineering, science and business systems have been modeled extensively as
networks. These network models give the decision maker optimal information with
regard to several types of problems: spanning trees, feasible flows, maximum flows,

minimum path, maximum tension, assignment, matching, and shortest path [15].



Several algorithms have been developed to solve special cases of the aforementioned
types of network optimizations. Networks that satisfy the assumptions of these special
cases contain optimal solutions that are linear. The implementation of these algorithms is
relatively straightforward due to the linear nature of the network [14]. However, these
assumptions are often too restrictive and unrealistic. This research will formulate a

solution to the shortest path of network without the assumption of constant values for the

(8) 4, 6]

[1,2

'Figure 4: Transportation Network III: Nodes A-D
measure of performance for traversing an arc.

The following is a trivial example of a network. Figure 4 shows the network with
nodes A, B, C, and D. The i.nterval-valued measures of performance are shown on the
arcs. The objective is to find the shortest path from the node A to node D

One alternative to find the shortest path from Node A to Node D is to find all paths
from A to D. The enumeration of all possible paths from A to D results in the following
paths:

Path 1 =Node A —>NodeB — NodeD =1, 2] + [4, 6] =[5, 8] units.

Path 2 =Node A - Node D = {10, 12] units.

Path 3 = Node A > Node C—Node D =1, 2] +[1, 2] = [2, 4] units [1].

Therefore, Path 3 results in the unique shortest path from A to D. This is a trivial

example and enumerating all possible paths is performed easily. However, enumerating



all paths of a network is not an efficient technique to find the shortest path(s). This
research effort will develop a algorithm using the techniques of QDES whose output is
the set of all possible shortest paths of a network. Figure 5 shows a network with the
same nodes and arcs as in Figure 4. However, the measures of performance on the arcs
are different. The enumeration of all possible paths from A to D results in the following
paths:

Path 1 = Node A —-NodeB —NodeD =1, 2] + [4, 6] =[5, 8] units

Path 2 = Node A - Node D =[10, 12] units

[,2
[10, 12]

Figure 5: Transportation Network IV: Nodes A-D

Path 3 = Node A —>Node C—Node D =[2, 4] + [2, 4] = [4, 8] units.

There are two possible shortest paths of the network shown in Figure 5: Path 1 or Path 3.
For this network, both Path 1 and Path 3 are shortest paths depending on the exact value
associated with traversing an arc.

Path 1 has a cumulative measure of performance between 5 and 8 units. Path 3 has a
cumulative measure of performance between 4 and 8 units. If conditions exists such that
the measure of performance of Path 3 is between 4 and 5 units then Path 3 is the shortest
path. If conditions exist such that the cumulative measure of performance of Path 3 is
between 5 and 8 units, Path 1 and Path 3 are both members of the set of optimal paths.

Specifically for this network, Path 3 is not dominated by any other path. That is, there is

10



no other shortest path that can possibly yield a shorter path and Path 3 can be considered
the “best” path. Again, the trivial nature of the network in Figure 5 yields a
straightforward solution of an optimal path using non-dominating path analysis.
However, networks that are more complex are likely to contain numerous shortest
paths in which the non-dominating analysis may not clearly select the optimal shortest
path. The non-dominating path analysis is only one of the techniques of the methodology
for the second objective of this research project.
The objectives of this research effort are:
1) To solve the shortest bath problem with interval-valued arc lengths:
a. Formulate a qualitative optimization algorithm using the concepts and
techniques of Qualitative Discrete Event Simulation.
b. Generate the set of all possible shortest paths, P*(x, y), such that the total

measure of performance of the path which is equal to ¢;; is minimized.
aij € P.

2) To develop a methodology for the analysis of the output of the qualitative
optimization:
a. Create a combined thread set by reducing thé size of the initial thread set.
b. Identify specific attributes of the solution set.
i. Identify non-dominated threads.
ii. Minimize the maximum regret associated with the selection of a particular
thread.
iii. Rank the combined thread set by each thread’s relative occurrence.

iv. Identify shared sub-paths.
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CHAPTER 2
LITERATURE REVIEW
Introduction

Applications of the shortest path have been used extensively for transportation
networks, communication networks, mechanical or electrical systems, and many more.
“Shortest path problems arise both as main decision questions and as steps in other
computations” [14, p. 413]. It was this research effort’s primary objective to extend the
applicability of the shortest path by solving the shortest path problem without the
restriction of constant valued arc lengths. Due to the fact that for some applications
“...neither a deterministic approach nor a stochastic approach would be appropriate” [4, p.
94], the problem shall be extended for measure of performance along the arc to be any
value within an interval, i.e. an interval-valued measure of performance.

Analysis hasv been performed by a handful of researchers with regard to networks
with non-constant arc values [4, 5, 13, 18, 20]? Networks with fuzzy arc values have
been analyzed for both the shortest path and minimum spanning tree problems [13, 18].
A graph theoretical approach to the robust spanning tree problem with interval data is
also in it's early stages of research [20].

To fully appreciate the applicability of modeling problems as shortest paths, some
fundamental graph theory concepts are necessary. Several shortest path algorithms are
available for implementation. Even with the “restriction” of constant arc values, these

algorithms are regularly implemented in areas of engineering, science, and business.
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Dijkstra’s algorithm for shortest path is considered one of the best and its intuitive
framework is ideal as a base algorithm in development of this research effort [14].

Traditional optimization techniques have been criticized for their extensive
assumptions. They yield mathematically pure solutions, however the stringent
assumptions of the problem statements ére often unrealistic. Therefore, the solution
exists for a situation that may not exist. Simulation reduces the number of assumptions in
the model and therefore offers the decision-maker more meaningful output. However,
simulation also éontains assumptions regarding input distributions.

Qualitative Discrete Event Simulation, abbreviated as QDES, is leading-edge
research, which is well equipped to simulate models with interval-valued inputs. QDES
combines Discrete Event Simulation, Event Graphs, and Qualitative Simulation.
“Qualitative simulation is guaranteed to predict all real behaviors of systems consistent
with the model” [5, p. 47]. This “quality” of Qualitative Simulation is essential in our
‘model with interval values. The logical operators in interval mathematics, event graphs
and discrete event simulation enable a QDES model to yield a complete output, which
fully describes the model.

Th¢ QDES algorithm enumerates all possible events in the simulation and creates
“threads™ as outputs [7]. These threads represent all possible combinations of events.
The secondary objective of this research is meaningful analysis of the qualitative shortest
path network algorithm output. This reéearch will attempt to consolidate the possibly
large quantity of threads. Several techniques have been used in other areas in recent
literature. This research will explore these techniques and attempt to offer a new

alternative output analysis.
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Networks

To appropriately review similar areas of research, some elementary graph theory

notation and definitions are necessary. Definitions below are by Rockefeller [15].

NETWORK: Two abstract sets N and A and a function that assigns each je A to a
pair (i, i’) e NxN. The elements of N are called NODES and are represented
pictorially by small circles. The cardinality of the node set N is conventionally given
as'n. The elements of A are ARCS, each arc is denoted by an ordered pair (i, j),
where i, j € N. Arcs are represented pictorially by arrows where the direction of the
arrow shows the orientation of the arc. The cardinality of the arc set A is
conventionally given as m.

PATH: A path P in a Network G is a finite sequence ig, (ig, i1 ), i15ees ir-15 (i1, 1r )i
where each i;jis a node and (jj, ix) is an arc. The initial node of P is iy and the terminal
node is i,.

CIRCUIT: A path in a network with the same initial node and terminal node.

SIMPLE PATH: A simple (or elementary) path is one that uses no node more than
once.

POSITIVE PATH: A path containing only arcs ajj traversed in the direction from
node i to node j.

CONNECTED: A network G is connected if for every pair of different nodes s and s’,
there is a path P: s — s’. (P need not be a positive path.)

ACYCLIC: A network G is acyclic if G possesses no positive circuits.
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[S,8T" = §{j eA|j~(i,i)withieS,ieS, i.e. the set of all positive arcs from S to
S’

[SST={j eAlj~(@,i)withieS, €S}, i.e. the set of all negative arcs from S to
S’

COMPLEMENT: R\T is read “the complement of T in R”

CUT: A cut in G is the signed arc set Q = Q" U Q" such that for some node set S, Q"=
[S, N\S]" and Q= [S, N\ST™ “The word “cut” for Q = [S, N/S] arises from the idea
that any path P with initial node in S and terminal node in N/S must at some stage

traverse one of the arcs in Q. A cut Q is shown in Figure 6.

Figure 6: Cut [S,N\S]
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The Shortest Path

Let G = (N, A, d) be a connected, acyclic network, where N is the set of nodes; A is
the set of arcs, each element of A is of the form (i, j) for the arc connecting node i to node
J; and c(i, j) is measure of performance along the arc, for every i,j € N, ¢(i, j) = 0. Let N+
be the set of origin nodes. Let N- be the set of all destination nodes.

An arc can only be traversed directly from Node i to Node j if arc (i, j) exists, i.e.

c(i,j) < . A path moves from node to node by a specific arc connecting the two nodes.

Node — Arc > Node — -+ — Arc - Node. Traversing each arc, (i, j), in the path, a
measure of performance, e.g., cost of c(i, j) is incurred. The objective is to find a path
from N+ to N- with the smallest measure of performance, e.g. smallest cost.

The following is a trivial example of a transportation network whose nodes are cities
and arc lengths are traveling times between the cities. Figure 7 shows the network with
nodes (cities) A, B, C, and D. The traveling times among these cities are shown on the
arcs. Node A represents the location of a manufacturing facility and node D represents
the location of the warehouse. The objective is to find the shortest traveling time from
the manufacturing facility (Node A) to the warehouse (Node D).

One alternative to find the shortest path from Node A to Node D is to find all paths

Figure 7: Transportation Network V: Nodes A-D
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from A to D. Enumerating all possible paths from A to D yields:

Path 1 = Node A —Node B —Node D=3 + 4 =7 units

Path 2 = Node A —Node D = 6 units

Path 3 = Node A—Node C ->Node D =2 + 3 =5 units

Therefore, Path 3 is the shortest path from A to D.

In amending this network by adding two nodes, A* and D*. These new nodes
represent a new manufacturing city, A* and a new warehouse, D*. For this
transportation problem, the objective is to find the shortest path from th¢ set {A, A*} to
the set {D, D*}: Figure 8 shows the modified network. If only transportation times are
considered, where should the product be produced? Where should they be warehoused?

What is the best shipping route?

Figure 8: Transportation Network: Nodes A-D*

This network is only a slight modification to the first. However, it becomes obvious
that enumerating all paths of a large network would be inefficient. More sophisticated
techniques/algorithms have been established to solve this problem.

The predominantly used shortest path algorithms are Bellman-Ford’s algorithm,
Floyd-Warshall algorithm and Dijkstra’s algorithm [14]. These algorithms use dynamic

programming methods to exploit the fact that it is sometimes easiest to solve one
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optimization problem by solving the problem for an entire family. These algorithms offer
the decision maker bonus information. The dynamic programming structure of the
algorithms yields not only the shortest distance from the origin node(s) to the destination
node(s), but the shortest distances from the origin node to all other nodes. Additionally,
the Floyd-Warshall algorithm offers the decision-maker the shortest distance between all
nodes in the network.

Each algorithm has particular benefits and drawbacks. They offer a trade-off between
information gained and computer time used. Each user has his/her opinion of the most
useful shortest path algorithm.

The Bellman-Ford and Floyd-Warshall algorithms require only that the network
contain no negative cycles (cycles whose cumulate length is negative). Dijkstra’s
algorithm can be performed on a graph with the condition that the graph contains no
cycles and that all measure of performance (distances) along arcs are non-negative.
Dijkstra’s technique is the “most efficient option when given graphs satisfy further
assumptions” [14, p. 440]. Dijkstra’s technique is extremely intuitive and will be used as

basis of the initial stage of this research.
Dijkstra’s Method

Since Dijkstra’s method for finding the shortest path in a network is a base for this
research, the following section will be devoted to its presentation. “The essence of this
procedure is that it fans out from the origin, successfully identifying the shortest path to
each of the nodes of the network in the ascending order of their (shortest) distances from

the origin, thereby solving the problem when the destination node is reached” [6, p. 411].
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R. T. Rockefeller is a leading researcher in the area of network optimization. His
book “Network Flows and Monotropic Optimization” covers a multitude of network
optimization algorithms [15]. Below is Rockefeller’s description of Dijkstra’s shortest
path algorithm. This algorithm introduces a positive and a negative direction on an arc.
Although this research shall be restricted to only positive movement along an arc, this
representation of Dijkstra’s algorithm will include both positive and negative arc
movements. Its addition adds only slight computational complexity. However, the
algorithm below is a modification to Dijkstra’s method in Rockefeller. The potential ug
notation is omitted, due to the fact that our information is limited to only the minimum
path and not a maximum tension problem.

Let
e G=(N, A, d) be connected, acyclic network, where N is the set of nodes;
e A is the set of arcs and each element of A is of the form (i,j) for the arc connecting

node i to node j;

e d'(j),j~ (@, 1) is the length of the arc from node i to node i (measure of traversing

the arc in the positive direction); d+(j)20;V je A
e d(j), j~(, i) is the length of an arc from node i’ to node i (measure of traversing the

arc in the negative direction); d~(j)<0;V je A
e N be the set of origin nodes.

e N be the set of all destination nodes.

e w:N > R; wis a function, which maps the nodes N to the reals, R. Let w(i) be the

minimum distance from N+ to Node i Vk e N*, w(k)=0.
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There are two sets S and T satisfying N'cScTcN\N™. @isa routing of T with base

N", and w is defined V T. Initially T =S = N", 8 is empty, and w= 0.To begin with, all

nodes are “unscanned.” Nodes will be processed one by one, and after a node is

processed, the node will be said to have been “scanned.”

Step 1. If there are no “unscanned” nodes in S (which is false initially) then go to step
3. Otherwise select any “unscanned” node i” which is an element of S and go to
step 2.

Step 2. If there is an arc incident to i’ and belonging to Q =[S, N\S] calculate

where i denotes the other node of j.

w@) + d*G) ifi~G.D)
"Tlwe) - a0 i)

Ifi €T and y<w(i), redefine 0 (i) =j and w(i) = y.

IfigTand y<ow,addito T with 0 (i) =j and w(i) = 7.

If y=co0rieTand y2w(i), donot change T, 6, or w.

Repeat this step for each arc’j incident to i° and belonging to Q, then return to Step 1
(with i' henceforth regarded as “scanned”)

Step 3. Calculate = min{ w(i)| 1 e T\S}

If T\S=O ,regard B as +woand terminate;

Q is a cut of unlimited span (so [sup] = [min]} =+ in the two problems).

Otherwise add to S the nodes of T\S for which the minimum defining B is achieved. If

node ie N~ is among these terminate; the 8 -path P:N"— i solves the min path problem.

20



Non-Constant Arc Distances

Due to the high demand for accurate network optimization, research is being
performed in optimization of networks without the restriction of constant arc values.
Chabini and Lan give a solution for “shortest path problems in dynamic networks, in
which travel times are time dependent” [3, p. 60]. Chabini and Lan modify the A*
algorithm first introduced by Hart, Nillson, and Raphael in 1968, which is specific to a
origin-node to one destination-node problem variant. The A* algorithm attempts to be
smarter than other shortest path algorithms. For example, consider a city network where
the origin node is located at the center of the city and the destination node is in the far
east. Other algorithms would typically put the same effort in searching to the east, west,
north, and south of the origin node. “These algorithms may search through areas in
through which the shortest path would not pass” [3, p. 63]. The A* algorithm chooses a
set of nodes that have been reached and that are “candidates” for the selection of the next
node.

Chabini and Lan use the A* algorithm to find the shortest path with cost D = { d;(t)|
a4, j) eA}. The function d has an integer-valued domain and range and is therefore
discrete and time-dependent. The work of Chabini and Lan is specific to the field of
Intelligent Transportation Systems (ITS) and is motivated by the fact that “the
computation of shortest paths is a fundamental component in route guidance systems and
in the development of solution algorithms for the large-scale dynamic network flow
models; such models are useful in supporting effective ITS decision-making” [3, p. 60].

The shortest path problem in this dynamic network is solved by applying a “static

shortest path algorithm to its equivalent representation as time-expanded network. These
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dynamic adaptations of the A* algorithm are based on effective lower bounds on
minimum travel times that exploit the FIFO properties of dynamic data” [3, p. 73].

Chabini and Lan’s work yields optimal solutions for many networks with extreme
efficiency. The number of nodes searched and computer time is greatly reduced.
However, the deterministic time-dependent arc values contain no option of variability.
The proposed research will extend the non-deterministic shortest path problem to address
the very real issue of variability in data, specifically arc measure.

Okada and Soper make the point that “As time or cost fluctuate with traffic
conditions, payload and so on, it is not practical to represent each arc as a deterministic
value” [13, p. 129]. Okada and Soper present work based on stochastic arc values. “...
we are concerned with the shortest path problem of the network with each arc length
represented as a positive fuzzy number, ...However, we cannot get an optimal solution in
the normal sense because this type of problem is a so called “ill-posed” problem” [13, p.
129].

Okada and Soper solve the shortest path problem on a network with fuzzy arc lengths.
A fuzzy number a is an upper semi-continuous, normal and convex fuzzy subset on the

real line R such that p, : R —[0,1] where p, is the membership function of a. “A flat
fuzzy = number a is a fuzzy number such  that 3 (m,
m)e R, m<m,andp,(x)=1Vxe[m,m]” [13, p. 130]. An L-R type flat fuzzy number
is denoted as (m, m, a, B); g, where o, are left-hand and right-hand spreads, as

defined as follows:
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L(m-x)/a ifx<m,aeR*
Ha(x) =11 |
R(x-m)/P ifx>m,BeR"

where L and R are even functions such that L(0) =R(0) =1 and L(1) =R(1) =0,and L

and R are strictly decreasing on (0, ).

Addition of flat fuzzy numbers, given by the symbol, @, is defined as (a, a3, a, B)®

(b, b, v,0)=(a+b, a+ b, o+ Y, B + 8). The characteristics of the ® function for flat

fuzzy numbers enables the enumeration of the cumulative distance along a path. One
method to rank fuzzy numbers is “mapping each fuzzy number to the real line, where
total order exists” [13, p. 131]. The other method of ranking is that “the decision maker a
priori chooses a degree of conformity for which the inequality may be considered true”
[13, p. 131]. That is, the comparison between two fuzzy numbers is a fuzzy operation
defined by the decision-maker. There exist several different theoretical approaches for
comparing fuzzy numbers [13].

Additionally, there exist many different types of fuzzy numbers. Okada and Soper
have chosen to use trapezoidal fuzzy numbers to represent each arc length. “Each arc
length (duration time) in the generated network is converted into a trapezoidal fuzzy
number with a flat part of about 20% and spreads about 10% of the original duration
time” [13, p. 137].

The shortest path is formulated by the following linear program:

- D
(i,j)eA
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o o 1 ifi=s
s.t. inj‘Zin = 0 if i#s,t(i=1,...,n)
i j o s
-1 ifi=t

Xjj = 0 or 1 for any (i,j) € A.

®
Where ) in the objective function means the addition® between fuzzy numbers.,

However, “It impractical to solve even a small size problem by using the network
simplex method due to the increase in decision variables” [13, p. 134]. Okada and Soper
eventually use a generalization of Dijkstra’s algorithm to solve the simple shortest path
problem.

Okada and Soper’s solution to the shortest path problem is most interesting. The
fuzzy arithmetic allows for a mathematical solution to this stochastic process. Due to the
fact that path lengths are not real numbers, all paths are enumerated and the number of
obtained paths cannot be controlled by the decision maker. Okada and Soper have
analyzed the multi-path output by attempting to find non-dominating paths and possible
shared sub-paths. This research effort also uses the uncertainty measures of non-
dominance and shared sub-paths in the algorithm output methodology. Although Okada
and Soper’s model contains minimal assumptions, the fuzzy arc lengths are more limiting
than interval valued arcs.

Sudharasan has used fuzzy distances in a routing algorithm analysis optimal web path
estimation. “A routing algorithm sets up paths to connect the different nodes in the
network and strives to optimize performance measures like distance, mean packet delay
and network throughput™ [18, p. 380]. Sudharasan notes the inherent uncertainty in this

dynamic information because it is at least as old as the distance between nodes, as the
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changes in the status of the network are not immediately known to every node in the
network. “Traditional network routing algorithms have not attempted to deal with this
uncertainty in any way and most behave as though there is no uncertainty in the
information available at a node” [18, p. 380].

Network optimization is not limited to finding the shortest path. Much work has been
done in finding a minimal spanning tree in a network as well. A graph S is a minimum
spanning tree of G = (N, A, d) if S is a connected graph with no elementary circuits, such
that S = (N*, A*, d) where N*=N and A*c A, n(A*) = n(N*)-1. Finding solutions to the
minimal spanning tree problem with non-constant values is a great benefit in many
industrial applications, telecommunications networks, and rail transportation networks.

Yaman, Karasan, and Pinar analyze the robust spanning tree problem with interval
data. “The combination of the interval uncertainty with robustness is attractive ... we do
not have to specify a distribution for the data, nor its moments, which is not always easy”
[20, p. 31]. No probability distribution is assumed for edge costs. Yaman et al. finds the
lower and upper cost of a spanning tree; the cost is calculated by the sum of the arcs in
the tree at their lower and upperAvalue respectively. Yaman et al. uses the bound values
only in his algorithm to hedge against the worst possible delay in a robust spanning tree.

Chen and Lin use interval arc values in determining the optimum location of the 1-
median of a tree. A 1-median is a node in the tree such that the distance from that node
to all other nodes is minimized. This is the network model of the placement of a
distribution center among many locations. Each location is a node and the distances
between locations are arc lengths. Finding the 1-median of this network will yield the

optimum placement for the distribution center.
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Chen and Lin reiterate the importance of interval-valued arc lengths. “In some
practical environments, it is sometimes difficult to characterize the uncertainty involved
in input data by probabilistic distributions with reasonable accuracy, especially if limited
past data are available” [4, p. 94]). Chen and Lin find the set of all 1-median nodes for
some feasible scenario. Chen and Lin replace edge-length intervals with their upper
bounds to find the worst case scenario. A 1-median is chosen to minimize the maximum
regret against this worst case. The generation of all feasible scenarios is not discussed
due to the fact that the analysis is based primarily on a robust approach to solving t.he
problem. “The robust approach, which aims at a decision with minmax regret is more
suitable when limited information is available about the uncertainty involved” [4, p. 94].
The 1-median is chosen as node x such that the difference between the spanning length
for node x and the spanning length for node y in scenario s is minimized for all nodes s.

The optimization of networks with non-deterministic arc values has proven itself as a
worthy research topic. Few attempts have been made to find optimal solutions for these
networks. Specifically, research with regard to networks with interval arc values has
been analyzed from a min-max approach. Research has yet to solve the problem of
finding optimal path(s) for the shortest path in a network.

To appropriately analyze the optimal shortest paths, it is necessary to enumerate all
shortest paths for a network. Techniques of Qualitative Discrete Event Simulation are an
ideal tool for the formulation of all possible shortest paths of a network. QDES is a

- combination of techniques of discrete event simulation, event graphs, and qualitative

simulation.
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Simulation

Kelton, Sadowski, and Sadowski provide a fundamental definition of simulation.
“Simulation refers to a broad collection of methods and applications to mimic the
behavior of real systems, usually on a computer with appropriate software” [8, p. 3]. The
software available for simulation is extensive due to the popularity of this operatiéns
research tool. The early implementation of simulation software was through
programming languages developed specifically for the task. GPSS (1961), SIMSCRIPT
(1962), GASP (1974), SLAM (1986), SIMAN (1995) and ProModel (1994) are several
successfully implemented programming languages [8, 9].

“Over the last two decades or so, simulation has been consistently reported as the
most popular operations research tool” [8, p. 7]. Manufacturing plants, personal-service
operations (e.g. banks), distribution networks, computer networks, supermarkets, theme
parks, freeway systems, and emergency response systems can be modeled in simulations.
This list is certainly not intended to be exhaustive, as the quantity of simulation models is
extensive. “The main reason for simulation’s popularity is its ability to deal with very
complicated models with correspondingly complicated systems. This makes it a versatile
and powerful tool” [8, p. 8].

A specific criticism of simulation is the formulation of and output resulting from
random inputs. The output of a simulation will vary considerably depending on the
distribution from which input variables are drawn. Because many real systems are
affected by uncontrollable and random inputs, many simulation models involve random,

or stochastic, input components, causing their output to be random too.
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Law and Kelton categorize simulations as deterministic vs. stochastic, static vs.
dynamic, and continuous vs. discrete. In addition, there is the distinction between
quantitative and qualitative simulation as well. Below are the definitions of quantitative
and qualitative according to the American Heritage Dictionary of The English Language:
[10].

e Quantitative: Expressed or capable of expression as a quantity.

e Qualitative: Of, pertaining to, or concerning quality or qualities.

Generally speaking, systems modeled using quantitative simulations contain input
variables that mke on one specific quantity during the simulation. “Quantitative models
include discrete event simulation, min-max algebra, Markov chains, stochastic Petri nets,
queues, and queueing networks” [19, p. 2]. These quantities are often stochastic (i.e. are
generated from some probabilistic distribution) in discrete-event simulation models.

However, systems modeled using qualitative simulations contain input variables that
may take on several quantities. “Qualitative Models capture logical aspects of system
evolution;’ [19, p. 2]. For the work proposed here, the variables have an infinite
cardinality and fnay take any value within a specified interval. Logicail choices are made
throughout the simulation to create the simulation output. “An important aspect of
qualitative simulation is that the behavioral prediction can branch, corresponding to
qualitatively distinct futures that cannot be discriminated by the available information.
Qualitative simulation is guaranteed to predict all real behaviors of systems consistent
with the model” [5, p. 47].

Fouche and Kuipers give an overview of qualitative simulation. Qualitative

simulation is based on the observations that:
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. The domain of a variable representing a physical parameter of a
system can often be partitioned into a small number of “landmark” points
and intervals between them, which represent real qualitative distinctions
for the magnitude of the variable;

. Knowing the direction of the change of a variable, in conjunction
with its qualitative magnitude, is often enough to determine the qualitative
properties of its evolution; and

. For determining the qualitative behavior of a system, it is often
adequate to know a functional relationship between two variables down to
monotonicity and corresponding pairs of landmark values. [5, p. 47].

At the 1991 Winter Simulation Conference, Cellier chaired “Qualitative Modeling
and Simulation: Promise or Ilusion”, a panel discussion to discuss the practical
applications of qualitative simulation. In the Proceedings article, Cellier defines
qualitative variables as either nominal measures, ordinal measures, interval measures or
ratio measures. Where nominal measures are variables with exhaustive and mutually
exclusive characteristics; ordinal measures are variables that are nominal and rank
ordered; interval measures are variables that are ordinal and in which any two interval
measures can be added to or subtracted from one another; and ratio measures are
variables that are binterval and contain a true zero point. Cellier categorized qualitative
models into four types: naive physics models, i.nductive reasoning models, symbolic
discrete-event models, and neural models. In Cellier’s discussion of symbolic discrete-
event models he states: “Symbolic discrete-event simulation generates all trajectories that
are feasibie due to the fuzziness of these parameters” [2, p. 1089]. This is a truly unique
attribute of QDES.

Another distinction between qualitative discrete event simulation and traditional DES
is the manner in which the simulation evolves. “Discrete-event simulation concerns the

modeling of a system as it evolves over time by a representation in which state variable

change instantaneously at separate points in time” [9, p. 7]. The emphasis of
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SIMSCRIPT (1962), GASP (1974), SLAM (1986), SIMAN (1995) and ProModel (1994)
simulation languages is modeling the process of an entity traveling through the model.
However, qualitative discrete-event simulation (QDES) has an alternative, event
approach to formulating models.. It is the events themselves that dominate and control
the simulation. Schruben first introduced the concept of modeling simulations by event
graphs in 1983. An event graph is a collection of that are associated with other events

through the model structure [7].
Simulation and Event Graphs

Schruben and Yucansan formalized Simulation Graphs as an extension of Event
Graphs during the 1988 Winter Simulation Conference. Figure 9 shows an edge that is a

part of a simulation graph. “Pictorially the vertices of an event graph represent state
t .
@
A Jr

Figure 9: Scheduling Edge

changes that are associated with the various events in the simulation. The edges of a
graph represent the logical and temporal relationships between the vertices” [17, p. 504].
The edge is interpreted as follows: whenever event A occurs, if condition (i) is true
then event B will be scheduled to occur t time units later. “The elements of a simulation
model are the state variables, events that change the values of state variables, and the
relationships between the events. An event graph is a structure of the objects in a

discrete-event system that facilitates the development of a correct simulation model” [17,
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p. 504]. Basically, the edges define the necessary conditions and time delay between one
event and another. In the formalization of simulation graphs and models, Schruben and
Yucansan defines a graph as “an ordered quadruple G = (V(G), Es(G), Ec(G), ¥ (G))
where V(G) is the vertex set of G, Eg(G) is the set of scheduling edges, Ec(G) is the set of
canceling edges, and ¥ (G) is the incidence function” [17, p. 505]. This definition is
nearly identical to a traditional network with the addition of the canceling edge, Ec(G).
Graphically, the canceling edge and scheduling edge are identical. In the graphical
definition, they are distinguished as two distinct sets and their operations are certainly not
identical. The ciescription of the simulation model is more extensive. Schruben and

Yucasan define a simulation model as a structure of indexed sets.

3 = {fi : STATES—>OUTPUTS| i € V(G)}, which is the set of state transitions

associated with vertex (event) i.

e &= {cj : STATES—>{0, 1}| (i, j) € Es(G)UEc(G)}, which is the set of edge
conditions;

e T={tj:(,))e Es(G)UEc(G)},which is the set of edge delay times;

o I'={viie V(G)},which is the set of event execution priorities; note that I" is the set
of nonnegative integers; assuming that smaller integers will correspond to higher
priorities with 0 representing the highest execution priority;

e S, is the set of state variables possibly altered by event vertex i,ie V(G);

e E; is the set of state variables involved in the conditions on the arcs emanating from
vertex i, ie V(QG);

e Z is the list of scheduled events (events list)

e T is the global simulation clock
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The simulation also includes a stochastic process of independent uniform random
variables on (0, 1).
Schruben and Yucasan note that “A graph G can be thought of as a triple, G = ((V(G),
E(G), W (G))” [17, p. 506]. This definition of a graph contains only one type of event
conditions. In the proceedings of the 1995 Winter Simulation Conference, Savage and
Schruben presented “Eliminating Event Cancellation in Discrete Event Simulation” [16].
Savage and Schruben describe the procedure of the elimination of canceling edges.
Let v be the event that may be canceled, v, be the added check event
and vy represent an event that might cancel event v. The following steps
replace the canceling edge:
1) Remove the canceling edge (vy, V).
2) Create new state variables VC (to count the cancellations of v) and
SV (=1 if v has not been canceled, 0 otherwise).

3) Add {VC =VC +1} to the state changes of vy

4) Add the vertex v, with state change: {SV=1 iff (VC = 0), VC =
max(VC-1, 0)}.

5) Add the edge (veh,v) with edge condition c. = SV

6) Replace all scheduling edges (v', va) with the same time delay and
edge conditions. [16, p. 747].

Ingalls analyzed the difference in calendar management (i.e. scheduling and canceling
events) and the implementation of edge execution conditions. “The addition of the edge
execution conditions to the simulation graph methodology provides a standard, complete

methodology for modeling interruption. Edge execution conditions provide a simpler and

more efficient management of these calendars” [7, p. 52].
Temporal Intervals in Qualitative Simulation Graphs

In QDES, simulation graphs are implemented with conditions formulated by
Schruben (1988) with the additional characteristic of interval-valued state variables.

Ingalls emphasizes that “The purpose for describing state variables with interval values is
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to allow the user to describe the inherit uncertainty of the decision maker or modeling

with it comes to the true value of the variable” [7, p. 24].

Table I
Allen’s Interval Algebra for Intervals t =[t,t Jand s =[s", s']
Relation Symbol | Symbol Definition ' Example
_ : for :
_ Inverse
t before s < > t<s TTT
SSS
t equals s = (t=s)and (t' =s") TTT
SSS
t overlaps s o oi (t<s)and (f>s") TTT
and (' < 5) SSS
T meets s m mi (t'=5s) TTTSSS
t during s d di ((t>s)and (' < s))or TTT
(€ >'s) and (£ <s7)) SSSSS
T starts s s si t=s) TTT
SSSSSS
t finishes s f fi (t'=s) TTT
SSSSSS

The implementation of interval valued state variables in a simulation graph can be
mathematically rigorous. In 1983, Allen developed an algebraic system of time intervals
[1]. Ingalls supplements the algebra by adding several operators. Lett=[t,t]and s =
[s, s'] be closed intervals on ®. Tables I and II show the relations developed by Allen
and Ingalls, respectively. Additionally, Ingalls implemented logical extension such as
(&), or (|) and negation (!). These algebraic operations enable a QDES model to
appropriately analyze each next event in the simulation. When the order of events is
uncertain, a QDES simulation will try all the combinations of the event and create a
thread for each event in the set. Each thread has its own future events calendar for that

thread. Each thread maintains its own calendar and calendar time [7].
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Table I1

Ingalls’ Interval Algebra for Intervals t=[t, t'] and s = [s", s']

Relation Symbol | Symbol | - Definition Example
_{'Inverse | -
t intersects s i max(t, s)<min (t', s") TTT
SSS
t+s + [t+s,t+5]
t-s - [t-5,t-5"]
inverse(t) inverse (14, 1/4]
t*s * [t*s, t*s]ift*s <t *s
t/s t* inverse(s)
combine(t,s) | combine [min(t', s7), max(t’, s)] if (t i:s)
midpoint(t) (t+t)2
width(t) t-t
max(t,s) max [max(t , s), max(t' , s')]
min(t,s) min [min(t’, s), min(t", s7)]
intersection(t,s) A [max(t', 8), min(t', s)], if
(max(t', s)<min(t", s")
& otherwise

Ingalls extends the general simulation graph framework introduced by Schruben to
accomplish this extensive task. Ingalls developed a QDES algorithm with interval state
variables. The algorithm was implemented with the analysis of a standard inbound-
processing-outbound model. |

As QDES output consists of all possible threads (i.e. outcomes), the number of
threads explodes as the simulation progresses. Therefore, QDES is most beneficial with
problems containing a fixed time horizon. A fixed horizon problem would analyze a
graphrfor a short period of time, or possibly a graph that is finite in nature. The shortest
path of a network is finite in nature if the graph contains a finite number of nodes.
Ingalls developed a QDES algorithm for PERT scheduling with and without resource
restrictions. Ingalls converts the network into an Event Graph. After implementing the
QDES algorithm for PERT analysis, the resulting thread output is extensive. Ingalls uses

Thread Scoring Methods to analyze the numerous threads. Ingalls asserts that minimal
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assumptions need to be made about the intervals in order to score them. “One of our
methods is more qualitative, in that we rank the intervals by the midpoint of the interval.
Another uses the earliest midpoint as the basis and determines a relative score. The third
method introduces a minimal statistical assumption, namely that the interval is uniformly
distributed” [7, p. 125].

In Ingalls’ comments regarding future research pertaining to QDES, he states “One of
the most interesting future research topics coming out of this dissertation is the possibility
of exact output statistics from the simulation” [7, p. 130]. It is a fundamental objective of
this research to develop a cohesive analysis of the output resulting in the QDES algorithm
specific to the shortest path problem. The output methodology consists of techniques of
min-max regret, non-dominating paths, and critical sub-paths.

The ability to analyze a‘ model with minimal assumptions is well established as a
meaningful research objective. Several researchers have published literature yielding
solutions for several network optimizations with non-constant arc values. However, a
solution to the shortest path of a network with interval-valued measures of performance
does not exist. This research effort has developed such an algorithm yielding the shortest

paths of this network and its accompanying output ahalysis.

35



-CHAPTER I
THE ALGORITHM
Algorithm Overview

The primary objective of this research effort was the formulation of an algorithm
which wouid generate the set of all shortest paths from Node 1 to Node n (End Node) in
an acyclic, directed network with ordered node set N, arc set A, and interval-valued set c,
the measure of performance for traversing arcs. An algorithm was developed which met
this objective. It was coded in Visual Basic [11] with a Microsoft Excel [10] interface.
The Visual Basic Code is in Appendix A.

The mathematical form of this statement is given in the following definition.

Given
G=(N, A, ¢), i.e., G is acyclic and directed
N={1,2,.,n}
A={(a,b)|(a,b)e A > a<b}
p(a, b) = [lower bound, upper bound] = [Lap, Uab) and c is the measure of performance
of arc.
Find

{P|P(l,..,a,b,...,n)and C=min Y c*(a, b) for c*(a, b)cc(a, b)}.
(a,b)eP

Note that G is an acyclic, directed network N with n nodes from 1 to n. The node set
N is an ordered set such that if there exists an arc from Node a to Node b then a <b.
Dijkstra’s general shortest path method finds the shortest path(s) of an undirected

network G from a set N- to the set N+. This research effort contains a different set of
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assumptions than Dijkstra’s general shortest path method. Specifically, Dijkstra’s
algorithm does not contain the acyclic assumption and the single initial node and single
terminal node assumption. However, finding the shortest path(s) of a directed network
with single nodes for N- (Node 1) and N+ (Node n) involves no loss of generality [13].
The fundamental difference between network G and the general shortest path network is
the structure of the measure of performance along an arc. The measure of performance
along an arc is interval-valued; that is, the measure of performance can be any number
greater than or equal to the lower bound and less than or equal to the upper bound of the
interval. This specific type of network shall be referred to as an “interval-network”.

The interval nature of the measure of performance in G adds significant complication
to the algorithm, v;lhich generates the shortest path(s). In an interval-network, the
cardinality of the shortest path set may be extremely large. Although a general network
may have multiple shortest paths, the occurrence of muitiple shortest paths does not
complicate the generation of these paths. Figure 10 shows a network with constant-

valued measures of performance with more than one shortest path. The network in

Figure 10: Transportation Network I: Nodes 1-4

Figure 10 has two shortest paths from Node 1 to Node 4. For convenience of

presentation, the cumulative measure of performance along a path will be referred to as
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the path length, although it may correspond to any measure defined by the user. Both
paths have a length of 4 units.

Path 1 =Node 1 - Node 2— Node 4

Path 2 = Node 1 - Node 4.

In an interval-network, multiple paths may exist for a specific path length, similar.to
the path of length 4 units in the general network in Figure 9. Additionally, there are
numerous possibilities for the length of the shortest path depending on the measures of
performance of the arcs. The shortest paths are generated by analyzing the subsets of
measures of performance along the arcs. A shortest path set is generated for each specific
subset of the measure of performance along an arc. The subsets are created by logic
describing all possible minimum values. These are “cut-points” of the measure of
performance interval. The cut-points are found in sub-procedure Identify Cut Points
and they are ordered in sub-procedure Order Cut_Points. The algorithms for these sub-
procedures are provided in Appendix B and Appendix C, respectively.

In Dijkstra’s method for finding shortest path of a traditional network, w(k) is defined
as the shértest distance from N* té Node k. In the interval network, w(k) will have the
same definition. As in a general network, w(k) in the interval-network is fundamental in
the development of the shortest path. However, the value of w(k) is dependent on the
subsets of measures of performance. Several w(k) values may exist for every node k.
The set of wi(k) will be defined as the set of node threads.

An amended network is created based on each thread for w(k). The network is
modified to include only arcs and arc values that can be contained in a shortest path. All

shortest paths are generated from this amended network in the sub-procedure Find_Paths.
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Because of the complicated nature of the interval-network, the algorithm generates
shortest paths with arc values that may appear counter-intuitive. That is, the lower bound
is greater than the upper bound. The sub-procedure Change Arc_On_Path changes
specific arc values to form a more meaningful solution set.

The main procedure of the algorithm first finds and orders the cut-points of the nodes
beginning at Node 1 and ending at Node n. The network is then amended by replacing
nodes with corresponding node*threads and by specific arcs connecting the
node*threads. All possible paths are then found. Subsequently, the measures of
performance corresponding to specific arcs along the paths are changed where necessary.

The flowchart of the main procedure Avery Shortest Path Algorithm is shown in
Figure 11. The remainder of this chapter will give a more complete description of the
following sub-procedures : Generate_w(k), Check Arcs, Find_Paths, and Change Arc_
On_Path. The Change Arc_On_Path sub-procedure is supplementary to the main
algorithm, as the measure of performance along the arc is not a primary outcome to the
shortest path algorithm. The algorithm generates all possible shortest path distances and
all shortest paths of the network that have the opportunity of having a specific shortest
path distance. Due to the uncertainty of a qualitative network, the shortest path solution
set consists of the shortest paths which traverses the amended network’s node*threads.
The main algorithm description of the generation of the shortest paths is given below.
Algorithm Steps
Given

G=(N, A, ¢), i.e., G is acyclic and directed

N={1,2,..,n}
Node 1 is the originating node

Node n is the terminating node
A={(a,b)|(a,b)e A > a<b}
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c(a, b) = [lower bound, upper bound] = [La, Uap] and c is the measure of performance
of arc.

Find

{P|P(l,..,a,b,..n)andC=min )Y c*(a, b) for c*(a, b)cc(a, b)}.
(a,b)eP
Step 0: INITIALIZE
wi()=[Ln, Unl=[o0,0]
CardW (Node 1) =1
wi(a) =[L a, U ] = empty,
CutPoints(Node a, Position) = empty,
OrderedCutPoints(Node a, Position) = empty,
Stopping Cut Point(Node a) = 9999,
CardW(Node a) = empty,
ArcValid(Originating Node*Thread, Terminating Node*Thread) = false.
Path Node*Thread (Path Number, Position, Length) = empty
NOP(Node*Thread) = NOP(a*j) + 1 (NOP = Number of Paths)
LPP(Path Number, Node*Thread) = empty (LPP = Last Path Position)

MAIN ALGORITHM
(For each node beginning with Node 1, Iterate from Step 1 to Step 6 )

ForNodeb=2ton
(Step 1 — Step 6)

Fora=1 to b-1, (a = predecessor node)
(Step 1 — Step 2)
Index =0

Step 1: “Find Unordered CutPoint Set A”

d = CardW(a)

Recall: wy(@) =[L 4, U ap), c(@, b) = [Lap, Uap]
Index = Index + 1

CutPoints(Node b, Index) = L g + L,

Index = Index + 1

CutPoints(Node b, Index) = U ap+ Uap

Step 2: “Find Unordered CutPoint Set B and Possible Stop CutPoint Set from
Predecessor Nodes”

Index = Index + 1

CutPoints(Node b, Index) = L ap + Lab,

Index = Index + 1

CutPoints(Node b, Index) = U ap T Uab
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1t (0 ap T Uap) < Stopping Cut Points(b)

Then Stopping Cut Points(b) = U 4 + U
Next a

Step 3: “Create Ordered CutPoints”

From CutPoints(Node b, Index) create the set OrderedCutPoints such that:
For every o,

OrderedCutPoints(Node b, Position 0) < OrderedCutPoints(Node b, Position o+1)

Step 4: “Find Cardinality of Node Set W(b)
CardW(b) = position of StoppingCutPoint(b) in OrderedCutPoints Set-1.

Step 5: “Find Node Set W(b)”
For k =1 to CardW(b)

Lok = OrderedCutPoints(Node b, Position k)
U px = OrderedCutPoints(Node b, Position k+1)

wi(®) = [L ok, Unid,
Next k

Next Node b
Go to Step 1

Step 6: “Find Possible/Valid Arcs on Shortest Path”
Recall, Wk(b) = [L bks U bk], wj(a) = [L ajs U aj],
Forb=1ton-1

For k = CardW(b)

Fora=bt+lton

Forj =1 to CardW(a)

It L bk — L g = ﬁab and U bk — U g < U ab Then ArcValid (b*k, a*j) = True.

Next j

Next a
Next k
Nextb

* The Paths generated by the main algorithm are all paths of the amended network
consisting of node*threads and valid shortest path arcs.

Step 7: “Find all Shortest Paths from Possible Arcs on Shortest Path”

Fora=2Ton

Forj=1 To CardW(a)

If ArcValid(1*1, a*j) = True Then
Path Node*Thread(1, 1, a*j) = 1*1
Path Node*Thread(1, 2, a*j) = a*j
NOP(a*j) = NOP(a*j) + 1
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LPP(1, a*j) =2
Forb=2Toa-1
Fork =1 To CardW(b)
If ArcValid(b*k, a*j) = True Then
For Path Index = 1 To NOP(b*k)
For Position Index = 1 To LPP(Path Index, b*k)
Path Node*Thread(NOP(a*j) + Path Index, Position Index, a*j) =
Path Node*Thread(Path Index, j, b*k)
Next Position Index
Path Node*Thread(NOP(a*j) + Path Index, LPP(Path Index, b*k) + 1, a*}j) = a*j
LPP(NOP(a*j) + Path Index, a*j) = LPP(Path Index, b*k) + 1
Next Path Index
NOP(a*j) = NOP(a*j) + NOP(b*k)
Next k
Next b

Next j
Next a

Generate w(k)

The Avery Shortest Path Algorithm, which finds the shortest path(s) of an interval
network, has an identical structure to Dijkstra’s method for a general network. That is, it
fans out from the origin, identifying the shortest distance from the originating node to
each of the nodes of the network in the ascending order of their distancées from the origin.
The w(k) values are the shortest distances from Node 1 to Node k. These w(k) values are
the essence of the algorithm. In Dijkstra’s method for finding the shortest path of a
general network, w is a function, which maps the nodes to the real numbers. For interval
-networks, the measure of performance along an arc is interval-valued. Therefore in an
interval-network, w is a relation between the nodes and interval values. That is, the

values of w(k) are intervals.
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Avery_Shortest_Path

Begin
v

Initialize/ Read Data

v

Node =2
.| FromNode=
Y ] FromNode+1
T no
Node = Last™ _
. _Node +1? — FromNode = 1 l
l yes ~ 'FromNode = no ToNode =
~Last Node+1?2-~ FromNode
B —————
Identify Cut Points yes
ToNode=
ToNode+1
Find Paths ‘
Order Cut Points To Node = no

y

Change Arc On

Generate w(k) - Path
End
Node=
Node+1

Last Node +1?

l yes

Check Possible Arcs

I

Figure 11: Flow Chart Avery Shortest_Path

Let Omega(j, k) = w(j) + ¢(j, k). Recall that c(j, k) is the interval-valued measure of
performance of the arc connecting Node j and Node k. Omega values can be calculated
using basic principles of interval math, i.e. [a, b] + [c,d] =[a+c, b + d] [1]. Omega(j, k)

represents the shortest path length from Node 1 to Node k that traverses Node j

immediately before traversing Node k.
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min{Omega(j, k)} Varc(j, k) where Node j preceeds Node k k=2,..,n
[0, 0] k=1

w(k) = {

In an interval-network, a unique value for w(k) is not guaranteed. The interval-
valued minimum is the interval in which the true minimum lies. w(k) may (and often
will) consist of several values. Actually, the minimum will depend directly on the
measure of performance of predecessor arcs. The minimum is found on a case-by-case
basis.

The w(k) = [Lk, Uy] for the network shown in Figure 12 can be calculated without
complication. Since, only Node 1 precedes Nodes 2 and 3

w(2)=w(l) +¢(1,2)=[0,0] +[1,2]=[0+1,0+2] =1, 2]

w@)=w(l)+c(1,3)=[0,0]+[2,4]=[0+2,0+4]=]2, 4]

1,2
[10, 12]

Figure 12: Transportation Network II: Nodes 1-4

The Nodes that precede Node 4 are Nodes 1, 2 and 3.
Omega(l, 4) =w(1) +c(1, 4)=[0, 0] + [10, 12] = [10, 12]
Omega(2,4)=w(2) +c(2,4)=[1,2] +[1,2]=[2, 4]
Omega(3,4)=w(3)+c(3,4)=1[2,4] +[3,4] =[5, 8]
w(4) =min { [10, 12], [2, 4], [5, 8] }
The evaluation of the minimum for this set of Omegas is rather straightforward, since

all comparison sets are disjoint. If the Omega (1, 4) = [10, 12] and Omega(3, 4) = [5, 8]
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were at their smallest values, {10 and 5}, they would not be less than Omega (2, 4). The
true value of Omega(2, 4) will always be less than the Omega(l, 4) and Omega(3, 4).
Therefore, the minimum is Omega(2, 4) = [2, 4]. Additionally, since Node 4 is the End
Node in the network in Figure 11, w(4) = [2, 4] represents the shortest measure of
performance from Node 1 to Node 4.

For the network shown in Figure 13, the values of w(1) = [0, 0], w(2) = [1, 2], and
w(3) = [2, 4] are obvious. However, the value of w(4) is not obvious. To evaluate a

minimum, the comparison of the Omega(j, 4) requires some elementary logic.

1,2
[10, 12]

Figure 13: Transportation Network III: Nodes 1-4

Omega(l, 4) =[10, 12]
Omega(2, 4)=[1, 2] + [4, 5] = [5, 7]
Omega(3, 4) =[2,4] +[2,4] =4, 8]
w(4) =min{ [10, 12}, [5, 71, [4, 8] }

Figqre 14 shows the values of Omega(1, 4), Omega(2, 4) and Omega(3, 4) relative to
the real number line. In finding the minimum among these sets, the true minimum will
be contained in some subset of the Omega values. It is important to differentiate among
all possible cases of minimum of the Omega values. Specific cases occur at values
between 4 and 5, between S and 7, between 7 and 8, between 8 and 10, and between 10

and 12.
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e [4, 5]: Omega(3, 4) contains values in this interval

° [5, 7]: Omega(3, 4) and Omega(1, 4) contain values in this interval

e [7, 8]: Omega(l, 4) contains values in this interval

e [8, 10]: no Omega values are contained in this interval

e [10, 12]: Omega(2, 4) contains values in this interval

The real number line has been “cut” into a series of significant points; i.e. “cut points.”

The cut points of Node 4 are {4, 5, 7, 8, 10, 12}. For a non-trivial network, the case by
case enumeration of the set of intervals is rather tedious. However, there are two
significant cases of concern: the smallest possible minimum and the largest possible
minimum. The smallest possible minimum would be the minimum of the lower bounds
of each interval, which equals min{4, 5, 10} = 4. The largestbpossible minimum would
be the minimum of upper bounds Qf each interval, which equals min{7, 8, 12} = 7. To
appropriately described all possible events, the crucial cut points are the cut points
contained in the interval between the smallest possible minimum and the largest possible

minimum. Additionally, 5 is a cut point among the set of Omega’s. The point, 5, is the

Omega(l, 4)

Omega(2, 4)

Omega(3, 4)

I I ! I
| 2 3 4 5 6 7 8 9 10 11 12

Figure 14: Omega Values
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lower bound of Omega(2, 4). The point, 5, provides a point of differentiation between
Omega(3, 4) and Omega(2, 4). Therefore, the crucial cut points are {4, 5, 7}, since no
other minimum is contained inside any other cut-point. If the true minimum were
between 4 and 5, this minimum value would lie in the interval of Omega(3, 4). If the true
minimum were between 5 and 7 either Omega (3, 4) or Omega(2, 4) could contain the
true minimum. If the true value of Omega(3, 4) is greater than 7, Omega(2, 4) will be the
minimum. The true value of Omega(l, 4) is always greater than 7 and cannot be a
minimum. Therefore, w(4) = min{ [10, 12], [5, 7], [4, 8] } = { wi(4), w2(4) } =

{ [4, 5], [5, 7] } and w(4) consists of 2 cases/threads.

The process of determining node thread values can be generalized as follows:

For any interval-network, the cut-points of a node are an ordered set of all upper and
lower bounds of the Omega values. The cut-point set of Node k defines w(k). The two
most significant cut-points are the minimum of the lower bounds of the Omega values
and the minimum of the upper bounds of the Omega values. In the trivial example shown
above, the only node containing ﬁlultiple threads is node 4. The Omega values for node k
are generated from the node*threads that precede node k. The minimum of the upper
bounds of the Omega values (the stopping cut point) is the minimum from among the
“last” node*thread of all preceding nodes. This distinction of choosing the minimum
from among the “last” threads in necessary to ensure that the worst-case minimum is
evaluated appropriately. Again, the stopping cut point signifies the largest possible
minimum. This minimum must be among the largest from all predecessor nodes to
appropriately analyze all situations. The minimum of the lower bounds of the Omega

values is the starting cut point and the minimum of the upper bounds of the “last” Omega
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values is the §topping cut point. © These cut-points bound the intervals that the true
minimum can be contained in and they are both significant in the algorithm.. No value
greater than the stopping cut point can be the minimum value. That is, the stopping cut-
point is the largest possible w(k) value. If there exist j and k such that Omega(j, k) <
{wik) U wak) U---U wpy(k)}, this implies that for all i, wi(k) <wp(k). Since each
wi(k) = [CP;, CPj.], if the stopping cut point is in the p™ position of the cut-point set, p-1
node threads exist.
Given Omega(j*a, k) = [Lja, Uja] , for all node*threads j*a that precede node k, the
cardinality of node j is d. Let:
e CutPoints (k) = { x| x =Lj& } U { x| x=Uju }= { CPy, CPs,..., CPy, }such that
CPy;y < CPyi+1) for every i.
¢ StoppingCutPoint(k) = min{ x | x = Ujg }, where d is the last position of each
predecessor node.
¢ StoppingCutPointPosition = p. CutPoints (k) is an ordered set where CutPoints(k)
= { CPy, CPy,..., CP, = StoppingCutPoint(k) } and this is the ordered position of
the stopping cut point. w(n) = { wi(n),w2(n),..., wWp.i(n) } such that wi(n),
w(n),..., Wp.1(n) are “nearly” disjoint sets. For all i, wi(n) n wii(n) = {b} such
that wi(n)=[a, b] and wi+i1(n) = [b, c] where a < c. wi(n) = [CP;, CP;}, wa(n) =
- [CP,, CPsl,..., wi(n) = [CPj, CPi+i],..., wk(n) = [CPp.;, CPp]. The cardinality of
w(n)isp— 1.
Several Omega values and corresponding cut points are shown in Figure 15. CP1 is

the smallest of the lower bounds of the Omega values and CPS is the smallest of the
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upper bounds of the Omega values generated by the “last” predecessor node*threads.

CP5 is the stopping point, i.e., no values greater than CP5 can be the minimum.

Omega(1*1,k)

Gyt

S

Nl NN NS NN 0 NP N NN N

e e Omega(3*1,k)

Omega(2*1,k)

Omega(2*2,k)

Omega(3*2,k)

CP1 CP2 CP3 CP4 CPS CP6 CP7

Figure 15: Cut Points and Omega Values

Appendix B shows the complete algorithm for finding the cut points and the stopping
cut point. Appendix C shows the complete algorithm for ordering the cut points and
finding the cut point position. Figure 16 shows the flow chart for Generate w(k). This
procedure occurs after the cut points are found and ordered.

In general, we are concerned with the number of node threads created by the
algorithm. Due to the interval nature of the network, the number of node threads for the
End Node can be very large. However, it is possible to find the maximum number of End

Threads before implementing the algorithm. For any node k with 1, Omega values
being compared to find the node threads, the maximum number of node threads for node

k is 1, . The maximum number of Node k threads, p,= Y M; . For any network G
(k)eA

satisfying the numbering node condition, A = {(a, b) | (a, b)e A — a <b}, the maximum

number of nodes that precede node k is k — 1.
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Generate_w(k)

Begin

t=0

t=t+1

= WCardinality
(Node) +17?

End

NodeThreadl.ower(Node,t) =
NodeThreadUpper(Node,t)=
CutPoint(Node, 1)

Stopping
Rosition(Node) =1

NodeThreadLower(Node,t)
= CutPoint(Node,t)

Y

NodeThreadUpper(Node,t)
= CutPoint(Node,t+1)

I

Figure 16: Flow Chart Generate w(k)

Recall, the maximum number of threads for node k = p, . Thus, p;=p2=1, p3=p; +
pro=1+1=2and pg=p;+ po+ p3=1+1+2=4. The maximum number of threads

for node k is p, =2~

Proof by induction:
k=3=p3=2"?=2

Let B = Bp+ Ho+t B3+ o+ Uk =2k-2
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Mo = Bk ot pa+ o+ g+ oy
B =1+ pat pstoo+ pea) + py

Check Arcs

In traditional shortest path analysis, if w(b) — w(a) = c(a, b) then a shortest path for the
network contains the arc (a, b). Due to the complexity of the interval-network, this
condition may not be true. Furthermore, due to the nature of the interval-network, some
nodes have more than one interval contained in w(n), i.e. there are multiple node threads.
The condition for arc membership of a shortest path must be specific for each thread to
yield a complete solution set.

For the network shown in Figure 17, Table III shows all combinations of differences
in thread values, and the corresponding measure of performance along that arc. Given,
wi(0) = [ Lok, U], wi(@) = [L 4, U 4], and c(2, b) = [Lap, Uap]. An arc may be a member

of a shortest path, if for some thread k of w(b) and some thread j of w(a) :

[1, 2]

[4, 5]

2, 4]

Figure 17: Node*Thread Network
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A A

Loy~ Ly Lapand Uy — Uy < Uy (Condition 1),
Note, this is a looser restriction than wi(b) — wj(a) < c(a, b). For example, the arc
from Node 3*Thread 1 to Node 4*Thread 1 satisfies condition 1, but not the proper

subset condition. The need for this specific condition will be discussed later.

Table III
Arc Values
Arc. - | wi(b)-wj(@) | wk(b)-wi(@) | c(a,b) | c(a,b) | Condition1
o Lower - Upper. Lower Upper Satisfied?
w;(2)-w4(1) 1 2 1 2 Y
w1(3)-w4(1) 2 4 2 4 Y
w1(4)-w1(1) 4 5 10 12 N
wo(4)-w1(1) 5 7 10 12 N
wi(4)-w4(2) 3 3 4 5 N
wW2(4)-w1(2) 4 5 4 5 Y
w1(4)-w1(3) 2 1 2 4 Y
w2(4)-w1(3) 3 3 2 4 Y

Each node*thread combination needs to be analyzed to fully describe all possible
shortest paths. An amended network is constructed such that every Node a is replaced
with Node a*] for all node threads 1 of Node a. A single arc from Node a to Node b is
replaced by multiple arcs from Node a*1 for all threads 1 of Node a and Node b*k for all
threads k of Node b. Arcs that do not satisfy condition 1 are eliminated from the

network.

For all arcs that satisfy condition 1, the measure of performance along the arc is given

as c(Node a*Thread 1, Node b*Thread k) = [Lox — La, Upk — Ua]. The amended
network of Figure 12 is shown in Figure 17. The flow chart for Check_Possible Arcs is

shown in Figure 18.
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Begin

Y

ToNodeThread=0

Check Possible Arcs

$<

ToNodeThread=
ToNodeThread+1

FromNodeThread=0

FromNodeThread=
FromNodeThread+1

LowArcRange(FromNode,FromNodeThread, ToNode, ToNodeThread) =

NodeValueLower(ToNode, ToNodeThread)-
NodeValueLower(FromNode,FromNodeThread)

UpperArcRange(FromNode, FromNodeThread, ToNode, ToNodeThread) =

NodeValueUpper(ToNode, ToNodeThread)-
NodeValueUpper(FromNode,FromNodeThread)
AliowedLow= ArcLower(FromNode, ToNode)
AllowedHigh=ArcUpper(FromNode, ToNode)

CurrentLow=LowArcRange(FromNode,FromNodeThread, ToNode, ToNodeThread)
CurrentHigh=UpperArcRange(FromNode,FromNodeThread, ToNode, ToNodeThread)

urrentLow>=AllowedLow and
CurrentHigh<=AllowedHigh?

yes

Check (FromNode,
FromNodeThread, (;:‘:;';qg?:%?::: '
ToNode, ToNode Thread) = ToNode, ToNode Thréad)
True = False

|

End

Figure 18: Flow Chart Check_Possible Arcs
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Find Paths

The algorithm performs all the operations necessary to build an amended network to
find all the shortest paths of the network. The sub-procedure Find Paths generates all
possible shortest paths of the network giveﬁ the node*thread and arc information. In
traditional shortest path algorithms, the measure of performance along an arc for a
specific shortest path is known before the algorithm is implemented and is therefore
redundant. The value of measure of performance along the arcs in an interval-network is
only bounded. Therefore, the c*(a, b) corresponding to all arcs (a, b) on the shortest
paths are also described in the Find_Paths sub-procedure.

Given: |
e G=(N,A,c)andN={1,2,..,n}
e c(a, b)=[Lap, Uab]
o wi(b)=[Lu Ul is the kth thread of Node b
e wj(a)= [f, aj» U a] is the jth thread of Node a
Let G* = (N*, A*, ¢c*) where

o N*={b*k}; beN={1,2,..,n}; k=1, 2, .., cardinality of w(b). The cardinality

of N* = " cardinality of w(i). K = cardinality of w(n)

i=1
o A*={(b*k,a*j)| Lok— Ly > Lapand Up~ Uy < U (Condition 1)}
o c*=c*b*k, a*j)=[Lo— La» Ubk— Ul = [Lokaj Ubkgl-
An arc can only be traversed directly from Node i to Node j if the arc (i, j) exists, i.e.,

c(i, j) <. A path moves from node to node by a specific arc connecting the two nodes.

Node - Arc & Node — -+ — Arc = Node . As each arc (i, j), in the path is traversed, a
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measure of performance, e.g., cost of c(i, j) is incurred. The objective is to find a path
from N+ to N- with the shortest measure of performance, e.g. smallest cost.

Given a path P = (1*1, ..., b*k) and a = (b*k, a*j) such thato € A*, path P* = (1*1,
.., b¥k, a*j) is a shortest path with initial Node 1*1 and terminal Node a*j. The
algorithm generates all shortest paths with initial Node 1*1 and terminal Node b*k .for
every b*k € N* using a iterative technique of adding nodes to existing shortest paths.

Initial paths are formed as paths with initial Node 1*1 and terminal Node b*k, for all
b*k that are connected to Node 1*1 (the arc from 1*1 to b*k must exist). New paths are
constructed as node*threads are added to previous shortest paths if the arc from the last
position node*thread to b* k exists. The algorithm creates new paths by adding nodes to
the end of existing paths and it is imperative to keep track of all nodes at the end of an
existing path (Last Position (Path P)).

A complete set of shortest paths with initial Node 1*1, terminal Node n*j and

cumulative length of the path w;(n) = [L njs U nj] Will be generated by the algorithm.

Figure 19 shows the flow chart for Find Paths. Below is each step of the algorithms

procedure for finding the shortest ;;ath of the network shown in Figure 17.

Last Position of existing paths = {1*1}

To Node =2 Is2*1 connected to 1*1? Yes. Node 2, Path 1= 1*1 to 2*1
Last Position of existing paths = {1*1, 2*1}

To Node =3 Is3*1 connected to 1*1? Yes A Node 3, Path 1 = 1*1 to 3*1
Is 3*1 connected to 2*¥1? No

Last Position of existing paths = {1*1, 2*1, 3*1}
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Find_Paths

ToNode = 1

ToNode=
ToNode+1

‘%

_ [, NG
ToNode =Llast-.” | roNodeThread=0

"'~ Node+1?
lyes

ToNode Thread ToNode Thread = Y9°

Number =ToNodeThread+1 Last +1?
CompletePaths
* no
———————— .. Check{1,1,ToNode ToNode Thread)
no : = . Start New Path at
. =1? . yes
ToNode/

ToNodeThread

PathNode(1,1,ToNode, ToNodeThread)=1
PathNode(1,2,ToNode,ToNodeThread)=ToNode
PathThread(1,1,ToNode, ToNodeThread)=1
PathThread(1,2, ToNode, ToNodeThread)=ToNodeThread

Y NumberOfPaths(ToNode, ToNodeThread)=
NumberOfPaths(ToNode ToNodeThread)+1
LastPathPostion(1,ToNode, ToNodeThread)=2

FromNode = 1

1.—__

FromNode=
FromNode+1

v

FromNode =
Last +1?

4 o

L FromNodeThread=0 J

yes

Y

FromNodeThread=
FromNodeThread+1

v yes

FromNodeThread = Last +17? -~

_ﬁ no

Check(FromNode,FromNodeThread,
ToNode,ToNode Thread) =1?

4

AddToNode/ToNodeThread To
Existing FromNode/
FromNodeThread Paths

|

Figure 19: Flow Chart Find_Paths
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ToNode =4 Is4*1 connected to 1*1? No
Is 4*1 connected to 2*1? No
Is 4*1 connected to 3*1? Yes Node 4, Path 1 = 1*] to 3*1 to 4*1
Is 4*2 connected to 1*1? No -
Is 4*2 connected to 2*1? Yes Node 4, Path 2 = 1*1 to 2*1 to 4*2
Is 4*2 connected to 3*1? Yes Node 4, Path 3 = 1*1 to 3*1 to 4*2
Last Position of existing paths = {1*1, 2*1, 3*1, 4*1, 4*2}

To Node =4 — End.

Change Arc On Path

Due to the structure of condition 1, it is possible that a corresponding measure of
performance alohg an arc has a lower bound greater than the upper bound. The sub-
procedure Change Arc On_Path, shown in Figure 20, corrects these possible
inconsistencies iﬁ the output. After fhe Find Paths sub-procedure is completed, the
algorithm would have generated 3 shortest paths for the network in Figure 12.

Length Path 1 = 1*1 to 3*1 to 4*1 =[2,4] + [2, 1] =[4, 5]

Length Path 2= 1*1 to 2*1 to 4*2 =[1,2] + [4, 5] =[5, 7]

Lenéth Path3=1*1to3*1to4*2=[2,4]+ (3,3} =[5, 7]

Since Node 4 has two node threads, there are two possible shortest path lengths
([4, 5] and [5, 7]). Path 2 and Path 3 both have cumulative length of [5, 7] and Path 1
([2, 4] + [2, 1]) has cumulative length of [4, 5]. Note that the arc from 3*1 to 4*1

satisfies Condition 1 but not the subset condition. If it had not been considered a “good”
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Change_Arc_On_Path

Begin

PathNumber=0

A

PathNumber=
PathNumber+1

PathNumber =
atalNumberOfPaths +

yes

End

Position=
LastPathPosition
{PathNumber)+1

ot}
-
g

Position=Paosition-1

yes
Position=1?

ToNcde=EndPathNode(PathNumber Position)
FromNode=EndPathNode(P Position-1)
ToNodeThread=EndPathThread(PathNumber,Position)
FromNodeThread=EndPathThread(PathNumbsr,Position-1)
Currenttowe=PathLowArcValue(FromNode, ToNode PathNumber,Position)
c High=PathUpperArcValue(FromNode,ToNode, PathNumber,Position}
AliowedLow=ArcLower(FromNode, ToNode)

AllowedHigh= ArcUpper{(FromNode,ToNods)

entHigh>AllowedLo

Increase
PathUpperArcValue

Decrease
PathLowArcValue

I

Figure 20: Flow Chart Change Arc_On_Path
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arc, this path would not have been enumerated as a shortest path. The primary objective
is to list all possible paths whose cumulative lengths are a thread of the End Node. Path 1
satisfies this condition. The value of [2, 1] for the arc from 3*1 to 4*1 is not a properly
defined interval-value. The corresponding measures of performance along the arcs are
necessary to formulate a complete path description. There are an infinite number of
combinations of 1*1 to 3*1 and 3*1 to 4*1, which would yield the [4, 5] distance. Recall
that the arc range from 1*1 to 3*1 = [2, 4] and 3*1 to 4*1 = [2, 3]. Below are a small
sample of combinations which yield the cumulative path distance of [4, 5]:

e 1*1to 3’;‘1 =[2,3] 3*1to4*1=[2,2]

e 1*1to3*1=[2,25] 3*1to4*1=1(2,2.5]

e 1*1to3*1=[2,2] 3*1to4*1=[2,3]

The algorithm finds only one alternative that will satisfy the cumulative path length
condition, since the primary objective is the generation of the shortest paths. The exact
values fqr the measure of performance along an arc is qualitative by nature and does not
need to be known. However, a measure of performance such that the lower bound is
greater than thé upper bound is counter-intuitive and doesn’t yield\ a meaningful path
description.

The sub-procedure Change Arc_On_Path changes the values along the arcs to yield
all arc values such that:

Given
e Path P* =(1*1, ..., b*k, a*j, ..., n*m)
o Wp(n)= [f, nms U am] = [End Node thread lower bound, End Node thread upper

bound]
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o (b, a) = [Lya, Ups] = [arc lower bound, arc upper bound]

e c* =c*(b*k, a*j) = [Lokaj Uskaj] = [arc thread lower bound, arc thread upper
bound] for every Path P*, A* = (b*k, a*j) € P*, and c*(b*k, a*j)

®  Likaj < Upkqj (The arc thread lower bound is less than the arc thread upper bound).

® Likaj = La (The arc thread lower bound is greater than or equal to the arc lower
bound).

®  Ubksj < Ugp (The arc thread upper bound is less than or equal to the arc upper

bound).

. /kZ/ Likg = f,nm (The lower cumulative path length equals the path thread
(b/k,a/ jeP*

lower bound).

. /kz Upgj = fjnm (The upper cumulative path length equals the path thread
(b/k,a/ j)eP* _

upper bound).

The arc thread values along each path are changed such that the lower arc thread
bound is less than the upper arc thread bound without loosing the integrity of the
cumulative path length. This adjustment is accomplished by decreasing and increasing
arc thread values simultaneously. If it is necessary to increase an arc thread’s lower
value, a decrease of the same magnitude in another arc thread’s lower value must
accompany the increase. Similarly, if it is necessary to decrease an arc thread’s upper
value, an increase of the same magnitude in another arc thread’s upper value must
accompany the decrease. The algorithms for sub-procedures Decrease_Path Low_Arc_
Value and Increase Path High Arc Value are in Appendix D and Appendix E,

respectfully.
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For example, the arc from 3*1 to 4*1 in Path 1 from above has a value [2, 1]. The arc
from 3 to 4 has value of [2, 4]. For this example, it is necessary to increase the arc upper
value by at least one unit.. However, the upper value of another arc thread along the path
must be decreased by the same value. The arc adjacent to (3*1, 4*1) is (1*1, 3*1). Since
the arc from 1 to 3 has a value of [2, 4] and the arc thread value is [2, 4], the upper arc
thread value can be decreased as much as 2 units. Since the necessary change is one unit
and 2 units are available to be changed, the upper bound of arc (3*1, 4*1) is increased
one unit and the upper bound of (1*1, 3*1) is decreased one unit. After creating the new
arc thread values, the length of Path 1 = 1*1 to 3*1 to 4*1 =2, 3] + [2, 2] = [4, 5].

For longer paths, the amount available in the adjacent arc may not be as large as the
needed change. In this instance, the largest change possible is made in each arc along the
path until the required change is accomplished.

After the sub-procedure Change Arc On Path is complete, the algorithm has
generated all possible shortest paths for the interval-network and each arc value along the
path is a subset of the interval cieﬁned in the problem statement. The development of the

methodology for the analysis of the set of shortest paths will be discussed in Chapter V.
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CHAPTER IV
ALGORITHM RESULTS

Introduction

This chapter will show several examples of output from the algorithm discussed in
Chapter III. It is impossible to give an exhaustive list of the types of shortest path
problems. However, the examples shown in this chapter should give the reader a basic
overview of the situations that result when implementing this algorithm. The algorithm
was coded in Visual Basic [11] with Microsoft Excel [10] as the interface. The Visual
Basic code is in Appendix A. Node data and arc measure of performance bounds are the
only required inpu.t for this algorithm. The lower and upper measure of performance
along the arcs are written in matrix form in a Microsoft Excel [10] Spreadsheet. If the arc
connecting two nodes does not exist, the lower and upper arc bounds are infinity (infinity
has been defined as 9999 in_ this program). Additionally, all significant output data is
written to the Microsoft Excel [10] Spreadsheet.

The first output of the algorithm is the Node Threads or {w;(k)} for all nodes k. The
quantity of Node Threads is a major contributor to the complexity of the algorithm. The
Node Threads are generated in the first stages of the algorithm. The number of iterations
remaining in the algorithm is a direct result of the number of Node Threads.
Additionally, the size of the shortest path solution set is directly related to the number of
Node Threads. A large number of Node Threads generally occurs in a network with
many nodes and/or large ranges between the bounds of the measure of performance. As

the range between the bounds increases, the network resembles an unbounded network.
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As the size of the network approaches an unbounded network, the set of shortest paths
from Node 1 to Node n approaches the set of all paths from Node 1 to Node n.

The most significant output of the algorithm is the set of all paths in Node*Thread
notation. The shortest paths are based on End Thread information. End Threads are a
specific set of Node Threads for the destination node of the shortest path. The End
Threads specify the possible shortest path distances. The path information consists of the
nodes traversed in the path, the shortest path distance, and the measure of performance
along the arcs in the path which correspond to that shortest distance. The generation of
the shortest path is only possible after the algorithm has checked all arcs against specific
conditions to find the set of possible arcs. Additionally, the measure of performance
along the arcs is corrected if the lower bound of the measure of performance is greater

than the upper bound of the measure of performance.
10-Node Traditional Networks

The algorithm is designed to yield all possible shortest paths of a network with
interval-valued measures of performance . However, the algorithm will yield the shortest
path of a network with single-valued measures of performance. If a measure of
performance along an arc is a constant, it is described by an interval such that the upper

and lower bounds are equal. Figure 21 shows a 10-Node network with constant-valued
measures of performance. Table IV shows the Node Thread values {wi(b) = [ I:bk, Uy ]

= [Lower Node Thread, Upper Node Thread]} for Node b, b = 2, 3,...,10. These are the
exact w(k) values that would result by implementing Dijkstra’s method. Table V shows

all arcs of an amended network of the original network given in Figure 21. In the
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[21,21]

[19, 19]

[15, 15]

[28, 28]

[14, 14]

2
[28, 28]
(35, 35)
1 [42, 42] 4
[28, 28]
[21,21]
3 [42, 42]

{35, 35]

amended network, each single node is replaced by all node*threads for that node. The
arcs in Table V are denoted by the originating node*thread (TO NODE) and terminating
node*thread (FROM NODE). Only the arcs that satisfy Condition 1 may be members of
a shortest path. However, many of the arcs that could be members of the shortest path

may not actually be members of the shortest path. Basically, an arc is a possible member

{35, 35]

[13, 13]

[18, 18]

[35, 35]

Figure 21: 10-Node Network 1

[21,21]

of a shortest path if the arc “generated” a specific Node Thread value. The Node Thread

value, w(k), is a minimum from among a set of w(a) + c(a, k) of all Node a’s proceeding
Node k. Table VI shows the one shortest path of the network in Fi.gure 21 (Node

1—>Node 3—>Node 6 >Node 10). The existence of only one shortest path is not a

surprise, considering the single-valued measures of performance along the arcs.

Table IV
Node Threads for 10-Node Network 1
Node Thread | 2 3 4 5 6 7 8 9 10
Lower 1 28 | 21 42 | 49 | 63 | 67 | 70 | 98 | 79
Upper 1 28 | 21 42 | 491 63 | 57 | 70 ) 98 | 79
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Table V
Possible Arcs for 10-Node Network 1

TONODE |11 |11|11}21]21|31|31[41({41(41[51[51[61{61]61[71!71{81]91

FROMNODE |21 {31{41{41151}{41{6151]61]|71]|71]|81]71]91(101]{81[101[101/101

CONDITIONT| Y | Y Y [N|JY |[N|JY|N|N|{Y|N|IN|N|[Y[Y]Y|N|N|N
SATISFIED?

Table VI
Path Threads for 10-Node Network 1
Lower | Lower | Upper | Upper | | Node* | Node* Lower End- | Upper End
Arc | Bound | Value | Value | Bound | | Thread | Thread Thread -Thread
Arc1 21 21 21 21 11 31
Arc2 42 42 42 42 31 61
Arc3 16 16 16 16 61 101 79 79

The primary objective of this research project was the generation of shortest paths
when the exact measures of performance along the arcs were unknown. The algorithm
described in Cha;;ter HI finds all shortest paths of a network whose measures of
performance along the arcs are bounded above and below. One is tempted to find the
shortest path of a network with constant measures of performance at each of the bounds.

For instance, the network in Figure 21 may be the lower bounds of the measures of
performance along the arcs. Figure 22 shows a constant network such that each measure
of performance along an arc is four units greater than the network in Figure 21. This
would describe the upper bounds of the measures of performance along the arcs if the
measures of performance of the network in Figure 21 could deviate as much as four units
higher than the values seen in Figure 21. Table VII shows the Node Thread values for
Node 2 through Node 10 of the network in Figure 22. Table VIII shows that the identical
shortest path to the network for Figure 22 that was obtained for the network in Figure 21.

The only difference is the measure of performance along the arcs.
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[25, 25] [32,32]

[18, 18]

[39, 39] [17, 17]

[46, 46] [19, 19] [39,39]

[32, 32] [39, 39] [20, 20]

[25, 25]

[39, 39]

[46, 46]

Figure 22: 10-Node Network II

Table VII
Node Threads» for 10-Node Network II

Node Thread 2 3 4 5 6 7 8 9 10

Lower 1 40 30 60 70 90 80 | 100 | 140 | 110

Upper 1 40 30 60 70 90 80 | 100 | 140 | 110
Table VIII

Path Threads for 10-Node Network 11

Lower | Lower | Upper | Upper .Node* | Node* Lower End | Upper End
Arc | Bound | Value | Value | Bound -Thread | Thread Thread Thread
Arc1 30 30 30 30 ‘ 11 31
Arc2 60 60 60 60 31 61
Arc3 20 20 20 20 61 101 110 110
10-Node Network I1I

Figure 23 shows a 10-Node network with interval-valued arc lengths which contains
the constant measures of performance of the network in Figure 21 as the lower bounds
for the measure of performance and the constant measures of performance in Figure 22 as

the upper bounds for the measures of performance. The interval-values complicate the
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problem as all points contained between the bounds are a possible measure of

28, 32]

[13,17] [18,22]

performance along an arc.

[21,25]

[28, 32] [35,39]

[42, 46] [15,19] [35, 39]

[28, 32] [16, 20]

[21, 25] [35, 39]

[42, 46] [35, 39]

Figure 23: 10-Node Network III

Table IX shows the Node Thread values {w(b) = [f, bks U vk] = [Lower Node Thread,
Upper Node Thread]} for Node b, b = 2, 3,...,10 for the network in Figure 23. For any
10-Node network, the number of End Threads, w(10) = {w;(10)} can be extremely large.
Specifically for this network, the number of End Threads could approach 2'%% = 2® = 256.
However, there are only two End Threads for the network in Figure 23. The four unit

interval-range, i.e., the upper bound minus the lower bound, along each arc contributes to

the small number of End Threads.

Table IX
Node Threads for 10-Node Network III
Node Thread | 2 3 4 5 6 7 8 9 10
Lower 1 28 | 21 | 42 | 49 | 63 | 67 | 70 | 98 | 79
Upper 1 32 | 25| 46 | 57 | 71 | 63 | 76 | 110 | 88
Lower 2 63 | 76 88
Upper 2 65 | 77 91
Lower 3 77
Upper 3 80
Lower 4 80
Upper 4 82
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However in general, the basic structure of the network and the proximity among the
measures of performance along the arcs contributes substantially to the number of End
Threads and subsequently the number of shortest paths. Measure of performance along
the arcs that are near one another creates Omega values with a greater number of
intersections and therefore a greater number of Node Threads.

These two End Threads represent the two possible sets of cumulative shortest path
lengths, [79, 88] and [88, 91]. Basically, the shortest path will be between 79 and 91
units. However, the interval from 79 to 91 is partitioned into two sets, to give us speciﬁc
information on which shortest path will yield the specific cumulative path lengths. For
the network in Figure 23, the shortest paths and corresponding measures of performance
along the arcs which yield that shc;rtest path length are shown in Table X. In Table X the

measure of performance along any arc(a, b) is calculated as w(b) — w(a).

Table X
~ Uncorrected Path Threads 10 Node Network 111
Lower | Lower | Upper | Upper Node* | Node* End Thread
Path | Arc | Bound | Value | Value | Bound Thread | Thread Lower | Upper

1 1 21 21 25 25 11 3
2 42 42 46 46 | 31 61

3 16 16 17 20 61 101 79 88
2 1 21 21 25 25 11 31
2 42 42 46 46 31 61

3 16 25 20 20 61 102 88 91
3 1 42 42 46 46 11 41
2 15 15 17 19 41 71
3 13 13 13 17 71 81

4 18 18 15 22 81 102 88 91

The arc measures of performance listed in Table X contain arc values such that the
lower bound is greater than the upper bound. The sub-procedure Change Arc_On_Path

corrects the measure of performance along arcs as shown in Table XI. The output shown
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in Table XI will be further analyzed according to the output methodology described in

Chapter V.
Table XI
Corrected Path Threads 10 Node Network II1
Lower | Lower | Upper |- Upper Node* | Node* End Thread
Path | Arc | Bound | Value | Value | ‘Bound Thread | Thread Lower | Upper

1 1 21 21 25 25 11 31
2 42 42 46 46 31 61

3 16 16 17 20 61 101 79 88
2 1 21 | 22 | 25 25 11 31
2 42 46 46 46 31 61

3_ 16 20 20 20 61 102 88 91
3 1 | 42 42 45 46 11 41
2 15 15 15 19 41 71
3 13 13 13 17 71 81

4 18 18 18 22 : 81 102 88 91

10-Node Network IV

Figure 24 shows another 10-Node network identical to the network in Figure 21. The
lower bounds for the measures of performance are identical to the network in Figure 21,

but the interval-ranges are varying quantities. The smallest range is three units, [7, 10],

21,30] @ 28, 40]

[15,20]

135, 39]

[16, 20
[35, 50]

[42, 60]

[35, 50]

Figure 24: 10-Node Network IV

69



and the largest range is 18 units, [42, 60]. Table XII shows the {wi(b) = [L s, Unl =
[Lower Node Thread, Upper Node Thread]} for Node b, b = 2, 3,..., 10 for the network in
Figure 24.

Table XI1I
Node Threads for 10 Node Network IV

Node ‘Thread | 2 3 4 5§ 6 7 8 9 10
Lower 1 28 {21 {42 | 49 | 63 | 57 | 70 | 98 | 79
Upper 1 40 | 30 | 49 | 61 | 77 | 63 | 76 {112 | 88
Lower 2 49 | 61 | 77 { 63 | 76 | 112 | 88
Upper 2 60 | 68 | 84 | 64 | 77 | 119 | 92
Lower 3 68 [ 84 [ 64 | 77 | 119 | 92
Upper 3 69 | 90 | 69 | 82 | 127 | 93
Lower 4 69 69 | 82 | 127 | 93
Upper 4 70 70 | 83 {134 | 94
Lower 5 70 | 83 [ 134 | 94
Upper 5 75 | 84 [ 140 95
Lower 6 75 | 84 95
Upper 6 80 | 88 96
Lower 7 88 96
Upper 7 89 97
Lower 8 89 97
Upper 8 90 98
Lower 9 90 98
Upper 9 95 99
Lower 10 95 99
Upper 10 96 100
Lower 11 96 100
Upper 11 97 101
Lower 12 97 101
Upper 12 100 102
Lower 13 102
Upper 13 103
Lower 14 103
Upper 14 104
Lower 15 104
Upper 15 105
Lower 16 105
Upper 16 106
Lower 17 106
Upper 17 107
Lower 18 107
Upper 18 108
Lower 19 108
Upper 19 109
Lower 20 109
Upper 20 110
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As expected, there are more End Threads for the network in Figure 24 than the
network in Figure 23. Table XII displays the 20 End Threads for the network shown in
Figure 24. This is not near the maximum of 256. The algorithm generated 538 shortest
paths for the network in Figure 24. The 538 shortest paths for this network are shown in
Appendix F. These shortest paths are described by the node*threads that the paths
traverse and the measures of performance along the arcs that are necessary to yield that |
shortest path distance. The shortest path output for the network in Figure 24 will be

further analyzed according to the output methodology described in Chapter V.
7-Node Network

A 7-Node network is shown in Figure 25. The structure of this network is relatively
simple. Each node has less than four entering arcs. Additionally the interval-range along
each arc is less than five units. Table XIII shows the {wi(b) = [f,bk, ﬁbk] = [Lower

Node Thread, Upper Node Thread]} for Node b, b =2, 3....,7 for the network in Figure

(2, 3]

[7,9]

Figure 25: 7-Node Network
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Table XIII
Node Threads for 7-Node Network

Node Thread | 2 3 4 5 6 7
Lower 1 3 4 5 9 8 15
Upper 1 5 7 6 10 { 12 | 16
Lower 2 6 10 16
Upper 2 9 14 20
Lower 3 20
Upper 3 23

25. There are only three End Threads for the network in Figure 25. However, there are
20 shortest paths for the network in Figure 25. This is a relatively large number of
shortest paths even though there are only three End Threads. However, the values of the
measures of performance along the arcs are relatively close to one another. This situation
yields a network such that a large portion of the arcs satisfy Condition 1 and therefore can
be members of the shortest path. Specifically, as seen in Table XIV, 16 of the 25 arcs
connecting node*threads can be members of the shortest path. Table XV shows the 20
shortest paths generated by the algorithm The shortest path output for the network in
Figure 25 will be further analyzed according to the output methodology described in
Chapter V.
Table XIV
Possible Arcs for 7-Node Network

TONODE {1111 [111111{21121721}31131|31131]31|41

FROMNODE | 21131(41[{42131|51]52|41{42{51|52|61]}61

CONDITON1| Y| Y | Y|Y{Y I NJY | N|JYIY|Y]Y N
SATISFIED?

TONODE |42|51{52{51|52|51{52(51]|52{61]|61]61
FROMNODE |61 |61({61}71{71(72}72|73|73(71]|72]73

CONDITIONT{ NN NjJY N JY]Y|NJYIN]JY|Y
SATISFIED?
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Table XV
Path Threads for 7 Node Network

_ Lower | Lower | Upper | Upper Node* | Node* End Thread
Path | Arc | Bound | Value | Value | Bound | | Thread | Thread Lower | Upper
1 1 4 4 5 7 11 31
2 5 5 5 7 31 51
3 6 6 6 10 51 71 15 16
2 1 3 3 4 5 11 21
2 1 1 1 4 21 31
3 5 5 5 7 31 51
4 6 6 6 10 51 71 15 16
3 1 4 4 5 7 11 31
2 5 5 5 7 31 51
3 6 7 10 10 51 72 16 20
4 1 3 3 4 5 11 21
2 1 1 1 4 21 31
3 5 5 5 7 31 51
4 6 7 10 10 51 72 16 20
5 1 3 3 5 5 11 21
2 7 7 9 11 21 52 :
3 6 6 6 10 52 72 16 20
6 1 4 4 7 7 11 31
2 5 6 7 7 31 52
3 6 6 6 10 52 72 16 20
7 1 3 3 5 5 11 21
2 1 1 2 4 K 21 31
3 5 6 7 7 31 52
4 6 6 6 10 52 72 16 20
8 1 4 4 7 7 11 31
2 4 4 5 5 31 61
3 8 8 8 11 61 72 16 20
9 1 3 3 5 5 11 21
2 1 1 2 4 21 31
3 4 4 5 5 31 61
4 8 8 8 11 61 72 16 20
10 1 3 3 5 5 11 21
2 7 7 8 11 21 52
3 6 10 10 10 52 73 | 20 23
11 1 4 4 7 7 11 31
2 5 6 6 7 31 52
3 6 10 10 10 52 73 20 23
12 1 3 3 5 5 11 21
2 1 1 2 4 21 31
3 5 6 6 7 : 31 52
4 6 10 10 10 52 73 20 23
13 1 4 4 7 7 11 31
2 4 5 5 5 31 61
3 8 11 11 11 61 73 20 23
14 1 3 3 5 5 11 21
2 1 1 2 4 21 31
3 4 5 5 5 31 61
4 8 11 11 11 61 73 20 23
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6-Node Network

As mentioned in Chapter II, Okada and Soper [11] have modeled a network using
trapezoidal fuzzy arc lengths. These arc values are more limiting than interval-valued
arcs. The network in Figure 26 contains interval-values similar to the trapezoid numbers

introduced by Okada and Soper.

[52, 65]

[35,45] [50, 100]

[70, 97]

[10, 20]

Figure 26: 6 Node Network

For t'he measure of performance along the arcs, each trapezoidal number [a, b, ¢, d] is
translated into the interval-value [a — ¢, b + d]. This network is NOT identical to the
network introduced by Okada and Soper. However, this modification to the Okada and
Soper network is the best opportunity to compare the results of the algorithm discussed in
Chapter III with results from the literature. Table XVI and XVII show thé Node Threads
and Path Threads, respectively, for the network shown in Figure 26. The shortest path
output for the network in Figure 26 will be further analyzed according to the output

methodology described in Chapter V.
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Table XVI
Node Threads for 6-Node Network

Node Thread | 2.3 4 5 8

Lower 1 10 | 456 | 55 53 | 103
Upper 1 30 | 52 | 62 60 | 110
Lower 2 52 62 60 110
Upper 2 70 [ 72 62 | 112
Lower 3 72 62 112
Upper 3 90 80 | 125
Lower 4 125
Upper 4 132
Lower 5 132
Upper 5 142
Lower 6 142
Upper 6 159
Lower 7 159
Upper 7 160
Lower 8 160
Upper 8 162
Lower 9 162
Upper 8 169
Lower 10 169
Upper 10 180

The six networks shown as examples in this chapter were developed with different
characteristics in order to give a brief overview of the results of the Avery Shortest Path
Algorithm. The first output of .the algorithm was the Node Threads or {wi(k)} for all
nodes k. The number of Node Threads was a major contributor to the complexity of the
algorithm and the set of 6 shortest path problems yielded 1, 1, 2, 3, 10, and 20 End
Threads, respectively.

The most significant output of the algorithm was the set of all shortest paths, Path
Threads. Each shortest path was described by the Node*Threads traversed along the
path, the corresponding End Thread (the cumulative path length), and the measure of
performance along each arc, which yielded the specific End Thread. The set of 6 shortest
path problems yielded 1, 1, 3, 14, 80, and 538 shortest paths, respectively. The different

number of End Threads and Path Threads was a result of the span of the intervals, the
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- Table XVII:
Path Threads for 6-Node Network

Path Node Threads Path ~_Node Threads

101 1 201 | 301 | 501 | 601 41 101 | 201 | 302 | 502 | 606
101 | 201 | 301 | 501 | 602 42 101 | 201 | 503 | 606
101 1 201} 301 | 502 | 602 43 101 302 | 603 | 606
101 1 302 | 502 | 602 44 101 | 201 | 302 | 503 | 606
101 | 201 | 302 | 502 | 602 45 1 101 | 201 | 301 | 402 | 607
101 1 201§ 301 | 501 | 603 46 101 302 | 402 | 607
101 {201 | 301 | 502 | 603 47 101 | 201 | 302 | 402 ; 607

101 | 302 | 602 | 603 48 101 | 302 | 403 | 607

101 | 201 | 302 | 502 | 603 49 101 | 201 | 302 | 403 | 607
101 | 201 | 503 | 603 50 101 | 201 | 301 | 501 ; 607
101 | 302 | 503 | 603 51 101 | 201 | 301 | 5§02 | 607

101 | 201 | 302 | 503 | 603 52 101 | 302 | 502 | 607
101 { 201 | 301 | 401 | 604 63 101 | 201 | 302 | 502 | 607
101 | 201 | 301 | 501 | 604 54 101 | 201 | 503 | 607
101 | 201 | 301 | 502 | 604 55 101 | 302 | 503 | 607

101 | 302 | 502 | 604 56 101 | 201 | 302 | 503 | 607
101 | 201 | 302 | 502 | 604 57 101 | 201 | 301 | 402 | 608
101 | 201 | 503 | 604 58 101 | 302 | 402 | 608

101 | 302 | 503 | 604 59 101 | 201 | 302 | 402 | 608

101 [ 201 ] 302 | 503 | 604 | 60 101 | 302 | 403 | 608
101 | 201 | 301 | 401 | 605 61 101 | 201 | 302 | 403 | 608
101 | 201 | 301 | 402 | 6056 62 101 | 201 | 301 | 502 | 608
101 | 302 | 402 | 605 63 101 | 302 | 502 | 608
101 | 201 | 302 | 402 | 605 64 101 | 201 | 302 | 502 | 608
101 |1 201 | 301 | 501 | 605 65 101 | 201 | 503 | 608
101 [ 201 ] 301 | 502 | 605 66 101 | 302 | 503 | 608

101 | 302 | 502 | 605 67 101 | 201 | 302 | 6503 | 608
101 | 201 | 302 | 502 | 605 68 101 | 201 | 301 | 402 | 609
101 | 201 | 503 | 605 69 101 | 302 | 402 | 609

101 | 302 | 503 | 605 70 101 | 201 | 302 | 402 | 609

101 | 201 | 302 | 503 | 605 71 101 | 302 | 403 | 6089
101 | 201 | 301 | 401 | 606 72 101 | 201 | 302 | 403 | 609
101 | 201 | 301 | 402 | 606 73 101 | 201 | 503 | 609

101 | 302 | 402 | 606 74 101 | 302 | 503 | 609
101 | 201 | 302 | 402 | 606 75 101 | 201 | 302 | 503 | 609
101 | 302 | 403 | 606 76 101 | 302 [ 403 | 610

101 | 201 | 302 | 403 | 606 77 101 | 201 | 302 | 403 | 610
101 { 201 | 301 | 501 | 606 78 101 | 201 | 503 | 610
101 [ 201 | 301 | 502 | 606 79 101 | 302 | 503 | 610
101 | 302 | 502 | 606 80 101 | 201 | 302 | 503 | 610

DN PIINIINIDNI NI NI (NI INI f i e fh [ o [ | b [ |} od
nggggggﬁggmmﬂmmhwm—xocomwoxmbww—‘o‘pm\'a’o’h0"\’-‘

relationship among the measures of performance along the arcs, and the basic structure of
the network. The information describing the Path Threads was necessary for the
inclusion of all possible events. However, the overall quantity of information can be

somewhat overwhelming. Chapter V describes the output methodology, which
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consolidated the Path Threads and provided alternative measures of “best” for judging the

quality of the consolidated set.
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CHAPTER V
OUTPUT METHODOLOGY
Introduction

The algorithm described in Chapter III generates the set of all possible shortest
paths, Path Threads. The second objective of this research project was the development
of a methodology, which would provide additional meaningful information about the
extensive algorithm output.

The path threads that are generated by the algbrithm are described by the
node*threads, which are traversed in the path. Additionally, the algorithm generates the
measure of performance along the arcs, which corresponds to each specific shortest path.
The output methodology initially consolidates the path threads by combining the path
threads that traverse the same nodes into a single Combo Path. To appropriately describe
the Combo Paths, the thread information is combined to generate the measures of
performance along the arcs for the Combo Path. A series of sub-procedures,
Combine_Path Threads, Obtain_Combo_Thread_Iﬁfo, and Find Arc Values On_
Combined Path, develop a consolidated solution set of the shortest paths.

Since it is unlikely that there will be only one unique Combo Path,' it is important to
provide a means for comparing the solutions in the consolidated set. Additionally,
different decision-makers may not agree on what defines the "best" shortest path solution.
Thus, a sub-objective of the second objective was to develop a methodology that would
allow the evaluation of alternative attributes of the consolidated set of solutions. Each

attribute of a shortest path solution gives the decision-maker information about the
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quality of each path, given a specific objective. The attributes are generally independent
of one another and may or may not result in comparable conclusions. A decision-maker
may choose one single attribute or combine the qualities of several attributes to determine
the "best" among the consolidated set of solutions. Based on the decision-maker's own
specific definition of "best", he/she will be better prepared to select the "best" path from
among the set of shortest paths.

The consolidated solution set is analyzed and ranked according to three criteria, (1)
non-dominance, (2) minimization of regret, and (3) existence of dominant arcs in the sub-
procedures Find_NonDominated Paths, Minimize Regret, and Find Path Points,
respectively. Non-dominance and minimization of regret are criteria used in existing
literature under conditions of uncertainty, the dominant arc criteria is a criteria created for
this research project [4, 18]. Additionally, the set of sub-paths is generated. The sub-
paths that are contained among the multiple shortest paths are generated and described in
the series of sub-procedures Find SubPaths, Check_Identical SubPaths, and

Find_Shared SubPath_ Info.
Combine Path Threads

The path information generated by the algorithm consists of both the nodes traversed
and the measurement of performance along the arcs necessary for that path to be
considered a shortest path. As shown in Chapter III, the algorithm would generate the
following shortest paths for the network in Figure 12.

Path 1 =1%*1 to 3*1 to 4*1

Path 2= 1*1 to 2*1 to 4*2
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Path 3 =1*1 to 3*1 to 4*2

Note that Path 1 and Path 3 traverse the same nodes and are therefore identical paths.
The sub-procedure Combine Path Threads, shown in Figure 27, searches all shortest
paths to find all paths that traverse the same nodes and combines them into Combo Paths.
The Combine Path_Threads sub-procedure yields the information that is easily seen,in
the trivial example from Figure 12.

Combol = Pathl and Path 3 = Nodel to Node 3 to Node 4

Combo2 = Path 2 = Node 1 to Node 2 to Node 4

As the paths are combined, the threads of each member of the ComboPath are
collected. The information contained in the threads can be extremely useful when
comparing the set of shortest paths. Recall in Figure 14, the idea of cut-points was
introduced for Node 4 of the network in Figure 13. The cut points of Node 4 are {4, 5,
7}. The w(k) signify the shortest distance to Node 4. This represents, the shortest path
length interval [4, 7] being cut into a series of sub-intervals, [4, 5] and [5, 7]. The output
methodology now rejoins these sets where appropriate to find a single w(k) for each
ComboPathNumber. The sub-pfocedure Obtain_ Combo_Thread_Info (Appendix G)
searches the paths contained in each combo number and collects all threads that exist at
each traversed node.

The low thread and high thread are found for each node traversed in the ComboPath.
The thread information, consisting of the low thread and high thread, of each node
traversed in each ComboPath is collected and combined. |

The symbol j is defined to be the lowest thread occurring at node b contained in

Combo M, k is the highest thread occurring at node b contained in Combo M, and wM(k)
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Begin Combine_Path_Threads

Y

Check_ldentical_Paths

L]

ComboNumber = 0
PathNumber=0

r

PathNumber=
PathNumber+1

PathNumber =
etalNumberOfPaths +

ComboPathFound
{PathNumber)=0

PathNumber=0

*

PathNumber=
PathNumber+1

PathNumber = omboPathFound
FotalNumberOfPaths +47 PathNumber) = 0

. ComboNumber= ComboNumber+1
Num b"'éo;?mNb'“idpa'hs = CombinedPath(ComboNumber,1)=PathNumber
omboNumber PathinPositionCombo=1
- : j = PathNumber
# ' k
End =)+

yes

PathMatch
PathNumber,j)=1 ?

yes

v

ComboPathFound(PathNumber)=1
ComboPathFound(j)=1
PathinPositioninCombo=PathinPositioninCombo+1
CombinedPath(ComboNumber,PathinPositioninCombo)=j

PathinPositioninCombo

PathinCombo(ComboNumber)=| |

Figure 27: Flow Chart Combine Path_Threads
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is the combined w(k) at node b in Combo M. Given, wM(b) = [ﬁ by U bk] and WMj(b) =
[Ly;. Uy;l, this implies that wM(b) = [L b, Uyl.

For Combo 1, the low and high thread for Node 1 and Node 3 is thread 1. Therefore,
the w(k) for Node 1 and Node 3 do not need to be combined. The low thread for Node 4
is 1 and the high thread for Node 4 is 2. These two threads are combined as [4, 5] U[S,
- 7] =14, 7). For Combo 1, w(1) equals [0, 0], w(3) equals [2, 4], and w(4) equals [4, 7].
Combo 1 =1*1 to 3*1 to 4*1 + 1*1 to 3*1 to 4*2= 1*1 to 3*1 to 4*(1+2) = {0, 0] to [2,
4] to [4, 7].

For Combo 2, the low and high thread for Node 1 and Node 2 is thread 1. The low
and high thread of Node 4 is 2. Therefore, there is no combination for w(k) in Combo 2.
For Combo 2, w(1) equals [0, 0], w(2) equals [1, 2], and w(4) equals [5, 7]. Combo2 =
1*¥1to 2*1 to 4*2=1[0,0] to [1, 2] to [5, 7).

The information regarding combined threads in a shortest path is essential in the
methodology to compare the shortest paths. This information is most useful §vhen
comparing the combined paths on a basis of non-dominance. Recall that for each path
the algorithm generates, the measure of performance along an arc is calculated with
respect to the node*threads that the path traversed. The Combo 1 shortest path from
Node 1 to Node 3 to Node 4 has a shortest path interval length of [4, 7] units. The
Combo 2 shortest path from Node 1 to Node 2 to Node 4 has a shortest path interval
length of [5, 7] units.

Specifically, the measure of performance corresponding to arc (j, k) equals w(k) —
w(j). However, similar to the non-combined paths, the interval value of the measurement

of performance along the path can be counter-intuitive.  The sub-procedure
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Find_Arc_Values_On_Combined Path (Figure 25) generates the measure of
performance along the arcs with respect to the combined path thread information. The
arc(1,2) = [1, 2] and arc(2, 4) = [4, 5] altered measures of performance are based on the
interval length of the ComboPath. Combol arc(1, 3) = [2, 4] and arc(3, 4) = [2, 3]. The
combo path length is weighted along each arc contained on the combo path based on the
measure of performance possible along the arcs and path.
Given:

Combo M

EndNode = n

c(a, b) = [La, Uab]

wM(b) = [L oi, Ui); low thread =k, high thread = j
Let:

c*(a, b) = [L‘ab, U'ab]; the measure of perfofmance along arc (a, b) yielding the

shortest path is:

L'= Lo — La
v v (Ug=Lp)Uy-Ly)

Ump=L s+
v > (Up~Ly)
(a,b)eP

The Arc Low value is determined by subtracting the terminating low node value from the
originating low node value. The portion of the cumulative path span portioned to arc j is
based on the original bounds on arc j. The measure of performance along the arc
corresponding to each Combo Path is found in the sub-procedure Find_Arc_Values_On_

Combined Path as seen in Appendix H.
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Non-Dominance and Minimize Regret Attributes

The combined path information specific to the end threads yields all possible shortest
path lengths possible for each Combo Path. The cumulative path lengths for a specific
path are possible, but not guaranteed. Due to the uncertainty of the interval-network, a
truly optimal shortest path may not exist. An optimal path would be a path that would
guarantee, regardless of the measures of performance along all the arcs, that the optimal
path would always yield the shortest path. The network shown in Figure 11 shows a
network With an optimal path, whose cumulative length is [2, 4]. Generally, a truly
optimal path will not exist in an interval-network. Although not an optimal path, a non-
dominated path is a desirable characteristic of a shortest path of a network.

A non-dominated shortest path is a path in which each its cumulative path length

range is contained in the set of all possible shortest path lengths.
Given EndNode = n, cardinality of w(n) =c, wi(n) = [f, nl U i), We(n) = [ L, U ncl»

Combo M Lower Bound= ) L, ,and Combo M Upper Bound= 3 U, . Combo
(a,b)eM (a,b)eM

M is a non-dominated path if >, L, =Ln = Short Lower Bound, and ) U, =
(a,b)eP . (a,b)eP

A

U, = Short Upper Bound. The algorithm searches through the ComboPaths and
EndThreads. If the Combo Path satisfies both of these conditions it is a non-dominated
path. Figure 28 shows the flow chart for sub-procedure Find NonDominated Paths.
Table XVIII shows the Combo Path non-dominance information including short and path

upper and lower bounds for the network shown in Figure 12.
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Begin Find_NonDominated_Paths

v

ComboNumber=0

o

ComboNumber=
ComboNumber+1

yes

p ComboNumber=0

y

ComboNumber= ComboNumber+1
PositioninCombo=0 ComboNumberNonDominated

l‘ (ComboNumber)=1

PositioninCombo=

PositioninCombo+1

Thread=0
ositioninCombo=
PathsinCombo
ComboNumber)+1 l¢
-
no
Thread = Thread+1
Y
PathNumber=
CombinedPath(ComboNumber,PositioninCombo)
ThreadinComboNumber(ComboNumber,EndPathThread
(PathNumber,LastPathPositionEnd{PathNumber)))=1 )
hreadinComboNumbe

ComboEndThreads(ComboNumber,PositioninCombo)= omboNumberThread)=
EndPathThread(PathNumber,LastPathPositionEnd

(PathNumber))

ComboNumberNonDominated

(ComboNumber)=0

Figure 28: Flow Chart Find_NonDominated Paths
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It is possible that a network may contain no or more than one non-dominated path.
The primary significance of a non-dominated path is that it is a path with the shortest
possible cumulative length and the path that cannot be worse than the longest shortest
path. Recall, that an interval-network does not provide any information about the
probability of any specific quantity for the measure of performance along an arc.
Therefore, it is unknown how likely a path is to yield any specific cumulative length. A
decision-maker that chooses a non-dominated path as the “best” path is willing to take
any risk for the possibility (regardless of how small) of achieving the goal of shortest
possible path length.

Table XVIII
Non-Dominance Information for Figure 12 Network

Short Lower Short Upper
Bound Bound
4 7
Combo Lower | Combo Upper | Non-Dominated Path
Bound Bound (Y/N)
Combo 1 4 7 Y
Combo 2 5 7 N

The non-dominance information shows all possible End Thread lengths possible for
any ComboPath, including the smallest possible shortest path length for each Combo
Path. The sub-procedure Minimize Regret, shown in Figure 29, further reduces this
information to give the user an overview of the shortest possible shortest path length and
the longest possible shortest path length for each Combo Path.

A decision-maker that bases his/her choice for “best” on non-dominance disregards
risk. However, some decision-makers may want to base their choice of “best” on a desire

to avoid risk, or minimize regret. This type of decision-maker is concerned primarily
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with protecting against the worst-case for each Combo Path, or more specifically, with
knowing the difference between the worst-case and the best-case scenarios.

In the sub-procedure Combine Path Threads, the Combo Paths are sequentially
numbered according to their shortest possible cumulative path length. That is, in the best
case for each Combo Path, Combo P would have a shorter possible cumulative path
length than Combo P+1. The possible shortest path lengths corresponding to each
Combo Path is provided ih the non-dominance information. However, this information
only corresponds to the possible shortest path. Some Combo Paths contain possible
cumulative lengths that are greater than the longest possible shortest path. The longest
possible shortest path is the upper bound for the last End Thread. The Combo Path
information for the cumulative length that may not be a shértest path, is important
information to a decision-maker that is concerned with the minimization of regret.

The minimize regret information addresses the issue of worst case for each Combo
Path. Each Combo Path contains a span of possible path lengths, if that path were
actually a shortest path. Whether the path is the true shortest path is unknown.
Additionally, each Combo Path has a span of path possible lengths if that path were
implemented.

‘ There are two types of Regret that a decision-maker may want to consider. If a
Combo Path were chosen and it wasn’t actually the shortest path, that would be
considered “regret”. Moreover, if a Combo Path were implemented, the user would be
regretful if the measure of performance along each arc in the Combo Path were at its

upper bound.
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v

ComboNumber=0

ComboNumber=ComboNumber+1
MinimumPathDistance{ComboNumber)=0
MaximumPathDistance(ComboNumber)=0

PathNumber=CombinedPath(ComboNumber, 1)

yes

Begin Minimize_Regret

PositioninCombo=0

End

r

PositioninCombo=
PositioninCombo+1

PositioninCombo=
PathsinCombo
ComboNumber)+1

ToNode=EndPathNode(PathNumber,Position)
FromNode=EndPathNode(PathNumber, Position-1)
MinimumPathDistance(ComboNumber)+
ArcLower{FromNode, ToNode)
MaximumPathDistance(ComboNumber)+
ArcUpper(FromNode, ToNode)

CumulativePathDistance(ComboNumber) =
MaximumPathDistance(ComboNumber)-
MinimumPathDistance{ComboNumber)

umuiativePathDistance
(ComboNumber)<
SmallestChange?

yes

SmallestChange=
CumulativePathDistance (ComboNumber)
MinimizeRegretCombo=ComboNumber

Figure 29: Flow Chart Minimize Regret
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Regret A depends only on Comibo Path P. Regret results when the decision has been
made to implement Combo Path P and the length of Combo Path P is the longest length
possible rather than the shortest length possible. Regret A for a Combo Path P is defined
as the longest possible length of Combo Path P minus the shortest possible length for a
Combo Path P.

Regret B depends on both Combo Path P and a non-dominated path with the shortest
possible length. The shortest possible path length is the Lower Bound of End Node
Thread 1. The path(s) that contains the shortest possible length is a non-dominated path.
Regret B results when Combo Path P is implemented, but the decision maker is
concerned with what may have happened if a non-dominated path had been chosen and
the non-dominated ;aath had been at its shortest possible value. Regret B for Combo Path
P is the difference between the longest possible path length of Combo Path P and the

overall shortest possible path length.
Path Arc Points Attribute and Shared Sub-Paths

The non-dominance and minimize regret information are based on resulting
cumulative path lengths for the Combo Paths. However, the algorithm has generated all
possible shortest paths and the solution set itself contains information about the network.
Specifically, the shortest paths consist of nodes and arcs. Since, the primary objective is
the minimization of the measure of performance along the arcs, the arc information in the
solution set is also important. Many of the arcs in the algorithm consistently appear as a
part of a shortest path. The information that consistently appears in the set of shortest

paths could be as useful as the shortest paths themselves. The arcs that are contained in
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Begin

v

PathNumber=0

i

PathNumber=
PathNumber+1

PathNumber=

no

yes

Find_Path_Points

otalNumberOfPaths+1

Position=0

—

Position= Position+1

(PathNumber)?

i
=NumberOfArcs
+1?

PathArc
(PathNumber,
Position)=i?

Position= LastPathPostionEnd

i=0
Arcs InShortPath=0

ArcsinShortPath= ArcsinShortPath+
NumberOfPathsContainingArcs(i)

RelativeWorth(i) =

NumberOfPathsContainingArc(i)/

ArcsinShortPath

y

PathNumber=1

NumberOfPathsContainingArc(i)=
NumberOfPathsContainingArc(i)+1

T
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End

r

PathNumber=
PathNumber+1

PathNumber=
TotalNumberOfPaths+17?

Position=0

Y
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v

PathPoints(PathNumber)=
PathPoints(PathNumber)+

RelativeWorthArc(i)

Figure 30: Flow Chart Find_Path_Points
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more than one Combo Path are considered dominant arcs. An arc’s dominance in the
solution set is based on the number of occurrences in the set of Combe Paths.

The sub-procedure Find_Path_Points, shown in Figure 30, calculates Path Arc Points
for each Combo Path. Each Combo Path is given Path Arc Points relative to the ranking
of each arc that appears in the Combo Path. Each shortest path is given a ranking of Path
Arc Points. The relative worth of each arc is based on the number of times that the arc
appears in the shortest path set. The Path Arc Points are a sum of relative worth of each
arc in the Combo Path divided by the number of arcs in the path. This calculation gives
the user a per arc worth of the path.

A Combo Path with high Path Arc Points contains arcs that are “often” contained in
the true shortest path. Recall that we are unaware of the probability associated with each
Combo Path. The Path Arc Points is simply an enumeration technique. The Path Arc
Points are important information when the decision-maker is interested in the shortest
path in a network that will be traversed many times and the long-run conditions are
important.

Below is the procedure for finding the Path Arc Points.

Given:

G=(N, A, ¢), i.e., G is acyclic and directed.

N={1,2,..,n}

A={@b)|(abeA > a<b}=q,, {o; |1=1,2,...,m}

CP = Combo Paths = {P; | Pi(1,..., a, b,..., n)}

Relative worth a; = Y o; €P,
ReCP
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Path Arc Points = ) Relative Worth o; /Number of arcs in the Combo Path

;P

As some arcs are dominant throughout the set of shortest paths, there are also sub-
paths which appear throughout the set of shortest paths. All sub-paths of each shortest
path are identified by the length of the sub-path. First, the sub-paths of length three are
found. Finally, the sub paths of the length of the longest shortest path are found. To
more easily implement the Find_Path_Points sub-procedure, the arcs in the network are
numbered in the sub-procedure Get_Arcs. The Get_Arcs sub-procedure is shown in the
Appendix K. The sub-procedure Find_SubPaths, shown in Figure 31, generates all sub-
paths. Once the sub-paths have been generated, matching sub-paths are noted in the sub-
procedure, Check_Identical_SubP‘aths (Appendix I). The Combo Paths that contain the
sub paths are written to a Microsoft Excel [10] spreadsheet by the sub-procedure
Find_Shared SubPath Info (Appendix J).

The shared sub-path information is important because of the possible dependence
among Combo Paths. If two Combo Paths have a shared sub-path, then the cumulative
measure of one path is directly related to the cumulative measure of performance of the
other path.

The shared sub-path information is easily acquired after the algorithm has been
implemented and is intended to give the decision-maker additional information about the

network.
Output Methodology for 10-Node Network III

The algorithm generated three shortest paths for the 10-Node shown in Figure 23.

The sub-procedures Combine Path_Threads, Obtain_ Combo_Thread Information, and
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Find Arc Values On_Combined Path combined these three shortest paths into two
ComboPaths. These paths are shown in Table XIX. For the network in Figure 23, there
are only two possible shortest paths. The measures of performance along each arc are

displayed in Table XIX in the Arc Low and Arc High columns.

Table XIX
Combined Paths for 10-Node Network I1I
Lower | Upper Low High Arc Arc
Arc | To |From| | Bound | -Bound | | Thread | Thread Low | High
Arct} 1 3 21 25 1 1 21 25
Arc2| 3 6 42 48 1 1 42 46
Arc3| 6 10 16 20 1 2 16 20
Total . 79 . 91
Arc1] 1 4 42 46 1 1 42 42,75
Arc2| 4 7 15 18 1 1 15 15.75
Arc3| 7 8 13 17 1 1 13 13.75
Arc4| 8 10 18 22 2 2 18 18.75
Total 88 91

Recall that the algorithm generates the shortest paths for every possible measure of
performance for each of the arcs in the interval-network. Figures 21 and 22 display the
traditional network where the measures of performance are the lower bounds and upper
bounds of Figure 23 respectively. The networks in Figures 21 and 22 contain the same
shortest path (Node 1 — Node 3 — Node 6 — Node 10). Specifically, for the network
in Figure 23, Combo 2 (Node 1 — Node 4 — Node 7 — Node 8 — Node 10) would
not have been part of the solution set had a traditional algorithm been implemented with
constant measures of performance at the lower and upper bounds.

The non-dominance information shown in Table XX provides an overview of the
possible shortest path distances. Combo 1 is the non-dominated shortest path for the
network in Figure 23. However, Combo 1 is not guaranteed to be the shortest path. For

instance, Combo 2 could have a cumulative length of 88.5 and Combo 1 could have a
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cumulative length of 91. Additionally, as Table XXI shows, if Combo 1 were chosen, it

could only deviate 12 units from the best case shortest path of 79 units.

Table XX
Non-Dominance Information for 10-Node Network 111
Short Lower Short Upper
Bound Bound
79 91
Combo Lower | Combo Upper | Non-Dominated Path
Bound Bound (Y/N)
Combo 1 - 79 91 Y
Combo 2 88 104 N
Table XXI
Regret for 10-Node Network 111
Path Lower .| Path Upper | RegretA | RegretB -
~ Combo Bound Bound v ' [UB-79]
Combo 1 79 91 12 12
Combo 2 88 104 16 25

The shortest path solution set consists of 7 different arcs. No arc was a member of
the shortest path solution set more than once. Therefore, each arc had the same relative
worth, 1 and each path had the same number of Path Arc Points, namely, 1. Additionally,
there were no sub-paths that existed in more than one of the shortest paths in the solution
set. Combo 1 would be considered the “best” bath regardless of which attribute, non-

dominance, minimize regret A, minimize regret B or Path Arc Points, was used by a

decision maker.
Output Methodology 10-Node Network IV

The algorithm generated 538 shortest paths for the 10-Node network shown in Figure

24. The algorithm methodology combined these 538 shortest paths into 14 Combo Paths.
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The Combo Path information shown in Table XXII is a considerable condensation from

the amount of information that the algorithm initially generated.

Table XXII
Combined Paths for 10-Node Network IV

Q -] ol 32 | E o |l 2 | §
Sle lel8|2B|88|3 |2 | |Blele 5|28 |2
3 E|dEITE 2|8 | |8 E|dE|ZE g |8
1 1 113 1 1 21 30 8 1141112 1 1 28 | 314
2 6 1 3 42 | 60 2125 1 1 21 | 236
3 16110 1 20 16 | 20 315817 2 5 14 | 167
4 |7(104 9 20 35 | 39.3

2 1 114 1 2 42 | 54.4
2 14,7 1 6 16 | 184 9 111113 1 1 21 | 234
3 17| 8 1 9 13 | 17.8 2 13[4 2 2 28 | 31.2
4 1810 2 20 18 | 19.4 31417 3 5 16 | 16.3
4 | 7110} 10 20 | 35 39

3 1 11 4 1 2 42 | 50.5
2 |41 7 1 5 15 | 17.4 10( 1 4113 1 1 21 | 233
3 {71101 3 20 35 | 421 2 13| 4 2 2 28 31
31416 3 3 35 | 38.8
4 1 11 4 1 2 42 | 50.3 4 16110 11 20 16 17

2 14|86 2 3 35 | 419
3 {6101 4 20 16 | 17.8 11111113 1 1 21 | 231
2 1316 1 1 42 | 46.2
5 1 112 1 1 28 | 33.3 3 (617 5 6 7 7.69
2 1215 1 2 21 25 4 1718 5 9 13 | 146
3 |57 2 6 14 | 16.7 5181101 12 20 18 | 185

4 |78 2 9 {13 (161
5 |8]10] & 20 18 | 18.9 121115113 1 1 21 22
2 3] 6 1 1 42 44
6 1 112 1 1 28 | 33.1 31617 5 5 7 7.33
2 125 1 2 21 | 249 4 1 7110] 16 20 { 35 | 367

3 /5|8 3 9 28 | 33.1
4 18|10 6 20 18 | 18.9 13/ 1111 4 1 1 42 | 441
2145 2 2 19 | 191
7 1 113 1 1 21 | 249 31517 6 6 14 | 147
2 1314 2 2 28 | 33.1 4 1718 7 9 13 | 138
3 1417 3 6 16 | 171 5 (18 ]10 ]| 17 20 18 | 18.2

4 |71 8 3 9 13 16
5 18110 6 20 18 | 18.9 1411 111 4 1 1 42 | 436
21415 2 2 19 | 191
3|15 8 8 9 28 | 291
4 1 8/[10 18 20 18 | 18.2

The non-dominance information shown in Table XXIII pfovides an overview of the

possible shortest path distances. Combo 1 is the non-dominated shortest path for the
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network in Figure 24. However, Combo 1 is not guaranteed to be the shortest path.
Additionally, as Table XXIV shows, Combo 1 has the minimum regret of types A and B.
Combo 1 could only deviate 31 units from the best-case shortest path of 79 units.

Table XXIII:
Non-Dominance Information for 10-Node Network 11

Short Lower Short Upper
Bound Bound
79 110
Combo Lower | Combo Upper | Non-Dominated Path

_ Bound Bound {Y/N)
Combo 1 79 110 Y
Combo 2 88 120 N
Combo 3 92 130 N
Combo 4 93 130 N
Combo 5 94 130 N
Combo 6 95 130 N
Combo 7 95 130 N
Combo 8 98 140 N
Combo 9 99 140 N
Combo 10 101 140 N
Combo 11 101 140 N
Combo 12 105 150 N
Combo 13 106 140 N
Combo 14 - 107 140 N

Theréfore, Combo 1 would be the “best” solution considering the non-dominance and
minimize regret attributes. However, as displayed in Table XXV, Combo 2 is the
shortest path with the largest Path Arc Points. A path with high Path Arc Points defines a
Combo Path whose arcs consistently lie on a shortest path.

The sub-paths of the network in Figure 24 are shown in Table XXVI. The sub path,
Node 7 — Node 8 — Node 10, is contained in 5 of the 14 Combo Paths. This
information adds to the benefit of Combo 2 as a good solution for the shortest path. The
output methodology is intended to give the decision-maker additional information in
order to make an informed decision. The decision-maker would have to weigh the

benefits of each Combo Path according to his/her specific needs.
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Table XXIV
Regret for 10-Node Network IV

Path Lower - | - Path Upper - Regret B
Combo Bound Bound RegretA | [UB-79]
Combo 1 79 110 *31 *31
Combo 2 88 120 32 41
Combo 3 92 130 38 51
- Combo 4 93 130 37 51
Combo § 94 130 36 51
Combo 6 95 130 35 51
Combo 7 95 130 35 51
Combo 8 98 140 42 61
Combo 9 99 140 41 61
Combo 10 101 140 40 61
Combo 11 101 140 39 61
Combo 12 105 150 45 71
Combo 13 106 140 34 61
Combo 14 107 140 33 61
Table XXV
Path Points for 10-Node Network IV
Combo Number | Path Arc Points | Combo Number Path Arc Points
1 4.00 8 3.25
*2 *5.25 9 4.25
3 4.33 10 3.50
4 3.33 11 4.60
5 4.20 12 3.75
6 3.75 13 4.40
7 5.00 14 4.00
Table XX VI
Sub Paths for 10-Node Network IV
Sub Path Combo Number Which Contains Sub Path
4 7 8 2 7
7 8 10 2 5 7 1 13
4 7 10 3 9
4 6 10 4 10
2 5 7 5 8
5 7 8 5 13
5 8 10 6 14
3 4 7 7 9
3 6 7 11 12
4 7 8 10 2 7
5 7 8 10 5 13
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Output Methodology for 7 Node Network

The algorithm generated 14 shortest paths for the 7-Node network shown in Figure
24. The output methodology combined these 14 shortest paths into S Combo Paths.
These paths are shown in Table XXVII. The non-dominance information shown in Table
XXVIII provides an overview of the possible shortest path distances. Note their are no
non-dominated shortest paths for the network in Figure 25. Since there are no non-
dominated paths, a decision-maker that uses alternate attributes of the “best” shortest
path, as Regret A, Regret B or Path Arc Points.

Table XXVII:
Combined Paths for 7-Node Network

Combo| Arc | To | From | {Low Thread |High Thread| | Arc Low | Arc High |
1 1 1 3 1 1 4 6.67
2 3 5 1 2 5 6.78
3 5 7 1 3 6 9.56
2 1 1 2 1 1 3 4.45
2 2 3 1 1 1 3.18
3 3 5 1 2 5 6.45
4 5 7 1 3 6 8.91
3 1 1 2 1 1 3 44
2 2 5 2 2 7 9.8
3 5 7 2 3 6 8.8
4 1 1 3 1 1 4 7
2 3 6 1 1 4 5
3 6 7 2 3 8 11
5 1 1 2 1 1 3 4.56
2 2 3 1 1 1 3.33
3 3 6 1 1 4 4.78
4 6 7 2 3 8 10.3

Additionally, as Table XXIX shows, Combo 4 is the shortest path with a minimum
Regret A of 7 units and Regret B of 8 units. As seen in Table XXX, Combo 2 is the

shortest path with the largest Path Arc Points. There are two sub-paths of the network in
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Figure 25. Sub-Path 1, Node 3 — Node 5 — Node 7, is contained in Combo 1 and

Combo 2. Sub-Path 2, Node 3 — Node 6 — Node 7, is contained in Combo 4 and

Combo 5.
Table XXVIII:
Non-Dominance Information for 7-Node Network
Short Lower Short Upper
Bound Bound
15 23
Combo Lower | Combo Upper | Non-Dominated Path

Bound Bound (Y/N)
Combo1 15 24 N
Combo2 15 26 N
Combo3 16 26 N
Combo4 16 23 N
Combo5 16 25 N

For a decision-maker who is attempting to “break the tie” between Combo 1 and
Combo 2, Combo 1 contains a stronger Regret A and Regret B attribute. However,
Combo 2 has a stronger Path Arc Points attribute. A decision-maker should have a clear

understanding of his/her objectives in order to choose the “best” path from among the

competing Combo Paths.
Table XXIX
Regret for 7-Node Network
Combo | Path Lower Bound | Path Upper Bound | Regret A | Regret B [UB-15]
Combot1 16 24 9 9
Combo2 15 26 11 11
Combo3 16 26 10 11
Combo4 16 23 *7 *8
Combob 16 25 9 10
Table XXX
Path Points for 7-Node Network
Combo Number Path Arc Points
1 2.33
2 2.50
3 2.33
4 2.00
5 2.25
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Output Methodology for 6-Node Network

The network in Figure 26 is identical in structure to the network that Okada and
Soper used as an example in their shortest path analysis [11]. The network introduced by
Okada and Soper contained trapezoidal fuzzy numbers as the measure of performance
along the arcs. The Avery Shortest Path algorithm generated 80 shortest paths for the 6-
Node Network shown in Figure 26. The output methodology combined these 80 shortest
paths into 5 Combo Paths. This set of all possible shortest paths is shown in Table
XXXI. There are no non-dominated paths for the network in Figure 26. The non-
dominance information shown in Table XXXII provides an overview of the possible
shortest path distances.

Table XXXI
Combined Paths for 6-Node Network

Combo| Arc To | From | {Low Thread High Arc Low |Arc High
Thread
1 1 1 2 1 1 10 28.78
2 2 3 1 2 35 44.39
3 3 5 1 3 8 9.88
4 5 6 1 10 50 96.95
2 1 1 3 2 2 52 70
2 3 5 2 3 8 10
3 5 6 2 10 50 100
3 1 1 2 1 1 10 26.39
2 2 5 3 3 52 62.65
3 5 6 3 10 50 90.96
4 1 1 2 1 1 10 26.42
2 2 3 1 2 35 43.21
3 3 4 1 3 10 18.21
4 4 6 4 10 70 92.16
5 1 3 2 2 52 67.71
3 4 2 3 10 18.73
3 4 6 5 10 70 93.56
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Table XXXII
Non-Dominance Information for 6-Node Network

Short Lower Short Upper
Bound Bound
103 180
Combo Lower | Combo Upper | Non-Dominated Path
Bound Bound (Y/N)
Combo1 103 185 N
Combo2 110 180 N
Combo3 112 195 N
Combo4 125 192 N
Combo5 132 187 N

Additionally, as Table XXXIII shows, Combo 5 is the shortest path with the
minimum Regret A of 55 units and Combo 2 has minimum regret B of 73 units. As seen
in Table XXXIV, Combo 1 is the shortest path with the largest Path Arc Points. There
are two sub-paths of the network in Figure 26. Sub-Path 1, Node 3 — Node 5 — Node

6, is contained in Combo 1 and Combo 2. Sub-Path 2, Node 3 — Node 4 — Node 6, is

contained in Combo 4 and Combo 5.
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Table XXXIII
Regret for 6-Node Network
Combo | Path Lower Bound | Path Upper Bound | Regret A | Regret B [UB-103]
Combo1 103 185 82 82
Combo2 110 180 70 *73
Combo3 112 195 83 92
Combo4 125 192 67 89
Combob 132 187 *55 84
Table XXXIV:
Path Points for 6-Node Network
Combo Number - | Path Arc Points
1 2.50
2 2.33
3 2.33
4 2.25
5 2.00




As previously mentioned, Okada and Soper determined the shortest path of a network
with trapezoidal fuzzy numbers. For proper comparison, Table XXXV shows the
trapezoidal node values identified by Okada and Soper. Each trapezoidal number (Left
Top, Right Top, Left Bottom, Right Bottom) was converted to an interval [Lower Bound
= Left Top — Left Bottom, Upper Bound = Right Top + Right Bottom]. The trapezoidal
numbers are listed under the column heading Node‘T’, e.g., “2T”. The interval numbers

are under the column heading Node‘I’, e.g., “2I”.

Table XXXV:
Okada and Soper Node Labels [11, p.136]
Node 2T {21 |- 3T | 31 | 4T | -4l 5T 5l 6T 61
Left Top 20 [ 10 | 62 | 62 | T 55 75 62 | 137 | 103
Right Top - 20 [ 30 | 65 | 70 | 77 95 80 95 | 149 | 185
Left Bottom 10 - 10 16 13 34
Right Bottom 10 5 18 15 36
Left Top 58 | 45 | 75 62 | 67 53 | 146 | 125
Right Top 60 | 756 | 82 90 | 69 85 | 162 | 193
Left Bottom 13 13 14 21
Right Bottom 15 8 16 30
Left Top 71 60 | 141 | 110
Right Top 74 80 | 154 | 180
Left Bottom ] 11 31
Right Bottom 6 268
Left Top 160 | 132
Right Top ' 167 | 187
Left Bottom 18
Right Bottom 20

Table XXXVI shows the translated values generated by Okada and Soper under the
column heading Node‘OS’, e.g., “20S”. The node threads generated by the algorithm are
under the column heading Node‘A’, e.g., “2A”. The comparable values in Table
XXXVII are nearly identical. The lower bound values are identical with one exception.
However, the upper bounds of the two sets of node values do not match. The table values
corresponding to Okada and Soper’s trapezoidal results are nearly identical to the ones

generated by the algorithm. The Avery Shortest Path algorithm has given all Node
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Threads as a set of nearly disjoint sets. Okada and Soper have combined their node
values in a similar manner to the algorithm’s results for the End Node.

The node values shown by Okada and Soper are nearly identical to the Combo Path
values seen in Table XXXIII. The results of Okada and Soper did not include Combo 3
with path length [112, 195]. Since, Okada and Soper did not show a clear methodology

for the creation of their solution set, the reason for this discrepancy is unknown.

Table XXXVI:
Algorithm Node Threads/ Okada and Soper Node Labels

Node v 2A | 20S | 3A [ 30S | 4A | 40S | 5A | 50S | 6A | 60S
Lower 1110 10 45 | 45 | 55 | 65 | 63 | 53 | 103 | 103
Upper 1130 30 52 | 75 | 62 | 95 |60 | B85 | 110 | 185
Lower 2 52 | 52 {62 | 62 |60 | 60 | 110 | 110
Upper 2 701 70 | 72 | 90 |62 | 80 | 112 | 180
Lower 3 72 62 | 62 | 112

Upper 3 90 80 | 95 | 125 :
Lower 4 125 | 125
Upper 4 132 | 193
Lower 5 132 | 132
Upper 5 142 | 187
Lower 6 142

Upper 6 169

Lower 7 159

Upper 7 160

Lower 8 160

Upper 8 162

Lower 9 162

Upper 8 169

Lower 10 169

Upper 10 180

However, Combo 3, Node 1 — Node 2 — Node 5 — Node 6, is a possible shortest
path for the interval-network in Figure 26. Table XXXII, containing Non-Dominance
Information, shows the circumstances under which Combo 3 will be the shortest path.
Additionally, Combo 3 has no shared sub-paths with any other Combo. Therefore, the

length of Combo 3 is independent of the length of the other Combo Paths. That is,
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Combo 3 could be at its smallest possible length, 112 units, while the other Combo Paths
are at their largest possible length.

The output methodology described in this chapter was developed to create a
meaningful shortest path solution set without thread information. As multiple shortest
paths were often contained in the solution set, various attributes of the shortest paths,
Non-Dominance, Regret Type A, Regret Type B, and Path Arc Points were defined to
describe alternative qualities of each shortest path. Different attributes were necessary
since each decision-maker has his’her own objectives in choosing among the various
shortest paths. The selected attributes were independent of one another and did not
necessarily result in comparable conclusions. A decision-maker may choose one attribute
or he/she may combine two or more of the attributes to define the “best” among the
shortest paths. Additionally, sub-path information was introduced to give the decision-

maker essential information about the network and therefore the system being modeled.
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CHAPTER VI
SUMMARY AND RECOMMENDATIONS

Networks have been used to model science, engineering, and business applications of
transportation, communication, mechanical, hydraulic, electrical and economic systems
[15]. Traditional network applications have been based on constant-valued arc measures.
However, this assumptién is often unrealistic and this problem has not been solved with
arc values that are contained in some known interval.

The primary objective of this research was the development of an algorithm for the
interval-valued problem that would ensure that all possible shortest paths have been
generated. The techniques of Qualitative Discrete Event Simulation (QDES) were used
to complete this task and a thread generation technique was designed in the algorithm to
guarantee this result. The number of iterations required to complete the algorithm was
exponential with respect to the number of nodes in the network and the overall speed and
efficiency of the algorithm was not a priority.

The traditional problem is apt to have a unique shortest path, but it is likely that there
will be multiple solutions for the interval-valued problem. Therefore, a second objective
of this research was the development of a methodology that would provide for an
intelligent consolidation of the initial set of solutions. This objective was also
accomplished.

However, since it is unlikely that the reduction in the set of solutions would result in a
unique path, it was useful to provide a comparison of the resulting solutions in the

consolidated solution set. Additionally, different decision-makers may not agree of what
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defines the "best" shortest path solution. Thus, a sub-objective of the second objective
was to develop a methodology that would allow the evaluation of alternative attributes of
the consolidated set of solutions. Each attribute of a shortest path solution provided the
decision-maker with information about the quality of each path. given a specific
objective. A decision-maker could choose one single attribute or combine the qualities.of
several attributes to determine the "best" among the consolidated set of solutions. Based
on the decision-maker's own specific definition of "best", he/she would be able to select
the "best" path from among the set of shortest paths. Evaluations of three attributes for
each shortest path were developed in the output methodology: Non-dominance, Minimize
Regret, and Path Arc Points. The attributes were independent of one another and may or
may not result in the same conclusion. Each of these shortest path attributes gave the
decision-maker information with regard to the quality of each path, given a specific
objective.

The algorithm, Avery Shortest Path Algorithm, was tested by implementing a variety
of networks. Since the shortest path solution of networks with constant-valued measures
of performance was readily availab‘le, this type of network was initially solved by the
algorithm to verify the solution. Additionally, networks with specific characteristics
were solved by the algorithm, e.g., a small solution set of shortest paths. Other networks
that contained specific output characteristics, e.g., multiple non-dominated paths and
shortest paths with the same “best” solution using all three solution attributes. were
evaluated by the algorithm. However, since there is no existing shortest path algorithm
for an interval-network, complete verification of the results using existing techniques was

not possible. Okada and Soper have given results of a network with fuzzy arc lengths.
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The fuzzy arc lengths in the Okada and Soper example were translated into interval-
values. The Avery Shortest Path Algorithm had near identical results to those obtained

by Okada and Soper [13].
Recommendations

Since the number of iterations required to complete the algorithm was exponential
with respect to the number of nodes in the network, the time required to obtain the set of
solutions can be a significant problem in a large interval-network. A suggested area of
future research would be to determine if improvements could be made in the algorithm to
reduce the number of iterations required to generate the complete set of shortest paths.

The shortest path solution set contains path information specific to the threads
generated by the algorithm. A second suggested area of future research would be to
develop an extension of the algorithm that would combine the threads generated by the
existing 'algorithm before the shortest paths are found.

A third suggested area of future research would be to define additional attributes and
develop the rﬂethodology for the evaluation of those attributes th;t could be used to

assess the quality of each member of the shortest path solution set.
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APPENDIX A

AVERY SHORTEST PATH ALGORITHM
VISUAL BASIC CODE

Dim AllowedHigh As Integer

Dim AllowedLow As Integer

Dim ArcLower(1 To 25, 1 To 25) As Integer

Dim ArcsInShortPath As Integer

Dim ArcUpper(1 To 25, 1 To 25) As Integer

Dim Check(1 To 25,1 To 25, 1 To 25, 1 To 25) As Boolean

Dim CombinedPath(1 To 100, 1 To 1000) As Integer
'CombinedPath(ComboNumber, PathNumber)

Dim CombinedSubPath(1 To 25, 1 To 25, 1 To 25, 1 To 100) As Integer
'CombinedSubPath(SubPathLength, NumberOfCombinedSubPaths(SubPathLength),
SubPosition, Number)

Dim ComboEndThreads(1 To 100, 1 To 200) As Integer
'ComboEndThreads(ComboNumber, i)

Dim ComboNumber As Integer

Dim ComboNumberNonDominated(1 To 100) As Integer
'ComboNumberNonDominated(ComboNumber) = 1

Dim ComboPathFound(1 To 1000) As Integer
'ComboPathFound(PathNumber)

Dim ComboSubPathFound(1 To 25, 1 To 100)
'ComboSubPathFound(SubPathLength, Number)

Dim ComboPathLength(1 To 25) As Single

'ComboPathLength (ComboNumber)

Dim ComboPathPoints(1 To 100) As Single

Dim ComboSubPathMatch(1 To 25, 1 To 100, 1 To 100) As Integer
'ComboSubPathMatch(SubPathLength,SubPathComboNumber, SubPathComboNumber)
Dim CumulativeDistanceChange(1 To 25) As Integer

Dim CurrentHigh As Integer

Dim CurrentLow As Integer

Dim CutPointCardinality(1 To 25) As Integer

Dim CutPoints(1 To 25, 1 To 100) As Integer

Dim EndNode As Integer

Dim EndPathNode(1 To 1000, 1 To 25) As Integer
'EndPathNode(EndPathNumber, PathPosition) = PathNode(PathNumber, PathPosition,
Node, Thread)

Dim EndPathThread(1 To 1000, 1 To 25) As Integer
'EndPathThread(EndPathNumber, PathPosition) = PathThread(PathNumber,
PathPosition, Node, Thread)

Dim EndThread(1 To 1000) As Integer

'EndThread(EndPathNumber) = ThreadDim FromNode As Integer
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Dim FromNode As Integer

Dim FromNodej As Integer

Dim FromNodePathNumber As Integer

Dim FromNodePrev As Integer

Dim FromNodeThread As Integer

Dim FromNodeThreadPrev As Integer

Dim GoodPath(1 To 1000) As Boolean

Dim HighThreadComboNumberPosition(1 To 100, 1 To 25) As Integer
'HighThreadComboNumberPosition(ComboNumber,Position)

Dim i As Integer

Dim j As Integer

Dim Infinity As Integer

Dim k As Integer

Dim LargestMaximum As Integer

Dim LargestMaximumCombo As Integer

Dim LastPathPosition(1 To 1000, 1 To 25, 1 To 25) As Integer
'LastPathPosition(PathNumber,ToNode, ToNodeThread)

Dim LastPathPositionEnd(1 To 1000) As Integer
'LastPathPositionEnd(EndPathNumber)

Dim LastPathPositionEndCombo(1 To 100) As Integer
'LastPathPositionEndCombo(ComboNumber) =
LastPathPositionEnd(ComboNumber(PositionInCombo))

Dim LowArcValue(l To 25,1 To 25, 1 To 25, 1 To 25) As Single
Dim LowerArcCompleteCombo(1 To 25, 1 To 25) As Single

Dim LowerArcPositionInCombo(1 To 25, 1 To 200, 1 To 25) As Single
'LowerArcPositionlnCombo(ComboNumber,PositionInCombo, Position)
Dim LowThreadComboNumberPosition(1 To 100, 1 To 25) As Integer
"LowThreadComboNumberPosition(ComboNumber,Position

Dim MaximumPathDistance(1 To 25) As Integer
'MaximumPathDistance(ComboNumber) = 0

Dim MaxlIterativeChange As Integer

Dim MaxPaths As Integer

Dim MaxPathLength As Integer

Dim MaxThreads As Integer

Dim MinimizedRegretCombo As Integer

'"MinimizedRegretCombo = ComboNumber

Dim MinimumPathDistance(1 To 25) As Integer
'MinimumPathDistance(ComboNumber) = 0

Dim Multiplier As Integer

Dim NecessaryChange(1 To 25, 1 To 25, 1 To 25, 1 To 25) As Single
"NecChange(FromNodeThread, FromNode, ToNodeThread, ToNode)
Dim Node As Integer

Dim NodeValueLower(1 To 25, 1 To 25) As Single

Dim NodeValueUpper(1 To 25, 1 To 25) As Single

Dim NumberMatches(1 To 1000) As Integer
"NumberMatches(PathNumber)

113



Dim NumberOfArcs As Integer

Dim NumberOfArcsProceeding(1 To 25) As Integer

Dim NumberOfCombinedPaths As Integer
'NumberOfCombinedSubPaths(SubPathLength) =
NumberOfCombinedSubPaths(SubPathLength) + 1

Dim NumberOfCombinedSubPaths(1 To 25) As Integer

Dim NumberOfPaths(1 To 25, 1 To 25) As Integer
NumberOfPaths(ToNode,ToNodeThread)

Dim NumberOfPathsContainingArc(1 To 100) As Integer
'NumberOfPathsContainingArc (i)

Dim NumberOfSubPaths(1 To 25) As Integer
NumberofSubPaths(SubPathLength)

Dim NumberSubMatches(1 To 25, 1 To 1000) As Integer

Dim NumberUnOrdered(1 To 25) As Integer

Dim OriginatingNode(1 To 100) As Integer
'OriginatingNode(NumberOfArcs) = FromNode

Dim PathArc(1 To 1000, 1 To 25) As Integer
‘PathArc(PathNumber, Position - 1)

Dim PathLowArcValue(1 To 25, 1 To 25, 1 To 1000, 1 To 25) As Single
'PathLowArcValue(From Node,ToNode,CumulativePathNumber,Position)
Dim PathMatch(1 To 1000, 1 To 1000) As Integer
'PathMatch(PathNumber, j)

Dim PathNode(1 To 1000, 1 To 25, 1 To 25, 1 To 25) As Integer
Dim PathNumber As Integer

Dim PathPoints(1 To 1000) As Single

'PathPoints (PathNumber)

Dim PathsInCombo(1 To 1000) As Integer
'PathsInCombo(ComboNumber)

Dim PathThread(1 To 1000, 1 To 25, 1 To 25, 1 To 25) As Integer
Dim PathUpperArcValue(1 To 25,1 To 25, 1 To 1000, 1 To 25) As Single
"PathUpperArcValue(From Node,ToNode,CumulativePathNumber,Position)
Dim Position As Integer

Dim PositionGood(1 To 1000) As Boolean
'PositionGood(PathNumber) = False

Dim PositionInCombo As Integer

Dim PositionLength(1 To 25, 1 To 25) As Single
'PositionLength(ComboNumber,Position)

Dim PositionNext As Integer

Dim RangeCalc As Integer

Dim Range As Integer

Dim RelativeWorthArc(1 To 100) As Single

Dim ShortestPathLength(1 To 25) As Single
'ShortestPathLength(ComboNumber)

Dim SmallestChange As Integer

'SmallestChange = CumulativeDistanceChange(ComboNumber)
Dim SmallestMinimum As Integer
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Dim SmallestMinimumCombo As Integer

Dim StoppingCutPoint(1 To 25) As Integer

Dim StoppingPosition(1 To 25) As Integer

Dim SubPath(1 To 25, 1 To 1000, 1 To 25) As Integer
'SubPath(Length, Number, Position) As Integer

Dim SubPathComboNumber(1 To 25, 1 To 1000) As Integer
'SubPathComboNumber(Length, Number) As Integer

Dim SubPathLength As Integer

Dim SubPathMatch(1 To 25, 1 To 100, 1 To 100) As Integer
'SubPathMatch(SubPathLength,PathNumber,j)

Dim SubPosition As Integer

Dim SubsequentChange(1 To 25, 1 To 25, 1 To 25, 1 To 25) As Single
Dim t As Integer

Dim Temp As Integer

Dim Temp2 As Integer

Dim TerminatingNode(1 To 100) As Integer
'"TerminatingNode(NumberOfArcs) = ToNode

Dim Thread As Integer

Dim ThreadInComboNumber(1 To 100, 1 To 100) As Integer
"ThreadiInComboNumber(ComboNumber, Thread) = 1

Dim ToNode As Integer

Dim ToNodej As Integer

Dim ToNodePathNumber As Integer

Dim ToNodePrev As Integer

Dim ToNodeThread As Integer

Dim ToNodeThreadPrev As Integer

Dim TotalNumberOfPaths As Integer

Dim UnorderedCutPoints(1 To 75, 1 To 75) As Integer

Dim UpperArcCompleteCombo(1 To 25, 1 To 25) As Single
"UpperArcCompleteCombo(ComboNumber, Position)

Dim UpperArcPositionInCombo(1 To 25, 1 To 200, 1 To 25) As Single
Dim UpperArcValue(1 To 25, 1 To 25, 1 To 25, 1 To 25) As Single
Dim WCardinality(1 To 25) As Integer

Dim z As Integer

Sub AveryShortestPath()

ClearData
ReadData

For Node =2 To EndNode
IdentifyCutPoints
OrderCutPoints
GenerateNodeValue

Next Node

loop=n
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FindMultiplier

NumberOfArcs =0
RangeCalc =0
For FromNode = 1 To EndNode
For ToNode =1 To EndNode
If ArcLower(FromNode, ToNode) < Infinity Then
RangeCalc = RangeCalc + 1
CheckPossibleArcs
End If
Next ToNode
Next FromNode

Toop=n"2

FindPathThreads
IdentifyPathLowHigh
ChangeArcValuesOnPath
CheckPaths
NumberPaths

WritePaths

LU A A LA LT AT I A LT A LA A )

HHIHIHIIIIHOUTPUT METHODOLOGY""""""I"""""""

CheckIdenticalPaths
CombinePathThreads
ObtainComboThreadInfo -
FindArcValuesOnCombinedPath

FindNonDominatedPaths
MinimizeRegret

GetArcs
EvaluateDominantArcs
WriteArcInfo
FindSubPaths
ChecklIdenticalSubPaths
FindCombosInSubPaths
End Sub

Sub ClearData()
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Worksheets("Network").Activate

Worksheets("NodeThreads").Activate
Worksheets("PossibleArcs").Activate
Worksheets("DominantArcs").Activate

Worksheets(" ArcInfo").Activate
Worksheets("UnCorrectedPathThreads").Activate
Worksheets("PathThreads").Activate
Worksheets("NonDominatedPaths"). Activate
Worksheets("CombinedPaths").Activate
Worksheets("SubPaths").Activate
Worksheets("NodeThreads").Range("A1:1V1250").Clear
Worksheets(""PossibleArcs").Range("A1:1V1250").Clear
Worksheets("DominantArcs").Range("A1:1V1250™).Clear
Worksheets("ArcInfo").Range("A1:1V1250").Clear
Worksheets("UnCorrectedPathThreads").Range("A1:1V1250").Clear
Worksheets("PathThreads").Range("A1:1V1250").Clear
Worksheets("CombinedPaths").Range("A1:1V1250").Clear
Worksheets("NonDominatedPaths").Range("A1:1V1250").Clear
Worksheets("SubPaths").Range("A1:1V1250").Clear

Infinity = 999

MaxNodes = 25
MaxThreads = 25
MaxPaths = 180
ToNode =0
FromNode =0
'FromNodeThread = 0
"ToNodeThread =0
RangeCalc =0

i=0

7=

I

0
j=0
k=0
t=0
EndNode =0
Node =0
Temp =0
Fori=1 To MaxNodes
CutPointCardinality(i) = 0
WCardinality(i) = 1
NumberUnOrdered(i) = 0
StoppingCutPoint(i) = 0
StoppingPosition(i) = 0
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NumberMatches(i) = 0
NumberOfPathsContainingArc(i) = 0
For j =1 To MaxThreads
ThreadInComboNumber(i, j) =0
NodeValueLower(i, j) =0
NodeValueUpper(i, j) =0
NumberOfPaths(i, j) =0
ArcLower(i, j) =0
ArcUpper(i, j) =0
UnorderedCutPoints(i, j) = 0
CutPoints(i, j) =0
For k = 1 To MaxPaths
- LastPathPosition(k, i, j) =0
Next k
Next j
Next i

End Sub
Sub ReadData()
EndNode = Worksheets("Network").Cells(1, 2)

Fori=1 To EndNode
Forj =1 To EndNode
ArcLower(i, j) = Worksheets("Network").Cells(i + 2,j + 1)
ArcUpper(i, j) = Worksheets("Network").Cells(i +29,j + 1)
If ArcLower(i, j) < Infinity Then NumberOfArcsProceeding(j) =
NumberOfArcsProceeding(j) + 1
Next j
Next i

loop=n*2
End Sub

Sub IdentifyCutPoints()

StoppingCutPoint(Node) = Infinity
k=1
" Fori=1 To EndNode
For t =1 To WCardinality(i)
UnorderedCutPoints(Node, k) = ArcLower(i, Node) + NodeValueLower(i, t)
k=k+1
Next t
Next i
'max weardinality (i) = 2\(i-2) i>3 sum of maz = 2"\(n-1)
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' max loop =n*2(n-1)

Fori=1 To EndNode
For t =1 To WCardinality(i)
UnorderedCutPoints(Node, k) = ArcUpper(i, Node) + NodeValueUpper(i, t)
If t = WCardinality(i) And (UnorderedCutPoints(Node, k) <
StoppingCutPoint(Node)) And (UnorderedCutPoints(Node, k) < Infinity) Then
StoppingCutPoint(Node) = UnorderedCutPoints(Node, k)
' This identifies the smallest of the NewUpperArcValues.
' Any cut points above this number will not be in the set of node threads.
' Node threads will consist of the set of all cut points smaller than or equal to the
stopping cut point.
- ' the stopping cut point must be the smallest of the new upper arc values(Omegas)
from among only the
'Omegas that came from the end thread to ensure all possible shortest paths
End If
k=k+1
Next t
Next i
' max loop = n*2”(n-1)

NumberUnOrdered(Node) =k - 1

'Fori=1Tok-1
"Worksheets("NodeThreads").Cells(i + 4, 10 + Node) = UnorderedCutPoints(Node,1)
"Next i

End Sub
Sub OrderCutPoints()

Worksheets("NodeThreads").Cells(1, 1) = "StoppingCutPoint"
Worksheets("NodeThreads").Cells(2, 1) = "CutPointCardinality"
Worksheets("NodeThreads").Cells(3, 1) = "StoppingPosition"
Worksheets("NodeThreads").Cells(4, 1) = "NumberOfThreads"
Worksheets("NodeThreads™).Cells(5, 1) = "CUT POINTS"

Temp = Infinity

StoppingPosition(Node) = 1

For i =1 To NumberUnOrdered(Node)
If UnorderedCutPoints(Node, i) < Temp Then
Temp = UnorderedCutPoints(Node, i)
End If

Next i

CutPoints(Node, 1) = Temp
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For z =2 To NumberUnOrdered(Node)
Temp = Infinity
For i =1 To NumberUnOrdered(Node)
If (UnorderedCutPoints(Node, i) < Temp) And (UnorderedCutPoints(Node, i) >
CutPoints(Node, z - 1)) Then
Temp = UnorderedCutPoints(Node, i)
CutPointCardinality(Node) = z
End If
Next i
If Temp = Infinity Then
CutPointCardinality(Node) =z - 1
z = NumberUnOrdered(Node)
'Ends LOOP
Else: CutPoints(Node, z) = Temp
If CutPoints(Node, z) = StoppingCutPoint(Node) Then
StoppingPosition(Node) = z
End If
End If
Next z

For i = 1 To CutPointCardinality(Node)
Worksheets("NodeThreads").Cells(i + 4, Node + 1) = CutPoints(Node, i)
Next i

If StoppingPosition(Node) = 1 Then
WCardinality(Node) = 1
Else
WCardinality(Node) = StoppingPosition(Node) - 1
End If

Worksheets("NodeThreads").Cells(1, 1 + Node) = StoppingCutPoint(Node)
Worksheets("NodeThreads").Cells(2, 1 + Node) = CutPointCardinality(Node)
Worksheets("NodeThreads").Cells(3, Node + 1) = StoppingPosition(Node)
Worksheets("NodeThreads").Cells(4, Node + 1) = WCardinality(Node)

End Sub

Sub GenerateNodeValue()

k=0

For Thread = 1 To WCardinality(Node)
k=k+2

If (StoppingPosition(Node) = 1) Then
NodeValueLower(Node, Thread) = CutPoints(Node, 1)
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NodeValueUpper(Node, Thread) = CutPoints(Node, 1)
Else ‘
NodeValueLower(Node, Thread) = CutPoints(Node, Thread)
NodeValueUpper(Node, Thread) = CutPoints(Node, Thread + 1)
End If
Worksheets("NodeThreads").Cells(k - 1, 5 + EndNode + Node) =
NodeValueLower(Node, Thread)
- Worksheets("NodeThreads").Cells(k, 5 + EndNode + Node) = NodeValueUpper(Node,
Thread) .
Worksheets("NodeThreads").Cells(2 * (Thread - 1) + 1, 5 + EndNode) =
"NodeValueLower"
Worksheets("NodeThreads").Cells(2 * (Thread - 1) + 2, 5 + EndNode) =
"NodeValueUpper"
Next Thread

End Sub
Sub FindMultiplier()

MaxThreads = 0
For Node =1 To EndNode
If WCardinality(Node) > MaxThreads Then
MaxThreads = WCardinality(Node)
End If
Next Node

Multiplier = 10

Fori=1To S

If MaxThreads > 1021 -1 Then
Multiplier=10" (i + 1)

End If

Next 1

End Sub
Sub CheckPossibleArcs()

For ToNodeThread = 1 To WCardinality(ToNode)
For FromNodeThread = 1 To WCardinality(FromNode)

LowArcValue(FromNode, FromNodeThread, ToNode, ToNodeThread) =
NodeValueLower(ToNode, ToNodeThread) - NodeValueLower(FromNode,
FromNodeThread)

UpperArcValue(FromNode, FromNodeThread, ToNode, ToNodeThread) =
NodeValueUpper(ToNode, ToNodeThread) - NodeValueUpper(FromNode,
FromNodeThread)

RangeCalc = RangeCalc + 1
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‘Worksheets("PossibleArcs").Cells(1, 1) ="TO"
Worksheets("PossibleArcs").Cells(1, 2) = "FROM"

Worksheets("PossibleArcs").Cells(1, 4 + FromNode) = FromNode

Worksheets("PossibleArcs").Cells(1, 4 + 1 * EndNode + FromNode) = FromNode
Worksheets("PossibleArcs").Cells(1, 4 + 2 * EndNode + FromNode) = FromNode
Worksheets("PossibleArcs").Cells(1, 4 + 3 * EndNode + FromNode) = FromNode

Worksheets("PossibleArcs").Cells(RangeCalc, 4 + FromNode) =
LowArcValue(FromNode, FromNodeThread, ToNode, ToNodeThread)

Worksheets("PossibleArcs").Cells(RangeCalc, 4 + 1 * EndNode + FromNode) =
UpperArcValue(FromNode, FromNodeThread, ToNode, ToNodeThread)

Worksheets("PossibleArcs").Cells(RangeCalc, 4 + 2 * EndNode + FromNode) =
ArcLower(FromNode, ToNode)

Worksheets("PossibleArcs").Cells(RangeCalc, 4 + 3 * EndNode + FromNode) =
ArcUpper(FromNode, ToNode)

Worksheets("PossibleArcs").Cells(RangeCalc, 1) = FromNode * Mulitiplier +
FromNodeThread ’

Worksheets("PossibleArcs").Cells(RangeCalc, 2) = ToNode * Multiplier +
ToNodeThread

'Worksheets("PossibleArcs").Cells(1, 1) = "TO"
"Worksheets("PossibleArcs").Cells(2, 1) = "FROM"
"Worksheets("PossibleArcs").Cells(4 + FromNode, 1) = FromNode
"Worksheets("PossibleArcs").Cells(4 + 1 * EndNode + FromNode, 1) = FromNode
"Worksheets("PossibleArcs").Cells(4 + 2 * EndNode + FromNode, 1) = FromNode
"Worksheets("PossibleArcs").Cells(4 + 3 * EndNode + FromNode, 1) = FromNode

AllowedLow = ArcLower(FromNode, ToNode)

AllowedHigh = ArcUpper(FromNode, ToNode)

CurrentLow = LowArcValue(FromNode, FromNodeThread, ToNode, ToNodeThread)

CurrentHigh = UpperArcValue(FromNode, FromNodeThread, ToNode, ToNodeThread)

If CurrentLow >= AllowedLow And CurrentHigh <= AllowedHigh Then
Check(FromNode, FromNodeThread, ToNode, ToNodeThread) = True
Worksheets("PossibleArcs").Cells(RangeCalc, 3) =0

If CurrentLow > CurrentHigh Then Worksheets("PossibleArcs").Cells(4, 1) ="C"

Else

Check(FromNode, FromNodeThread, ToNode, ToNodeThread) = False

Worksheets("PossibleArcs").Cells(RangeCalc, 3) = "x"

End If

Next FromNodeThread
Next ToNodeThread
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End Sub
Sub FindPathThreads()
RangeCalc =0

For ToNode =2 To EndNode :
For ToNodeThread = 1 To WCardinality(ToNode)
If Check(1, 1, ToNode, ToNodeThread) = True Then
PathNode(1, 1, ToNode, ToNodeThread) = 1
PathNode(1, 2, ToNode, ToNodeThread) = ToNode
PathThread(1, 1, ToNode, ToNodeThread) = 1
PathThread(1, 2, ToNode, ToNodeThread) = ToNodeThread
NumberOfPaths(ToNode, ToNodeThread) = NumberOfPaths(ToNode,
ToNodeThread) + 1
LastPathPosition(1, ToNode, ToNodeThread) =2
End If
For FromNode = 2 To ToNode - 1
For FromNodeThread = 1 To WCardinality(FromNode)
If Check(FromNode, FromNodeThread, ToNode, ToNodeThread) = True Then
For i = 1 To NumberOfPaths(FromNode, FromNodeThread)
For j = 1 To LastPathPosition(i, FromNode, FromNodeThread)
PathNode(NumberOfPaths(ToNode, ToNodeThread) + i, j, ToNode,
ToNodeThread) = PathNode(i, j, FromNode, FromNodeThread)
PathThread(NumberOfPaths(ToNode, ToNodeThread) + i, j, ToNode,
ToNodeThread) = PathThread(i, j, FromNode, FromNodeThread)
Next j A
PathNode(NumberOfPaths(ToNode, ToNodeThread) + i, LastPathPosition(i,
FromNode, FromNodeThread) + 1, ToNode, ToNodeThread) = ToNode
PathThread(NumberOfPaths(ToNode, ToNodeThread) + i, LastPathPosition(i,
FromNode, FromNodeThread) + 1, ToNode, ToNodeThread) = ToNodeThread
LastPathPosition(NumberOfPaths(ToNode, ToNodeThread) + i, ToNode,
ToNodeThread) = LastPathPosition(i, FromNode, FromNodeThread) + 1
Next 1
NumberOfPaths(ToNode, ToNodeThread) = NumberOfPaths(ToNode,
ToNodeThread) + NumberOfPaths(FromNode, FromNodeThread)
End If
Next FromNodeThread
Next FromNode
Next ToNodeThread
Next ToNode

RangeCalc =0
EndPathNumber =0
TotalNumberOfPaths = 0
MaxPathLength =0
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Node = EndNode
For Thread = 1 To WCardinality(Node)
For PathNumber = 1 To NumberOfPaths(Node, Thread)
RangeCalc = RangeCalc + 1
EndPathNumber = EndPathNumber + 1
TotalNumberOfPaths = TotalNumberOfPaths + 1
For PathPosition = 1 To LastPathPosition(PathNumber, Node, Thread)
If LastPathPosition(PathNumber, Node, Thread) > MaxPathLength Then
MaxPathLength = LastPathPosition(PathNumber, Node, Thread)
EndPathNode(EndPathNumber, PathPosition) = PathNode(PathNumber,
PathPosition, Node, Thread)
EndPathThread(EndPathNumber, PathPosition) = PathThread(PathNumber,
PathPosition, Node, Thread)
EndThread(EndPathNumber) = Thread
Worksheets("UnCorrectedPathThreads").Cells(1 + RangeCalc, 1 + PathPosition) =
(PathNode(PathNumber, PathPosition, Node, Thread)) * Multiplier +
PathThread(PathNumber, PathPosition, Node, Thread)
Next PathPosition
LastPathPositionEnd(EndPathNumber) = LastPathPosition(PathNumber, Node,
Thread)
Worksheets("UnCorrectedPathThreads").Cells(1 + EndPathNumber, 11) =
LastPathPositionEnd(EndPathNumber)
Worksheets("UnCorrectedPathThreads").Cells(1 + EndPathNumber, 13) =
EndPathNumber

Next PathNumber
Next Thread

End Sub
Sub IdentifyPathLowHigh()

For PathNumber = 1 To TotalNumberOfPaths
For Position = LastPathPositionEnd(PathNumber) To 2 Step -1

ToNode = EndPathNode(PathNumber, Position)

FromNode = EndPathNode(PathNumber, Position - 1)
ToNodeThread = EndPathThread(PathNumber, Position)
FromNodeThread = EndPathThread(PathNumber, Position - 1)

PathLowArcValue(FromNode, ToNode, PathNumber, Position) =
NodeValueLower(ToNode, ToNodeThread) - NodeValueLower(FromNode,
FromNodeThread)

PathUpperArcValue(FromNode, ToNode, PathNumber, Position) =
NodeValueUpper(ToNode, ToNodeThread) - NodeValueUpper(FromNode,
FromNodeThread)
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Next Position
Next PathNumber

RangeCalc = 1
For PathNumber = 1 To TotalNumberOfPaths

Worksheets("UnCorrectedPathThreads").Cells(2 + TotalNumberOfPaths + RangeCalc,
10)=_

NodeValueLower(EndPathNode(PathNumber, LastPathPositionEnd(PathNumber)),
EndPathThread(PathNumber, LastPathPositionEnd(PathNumber)))

Worksheets("UnCorrectedPathThreads").Cells(2 + TotalNumberOfPaths + RangeCalc,
1Hy=_

NodeValueUpper(EndPathNode(PathNumber, LastPathPositionEnd(PathNumber)),
EndPathThread(PathNumber, LastPathPositionEnd(PathNumber))) '

For Position = LastPathPositionEnd(PathNumber) To 2 Step -1

ToNode = EndPathNode(PathNumber, Position)

FromNode = EndPathNode(PathNumber, Position - 1)
ToNodeThread = EndPathThread(PathNumber, Position)
FromNodeThread = EndPathThread(PathNumber, Position - 1)

Worksheets("UnCorrectedPathThreads").Cells(2 + TotalNumberOfPaths + RangeCalc, 2)
= ArcLower(FromNode, ToNode)

Worksheets("UnCorrectedPathThreads").Cells(2 + TotalNumberOfPaths + RangeCalc, 3)
= PathLowArcValue(FromNode, ToNode, PathNumber, Position)
Worksheets("UnCorrectedPathThreads").Cells(2 + TotalNumberOfPaths + RangeCalc, 4)
= PathUpperArcValue(FromNode, ToNode, PathNumber, Position)
Worksheets("UnCorrectedPathThreads").Cells(2 + TotalNumberOfPaths + RangeCalc, 5)
= ArcUpper(FromNode, ToNode)

Worksheets("UnCorrectedPathThreads™).Cells(2 + TotalNumberOfPaths + RangeCalc, 7)
= FromNode * Multiplier + FromNodeThread
Worksheets("UnCorrectedPathThreads").Cells(2 + TotalNumberOfPaths + RangeCalc, 8)
= ToNode * Multiplier + ToNodeThread

RangeCalc = RangeCalc + 1

Next Position
RangeCalc = RangeCalc + 1

Next PathNumber
RangeCalc = RangeCalc + 1

End Sub
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Sub ChangeArcValuesOnPath()

RangeCalc =0
For PathNumber = 1 To TotalNumberOfPaths
For Position = LastPathPositionEnd(PathNumber) To 2 Step -1

ToNode = EndPathNode(PathNumber, Position)

FromNode = EndPathNode(PathNumber, Position - 1)
ToNodeThread = EndPathThread(PathNumber, Position)
FromNodeThread = EndPathThread(PathNumber, Position - 1)

CurrentLow = PathLowArcValue(FromNode, ToNode, PathNumber, Position)
CurrentHigh = PathUpperArcValue(FromNode, ToNode, PathNumber, Position)

AllowedLow = ArcLower(FromNode, ToNode)
AllowedHigh = ArcUpper(FromNode, ToNode)

If (CurrentLow > CurrentHigh) Then
If ((CurrentLow > AllowedHigh) And (CurrentHigh >= AllowedLow)) Then
"We are decreasing the PathLowArcValue
NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) = _
PathLowArcValue(FromNode, ToNode, PathNumber, Position) -
PathUpperArcValue(FromNode, ToNode, PathNumber, Position)
For PositionNext = Position - 1 To 2 Step -1
ToNodePrev = EndPathNode(PathNumber, PositionNext)
FromNodePrev = EndPathNode(PathNumber, PositionNext - 1)
ToNodeThreadPrev = EndPathThread(PathNumber, PositionNext)
FromNodeThreadPrev = EndPathThread(PathNumber, PositionNext - 1)
"We are increasing subsequent lower paths as much as possible
MaxlIterativeChange = _
PathUpperArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) -
PathLowArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext)
If MaxIterativeChange < 0 Then
MaxIterativeChange = 0
End If
If MaxlIterativeChange >= NecessaryChange(FromNode, FromNodeThread, ToNode,
ToNodeThread) Then
'increase by average of necessary and max
PathLowArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) =
PathLowArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext)
+ NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread)
PathLowArcValue(FromNode, ToNode, PathNumber, Position) = _
PathLowArcValue(FromNode, ToNode, PathNumber, Position)
- NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread)
NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) = 0
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Else
'decrease upper by Max
PathLowArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) =
PathLowArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext)
+ MaxlterativeChange
PathLowArcValue(FromNode, ToNode, PathNumber, Position) =
PathLowArcValue(FromNode, ToNode, PathNumber, Position) _
- MaxlIterativeChange
NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) =
NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread)
- MaxlIterativeChange
End If
If NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) = 0 Then
PositionNext =2
'endloop of IncreasingSubsequentLower
End If
Next PositionNext

Else

'If CurrentHigh < AllowedLow Then
"We are increasing the PathUpperArcValue
NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) =
PathLowArcValue(FromNode, ToNode, PathNumber, Position) -
PathUpperArcValue(FromNode, ToNode, PathNumber, Position)
For PositionNext = Position - 1 To 2 Step -1
ToNodePrev = EndPathNode(PathNumber, PositionNext)
FromNodePrev = EndPathNode(PathNumber, PositionNext - 1)
ToNodeThreadPrev = EndPathThread(PathNumber, PositionNext)
FromNodeThreadPrev = EndPathThread(PathNumber, PositionNext - 1)
'We are decreasing subsequent upper paths as much as possible
MaxlterativeChange =
PathUpperArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) -
PathLowArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext)
If MaxIterativeChange < 0 Then
MaxlIterativeChange = 0
End If
If MaxIterativeChange >= NecessaryChange(FromNode, FromNodeThread, ToNode,
ToNodeThread) Then
'decrease by average of necessary and max
PathUpperArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) =
PathUpperArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) _
- (NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread))
PathUpperArcValue(FromNode, ToNode, PathNumber, Position) = _
PathUpperArcValue(FromNode, ToNode, PathNumber, Position) _
+ (NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread))
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NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) = 0
Else '

'decrease upper by Max

PathUpperArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) =
PathUpperArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext)
- MaxlIterativeChange

PathUpperArcValue(FromNode, ToNode, PathNumber, Position) = _
PathUpperArcValue(FromNode, ToNode, PathNumber, Position) _
+ MaxlIterativeChange

NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) =

NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) _
- MaxIterativeChange
End If

If NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) = 0 Then
PositionNext = 2
‘endloop of IncreasingSubsequentLower
End If
Next PositionNext
End If
End If .
RangeCalc = RangeCalc + 1

Worksheets("PathThreads").Cells(152 + RangeCalc, 2) = PathNumber
Worksheets("PathThreads").Cells(152 + RangeCalc, 3) = ArcLower(FromNode,
ToNode)

Worksheets(""PathThreads").Cells(152 + RangeCalc, 4) = PathLowArcValue(FromNode,
ToNode, PathNumber, Position)

Worksheets("PathThreads").Cells(152 + RangeCalc, 5) =
PathUpperArcValue(FromNode, ToNode, PathNumber, Position)
Worksheets("PathThreads").Cells(152 + RangeCalc, 6) = ArcUpper(FromNode, ToNode)
Worksheets("PathThreads").Cells(152 + RangeCalc, 8) = FromNode * Multiplier +
FromNodeThread

Worksheets("PathThreads").Cells(152 + RangeCalc, 9) = ToNode * Multiplier +
ToNodeThread

Next Position

RangeCalc = RangeCalc + 1
Next PathNumber

End Sub

Sub CheckPaths()

For PathNumber = 1 To TotalNumberOfPaths
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SumLower =0
SumUpper =0
PositionGood(PathNumber) = True
For Position = LastPathPositionEnd(PathNumber) To 2 Step -1

ToNode = EndPathNode(PathNumber, Position)

FromNode = EndPathNode(PathNumber, Position - 1)

ToNodeThread = EndPathThread(PathNumber, Position)

FromNodeThread = EndPathThread(PathNumber, Position - 1)

SumLower = SumLower + PathLowArcValue(FromNode, ToNode, PathNumber,
Position)

SumUpper = SumUpper + PathUpperArcValue(FromNode, ToNode, PathNumber,
Position)

If PathLowArcValue(FromNode, ToNode, PathNumber, Position) >
- PathUpperArcValue(FromNode, ToNode, PathNumber, Position) Then
PositionGood(PathNumber) = False
Next Position

If SumLower = NodeValueLower(EndNode, EndThread(PathNumber))
And SumUpper = NodeValueUpper(EndNode, EndThread(PathNumber)) _
And PositionGood(PathNumber) = True Then

GoodPath(PathNumber) = True

Else: GoodPath(PathNumber) = False

End If

Next PathNumber
End Sub

Sub NumberPaths()

RangeCalc =0

EndPatliNumber = 0

OldTotalNumberOfPaths = TotalNumberOfPaths
TotalNumberOfPaths = 0

'MaxPathLength =0

Node = EndNode

For PathNumber = 1 To OldTotalNumberOfPaths
If GoodPath(PathNumber) = True Then
RangeCalc = RangeCalc + 1
EndPathNumber = EndPathNumber + 1
TotalNumberOfPaths = TotalNumberOfPaths + 1
LastPathPositionEnd(EndPathNumber) = LastPathPositionEnd(PathNumber)
Worksheets("PathThreads").Cells(1 + EndPathNumber, 11) = EndPathNumber
Worksheets("PathThreads").Cells(1 + EndPathNumber, 13) =
LastPathPositionEnd(EndPathNumber)
Worksheets("PathThreads").Cells(1 + EndPathNumber, 9) = PathNumber
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For Position = LastPathPositionEnd(PathNumber) To 2 Step -1
ToNode = EndPathNode(PathNumber, Position)
FromNode = EndPathNode(PathNumber, Position - 1)
ToNodeThread = EndPathThread(PathNumber, Position)
FromNodeThread = EndPathThread(PathNumber, Position - 1)
EndPathNode(EndPathNumber, Position) = EndPathNode(PathNumber, Position)
EndPathThread(EndPathNumber, Position) = EndPathThread(PathNumber,
Position)
PathLowArcValue(FromNode, ToNode, EndPathNumber, Position) =
PathL.owArcValue(FromNode, ToNode, PathNumber, Position)
PathUpperArcValue(FromNode, ToNode, EndPathNumber, Position) =
PathUpperArcValue(FromNode, ToNode, PathNumber, Position)
Worksheets("PathThreads").Cells(1 + RangeCalc, 1 + Position) =
(EndPathNode(EndPathNumber, Position)) * Multiplier +
EndPathThread(EndPathNumber, Position)
Next Position
End If
Next PathNumber

End Sub
Sub WritePaths()

RangeCalc =0

For PathNumber = 1 To TotalNumberOfPaths

For Position = LastPathPositionEnd(PathNumber) To 2 Step -1
RangeCalc = RangeCalc + 1

ToNode = EndPathNode(PathNumber, Position)

FromNode = EndPathNode(PathNumber, Position - 1)

ToNodeThread = EndPathThread(PathNumber, Position)

FromNodeThread = EndPathThread(PathNumber, Position - 1)
Worksheets("PathThreads").Cells(152 + RangeCalc, 22) = PathNumber
Worksheets("PathThreads").Cells(152 + RangeCalc, 23) = ArcLower(FromNode,
ToNode)

Worksheets("PathThreads").Cells(152 + RangeCalc, 24) =
PathLowArcValue(FromNode, ToNode, PathNumber, Position)
Worksheets("PathThreads™).Cells(152 + RangeCalc, 25) =
PathUpperArcValue(FromNode, ToNode, PathNumber, Position)
Worksheets("PathThreads").Cells(152 + RangeCalc, 26) = ArcUpper(FromNode,
ToNode)

Worksheets("PathThreads").Cells(152 + RangeCalc, 28) = FromNode * Multiplier +
FromNodeThread

Worksheets("PathThreads").Cells(152 + RangeCalc, 29) = ToNode * Multiplier +
ToNodeThread

Next Position
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RangeCalc = RangeCalc + 1
Next PathNumber
End Sub

Sub CheckIdenticalPaths()

For PathNumber = 1 To TotalNumberOfPaths
NumberMatches(PathNumber) = 1
For j = 1 To TotalNumberOfPaths
PathMatch(PathNumber, j) = 0
If LastPathPositionEnd(PathNumber) = LastPathPositionEnd(j) Then
PathMatch(PathNumber, j) = 1
For Position = 2 To (LastPathPositionEnd(PathNumber) - 1)
ToNodePathNumber = EndPathNode(PathNumber, Position)
FromNodePathNumber = EndPathNode(PathNumber, Position - 1)
ToNodej = EndPathNode(j, Position)
FromNodej = EndPathNode(j, Position - 1)
If ToNodePathNumber = ToNodej And FromNodePathNumber = FromNodej
And (PathMatch(PathNumber, j) = 1) Then

'If (PathArc(PathNumber, Position) = PathArc(j, Position)) And
(PathMatch(PathNumber, j) = 1) Then
PathMatch(PathNumber, j) = 1
Else: PathMatch(PathNumber, j) = 0
End If
Next Position
End If .
'"Worksheets("DominantArcs").Cells(2 + PathNumber, 14 +j) =
PathMatch(PathNumber, j)
If (PathMatch(PathNumber, j) = 1) And (PathNumber <> j) Then
NumberMatches(PathNumber) = NumberMatches(PathNumber) + 1
Next j
Worksheets("DominantArcs").Cells(2 + PathNumber, 13) =
NumberMatches(PathNumber)
Next PathNumber

End Sub

Sub CombinePathThreads()

'look through paths combinedpaths(combonumber, pathnumber)
ComboNumber = 0

For PathNumber = 1 To TotalNumberOfPaths

ComboPathFound(PathNumber) = 0
Next PathNumber
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For PathNumber = 1 To TotalNumberOfPaths
If ComboPathFound(PathNumber) = 0 Then
ComboNumber = ComboNumber + 1
CombinedPath(ComboNumber, 1) = PathNumber
PathInPositionInCombo = 1
For j = (PathNumber) To TotalNumberOfPaths
If (PathMatch(PathNumber, j) = 1) And (PathNumber <> j) Then
ComboPathFound(PathNumber) = 1
ComboPathFound(j) = 1
PathInPositionInCombo = PathInPositionInCombo + 1
CombinedPath(ComboNumber, PathInPositionInCombo) = j
End If
PathsInCombo(ComboNumber) = PathInPositionInCombo
Next j
End If
Next PathNumber

NumberOfCombinedPaths = ComboNumber
End Sub
Sub ObtainComboThreadInfo()

'Initialize lowthread/highthread min/max path distance
For ComboNumber = 1 To NumberOfCombinedPaths
MinimumPathDistance(ComboNumber) = 0
MaximumPathDistance(ComboNumber) = 0
For PositionInCombo = 1 To PathsInCombo(ComboNumber)
For Position = LastPathPositionEnd(CombinedPath(ComboNumber, 1)) To 2 Step -

LowThreadComboNumberPosition(ComboNumber, Position) = Infinity
HighThreadComboNumberPosition(ComboNumber, Position) = 0
Next Position
Next PositionInCombo
Next ComboNumber

For ComboNumber = 1 To NumberOfCombinedPaths
LowThreadComboNumberPosition(ComboNumber, 1) = 1
HighThreadComboNumberPosition(ComboNumber, 1) =1
For PositionInCombo = 1 To PathsInCombo(ComboNumber)

PathNumber = CombinedPath(ComboNumber, PositionInCombo)
'Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) +

1, 3 * (PositionInCombo - 1) + 25) = CombinedPath(ComboNumber, PositionInCombo)

For Position = LastPathPositionEnd(PathNumber) To 2 Step -1
ToNode = EndPathNode(PathNumber, Position)
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FromNode = EndPathNode(PathNumber, Position - 1)
ToNodeThread = EndPathThread(PathNumber, Position)
FromNodeThread = EndPathThread(PathNumber, Position)
LowerArcPositionInCombo(ComboNumber, PositionInCombo, Position) =
PathLowArcValue(FromNode, ToNode, PathNumber, Position)
UpperArcPositioninCombo(ComboNumber, PositionInCombo, Position) =
PathUpperArcValue(FromNode, ToNode, PathNumber, Position)
"Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1)
+ Position, 3 * (PositionInCombo - 1) + 25) =
LowerArcPositionInCombo(ComboNumber, PositionInCombo, Position)
"Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1)
+ Position, 3 * (PositionInCombo - 1) + 26) =
UpperArcPositionInCombo(ComboNumber, PositionInCombo, Position)
"Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1)
+ Position, 6) = ArcLower(FromNode, ToNode)
"Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1)
+ Position, 7) = ArcUpper(FromNode, ToNode)
"Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1)
+ Position, 3) = FromNode
"Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1)
+ Position, 4) = ToNode
If ToNodeThread < LowThreadComboNumberPosition(ComboNumber, Position)
Then LowThreadComboNumberPosition(ComboNumber, Position) = ToNodeThread
If ToNodeThread > HighThreadComboNumberPosition(ComboNumber, Position)
Then HighThreadComboNumberPosition(ComboNumber, Position) = ToNodeThread
Next Position
Next PositionInCombo
Next ComboNumber

For ComboNumber = 1 To NumberOfCombinedPaths
For Position = LastPathPositionEnd(CombinedPath(ComboNumber, 1)) To 2 Step -1
ToNode = EndPathNode(CombinedPath(ComboNumber, 1), Position)
FromNode = EndPathNode(CombinedPath(ComboNumber, 1), Position - 1)
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) +
Position, 9) = _ .
LowThreadComboNumberPosition(ComboNumber, Position)
Worksheets("CombinedPaths"). Cells((MaxPathLength +2) * (ComboNumber - 1) +
Position, 10) =
HighThreadComboNumberPosition(ComboNumber, Position)
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) +
Position, 12) = _
NodeValueLower(ToNode,
LowThreadComboNumberPosition(ComboNumber, Position))
Worksheets("CombinedPaths"). Cells((MaxPathLength + 2) * (ComboNumber - 1) +
Position, 13) =
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NodeValueUpper(ToNode,
HighThreadComboNumberPosition(ComboNumber, Position))
LowerArcCompleteCombo(ComboNumber, Position) = _
NodeValueLower(ToNode, LowThreadComboNumberPosition(ComboNumber,
Position)) _
- NodeValueLower(FromNode, LowThreadComboNumberPosition(ComboNumber,
Position - 1)) .
UpperArcCompleteCombo(ComboNumber, Position) =
NodeValueUpper(ToNode, HighThreadComboNumberPosition(ComboNumber,
Position))
- NodeValueUpper(FromNode, HighThreadComboNumberPosition(ComboNumber,
Position - 1)) '
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) +
Position, 15) = _ :
LowerArcCompleteCombo(ComboNumber, Position)
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) +
Position, 16) = _
UpperArcCompleteCombo(ComboNumber, Position)

Next Position
Next ComboNumber
End Sub
Sub FindArcValuesOnCombinedPath()
For ComboNumber = 1 To NumberOfCombinedPaths

PathNumber = CombinedPath(ComboNumber, 1)
ComboPathLength(ComboNumber) = 0

If NodeValueUpper(EndNode, HighThreadComboNumberPosition(ComboNumber,
LastPathPositionEnd(PathNumber))) <> _

NodeValueLower(EndNode, LowThreadComboNumberPosition(ComboNumber,
LastPathPositionEnd(PathNumber))) Then

ShortestPathLength(ComboNumber) =

NodeValueUpper(EndNode, HighThreadComboNumberPosition(ComboNumber,
LastPathPositionEnd(PathNumber))) _

- NodeValueLower(EndNode, LowThreadComboNumberPosition(ComboNumber,
LastPathPositionEnd(PathNumber)))

For Position = LastPathPositionEnd(CombinedPath(ComboNumber, 1)) To 2 Step -1

ToNode = EndPathNode(PathNumber, Position)
FromNode = EndPathNode(PathNumber, Position - 1)
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ComboPathLength(ComboNuxhber) = ComboPathLength(ComboNumber) +
ArcUpper(FromNode, ToNode) - ArcLower(FromNode, ToNode)
Next Position

PositionLength(ComboNumber, 2) = ShortestPathLength(ComboNumber)

For Position = LastPathPositionEnd(CombinedPath(ComboNumber, 1)) To 3 Step -1
ToNode = EndPathNode(PathNumber, Position)
FromNode = EndPathNode(PathNumber, Position - 1)

PositionLength(ComboNumber, Position) = ShortestPathLength(ComboNumber) *
(ArcUpper(FromNode, ToNode) - ArcLower(FromNode, ToNode)) /
ComboPathLength(ComboNumber)

PositionLength(ComboNumber, 2) = PositionLength(ComboNumber, 2) -
PositionLength(ComboNumber, Position)

Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) +
Position, 18) = _
PositionLength(ComboNumber, Position)

UpperArcCompleteCombo(ComboNumber, Position) =
LowerArcCompleteCombo(ComboNumber, Position) +
PositionLength(ComboNumber, Position)

Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) +
Position, 21) = _

UpperArcCompleteCombo(ComboNumber, Position)
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) +
Position, 20) = _

LowerArcCompleteCombo(ComboNumber, Position)

Next Position

UpperArcCompleteCombo(ComboNumber, 2) = _
LowerArcCompleteCombo(ComboNumber, 2) + PositionLength(ComboNumber, 2)

End If

Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) + 2,
18)= ‘ :

PositionLength(ComboNumber, 2)
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) + 2,
21)=_

UpperArcCompleteCombo(ComboNumber, 2)
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) + 2,
20)=_
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LowerArcCompleteCombo(ComboNumber, 2)

Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) +
Position + 1, 17) = _

ComboPathLength(ComboNumber)
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) +
Position +2,17) = _

ShortestPathLength(ComboNumber)

Next ComboNumber
End Sub

Sub FindNonDominatedPaths()

' we are listing all end threads for each ComboNumber '
- Worksheets("NonDominatedPaths").Cells(1 * (NumberOfCombinedPaths + 2) + 4, 1) =
"NonDominatedCombos"
For ComboNumber = 1 To NumberOfCombinedPaths
For PositionInCombo = 1 To PathsinCombo(ComboNumber)
PathNumber = CombinedPath(ComboNumber, PositionInCombo)
ThreadInComboNumber(ComboNumber, EndPathThread(PathNumber,
LastPathPositionEnd(PathNumber))) = 1
ComboEndThreads(ComboNumber, PositioninCombo) =
EndPathThread(PathNumber, LastPathPositionEnd(PathNumber))
Worksheets("NonDominatedPaths").Cells(2 * (NumberOfCombinedPaths + 2) +
ComboNumber + 4, 2 + PositionInCombo) = ComboEndThreads(ComboNumber,
PositionInCombo)
Next PositionInCombo
Next ComboNumber

For ComboNumber = 1 To NumberOfCombinedPaths

ComboNumberNonDominated(ComboNumber) = 1

For Thread = 1 To WCardinality(EndNode)
Worksheets("NonDominatedPaths").Cells(1 * (NumberOfCombinedPaths + 2) +

ComboNumber + 4, 3 + Thread) = ThreadInComboNumber(ComboNumber, Thread)
If ThreadInComboNumber(ComboNumber, Thread) = 0 Then

ComboNumberNonDominated(ComboNumber) = 0

Next Thread

If ComboNumberNonDominated(ComboNumber) = 1 Then

Worksheets("NonDominatedPaths").Cells(1 * (NumberOfCombinedPaths + 2) +

ComboNumber + 4, 1) = ComboNumber

If ComboNumberNonDominated(ComboNumber) = 1 And

(MaximumPathDistance(ComboNumber) = NodeValueUpper(EndNode,
WCardinality(EndNode))) Then
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Worksheets("NonDominatedPaths").Cells(1 * (NumberOfCombinedPaths + 2) +
ComboNumber + 4, 1) = ComboNumber
Else

ComboNumberNonDominated(ComboNumber) = 0
End If
Worksheets("NonDominatedPaths").Cells(1 * (NumberOfCombinedPaths + 2) +
ComboNumber + 4, 1) = ComboNumberNonDominated(ComboNumber)
Next ComboNumber

End Sub
Sub MinimizeRegret() |

'SmallestMinimum = Infinity
SmallestChange = Infinity
'LargestMaximum =0
For ComboNumber = 1 To NumberOfCombinedPaths
MinimumPathDistance(ComboNumber) = 0
MaximumPathDistance(ComboNumber) = 0
PathNumber = CombinedPath(ComboNumber, 1)
For Position = LastPathPositionEnd(PathNumber) To 2 Step -1
ToNode = EndPathNode(PathNumber, Position)
FromNode = EndPathNode(PathNumber, Position - 1)
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) +
Position, 3) = FromNode
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) +
Position, 4) = ToNode
"Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1)
+ Position, 9) = NodeValueLower(ToNode, WCardinality(ToNode))
"Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1)
+ Position, 10) = NodeValueUpper(ToNode, WCardinality(ToNode))
MinimumPathDistance(ComboNumber) = MinimumPathDistance(ComboNumber)
+ ArcLower(FromNode, ToNode)
MaximumPathDistance(ComboNumber) = MaximumPathDistance(ComboNumber)
+ ArcUpper(FromNode, ToNode)
Next Position
CumulativeDistanceChange(ComboNumber) =
MaximumPathDistance(ComboNumber) - MinimumPathDistance(ComboNumber)
'"If MinimumPathDistance(ComboNumber) < SmallestMinimum Then
'SmallestMinimumCombo = ComboNumber
'SmallestMinimum = MinimumPathDistance(ComboNumber)
'End If
'If MaximumPathDistance(ComboNumber) < LargestMaximum Then
"LargestMaximumCombo = ComboNumber
'"LargestMaximum = MaximumPathDistance(ComboNumber)
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'End If

If CumulativeDistanceChange(ComboNumber) < SmallestChange Then

MinimizedRegretCombo = ComboNumber

SmallestChange = CumulativeDistanceChange(ComboNumber)

End If

Worksheets("NonDominatedPaths").Cells(ComboNumber + 4, 4) =
MinimumPathDistance(ComboNumber)

Worksheets("NonDominatedPaths").Cells(ComboNumber + 4, 5) =
MaximumPathDistance(ComboNumber)

Worksheets("NonDominatedPaths").Cells(ComboNumber + 4, 7) =
CumulativeDistanceChange(ComboNumber)

Worksheets("NonDominatedPaths").Cells(ComboNumber + 4, 1) =
ComboPathPoints(ComboNumber)
Next ComboNumber
Worksheets("NonDominatedPaths").Cells(2, 1) = SmallestChange
Worksheets("NonDominatedPaths").Cells(2, 2) = MinimizedRegretCombo
Worksheets("NonDominatedPaths").Cells(1, 1) = "SmallestChange"
Worksheets("NonDominatedPaths").Cells(1, 2) = "MinimizedRegretCombo"
Worksheets("NonDominatedPaths").Cells(4, 1) = "ComboPoints"

End Sub
Sub GetArcs()

For FromNode = 1 To EndNode
For ToNode = 1 To EndNode
If ArcLower(FromNode, ToNode) < Infinity Then
NumberOfArcs = NumberOfArcs + 1
RangeCalc = RangeCalc + 1
OriginatingNode(NumberOfArcs) = FromNode
TerminatingNode(NumberOfArcs) = ToNode
End If
Next ToNode
Next FromNode
loop=n~"2

RangeCalc =0

For ComboNumber = 1 To NumberOfCombinedPaths
PathNumber = CombinedPath(ComboNumber, 1)

For Position = 1 To LastPathPositionEnd(PathNumber)
ToNode = EndPathNode(PathNumber, Position + 1)

FromNode = EndPathNode(PathNumber, Position)
ToNodeThread = EndPathThread(PathNumber, Position + 1)
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FromNodeThread = EndPathThread(PathNumber, Position)

Worksheets("DominantArcs").Cells(2, 2) = "PathArc"
Worksheets("DominantArcs").Cells(2, 3) = "PathNumber"

Fori=1 To NumberOfArcs
If (OriginatingNode(i) = FromNode) And (TerminatingNode(i) = ToNode) Then
PathArc(ComboNumber, Position) =i
RangeCalc = RangeCalc + 1
Worksheets("DominantArcs").Cells(2 + RangeCalc, 2) = PathArc(ComboNumber,
Position)
Worksheets("DominantArcs").Cells(2 + RangeCalc, 3) = ComboNumber
"Worksheets("DominantArcs").Cells(2 + RangeCalc, 30) =
PathLowArcValue(FromNode, ToNode, PathNumber, Position)
"Worksheets("DominantArcs").Cells(2 + RangeCalc, 31) =
PathUpperArcValue(FromNode, ToNode, PathNumber, Position)
End If
Next i

Next Position
Next ComboNumber

End Sub
Sub EvaluateDominantArcs()

For ComboNumber = 1 To NumberOfCombinedPaths
PathNumber = CombinedPath(ComboNumber, 1)
For Position = 1 To (LastPathPositionEnd(PathNumber) - 1)
Fori=1 To NumberOfArcs
If PathArc(ComboNumber, Position) =i Then NumberOfPathsContamlngArc(1) =
NumberOfPathsContainingArc(i) + 1
Next i
Next Position
Next PathNumber
Next ComboNumber

ArcsInShortPath = 0

For i =1 To NumberOfArcs
Worksheets("DominantArcs").Cells(2 + 1, 6) =i
Worksheets("DominantArcs").Cells(2 + i, 5) = NumberOfPathsContaining Arc(i)
ArcsInShortPath = ArcsInShortPath + NumberOfPathsContainingArc(i)

Next i

'For i = 1 To NumberOfArcs
' RelativeWorthArc(i) = NumberOfPathsContainingArc(i) / ArcsInShortPath
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' Worksheets("DominantArcs").Cells(2 + i, 7) = RelativeWorthArc(i)
Next i

Worksheets("DominantArcs").Cells(2, 7) = "RelativeWorthArc"
Worksheets("DominantArcs").Cells(2, 6) = "ArcNumber"
Worksheets("DominantArcs").Cells(2, 5) = "NumberOfPathsContainingArc"
Worksheets("DominantArcs").Cells(2, 10) = "PathNumber”
Worksheets("DominantArcs").Cells(2, 11) = "PathPoints"

For ComboNumber = 1 To NumberOfCombinedPaths

PathNumber = CombinedPath(ComboNumber, 1)

'For PathNumber = 1 To TotalNumberOfPaths

PathPoints(ComboNumber) = 0

For Position = 1 To (LastPathPositionEnd(PathNumber) - 1)
PathPoints(ComboNumber) = PathPoints(ComboNumber) +

NumberOfPathsContainingArc(PathArc(ComboNumber, Position))

Next Position

PathPoints(ComboNumber) = PathPoints(ComboNumber) /
(LastPathPositionEnd(CombinedPath(ComboNumber, 1)) - 1)
Worksheets("DominantArcs").Cells(2 + ComboNumber, 10) = ComboNumber
Worksheets("DominantArcs").Cells(2 + ComboNumber, 11) =
PathPoints(ComboNumber)

Next PathNumber

Next ComboNumber

End Sub

Sub WriteArcInfo()

RangeCalc =0

For i =1 To NumberOfArcs

RangeCalc = RangeCalc + 1

For PathNumber = 1 To TotalNumberOfPaths

For Position = LastPathPositionEnd(PathNumber) To 2 Step -1

ToNode = EndPathNode(PathNumber, Position)
FromNode = EndPathNode(PathNumber, Position - 1)
ToNodeThread = EndPathThread(PathNumber, Position)
FromNodeThread = EndPathThread(PathNumber, Position - 1)
'For i =1 To NumberOfArcs
If (PathArc(PathNumber, Position - 1) = i) Then
RangeCalc = RangeCalc + 1
Worksheets("ArcInfo").Cells(2 + RangeCalc, 2) = i
Worksheets("ArcInfo").Cells(2 + RangeCalc, 3) = PathNumber
Worksheets("ArcInfo").Cells(2 + RangeCalc, 5) = PathLowArcValue(FromNode,
ToNode, PathNumber, Position)
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Worksheets("ArcInfo").Cells(2 + RangeCalc, 6) = PathUpperArcValue(FromNode,
ToNode, PathNumber, Position)
Worksheets(" ArcInfo").Cells(2 + RangeCalc, 11) = OriginatingNode(i)
Worksheets("ArcInfo™).Cells(2 + RangeCalc, 12) = TerminatingNode(i)
Worksheets("ArcInfo").Cells(2 + RangeCalc, 8) = ArcLower(OriginatingNode(i),
TerminatingNode(i))
Worksheets("ArcInfo").Cells(2 + RangeCalc, 9) = ArcUpper(OriginatingNode(i),
TerminatingNode(i))
End If
Next i

Next Position
Next PathNumber
Next i

End Sub
Sub FindSubPaths()

RangeCalc =1

For SubPathLength = 3 To MaxPathLength

Number = 1

For ComboNumber = 1 To NumberOfCombinedPaths

PathNumber = CombinedPath(ComboNumber, 1)

For StartingSet = 1 To (LastPathPositionEnd(PathNumber) - SubPathLength)
SubPathComboNumber(SubPathLength, Number) = ComboNumber
Worksheets("SubPaths").Cells(RangeCalc + 2, 4) = Number
For Position = 1 To SubPathLength

SubPath(SubPathLength, Number, Position) = EndPathNode(PathNumber,
StartingSet + Position)
Worksheets("SubPaths").Cells(RangeCalc + 2, 2) = SubPath(SubPathLength,
Number, Position)
RangeCalc = RangeCalc + 1
Next Position
Worksheets("SubPaths").Cells(RangeCalc + 1, 3) =
SubPathComboNumber(SubPathLength, Number)
Number = Number + 1
RangeCalc = RangeCalc + 1
Next StartingSet

Next ComboNumber

NumberOfSubPaths(SubPathLength) = Number - 1
Worksheets("SubPaths").Cells(RangeCalc + 2, 5) = NumberOfSubPaths(SubPathLength)
Next SubPathLength

End Sub
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Sub CheckldenticalSubPaths()

'Initialize Match

For SubPathLength = 3 To MaxPathLength

For Number = 1 To NumberOfSubPaths(SubPathLength)

For j = 1 To NumberOfSubPaths(SubPathLength)
SubPathMatch(SubPathLength, Number, j) =1
ComboSubPathMatch(SubPathLength, Number, j) = 1

Next j

Next Number

Next SubPathLength

RangeCalc =1
For SubPathLength = 3 To MaxPathLength
RangeCalc = RangeCalc + 1
For Number = 1 To NumberOfSubPaths(SubPathLength)
NumberSubMatches(SubPathLength, Number) = 1
RangeCalc = RangeCalc + 1
For j = Number To NumberOfSubPaths(SubPathLength)
For Position = 1 To SubPathLength
If SubPath(SubPathLength, Number, Position) = SubPath(SubPathLength, j,
Position) And (SubPathMatch(SubPathLength, Number, j) = 1) Then
SubPathMatch(SubPathLength, Number, j) = 1
Else: SubPathMatch(SubPathLength, Number, j) =0
End If
Next Position
Next j
Next Number
Next SubPathLength
End Sub

Sub FindCombosInSubPaths()

For SubPathLength = 3 To MaxPathLength

For Number = 1 To NumberOfSubPaths(SubPathLength)
ComboSubPathFound(SubPathLength, Number) = 0
NumberSubMatches(SubPathLength, Number) = 1

Next Number

For Number = 1 To NumberOfSubPaths(SubPathLength)
If ComboSubPathFound(SubPathLength, Number) = 0 Then
For j = (Number + 1) To NumberOfSubPaths(SubPathLength)
If (SubPathMatch(SubPathLength, Number, j) = 1) Then
ComboSubPathFound(SubPathLength, Number) = 1
ComboSubPathFound(SubPathLength, j) = 1
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NumberSubMatches(SubPathLength, Number) =
NumberSubMatches(SubPathLength, Number) + 1

End If
Next j
End If
Next Number

Next SubPathLength

RangeCalc =1
Worksheets("SubPaths").Cells(2, 12) = "SubPathLength"
Worksheets("SubPaths").Cells(2, 14) = "NumberSubMatches"
For SubPathLength = 3 To MaxPathLength
Range =0
RangeCalc = RangeCalc + 1
For Number = 1 To NumberOfSubPaths(SubPathLength)
If NumberSubMatches(SubPathLength, Number) > 1 Then
RangeCalc = RangeCalc + 1
Worksheets("SubPaths").Cells(RangeCalc + SubPathLength, 12) = SubPathLength
Worksheets("SubPaths").Cells(RangeCalc + SubPathLength, 14) =
NumberSubMatches(SubPathLength, Number)
"Worksheets("SubPaths").Cells(RangeCalc + 2, 15) = Number
For Position = 1 To SubPathLength
Worksheets("SubPaths").Cells(RangeCalc + SubPathLength, 16 + Position) =
SubPath(SubPathLength, Number, Position)
Next Position
Worksheets("SubPaths").Cells(RangeCalc + SubPathLength, 17 + Position) =
SubPathComboNumber(SubPathLength, Number)
For j = (Number + 1) To NumberOfSubPaths(SubPathLength)

If (SubPathMatch(SubPathLength, Number, j) = 1) Then
Range = Range + 1
Worksheets("SubPaths").Cells(RangeCalc + SubPathLength, 17 + Position +
Range) = SubPathComboNumber(SubPathLength, j)
End If
Next j
End If

Next Number
Next SubPathLength

End Sub
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APPENDIX B

FLOW CHART IDENTIFY CUT POINTS

Begin

l

Stopping Cut
Point(Node) =
infinity

i

k=1, i =0,
WCardinality(1) =
1

wcardinality(i)

i=i+1 T t=t+1

UnorderedCutPoints( Node k) =
ArcLower(Node,i) +
NodeValueLower(i,t)

Y

k =k+1

t=t+1

wcardinality(i)

yes

UnorderedCutPoints(Node k) =
ArcUpper(Node,i) +
NodeValueUpper(i,t) .

NumberUnordered
(Node) = k-1 UnorderedCutPoints(Node, k)<
* StoppingCutPoint(Node)<infinity?
End

StoppingCutPoint(Node)=
UnorderedCutPoints(k,Node)

k= k1
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APPENDIX C

FLOW CHART ORDER CUT POINTS

Temp = Infinity
Stopping Position(Node)=1
i=0

Temp =
UnorderedCutPoints
(Node,i)

NumberUnodered

UndrderedCutPoints
Node,i)< Temp and
UnorderedCutPoints
{Node,i)>CutPoints
(Node,z-1)

WCardinality(Node)=
StoppingPosition-1

Temp=Unordered

CutPoints(Node,i).

CutPointCardinality

WCardinality(Node)= 1 CutPointCardinality (Node)= z

_ (Node)= z-1.
CutPoints(Node,z) z =Number
= Temp Unordered(Node)

yes

CutPoints(Node,z) =
toppingCutPoint(Node)?

StoppingPosition(Node) = z
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APPENDIX D

FLOW CHART DECREASE PATH LOW ARC VALUE

Begin

Y

SubsequentChange=...
PathLowArcValue(Current)=
PathUpperArcValue(Current)

'

PositionNext=Position

—=

PositionNext=PositionNext -1

ToNodePrev=EndPathNode(PathNumber,PositonNext)
FromNodePrev=EndPathNode(PathNumber,PositonNext-1)
ToNodeThreadPrev=EndPathThread(PathNumber,PositonNext)
FromNodeThreadPrev=EndPathThread(PathNumber,PositonNext-1)
MaxiterativeChange= PathUpperArcValue(Prev)-Pathl.owArcValue(Prev)

no
PositionNext=27?

End

Maxlterative
Change<0?

Maxlterarive Change = 0

axlterativeChange>
SubsequentChange

o

Decrease CurrentPathLowArcValue by Max
Increase Previous PathLowArcValue by Max
Subsequent = Subsequent - Max

Decrease CurrentPathLowArcValue by Subseq.
Increase Previous PathLowArcValeu bySubseq.
Subsequent =0

Subsequent = 0?

PositionNext =2
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APPENDIX E

FLOW CHART INCREASE PATH HIGH ARC VALUE

Begin

Y

SubsequentChange=...
PathLowArcValue(Current)-
PathUpperArcValue(Current)

!

PositionNext=Position

:%

PositionNext=PositionNext -1

ToNodePrev=EndPathNode(PathNumber,PositonNext)
FromNodePrev=EndPathNode(PathNumber,PositonNext-1)
ToNodeThreadPrev=EndPathThread(PathNumber,PositonNext)
FromNodeThreadPrev=EndPathThread(PathNumber PositonNext-1)
MaxiterativeChange= PathUpperArcValue(Prev)-PathLowArcValue(Prev)

PositionNext=27 >1°

End

Maxiterative
Change<0?

Maxlterarive Change =0

axlterativeChange>
SubsequentChange

Increase Current PathUpperArcValue by Max
Decrease Previous PathUpperArcValue by Max
Subsequent = Subsequent - Max

Increase Current PathUpperArcValeu bySubsegq.
Decrease PreviousPathUpperArcValue by Subseq.
Subsequent =0

Subsequent = 0?

PositionNext=2
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SHORTEST PATHS 10-NODE NETWORK IV

APPENDIX F

T «~ o~ o <t 7o) © T « o~ ™ < Yol ©
= W w Al 11] L L =1 W 98] Ll LL L IS 1% B
<l |0 o a = =] <oiQ o | [a) =) 0
=0 |0 o] o O | O =10 {0 |© @] o (@)

202 | 2 4 2 |2 |2 2|2 2 4 b4 Z b4

z . 2

1] 101 | 301 | 601 | 1001 270 | 101 | 402 | 704 | 1015

2] 101 | 301 | 601 | 1002 271 | 101 | 301 | 402 704 | 1015

3] 101 | 401 | 701 | 801 1002 272 | 101 | 201 | 501 704 | 1015

4] 101 | 301 | 601 | 1003 2731 101 ] 201 | 501 806 | 1015

5| 101 | 401 ] 701 | 1003 274 | 101 | 401 | 703 806 | 1015

6| 101 401 | 701 | 801 | 1003 275 | 101 | 402 | 703 806 | 1015

71 101 | 301 | 601 | 1004 276 | 101 | 301 | 402 703 806 | 1015

81 101 | 301 | 602 1004 277 1101 | 201 | 501 703 806 | 1015

9] 101 | 401 ] 602 | 1004 278 | 101 | 402 | 704 806 | 1015

10 | 101 | 401 | 701 | 1004 279 | 101 | 301 | 402 704 806 | 1015
11 101 | 401 | 701 | 801 | 1004 280 | 101 | 201 [ 501 704 806 | 1015
12| 101 | 301 | 601 | 1005 281 | 101 | 402 | 705 806 | 1015

13| 101 | 301 | 602 | 1005 282 | 101 | 301 | 402 705 806 | 1015
14 | 101 | 401 | 602 | 1005 283 | 101 | 201 501 705 806 | 1015
15 101 401 701 1005 284 101 301 601 705 806 | 1015
16 | 101 | 401 [ 701 | 801 | 1005 285 | 101 | 301 | 603 ] 1016

17| 101 | 401 | 701 | 802 | 1005 286 | 101 | 401 | 603 | 1016

18 | 101 | 401 | 702 | 802 | 1005 287 | 101 | 402 | 603 | 1016

19| 101 | 201 | 501 | 702 | 802 | 1005 286 | 101 | 301 | 402 603 | 1016

20| 101 | 301 601 1006 280 | 101 | 401 | 701 1016 20

21 ] 101 | 301 | 602 | 1006 290 | 101 | 401 | 702 | 1016 20

22 | 101 | 401 | 602 | 1006 261 | 101 | 201 501 702 | 1016

23 101 401 701 1006 292 101 401 703 1016 40

24 | 101 | 401 | 701 | 801 | 1006 293 | 101 | 402 ] 703 | 1016

25 | 101 | 401 | 701 | 802 | 1006 204 | 101 | 301 | 402 703 | 1016

26 | 101 | 401 | 702 | 802 | 1006 265 | 101 | 201 | 501 703 [ 1016

27 | 101 | 201 | 501 | 702 | 802 | 10068 296 | 101 | 402 | 704 | 1016 20

28 101 201 501 803 1006 297 101 301 402 704 1016

29 101 401 701 803 1006 208 101 201 501 704 1016

30 | 101 | 401 | 702 | 803 | 1006 269 | 101 | 402 | 705 ] 1016 20

31 101 | 201 | 501 | 702 | 803 | 1006 | 300 | 101 | 301 | 402 705 | 1016

32 | 101 | 401 | 703 | 803 | 1006 301 | 101 | 201 | 501 705 | 1016

33 | 101 | 402 | 703 | 803 | 1006 302 | 101 | 301 | 601 705 | 1016

34 | 101 | 301 | 402 | 703 | 803 | 1006 303 | 101 | 201 | 501 806 | 1016

35| 101 | 201 ] 501 ] 703 803 | 1006 304 | 101 | 401 | 703 806 | 1016

36 | 101 | 301 | 601 ] 1007 305 | 101 | 402 | 703 806 | 1016

37 ] 101 [ 301 | 602 | 1007 306 | 101 | 301 | 402 703 806 | 1016
38 101 401 602 1007 307 101 201 501 703 806 | 1016
39 | 101 | 401 | 701 ] 1007 308 | 101 | 402 | 704 806 | 1016

40 | 101 | 401 | 701 | 802 | 1007 309 | 101 | 301 | 402 704 806 | 1016
41| 101 | 401 ] 702 | 802 | 1007 310 | 101 | 201 | 501 704 806 | 1016
42 101 201 501 702 802 1007 311 101 402 705 806 1016

43 101 201 501 803 1007 312 101 301 402 705 806 { 1016
44 | 101 | 401 701 | 803 | 1007 313 | 101 ] 201 | 501 705 806 | 1016
45 101 401 702 803 1007 314 101 301 601 705 806 | 1016
46 | 101 | 201 | 501 | 702 | 803 | 1007 315 101 | 301 | 603 | 1017

47 | 101 | 401 | 703 | 803 | 1007 316 | 101 | 401 | 603 | 1017

48 | 101 | 402 | 703 | 803 | 1007 317 | 101 | 402 | 603 | 1017

49| 101 | 301 | 402 ] 703 | 803 ] 1007 J| 318 | 101 | 301 | 402 603 | 1017

50 | 101 | 201 | 501 | 703 | 803 | 1007 319 | 101 | 401 | 701 1017
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51| 101 | 301 | 602 | 1008 320 | 101 ] 401 | 702 1017

52 | 101 | 401 | 602 | 1008 321 101 ] 201 ] 501 702 [ 1017

53 [ 101 [ 401 | 701 | 1008 322 101 401 [ 703 ] 1017

54 | 101 ] 201 | 501 | 803 | 1008 323 ] 101 | 402 | 703 | 1017

55| 101 | 401 [ 701 [ 803 | 1008 324 | 101 ] 301 | 402 703 | 1017

56 | 101 | 401 [ 702 [ 803 | 1008 325 | 101 | 201 | 501 703 | 1017

57 101 | 201 ] 501 ] 702 ] 803 | 1008 326 [ 101 | 402 | 704 | 1017

58 | 101 | 401 | 703 [ 803 | 1008 327 | 101 ] 301 [ 402 704 | 1017

59 | 101 | 402 [ 703 803 | 1008 328 | 101 | 201 [ 501 704 | 1017

60| 101 | 301 | 402 ] 703 | 803 | 1008 329 | 101 | 402 | 705 | 1017

61| 101 | 201 | 501 ] 703 ] 803 | 1008 | 330 | 101 | 301 | 402 705 | 1017

62 | 101 [ 301 [ 602 | 1009 331 | 101 | 201 [ 501 705 | 1017

63 | 101 | 401 [ 602 [ 1009 332 101 ] 301 [ 601 705 | 1017

64 | 101 | 401 [ 701 | 1009 333 | 101 | 201 [ 501 806 | 1017

65 | 101 | 401 | 702 | 1009 334 | 101 | 401 | 703 806 | 1017

66 | 101 | 201 | 501 | 702 | 1009 335 [ 101 | 402 [ 703 806 | 1017

67 [ 101 ] 201 ] 501 | 803 | 1009 336 [ 101 | 301 [ 402 703 806 | 1017
68 | 101 [ 401 | 701 | 803 | 1009 337 ] 101 ] 201 [ 501 703 806 | 1017
69 | 101 ] 401 702 | 803 | 1009 338 | 101 | 402 704 806 | 1017

70 101 ] 201 ] 501 ] 702 | 803 | 1009 339 | 101 [ 301 | 402 704 806 | 1017
71 101 ] 401 | 703 | 803 | 1009 340 [ 101 ] 201 [ 501 704 806 | 1017
72 | 101 | 402 703 ] 803 | 1009 341 | 101 ] 402| 705 806 | 1017

73] 101 | 301 | 402 703 | 803 | 1009 342 [ 101 | 301 [ 402 705 806 | 1017
74 | 101 ] 201 ] 501 ] 703 ] 803 | 1009 343 | 101 [ 201 [ 501 705 806 | 1017
75] 101 | 301 | 602 | 1010 344 | 101 ] 301 | 601 705 806 | 1017
76 | 101 | 401 [ 602 | 1010 345 | 101 201 [ 501 807 | 1017

77 101 [ 401 [ 701 [ 1010 346 | 101 | 401 | 703 807 [ 1017

78 | 101 [ 401 | 702 [ 1010 347 | 101 | 402 | 703 807 | 1017

79| 101 | 201 | 501 | 702 | 1010 348 | 101 301 [ 402 703 807 | 1017
80 [ 101 [ 401 703 | 1010 349 | 101 | 201 [ 501 703 807 | 1017
81 ] 101 ] 402 703 | 1010 350 | 101 | 402 | 704 807 [ 1017

82| 101 | 301 [ 402 703 | 1010 351 [ 101 | 301 [ 402 704 807 | 1017
83 101 [ 201 501 | 703 | 1010 352 | 101 | 201 [ 501 704 807 | 1017
84 | 101 | 201 | 501 | 803 | 1010 353 | 101 | 402 [ 705 807 [ 1017

85| 101 [ 401 | 701 | 803 | 1010 354 | 101 | 301 [ 402 705 807 | 1017
86 | 101 | 401 | 702 [ 803 | 1010 355 | 101 | 201 [ 501 705 807 | 1017
87| 101 [ 201 | 501 ] 702 | 803 | 1010 356 | 101 | 301 | 601 705 807 | 1017
88 | 101 [ 401 [ 703 | 803 | 1010 357 | 101 | 402 | 706 807 | 1017

89 | 101 | 402 | 703 [ 803 | 1010 358 [ 101 | 301 [ 402 706 807 | 1017
90 [ 101 ] 301 402 703 | 803 | 1010 359 | 101 | 201 [ 501 706 807 | 1017
91 [ 101 ] 201 [ 501 | 703 | 803 | 1010 360 [ 101 | 201 | 502 706 807 | 1017
92 | 101 | 301 | 602 | 1011 361 | 101 | 401 | 502 706 807 | 1017
93 | 101 ] 401 ] 602 1011 362 | 101 | 301 | 601 706 807 | 1017
94 | 101 | 301 [ 603 | 1011 33| 101 ] 301 | 603 | 1018

95 | 101 | 401 | 603 | 1011 364 | 101 401 603 | 1018

96 | 101 | 402 | 603 | 1011 365 | 101 ] 402 | 603 | 1018

97 | 101 | 301 | 402 [ 603 | 1011 366 | 101 | 301 | 402 603 [ 1018

98 | 101 [ 401 [ 701 [ 1011 367 | 101 | 401 [ 701 1018

99 [ 101 | 401 [ 702 [ 1011 368 | 101 ] 401 [ 702 | 1018

100 | 101 | 201 | 501 | 702 | 1011 369 | 101 | 201 [ 501 702 | 1018

101 | 101 | 401 | 703 | 1011 370 | 101 ] 401 [ 703 | 1018

102 | 101 | 402 | 703 | 1011 371 ] 101 | 402 703 [ 1018

103 | 101 | 301 | 402 | 703 | 1011 372 | 101 | 301 ] 402 703 | 1018

104 | 101 | 201 | 501 | 703 | 1011 373 ] 101 ] 201 [ 501 703 | 1018

105 | 101 | 201 | 501 [ 803 | 1011 374 | 101 | 402 704 [ 1018

106 | 101 | 401 [ 701 | 803 [ 1011 375 | 101 | 301 | 402 704 | 1018

107 | 101 | 401 | 702 | 803 | 1011 376 | 101 [ 201 | 501 704 | 1018

108 | 101 | 201 | 501 | 702 | 803 | 1011 377 | 101 | 402 | 705 | 1018

109 | 101 | 401 | 703 | 803 | 1011 378 | 101 ] 301 402 705 [ 1018

110 | 101 | 402 | 703 [ 803 [ 1011 379 [ 101 201 [ 501 705 [ 1018




T «— Y] 3] < n © TY | ™ o 3] < wn [{o]

=W w w w w w w =W w w w w w w

<o |0 o o o () § [l = a o o Q o

3o |O @) (o) (o} @) =| 0 o 0 o] e} o]
oz |2 Z 2 z Z 2| Z Z Z z 4 Z
z Z

111 | 101 | 301 | 402 | 703 | 803 | 1011 380 | 101 | 301 | 601 705 | 1018

112 101 201 501 703 803 1011 381 101 201 501 806 1018

113 101 201 501 804 1011 382 101 401 703 806 1018

114 | 101 | 401 | 701 | 804 | 1011 383 | 101 | 402 | 703 806 | 1018

115 101 401 702 804 1011 384 101 301 402 703 806 1018

116 101 201 501 702 804 1011 385 101 201 501 703 806 1018

117 | 101 | 401 | 703 | 804 | 1011 386 | 101 | 402 | 704 806 | 1018

118 | 101 | 402 | 703 | 804 | 1011 387 | 101 | 301 | 402 704 806 | 1018

119 101 301 402 703 804 1011 388 101 201 501 704 806 1018

120 | 101 | 201 | 501 | 703 | 804 | 1011 389 | 101 | 402 | 705 806 | 1018

121 | 101 | 402 | 704 | 804 | 1011 390 | 101 | 301 | 402 705 806 | 1018

122 | 101 | 301 | 402 | 704 | 804 | 1011 | 391 | 101 | 201 | 501 705 806 | 1018

123 | 101 | 201 | 501 | 704 | 804 | 1011 392 | 101 | 301 | 601 705 806 | 1018

124 | 101 | 301 | 602 | 1012 393 | 101 | 201 | 501 807 | 1018

125 101 401 602 1012 394 101 401 703 807 1018

126 | 101 | 301 | 603 | 1012 395 | 101 | 402 | 703 807 | 1018

127 | 101 | 401 | 603 | 1012 396 | 101 | 301 | 402 703 807 | 1018

128 | 101 | 402 | 603 | 1012 367 | 101 | 201 | 501 703 807 | 1018

129 | 101 | 301 | 402 | 603 | 1012 308 | 101 | 402 | 704 807 | 1018

130 | 101 | 401 | 701 | 1012 399 | 101 | 301 | 402 704 807 | 1018

131 | 101 | 401 | 702 | 1012 400 | 101 | 201 | 501 704 807 | 1018

132 | 101 | 201 | 501 | 702 | 1012 401 | 101 | 402 | 705 807 | 1018

133 | 101 | 401 | 703 | 1012 402 | 101 | 301 | 402 705 807 | 1018

134 | 101 | 402 | 703 | 1012 403 | 101 | 201 | 501 705 807 | 1018

135 | 101 | 301 | 402 | 703 | 1012 404 | 101 | 301 | 601 705 807 | 1018

136 | 101 | 201 | 501 | 703 | 1012 405 | 101 | 402 | 706 807 | 1018

137 | 101 | 201 | 501 | 803 | 1012 406 | 101 | 301 | 402 706 807 | 1018

138 | 101 | 401 | 701 | 803 | 1012 407 | 101 | 201 | 501 706 807 | 1018

139 101 401 702 803 1012 408 101 201 502 706 807 1018

140 | 101 | 201 | 501 | 702 | 803 | 1012 j| 409 | 101 | 401 | 502 706 807 | 1018

141 101 401 703 803 1012 410 101 301 601 706 807 1018

142 | 101 | 402 | 703 | 803 | 1012 411 | 101 | 201 | 501 808 | 1018

143 101 301 402 703 803 1012 412 101 201 502 808 1018

144 101 201 501 703 803 1012 413 101 401 502 808 1018

145 | 101 | 201 | 501 | 804 | 1012 414 | 101 | 402 | 704 808 | 1018

146 | 101 | 401 | 701 | 804 | 1012 415 | 101 | 301 | 402 704 808 | 1018

147 101 401 702 804 1012 416 101 201 501 704 808 1018

148 | 101 | 201 | 501 | 702 | 804 | 1012 0| 417 | 101 | 402 | 705 808 | 1018

149 | 101 | 401 | 703 | 804 | 1012 418 | 101 | 301 | 402 705 808 | 1018

150 | 101 | 402 | 703 | 804 | 1012 419 | 101 | 201 | 501 705 808 | 1018

151 | 101 | 301 | 402 | 703 | 804 | 1012 || 420 | 101 | 301 | 601 705 808 | 1018

152 | 101 | 201 | 501 | 703 | 804 | 1012j| 421 | 101 | 402 | 706 808 | 1018

153 | 101 | 402 | 704 | 804 | 1012 422 | 101 | 301 | 402 706 808 | 1018

154 | 101 | 301 | 402 | 704 | 804 | 1012§l 423 | 101 | 201 | 501 706 808 | 1018

165 | 101 | 201 | 501 | 704 | 804 | 1012 §l 424 | 101 | 201 | 502 706 808 | 1018

156 | 101 | 201 | 501 | 805 | 1012 425 | 101 | 401 | 502 706 808 | 1018

157 | 101 | 401 | 702 | 805 | 1012 426 | 101 | 301 | 601 706 808 | 1018

158 | 101 | 201 | 501 | 702 | 805 | 1012 §l 427 | 101 | 301 | 603 1019

159 | 101 | 401 | 703 | 805 | 1012 428 | 101 | 401 | 603 1019

160 101 402 703 805 1012 429 101 402 603 1019

161 | 101 | 301 | 402 | 703 | 805 | 1012 §| 430 | 101 | 301 | 402 603 | 1019

162 | 101 | 201 | 501 | 703 | 805 | 1012 §| 431 | 101 | 401 | 701 1019

163 | 101 | 402 | 704 | 805 | 1012 432 | 101 | 401 | 702 1019

164 | 101 | 301 | 402 | 704 | 805 | 1012 f| 433 | 101 | 201 | 501 702 | 1019

165 101 201 501 704 805 1012 434 101 401 703 1019

166 101 402 705 805 1012 435 101 402 703 1019

167 | 101 | 301 | 402 | 705 | 805 | 1012 436 | 101 | 301 | 402 703 | 1019

168 | 101 | 201 | 501 | 705 | 805 | 1012 | 437 | 101 | 201 | 501 703 | 1019

169 | 101 | 301 | 601 | 705 805 | 10120 438 | 101 | 402 | 704 1019

170 | 101 | 301 | 602 | 1013 439 | 101 | 301 | 402 704 | 1019
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171 | 101 | 401 | 602 | 1013 440 | 101 | 201 | 501 704 | 1019

172 | 101 | 301 | 603 | 1013 441 | 101 | 402 | 705 1019

173 | 101 | 401 | 603 | 1013 442 | 101 | 301 | 402 705 | 1019

174 | 101 | 402 | 603 | 1013 443|101 | 201 | 501 705 | 1019

175 101 301 402 603 | 1013 101 301 601 705 1019

176 | 101 | 401 | 701 | 1013 101 | 201 | 501 807 | 1019

177 | 101 | 401 | 702 | 1013 101 | 401 | 703 807 | 1019

178 | 101 | 201 | 501 | 702 | 1013 101 | 402 | 703 807 | 1019

179 | 101 | 401 | 703 | 1013 101 | 301 | 402 703 807 | 1019

180 | 101 | 402 | 703 | 1013 101 | 201 | 501 703 807 | 1019

181 | 101 | 301 | 402 | 703 | 1013 101 | 402 | 704 807 | 1019

182 | 101 | 201 | 501 | 703 | 1013 101 | 301 | 402 704 807 | 1019

183 | 101 | 201 | 501 | 804 | 1013 101 | 201 | 501 704 807 | 1019

184 | 101 | 401 | 701 | 804 | 1013 101 | 402 | 705 807 | 1019

185 | 101 | 401 | 702 | 804 | 1013 101 | 301 | 402 705 807 | 1019

186 101 201 501 702 804 1013 101 201 501 705 807 1019

187 | 101 | 401 | 703 | 804 | 1013 101 | 301 | 601 705 807 | 1019

188 | 101 | 402 | 703 | 804 | 1013 101 | 402 | 706 807 | 1019

189 | 101 | 301 | 402 | 703 | 804 | 1013 101 | 301 | 402 706 807 | 1019

190 | 101 | 201 | 501 | 703 | 804 | 1013 101 | 201 | 501 706 807 | 1019

191 | 101 | 402 | 704 | 804 | 1013 101 | 201 | 502 706 807 | 1019

192 | 101 | 301 | 402 | 704 | 804 | 1013 101 | 401 | 502 706 807 | 1019

193 | 101 [ 201 | 501 | 704 | 804 | 1013 101 | 301 | 601 706 807 | 1019

194 | 101 | 201 | 501 | 805 | 1013 101 | 201 | 501 808 | 1019

195 | 101 | 401 | 702 | 805 | 1013 101 | 201 | 502 808 | 1019

196 | 101 | 201 | 501 | 702 | 805 [ 1013 101 | 401 | 502 808 | 1019

197 | 101 | 401 | 703 | 805 | 1013 101 | 402 | 704 808 | 1019

198 | 101 | 402 | 703 | 805 | 1013 101 | 301 | 402 704 808 | 1019

199 | 101 | 301 | 402 | 703 | 805 | 1013 101 | 201 | 501 704 808 | 1019

200 | 101 | 201 | 501 | 703 | 805 | 1013 101 | 402 [ 705 808 | 1019

201 | 101 | 402 | 704 | 805 | 1013 101 | 301 | 402 705 808 | 1019

202 | 101 | 301 | 402 | 704 | 805 1013 101 | 201 | 501 705 808 | 1019

203 | 101 | 201 | 501 | 704 | 805 | 1013 101 301 | 601 705 808 | 1019

204 | 101 | 402 | 705 | 805 [ 1013 101 | 402 | 706 808 | 1019

205 | 101 | 301 | 402 | 705 | 805 1013 101 | 301 | 402 706 808 | 1019

206 | 101 | 201 | 501 | 705 805 | 1013 101 [ 201 | 501 706 808 | 1019

207 | 101 | 301 | 601 | 705 | 805 1013 101 | 201 | 502 706 808 | 1019

208 | 101 | 201 | 501 | 806 | 1013 101 | 401 | 502 706 808 | 1019

209 | 101 | 401 | 703 | 806 | 1013 101 | 301 | 601 706 808 | 1019

210 101 402 703 806 | 1013 101 201 501 809 1019

211 101 301 402 703 806 | 1013 101 201 502 809 1019

212 | 101 | 201 | 501 | 703 | 806 | 1013 101|401 | 502 809 | 1019

213 101 402 704 806 | 1013 101 402 705 809 1019

214 | 101 | 301 | 402 | 704 | 806 | 1013 101 | 301 | 402 705 809 | 1019

215 101 201 501 704 806 | 1013 101 201 501 705 809 | 1018

216 | 101 | 402 | 705 | 806 | 1013 101 | 301 | 601 705 809 | 1019

217 | 101 | 301 | 402 | 705 806 | 1013 101 | 402 | 706 809 | 1019

218 101 201 501 705 806 1013 101 301 402 706 809 | 1019

219 | 101 | 301 | 601 | 705 | 806 | 1013 101 | 201 | 501 706 809 | 1019

220 | 101 | 301 | 602 | 1014 101 | 201 | 502 706 809 | 1019

221 101 401 602 1014 101 401 502 706 809 | 1019

222 101 301 603 1014 101 301 601 706 809 | 1019

223 | 101 | 401 | 603 | 1014 101 [ 301 | 603 | 1020

224 101 402 603 1014 101 401 603 1020

225 | 101 | 301 | 402 | 603 | 1014 101 | 402 | 603 | 1020

226 101 401 701 1014 101 301 402 603 1020

227 101 401 702 1014 101 401 701 1020

228 | 101 | 201 | 501 | 702 | 1014 101 401 | 702 1020

229 | 101 | 401 | 703 | 1014 101 | 201 | 501 702 | 1020

230 | 101 | 402 | 703 | 1014 101 | 401 | 703 | 1020
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231 | 101 | 301 | 402 | 703 | 1014 101 | 402 | 703 | 1020

232 | 101 | 201 | 501 [ 703 | 1014 101 | 301 | 402 703 | 1020

233 | 101 | 201 | 501 | 805 | 1014 101 | 201 | 501 703 | 1020

234 | 101 | 401 ] 702 | 805 ] 1014 101 | 402 | 704 | 1020

235 | 101 | 201 | 501 | 702 | 805 1014 101|301 | 402 704 | 1020

236 101 401 703 805 1014 101 201 501 704 1020

237 101 402 703 805 1014 101 402 705 1020

238 | 101 | 301 | 402 | 703 | 805 | 1014 101 | 301 | 402 705 | 1020

239 | 101 | 201 | 501 | 703 | 805 | 1014 101 | 201 | 501 705 | 1020

240 | 101 | 402 | 704 | 805 1014 101 | 301 | 601 705 | 1020

241 101 | 301 | 402 | 704 | 805 | 1014 101 | 201 | 501 808 | 1020

242 | 101 | 201 | 501 | 704 | 805 | 1014 101 | 201 | 502 808 | 1020

243 | 101 | 402 | 705 | 805 | 1014 101 | 401 | 502 808 | 1020

244 101 301 402 705 805 1014 101 402 704 808 1020

245 | 101 | 201 ] 501 | 705 ] 805 | 1014 101 | 301 |_ 402 704 | 808 | 1020

246 | 101 | 301 | 601 | 705 | 805 | 1014 101|201 | 501 704 | 808 | 1020

247 | 101 | 201 | 501 | 806 | 1014 101 | 402 | 705 808 | 1020

248 | 101 | 401 | 703 | 806 | 1014 101 | 301 | 402 705 | 808 | 1020

249 | 101 | 402 | 703 | 806 | 1014 101|201 | 501 705 | 808 | 1020

250 | 101 | 301 | 402 | 703 | 806 | 1014 101 | 301 | 601 705 | 808 | 1020

251 | 101 | 201 | 501 | 703 | 806 | 1014 101 | 402 | 706 808 | 1020

252 | 101 | 402 | 704 | 806 | 1014 101 | 301 | 402 706 | 808 | 1020

253 101 301 402 704 806 1014 101 201 501 706 808 1020

254 | 101 | 201 ] 501 | 704 | 806 | 1014 101 | 201 | 502 706 | 808 | 1020

255 101 402 705 806 1014 101 401 502 706 808 1020

256 | 101 | 301 | 402 | 705 | 806 | 1014 101|301 | 601 706 | 808 | 1020

257 | 101 | 201 | 501 | 705 806 | 1014 101 | 201 | 501 809 | 1020

256 | 101 | 301 | 601 | 705 | 806 | 1014 101|201 | 502 809 | 1020

259 | 101 | 301 | 603 | 1015 101 401 | 502 809 | 1020

260 | 101 | 401 | 603 | 1015 101 | 402 | 705 809 | 1020

261 | 101 | 402 | 603 | 1015 101 | 301 | 402 705 | 809 | 1020

262 | 101 | 301 | 402 | 603 | 1015 101 ] 201 | 501 705 | 808 | 1020

263 101 401 701 1015 101 301 601 705 809 1020

264 | 101 | 401 | 702 | 1015 101 | 402 | 706 809 | 1020

265 | 101 | 201 | 501 | 702 | 1015 101|301 | 402 706 | 809 | 1020

266 101 401 703 1015 101 201 501 706 809 1020

267 | 101 | 402 | 703 | 1015 101 | 201 | 502 706 | 809 | 1020

268 101 301 402 703 1015 101 401 502 706 809 1020

269 101 201 501 703 1015 101 301 601 706 809 1020
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APPENDIX G

FLOW CHART COMBINE PATH THREADS

Begin

Y

Check_ldentical_Paths

Y

ComboNumber =0
PathNumber=0

r

PathNumber=
PathNumber+1

PathNumber =
otalNumberOfPaths +1

yes

ComboPathFound
(PathNumber)=0

PathNumber=0

T _r

PathNumber=
PathNumber+1

PathNumber = ComboPathFound
otalNumberOfPaths + (PathNumber) = 0?

ComboNumber= ComboNumber+1
CombinedPath(ComboNumber, 1)=PathNumber
PathinPositionCombo=1
‘ j = PathNumber

¢<

j=j+

NumberOfCombinedPaths =
ComboNumber

End

TotalNumberOfPaths
+1?

yes

yes PathMatch
+ (PathNumber,j)=1

no

ComboPathFound(PathNumber)=1
ComboPathFound(j)=1
PathinPositioninCombo=PathinPositioninCombo+1
CombinedPath(ComboNumber,PathinPositioninCombo)=j
PathinCombo(ComboNumber)=

T > ’ -
PathinPositioninCombo
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APPENDIX H

FLOW CHART FIND VALUES ON COMBINED PATH

Begin

ComboNumber=0 r

ComboNumber= ComboNumber+1
PathNumber=CombinedPath(ComboNumber,1)

ComboPathLength(ComboNumber)=0
ShortestPathlLength{(ComboNumber)=NodeValueUpper(EndNode,HighThreadComboNumberPosition(ComboNuinber, LastPat
hPasitionEdnd(PathNumber))-NodeValueLower(EndNode, LowThreadComboNumberPosition(ComboNumber,
LastPathPositionEnd(PathNumber))

no ComboNumber=

End

]

Position=0

¢<

Position=
Position+1

osition:LéstPath PositionEnd
ombinedPath(ComboNumber,

ToNode=EndPathNode(PathNumber,Position))
FromNode=EndPathNod(PathNumber,Position-1))
ComboPathLength(ComboNumber)= ComboPathLength(ComboNumber)+
ArcUpper(FromNode, ToNode)-ArcLower(FromNode, ToNode)

/

PositionLength(ComboNumber,2) =
ShortestPathLength(ComboNumber)

Position=0
Position= osition=LastPathPositionEn
Position+1 ombinedPath(ComboNumber

ToNode=EndPathNode(PathNumber,Position))
FromNode=EndPathNode(CombinedPath(PathNumber,Position-1))
PositionLength(ComboNumber, Position)=ShortestPathLength(ComboNumber)*
(ArcUpper(FromNode, ToNode)-ArcLower(FromNode, ToNode))/ComboPathLength(ComboNumber
PositionLength(ComboNumber,2)=PositionLength(ComboNumber,2)-
Positiont.ength(ComboNumber,Position)}
UpperArcCompleteCombo(ComboNumber,2)=
LowerArcCompleteCombo(ComboNumber,2)+PositionLength(ComboNumber,2)
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APPENDIX I

FLOW CHART CHECK IDENTICAL SUB-PATHS

Begin F———— Initialize_Match P SubPathLength=2

»‘

SubPathLength=
SubPathLength+1

SubPathMatch
(SubPathLength,
Numberj)=1?

Number=0

rf

Number= Number+1

NumberSubMatces
(SubPathLength,Number)= Number=NumberOfSubPaths
NumberSubMatces (SubPathtength)+1?

(SubPathLength,Number)+1

NumberSubMatches
(SubPathLength,Number)=1
j=Number

yes 3GbPath(SubPathLength, Number, Position no
SubPath(SubPathLength, j, Position) And

SubPathMatch(SubPathLength, Number, j

NumberOfSubPaths(SubPath
Length)+1?

SubPathMatch(Sub SubPathMatch(Sub
PathLength, PathLength,
Number, j) =1 Number, j}=0 .
umber. J) umber. j) Position=0

Position=Position+1

osition=

YeS _SubPathLength+i>—1°
?
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APPENDIX J

FLOW CHART FIND SHARED SUB-PATH INFO

Begin

v

SubPathLength=2

»;

SubPathLength=
SubPathLength+1

End

Number=0

F___‘

Number= Number+1

Number=NumberOfSubPa
SubPathLength)+1?

NumberSubMatches
bPathLength,Numbe

SubPosition=1
NumberOfCombinedSubPaths(SubPathLength)=
NumberOfCombinedSubPaths(SubPathLength)+1
CombinedSubPath(SubPathLength,NumberOfCombinedSubPaths
(SubPathLength), SubPosition,Number)
=SubPathComboNumber(SubPathLength,Number)
j = Number+1

j =
NumberOfSubPaths(SubPath
Length)+1?

no

yes

SubPathPosition = SubPosition+1
CombinedSubPath(SubPathLength,NumberOfCombined
SubPaths(SubPathLength),SubPosition,Number)
=SubPathComboNumber(SubPathLength,j)

]

bPathlLengt
mber,j)=17
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APPENDIX K

FLOW CHART GET ARCS
. NumberOfArcs = 0
Begm ™ FromNode=0 —————— PathNumber=0
o
—>
FromNode= 4
FromNode+1

PathNumber= PathNumber+1

FromNode =
EndNode +1?

yes

PathNumber=
otalNumberOfPaths+1

End

ToNode=FromNode

F Position=1
ToNode=ToNode+1 *

Position = Position+1

ToNode=EndNode

osition= LastPathPositionEn
(PathNumber)+1?

no

ower({FromNod®;

ToN ode)<infinity? ToNode=EndPathNode(PathNumber,Position+1)

FromNode=EndPathNode(PathNumber,Position)
ToNodeThread=EndPathThread(PathNumber,Position+1)
FromNodeThread=EndPathThread(PathNumber,Position)

i=0

NumberOfArcs = NumberOfArcs + 1
OriginatingNode(NumberOfArcs) =
FromNode
TerminatingNode(NumberOfArcs) =
ToNode

ginatingNode(i)=FromNode and
erminatingNode(i) = ToNode?

yes

PathArc(PathNumber,Position) = i

I
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