
QUALITATIVE OPTIMIZATION: DEVELOPMENT 

OF AMETHODOLOGY FOR DETERMINING THE 

SHORTEST PATH OF A NETWORK WITH 

INTERVAL-VALUED ARC LENGTHS 

By 

SHERRI SHEARON A VERY 

Bachelor of Arts 
California State University at Fullerton 

Fullerton, CA 
1989 

Master of Science 
Trinity College 
Hartford, CT 

1995 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

DOCTOR OF PHILOSOPHY 
December, 2003 



QUALITATIVE OPTIMIZATION: DEVELOPMENT 

OF A METHODOLOGY FOR DETERMINING THE 

SHORTEST PATH OF A NETWORK WITH 

INTERVAL-VALUED ARC LENGTHS 

Thesis Approved: 

Thesis Advisor 

ii 



ACKNOWLEDGEMENTS 

I wish to express my sincere gratitude to my major advisor, Dr. Allen Schuermann, 

for the hours of time that he has spent on my behalf. I greatly appreciate his assistance, 

guidance, supervision, friendship and support. My appreciation extends to my other 

committee members Dr. Ricki G. Ingalls, Dr. Camille DeYong, and Dr. P. Larry 

Claypool each of whom has given greatly needed assistance, encouragement, and advice. 

Specifically, I would like to thank Dr. Ricki G. Ingalls for the inspiration of this thesis 

topic. 

Foremost, I wish to express my greatest appreciation to my parents Nathan Shearon 

and Jeanne Lee. They have spent my lifetime convincing me that I can complete any task 

that I choose. I also wish to thank my husband, Daniel, for giving me everything that I 

have ever needed, love and support. Additionally, I wish to thank my children, Nathan 

and Alyssa, for being the joy in my life. 

111 



TABLE OF CONTENTS 

Chapter Page 

I. THE RESEARCH PROBLEM 

Introduction ............................................................................................................. 1 
Problem ................................................................................................................... 4 
Research Contributions........................................................................................... 6 
Research Objectives ................................................................................................ 8 

II. LITERATURE REVIEW 

Introduction........................................................................................................... 12 
Networks ............................................................................................................... 14 
The Shortest Path.................................................................................................. 16 
Dijkstra's Method .................................................................................................. 18 
Non-Constant Arc Distances ................................................................................. 21 
Simulation .............................................................................................................. 27 
Simulation and Event Graphs ................................................................................ 30 
Temporal Intervals in Qualitative Simulation Graphs .......................................... 32 

III. THE ALGORITHM 

Algorithm Overview ............................................................................................. 36 
Generate w(k) ........................................................................................................ 42 
Check Arcs ............................................................................................................ 51 
Find Paths .............................................................................................................. 54 
Change Arc On Path .............................................................................................. 57 

IV. ALGORITHM RESULTS 

Introduction ........................................................................................................... 62 
10-Node Traditional Networks ............................................................................. 63 
10-N ode Network III. ............................................................................................ 66 
IO-Node Network IV ............................................................................................ 69 
7-Node Network ................................................................................................... 71 
6-Node Network ................................................................................................... 74 

IV 



Chapter Page 

V. OUTPUT METHODOLOGY 

Introduction ........................................................................................................... 78 
Combine Path Threads.......................................................................................... 79 
Non-Dominance and Minimize Regret Attributes ................................................ 84 
Path Points Attribute and Shared Sub-Paths ........................................................ 89 
Output Methodology for 10-Node Network III.. ................................................... 92 
Output Methodology for IO-Node Network IV .................................................... 95 
Output Methodology for 7-Node Network ........................................................... 99 
Output Methodology for 6-Node Network ........................................................... 101 

VI. SUMMARY AND RECOMMENDATIONS ....................................................... 106 

REFERENCES ............................................................................................................... 109 

APPENDIXES ................................................................................................................ 111 

APPENDIX A-AVERY SHORTEST PATH ALGORITHM 
VISUAL BASIC CODE ............................................................................ 112 

APPENDIX B -FLOW CHART IDENTIFY CUT POINTS .............................. 144 

APPENDIX C-FLOW CHART ORDER CUT POINTS ................................... 145 

APPENDIX D-FLOW CHART DECREASE PATH LOW ARC VALUE ....... 146 

APPENDIX E-FLOW CHART INCREASE PATH HIGH ARC VALUE ....... 147 

APPENDIX F-SHORTEST PATHS 10-NODE NETWORK IV ....................... 148 

APPENDIX G-FLOW CHART COMBINE PATH THREADS ........................ 153 

APPENDIX H-FLOW CHART FIND VALUES ON COMBINED PATH ....... 154 

APPENDIX I-FLOW CHART CHECK IDENTICAL SUB-PATHS ................ 155 

APPENDIX J -FLOW CHART FIND SHARED SUB-PATH INFO ................. 156 

APPENDIX K-FLOW CHART GET ARCS ...................................................... 157 

V 



Table 

I. 

II. 

III. 

IV. 

V. 

VI. 

VII. 

VIII. 

IX. 

X. 

XI. 

XII. 

XIII. 

XIV. 

xv. 

XVI. 

XVII. 

XVIII. 

XIX. 

LIST OF TABLES 

Page 

Allen's Interval Algebra for Intervals t = [ f , t] and s = [ s- , s +] . . . . . . . .. . . . .. . 3 3 

Ingalls' Interval Algebra for Intervals t = [ f , t] and s = [ s- , s +]........ .. . . . . . . 34 

Arc Values ................................................................................................... 52 

Node Threads for 10-Node Network!.. ...................................................... 64 

Possible Arcs for 10-Node Network!.. ....................................................... 65 

Path Threads for 10-Node Network!.. ......................................................... 65 

Node Threads for 10-Node Network III.. ..................................................... 66 

Path Threads for 10-Node Network III ........................................................ 66 

Node Threads for 10-Node Network III.. ..................................................... 67 

Uncorrected Path Threads for 10 Node Network III.. .................................. 68 

Corrected Path Threads for 10 Node Network III ....................................... 69 

Node Threads for 10 Node Network IV ...................................................... 70 

Node Threads for 7-Node Network. ............................................................ 72 

Possible Arcs for 7-Node Network. ............................................................. 72 

Path Threads for 7 Node Network ............................................................... 73 

Node Threads for 6-Node Network ............................................................. 75 

Path Threads for 6-Node Network. .............................................................. 76 

Non-Dominance Information for Network Figure 12 .................................. 86 

Combined Paths for 10-Node Network III .................................................. 94 

Vl 



Table 

xx. 

XXI. 

XXII. 

XXIII. 

XXIV. 

XXV. 

XXVI. 

XXVII 

XXVIII. 

XXIX. 

XXX. 

XXXI. 

XXXII. 

XXXIII. 

XXXIV. 

XXXV. 

XXXVI. 

Page 

Non-Dominance Information for IO-Node Network III.. ............................ 95 

Regret for IO-Node Network III .................................................................. 95 

Combined Paths for IO-Node Network IV ................................................... 96 

Non-Dominance Information for IO-Node Network IV .............................. 97 

Regret for IO-Node Network IV .................................................................. 98 

Path Points for IO-Node Network IV ........................................................... 98 

Sub Paths for IO-Node Network IV ............................................................. 98 

Combined Paths for 7-Node Network .......................................................... 99 

Non-Dominance Information for 7-Node Network ..................................... 100 

Regret for 7 Node Network .......................................................................... I 00 

Path Points for 7-Node Network. ................................................................. 100 

Combined Paths for 6-Node Network .......................................................... IOI 

Non-Dominance Information for 6-Node Network ..................................... 102 

Regret for 6-Node Network ......................................................................... 102 

Path Points for 6-Node Network ......... ." ........................................................ I 02 

Okada and Soper Node Labels ................................................................... I 03 

Algorithm Node Threads/ Okada and Soper Node Labels ......................... I 04 

vu 



Figure 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

LIST OF FIGURES 

Page 

ENTER-SERVICE-EXIT Model. ..................................................................... 2 

Transportation Network I: Nodes A-D ............................................................ 7 

Transportation Network II: Nodes A-D ............................................................ 8 

Transportation Network III: Nodes A-D ........................................................... 9 

Transportation Network IV: Nodes A-D ......................................................... 10 

Cut [S,N\S] ..................................................................................................... 15 

Transportation Network V: Nodes A-D .......................................................... 16 

Transportation Network VI: Nodes A-D* ....................................................... 17 

Scheduling Edge .............................................................................................. 30 

Transportation Network I: Nodes 1-4 .............................................................. 37 

Flow Chart Avery_Short.est_Path ................................................................... 43 

Transportation Network II: Nodes 1-4 ............................................................ 44 

Transportation Network III: Nodes 1-4 ........................................................... 45 

Omega Values .................................................................................................. 46 

Cut Points and Omega Values ......................................................................... 49 

Flow Chart Generate_w(k) .................................. : ........................................... 50 

Node/ Thread Network .................................................................................... 51 

Flow Chart Check_Possible_Arcs ................................................................... 53 

Flow Chart Find Paths .................................................................................... 56 

Vlll 



Figure Page 

20. Flow Chart Change_Arc_On_Path .................................................................. 58 

21. 10-Node Network 1 .......................................................................................... 64 

22. 10-Node Network II. ....................................................................................... 66 

23. 10-Node Network III. ...................................................................................... 67 

24. 10-Node Network IV ....................................................................................... 69 

25. 7-Node Network .............................................................................................. 71 

26. 6 Node Network .............................................................................................. 74 

27. Flow Chart Combine Path Threads ............................................................... 81 - -

28. Flow Chart Find NonDominated Paths ......................................................... 85 - -

29. Flow Chart Minimize_ Regret......................................................................... 88 

30. Flow Chart Find Path Points ......................................................................... 90 - -

31. Flow Chart Find SubPaths.................................... ........... .............. .......... ...... 93 

lX 



CHAPTER I 

THE RESEARCH PROBLEM 

Introduction 

Many interesting and important optimization applications arise m the study of 

networks. Networks have been used to model science, engineering, and business 

applications of transportation, communication, mechanical, hydraulic, electrical and 

economic systems. Additionally, networks have been used to model systems based on 

logical connections and states of a discrete system [ 15]. 

In modeling systems as networks, solutions may be found for many problems 

associated with that system. Optimization techniques are used to find solutions for 

matching problems, assignment problems, analysis of flows, feasibility problems, routing 

optimization problems, critical path problems, and minimum/shortest path problems. 

Traditional network applications are based on constant-valued arc costs. However, 

this assumption is often unrealistic and network optimization has been criticized 

extensively for the use of assumptions like this. A solution with a minimum number of 

assumptions is highly sought after and is extremely useful. Discrete event simulation 

may yield results that accurately describe a system without such stringent assumptions. 

The simulation clock is the center of a discrete event simulation. As an event is 

scheduled to occur, the simulation clock advances to the time of the next event. The next 

event in the simulation is determined from a selection of different activities of the model. 

The information regarding the time between specific activities, e.g. arrivals, are generally 

given as a specific probability distribution, e.g. EXPO (5 min). The simulation generates 

1 



a random number from the distribution to generate the time of the next event specific to 

that activity. The inputs to a discrete event simulation are generally stochastic in nature 

and if empirical data is not available, it may be difficult to accurately define the 

appropriate probability distributions that describe the stochastic activities [8]. 

If empirical data is not available, assuming that the arc length is contained in a 

specific interval would reduce the number of assumptions and would generally yield a 

more beneficial analysis. However, interval-valued arc lengths complicate our ability to 

solve the problem. As the size of the problem increases, the time and effort required to 

obtain the solution increases exponentially [7]. In solving this type of problem, decisions 

must be made which depend on the value on the arc. Figure 1 shows an "ENTER

SERVICE-EXIT" model with interval-valued inputs. Assuming that one entity is already 

in the system, the simulation does not know the next event. The next event in the 

simulation could either be another entrance into the model, which will occur between 3 to 

8 time units from now, or an exit which may occur between 4 to 6 time units from n:ow. 

A Qualitative Discrete Event Simulation creates a "thread" for every possible next event, 

e.g. ENTER in [3, 4] time units, EXIT in [4, 6] time units, or ENTER in [4, 6] time units 

[4,6] 

Figure 1 :ENTER-SERVICE-EXIT Model 

2 



[7]. As the simulation progresses, the number of threads grows exponentially. Numerous 

threads must be created to appropriately describe all possible scenarios. 

Qualitative Simulation is an ideal technique to analyze this problem with interval 

valued arc lengths [5]. Qualitative Simulation predicts all possible behaviors of a system. 

Qualitative Discrete Event Simulation, (QDES), is an area of study that is 

groundbreaking and still in its early stages of development. QDES has been used to 

generate threads on the model similar to Figure 1 and in PERT scheduling [7]. Ingalls 

has suggested that additional work is needed to appropriately analyze the output of this 

simulation technique [7]. 

Finding the shortest path of a network from an originating node to a terminating node 

is a well-established problem. However, this problem has not been solved with arc 

values that are contained in some known interval. The primary objective of this research 

was the development of an algorithm for the interval-valued problem that will ensure that 

all possible shortest paths have been generated. However, while the traditional problem 

is apt to have a unique shortest path, it is likely that there will be multiple solutions for 

the interval-valued problem. Therefore, a second objective of this research was the 

development of a methodology that would provide for an intelligent consolidation of the 

initial set of solutions. However, since it is unlikely that this reduction in the set of 

solutions will result in a unique path, it was useful to compare the resulting solutions in 

the consolidated solution set. Additionally, different decision-makers may not agree of 

what defines the "best" shortest path solution. Thus, a sub-objective of the second 

objective was to develop a methodology that would allow the evaluation of alternative 

attributes of the consolidated set of solutions. Each attribute of a shortest path solution 

3 



gives the decision-maker information with regard to the quality of each path given a 

specific objective. A decision-maker may choose one single attribute or combine the 

qualities of several attributes to determine the "best" among the consolidated set of 

solutions. Based on the decision-maker's own specific definition of "best," he/she will be 

able to select the "best" path from among the set of shortest paths. 

The objectives of this research effort were: 

1) To solve the shortest path problem with interval-valued arc lengths: 

a. Formulate a qualitative optimization algorithm using the concepts and 

techniques of Qualitative Discrete Event Simulation. 

b. Generate the set of all possible shortest paths. 

2) To develop a methodology for the analysis of the output of the qualitative 

optimization: 

a. Create a combined thread set by reducing the size of the initial thread set. 

b. Identify specific attributes of the solution set. 

1. Identify non-dominated threads. 

· 11. Minimize the maximum regret associated with the selection of a particular 

thread. 

iii. Rank the combined thread set by each thread's relative occurrence. 

iv. Identify shared sub-paths. 

Problem 

To appropriately review similar areas of research, some elementary graph theory 

notation and definitions are necessary. Definitions below are by R. T. Rockefeller [15]. 

4 



• NETWORK: Two abstract sets N and A and a function that assigns each j e A to a 

pair (i, i') e NxN. The elements of N are called NODES and are represented 

pictorially by small circles. The cardinality of the node set N is conventionally given 

as n. The elements of A are ARCS, each arc is denoted by an ordered pair (i, j), 

where i, j e N. Arcs are represented pictorially by arrows where the direction of the 

arrow shows the orientation of the arc. The cardinality of the arc set A is 

conventionally given as m. 

• PATH: A path Pin a Network G is a finite sequence io, (io, i1 ), i1, ... , ir-1, (ir-1, ir ),ir 

where each ij is a node and (ij, ik) is an arc. The initial node of P is io and the terminal 

node is ir. 

• CIRCUIT: A path in a network with the same initial node and terminal node. 

• SIMPLE PATH: A simple (or elementary) path is one that uses no node more than 

once. 

• POSITIVE PATH: A path. containing only arcs aij traversed in the direction from 

node i to node j. 

• CONNECTED: A network G is connected if for every pair of different nodes sands', 

there is a path P: s ....+ s'. (P need not be a positive path.) 

• ACYCLIC: A network G is acyclic if G possesses no positive circuits. 

Consider an acyclic connected network G = (N, A, C) with node set N, arc set A, and 

arc performance measure set C. Node set N contains nodes N = {l, 2, ... , n}. Arc set A 

contains m arcs, aij from Node i to Node j. Associated with traversing each arc aij is a 

measure of performance Cij, such that Cij e [l, u]. 1 is the lower bound of the performance 

measure associated with traversing arc aij· u is the upper bound of the performance 

5 



measure assoc.iated with traversing arc aij. Network N contains one source node, x, and 

one sink node, y. P(x, y) is defined as a unique positive, simple path with initial node x 

and terminal node y. 

1) To solve the shortest path problem with interval-valued arc lengths: 

a. Formulate a qualitative optimization algorithm using the concepts and 

techniques of Qualitative Discrete Event Simulation. 

b. Generate the set of all possible shortest paths, P*(x, y), such that the total 

measure of performance of the path which is equal to L cij is minimized. 
aij E p• 

2) To develop a methodology for the analysis of the output of the qualitative 

optimization: 

a. Create a combined thread set by reducing the size of the initial thread set. 

b. Identify specific attributes of the solution set. 

1. Identify non-dominated threads. 

11. Minimize the maximum regret associated with the selection of a particular 

thread. 

iii. Rank the combined thread set by each thread's relative occurrence. 

iv. Identify shared sub-paths. 

Research Contributions 

Systems have been modeled and optimized using traditional network optimization 

techniques. The implementation of interval-valued performance measures for traversing 

6 



an arc is necessary to yield robust solutions. Figure 2 shows a graph with nodes A, B, C, 

and D. The enumeration of all possible paths from A to D results in the following paths: 

Path 1 =Node A~NodeB ~NodeD = 2 + 3 = 5 units. 

Path 2 = Node A~ Node D = 7 units. 

Path 3 = Node A~Node C~Node D = 3 + 3 = 6 units [1]. 

Figure 2: Transportation Network I: Nodes A-D 

Path 1 is the shortest path with cumulative measure of performance of 5 units. 

However, variability exists in almost all realistic models. Assuming that the measures of 

performance of traversing arcs were as shown in Figure 3, Path 1 would not be the 

shortest path of the network. This trivial example does not fully show the possible 

problems with choosing the "wrong" optimal path. However, even a slight change to the 

measure of performance values along an arc can yield a dramatically different optimal 

path. Generally speaking, if the assumptions of the model are invalid, so-called optimal 

s0lutions can be far from optimal. 

Other research has attempted to generate solutions to network optimization problems 

considering inherit variability innate to real-life applications. Chabini and Lan give a 

solution for shortest path problems in dynamic networks, in which travel times are 

discrete and time-dependent [3]. Okada and Soper solve the shortest path problem on a 

network with fuzzy arc lengths, where fuzzy numbers are a very specific type of 

7 



Figure 3: Transportation Network II: Nodes A-D 

stochastic numbers [13]. Sudharasan has used fuzzy distances in a routing algorithm 

analysis for optimal web path estimation for performance measures like distance, mean 

packet delay and network throughput [18]. Yaman, Karasan, and Pinar analyze the 

robust spanning tree problem with interval data [20]. Chen and Lin use interval arc 

values in determining the optimum location of the I-median of a tree [4]. 

Work in the area of optimizing networks that contain minimal assumptions is well

documented and an important area of research [4, 5, 13, 18, 20]. However, research has 

not yet been explored in finding a shortest path with interval arc values. This research 

effort will expand the realm of knowledge to include the formulation of an algorithm for 

the shortest path of a network with interval arc values. Additionally, this research effort 

will formulate a systematic approach for output analysis of the algorithm, which finds all 

shortest paths of such a network. 

Research Objectives 

Engineering, science and business systems have been modeled extensively as 

networks. These network models give the decision maker optimal information with 

regard to several types of problems: spanning trees, feasible flows, maximum flows, 

minimum path, maximum tension, assignment, matching, and shortest path [15]. 

8 



Several al~orithms have been developed to solve special cases of the aforementioned 

types of network optimizations. Networks that satisfy the assumptions of these special 

cases contain optimal solutions that are linear. The implementation of these algorithms is 

relatively straightforward due to the linear nature of the network [14]. However, these 

assumptions are often too restrictive and unrealistic. This research will formulate a 

solution to the shortest path of network without the assumption of constant values for the 

Figure 4: Transportation Network III: Nodes A-D 

measure of performance for traversing an arc. 

The following is a trivial example of a network. Figure 4 shows the network with 

nodes A, B, C, and D. The interval-valued measures of performance are shown on the 

arcs. The objective is to find the shortest path from the node A to node D 

One alternative to find the shortest path from Node A to Node Dis to find all paths 

from A to D. The enumeration of all possible paths from A to D results in the following 

paths: 

Path 1 = Node A~ NodeB ~ NodeD = [l, 2] + [4, 6] = [5, 8] units. 

Path 2 =Node A~Node D = [10, 12] units. 

Path 3 = Node A~Node C~Node D = [1, 2] + [1, 2] = [2, 4] units [1]. 

Therefore, Path 3 results in the unique shortest path from A to D. This is a trivial 

example and enumerating all possible paths is performed easily. However, enumerating 

9 



all paths of a network is not an efficient technique to find the shortest path(s). This 

research effort will develop a algorithm using the techniques of QDES whose output is 

the set of all possible shortest paths of a network. Figure 5 shows a network with the 

same nodes and arcs as in Figure 4. However, the measures of performance on the arcs 

are different. The enumeration of all possible paths from A to D results in the following 

paths: 

Path 1 =Node A-.+NodeB-+NodeD = [l, 2] + [4, 6] = [5, 8] units 

Path 2 = Node A-.+Node D = [10, 12] units 

Figure 5: Transportation Network IV: Nodes A-D 

Path 3 =Node A-+Node C-.+Node D = [2, 4] + [2, 4] = [4, 8] units. 

There are two possible shortest paths of the network shown in Figure 5: Path 1 or Path 3. 

For this network, both Path 1 and Path 3 are shortest paths depending on the exact value 

associated with traversing an arc. 

Path 1 has a cumulative measure of performance between 5 and 8 units. Path 3 has a 

cumulative measure of performance between 4 and 8 units. If conditions exists such that 

the measure of performance of Path 3 is between 4 and 5 units then Path 3 is the shortest 

path. If conditions exist such that the cumulative measure of performance of Path 3 is 

between 5 and 8 units, Path 1 and Path 3 are both members of the set of optimal paths. 

Specifically for this network, Path 3 is not dominated by any other path. That is, there is 

10 



no other shortest path that can possibly yield a shorter path and Path 3 can be considered 

the "best" path. Again, the trivial nature of the network in Figure 5 yields a 

straightforward solution of an optimal path using non-dominating path analysis. 

However, networks that are more complex are likely to contain numerous shortest 

paths in which the non-dominating analysis may not clearly select the optimal shortest 

path. The non-dominating path analysis is only one of the techniques of the methodology 

for the second objective of this research project. 

The objectives of this research effort are: 

1) To solve the shortest path problem with interval-valued arc lengths: 

a. Formulate a qualitative optimization algorithm using the concepts and 

techniques of Qualitative Discrete Event Simulation. 

b. Generate the set of all possible shortest paths, P*(x, y), such that the total 

measure of performance of the path which is equal to L cu is minimized. 
aij E p• 

2) To develop a methodology for the analysis of the output of the qualitative 

optimization: 

a. Create a combined thread set by reducing the size of the initial thread set. 

b. Identify specific attributes of the solution set. 

1. Identify non-dominated threads. 

11. Minimize the maximum regret associated with the selection of a particular 

thread. 

iii. Rank the combined thread set by each thread's relative occurrence. 

iv. Identify shared sub-paths. 

11 



CHAPTER2 

LITERATURE REVIEW 

Introduction 

Applications of the shortest path have been used extensively for transportation 

networks, communication networks, mechanical or electrical systems, and many more. 

"Shortest path problems arise both as main decision questions and as steps in other 

computations" [14, p. 413]. It was this research effort's primary objective to extend the 

applicability of the shortest path by solving the shortest path problem without the 

restriction of constant valued arc lengths. Due to the fact that for some applications 

" ... neither a deterministic approach nor a stochastic approach would be appropriate" [ 4, p. 

94], the problem shall be extended for measure of performance along the arc to be any 

value within an interval, i.e. an interval-valued measure of performance. 

Analysis has been performed by a handful of researchers with regard to networks 

with non-constant arc values [4, 5, 13, 18, 20]. Networks with fuzzy arc values have 

been analyzed for both the shortest path and minimum spanning tree problems [13, 18]. 

A graph theoretical approach to the robust spanning tree problem with interval data is 

also in its early stages ofresearch [20]. 

To fully appreciate the applicability of modeling problems as shortest paths, some 

fundamental graph theory concepts are necessary. Several shortest path algorithms are 

available for implementation. Even with the "restriction" of constant arc values, these 

algorithms are regularly implemented in areas of engineering, science, and business. 

12 



Dijkstra's algorithm for shortest path is considered one of the best and its intuitive 

framework is ideal as a base algorithm in development of this research effort [ 14]. 

Traditional optimization techniques have been criticized for their extensive 

assumptions. They yield mathematically pure solutions, however the stringent 

assumptions of the problem statements are often unrealistic. Therefore, the solution 

exists for a situation that may not exist. Simulation reduces the number of assumptions in 

the model and therefore offers the decision-maker more meaningful output. However, 

simulation also contains assumptions regarding input distributions. 

Qualitative Discrete Event Simulation, abbreviated as QDES, 1s leading-edge 

research, which is well equipped to simulate models with interval-valued inputs. QDES 

combines Discrete Event Simulation, Event Graphs, and Qualitative Simulation. 

"Qualitative simulation is guaranteed to predict all real behaviors of systems consistent 

with the model" [5, p. 47]. This "quality" of Qualitative Simulation is essential in our 

model with interval values. The logical operators in interval mathematics, event graphs 

and discrete event simulation enable a QDES model to yield a complete output, which 

fully describes the model. 

The QDES algorithm enumerates all possible events in the simulation and creates 

"threads" as outputs [7]. These threads represent all possible combinations of events. 

The secondary objective of this research is meaningful analysis of the qualitative shortest 

path network algorithm output. This research will attempt to consolidate the possibly 

large quantity of threads. Several techniques have been used in other areas in recent 

literature. This research will explore these techniques and attempt to offer a new 

alternative output analysis. 

13 



Networks 

To appropriately review similar areas of research, some elementary graph theory 

notation and definitions are necessary. Definitions below are by Rockefeller [15]. 

• NETWORK: Two abstract sets N and A and a function that assigns each j e A to a 

pair (i, i') e NxN. The elements of N are called NODES and are represented 

pictorially by small circles. The cardinality of the node set N is conventionally given 

as· n. The elements of A are ARCS, each arc is denoted by an ordered pair (i, j), 

where i, j e N. Arcs are represented pictorially by arrows where the direction of the 

arrow shows the orientation of the arc. The cardinality of the arc set A is 

conventionally given as m. 

• PATH: A path Pin a Network G is a finite sequence io, (io, i1 ), i1, ... , ir-1, Cir-I, ir ),ir 

where each ij is a node and (ij, ik) is an arc. The initial node of P is i0 and the terminal 

node is ir, 

• CIRCUIT: A path in a network with the same initial node and terminal node. 

• SIMPLE PATH: A simple (or elementary) path is one that uses no node more than 

once. 

• POSITIVE PATH: A path containing only arcs aij traversed in the direction from 

node i to node j. 

• CONNECTED: A network G is connected if for every pair of different nodes sands', 

there is a path P: s ~ s'. (P need not be a positive path.) 

• ACYCLIC: A network G is acyclic if G possesses no positive circuits. 

14 



• [S,S 't = {j e A I j - ( i, i') with i e S, i'e S', i.e. the set of all positive arcs from S to 

S'· 
' 

• [S,S T = {j e A lj - (i', i) with i e S, i'e S'}, i.e. the set of all negative arcs from S to 

S'. 

• COMPLEMENT: R\T is read "the complement ofT in R" 

• CUT: A cut in G is the signed arc set Q = Q+ u o· such that for some node set S, Q+ = 

[S, N\St and Q·= [S, N\S]" "The word "cut" for Q = [S, N/S] arises from the idea 

that any path P with initial node in S and terminal node in N/S must at some stage 

traverse one of the arcs in Q. A cut Q is shown in Figure 6. 

Figure 6: Cut [S,N\S] 

15 



The Shortest Path 

Let G = (N, A, d) be a connected, acyclic network, where N is the set of nodes; A is 

the set of arcs, each element of A is of the form (i, j) for the arc connecting node i to node 

j; and c(i,j) is measure of performance along the arc, for every i,j e N, c(i,j) ~ 0. Let N+ 

be the set of origin nodes. Let N- be the set of all destination nodes. 

An arc can only be traversed directly from Node i to Node j if arc (i, j) exists, i.e. 

c(i, j) < co . A path moves from node to node by a specific arc connecting the two nodes. 

Node~ Arc ~ Node ~ · · · ~ Arc ~ Node . Traversing each arc, (i, j), in the path, a 

measure of performance, e.g., cost of c(i, j) is incurred. The objective is to find a path 

from N+ to N- with the smallest measure of performance, e.g. smallest cost. 

The following is a trivial example of a transportation network whose nodes are cities 

and arc lengths are traveling times between the cities. Figure 7 shows the network with 

nodes (cities) A, B, C, and D. The traveling times among these cities are shown on the 

arcs. Node A represents the location of a manufacturing facility and node D represents 

the location of the warehouse. The objective is to find the shortest traveling time from 

the manufacturing facility (Node A) to the warehouse (Node D). 

One alternative to find the shortest path from Node A to Node Dis to find all paths 

Figure 7: Transportation Network V: Nodes A-D 

16 



from A to D. Enumerating all possible paths from A to D yields: 

Path 1 = Node A~Node B ~Node D= 3 + 4 = 7 units 

Path 2 = Node A~Node D = 6 units 

Path 3 = Node A~Node C ~Node D = 2 + 3 = 5 units 

Therefore, Path 3 is the shortest path from A to D. 

In amending this network by adding two nodes, A* and D*. These new nodes 

represent a new manufacturing city, A* and a new warehouse, D*. For this 

transportation problem, the objective is to find the shortest path from the set { A, A*} to 

the set {D, D*}. Figure 8 shows the modified network. If only transportation times are 

considered, where should the product be produced? Where should they be warehoused? 

What is the best shipping route? 

Figure 8: Transportation Network: Nodes A-D* 

This network is only a slight modification to the first. However, it becomes obvious 

that enumerating all paths of a large network would be inefficient. More sophisticated 

techniques/algorithms have been established to solve this problem. 

The predominantly used shortest path algorithms are Bellman-Ford's algorithm, 

Floyd-Warshall algorithm and Dijkstra's algorithm [14]. These algorithms use dynamic 

programming methods to exploit the fact that it is sometimes easiest to solve one 

17 



optimization problem by solving the problem for an entire family. These algorithms offer 

the decision maker bonus information. The dynamic programming structure of the 

algorithms yields not only the shortest distance from the origin node(s) to the destination 

node(s), but the shortest distances from the origin node to all other nodes. Additionally, 

the Floyd-W arshall algorithm offers the decision-maker the shortest distance between all 

nodes in the network. 

Each algorithm has particular benefits and drawbacks. They offer a trade-off between 

information gained and computer time used. Each user has his/her opinion of the most 

useful shortest path algorithm. 

The Bellman-Ford and Floyd-Warshall algorithms require only that the network 

contain no negative cycles (cycles whose cumulate length is negative). Dijkstra's 

algorithm can be performed on a graph with the condition that the graph contains no 

cycles and that all measure of performance (distances) along arcs are non-negative. 

Dijkstra's technique is the "most efficient option when given graphs satisfy further 

assumptions" [14, p. 440]. Dijkstra's technique is extremely intuitive and will be used as 

basis of the initial stage of this research. 

Dijkstra's Method 

Since Dijkstra's method for finding the shortest path in a network is a base for this 

research, the following section will be devoted to its presentation. "The essence of this 

procedure is that it fans out from the origin, successfully identifying the shortest path to 

each of the nodes of the network in the ascending order of their (shortest) distances from 

the origin, thereby solving the problem when the destination node is reached" [6, p. 411]. 

18 



R. T. Rockefeller is a leading researcher in the area of network optimization. His 

book "Network Flows and Monotropic Optimization" covers a multitude of network 

optimization algorithms [15]. Below is Rockefeller's description of Dijkstra's shortest 

path algorithm. This algorithm introduces a positive and a negative direction on an arc. 

Although this research shall be restricted to only positive movement along an arc, this 

representation of Dijkstra's algorithm will include both positive and negative arc 

movements. Its addition adds only slight computational complexity. However, the 

algorithm below is a modification to Dijkstra's method in Rockefeller. The potential u0 

notation is omitted, due to the fact that our information is limited to only the minimum 

path and not a maximum tension problem. 

Let 

• G = (N, A, d) be connected, acyclic network, where N is the set of nodes; 

• A is the set of arcs and each element of A is of the form (i,j) for the arc connecting 

node i to node j; 

• d+G), j - (i, i') is the length of the arc from node i to node i' (measure of traversing 

the arc in the positive direction); d + (j) ~ 0 ; V j e A 

• d-G), j-(i, i') is the length of an arc from node i' to node i (measure of traversing the 

arc in the negative direction); d - (j) ~ 0 ; V j e A 

• N+ be the set of origin nodes. 

• N- be the set of all destination nodes. 

• w : N ~ 9l ; w is a function, which maps the nodes N to the reals, R. Let w(i) be the 

minimum distance from N+ to Node i Vk e N+, w(k) = 0. 

19 



There are two. sets S and T satisfying N+ c S c T c N \ N- . 0 is a routing of T with base 

N+, and w is defined 'v T. Initially T = S = N\ 0 is empty, and W= 0. To begin with, all 

nodes are "unscanned." Nodes will be processed one by one, and after a node is 

processed, the node will be said to have been "scanned." 

Step 1. If there are no "unscanned" nodes in S (which is false initially) then go to step 

3. Otherwise select any "unscanned" node i' which is an element of S and go to 

step 2. 

Step 2. If there is an arc incident to i' and belonging to Q = [S, N\S] calculate 

y= {
w(i') + d + G) if j-(i' ,i) 

w(i') - d-G) if j-(i,i') 
where i denotes the other node of j. 

If i ET and y < w(i), redefine O (i) = j and w(i) = y. 

If i ~ T and y < oo, add i to T with O (i) = j and w(i) = y. 

If y = ooor i ET and y ~ w(i), do not change T, 0, or w. 

Repeat this step for each arc"j incident to i' and belonging to Q, then return to Step 1 

(with i' henceforth regarded as "scanned") 

Step 3. Calculate ~ = min { w(i)I i E T\S} 

If T\S = 0 , regard ~ as + oo and terminate; 

Q is a cut of unlimited span (so [sup]= [min]= +oo in the two problems). 

Otherwise add to S the nodes of T\S for which the minimum defining ~ is achieved. If 

node i e N- is among these terminate; the O -path P:N· ~ i solves the min path problem. 

20 



Non-Constant Arc Distances 

Due to the high demand for accurate network optimization, research is being 

performed in optimization of networks without the restriction of constant arc values. 

Chabini and Lan give a solution for "shortest path problems in dynamic networks, in 

which travel times are time dependent" [3, p. 60]. Chabini and Lan modify the A* 

algorithm first introduced by Hart, Nillson, and Raphael in 1968, which is specific to a 

origin-node to one destination-node problem variant. The A* algorithm attempts to be 

smarter than other shortest path algorithms. For example, consider a city network where 

the origin node is located at the center of the city and the destination node is in the far 

east. Other algorithms would typically put the same effort in searching to the east, west, 

north, and south of the origin node. "These algorithms may search through areas in 

through which the shortest path would not pass" [3, p. 63]. The A* algorithm chooses a 

set of nodes that have been reached and that are "candidates" for the selection of the next 

node. 

Chabini and Lan use the A* algorithm to find the shortest path with cost D = { dij(t)I 

(i, j) eA}. The function d has an integer-valued. domain and range and is therefore 

discrete and time-dependent. The work of Chabini and Lan is specific to the field of 

Intelligent Transportation Systems (ITS) and is motivated by the fact that "the 

computation of shortest paths is a fundamental component in route guidance systems and 

in the development of solution algorithms for the large-scale dynamic network flow 

models; such models are useful in supporting effective ITS decision-making" [3, p. 60]. 

The shortest path problem in this dynamic network is solved by applying a "static 

shortest path algorithm to its equivalent representation as time-expanded network. These 

21 



dynamic adaptations of the A* algorithm are based ort effective lower bounds on 

minimum travel times that exploit the FIFO properties of dynamic data" [3, p. 73]. 

Chabini and Lan's work yields optimal solutions for many networks with extreme 

efficiency. The number of nodes searched and computer time is greatly reduced. 

However, the deterministic time-dependent arc values contain no option of variability. 

The proposed research will extend the non-deterministic shortest path problem to address 

the very real issue of variability in data, specifically arc measure. 

Okada and Soper make the point that "As time or cost fluctuate with traffic 

conditions, payload and so on, it is not practical to represent each arc as a deterministic 

value" [13, p. 129]. Okada and Soper present work based on stochastic arc values. " ... 

we are concerned with the shortest path problem of the network with each arc length 

represented as a positive fuzzy number, ... However, we cannot get an optimal solution in 

the normal sense because this type of problem is a so called "ill-posed" problem" [13, p. 

129]. 

Okada and Soper solve the shortest path problem on a network with fuzzy arc lengths. 

A fuzzy number a is an upper semi-continuous, normal and convex fuzzy subset on the 

real line m such that µ 3 : m ~ [0,1] where µ 3 is the membership function of a. "A flat 

fuzzy number a 1s a fuzzy number such that :3 (m, 

m)E m,m. < m,andµ 3 (x) = 1 'v'x E [m.,m]" [13, p. 130]. An L-R type flat fuzzy number 

is denoted as (m, in, a, J3)LR, where a, J3 are left-hand and right-hand spreads, as 

defined as follows: 

22 



{
L(!Il- x) I a 

µ 3 (x) = 1 

R(x-in)/P 

if x < m,a e 91+ 

where Land Rare even functions such that L(O) = R(O) = 1 and L(l) = R(l) = 0, and L 

and R are strictly decreasing on (0, oo ). 

Addition of flat fuzzy numbers, given by the symbol, EB, is defined as (~, a, a, P) EB 

(11, b, y, <>) = (~ + Q , a + b, a + y, p + <> ). The characteristics of the EB function for flat 

fuzzy numbers enables the enumeration of the cumulative distance along a path. One 

method to rank fuzzy numbers is "mapping each fuzzy number to the real line, where 

total order exists" [13, p. 131]. The other method of ranking is that "the decision maker a 

priori chooses a degree of conformity for which the inequality may be considered true" 

[13, p. 131]. That is, the comparison between two fuzzy numbers is a fuzzy operation 

defined by the decision-maker. There exist several different theoretical approaches for 

comparing fuzzy numbers [ 13]. 

Additionally, there exist many different types of fuzzy numbers. Okada and Soper 

have chosen to use trapezoidal fuzzy numbers to represent each arc length. "Each arc 

length ( duration time) in the generated network is converted into a trapezoidal fuzzy 

number with a flat part of about 20% and spreads about 10% of the original duration 

time" [13, p. 137]. 

The shortest path is formulated by the following linear program: 

- EB 
min f(x) = "°' C--X·· L,, IJ IJ 

(i,j)eA 

23 



{
1 if i = s 

s.t. f xij -f xji = 0 if i :;t: s, t(i = l, ... ,n) 

J J -1 ifi=t 

Xij = 0 or 1 for any (iJ) e A. 

El) 

Where L in the objective function means the addition EB between fuzzy numbers .. 

However, "It impractical to solve even a small size problem by using the network 

simplex method due to the increase in decision variables" [13, p. 134]. Okada and Soper 

eventually use a generalization of Dijkstra's algorithm to solve the simple shortest path 

problem. 

Okada and Soper' s solution to the shortest path problem is most interesting. The 

fuzzy arithmetic allows for a mathematical solution to this stochastic process. Due to the 

fact that path lengths are not real numbers, all paths are enumerated and the number of 

obtained paths cannot be controlled by the decision maker. Okada and Soper have 

analyzed the multi-path output by attempting to find non-dominating paths and possible 

shared sub-paths. This research effort also uses the uncertainty measures of non-

dominance and shared sub-paths in the algorithm output methodology. Although Okada 

and Soper's model contains minimal assumptions, the fuzzy arc lengths are more limiting 

than interval valued arcs. 

Sudharasan has used fuzzy distances in a routing algorithm analysis optimal web path 

estimation. "A routing algorithm sets up paths to connect the different nodes in the 

network and strives to optimize performance measures like distance, mean packet delay 

and network throughput" [18, p. 380]. Sudharasan notes the inherent uncertainty in this 

dynamic information because it is at least as old as the distance between nodes, as the 

24 



changes in the status of the network are not immediately known to every node in the 

network. "Traditional network routing algorithms have not attempted to deal with this 

uncertainty in any way and most behave as though there is no uncertainty in the 

information available at a node" [18, p. 380]. 

Network optimization is not limited to finding the shortest path. Much work has been 

done in finding a minimal spanning tree in a network as well. A graph S is a minimum 

spanning tree of G = (N, A, d) if S is a connected graph with no elementary circuits, such 

that S = (N*, A*, d) where N*=N and A* c A, n(A *) = n(N*)-1. Finding solutions to the 

minimal spanning tree problem with non-constant values is a great benefit in many 

industrial applications, telecommunications networks, and rail transportation networks. 

Y aman, Karasan, and Pinar analyze the robust spanning tree problem with interval 

data. "The combination of the interval uncertainty with robustness is attractive ... we do 

not have to specify a distribution for the data, nor its moments, which is not always easy" 

[20, p. 31 ]. No probability distribution is assumed for edge costs. Y aman et al. finds the 

lower and upper cost of a _spanning tree; the cost is calculated by the sum of the arcs in 

the tree at their lower and upper value respectively. Yaman et al. uses the bound values 

only in his algorithm to hedge against the worst possible delay in a robust spanning tree. 

Chen and Lin use interval arc values in determining the optimum location of the I

median of a tree. A I -median is a node in the tree such that the distance from that node 

to all other nodes is minimized. This is the network model of the placement of a 

distribution center among many locations. Each location is a node and the distances 

between locations are arc lengths. Finding the I-median of this network will yield the 

optimum placement for the distribution center. 

25 



Chen and Lin reiterate the importance of interval-valued a:rc lengths. "In some 

practical environments, it is sometimes difficult to characterize the uncertainty involved 

in input data by probabilistic distributions with reasonable accuracy, especially if limited 

past data are available" [4, p. 94]. Chen and Lin find the set of all I-median nodes for 

some feasible scenario. Chen and Lin replace edge-length intervals with their upper 

bounds to find the worst case scenario. A I-median is chosen to minimize the maximum 

regret against this worst case. The generation of all feasible scenarios is not discussed 

due to the fact that the analysis is based primarily on a robust approach to solving the 

problem. "The robust approach, which aims at a decision with minmax regret is more 

suitable when limited information is available about the uncertainty involved" [4, p. 94]. 

The I-median is chosen as node x such that the difference between the spanning length 

for node x and the spanning length for node y in scenario s is minimized for all nodes s. 

The optimization of networks with non-deterministic arc values has proven itself as a 

worthy research topic. Few attempts have been made to find optimal solutions for these 

networks. Specifically, research with regard to networks with interval arc values has 

been analyzed from a min-max approach. Research has yet to solve the problem of 

finding optimal path(s) for the shortest path in a network. 

To appropriately analyze the optimal shortest paths, it is necessary to enumerate all 

shortest paths for a network. Techniques of Qualitative Discrete Event Simulation are an 

ideal tool for the formulation of all possible shortest paths of a network. QDES is a 

. combination of techniques of discrete event simulation, event graphs, and qualitative 

simulation. 

26 



Simulation 

Kelton, Sadowski, and Sadowski provide a fundamental definition of simulation. 

"Simulation refers to a broad collection of methods and applications to mimic the 

behavior of real systems, usually on a computer with appropriate software" [8, p. 3]. The 

software available for simulation is extensive due to the popularity of this operations 

research tool. The early implementation of simulation software was through 

programming languages developed specifically for the task. GPSS (1961), SIMSCRIPT 

(1962), GASP (1974), SLAM (1986), SIMAN (1995) and ProModel (1994) are several 

successfully implemented programming languages [8, 9]. 

"Over the last two decades or so, simulation has been consistently reported as the 

most popular operations research tool" [8, p. 7]. Manufacturing plants, personal-service 

operations (e.g. banks), distribution networks, computer networks, supermarkets, theme 

parks, freeway systems, and emergency response systems can be modeled in simulations. 

This list is certainly not intended to be exhaustive, as the quantity of simulation models is 

extensive. "The main reason for ~imulation's popularity is its ability to deal with very 

complicated models with correspondingly complicated systems. This makes it a versatile 

and powerful tool" [8, p. 8]. 

A specific criticism of simulation is the formulation of and output resulting from 

random inputs. The output of a simulation will vary considerably depending on the 

distribution from which input variables are drawn. Because many real systems are 

affected by uncontrollable and random inputs, many simulation models involve random, 

or stochastic, input components, causing their output to be random too. 

27 



Law and Kelton categorize simulations as deterministic vs. stochastic, static vs. 

dynamic, and continuous vs. discrete. In addition, there is the distinction between 

quantitative and qualitative simulation as well. Below are the definitions of quantitative 

and qualitative according to the American Heritage Dictionary of The English Language: 

[10]. 

• Quantitative: Expressed or capable of expression as a quantity. 

• Qualitative: Of, pertaining to, or concerning quality or qualities. 

Generally speaking, systems modeled using quantitative simulations contain input 

variables that take on one specific quantity during the simulation. "Quantitative models 

include discrete event simulation, min-max algebra, Markov chains, stochastic Petri nets, 

queues, and queueing networks" [19, p. 2]. These quantities are often stochastic (i.e. are 

generated from some probabilistic distribution) in discrete-event simulation models. 

However, systems modeled using qualitative simulations contain input variables that 

may take on several quantities. "Qualitative Models capture logical aspects of system 

evolution" [19, p. 2]. For the work proposed here, the variables have an infinite 

cardinality and may take any value within a specified interval. Logical choices are made 

throughout the simulation to create the simulation output. "An important aspect of 

qualitative simulation is that the behavioral prediction can branch, corresponding to 

qualitatively distinct futures that cannot be discriminated by the available information. 

Qualitative simulation is guaranteed to predict all real behaviors of systems consistent 

with the model" [5, p. 47]. 

Fouche and Kuipers give an overview of qualitative simulation. Qualitative 

simulation is based on the observations that: 

28 



• The domain of a variable representing a physical parameter of a 
system can often be partitioned into a small number of "landmark" points 
and intervals between them, which represent real qualitative distinctions 
for the magnitude of the variable; 
• Knowing the direction of the change of a variable, in conjunction 
with its qualitative magnitude, is often enough to determine the qualitative 
properties of its evolution; and 
• For determining the qualitative behavior of a system, it is often 
adequate to know a functional relationship between two variables down to 
monotonicity and corresponding pairs oflandmark values. [5, p. 47]. 

At the 1991 Winter Simulation Conference, Cellier chaired "Qualitative Modeling 

and Simulation: Promise or Illusion", a panel discussion to discuss the practical 

applications of qualitative simulation. In the Proceedings article, Cellier defines 

qualitative variables as either nominal measures, ordinal measures, interval measures or 

ratio measures. Where nominal measures are variables with exhaustive and mutually 

exclusive characteristics; ordinal measures are variables that are nominal and rank 

ordered; interval measures are variables that are ordinal and in which any two interval 

measures can be added to or subtracted from one another; and ratio measures are 

variables that are interval and contain a true zero point. Cellier categorized qualitative 

models into four types: naive physics models, inductive reasoning models, symbolic 

discrete-event models, and neural models. In Celli er' s discussion of symbolic discrete-

event models he states: "Symbolic discrete-event simulation generates all trajectories that 

are feasible due to the fuzziness of these parameters" [2, p. 1089]. This is a truly unique 

attribute of QDES. 

Another distinction between qualitative discrete event simulation and traditional DES 

is the manner in which the simulation evolves. "Discrete-event simulation concerns the 

modeling of a system as it evolves over time by a representation in which state variable 

change instantaneously at separate points in time" [9, p. 7]. The emphasis of 

29 



SIMSCRIPT (1962), GASP (1974), SLAM (1986), SIMAN (1995) and ProModel (1994) 

simulation languages is modeling the process of an entity traveling through the model. 

However, qualitative discrete-event simulation (QDES) has an alternative, event 

approach to formulating models.. It is the events themselves that dominate and control 

the simulation. Schruben first introduced the concept of modeling simulations by event 

graphs in 1983. An event graph is a collection of that are associated with other events 

through the model structure [7]. 

Simulation and Event Graphs 

Schruben and Yucansan formalized Simulation Graphs as an extension of Event 

Graphs during the 1988 Winter Simulation Conference. Figure 9 shows an edge that is a 

part of a simulation graph. "Pictorially the vertices of an event graph represent state 

Figure 9: Scheduling Edge 

changes that are associated with the various events in the simulation. The edges of a 

graph represent the logical and temporal relationships between the vertices" [17, p. 504]. 

The edge is interpreted as follows: whenever event A occurs, if condition (i) is true 

then event B will be scheduled to occur t time units later. "The elements of a simulation 

model are the state variables, events that change the values of state variables, and the 

relationships between the events. An event graph is a structure of the objects in a 

discrete-event system that facilitates the development of a correct simulation model" [17, 

30 



p. 504]. Basically, the edges define the necessary conditions and time delay between one 

event and another. In the formalization of simulation graphs and models, Schruben and 

Yucansan defines a graph as "an ordered quadruple G = (V(G), Es(G), Ec(G), \J' (G)) 

where V(G) is the vertex set of G, Es(G) is the set of scheduling edges, Ec(G) is the set of 

canceling edges, and \J' (G) is the incidence function" [17, p. 505]. This definition is 

nearly identical to a traditional network with the addition of the canceling edge, Ec(G). 

Graphically, the canceling edge and scheduling edge are identical. In the graphical 

definition, they are distinguished as two distinct sets and their operations are certainly not 

identical. The description of the simulation model is more extensive. Schruben and 

Yucasan define a simulation model as a structure of indexed sets. 

• 3 = {£ : STATES~OUTPUTSJ i e V(G)}, which is the set of state transitions 

associated with vertex (event) i. 

• s= {cu : STATES~{O, 1}1 (i, j) e Es(G)uEc(G)}, which is the set of edge 

conditions; 

• T= {tu: (i,j)e Es(G)uEc(G)},whichisthesetofedgedelaytimes; 

• r= {vi: ie V(G)},which is the set of event execution priorities; note that r is the set 

of nonnegative integers; assuming that smaller integers will correspond to higher 

priorities with O representing the highest execution priority; 

• Si is the set of state variables possibly altered by event vertex i, ie V(G); 

• Ei is the set of state variables involved in the conditions on the arcs emanating from 

vertex i, ie V(G); 

• Z is the list of scheduled events ( events list) 

• T is the global simulation clock 

31 



The simulation also includes a stochastic process of independent uniform random 

variables on (0, 1 ). 

Schruben and Yucasan note that "A graph G can be thought of as a triple, G = ((V(G), 

E(G), \JI (G))" [17, p. 506]. This definition of a graph contains only one type of event 

conditions. In the proceedings of the 1995 Winter Simulation Conference, Savage and 

Schruben presented "Eliminating Event Cancellation in Discrete Event Simulation" [16]. 

Savage and Schruben describe the procedure of the elimination of canceling edges. 

Let v be the event that may be canceled, v ch be the added check event 
and Vx represent an event that might cancel event v. The following steps 
replace the canceling edge: 

1) Remove the canceling edge (vx, v). 
2) Create new state variables VC (to count the cancellations of v) and 

SV (= 1 ifv has not been canceled, 0 otherwise). 
3) Add {VC = VC + 1} to the state changes of Vx. 
4) Add the vertex Yeh with state change: {SV=l iff (VC = 0), VC = 

max(VC-1, O)}. 
5) Add the edge (vch,v) with edge condition Ce= SV 
6) Replace all scheduling edges (v\ Yeh) with the same time delay and 

edge conditions. [16, p. 747]. 

Ingalls analyzed the difference in calendar management (i.e. scheduling and canceling 

events) and the implementation of edge execution conditions. "The addition of the edge 

execution conditions to the simulation graph methodology provides a standard, complete 

methodology for modeling interruption. Edge execution conditions provide a simpler and 

more efficient management of these calendars" [7, p. 52]. 

Temporal Intervals in Qualitative Simulation Graphs 

In QDES, simulation graphs are implemented with conditions formulated by 

Schruben (1988) with the additional characteristic of interval-valued state variables. 

Ingalls emphasizes that "The purpose for describing state variables with interval values is 

32 



to allow the user to describe the inherit uncertainty of the decision maker or modeling 

with it comes to the true value of the variable" [7, p. 24]. 

Table I 
Allen's Interval Algebra for Intervals t = ff, ti ands= f s-, s +] 

Relation Symbol Symbol Definition Example 
for 

Inverse 
t before s < > t <s- TTT 

sss 
t equals s = Cf= s") and ( t = s +) TTT 

sss 
t overlaps s 0 01 Cf< s") and Ct> s+) TTT 

and ct< s") sss 
T meets s m mi ct= s") TTTSSS 

t during s d di ccr > s") and ct~ s +)) or TTT 
ccr ~ s-) and ct< s +)) sssss 

T starts s s SI Cf= s-) TTT 
ssssss 

t finishes s f fi ct=s+) TTT 
ssssss 

The implementation of interval valued state variables in a simulation graph can be 

mathematically rigorous. In 1983, Allen developed an algebraic system of time intervals 

[ 1]. Ingalls supplements the algebra by adding several operators. Let t = [ f, t] and s = 

[s-, s+] be closed intervals on ~. Tables I and II show the relations developed by Allen 

and Ingalls, respectively. Additionally, Ingalls implemented logical extension such as 

C&), or Cl) and negation Cl). These algebraic operations enable a QDES model to 

appropriately analyze each next event in the simulation. When the order of events is 

uncertain, a QDES simulation will try all the combinations of the event and create a 

thread for each event in the set. Each thread has its own future events calendar for that 

thread. Each thread maintains its own calendar and calendar time [7]. 

33 



Table II 
+ + Ingalls' Interval Algebra for Intervals t = [f, t ·1 ands= [s·, s -1 

Relation Symbol Symbol Definition Example 
·. for 

··Inverse ·. 

t intersects s 1 max(f, s")=::;;min (t+, s+) TTT 
sss 

t+s + ff+ s·, t + s+l 
t - s - ff - s·, t -s +1 

inverse(t) inverse flit, 1/f 1 
t*s * r f * s·' t * s +l if f * s · =::;; t * s + 
tis t* inverse(s) 

combine(t,s) combine fmin(f, s·), max(t, s+)l if (t i:s) 
midpoint(t) (f + t)/2 

width(t) t-r 
max(t,s) max fmax(f, s·), max(t, s+)l 
min(t,s) mm [min(f, s·), min(t, s +)] 

intersection( t,s) ("\ [max(f, s"), min(t, s+)], if 
(max(f, s·)=::;;min(t, s+)) 

0otherwise 

Ingalls extends the general simulation graph framework introduced by Schruben to 

accomplish this extensive task. Ingalls developed a QDES algorithm with interval state 

variables. The algorithm was implemented with the analysis of a standard inbound-

processing-outbound model. 

As QDES output consists of all possible threads (i.e. outcomes), the number of 

threads explodes as the simulation progresses. Therefore, QDES is most beneficial with 

problems containing a fixed time horizon. A fixed horizon problem would analyze a 

graph for a short period of time, or possibly a graph that is finite in nature. The shortest 

path of a network is finite in nature if the graph contains a finite number of nodes. 

Ingalls developed a QDES algorithm for PERT scheduling with and without resource 

restrictions. Ingalls converts the network into an Event Graph. After implementing the 

QDES algorithm for PERT analysis, the resulting thread output is extensive. Ingalls uses 

Thread Scoring Methods to analyze the numerous threads. Ingalls asserts that minimal 

34 



assumptions need to be made about the intervals in order to score them. "One of our 

methods is more qualitative, in that we rank the intervals by the midpoint of the interval. 

Another uses the earliest midpoint as the basis and determines a relative score. The third 

method introduces a minimal statistical assumption, namely that the interval is uniformly 

distributed" [7, p. 125]. 

In Ingalls' comments regarding future research pertaining to QDES, he states "One of 

the most interesting future research topics coming out of this dissertation is the possibility 

of exact output statistics from the simulation" [7, p. 130]. It is a fundamental objective of 

this research to develop a cohesive analysis of the output resulting in the QDES algorithm 

specific to the shortest path problem. The output methodology consists of techniques of 

min-max regret, non-dominating paths, and critical sub-paths. 

The ability to analyze a model with minimal assumptions is well established as a 

meaningful research objective. Several researchers have published literature yielding 

solutions for several network optimizations with non-constant arc values. However, a 

solution to the shortest path of a network with interval-valued measures of performance 

does not ·exist. This research effort has developed such an algorithm yielding the shortest 

paths of this network and its accompanying output analysis. 

35 



· CHAPTER III 

THE ALGORITHM 

Algorithm Overview 

The primary objective of this research effort was the formulation of an algorithm 

which would generate the set of all shortest paths from Node 1 to Node n (End Node) in 

an acyclic, directed network with ordered node set N, arc set A, and interval-valued set c, 

the measure of performance for traversing arcs. An algorithm was developed which met 

this objective. It was coded in Visual Basic [11] with a Microsoft Excel [10] interface. 

The Visual Basic Code is in Appendix A. 

The mathematical form of this statement is given in the following definition. 

Given 

G = (N, A, c), i.e., G is acyclic and directed 

N = {l, 2, ... , n} 

A= {(a, b) I (a, b)eA 4 a< b} 

c(a, b) = [lower bound, upper bound]= [Lab, Uab] and c is the measure of performance 

of arc. 

Find 

{PI P(l, ... , a, b, ... , n) and C = min L c*(a, b) for c*(a, b)cc(a, b)}. 
(a,b)eP 

Note that G is an acyclic, directed network N with n nodes from 1 ton. The node set 

N is an ordered set such that if there exists an arc from Node a to Node b then a< b. 

Dijkstra's general shortest path method finds the shortest path(s) of an undirected 

network G from a set N- to the set N+. This research effort contains a different set of 

36 



assumptions than Dijkstra's general shortest path method. Specifically, Dijkstra's 

algorithm does not contain the acyclic assumption and the single initial node and single 

terminal node assumption. However, finding the shortest path(s) of a directed network 

with single nodes for N- (Node 1) and N+ (Node n) involves no loss of generality [13]. 

The fundamental difference between network G and the general shortest path network is 

the structure of the measure of performance along an arc. The measure of performance 

along an arc is interval-valued; that is, the measure of performance can be any number 

greater than or equal to the lower bound and less than or equal to the upper bound of the 

interval. This specific type of network shall be referred to as an "interval-network". 

The interval nature of the measure of performance in G adds significant complication 

to the algorithm, which generates the shortest path(s). In an interval-network, the 

cardinality of the shortest path set may be extremely large. Although a general network 

may have multiple shortest paths, the occurrence of multiple shortest paths does not 

complicate the generation of these paths. Figure 10 shows a network with constant

valued measures of performance with more than one shortest path. The network in 

Figure 10: Transportation Network I: Nodes 1-4 

Figure 10 has two shortest paths from Node 1 to Node 4. For convemence of 

presentation, the cumulative measure of performance along a path will be referred to as 

37 



the path length, although it may correspond to any measure defined by the user. Both 

paths have a length of 4 units. 

Path 1 = Node 1 ~ Node 2 ~ Node 4 

Path 2 = Node 1 ~ Node 4. 

In an interval-network, multiple paths may exist for a specific path length, similar, to 

the path of length 4 units in the general network in Figure 9. Additionally, there are 

numerous possibilities for the length of the shortest path depending on the measures of 

performance of the arcs. The shortest paths are generated by analyzing the subsets of 

measures of performance along the arcs. A shortest path set is generated for each specific 

subset of the measure of performance along an arc. The subsets are created by logic 

describing all possible minimum values. These are "cut-points" of the measure of 

performance interval. The cut-points are found in sub-procedure Identify_ Cut_Points 

and they are ordered in sub-procedure Order_Cut_Points. The algorithms for these sub

procedures are provided in Appendix Band Appendix C, respectively. 

In Dijkstra's method for finding shortest path of a traditional network, w(k) is defined 

as the shortest distance from N+ to Node k. In the interval network, w(k) will have the 

same definition. As in a general network, w(k) in the interval-network is fundamental in 

the development of the shortest path. However, the value of w(k) is dependent on the 

subsets of measures of performance. Several w(k) values may exist for every node k. 

The set ofwi(k) will be defined as the set of node threads. 

An amended network is created based on each thread for w(k). The network is 

modified to include only arcs and arc values that can be contained in a shortest path. All 

shortest paths are generated from this amended network in the sub-procedure Find_Paths. 

38 



Because of the complicated nature of the interval-network, the algorithm generates 

shortest paths with arc values that may appear counter-intuitive. That is, the lower bound 

is greater than the upper bound. The sub-procedure Change_ Arc_ On_ Path changes 

specific arc values to form a more meaningful solution set. 

The main procedure of the algorithm first finds and orders the cut-points of the nodes 

beginning at Node 1 and ending at Node n. The network is then amended by replacing 

nodes with corresponding node*threads and by specific arcs connecting the 

node*threads. All possible paths are then found. Subsequently, the measures of 

performance corresponding to specific arcs along the paths are changed where necessary. 

The flowchart of the main procedure Avery_Shortest_Path_Algorithm is shown in 

Figure 11. The remainder of this chapter will give a more complete description of the 

following sub-procedures : Generate_w(k), Check_Arcs, Find_Paths, and Change_Arc_ 

On Path. The Change_Arc_On_Path sub-procedure is supplementary to the main 

algorithm, as the measure of performance along the arc is not a primary outcome to the 

shortest path algorithm. The algorithm generates all possible shortest path distances and 

all shortest paths of the network that have the opportunity of having a specific shortest 

path distance. Due to the uncertainty of a qualitative network, the shortest path solution 

set consists of the shortest paths which traverses the amended network's node*threads. 

The main algorithm description of the generation of the shortest paths is given below. 

Algorithm Steps 

Given 
G = (N, A, c), i.e., G is acyclic and directed 
N = { 1, 2, ... , n} 
Node 1 is the originating node 
Node n is the terminating node 
A = { ( a, b) I ( a, b) e A -+ a< b} 

39 



c(a, b) = [lower bound, upper bound]= [Lab, Uab] and c is the measure of performance 
of arc. 

Find 

{PI P(l, ... , a, b, ... , n) and C = min L c*(a, b) for c*(a, b)cc(a, b)}. 
(a,b)eP 

Step 0: INITIALIZE 
A A 

W1(l) = [L 11, U 11] = [O, O] 
CardW (Node 1) = 1 

A A 

wk(a) = [Lak, U ak] = empty, 
CutPoints(Node a, Position)= empty, 
OrderedCutPoints(Node a, Position)= empty, 
Stopping Cut Point(Node a)= 9999, 
CardW(Node a)= empty, 
ArcValid(Originating Node*Thread, Terminating Node*Thread) = false. 
Path Node*Thread (Path Number, Position, Length)= empty 
NOP(Node*Thread) = NOP(a*j) + 1 (NOP= Number of Paths) 
LPP(Path Number, Node*Thread) = empty (LPP = Last Path Position) 

MAIN ALGORITHM 
(For each node beginning with Node 1, Iterate from Step 1 to Step 6) 

For Node b = 2 ton 
(Step 1 - Step 6) 

For a= 1 to b-1, (a= predecessor node) . 
(Step 1 - Step 2) 
Index= 0 

Step 1: "Find Unordered CutPoint Set A" 
d = CardW(a) 

Recall: Wp(a) = [Lap, U ap], c(a, b) = [Lab, Uab] 
Index = Index + 1 

CutPoints(Node b, Index) = Lap + Lab, 
Index = Index + 1 

A 

CutPoints(Node b, Index)= U ap + Uab 

Step 2: "Find Unordered CutPoint Set B and Possible Stop CutPoint Set from 
Predecessor Nodes" 
Index = Index + 1 

CutPoints(Node b, Index) = Lap + Lab, 
Index = Index + 1 

CutPoints(Node b, Index)= U ap + Uab 

40 



If (U ap + Uab) < Stopping Cut Points(b) 
Then Stopping Cut Points(b) = U ap + Uab 

Next a 

Step 3: "Create Ordered CutPoints" 
From CutPoints(Node b, Index) create the set OrderedCutPoints such that: 
For every o, 
OrderedCutPoints(Node b, Position o) < OrderedCutPoints(Node b, Position o+ 1) 

Step 4: "Find Cardinality of Node Set W{b) 
CardW(b) = position of StoppingCutPoint(b) in OrderedCutPoints Set-1. 

Step 5: "Find Node Set W(b)" 
Fork= 1 to CardW(b) 

L bk = OrderedCutPoints(Node b, Position k) 
U bk = OrderedCutPoints(Node b, Position k+ 1) 

Wk(b) = [L bk, u bk], 
Nextk 

NextNodeb 
Go to Step 1 

Step 6: "Find PossibleNalid Arcs on Shortest Path" 
Recall, wk(b) = [ f. bk, U bk], wj( a) = [ L aj, U aj], 
For b = 1 to n-1 
Fork= CardW(b) 
Fora= b+l ton 
For j = 1 to CardW(a) 

If Lbk - Laj ~ Lab and U bk - U aj ~ U ab Then ArcValid (b*k, a*j) = True. 
Nextj 
Next a 
Nextk 
Nextb 

* The Paths generated by the main algorithm are all paths of the amended network 
consisting of node*threads and valid shortest path arcs. 

Step 7: "Find all Shortest Paths from Possible Arcs on Shortest Path" 

Fora= 2 Ton 
For j = 1 To CardW(a) 
If ArcValid(l *l, a*j) = True Then 

Path Node*Thread(l, 1, a*j) = 1 *l 
Path Node*Thread(l, 2, a*j) = a*j 
NOP(a*j) = NOP(a*j) + 1 

41 



LPP(l, a*j) = 2 

For b = 2 To a - 1 
Fork= 1 To CardW(b) 
If ArcValid(b*k, a*j) = True Then 
For Path Index = 1 To NOP(b*k) 

For Position Index= 1 To LPP(Path Index, b*k) 
Path Node*Thread(NOP(a*j) + Path Index, Position Index, a*j) = 

Path Node*Thread(Path Index, j, b*k) 
Next Position Index 

Path Node*Thread(NOP(a*j) + Path Index, LPP(Path Index, b*k) + 1, a*j) = a*j 
LPP(NOP(a*j) + Path Index, a*j) = LPP(Path Index, b*k) + 1 

Next Path Index 

NOP~~)=NOP~~)+NOP~*~ 

Nextk 
Nextb 
Nextj 
Next a 

Generate w(k) 

The Avery Shortest Path Algorithm, which finds the shortest path(s) of an interval 

network, has an identical structure to Dijkstra's method for a general network. That is, it 

fans out from the origin, identifying the shortest distance from the originating node to 

each of the nodes of the network in the ascending order of their distances from the origin. 

The w(k) values are the shortest distances from Node 1 to Node k. These w(k) values are 

the essence of the algorithm. In Dijkstra's method for finding the shortest path of a 

general network, w is a function, which maps the nodes to the real numbers. For interval 

-networks, the measure of performance along an arc is interval-valued. Therefore in an 

interval-network, w is a relation between the nodes and interval values. That is, the 

values of w(k) are intervals. 

42 



Begin 

Initialize/ Read Data 

Node =2 

Node = Last""-· . 
,_Node+1? 

yes 

Identify Cut Points 

Order Cut Points 

Generate w(k) 

Avery_ Shortest_ Pa th 

FromNode = 1 

From Node= no -----. -Last Node+1 ?- · 

yes 

I 

Find Paths 

Change Arc On 
Path 

ToNode = 
From Node 

To Node= 
Last Node + 1? 

yes 

no 

Check Possible Arcs 

I End I 

Figure 11: Flow Chart Avery_Shortest_Path 

Let Omega(j, k) = w(j) + c(j, k). Recall that c(j, k) is the interval-valued measure of 

performance of the arc connecting Node j and Node k. Omega values can be calculated 

using basic principles of interval math, i.e. [a, b] + [c, d] =[a+ c, b + d] [l]. Omega(j, k) 

represents the shortest path length from Node 1 to Node k that traverses Node j 

immediately before traversing Node k. 

43 



{
min{Omega(j, k)} 'v'arc(j, k)whereNodej preceedsNodek 

w(k)-
[O, O] 

k = 2, ... ,n 

k=l 

In an interval-network, a unique value for w(k) is not guaranteed. The interval-

valued minimum is the interval in which the true minimum lies. w(k) may (and often 

will) consist of several values. Actually, the minimum will depend directly on the 

measure of performance of predecessor arcs. The minimum is found on a case-by-case 

basis. 

The w(k) = [Lk, Uk] for the network shown in Figure 12 can be calculated without 

complication. Since, only Node 1 precedes Nodes 2 and 3 

w(2) = w(l) + c(l,2) = [O, O] + [1, 2] = [O + 1, 0 + 2] = [1, 2] 

w(3) = w(l) + c(l, 3) = [O, O] + [2, 4] = [O + 2, 0 + 4] = [2, 4] 

Figure 12: Transportation Network II: Nodes 1-4 

The Nodes that precede Node 4 are Nodes 1, 2 and 3. 

Omega(!, 4) = w(l) + c(l, 4)= [O, O] + [10, 12] = [10, 12] 

Omega(2, 4) = w(2) + c(2, 4)= [l, 2] + [l, 2] = [2, 4] 

Omega(3, 4) = w(3) + c(3, 4) = [2, 4] + [3, 4] = [5, 8] 

w(4) = min { [10, 12], [2, 4], [5, 8] } 

The evaluation of the minimum for this set of Omegas is rather straightforward, since 

all comparison sets are disjoint. If the Omega (1, 4) = [10, 12] and Omega(3, 4) = [5, 8] 

44 



were at their smallest values, {10 and 5}, they would not be less than Omega (2, 4). The 

true value of Omega(2, 4) will always be less than the Omega(l, 4) and Omega(3, 4). 

Therefore, the minimum is Omega(2, 4) = [2, 4]. Additionally, since Node 4 is the End 

Node in the network in Figure 11, w(4) = [2, 4] represents the shortest measure of 

performance from Node 1 to Node 4. 

For the network shown in Figure 13, the values of w(l) = [O, O], w(2) = [l, 2], and 

w(3) = [2, 4] are obvious. However, the value of w(4) is not obvious. To evaluate a 

minimum, the comparison of the OmegaG, 4) requires some elementary logic. 

Figure 13: Transportation Network III: Nodes 1-4 

Omega(l, 4) = [10, 12] 

Omega(2, 4) = [l, 2] + [4, 5] = [5, 7] 

Omega(3, 4) = [2, 4] + [2, 4] = [4, 8] 

w(4) = min{ [10, 12], [5, 7], [4, 8] } 

Figure 14 shows the values of Omega(l, 4), Omega(2, 4) and Omega(3, 4) relative to 

the real number line. In finding the minimum among these sets, the true minimum will 

be contained in some subset of the Omega values. It is important to differentiate among 

all possible cases of minimum of the Omega values. Specific cases occur at values 

between 4 and 5, between 5 and 7, between 7 and 8, between 8 and 10, and between 10 

and 12. 

45 



• [4, 5]: Omega(3, 4) contains values in this interval 

• [5, 7]: Omega(3, 4) and Omega(l, 4) contain values in this interval 

• [7, 8]: Omega(l, 4) contains values in this interval 

• [8, 1 O]: no Omega values are contained in this interval 

• [10, 12]: Omega(2, 4) contains values in this interval 

The real number line has been "cut" into a series of significant points; i.e. "cut points." 

The cut points of Node 4 are {4, 5, 7, 8, 10, 12}. For a non-trivial network, the case by 

case enumeration of the set of intervals is rather tedious. However, there are two 

significant cases of concern: the smallest possible minimum and the largest possible 

minimum. The smallest possible minimum would be the minimum of the lower bounds 

of each interval, which equals min{4, 5, 10} = 4. The largest possible minimum would 

be the minimum of upper bounds of each interval, which equals min{7, 8, 12} = 7. To 

appropriately described all possible events, the crucial cut points are the cut points 

contained in the interval between the smallest possible minimum and the largest possible 

mm1mum. Additionally, 5 is a cut point among the set of Omega's. The point, 5, is the 

Omega(), 4) 

Omega(2, 4) 

Omega(3, 4) 

I I I I I I I I I I 
2 3 4 5 6 7 8 9 10 11 12 

Figure 14: Omega Values 

46 



lower bound of Omega(2, 4). The point, 5, provides a point of differentiation between 

Omega(3, 4) and Omega(2, 4). Therefore, the crucial cut points are {4, 5, 7}, since no 

other minimum is contained inside any other cut-point. If the true minimum were 

between 4 and 5, this minimum value would lie in the interval of Omega(3, 4). If the true 

minimum were between 5 and 7 either Omega (3, 4) or Omega(2, 4) could contain the 

true minimum. If the true value of0mega(3, 4) is greater than 7, Omega(2, 4) will be the 

minimum. The true value of Omega(l, 4) is always greater than 7 and cannot be a 

minimum. Therefore, w(4) = min{ [10, 12], [5, 7], [4, 8] } = { w1(4), w2(4)} = 

{ [4, 5], [5, 7] } and w(4) consists of 2 cases/threads. 

The process of determining node thread values can be generalized as follows: 

For any interval-network, the cut-points of a node are an ordered set of all upper and 

lower bounds of the Omega values. The cut-point set of Node k defines w(k). The two 

most significant cut-points are the minimum of the lower bounds of the Omega values 

and the minimum of the upper bounds of the Omega values. In the trivial example shown 

above, the only node containing multiple threads is node 4. The Omega values for node k 

are generated from the node*threads that precede node k. The minimum of the upper 

bounds of the Omega values (the stopping cut point) is the minimum from among the 

"last" node*thread of all preceding nodes. This distinction of choosing the minimum 

from among the "last" threads in necessary to ensure that the worst-case minimum is 

evaluated appropriately. Again, the stopping cut point signifies the largest possible 

minimum. This minimum must be among the largest from all predecessor nodes to 

appropriately analyze all situations. The minimum of the lower bounds of the Omega 

values is the starting cut point and the minimum of the upper bounds of the "last" Omega 

47 



values is the stopping cut point. · These cut-points bound the intervals that the true 

minimum can be contained in and they are both significant in the algorithm .. No value 

greater than the stopping cut point can be the minimum value. That is, the stopping cut

point is the largest possible w(k) value. If there exist j and k such that Omega(j, k) c 

{w1(k) U w2(k) U ···U wp(k)}, this implies that for all i, Wi(k) Swp(k). Since each 

wi(k) = [CPi, CPi+1], if the stopping cut point is in the pth position of the cut-point set, p-1 

node threads exist. 

Given Omega(j*a, k) = [Ljak, Ujak] , for all node*threads j*a that precede node k, the 

cardinality of node j is d. Let: 

• CutPoints (k) = { x I x = Lj~ } u { x I x = Ujak }= { CP1, CP2, ... , CPm }such that 

CP(i) < CP(i+J) for every i. 

• StoppingCutPoint(k) = min { x I x = Ujdk } , where d is the last position of each 

predecessor node. 

• StoppingCutPointPosition = p. CutPoints (k) is an ordered set where CutPoints(k) 

= { CP1, CP2, ... , CPp = StoppingCutPoint(k) } and this is the ordered position of 

the stopping cut point. w(n) = { w1(n),w2(n), ... , Wp-1(n) } such that w1(n), 

w2(n), ... , Wp.1(n) are "nearly" disjoint sets. For all i, Wi(n) f"'I Wi+i(n) = {b} such 

that Wi(n)=[a, b] and Wi+1(n) = [b, c] where a< c. w1(n) = [CP1, CP2], w2(n) = 

· [CP2, CP3], ... , Wi(n) = [CPi, CPi+t], ... , Wk(n) = [CPp-1, CPp]. The cardinality of 

w(n) is p- 1. 

Several Omega values and corresponding cut points are shown in Figure 15. CPI is 

the smallest of the lower bounds of the Omega values and CPS is the smallest of the 

48 



upper bounds of the Omega values generated by the "last" predecessor node*threads. 

CPS is the stopping point, i.e., no values greater than CPS can be the minimum. 

:::~.:·::·:·.:·:.-:·.:·:.-:·.:·:.-:·.:·:.:·.:-:·.::.-:·~·:.:·~·:.-:·.:·:.-:·.:·:.-: .. :·.:·:.-:·.:·:.-:·.:·:.-:·.:·:.<·:.-:·.:·:.-:·.:·:.-:·.:·:.·:·.:·:.-:·.:·:.-:·.:·~·:·~·:.-:·.:·:.:·~·:.-:·.:·:.-:·~·l·:·:.-:·.:·:.-:·.:·:.·:·.:·:.-::-:·:.-:<·:.-:·.:·:.-:·.:· 

CPI CP2 CP3 CP4 CPS CP6 CP7 

Figure 15: Cut Points and Omega Values 

Omega(] * l ,k) 

Omega(2* l ,k) 

Omega(2*2,k) 

Omega(3 * l ,k) 

Omega(3*2,k) 

Appendix B shows the complete algorithm for finding the cut points and the stopping 

cut point. Appendix C shows the complete algorithm for ordering the cut points and 

finding the cut point position. Figure 16 shows the flow chart for Generate_w(k). This 

procedure occurs after the cut points are found and ordered. 

In general, we are concerned with the number of node threads created by the 

algorithm. Due to the interval nature of the network, the number of node threads for the 

End Node can be very large. However, it is possible to find the maximum number of End 

Threads before implementing the algorithm. For any node k with 'tk Omega values 

being compared to find the node threads, the maximum number of node threads for node 

k is 'tk. The maximum number of Node k threads, µk = L µj • For any network G 
(j,k)eA 

satisfying the numbering node condition, A = { ( a, b) I ( a, b) e A --+ a < b}, the maximum 

number of nodes that precede node k is k - 1. 

49 



Generate_w(k) 

Begin 

End 

no 

yes NodeThreadlower(Node,t) = 
>--------- NodeThreadUpper(Node,t)= 

NodeThreadlower(Node,t) 
= CutPoint(Node,t) 

NodeThreadUpper(Node,t) 
= CutPoint(Node,t+1) 

CutPoint(Node, 1) 

Figure 16: Flow Chart Generate_w(k) 

Recall, the maximum number of threads for node k = µk . Thus, µ 1 = µ 2 = 1, µ 3 = µ 1 + 

µ 2 = 1 + 1 = 2 and µ 4 = µ 1 + µ 2 + µ 3 = 1 + 1 + 2 = 4. The maximum number of threads 

for node k is µk = 2k·2• 

Proof by induction: 

k = 3 = µ 3 = 23"2 = 2 

L 2k-2 
et µk = µ I + µ 2 + µ 3 + · · • + µ k-1 = 

50 



µ = µ + µ = 2 µ = 2*2k-2 = 2k-l k+l k k k 

Check Arcs 

In traditional shortest path analysis, ifw(b)- w(a) = c(a, b) then a shortest path for the 

network contains the arc (a, b). Due to the complexity of the interval-network, this 

condition may not be true. Furthermore, due to the nature of the interval-network, some 

nodes have more than one interval contained in w(n), i.e. there are multiple node threads. 

The condition for arc membership of a shortest path must be specific for each thread to 

yield a complete solution set. 

For the network shown in Figure 17, Table III shows all combinations of differences 

in thread values, and the corresponding measure of performance along that arc. Given, 

wk(b) = [Lbk, U bk], Wj(a) = [Laj, U aj], and c(a, b) = [Lab, Dab], An arc may be a member 

of a shortest path, if for some thread k ofw(b) and some threadj ofw(a): 

: : 

l.....[1, .. 21 ..... .J 

[3, 3] 
: : 

I [2, 41 I 
· ............................. · 

Figure 17: Node*Thread Network 

51 



Lbk - Laj ~ Lab and U bk- U aj ~ U ab (Condition 1). 

Note, this is a looser restriction than wk(b) - Wj(a) c c(a, b). For example, the arc 

from Node 3*Thread 1 to Node 4*Thread 1 satisfies condition 1, but not the proper 

subset condition. The need for this specific condition will be discussed later. 

Arc wk(b)-wi(a) 
Lower· 

W1(2)-W1(1) 1 
W1(3)-W1(1) 2 
W1(4)-W1(1) 4 
W2(4)-W1(1) 5 
W1(4)-W1(2) 3 
W2(4)-W1(2) 4 
W1(4)-W1(3) 2 
W2(4)-W1(3) 3 

Table III 
Arc Values 

Wk(b}-Wj(8) <c(a, b) 
Upper Lower 

2 1 
4 2 
5 10 
7 10 
3 4 
5 4 
1 2 
3 2 

c(a, b) Condition 1 ..... 
Upper Satisfied? 

2 y 

4 y 
12 N 
12 N 
5 N 
5 y 
4 y 
4 y 

Each node*thread combination needs to be analyzed to fully describe all possible 

shortest paths. An amended network is constructed such that every Node a is replaced 

with Node a*l for all node threads 1 of Node a. A single arc from Node a to Node bis 

replaced by multiple arcs from No~e a*l for all threads 1 of Node a and Node b*k for all 

threads k of Node b. Arcs that do not satisfy condition 1 are eliminated from the 

network. 

For all arcs that satisfy condition 1, the measure of performance along the arc is given 

as c(Node a*Thread 1, Node b*Thread k) = [Lbk - Lat, U bk - U at], The amended 

network of Figure 12 is shown in Figure 17. The flow chart for Check_ Possible_ Arcs is 

shown in Figure 18. 

52 



yes 

End 

Check Possible Arcs 

Begin 

ToNodeThread=O 

ToNodeThread= 
ToNodeThread+1 

no 
>---.i FromNodeThread=O 

FromNodeThread= 
FromNodeThread+1 

LowArcRange(FromNode,FromNodeThread,ToNode,ToNodeThread) = 
NodeValuelower(ToNode,ToNodeThread)

NodeValuelower(FromNode,FromNodeThread) 
UpperArcRange(FromNode,FromNodeThread,ToNode,ToNodeThread) = 

NodeValueUpper(ToNode,ToNodeThread)
NodeValueUpper(FromNode,FromNodeThread) 

Allowed low= Arclower(FromNode, To Node) 
AllowedHigh=ArcUpper(FromNode,ToNode) 

Currentlow=LowArcRange(FromNode,FromNodeThread,ToNode,ToNodeThread) 
CurrentHigh=UpperArcRange(FromNode,FromNodeThread,ToNode,ToNodeThread) 

Check (FromNode, 
FromNodeThread, 

ToNode,ToNode Thread) = 
True 

no 

Check (FromNode, 
FromNodeThread, 

ToNode, ToNode Thread) 
= False 

Figure 18: Flow Chart Check_Possible_Arcs 

53 



Find Paths 

The algorithm performs all the operations necessary to build an amended network to 

find all the shortest paths of the network. The sub-procedure Find_ Paths generates all 

possible shortest paths of the network given the node*thread and arc information. In 

traditional shortest path algorithms, the measure of performance along an arc for a 

specific shortest path is known before the algorithm is implemented and is therefore 

redundant. The value of measure of performance along the arcs in an interval-network is 

only bounded. Therefore, the c*(a, b) corresponding to all arcs (a, b) on the shortest 

paths are also described in the Find_ Paths sub-procedure. 

Given: 

• G=(N,A,c)andN={l,2, ... ,n} 

• c(a, b) = [Lab, Uab] 

• wk(b) = [ L bk, U bk] is the kth thread of Node b 

• Wj(a) = [Laj, U aj] is thejth thread ofNode a 

Let G* = (N*, A*, c*) where 

• N* ={b*k}; beN = {I, 2, ... , n}; k = 1, 2, ... , cardinality ofw(b). The cardinality 

n 

~fN* = L cardinality of w(i). K = cardinality of w(n) 
i=I 

• A* ={ (b*k, a*j) I L bk - L aj ~ Lab and U bk - U aj :::; U ab· (Condition 1)} 

• c* = c*(b*k, a*j) = [ L bk - L aj, u bk - u aj] = [Lbkaj, ubkaj]. 

An arc can only be traversed directly from Node i to Node j if the arc (i, j) exists, i.e., 

c(i, j) < oo. A path moves from node to node by a specific arc connecting the two nodes. 

Node~ Arc~ Node ~···~Arc~ Node . As each arc (i, j), in the path is traversed, a 

54 



measure of performance, e.g., cost of c(i, j) is incurred. The objective is to find a path 

from N+ to N- with the shortest measure of performance, e.g. smallest cost. 

Given a path P = (I* 1, ... , b*k) and a = (b*k, a*j) such that a e A*, path P* = (I* 1, 

... , b*k, a*j) is a shortest path with initial Node 1 *1 and terminal Node a*j. The 

algorithm generates all shortest paths with initial Node 1 * 1 and terminal Node b*k .for 

every b*k e N* using a iterative technique of adding nodes to existing shortest paths. 

Initial paths are formed as paths with initial Node 1 * 1 and terminal Node b*k, for all 

b*k that are connected to Node 1 * 1 (the arc from 1 * 1 to b*k must exist). New paths are 

constructed as node*threads are added to previous shortest paths if the arc from the last 

position node*thread to b* k exists. The algorithm creates new paths by adding nodes to 

the end of existing paths and it is imperative to keep track of all nodes at the end of an 

existing path (Last Position (Path P)). 

A complete set of shortest paths with initial Node 1 *l, terminal Node n*j and 

cumulative length of the path wj(n) = [ L nj, U nj] will be generated by the algorithm. 

Figure 19 shows the flow chart for Find_Paths. Below is each step of the algorithms 

procedure for finding the shortest path of the network shown in Figure 17. 

Last Position of existing paths = { 1 * 1} 

To Node= 2 Is 2* 1 connected to 1 * 1? Yes. Node 2, Path 1= 1 *1 to 2*1 

Last Position of existing paths = { 1 * 1, 2 * 1 } 

ToNode=3 Is3*1 connected to 1*1? Yes Node3,Path 1 = 1*1 to3*1 

Is 3*1 connected to 2*1? No 

Last Position of existing paths= { 1 * 1, 2* 1, 3* 1} 

55 



Begin Find Paths 

ToNode = Las'! no 
----- ToNodeThread=O , _Node+1? 

yes 

Number 
CompletePaths 

End 

ToNode Thread 
=ToNodeThread+1 

ToNode Thread" Y s 
Last +1? 

yes 

FromNode = 
Last +1? 

no 

FromNodeThread=O 

From NodeThread= 
FromNodeThread+1 

no 

FromNodeThread = Last +1? 

, no 

, no 

Check(1, 1,ToNode,ToNode Thread)_ 
Start New Path at 

ToNodel 
ToNodeThread 

=1? yes 

PathNode(1, 1,ToNode,ToNodeThread)=1 
P athN ode(1,2, ToNode, ToN odeThread)=ToNode 

PathThread(1, 1,ToNode,ToNodeThread)= 1 
PathThread(1,2,ToNoda,ToNodeThread)=ToNodeThread 

N um berOf P aths(ToN ode, ToN odeThread )= 

yes 

N um berOf Paths(ToN ode, ToN odeThread)+ 1 
LastPathPostion(1,ToNode,ToNodeThread)=2 

C heck(From Node, From Node Thread, 
ToNode, ToNode Thread) = 1? 

AddToNode/ToNodeThread To 
Existing From Node/ 

FromNodeThread Paths 

Figure 19: Flow Chart Find_Paths 

56 



To Node= 4 Is 4*1 connected to 1 *1? No 

Is 4* 1 connected to 2* 1? No 

Is 4 * 1 connected to 3 * 1? Yes 

Is 4*2 connected to 1 *1? No . 

Is 4*2 connected to 2*1? Yes 

Is 4 *2 connected to 3 * 1? Yes 

Node 4, Path 1 = 1 *1 to 3*1 to 4*1 

Node4,Path2= 1*1 to2*1 to4*2 

Node 4, Path 3 = 1 *1 to 3*1 to 4*2 

Last Position of existing paths= {1 *l, 2*1, 3*1, 4*1, 4*2} 

To Node = 4 ~ End. 

Change Arc On Path 

Due to the structure of condition 1, it is possible that a corresponding measure of 

performance along an arc has a lower bound greater than the upper bound. The sub

procedure Change_ Arc_ On_ Path, shown in Figure 20, corrects these possible 

inconsistencies in the output. After the Find _Paths sub-procedure is completed, the 

algorithm would have generated 3 shortest paths for the network in Figure 12. 

Length Path 1 = 1*1 to 3*1 to 4*1 = [2, 4] + [2, 1] = [4, 5] 

Length Path 2= 1 *1 to 2*1 to 4*2 = [1, 2] + [4, 5] = [5, 7] 

Length Path 3 = 1 * 1 to 3* 1 to 4*2 = [2, 4] + [3, 3] = [5, 7] 

Since Node 4 has two node threads, there are two possible shortest path lengths 

([4, 5] and [5, 7]). Path 2 and Path 3 both have cumulative length of [5, 7] and Path 1 

([2, 4] + [2, 1]) has cumulative length of [4, 5]. Note that the arc from 3*1 to 4*1 

satisfies Condition 1 but not the subset condition. If it had not been considered a "good" 

57 



Change_Arc_On_Path 

yes 

Begin 

Position= 
LastPathPosition 
(PathNumber)+1 

Position=Position-1 

yes 

ToNode•EndPolhNode(PolhNumber,Pooltlon) 
FromNode•EndP1thNode(P1thNumber ,Poaltlan-1) 

ToNodeThread•EndPelhThread(PelhNumber,Pooltion) 
FromNodeThrHd•EndPalhThread(PalhNumber,Poaltlon-1) 

Currentlow•P1thLowArcV1lue(FromNode,ToNode,PathNumber,Poaltlon) 
CurrenlHlgh•PalhUpperArcValue(FromNode,ToNode,PalhNumber,Poalllon) 

Allowedlaw•ArcLower(FromNoda,ToNoda) 
AllowedHlgh• ArcUpper(FromNode,ToNode) 

. yes 

End 

Increase 
PathUpperArcValue 

Decrease 
PathlowArcValue 

Figure 20: Flow Chart Change_ Arc_ On_ Path 

58 



arc, this path would not have been enumerated as a shortest path. The primary objective 

is to list all possible paths whose cumulative lengths are a thread of the End Node. Path 1 

satisfies this condition. The value of [2, 1] for the arc from 3 * 1 to 4 * 1 is not a properly 

defined interval-value. The corresponding measures of performance along the arcs are 

necessary to formulate a complete path description. There are an infinite number of 

combinations of 1 * 1 to 3* 1 and 3* 1 to 4* 1, which would yield the [ 4, 5] distance. Recall 

that the arc range from 1*1 to 3*1 = [2, 4] and 3*1 to 4*1 = [2, 3]. Below are a small 

sample of combinations which yield the cumulative path distance of [ 4, 5]: 

• 1 *1 to 3*1 = [2, 3] 3*1 to 4*1 = [2, 2] 

• l*lto3*1=[2,2.5] 3*1to4*1=[2,2.5] 

• 1 *1 to 3*1 = [2, 2] 3*1 to 4*1 = [2, 3] 

The algorithm finds only one alternative that will satisfy the cumulative path length 

condition, since the primary objective is the generation of the shortest paths. The exact 

values for the measure of performance along an arc is qualitative by nature and does not 

need to be known. However, a measure of performance such that the lower bound is 

greater than the upper bound is counter-intuitive and doesn't yield a meaningful path 

description. 

The sub-procedure Change_Arc_On_Path changes the values along the arcs to yield 

all arc values such that: 

Given 

• Path P* = (1 * 1, ... , b*k, a*j, ... , n*m) 

• Wm(n) = [ L nm, U nm] = [End Node thread lower bound, End Node thread upper 

bound] 

59 



• c(b, a) = [Lba, Uba] = [ arc lower bound, arc upper bound] 

• . c* = c*(b*k, a*j) = [Lbkaj, Ubkaj] = [arc thread lower bound, arc thread upper 

bound] for every Path P*, A* = (b*k, a*j) e P*, and c*(b*k, a*j) 

• Lbkaj ::s; Ubkaj (The arc thread lower bound is less than the arc thread upper bound). 

• Lbkaj ~ Lab (The arc thread lower bound is greater than or equal to the arc lower 

bound). 

• Ubkaj ::s; Uab (The arc thread upper bound is less than or equal to the arc upper 

bound). 

• L Lbkaj = Lnm (The lower cumulative path length equals the path thread 
(b I k,a/ j)eP• 

lower bound). 

• """' Ubk . = U (The upper cumulative path length equals the path thread L.., aJ nm 
(b/k,a/ j)eP• 

upper bound). 

The arc thread values along each path are changed such that the lower arc thread 

bound is less than the upper arc thread bound without loosing the integrity of the 

cumulative path length. This adjustment is accomplished by decreasing and increasing 

arc thread values simultaneously. If it is necessary to increase an arc thread's lower 

v:alue, a decrease of the same magnitude in another arc thread's lower value must 

accompany the increase. Similarly, if it is necessary to decrease an arc thread's upper 

value, an increase of the same magnitude in another arc thread's upper value must 

accompany the decrease. The algorithms for sub-procedures Decrease_Path_Low_Arc_ 

Value and Increase_Path_High_Arc_ Value are in Appendix D and Appendix E, 

respectfully. 

60 



For example, the arc from 3*1 to 4*1 in Path 1 from above has a value [2, 1]. The arc 

from 3 to 4 has value of [2, 4]. For this example, it is necessary to increase the arc upper 

value by at least one unit.. However, the upper value of another arc thread along the path 

must be decreased by the same value. The arc adjacent to (3 * 1, 4 * 1) is ( 1 * 1, 3 * 1 ). Since 

the arc from 1 to 3 has a value of [2, 4] and the arc thread value is [2, 4], the upper arc 

thread value can be decreased as much as 2 units. Since the necessary change is one unit 

and 2 units are available to be changed, the upper bound of arc (3 * 1, 4 * 1) is increased 

one unit and the upper bound of ( 1 * 1, 3 * 1) is decreased one unit. After creating the new 

arc thread values, the length of Path 1 = 1 *1 to 3*1 to 4*1 = [2, 3] + [2, 2] = [4, 5]. 

For longer paths, the amount available in the adjacent arc may not be as large as the 

needed change. In this instance, the largest change possible is made in each arc along the 

path until the required change is accomplished. 

After the sub-procedure Change_Arc_On_Path is complete, the algorithm has 

generated all possible shortest paths for the interval-network and each arc value along the 

path is a subset of the interval defined in the problem statement. The development of the 

methodology for the analysis of the set of shortest paths will be discussed in Chapter V. 

61 



· CHAPTERIV 

ALGORITHM RESULTS 

Introduction 

This chapter will show several examples of output from the algorithm discussed in 

Chapter III. It is impossible to give an exhaustive list of the types of shortest path 

problems. However, the examples shown in this chapter should give the reader a basic 

overview of the situations that result when implementing this algorithm. The algorithm 

was coded in Visual Basic [11] with Microsoft Excel [10] as the interface. The Visual 

Basic code is in Appendix A. Node data and arc measure of performance bounds are the 

only required input for this algorithm. The lower and upper measure of performance 

along the arcs are written in matrix form in a Microsoft Excel [1 O] Spreadsheet. If the arc 

connecting two nodes does not exist, the lower and upper arc bounds are infinity (infinity 

has been defined as 9999 in this program). Additionally, all significant output data is 

written to the Microsoft Excel [10] Spreadsheet. 

The first output of the algorithm is the Node Threads or {wi(k)} for all nodes k. The 

quantity of Node Threads is a major contributor to the complexity of the algorithm. The 

Node Threads are generated in the first stages of the algorithm. The number of iterations 

remaining in the algorithm is a direct result of the number of Node Threads. 

Additionally, the size of the shortest path solution set is directly related to the number of 

Node Threads. A large number of Node Threads generally occurs in a network with 

many nodes and/or large ranges between the bounds of the measure of performance. As 

the range between the bounds increases, the network resembles an unbounded network. 

62 



As the size of the network approaches an unbounded network, the set of shortest paths 

from Node 1 to Node n approaches the set of all paths from Node 1 to Node n. 

The most significant output of the algorithm is the set of all paths in Node*Thread 

notation. The shortest paths are based on End Thread information. End Threads are a 

specific set of Node Threads for the destination node of the shortest path. The End 

Threads specify the possible shortest path distances. The path information consists of the 

nodes traversed in the path, the shortest path distance, and the measure of performance 

along the arcs in the path which correspond to that shortest distance. The generation of 

the shortest path is only possible after the algorithm has checked all arcs against specific 

conditions to find the set of possible arcs. Additionally, the measure of performance 

along the arcs is corrected if the lower bound of the measure of performance is greater 

than the upper bound of the measure of performance. 

10-Node Traditional Networks 

The algorithm is designed to yield all possible shortest paths of a network with 

interval-valued measures of performance . However, the algorithm will yield the shortest 

path of a network with single-valued measures · of performance. If a measure of 

performance along an arc is a constant, it is described by an interval such that the upper 

and lower bounds are equal. Figure 21 shows a 10-Node network with constant-valued 

measures of performance. Table IV shows the Node Thread values { wk(b) = [ Lbk, U bk ] 

= [Lower Node Thread, Upper Node Thread]} for Node b, b = 2, 3, ... ,10. These are the 

exact w(k) values that would result by implementing Dijkstra's method. Table V shows 

all arcs of an amended network of the original network given in Figure 21. In the 

63 



(21, 21] (28, 28] 

(42, 42] [15, 15] (35, 35] 

(42, 42] 

Figure 21: IO-Node Network I 

amended network, each single node is replaced by all node*threads for that node. The 

arcs in Table V are denoted by the originating node*thread (TO NODE) and terminating 

node*thread (FROM NODE). Only the arcs that satisfy Condition 1 may be members of 

a shortest path. However, many of the arcs that could be members of the shortest path 

may not actually be members of the shortest path. Basically, an arc is a possible member 

of a shortest path if the arc "generated" a specific Node Thread value. The Node Thread 

value, w(k), is a minimum from among a set ofw(a) + c{a, k) of all Node a's proceeding 

Node k. Table VI shows the one shortest path of the network in Fi.gure 21 (Node 

1 ~ Node 3 ~ Node 6 ~ Node 10). The existence of only one shortest path is not a 

surprise, considering the single-valued measures of performance along the arcs. 

Table IV 
Node Threads for IO-Node Network I 

Node Thread 2 3 4 5 6 7 8 9 10 
Lower 1 28 21 42 49 63 57 70 98 79 
Uooer 1 28 21 42 49· 63 57 70 98 79 

64 



Table V 
Possible Arcs for 10-Node Network I 

TO NODE 11 11 11 21 21 31 31 41 41 41 51 51 61 61 61 71 71 81 91 
FROM NODE 21 31 41 41 51 41 61 51 61 71 71 81 71 91 101 81 101 101 101 
CONDITION 1 y y y N y N y N N y N N N y y y N N N 
SATISFIED? 

Table VI 
Path Threads for IO-Node Network I 

Lower Lower Upper Upper Node* Node* Lower End Upper End 
Arc Bound Value Value Bound Thread Thread Thread Thread 

Arc1 21 21 21 21 11 31 
Arc2 42 42 42 42 31 61 
Arc3 16 16 16 16 61 101 79 79 

The primary objective of this research project was the generation of shortest paths 

when the exact measures of performance along the arcs were unknown. The algorithm 

described in Chapter III finds all shortest paths of a network whose measures of 

performance along the arcs are bounded above and below. One is tempted to find the 

shortest path of a network with constant measures of performance at each of the bounds. 

For instance, the network in Figure 21 may be the lower bounds of the measures of 

performance along the arcs. Figure 22 shows a constant network such that each measure 

of performance along an arc is four units greater than the network in Figure 21. This 

would describe the upper bounds of the measures of performance along the arcs if the 

measures of performance of the network in Figure 21 could deviate as much as four units 

higher than the values seen in Figure 21. Table VII shows the Node Thread values for 

Node 2 through Node 10 of the network in Figure 22. Table VIII shows that the identical 

shortest path to the network for Figure 22 that was obtained for the network in Figure 21. 

The only difference is the measure of performance along the arcs. 

65 



[25, 25] [32, 32] 

Figure 22: 10-Node Network II 

Table VII 
Node Threads for IO-Node Network II 

Node Thread 2 3 4 5 6 7 8 9 10 
Lower 1 40 30 60 70 90 80 100 140 110 
Uooer 1 40 30 60 70 90 80 100 140 110 

Table VIII 
Path Threads for IO-Node Network II 

Lower Lower Upper Upper Node* Node* Lower End Upper End 
Arc Bound Value .Value Bound Thread Thread Thread Thread 
Arc1 30 30 30 30 11 31 
Arc2 60 60 60 60 31 61 
Arc3 20 20 20 20 61 101 110 110 

IO-Node Network III 

Figure 23 shows a 10-Node network with interval-valued arc lengths which contains 

the constant measures of performance of the network in Figure 21 as the lower bounds 

for the measure of performance and the constant measures of performance in Figure 22 as 

the upper bounds for the measures of performance. The interval-values complicate the 

66 



problem as all points contained between the bounds are a possible measure of 

performance along an arc. 

[21, 25] [28, 32] 

[42, 46] [15, 19] [35, 39] 

[42, 46] 

Figure 23: IO-Node Network III 

Table IX shows the Node Thread values { Wk(b) = [ L bk, U bk] = [Lower Node Thread, 

Upper Node Thread]} for Node b, b = 2, 3, ... ,10 for the network in Figure 23. For any 

IO-Node network, the number of End Threads, w(lO) = {wi(lO)} can be extremely large. 

Specifically for this netwo~k, the number of End Threads could approach 210•2 = 28 = 256. 

However, there are only two End Threads for the network in Figure 23. The four unit 

interval-range, i.e., the upper bound minus the lower bound, along each arc contributes to 

the small number of End Threads. 

Table IX 
Node Threads for IO-Node Network III 

Node Thread 2 3 4 5 6 7 8 9 10 
Lower 1 28 21 42 49 63 57 70 98 79 
Uooer 1 32 25 46 57 71 63 76 110 88 
Lower 2 63 76 88 
Uooer 2 65 77 91 
Lower 3 77 
Unner 3 80 
Lower 4 80 
Unner 4 82 

67 



However in general, the basic structure of the network and the proximity among the 

measures of performance along the arcs contributes substantially to the number of End 

Threads and subsequently the number of shortest paths. Measure of performance along 

the arcs that are near one another creates . Omega values with a greater number of 

intersections and therefore a greater number of Node Threads. 

These two End Threads represent the two possible sets of cumulative shortest path 

lengths, [79, 88] and [88, 91]. Basically, the shortest path will be between 79 and 91 

units. However, the interval from 79 to 91 is partitioned into two sets, to give us specific 

information on which shortest path will yield the specific cumulative path lengths. For 

the network in Figure 23, the shortest paths and corresponding measures of perfom1ance 

along the arcs which yield that shortest path length are shown in Table X. In Table X the 

measure of performance along any arc(a, b) is calculated as w(b)- w(a). 

Table X 
Uncorrected Path Threads 10 Node Network III 

Lower Lower Upper Upper Node* Node* End Thread 
Path Arc Bound Value Value Bound Thread Thread Lower Uooer 

1 1 21 21 25 25 11 31 
2 42 42 46 46 31 61 
3 16 16 17 20 61 101 79 88 

2 1 21 21 25 25 11 31 
2 42 42 46 46 31 61 
3 16 25 20 20 61 102 88 91 

3 1 42 42 46 46 11 41 
2 15 15 17 19 41 71 
3 13 13 13 17 71 81 
4 18 18 15 22 81 102 88 91 

The arc measures of performance listed in Table X contain arc values such that the 

lower bound is greater than the upper bound. The sub-procedure Change_Arc_On_Path 

corrects the measure of performance along arcs as shown in Table XI. The output shown 

68 



in Table XI will be further analyzed according to the output methodology described in 

ChapterV. 

Table XI 
Corrected Path Threads 10 Node Network III 

Lower Lower Upper Upper Node* Node* End Thread 
Path Arc Bound Value Value Bound Thread Thread Lower Uooer 

1 1 21 21 25 25 11 31 
2 42 42 46 46 31 61 
3 16 16 17 20 61 101 79 88 

2 1 21 22 25 25 11 31 
2 42 46 46 46 31 61 
3 16 20 20 20 61 102 88 91 

·. 

3 1 42 42 45 46 11 41 
2 15 15 15 19 41 71 
3 13 13 13 17 71 81 
4 18 18 18 22 81 102 88 91 

10-Node Network IV 

Figure 24 shows another 10-Node network identical to the network in Figure 21. The 

lower bounds for the measures of performance are identical to the network in Figure 21, 

but the interval-ranges are varying quantities. The smallest range is three units, [7, 10], 

[21, 30]. [28, 40] 

[13, 20 

[42, 60] [15, 20] [35, 39] 

[21, 30] 

[42, 60] 

Figure 24: 10-Node Network IV 

69 



and the largest range is 18 units, [ 42, 60]. Table XII shows the { Wk(b) = [ L bk, U bk] = 

[Lower Node Thread, Upper Node Thread]} for Node b, b = 2, 3, ... , 10 for the network in 

Figure 24. 

Table XII 
Node Threads for 10 Node Network IV 

Node Thread 2 3 4 5 6 7 8 9 10 
Lower 1 28 21 42 49 63 57 70 98 79 
Uooer 1 40 30 49 61 77 63 76 112 88 
Lower 2 49 61 77 63 76 112 88 
Uooer 2 60 68 84 64 77 119 92 
Lower 3 68 84 64 77 119 92 
Uooer 3 69 90 69 82 127 93 
Lower 4 69 69 82 .127 93 
Upper 4 70 70 83 134 94 
Lower 5 70 83 134 94 
Upper 5 75 84 140 95 
Lower 6 75 84 95 
Uooer 6 80 88 96 
Lower 7 88 96 
Upper 7 89 97 
Lower 8 89 97 
Upper 8 90 98 
Lower 9 90 98 
Uooer 9 95 99 
Lower 10 95 99 
Uooer 10 96 100 
Lower 11 96 100 
Uooer 11 97 101 
Lower 12 97 101 
Upper 12 100 102 
Lower 13 102 
Upper 13 103 
Lower 14 103 
Uooer 14 104 
Lower 15 104 
Upper 15 105 
Lower 16 105 
Upper 16 106 
Lower 17 106 
Upper 17 107 
Lower 18 107 
Upper 18 108 
Lower 19 108 
Upper 19 109 
Lower 20 109 
Upper 20 110 

70 



As expected, there are more End Threads for the network' in Figure 24 than the 

network in Figure 23. Table XII displays the 20 End Threads for the network shown in 

Figure 24. This is not near the maximum of 256. The algorithm generated 538 shortest 

paths for the network in Figure 24. The 538· shortest paths for this network are shown in 

Appendix F. These shortest paths are described by the node*threads that the paths 

traverse and the measures of performance along the arcs that are necessary to yield that 

shortest path distance. The shortest path output for the network in Figure 24 will be 

further analyzed according to the output methodology described in Chapter V. 

7-Node Network 

A 7-Node network is shown in Figure 25. The structure of this network is relatively 

simple. Each node has less than four entering arcs. Additionally the interval-range along 

each arc is less than five units. Table XIII shows the { Wk(b) = [ L bk, U bk] = [Lower 

Node Thread, Upper Node Thread]} for Node b, b = 2, 3, ... ,7 for the network in Figure 

[7, lll 

[7, 9] 

Figure 25: 7-Node Network 

71 



Table XIII 
Node Threads for 7-Node Network 

Node Thread ,2 3, 4 5 6 7 
Lower 1 3 4 5 9 8 15 
Uooer 1 5 7 6 10 12 16 
Lower 2 6 10 16 
Uooer 2 9 14 20 
Lower 3 20 
Uooer 3 23 

25. There are only three End Threads for the network in Figure 25. However, there are 

20 shortest paths for the network in Figure 25. This is a relatively large number of 

shortest paths even though there are only three End Threads. However, the values of the 

measures of performance along the arcs are relatively close to one another. This situation 

yields a network such that a large portion of the arcs satisfy Condition 1 and therefore can 

be members of the shortest path. Specifically, as seen in Table XIV, 16 of the 25 arcs 

connecting node*threads can be members of the shortest path. Table XV shows the 20 

shortest paths generated by the algorithm The shortest path output for the network in 

Figure 25 will be further analyzed according to the output methodology described in 

ChapterV. 

Table XIV 
Possible Arcs for 7-Node Network 

TO NODE 11 11 11 11 21 21 21 31 31 31 31 31 41 
FROM NODE 21 31 41 42 31 51 52 41 42 51 52 61 61 
CONDITION 1 y y y y y N y N y y y y N 
SATISFIED? 

TO NODE 42 51 52 51 52 51 52 51 52 61 61 61 
· FROM NODE 61 61 61 71 71 72 72 73 73 71 72 73 
CONDITION 1 N N N y N y y N y N y y 
SATISFIED? 

72 



Table XV 
Path Threads for 7 Node Network 

Lower Lower Upper· Upper Node* · Node* End Thread.·. 
Path Arc Bound Value Value· Bound Thread· Thread Lower Uooer 

1 1 4 4 5 7 11 31 
2 5 5 5 7 31 51 
3 6 6 6 10 51 71 15 16 

2 1 3 3 4 5 11 21 
2 1 1 1 4 21 31 
3 5 5 5 7 31 51 
4 6 6 6 10 51 71 15 16 

3 1 4 4 5 7 11 31 
2 5 5 5 7 31 51 
3 6 7 10 10 51 72 16 20 

4 1 3 3 4 5 11 21 
2 1 1 1 4 21 31 
3 5 5 5 7 31 51 
4 6 7 10 10 51 72 16 20 

5 1 3 3 5 5 11 21 
2 7 7 9 11 21 52 
3 6 6 6 10 52 72 16 20 

6 1 4 4 7 7 11 31 
2 5 6 7 7 31 52 
3 6 6 6 10 52 72 16 20 

7 1 3 3 5 5 11 21 
2 1 1 2 4 21 31 
3 5 6 7 7 31 52 
4 6 6 6 10 52 72 16 20 

8 1 4 4 7 7 11 31 
2 4 4 5 5 31 61 
3 8 8 8 11 61 72 16 20 

9 1 3 3 5 5 11 21 
2 1 1 2 4 21 31 
3 4 4 5 5 31 61 
4 8 8 8 11 61 72 16 20 

10 1 3 3 5 5 11 21 
2 7 7 8 11 21 52 
3 6 10 10 10 52 73 20 23 

11 1 4 4 7 7 11 31 
2 5 6 6 7 31 52 
3 6 10 10 10 52 73 20 23 

12 1 3 3 5 5 11 21 
2 1 1 2 4 21 31 
3 5 6 6 7 31 52 
4 6 10 10 10 52 73 20 23 

13 1 4 4 7 7 11 31 
2 4 5 5 5 31 61 
3 8 11 11 11 61 73 20 23 

14 1 3 3 5 5 11 21 
2 1 1 2 4 21 31 
3 4 5 5 5 31 61 
4 8 11 11 11 61 73 20 23 

73 



6-Node Network 

As mentioned in Chapter II, Okada and Soper [11] have modeled a network using 

trapezoidal fuzzy arc lengths. These arc values are more limiting than interval-valued 

arcs. The network in Figure 26 contains interval-values similar to the trapezoid numbers 

introduced by Okada and Soper. 

[52, 65] 

[10, 20] 

Figure 26: 6 Node Network 

For the measure of performance along the arcs, each trapezoidal number [a, b, c, d] is 

translated into the interval-value [a - c, b + d]. This network is NOT identical to the 

network introduced by Okada and Soper. However, this modification to the Okada and 

Soper network is the best opportunity to compare the results of the algorithm discussed in 

Chapter III with results from the literature. Table XVI and XVII show the Node Threads 

and Path Threads, respectively, for the network shown in Figure 26. The shortest path 

output for the network in Figure 26 will be further analyzed according to the output 

methodology described in Chapter V. 

74 



Table XVI 
Node Threads for 6-Node Network 

Node Thread 2 3 4 5 6 
Lower 1 10 45 55 53 103 
Uooer 1 30 52 62 60 110 
Lower 2 52 62 60 110 
Uooer 2 70 72 62 112 
Lower 3 72 62 112 
Uooer 3 90 80 125 
Lower 4 125 
Upper 4 132 
Lower 5 132 
Uooer 5 142 
Lower 6 142 
Uooer 6 159 
Lower 7 159 
Uoper 7 160 
Lower 8 160 
Upper 8 162 
Lower 9 162 
Uooer 8 169 
Lower 10 169 
Uooer 10 180 

The six networks shown as examples in this chapter were developed with different 

characteristics in order to give a brief overview of the results of the A very Shortest Path 

Algorithm. The first output of the algorithm was the Node Threads or {wi(k)} for all 

nodes k. The number of Node Threads was a major contributor to the complexity of the 

algorithm and the set of 6 shortest path problems yielded 1, 1, 2, 3, 10, and 20 End 

Threads, respectively. 

The most significant output of the algorithm was the set of all shortest paths, Path 

Threads. Each shortest path was described by the Node*Threads traversed along the 

path, the corresponding End Thread (the cumulative path length), and the measure of 

performance along each arc, which yielded the specific End Thread. The set of 6 shortest 

path problems yielded 1, 1, 3, 14, 80, and 538 shortest paths, respectively. The different 

number of End Threads and Path Threads was a result of the span of the intervals, the 

75 



Table XVII: 
Path Threads for 6-Node Network 

Path Node Threads Path Node Threads 
1 101 201 301 501 601 41 101 201 302 502 606 
2 101 201 301 501 602 42 101 201 503 606 
3 101 201 301 502 602 43 101 302 503 606 
4 101 302 502 602 44 101 201 302 503 606 
5 101 201 302 502 602 45 · 101 201 301 402 607 
6 101 201 301 501 603 46 .101 302 402 607 
7 101 201 301 502 603 .· 47 101 201 302 402 607 
8 101 302 502 603 48 101 302 403 607 
9 101 201 302 502 603 49 101 201 302 403 607 
10 101 201 503 603 50 101 201 301 501 607 
11 101 302 503 603 51 101 201 301 502 607 
12 101 201 302 503 603 52 101 302 502 607 
13 101 201 301 401 604 53 101 201 302 502 607 
14 101 201 301 501 604 54 101 201 503 607 
15 101 201 301 502 604 55 101 302 503 607 
16 101 302 502 604 56 101 201 302 503 607 
17 101 201 302 502 604 57 · 101 201 301 402 608 
18 101 201 503 604 58 101 302 402 608 
19 101 302 503 604 59 101 201 302 402 608 
20 101 201' 302 503 604 ·. 60 101 302 403 608 
21 101 201 301 401 605 61 101 201 302 403 608 
22 101 201 301 402 605 62 101 201 301 502 608 
23 101 302 402 605 63. 101 302 502 608 
24 101 201 302 402 605 64 101 201 302 502 608 
25 101 201 301 501 605 65 101 201 503 608 
26 101 201 301 502 605 66 101 302 503 608 
27 101 302 502 605 67 101 201 302 503 608 
28 101 201 302 502 605 68 101 201 301 402 609 
29 101 201 503 605 69 101 302 402 609 
30 101 302 503 605 70 101 201 302 402 609 
31 101 201 302 503 605 71 101 302 403 609 
32 101 201 301 401 606 72 101 201 302 403 609 
33 101 201 301 402 606 73 101 201 503 609 
34 101 302 402 606 74 101 302 503 609 
35 101 201 302 402 606 75 101 201 302 503 609 
36 101 302 403 606 76 101 302 403 610 
37 101 201 302 403 606 77 101 201 302 403 610 
38 101 201 301 501 606 78 101 201 503 610 
39 101 201 301 502 606 79 101 302 503 610 
40 101 302 502 606 80 101 201 302 503 610 

relationship among the measures of performance along the arcs, and the basic structure of 

the network. The information describing the Path Threads was necessary for the 

inclusion of all possible events. However, the overall quantity of information can be 

somewhat overwhelming. Chapter V describes the output methodology, which 

76 



consolidated the Path Threads and provided alternative measures of "best" for judging the 

quality of the consolidated set. 

77 



CHAPTERV 

OUTPUT METHODOLOGY 

Introduction 

The algorithm described in Chapter III generates the set of all possible shortest 

paths, Path Threads. The second objective of this research project was the development 

of a methodology, which would provide additional meaningful information about the 

extensive algorithm output. 

The path threads that are generated by the algorithm are described by the 

node*threads, which are traversed in the path. Additionally, the algorithm generates the 

measure of performance along the arcs, which corresponds to each specific shortest path. 

The output methodology initially consolidates the path threads by combining the path 

threads that traverse the same nodes into a single Combo Path. To appropriately describe 

the Combo Paths, the thread information is combined to generate the measures of 

performance along the arcs for the Combo Path. A series of sub-procedures, 

Combine _Path_ Threads, Obtain_ Combo_ Thread _Info, and Find Arc Values On - - - -

Combined_ Path, develop a consolidated solution set of the shortest paths. 

Since it is unlikely that there will be only one unique Combo Path, it is important to 

provide a means for comparing the solutions in the consolidated set. Additionally, 

different decision-makers may not agree on what defines the "best" shortest path solution. 

Thus, a sub-objective of the second objective was to develop a methodology that would 

allow the evaluation of alternative attributes of the consolidated set of solutions. Each 

attribute of a shortest path solution gives the decision-maker information about the 

78 



quality of eac~ path, given a specific objective. The attributes are generally independent 

of one another and may or may not result in comparable conclusions. A decision-maker 

may choose one single attribute or combine the qualities of several attributes to determine 

the "best" among the consolidated set of solutions. Based on the decision-maker's own 

specific definition of "best", he/she will be better prepared to select the "best" path from 

among the set of shortest paths. 

The consolidated solution set is analyzed and ranked according to three criteria, (1) 

non-dominance, (2) minimization ofregret, and (3) existence of dominant arcs in the sub-

procedures Find_NonDominated_Paths, Minimize_Regret, and Find_Path_Points, 

respectively. Non-dominance and minimization of regret are criteria used in existing 

literature under conditions of uncertainty, the dominant arc criteria is a criteria created for 

this research project [4, 18]. Additionally, the set of sub-paths is generated. The sub-

paths that are contained among the multiple shortest paths are generated and described in 

the senes of sub-proce~ures Find_SubPaths, Check_Identical_SubPaths, and 

Find Shared SubPath Info. - - -

Combine Path Threads 

The path information generated by the algorithm consists of both the nodes traversed 

and the measurement of performance along the arcs necessary for that path to be 

considered a shortest path. As shown in Chapter III, the algorithm would generate the 

following shortest paths for the network in Figure 12. 

Path 1 = 1 *1 to 3*1 to 4*1 

Path2= 1*1 to2*1 to4*2 

79 



Path 3 = 1 *1 to 3*1 to 4*2 

Note that Path 1 and Path 3 traverse the same nodes and are therefore identical paths. 

The sub-procedure Combine_Path_Threads, shown in Figure 27, searches all shortest 

paths to find all paths that traverse the same nodes and combines them into Combo Paths. 

The Combine_Path_Threads sub-procedure yields the information that is easily seen.in 

the trivial example from Figure 12. 

Combol = Pathl and Path 3 = Nodel to Node 3 to Node 4 

Combo2 = Path 2 = Node 1 to Node 2 to Node 4 

As the paths are combined, the threads of each member of the ComboPath are 

collected. The information contained in the threads can be extremely useful when 

comparing the set of shortest paths. Recall in Figure 14, the idea of cut-points was 

introduced for Node 4 of the network in Figure 13. The cut points of Node 4 are {4, 5, 

7}. The w(k) signify the shortest distance to Node 4. This represents, the shortest path 

length interval [4, 7] being cut into a series of sub-intervals, [4, 5] and [5, 7]. The output 

methodology now rejoins these sets where appropriate to find a single w(k) for each 

ComboPathNumber. The sub-procedure Obtain_Combo_Thread_Info (Appendix G) 

searches the paths contained in each combo number and collects all threads that exist at 

each traversed node. 

The low thread and high thread are found for each node traversed in the ComboPath. 

The thread information, consisting of the low thread and high thread, of each node 

traversed in each ComboPath is collected and combined. 

The symbol j is defined to be the lowest thread occurring at node b contained in 

Combo M, k is the highest thread occurring at node b contained in Combo M, and wM(k) 

80 



Begin 

C heck_ldentical_Paths 

ComboNumber = o 
PathN um ber=O 

PathNumber= 
PathNumber+1 

PathNumber= 
PathNumber+1 

N um berOfCom binedPaths = 
ComboNumber 

End 

Combine_Path_ Threads 

no ComboPathFound 
(PathN um ber)=O 

ComboNumber= ComboNumber+1 
Com binedPath(Com boNumber, 1 )=PathN umber 

PathlnPositionCom bo= 1 
j = PathNumber 

j = j +1 

es 

es 

Com boPathFound(PathN umber)= 1 
Com boPathFound(j)= 1 

P athlnPositionlnCom bo=PathlnPositionlnCom bo+ 1 
Com binedPath(Com boN um ber,PathlnPositionlnCom bo)=j 

PathlnCom bo(Com boN umber)= 
PathlnPositionlnCombo 

Figure 27: Flow Chart Combine_Path_Threads 

81 



is the combined w(k) at node bin Combo M. Given, ~k(b) = [Lbk, U bk] and wMj(b) = 

[Lbj , U bj] , this implies that ~(b) = [ L bk, U bj]. 

For Combo 1, the low and high thread for Node 1 and Node 3 is thread 1. Therefore, 

the w(k) for Node 1 and Node 3 do not need to be combined. The low thread for Node 4 

is 1 and the high thread for Node 4 is 2. These two threads are combined as [4, 5] U [5, 

7] = [4, 7]. For Combo 1, w(l) equals [O, O], w(3) equals [2, 4], and w(4) equals [4, 7]. 

Combo 1 = 1 *1 to 3*1 to 4*1 + 1 *1 to 3*1 to 4*2= 1 *1 to 3*1 to 4*(1+2) = [O, O] to [2, 

4] to [4, 7]. 

For Combo 2, the low and high thread for Node 1 and Node 2 is thread 1. The low 

and high thread of Node 4 is 2. Therefore, there is no combination for w(k) in Combo 2. 

For Combo 2, w(l) equals [O, O], w(2) equals [l, 2], and w(4) equals [5, 7]. Combo2 = 

1*1 to2*1 to4*2=[0,0]to[l,2]to[5, 7]. 

The information regarding combined threads in a shortest path is essential in the 

methodology to compare the shortest paths. This information is most useful when 

comparing the combined paths on a basis of non-dominance. Recall that for each path 

the algorithm generates, the measure of performance along an arc is calculated with 

respect to the node*threads that the path traversed. The Combo 1 shortest path from 

Node 1 to Node 3 to Node 4 has a shortest path interval length of [4, 7] units. The 

Combo 2 shortest path from Node 1 to Node 2 to Node 4 has a shortest path interval 

length of [5, 7] units. 

Specifically, the measure of performance corresponding to arc (j, k) equals w(k) -

wG). However, similar to the non-combined paths, the interval value of the measurement 

of performance along the path can be counter-intuitive. The sub-procedure 

82 



Find_ Arc_ Values_ On_ Combined_ Path (Figure 25) generates the measure of 

performance along the arcs with respect to the combined path thread information. The 

arc(l,2) = [I, 2] and arc(2, 4) = [4, 5] altered measures of performance are based on the 

interval length of the ComboPath. Combol arc(l, 3) = [2, 4] and arc(3, 4) = [2, 3]. The 

combo path length is weighted along each arc contained on the combo path based on the 

measure of performance possible along the arcs and path. 

Given: 

ComboM 

EndNode=n 

c(a, b) = [Lab, Uab] 

wM(b) = [ L bk, U bj]; low thread= k, high thread= j 

Let: 

c*(a, b) = [L\b, U\b]; the measure of performance along arc (a, b) yielding the 

shortest l?ath is: 

The Arc Low value is determined by subtracting the terminating low node value from the 

originating low node value. The portion of the cumulative path span portioned to arc j is 

based on the original bounds on arc j. The measure of performance along the arc 

corresponding to each Combo Path is found in the sub-procedure Find_Arc_ Values_On_ 

Combined _Path as seen in Appendix H. 

83 



Non-Dominance and Minimize Regret Attributes 

The combined path information specific to the end threads yields all possible shortest 

path lengths possible for each Combo Path. The cumulative path lengths for a specific 

path are possible, but not guaranteed. Due to the uncertainty of the interval-network, a 

truly optimal shortest path may not exist. An optimal path would be a path that would 

guarantee, regardless of the measures of performance along all the arcs, that the optimal 

path would always yield the shortest path. The network shown in Figure 11 shows a 

network with an optimal path, whose cumulative length is [2, 4]. Generally, a truly 

optimal path will not exist in an interval-network. Although not an optimal path, a non-

dominated path is a desirable characteristic of a shortest path of.a network. 

A non-dominated shortest path is a path in which each its cumulative path length 

range is contained in the set of all possible shortest path lengths. 

Given EndNode = n, cardinality ofw(n) = c, w1(n) = [Lnt, U nt1, Wc(n) = [Lnc, U nc], 

Combo M Lower Bound= L Lab ,and Combo M Upper Bound= L U ab . Combo 
(a,b)eM (a,b)eM 

M is a non-dominated path if L Lab = L nt = Short Lower Bound, and 
(a,b)eP 

A 

I uab = 
(a,b)eP 

U nc = Short Upper Bound. The algorithm searches through the ComboPaths and 

EndThreads. If the Combo Path satisfies both of these conditions it is a non-dominated 

path. Figure 28 shows the flow chart for sub-procedure Find_NonDominated_Paths. 

Table XVIII shows the Combo Path non-dominance information including short and path 

upper and lower bounds for the network shown in Figure 12. 

84 



Begin Find_NonDominated_Paths 

es 

ComboNumber=O 

ComboNumber= 
ComboNumber+1 

PositionlnCombo=O 

PositionlnCombo= 
Position I nCombo+ 1 

no 

es 

PathNumber= 
CombinedPath(ComboNumber,PositionlnCombo) 

ThreadlnComboNumber(ComboNumber,EndPathThread 
(PathNumber,LastPathPositionEnd(PathNumber)))=1 

ComboEndThreads(ComboNumber,PositionlnCombo)= 
EndPathThread(PathNumber,LastPathPositionEnd 

(Path Number)) 

ComboNumber=O 

ComboNumber= ComboNumber+1 
ComboNumberNonDominated 

(ComboNumber)=1 

es 

Thread= Thread+1 

ComboNumberNonDominated 
(ComboNumber)=O 

Figure 28: Flow Chart Find_NonDominated_Paths 

85 



It is possi~le that a network may contain no or more than one non-dominated path. 

The primary significance of a non-dominated path is that it is a path with the shortest 

possible cumulative length and the path that cannot be worse than the longest shortest 

path. Recall, that an interval-network does not provide any information about the 

probability of any specific quantity for the measure of performance along an arc. 

Therefore, it is unknown how likely a path is to yield any specific cumulative length. A 

decision-maker that chooses a non-dominated path as the "best" path is willing to take 

any risk for the possibility (regardless of how small) of achieving the goal of shortest 

possible path length. 

Table XVIII 
N D on- Ifi fi F' ommance n ormatlon or 1gure 12N t k ewor 

Short Lower Short Upper 
Bound Bound 

4 7 
Combo Lower Combo Upper Non-Dominated Path 

Bound Bound (Y/N) 
Combo 1 4 7 y 
Combo2 5 7 N 

The non-dominance information shows all possible End Thread lengths possible for 

any ComboPath, including the smallest possible shortest path length for each Combo 

Path. The sub-procedure Minimize_Regret, shown in Figure 29, further reduces this 

information to give the user an overview of the shortest possible shortest path length and 

the longest possible shortest path length for each Combo Path. 

A decision-maker that bases his/her choice for "best" on non-dominance disregards 

risk. However, some decision-makers may want to base their choice of "best" on a desire 

to avoid risk, or minimize regret. This type of decision-maker is concerned primarily 

86 



with protecting against the worst-case for each Combo Path, or more specifically, with 

knowing the difference between the worst-case and the best-case scenarios. 

In the sub-procedure Combine_Path_Threads, the Combo Paths are sequentially 

numbered according to their shortest possible cumulative path length. That is, in the best 

case for each Combo Path, Combo P would have a shorter possible cumulative path 

length than Combo P+ 1. The possible shortest path lengths corresponding to each 

Combo Path is provided in the non-dominance information. However, this information 

only corresponds to the possible shortest path. Some Combo Paths contain possible 

cumulative lengths that are greater than the longest possible shortest path. The longest 

possible shortest path is the upper bound for the last End Thread. The Combo Path 

information for the cumulative length that may not be a shortest path, is important 

information to a decision-maker that is concerned with the minimization of regret. 

The minimize regret information addresses the issue of worst case for each Combo 

Path. Each Combo Path contains a span of possible path lengths, if that path were 

actually a shortest path. Whether the path is the true shortest path is unknown. 

Additionally, each Combo Path has a span of path possible lengths if that path were 

implemented. 

There are two types of Regret that a decision-maker may want to consider. If a 

Combo Path were chosen and it wasn't actually the shortest path, that would be 

considered "regret". Moreover, if a Combo Path were implemented, the user would be 

regretful if the measure of performance along each arc in the Combo Path were at its 

upper bound. 

87 



Begin Minimize_Regret 

ComboNumber=O 

Com boN umber= Com boN umber+ 1 
Minim um PathDistance(Com boN um ber)=O 
MaximumPathDistance(ComboNumber)=O 

PathNumber=CombinedPath(ComboNum ber, 1) 

PositionlnCombo=O 

PositionlnCombo= 
PositionlnCombo+1 

yes 

yes 

no 

CumulativePathDistance(ComboNum ber) = 
MaximumPathDistance(ComboNumber)
MinimumPathDistance(ComboNumber) 

no 

Smalles!Change= 
Cum ulativePath Distance (Com boN umber) 

MinimizeRegretCombo=ComboNumber 

End 

ToNode=EndPathNode(PathNumber,Position) 
From Node=EndPathNode(PathNum ber,Position-1) 

MinimumPathDistance(ComboNumber)+ 
Arclower(FromNode,ToNode) 

MaximumPathDistance(ComboNumber)+ 
ArcUpper(FromNode,ToNode) 

Figure 29: Flow Chart Minimize_Regret 

88 



Regret A ~epends only on Combo Path P. Regret results when the decision has been 

made to implement Combo Path P and the length of Combo Path P is the longest length 

possible rather than the shortest length possible. Regret A for a Combo Path P is defined 

as the longest possible length of Combo Path P minus the shortest possible length for a 

Combo Path P. 

Regret B depends on both Combo Path P and a non-dominated path with the shortest 

possible length. The shortest possible path length is the Lower Bound of End Node 

Thread 1. The path(s) that contains the shortest possible length is a non-dominated path. 

Regret B results when Combo Path P is implemented, but the decision maker is 

concerned with what may have happened if a non-dominated path had been chosen and 

the non-dominated path had been at its shortest possible value. Regret B for Combo Path 

P is the difference between the longest possible path length of Combo Path P and the 

overall shortest possible path length. 

Path Arc ·Points Attribute and Shared Sub-Paths 

The non-dominance and minimize regret information are based on resulting 

cumulative path lengths for the Combo Paths. However, the algorithm has generated all 

possible shortest paths and the solution set itself contains information about the network. 

Specifically, the shortest paths consist of nodes and arcs. Since, the primary objective is 

the minimization of the measure of performance along the arcs, the arc information in the 

solution set is also important. Many of the arcs in the algorithm consistently appear as a 

part of a shortest path. The information that consistently appears in the set of shortest 

paths could be as useful as the shortest paths themselves. The arcs that are contained in 

89 



yes 

Begin 

PathNumber=O 

PathNumber= 
PathNumber+1 

Position=O 

Position= Position+1 

es 

NumberOfPathsContainingArc(i)= 
NumberOfPathsContainingArc(i)+ 1 

Find_Path_Points 

PathNumber=1 

End 

i=O 
Arcs lnShortPath=O 

i= i+1 

yes 

ArcslnShortPath= ArcslnShortPath+ 
NumberOfPathsContainingArcs(i) 

RelativeWorth(i) = 
NumberOfPathsContainingArc(i)/ 

ArcslnShortPath 

yes 

Path Number= 
PathNumber+1 

Position=O 

Position=Position+1 

PathPoints(PathNumber)= 
PathPoints(PathNumber)+ 

RelativeWorthArc(i) 

Figure 30: Flow Chart Find_Path_Points 

90 



more than one Combo Path are considered dominant arcs. An arc's dominance in the 

solution set is based on the number of occurrences in the set of Combo Paths. 

The sub-procedure Find_Path_Points, shown in Figure 30, calculates Path Arc Points 

for each Combo Path. Each Combo Path is given Path Arc Points relative to the ranking 

of each arc that appears in the Combo Path. Each shortest path is given a ranking of Path 

Arc Points. The relative worth of each arc is based on the number of times that the arc 

appears in the shortest path set. The Path Arc Points are a sum of relative worth of each 

arc in the Combo Path divided by the number of arcs in the path. This calculation gives 

the user a per arc worth of the path. 

A Combo Path with high Path Arc Points contains arcs that are "often" contained in 

the true shortest path. Recall that we are unaware of the probability associated with each 

Combo Path. The Path Arc Points is simply an enumeration technique. The Path Arc 

Points are important information when the decision-maker is interested in the shortest 

path in a network that will be traversed many times and the long-run conditions are 

important. 

Below is the procedure for finding the Path Arc Points. 

Given: 

G = (N, A, c ), i.e., G is acyclic and directed. 

N = {I, 2, ... , n} 

A={(a,b)l(a,b)eA~a<b}=ai, {ai li=l,2, ... ,m} 

CP = Combo Paths= {Pi I Pi(l, ... , a, b, ... , n)} 

Relative worth ai = L ai e Pi 
P;eCP 

91 



Path Arc Points = L Relative Worth ai /Number of arcs in the Combo Path 
UjEP; 

As some arcs are dominant throughout the set of shortest paths, there are also sub-

paths which appear throughout the set of sh~rtest paths. All sub-paths of each shortest 

path are identified by the length of the sub-path. First, the sub-paths of length three are 

found. Finally, the sub paths of the length of the longest shortest path are found. To 

more easily implement the Find_Path_Points sub-procedure, the arcs in the network are 

numbered in the sub-procedure Get_ Arcs. The Get_ Arcs sub-procedure is shown in the 

Appendix K. The sub-procedure Find_ SubPaths, shown in Figure 31, generates all sub-

paths. Once the sub-paths have been generated, matching sub-paths are noted in the sub-

procedure, Check_Identical_SubPaths (Appendix I). The Combo Paths that contain the 

sub paths are written to a Microsoft Excel [10] spreadsheet by the sub-procedure 

Find_Shared_SubPath_Info (Appendix J). 

The shared sub-path information is important because of the possible dependence 

among Combo Paths. If two Combo Paths have a shared sub-path, then the cumulative 

measure of one path is directly related to the cumulative measure of performance of the 

other path. 

The .shared sub-path information is easily acquired after the algorithm has been 

implemented and is intended to give the decision-maker additional information about the 

network. 

Output Methodology for IO-Node Network III 

The algorithm generated three shortest paths for the 10-Node shown in Figure 23. 

The sub-procedures Combine_Path_Threads, Obtain_Combo_Thread_Information, and 

92 



Begin 

Get_Arcs 

SubPathlength=2 

SubPathlength= 
SubPathlength+1 

Number=O 

ComboNumber=O 

yes 

om o um er= 
ComboNumber+1 

PathNumber=CombinedPath 
ComboNumber 1 

NumberOfSubPaths 
(SubPathlength) = 

Number-1 

Find_SubPaths 

End 

yes 

StartingSet=O 

StartingSet=StartingSet+1 

SubPathComboNumber 
(SubPathlength, Number) = 

ComboNumber 
Number=Number+1 

Position= 0 

Position=Position+ 1 

SubPath(SubPathlength, Number, 
Position)= 

EndPathNode(PathNumber, 
StartingSet + Position) 

Figure 31: Flow Chart Find_ SubPaths 

93 



Find_ Arc_ Values_ On_ Combined_ Path combined these three shortest paths into two 

ComboPaths. These paths are shown in Table XIX. For the network in Figure 23, there 

are only two possible shortest paths. The measures of performance along each arc are 

displayed in Table XIX in the Arc Low and Arc High columns. 

Table XIX 
Combined Paths for 10-Node Network III 

Lower Upper .. Low· High Arc Arc ·· ... 
··Arc To . From Bound Bound }Thread . Thread Low . Hiah 
Arc1 1 3 21 25 1 1 21 25 

· Arc2 3 6 42 46 1 1 42 46 
Arc3 6 10 16 20 1 2 16 20 
Total 79 91 

Arc1 1 4 42 46 1 1 42 42.75 
Arc2 4 7 15 19 1 1 15 15.75 
Arc3 7 8 13 17 1 1 13 13.75 
Arc4 8 10 18 22 2 2 18 18.75 
Total 88 91 

Recall that the algorithm generates the shortest paths for every possible measure of 

performance for each of the arcs in the interval-network. Figures 21 and 22 display the 

traditional network where the measures of performance are the lower bounds and upper 

bounds of Figure 23 respectively. The networks in Figures 21 and 22 contain the same 

shortest path (Node 1 ~ Node 3 ~ Node 6 ~ Node 10). Specifically, for the network 

in Figure 23, Combo 2 (Node 1 ~ Node 4 ~. Node 7 ~ Node 8 ~ Node 10) would 

not have been part of the solution set had a traditional algorithm been implemented with 

constant measures of performance at the lower and upper bounds. 

The non-dominance information shown in Table XX provides an overview of the 

possible shortest path distances. Combo 1 is the non-dominated shortest path for the 

network in Figure 23. However, Combo 1 is not guaranteed to be the shortest path. For 

instance, Combo 2 could have a cumulative length of 88.5 and Combo 1 could have a 

94 



cumulative length of 91. Additionally, as Table XXI shows, if Combo 1 were chosen, it 

could only deviate 12 units from the best case shortest path of 79 units. 

Table XX 
Non-Dominance Information for 10-Node Network III 

Short Lower Short Upper 
Bound · Sound 

79 91 
· Combo Lower . Combo Upper Non..;Dominated Path 

Bound Bound (YIN) 
Combo 1 79 91 y 
Combo2 88 104 N 

Table:XXI 
R tu lONd N kill egre or - o e etwor 

Path.Lower Path Upper Regret A Regret B 
Combo Bound Bound [UB-791 

Combo 1 79 91 12 12 
Combo2 88 104 16 25 

The shortest path solution set consists of 7 different arcs. No arc was a member of 

the shortest path solution set more than once. Therefore, each arc had the same relative 

worth, 1 and each path had the same number of Path Arc Points, namely, 1. Additionally, 

there were no sub-paths that existed in more than one of the shortest paths in the solution 

set. Combo 1 would be considered the "best" path regardless of which attribute, non-

dominance, minimize regret A, minimize regret B or Path Arc Points, was used by a 

decision maker. 

Output Methodology 10-Node Network IV 

The algorithm generated 538 shortest paths for the 10-Node network shown in Figure 

24. The algorithm methodology combined these 538 shortest paths into 14 Combo Paths. 

95 



The Combo Path information shown in Table XXII is a considerable condensation from 

the amount of information that the algorithm initially generated. 

Table XXII 
Combined Paths for IO-Node Network IV 

0 'O 'O ~ 
.c 

.8 'O 'O ~ 
.c 

E 0) E .2> .c 
.~ ~~ am :f ~ ~ m .C CV 

E .0 e ....I E {:. e .!i!> ~ ....I J: 
<( I- ·- ... 

~ 
<( ....I .2 e 0 LL _. I= :c I= e 0 LL :c I= ~ (.) <( (.) I- <( <( 

1 1 1 3 1 1 21 30 8 1 1 2 1 1 28 31.4 
2 3 6 1 3 42 60 2 2 5 1 1 21 23.6 
3 6 10 1 20 16 20 3 5 7 2 5 14 15.7 

4 7 10 9 20 35 39.3 
2 1 1 4 1 2 42 54.4 

2 4 7 1 6 15 18.4 9 1 1 3 1 1 21 23.4 
3 7 8 1 9 13 17.8 2 3 4 2 2 28 31.2 
4 8 10 2 20 18 19.4 3 4 7 3 5 15 16.3 

4 7 10 10 20 35 39 
3 1 1 4 1 2 42 50.5 

2 4 7 1 5 15 17.4 10 1 1 3 1 1 21 23.3 
3 7 10 3 20 35 42.1 2 3 4 2 2 28 31 

3 4 6 3 3 35 38.8 
4 1 1 4 1 2 42 50.3 4 6 10 11 20 16 17 

2 4 6 2 3 35 41.9 
3 6 10 4 20 16 17.8 11 1 1 3 1 1 21 23.1 

2 3 6 1 1 42 46.2 
5 1 1 2 1 1 28 33.3 3 6 7 5 6 7 7.69 

2 2 5 1 2 21 25 4 7 8 5 9 13 14.6 
3 5 7 2 6 14 16.7 5 8 10 12 20 18 18.5 
4 7 8 2 9 · 13 16.1 
5 8 10 5 20 18 18.9 12 1 1 3 1 1 21 22 

2 3 6 1 1 42 44 
6 1 1 2 1 1 28 33.1 3 6 7 5 5 7 7.33 

2 2 5 1 2 21 24.9 4 7 10 16 20 35 36.7 
3 5 8 3 9 28 33.1 
4 8 10 6 20 18 18.9 13 1 1 4 1 1 42 44.1 

2 4 5 2 2 19 19.1 
7 1 1 3 1 1 21 24.9 3 5 7 6 6 14 14.7 

2 3 4 2 2 28 33.1 4 7 8 7 9 13 13.8 
3 4 7 3 6 15 17.1 5 8 10 17 20 18 18.2 
4 7 8 3 9 13 16 
5 8 10 6 20 18 18.9 14 1 1 4 1 1 42 43.6 

2 4 5 2 2 19 19.1 
3 5 8 8 9 28 29.1 
4 8 10 18 20 18 18.2 

The non-dominance information shown in Table XXIII provides an overview of the 

possible shortest path distances. Combo 1 is the non-dominated shortest path for the 

96 



network in Figure 24. However, Combo 1 is not guaranteed to be the shortest path. 

Additionally, as Table XXIV shows, Combo 1 has the minimum regret of types A and B. 

Combo 1 could only deviate 31 units from the best-case shortest path of 79 units. 

Table XXIII: 
Non-Dominance Information for 10-Node Network II 

Short lower Short Upper 
Bound Bound 

79 110 
Combo Lower Combo Upper Non-Dominated Path 

Bound Bound (Y/N) 
Combo 1 79 110 y 
Combo2 88 120 N 
Combo3 92 130 N 
Combo4 93 130 N 
Combo 5 94 130 N 
Combo6 95 130 N 
Combo 7 95 130 N 
Combo8 98 140 N 
Combo 9 99 140 N 
Combo10 101 140 N 
Combo 11 101 140 N 
Combo 12 105 150 N 
Combo 13 106 140 N 
Combo 14 107 140 N 

Therefore, Combo 1 would be the "best" solution considering the non-dominance and 

minimize regret attributes. However, as displayed in Table XXV, Combo 2 is the 

shortest path with the largest Path Arc Points. A path with high Path Arc Points defines a 

Combo Path whose arcs consistently lie on a shortest path. 

The sub-paths of the network in Figure 24 are shown in Table XXVI. The sub path, 

Node 7 ~ Node 8 ~ Node 10, is contained in 5 of the 14 Combo Paths. This 

information adds to the benefit of Combo 2 as a good solution for the shortest path. The 

output methodology is intended to give the decision-maker additional information in 

order to make an informed decision. The decision-maker would have to weigh the 

benefits of each Combo Path according to his/her specific needs. 

97 



Combo 
Combo 1 
Combo2 
Combo3 

· Combo4 
Combo5 
Combo6 
Combo? 
Combos 
Combo 9 
Combo10 
Combo 11 
Combo 12 
Combo 13 
Combo 14 

Combo Number 
1 
*2 
3 
4 
5 
6 
7 

elll'et or - o e etwor R 
TableXXIV 

fi lONdN kIV 
Path Lower .. Path Upper·· 

Bound Bound RearetA 
79 110 *31 
88 120 32 
92 130 38 
93 130 37 
94 130 36 
95 130 35 
95 130 35 
98 140 42 
99 140 41 
101 140 40 
101 140 39 
105 150 45 
106 140 34 
107 140 33 

TableXXV 
Path Points for 10-Node Network IV 

Path Arc Points Combo Number 
4.00 8 
*5.25 9 
4.33 10 
3.33 11 
4.20 12 
3.75 13 
5.00 14 

TableXXVI 
Sub Paths for 10-Node Network IV 

Regret B 
rus-191 

*31 
41 
51 
51 
51 
51 
51 
61 
61 
61 
61 
71 
61 
61 

Path Arc Points 
3.25 
4.25 
3.50 
4.60 
3.75 
4.40 
4.00 

Sub Path Combo Number Which Contains Sub Path 
4 7 8 2 . 7 

7 8 10 2 5 7 11 13 
4 7 10 3 9 
4 6 10 4 10 
2 5 7 5 8 
5 7 8 5 13 
5 8 10 6 14 
3 4 7 7 9 
3 6 7 11 12 
4 7 8 10 2 7 
5 7 8 10 5 13 

98 



Output Methodology for 7 Node Network 

The algorithm generated 14 shortest paths for the 7-Node network shown in Figure 

24. The output methodology combined these 14 shortest paths into 5 Combo Paths. 

These paths are shown in Table XXVII. The non-dominance information shown in Table 

XXVIII provides an overview of the possible shortest path distances. Note their are no 

non-dominated shortest paths for the network in Figure 25. Since there are no non-

dominated paths, a decision-maker that uses alternate attributes of the "best" shortest 

path, as Regret A, Regret B or Path Arc Points. 

Table XXVII: 
Combined Paths for 7-Node Network 

Combo Arc To From .Low Thread High Thread Arc Low Arc High 
1 1 1 3 1 1 4 6.67 

2 3 5 1 2 5 6.78 
3 5 7 1 3 6 9.56 

2 1 1 2 1 1 3 4.45 
2 2 3 1 1 1 3.18 
3 3 5 1 2 5 6.45 
4 5 7 1 3 6 8.91 

3 1 1 2 1 1 3 4.4 
2 2 5 2 2 7 9.8 
3 5 7 2 3 6 8.8 

4 1 1 3 1 1 4 7 
2 3 6 1 1 4 5 
3 6 7 2 3 8 11 

5 1 1 2 1 1 3 4.56 

2 2 3 1 1 1 3.33 
3 3 6 1 1 4 4.78 

4 6 7 2 3 8 10.3 

Additionally, as Table XXIX shows, Combo 4 is the shortest path with a minimum 

Regret A of 7 units and Regret B of 8 units. As seen in Table XXX, Combo 2 is the 

shortest path with the largest Path Arc Points. There are two sub-paths of the network in 

99 



Figure 25. SU;b-Path 1, Node 3 -4 Node 5 -+ Node 7, is contained in Combo 1 and 

Combo 2. Sub-Path 2, Node 3 -+ Node 6 -+ Node 7, is contained in Combo 4 and 

Combo 5. 

Table XXVIII: 
Non-Dominance Information for 7-Node Network 

Short Lower Short Upper 
Bound Bound 

15 23 
Combo Lower · Combo Upper Non-Dominated. Path 

Bound •..... ···· Bound· (Y/N) 
Combo1 15 24 N 
Combo2 15 26 N 
Combo3 16 26 N 
Combo4 16 23 N 
Combo5 16 25 N 

For a decision.maker who is attempting to "break the tie" between Combo 1 and 

Combo 2, Combo 1 contains a stronger Regret A and Regret B attribute. However, 

Combo 2 has a stronger Path Arc Points attribute. A decision-maker should have a clear 

understanding of his/her objectives in order to choose the "best" path from among the 

competing Combo Paths. 

TableXXIX 
esz re or - o e e or R tfi 7Nd Ntw k 

Combo Path Lower Bound Path Uooer Bound RearetA Rearet B fUB-151 
Combo1 15 24 9 9 
Combo2 15 . 26 11 11 
Combo3 16 26 10 11 
Combo4 16 23 *7 *8 
Combo5 16 25 9 10 

TableXXX 
Path Points for 7-Node Network 

Combo Number Path Arc Points 
1 2.33 
2 2.50 
3 2.33 
4 2.00 
5 2.25 

100 



Output Methodology for 6-Node Network 

The network in Figure 26 is identical in structure to the network that Okada and 

Soper used as an example in their shortest path analysis [11]. The network introduced by 

Okada and Soper contained trapezoidal fuzzy numbers as the measure of performance 

along the arcs. The A very Shortest Path algorithm generated 80 shortest paths for the 6-

Node Network shown in Figure 26. The output methodology combined these 80 shortest 

paths into 5 Combo Paths. This set of all possible shortest paths is shown in Table 

XXXI. There are no non-dominated paths for the network in Figure 26. The non-

dominance information shown in Table XXXII provides an overview of the possible 

shortest path distances. 

TableXXXI 
Combined Paths for 6-Node Network 

Combo Arc. To From Low Thread High Arc low Arc High 
Thread 

1 1 1 2 1 1 10 28.78 
2 2 3 1 2 35 44.39 
3 3 5 1 3 8 9.88 
4 5 6 1 10 50 96.95 

2 1 1 3 2 2 52 70 
2 3 5 2 3 8 10 
3 5 6 2 10 50 100 

3 1 1 2 1 1 10 26.39 
2 2 5 3 3 52 62.65 
3 5 6 3 10 50 90.96 

4 1 1 2 1 1 10 26.42 
2 2 3 1 2 35 43.21 
3 3 4 1 3 10 18.21 
4 4 6 4 10 70 92.16 

5 1 1 3 2 2 52 67.71 
2 3 4 2 3 10 18.73 
3 4 6 5 10 70 93.56 

101 



Table:XXX:11 
Non-Dominance Information for 6-Node Network 

Short Lower Short Upper 
Bound · · Bound 

103 180 
Combo Lower Combo Upper Non-Dominated Path 

Bound Bound (YIN) 
Combo1 103 185 N 
Combo2 110 180 N 
Combo3 112 195 N 
Combo4 125 192 N 
Combo5 132 187 N 

Additionally, as Table XXXIII shows, Combo 5 is the shortest path with the 

minimum Regret A of 55 units and Combo 2 has minimum regret B of 73 units. As seen 

in Table XXXIV, Combo 1 is the shortest path with the largest Path Arc Points. There 

are two sub-paths of the network in Figure 26. Sub-Path 1, Node 3 -+ Node 5 -+ Node 

6, is contained in Combo 1 and Combo 2. Sub-Path 2, Node 3 -+ Node 4 -+ Node 6, is 

contained in Combo 4 and Combo 5. 

Combo 
Combo1 
Combo2 
Combo3 
Combo4 
Combo5 

e~ret or - o e etwor R 
Table XXXIII 
ti 6 N d N k 

Path Lower Bound Path Uocer Bound Regret A 
103· 185 82 
110 180 70 
112 195 83 
125 192 67 
132 187 *55 

Table XXXIV: 
Path Points for 6-Node Network 
Combo Number Path Arc Points 

1 2.50 
2 2.33 
3 2.33 
4 2.25 
5 2.00 

102 

Rearet B [UB-1031 
82 
*73 
92 
89 
84 



As previot1;sly mentioned, Okada and Soper determined the shortest path of a network 

with trapezoidal fuzzy numbers. For proper comparison, Table XXXV shows the 

trapezoidal node values identified by Okada and Soper. Each trapezoidal number (Left 

Top, Right Top, Left Bottom, Right Bottom) was converted to an interval [Lower Bound 

= Left Top-Left Bottom, Upper Bound= Right Top+ Right Bottom]. The trapezoidal 

numbers are listed under the column heading Node'T', e.g., "2T". The interval numbers 

are under the column heading Node'I', e.g., "21". 

Table:XXXV: 
Okada and Soper Node Labels fl 1, o.1361 

.Node 2T .. 21. . .. 3T · :31 4T 41 5T 51 6T 61 
Left Top 20 10 62 52 71 55 75 62 137 103 

Right Top· 20 30 65 70 77 95 80 95 149 185 
Left Bottom 10 10 16 13 34 

Right Bottom 10 5 18 15 36 
Left Top 58 45 75 62 67 53 146 125 

Right Top 60 75 82 90 69 85 162 193 
Left Bottom 13 13 14 21 

Right Bottom 15 8 16 30 
Left Top 71 60 141 110 

Riliht Top 74 80 154 180 
Left Bottom 11 31 

Right Bottom 6 26 
Left Top 150 132 

Right Top 167 187 
Left Bottom 18 

Right Bottom 20 

Table XXXVI shows the translated values generated by Okada and Soper under the 

column heading Node'OS', e.g., "208". The node threads generated by the algorithm are 

under the column heading Node'A', e.g., "2A". The comparable values in Table 

XXXVII are nearly identical. The lower bound values are identical with one exception. 

However, the upper bounds of the two sets of node values do not match. The table values 

corresponding to Okada and Soper's trapezoidal results are nearly identical to the ones 

generated by the algorithm. The Avery Shortest Path algorithm has given all Node 

103 



Threads as a set of nearly disjoint sets. Okada and Soper have combined their node 

values in a similar manner to the algorithm's results for the End Node. 

The node values shown by Okada and Soper are nearly identical to the Combo Path 

values seen in Table XXXIII. The results of Okada and Soper did not include Combo 3 

with path length (112, 195]. Since, Okada and Soper did not show a clear methodology 

for the creation of their solution set, the reason for this discrepancy is unknown. 

Table XXXVI: 
1gon o e ea s a aan Al "thm N d Thr d I Ok d d S oper o e a es Nd Lb 1 

Node 2A 20S 3A '30S 4A 40S 5A sos 6A 60S 
Lower 1 10 10 45 45 55 55 53 53 103 103 
Uooer 1 30 30 52 75 62 95 60 85 110 185 
Lower 2 52 52 62 62 60 60 110 110 
Uooer 2 70 70 72 90 62 80 112 180 
Lower 3 72 62 62 112 
Uoner 3 90 80 95 125 
Lower 4 125 125 
Uooer 4 132 193 
Lower 5 132 132 
Upper 5 142 187 
Lower 6 142 
Uoner 6 159 
Lower 7 159 
Unner 7 160 
Lower 8 160 
Uooer 8 162 
Lower 9 162 
Upper 8 169 
Lower 10 169 
Upper 10 180 

However, Combo 3, Node 1 -+ Node 2 -+ Node 5 -+ Node 6, is a possible shortest 

path for the interval-network in Figure 26. Table XXXII, containing Non-Dominance 

Information, shows the circumstances under which Combo 3 will be the shortest path. 

Additionally, Combo 3 has no shared sub-paths with any other Combo. Therefore, the 

length of Combo 3 is independent of the length of the other Combo Paths. That is, 

104 



Combo 3 could be at its smallest possible length, 112 units, while the other Combo Paths 

are at their largest possible length. 

The output methodology described in this chapter was developed to create a 

meaningful shortest path solution set without thread information. As multiple shortest 

paths were often contained in the solution set, various attributes of the shortest paths, 

Non-Dominance, Regret Type A, Regret Type B, and Path Arc Points were defined to 

describe alternative qualities of each shortest path. Different attributes were necessary 

since each decision-maker has his/her own objectives in choosing among the various 

shortest paths. The selected attributes were independent of one another and did not 

necessarily result in comparable conclusions. A decision-maker may choose one attribute 

or he/she may combine two or more of the attributes to define the "best" among the 

shortest paths. Additionally, sub-path information was introduced to give the decision

maker essential information about the network and therefore the system being modeled. 

105 



CHAPTER VI 

SUMMARY AND RECOMMENDATIONS 

Networks have been used to model science, engineering, and business applications of 

transportation, communication, mechanical, hydraulic, electrical and economic systems 

[15]. Traditional network applications have been based on constant-valued arc measures. 

However, this assumption is often unrealistic and this problem has not been solved with 

arc values that are contained in some known interval. 

The primary objective of this research was the development of an algorithm for the 

interval-valued problem that would ensure that all possible shortest paths have been 

generated. The techniques of Qualitative Discrete Event Simulation (QDES) were used 

to complete this task and a thread generation technique was designed in the algorithm to 

guarantee this result. The number of iterations required to complete the algorithm was 

exponential with respect to the number of nodes in the network and the overall speed and 

efficiency of the algorithm was not a priority. 

The traditional problem is apt to have a unique ·shortest path, but it is likely that there 

will be multiple solutions for the interval-valued problem. Therefore, a second objective 

of this research was the development of a methodology that would provide for an 

intelligent consolidation of the initial set of solutions. This objective was also 

accomplished. 

However, since it is unlikely that the reduction in the set of solutions would result in a 

unique path, it was useful to provide a comparison of the resulting solutions in the 

consolidated solution set. Additionally, different decision-makers may not agree of what 

106 



defines the "best" shortest path solution. Thus, a sub-objective of the second objective 

was to develop a methodology that would allow the evaluation of alternative attributes of 

the consolidated set of solutions. Each attribute of a shortest path solution provided the 

decision-maker with information about the quality of each path, given a specific 

objective. A decision-maker could choose one single attribute or combine the qualities.of 

several attributes to determine the "best" among the consolidated set of solutions. Based 

on the decision-maker's own specific definition of "best", he/she would be able to select 

the "best" path from among the set of shortest paths. Evaluations of three attributes for 

each shortest path were developed in the output methodology: Non-dominance, Minimize 

Regret, and Path Arc Points. The attributes were independent of one another and may or 

may not result in the same conclusion. Each of these shortest path attributes gave the 

decision-maker information with regard to the quality of each path, given a specific 

objective. 

The algorithm, A very Shortest Path Algorithm, was tested by implementing a variety 

of networks. Since the shortest path solution of networks with constant-valued measures 

of performance was readily available, this type of network was initially solved by the 

algorithm to verify the solution. Additionally, networks with specific characteristics 

were solved by the algorithm, e.g., a small solution set of shortest paths. Other networks 

that contained specific output characteristics, e.g., multiple non-dominated paths and 

shortest paths with the same "best" solution using all three solution attributes. were 

evaluated by the algorithm. However, since there is no existing shortest path algorithm 

for an interval-network, complete verification of the results using existing techniques was 

not possible. Okada and Soper have given results of a network with fuzzy arc lengths. 

107 



The fuzzy arc lengths in the Okada and Soper example were translated into interval

values. The A very Shortest Path Algorithm had near identical results to those obtained 

by Okada and Soper [13]. 

Recommendations 

Since the number of iterations required to complete the algorithm was exponential 

with respect to the number of nodes in the network, the time required to obtain the set of 

solutions can be a significant problem in a large interval-network. A suggested area of 

future research would be to determine if improvements could be made in the algorithm to 

reduce the number of iterations required to generate the complete set of shortest paths. 

The shortest path solution set contains path information specific to the threads 

generated by the algorithm. A second suggested area of future research would be to 

develop an extension of the algorithm that would combine the threads generated by the 

existing algorithm before the shortest paths are found. 

A third suggested area of future research would be to define additional attributes and 

develop the methodology for the evaluation of those attributes that could be used to 

assess the quality of each member of the shortest path solution set. 

108 



REFERENCES 

[I] Allen, J. F., "Maintaining Knowledge about Temporal Intervals," 
Communications of the ACM, vol. 26, pp. 832-43, 1983. 

[2] Cellier, F. E., "Qualitative Modeling and Simulation: Promise or Illusion," 
Proceedings of the 1991 Winter Simulation Conference, 1991. 

[3] Chabini, L. and Lan, S., "Adaptations of the A* Algorithm for the Computation of 
Fastest Paths in Deterministic Discrete-Time Dynamic Networks," IEEE 
Transactions on Intelligent Transportation Systems, vol. 3, pp. 60-74, 2002. 

[4] Chen, B. and Lin, C.-S., "MinMax Regret Robust I-Median Location on a Tree," 
Networks, vol. 31. New York: John Wiley & Sons, pp. 93-103, 1998. 

[5] Fouche, P. and Kuipers, B. J., "Reasoning About Energy in Qualitative 
Simulation," IEEE Transactions of Systems, Man, and Cybernetics, vol. 22, p. 47, 
1992. 

[6] Hillier, F. S. and Lieberman, G. J., Introduction To Operations Research, Seventh 
Edition, New York: McGraw-Hill, Inc., 2001. 

[7] Ingalls, R. G., "Qualitative Simulation Graph Methodology and Implementation," 
Ph.D. Dissertation in Management Science. Austin, TX: University of Texas, May 
1999. 

[8] Kelton, W. D., Sadowski, R. P., and Sadowski, D. A., Simulation with Arena, 
New York: McGraw Hill, Inc., 1991. 

[9] Law, A. M. and Kelton, W. D., Simulation Modeling and Analysis, Second 
Edition, New York: McGraw Hill, Inc., 1991. 

[10] Microsoft, "Microsoft Excel 2002," SP-2 Edition, Redmond, WA: Microsoft 
Corporation, 2001. 

[ 11] Microsoft, "Microsoft Visual Basic," 6.3 .8863 Edition, Redmond, WA: Microsoft 
Corporation, 2001. 

[12] Morris, W., The American Heritage Dictionary of the English Language, New 
College Edition, Boston, MA: Houghton Mifflin Company, 1979. 

[13] Okada, S. and Soper, T., "A Shortest Path Problem on a Network with Fuzzy Arc 
Lengths," Fuzzy Sets and Systems, vol. 109, pp. 129-140, 2000. 

109 



[14] Rardin, R. L., Optimization in Operations Research, Upper Saddle River, NJ: 
Prentice Hall, Inc., 1998. 

[15] Rockefeller, R. T., Network Flows and Monotropic Optimization, New York: 
John Wiley & Sons, Inc., 1984. 

[16] Savage, E. L. and Schruben, L. W., "Eliminating Event Cancellation in Discrete 
Event Simulation," Proceedings of the 1995 Winter Simulation Conference, 1995. 

[17] Schruben, L. W. and Yucansan, E., "Simulation Graphs," Proceedings of the 1988 
Winter Simulation Conference, 1988. 

[18] Sudharsanan, S. R., "Fuzzy Distance Approach to Routing Algorithms for 
Optimal Web Path Estimation," Proceedings of the 2001 IEEE International 
Fuzzy Systems Conference, 2001. 

[19] Viswanadham, N. and Narahari, Y., Performance Modeling of Automated 
Systems, Upper Saddle River, NJ: Prentice Hall, Inc., 1992. 

[20] Yaman, H., Karasan, 0. E., and Pinar, M. C., "The Robust Spanning Tree 
Problem with Interval Data," Operation Research Letters, vol. 29, pp. 31-40, 
2000. 

110 



APPENDIXES 

111 



APPENDIX A 

AVERY SHORTEST PATH ALGORITHM 
VISUAL BASIC CODE 

Dim AllowedHigh As Integer 
Dim AllowedLow As Integer 
Dim ArcLower(l To 25, 1 To 25) As Integer 
Dim ArcslnShortPath As Integer 
Dim ArcUpper(l To 25, 1 To 25) As Integer 
Dim Check(l To 25, 1 To 25, 1 To 25, 1 To 25) As Boolean 
Dim CombinedPath(l To 100, 1 To 1000) As Integer 
'CombinedPath(ComboNumber, PathNumber) 
Dim CombinedSubPath(l To 25, 1 To 25, 1 To 25, 1 To 100) As Integer 
'CombinedSubPath(SubPathLength, NumberOfCombinedSubPaths(SubPathLength), 
SubPosition, Number) 
Dim ComboEndThreads(l To 100, 1 To 200) As Integer 
'ComboEndThreads(ComboNumber, i) 
Dim ComboNumber As Integer 
Dim ComboNumberNonDominated(l To 100) As Integer 
'ComboNumberNonDominated(ComboNumber) = 1 
Dim ComboPathFound(l To lOOO)As Integer 
'ComboPathFound(PathNumber) 
Dim ComboSubPathFound(l To 25, 1 To 100) 
'ComboSubPathFound(SubPathLength, Number) 
Dim ComboPathLength(l To 25) As Single 
'ComboPathLength (ComboNumber) 
Dim ComboPathPoints(l To 100) As Single 
Dim CotnboSubPathMatch(l To 25, 1 To 100, 1 To 100) As Integer 
'ComboSubPathMatch(SubPathLength,SubPathComboNumber, SubPathComboNumber) 
Dim CumulativeDistanceChange(l To 25) As Integer 
Dim CurrentHigh As Integer 
Dim CurrentLow As Integer 
Dim CutPointCardinality(l To 25) As Integer 
Dim CutPoints(l To 25, 1 To 100) As Integer 
Dim EndNode As Integer 
Dim EndPathNode(l To 1000, 1 To 25) As Integer 
'EndPathNode(EndPathNumber, PathPosition) = PathNode(PathNumber, PathPosition, 
Node, Thread) 
Dim EndPathThread(l To 1000, 1 To 25) As Integer 
'EndPathThread(EndPathNumber, PathPosition) = Path Thread(PathNumber, 
PathPosition, Node, Thread) 
Dim EndThread(l To 1000) As Integer 
'EndThread(EndPathNumber) = ThreadDim FromNode As Integer 

112 



Dim FromNode As Integer 
Dim FromNodej As Integer 
Dim FromNodePathNumber As Integer 
Dim FromNodePrev As Integer 
Dim FromNodeThread As Integer 
Dim FromNodeThreadPrev As Integer 
Dim GoodPath(l To 1000) As Boolean 
Dim HighThreadComboNumberPosition(l To 100, 1 To 25) As Integer 
'HighThreadComboNumberPosition(ComboNumber,Position) 
Dim i As Integer 
Dim j As Integer 
Dim Infinity As Integer 
Dim k As Integer 
Dim LargestMaximum As Integer 
Dim LargestMaximumCombo As Integer 
Dim LastPathPosition(l To 1000, 1 To 25, 1 To 25) As Integer 
'LastPathPosition(PathNumber,ToNode,ToNodeThread) 
Dim LastPathPositionEnd(l To 1000) As Integer 
'LastPathPositionEnd(EndPathNumber) 
Dim LastPathPositionEndCombo(l To 100) As Integer 
'LastPathPositionEndCombo(ComboNumber) = 

LastPathPositionEnd( ComboNumber(PositionlnCombo)) 
Dim LowArcValue(l To 25, 1 To 25, 1 To 25, 1 To 25) As Single 
Dim LowerArcCompleteCombo(l To 25, 1 To 25) As Single 
Dim LowerArcPositionlnCombo(l To 25, 1 To 200, 1 To 25) As Single 
'LowerArcPositioninCombo(ComboNumber,PositioninCombo, Position) 
Dim LowThreadComboNumberPosition(l To 100, 1 To 25) As Integer 
'LowThreadComboNumberPosition(ComboNumber,Position 
Dim MaximumPathDistance(l To 25) As Integer 
'MaximumPathDistance(ComboNumber) = 0 
Dim MaxlterativeChange As Integer 
Dim MaxPaths As Integer 
Dim MaxPathLength As Integer 
Dim MaxThreads As Integer 
Dim MinimizedRegretCombo As Integer 
'MinimizedRegretCombo = ComboNumber 
Dim MinimumPathDistance(l To 25) As Integer 
'MinimumPathDistance(ComboNumber) = 0 
Dim Multiplier As Integer 
Dim NecessaryChange(l To 25, 1 To 25, 1 To 25, 1 To 25) As Single 
'NecChange(FromNodeThread, FromNode, ToNodeThread, ToNode) 
Dim Node As Integer 
Dim NodeValueLower(l To 25, 1 To 25) As Single 
Dim NodeValueUpper(l To 25, 1 To 25) As Single 
Dim NumberMatches(l To 1000) As Integer 
'NumberMatches(PathNumber) 

113 



Dim NumberOfArcs As Integer 
Dim NumberOfArcsProceeding(l To 25) As Integer 
Dim NumberO:ft::ombinedPaths As Integer 
'NumberO:ft::ombinedSubPaths(SubPathLength) = 

NumberO:ft::ombinedSubPaths(SubPathLength) + 1 
Dim NumberO:ft::ombinedSubPaths(l To 25) As Integer 
Dim NumberOfPaths(l To 25, 1 To 25) As Integer 
'NumberOfPaths(ToNode,ToNodeThread) 
Dim NumberOfPathsContainingArc(l To 100) As Integer 
'NumberOfPathsContainingArc (i) 
Dim NumberOfSubPaths(l To 25) As Integer 
'NumberofSubPaths(SubPathLength) 
Dim NumberSubMatches(l To 25, 1 To 1000) As Integer 
Dim NumberUnOrdered(l To 25) As Integer 
Dim OriginatingNode(l To 100) As Integer 
'OriginatingNode(NumberOfArcs) = FromNode 
Dim PathArc(l To 1000, 1 To 25) As Integer 
'PathArc(PathNumber, Position - 1) 
Dim PathLowArcValue(l To 25, 1 To 25, 1 To 1000, 1 To 25) As Single 
'PathLowArc V alue(From Node, ToNode,CumulativePathNumber,Position) 
Dim PathMatch(l To 1000, 1 To 1000) As Integer 
'PathMatch(PathNumber, j) 
Dim PathNode(l To 1000, 1 To 25, 1 To 25, 1 To 25) As Integer 
Dim PathNumber As Integer 
Dim PathPoints(l To 1000) As Single 
'PathPoints (PathNumber) 
Dim PathsinCombo(l To 1000) As Integer 
'PathsinCombo(ComboNumber) 
Dim PathThread(l To 1000, 1 To 25, 1 To 25, 1 To 25) As Integer 
Dim PathUpperArcValue(l To 25, 1 To 25, 1 To 1000, 1 To 25) As Single 
'PathUpperArc V alue(From Node, ToNode,CumulativePathNumber,Position) 
Dim Position As Integer 
Dim PositionGood(l To 1000) As Boolean 
'PositionGood(PathNumber) = False 
Dim PositionlnCombo As Integer 
Dim PositionLength(l To 25, 1 To 25) As Single 
'PositionLength(ComboNumber,Position) 
Dim PositionNext As Integer 
Dim RangeCalc As Integer 
Dim Range As Integer 
Dim RelativeWorthArc(l To 100) As Single 
Dim ShortestPathLength(l To 25) As Single 
'ShortestPathLength(ComboNumber) 
Dim SmallestChange As Integer 
'SmallestChange = CumulativeDistanceChange(ComboNumber) 
Dim SmallestMinimum As Integer 

114 



Dim SmallestMinimumCombo As Integer 
Dim StoppingCutPoint(l To 25) As Integer 
Dim StoppingPosition(l To 25) As Integer 
Dim SubPath(l To 25, 1 To 1000, 1 To 25) As Integer 
'SubPath(Length, Number, Position) As Integer 
Dim SubPathComboNumber(l To 25, 1 To 1000) As Integer 
'SubPathComboNumber(Length, Number) As Integer 
Dim SubPathLength As Integer 
Dim SubPathMatch(l To 25, 1 To 100, 1 To 100) As Integer 
'SubPathMatch(SubPathLength,PathNumber J) 
Dim SubPosition As Integer 
Dim SubsequentChange(l To 25, 1 To 25, 1 To 25, 1 To 25) As Single 
Dim t As Integer 
Dim Temp As Integer 
Dim Temp2 As Integer 
Dim TerminatingNode(l To 100) As Integer 
'TerminatingNode(NumberOfArcs) = ToNode 
Dim Thread As Integer 
Dim ThreadlnComboNumber(l To 100, 1 To 100) As Integer 
'ThreadlnComboNumber(ComboNumber, Thread) = 1 
Dim ToNode As Integer 
Dim ToNodej As Integer 
Dim ToNodePathNumber As Integer 
Dim ToNodePrev As Integer 
Dim ToNodeThread As Integer 
Dim ToNodeThreadPrev As Integer 
Dim TotalNumberOfPaths As Integer 
Dim UnorderedCutPoints(l To 75, 1 To 75) As Integer 
Dim UpperArcCompleteCombo(l To 25, 1 To 25) As Single 
'UpperArcCompleteCombo(ComboNumber, Position) 
Dim UpperArcPositionlnCombo(l To 25, 1 To 200, 1 To 25) As Single 
Dim UpperArcValue(l To 25, 1 To 25, 1 To 25, 1 To 25) As Single 
Dim WCardinality(l To 25) As Integer · 
Dim z As Integer 

Sub A veryShortestPath() 

Clear Data 
ReadData 

For Node = 2 To EndNode 
ldentifyCutPoints 
OrderCutPoints 
GenerateNode Value 

Next Node 
'loop= n 

115 



FindMultiplier 

NumberOfArcs = 0 
RangeCalc = 0 
For FromNode = 1 To EndNode 

For ToNode = 1 To EndNode 
If ArcLower(FromNode, ToNode) < Infinity Then 

RangeCalc = RangeCalc + 1 
CheckPossibleArcs 

End If 
Next ToNode 

Next FromNode 

'loop= n" 2 

FindPath Threads 
IdentifyPathLowHigh 
ChangeArc ValuesOnPath 
CheckPaths 
NumberPaths 
WritePaths 

'''''''''''''''''''''''''''''''''''''''''''''''"'''''''""' 
""""""""OUTPUT METHODOLOGY"""'"'"'""""""" 

CheckldenticalPaths 
CombinePathThreads 
Obtain Combo Threadlnfo 
FindArc V aluesOnCombinedPath 

FindNonDominatedPaths 
MinimizeRegret 

GetArcs 
EvaluateDominantArcs 
WriteArclnfo 

FindSubPaths 
CheckldenticalSubPaths 
FindComboslnSubPaths 

End Sub 

Sub ClearData() 

116 



Worksheets("Network").Activate 

Worksheets("NodeThreads").Activate 
Worksheets("PossibleArcs ").Activate 
Worksheets("DominantArcs").Activate 
Worksheets(" Arclnfo ").Activate 
Worksheets("UnCorrectedPath Threads").Activate 
Worksheets("PathThreads ").Activate 
Worksheets("NonDominatedPaths").Activate 
Worksheets("CombinedPaths").Activate 
Worksheets("SubPaths").Activate 
Worksheets("NodeThreads").Range("Al :IV1250").Clear 
Worksheets("PossibleArcs").Range("Al :IV1250").Clear 
Worksheets("DominantArcs").Range("Al :IV1250").Clear 
Worksheets("Arclnfo").Range("Al :IV1250").Clear 
Worksheets("UnCorrectedPathThreads").Range("Al:IV1250").Clear 
Worksheets("PathThreads").Range("Al :IV1250").Clear 
Worksheets("CombinedPaths").Range("Al :IV1250").Clear 
Worksheets("NonDominatedPaths").Range(" Al :IV1250").Clear 
Worksheets("SubPaths").Range("Al :IV1250").Clear 

Infinity = 999 

Max.Nodes = 25 
Max.Threads = 25 
Max.Paths = 180 
ToNode=O 
FromNode=O 
'FromNodeThread = 0 
'ToNodeThread = 0 
RangeCalc = 0 
i = 0 
z=O 
j=O 
k=O 
t=O 
EndNode=O 
Node=O 
Temp=O 
For i = 1 To Max.Nodes 
CutPointCardinality(i) = 0 
WCardinality(i) = 1 
NumberUnOrdered(i) = 0 
StoppingCutPoint(i) = 0 
StoppingPosition(i) = 0 

117 



NumberMatches(i) = 0 
NumberOtPathsContainingArc(i) = 0 
For j = 1 To MaxThreads 

ThreadinComboNumber(i, j) = 0 
NodeValueLower(i,j) = 0 
NodeValueUpper(i,j) = 0 
NumberOfPaths(i, j) = 0 
ArcLower(i, j) = 0 
ArcUpper(i, j) = 0 
UnorderedCutPoints(i, j) = 0 
CutPoints(i, j) = 0 
Fork= 1 To MaxPaths 

LastPathPosition(k, i, j) = 0 
Nextk 

Nextj 
Nexti 

End Sub 

Sub ReadData() 

EndNode = Worksheets("Network").Cells(l, 2) 

For i = 1 To EndNode 
For j = 1 To EndNode 

ArcLower(i,j) = Worksheets("Network").Cells(i + 2,j + 1) 
ArcUpper(i,j) = Worksheets("Network").Cells(i + 29,j + 1) 
If ArcLower(i, j) < Infinity Then NumberOfArcsProceedingG) = 

NumberOfArcsProceedingG) + 1 
Nextj 
Nexti 

'loop= n I\ 2 
End Sub 

Sub IdentifyCutPoints() 

StoppingCutPoint(Node) = Infinity 
k=l 
For i = 1 To EndNode 

Fort= 1 To WCardinality(i) 
UnorderedCutPoints(Node, k) = ArcLower(i, Node)+ NodeValueLower(i, t) 
k=k+l 

Nextt 
Next i 
'max wcardinality (i) = 2/\(i-2) i>3 sum of maz = 2A(n-1) 

118 



'max loop= n*2A(n-1) 

For i = 1 To EndNode 
Fort= 1 To WCardinality(i) 
UnorderedCutPoints(Node, k) = ArcUpper(i, Node)+ NodeValueUpper(i, t) 
1ft = WCardinality(i) And (UnorderedCutPoints(Node, k) < 

StoppingCutPoint(Node)) And (UnorderedCutPoints(Node, k) < Infinity) Then 
StoppingCutPoint(Node) = UnorderedCutPoints(Node, k) 
'This identifies the smallest of the NewUpperArcValues. 
' Any cut points above this number will not be in the set of node threads. 
'Node threads will consist of the set of all cut points smaller than or equal to the 

stopping cut point. 
· 'the stopping cut point must be the smallest of the new upper arc values(Omegas) 

from among only the 
'Omegas that came from the end thread to ensure all possible shortest paths 
End If 
k=k+l 

Nextt 
Nexti 
'max loop= n*2A(n-1) 

NumberUnOrdered(Node) = k- 1 

'Fori = 1 To k - 1 
'Worksheets("NodeThreads").Cells(i + 4, 10 +Node)= UnorderedCutPoints(Node,i) 
'Nexti 

End Sub 

Sub OrderCutPoints() 

Worksheets("NodeThreads").Cells(l, 1) = "StoppingCutPoint" 
Worksheets("NodeThreads").Cells(2, 1) = "CutPointCardinality" 
Worksheets("NodeThreads").Cells(3, 1) = "StoppingPosition" 
Worksheets("NodeThreads").Cells(4, 1) = "NumberOffhreads" 
Worksheets("NodeThreads").Cells(5, 1) = "CUT POINTS" 

Temp = Infinity 
StoppingPosition(Node) = 1 
For i = 1 To NumberUnOrdered(Node) 

IfUnorderedCutPoints(Node, i) < Temp Then 
Temp= UnorderedCutPoints(Node, i) 
End If 

Nexti 
CutPoints(Node, 1) = Temp 

119 



For z = 2 To NumberUnOrdered(Node) 
Temp = Infinity 
For i = 1 To NumberUnOrdered(Node) 

If (UnorderedCutPoints(Node, i) < Temp) And (UnorderedCutPoints(Node, i) > 
CutPoints(Node, z - 1)) Then 

Temp= UnorderedCutPoints(Node, i) 
CutPointCardinality(Node) = z 
End If 

Nexti 
If Temp= Infinity Then 

CutPointCardinality(Node) = z - 1 
z = NumberUnOrdered(Node) 
'Ends LOOP 

Else: CutPoints(Node, z) = Temp 
If CutPoints(Node, z) = StoppingCutPoint(Node) Then 

StoppingPosition(Node) = z 
End If 

End If 
Nextz 

For i = 1 To CutPointCardinality(Node) 
Worksheets("NodeThreads").Cells(i + 4, Node+ 1) = CutPoints(Node, i) 

Nexti 

If StoppingPosition(Node) = 1 Then 
WCardinality(Node) = 1 

Else 
WCardinality(Node) = StoppingPosition(Node) - 1 

End If 

Worksheets("NodeThreads").Cells(l, 1 +Node)= StoppingCutPoint(Node) 
Worksheets("NodeThreads").Cells(2, 1 +Node)= CutPointCardinality(Node) 
Worksheets("NodeThreads").Cells(3, Node+ 1) = StoppingPosition(Node) 
Worksheets("NodeThreads").Cells(4, Node+ 1) = WCardinality(Node) 

End Sub 

Sub GenerateNode Value() 

k=O 
For Thread= 1 To WCardinality(Node) 

k=k+2 
If (StoppingPosition(Node) = 1) Then 

NodeValueLower(Node, Thread)= CutPoints(Node, 1) 

120 



NodeValueUpper(Node, Thread)= CutPoints(Node, 1) 
Else 

NodeValueLower(Node, Thread)= CutPoints(Node, Thread) 
Node V alueUpper(Node, Thread) = CutPoints(Node, Thread + 1) 

End If 
Worksheets("NodeThreadsf').Cells(k - 1, 5 + EndNode +Node)= 

NodeValueLower(Node, Thread) 
Worksheets("NodeThreads").Cells(k, 5 + EndNode +Node)= NodeValueUpper(Node, 

Thread) 
Worksheets("NodeThreads").Cells(2 * (Thread - 1) + 1, 5 + EndNode) = 

"Node V alueLower" 
Worksheets("NodeThreads").Cells(2 * (Thread - 1) + 2, 5 + EndNode) = 

"Node Value Upper" 
Next Thread 

End Sub 

Sub FindMultiplier() 

MaxThreads = 0 
For Node= 1 To EndNode 

If WCardinality(Node) > MaxThreads Then 
Max Threads = WCardinality(Node) 

End If 
Next Node 

Multiplier = 10 
For i = 1 To 5 
If Max Threads > 10 " i - 1 Then 
Multiplier = 10 " (i + 1) 
End If 
Next i 

End Sub 

Sub CheckPossibleArcs() 

For ToNodeThread = 1 To WCardinality(ToNode) 
For FromNodeThread = 1 To WCardinality(FrornNode) 

LowArcValue(FromNode, FromNodeThread, ToNode, ToNodeThread) = 
NodeValueLower(ToNode, ToNodeThread) - NodeValueLower(FromNode, 
FromNodeThread) 

UpperArcValue(FrornNode, FromNodeThread, ToNode, ToNodeThread) = 
NodeValueUpper(ToNode, ToNodeThread) - NodeValueUpper(FromNode, 
FromNodeThread) 

RangeCalc = RangeCalc + 1 

121 



Worksheets("PossibleArcs").Cells(l, 1) = "TO" 
Worksheets("PossibleArcs").Cells(l, 2) = "FROM" 

Worksheets("PossibleArcs").Cells(l, 4 + FromNode) = FromNode 
Worksheets("PossibleArcs").Cells(l, 4 + 1 * EndNode + FromNode) = FromNode 
Worksheets("PossibleArcs").Cells(l, 4 + 2 * EndNode + FromNode) = FromNode 
Worksheets("PossibleArcs").Cells(l, 4 + 3 * EndNode + FromNode) = FromNode 

Worksheets("PossibleArcs").Cells(RangeCalc, 4 + FromNode) = 

LowArcValue(FromNode, FromNodeThread, ToNode, ToNodeThread) 
Worksheets("PossibleArcs").Cells(RangeCalc, 4 + 1 * EndNode + FromNode) = 

UpperArc Value(FromNode, FromNodeThread, ToNode, ToNodeThread) 
Worksheets("PossibleArcs").Cells(RangeCalc, 4 + 2 * EndNode + FromNode) = 

ArcLower(FromNode, ToNode) 
Worksheets("PossibleArcs").Cells(RangeCalc, 4 + 3 * EndNode + FromNode) = 

ArcUpper(FromNode, ToNode) 
Worksheets("PossibleArcs").Cells(RangeCalc, 1) = FromNode *Multiplier+ 

FromNodeThread 
Worksheets("PossibleArcs").Cells(RangeCalc, 2) = ToNode *Multiplier+ 

ToNodeThread 

'Worksheets("PossibleArcs").Cells( 1, 1) = "TO" 
'Worksheets("PossibleArcs").Cells(2, 1) = "FROM" 
'Worksheets("PossibleArcs").Cells(4 + FromNode, 1) = FromNode 
'Worksheets("PossibleArcs").Cells(4 + 1 * EndNode + FromNode, 1) = FromNode 
'Worksheets("PossibleArcs").Cells(4 + 2 * EndNode + FromNode, 1) = FromNode 
'Worksheets("PossibleArcs").Cells(4 + 3 * EndNode + FromNode, 1) = FromNode 

AllowedLow = ArcLower(FromNode, ToNode) 
AllowedHigh = ArcUpper(FromNode, ToNode) 
CurrentLow = LowArcValue(FromNode, FromNodeThread, ToNode, ToNodeThread) 
CurrentHigh = UpperArcValue(FromNode, FromNodeThread, ToNode, ToNodeThread) 
If CurrentLow >= AllowedLow And CurrentHigh <= AllowedHigh Then 

Check(FromNode, FromNodeThread, ToNode, ToNodeThread) = True 
Worksheets("PossibleArcs").Cells(RangeCalc, 3) = 0 

If CurrentLow > CurrentHigh Then Worksheets("PossibleArcs").Cells(4, 1) = "C" 
Else 
Check(FromNode, FromNodeThread, ToNode, ToNodeThread) = False 
Worksheets("PossibleArcs").Cells(RangeCalc, 3) = "x" 
End If 

Next FromNodeThread 
Next ToNodeThread 

122 



End Sub 

Sub FindPathThreads() 

RangeCalc = 0 

For ToNode = 2 To EndNode 
For ToNodeThread = 1 To WCardinality(ToNode) 

IfCheck(l, 1, ToNode, ToNodeThread) = True Then 
PathNode(l, 1, ToNode, ToNodeThread) = 1 
PathNode(l, 2, ToNode, ToNodeThread) = ToNode 
PathThread(l, 1, ToNode, ToNodeThread) = 1 
PathThread(l, 2, ToNode, ToNodeThread) = ToNodeThread 
NumberOfPaths(ToNode, ToNodeThread) = NumberOfPaths(ToNode, 

ToNodeThread) + 1 
LastPathPosition(l, ToNode, ToNodeThread) = 2 

End If 
For FromNode = 2 To ToNode - 1 

For FromNodeThread = 1 To WCardinality(FromNode) 
If Check(FromNode, FromNodeThread, ToNode, ToNodeThread) = True Then 

For i = 1 To NumberOfPaths(FromNode, FromNodeThread) 
For j = 1 To LastPathPosition(i, FromNode, FromNodeThread) 

PathNode(NumberOfPaths(ToNode, ToNodeThread) + i, j, ToNode, 
ToNodeThread) = PathNode(i, j, FromNode, FromNodeThread) 

PathThread(NumberOfPaths(ToNode, ToNodeThread) + i, j, ToNode, 
ToNodeThread) = PathThread(i, j, FromNode, FromNodeThread) 

Nextj 
PathNode(NumberOfPaths(ToNode, ToNodeThread) + i, LastPathPosition(i, 

FromNode, FromNodeThread) + l, ToNode, ToNodeThread) = ToNode 
PathThread(NumberOfPaths(ToNode, ToNodeThread) + i, LastPathPosition(i, 

FromNode, FromNodeThread) + 1, ToNode, ToNodeThread) = ToNodeThread 
LastPathPosition(NumberOfPaths(ToNode, ToNodeThread) + i, ToNode, 

ToNodeThread) = LastPathPosition(i, FromNode, FromNodeThread) + 1 
Nexti 
NumberOfPaths(ToNode, ToNodeThread) = NumberOfPaths(ToNode, 

ToNodeThread) + NumberOfPaths(FromNode, FromNodeThread) 
End If 
Next FromNodeThread 
Next FromNode 

Next ToNodeThread 
NextToNode 

RangeCalc = 0 
EndPathNumber = 0 
TotalNumberOfPaths = 0 
MaxPathLength = 0 

123 



Node= EndNode 
For Thread= 1 To WCardinality(Node) 
For PathNumber = 1 To NumberOfPaths(Node, Thread) 

RangeCalc = RangeCalc + 1 
EndPathNumber = EndPathNumber + 1 

TotalNumberOfPaths = TotalNumberOfPaths + 1 
For PathPosition = 1 To LastPathPosition(PathNumber, Node, Thread) 

If LastPathPosition(PathNumber, Node, Thread) > MaxPathLength Then 
MaxPathLength = LastPathPosition(PathNumber, Node, Thread) 

EndPathNode(EndPathNumber, PathPosition) = PathNode(PathNumber, 
PathPosition, Node, Thread) 

EndPathThread(EndPathNumber, PathPosition) = PathThread(PathNumber, 
PathPosition, Node, Thread) 

EndThread(EndPathNumber) = Thread 
Worksheets("UnCorrectedPathThreads").Cells(l + RangeCalc, 1 + PathPosition) = 

(PathNode(PathNumber, PathPosition, Node, Thread)) * Multiplier+ 
PathThread(PathNumber, PathPosition, Node, Thread) 

Next PathPosition 
LastPathPositionEnd(EndPathNumber) = LastPathPosition(PathNumber, Node, 

Thread) 
Worksheets("UnCorrectedPathThreads").Cells(l + EndPathNumber, 11) = 

LastPathPositionEnd(EndPathNumber) 
Worksheets("UnCorrectedPathThreads").Cells(l + EndPathNumber, 13) = 

EndPathNumber 

Next PathNumber 
Next Thread 

End Sub 

Sub IdentifyPathLowHighO 

For PathNumber = 1 To TotalNumberOfPaths 
For Position= LastPathPositionEnd(PathNumber) To 2 Step -1 

ToNode = EndPathNode(PathNumber, Position) 
FromNode = EndPathNode(PathNumber, Position- 1) 
ToNodeThread = EndPathThread(PathNumber, Position) 
FromNodeThread = EndPathThread(PathNumber, Position- 1) 

PathLowArcValue(FromNode, ToNode, PathNumber, Position)= 
NodeValueLower(ToNode, ToNodeThread) - NodeValueLower(FromNode, 
FromNodeThread) 
PathUpperArcValue(FromNode, ToNode, PathNumber, Position)= 
NodeValueUpper(ToNode, ToNodeThread)- NodeValueUpper(FromNode, 
FromNodeThread) 

124 



Next Position 
Next PathNumber 

RangeCalc = 1 
For PathNumber = 1 To TotalNumberOfPaths 

Worksheets("UnCorrectedPathThreads").Cells(2 + TotalNumberOfPaths + RangeCalc, 
10) = _ 

Node ValueLower(EndPathNode(PathNumber, LastPathPositionEnd(PathNumber) ), 
EndPath Thread(PathNumber, LastPathPositionEnd(PathNumber))) 

Worksheets("UnCorrectedPathThreads").Cells(2 + TotalNumberOfPaths + RangeCalc, · 
11)= -

NodeValueUpper(EndPathNode(PathNumber, LastPathPositionEnd(PathNumber)), 
EndPath Thread(PathNumber, LastPathPositionEnd(PathNumber))) 

For Position= LastPathPositionEnd(PathNumber) To 2 Step -1 

ToNode = EndPathNode(PathNumber, Position) 
FromNode = EndPathNode(PathNumber, Position - 1) 
ToNodeThread = EndPathThread(PathNumber, Position) 
FromNodeThread = EndPathThread(PathNumber, Position- 1) 

Worksheets("UnCorrectedPathThreads").Cells(2 + TotalNumberOfPaths + RangeCalc, 2) 
= ArcLower(FromNode, ToNode) 
Worksheets("UnCorrectedPathThreads").Cells(2 + TotalNumberOfPaths + RangeCalc, 3) 
= PathLowArcValue(FromNode, ToNode, PathNumber, Position) 
Worksheets("UnCorrectedPathThreads").Cells(2+ TotalNumberOfPaths + RangeCalc, 4) 
= PathUpperArcValue(FromNode, ToNode, PathNumber, Position) 
Worksheets("UnCorrectedPathThreads").Cells(2 + TotalNumberOfPaths + RangeCalc, 5) 
= ArcUpper(FromNode, ToNode) 
Worksheets("UnCorrectedPathThreads").Cells(2 + TotalNumberOtPaths + RangeCalc, 7) 
= FromNode * Multiplier+ FromNodeThread 
Worksheets("UnCorrectedPathThreads").Cells(2 + TotalNumberOtPaths + RangeCalc, 8) 
= ToNode * Multiplier+ ToNodeThread 
RangeCalc = RangeCalc + 1 

Next Position 
RangeCalc = RangeCalc + 1 

Next PathNumber 
RangeCalc = RangeCalc + 1 

End Sub 

125 



Sub ChangeArc V aluesOnPath() 

RangeCalc = 0 
For PathNumber = 1 To TotalNumberOfPaths 
For Position= LastPathPositionEnd(PathNumber) To 2 Step -1 

ToNode = EndPathNode(PathNumber, Position) 
FromNode = EndPathNode(PathNumber, Position - 1) 
ToNodeThread = EndPathThread(PathNumber, Position) 
FromNodeThread = EndPathThread(PathNumber, Position - 1) 

CurrentLow = PathLowArcValue(FromNode, ToNode, PathNumber, Position) 
CurrentHigh = PathUpperArcValue(FromNode, ToNode, PathNumber, Position) 

AllowedLow = ArcLower(FromNode, ToNode) 
AllowedHigh = ArcUpper(FromNode, ToNode) 

If (CurrentLow > CurrentHigh) Then 
If ((CurrentLow > AllowedHigh) And (CurrentHigh >= AllowedLow)) Then 

'We are decreasing the PathLowArcValue 
NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) = _ 
PathLowArcValue(FromNode, ToNode, PathNumber, Position) -

Path Upper Arc V alue(FromNode, ToNode, PathNumber, Position) 
For PositionNext = Position - 1 To 2 Step -1 

ToNodePrev = EndPathNode(PathNumber, PositionNext) 
FromNodePrev = EndPathNode(PathNumber, PositionNext - 1) 
ToNodeThreadPrev = EndPathThread(PathNumber, PositionNext) 
FromNodeThreadPrev = EndPathThread(PathNumber, PositionNext - 1) 
'We are increasing subsequent lower paths as much as possible 
MaxlterativeChange = _ 

PathUpperArcValue(FromNodePrev, ToNoµePrev, PathNumber, PositionNext)
PathLowArc Value(FromNodePrev, ToNodePrev, PathNumber, PositionNext) 

If MaxlterativeChange < 0 Then 
MaxlterativeChange = 0 

End If 
lfMaxlterativeChange >= NecessaryChange(FromNode, FromNodeThread, ToNode, 

ToNodeThread) Then 
'increase by average of necessary and max 
PathLowArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) = _ 

PathLowArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) _ 
+ NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) 

PathLowArcValue(FromNode, ToNode, PathNumber, Position)=_ 
PathLowArcValue(FromNode, ToNode, PathNumber, Position)_ 
- NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) 

NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) = 0 

126 



Else 
'decrease upper by Max 
PathLowArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) = _ 

PathLowArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) _ 
+ MaxlterativeChange 

PathLowArcValue(FromNode, ToNode, PathNumber, Position)=_ 
PathLowArcValue(FromNode, ToNode, PathNumber, Position)_ 
- MaxlterativeChange 

NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) = _ 
NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) _ 
- MaxlterativeChange 

End If 
IfNecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) = 0 Then 

PositionNext = 2 
'endloop of lncreasingSubsequentLower 

End If 
Next PositionNext 

Else 

'If CurrentHigh < AllowedLow Then 
'We are increasing the PathUpperArcValue 
NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) = _ 
PathLowArcValue(FromNode, ToNode, PathNumber, Position)-

PathUpperArcValue(FromNode, ToNode, PathNumber, Position) 
For PositionNext = Position - 1 To 2 Step -1 

ToNodePrev = EndPathNode(PathNumber, PositionNext) 
FromNodePrev = EndPathNode(PathNumber, PositionNext - 1) 
ToNodeThreadPrev = EndPathThread(PathNumber, PositionNext) 
FromNodeThreadPrev = EndPathThread(PathNumber, PositionNext- 1) 
'We are decreasing subsequent upper paths as much as possible 
MaxlterativeChange = _ 

PathUpperArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext)
PathLowArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) 

If MaxlterativeChange < 0 Then 
MaxlterativeChange = 0 

End If 
IfMaxlterativeChange >= NecessaryChange(FromNode, FromNodeThread, ToNode, 

ToNodeThread) Then 
'decrease by average of necessary and max 
PathUpperArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) = _ 

PathUpperArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) _ 
- (NecessaryChange(FroinNode, FromNodeThread, ToNode, ToNodeThread)) 

PathUpperArcValue(FromNode, ToNode, PathNumber, Position)=_ 
PathUpperArcValue(FromNode, ToNode, PathNumber, Position)_ 
+ (NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread)) 

127 



NecessaryChange(FromNode; FromNodeThread, ToNode, ToNodeThread) = 0 
Else · 

'decrease upper by Max 
PathUpperArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) = _ 

PathUpperArcValue(FromNodePrev, ToNodePrev, PathNumber, PositionNext) _ 
- MaxlterativeChange 

PathUpperArcValue(FromNode, ToNode, PathNumber, Position)=_ 
PathUpperArcValue(FromNode, ToNode, PathNumber, Position)_ 
+ MaxlterativeChange 

NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) = _ 
NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) _ 
- MaxlterativeChange 

End If 
If NecessaryChange(FromNode, FromNodeThread, ToNode, ToNodeThread) = 0 Then 

PositionNext = 2 
'endloop of IncreasingSubsequentLower 

End If 
Next PositionNext 
End If 

End If 
RangeCalc = RangeCalc + 1 

Worksheets("PathThreads").Cells(152 + RangeCalc, 2) = PathNumber 
Worksheets("PathThreads").Cells(152 + RangeCalc, 3) = ArcLower(FromNode, 
ToNode) 
Worksheets("PathThreads").Cells(l52 + RangeCalc, 4) = PathLowArcValue(FromNode, 
ToNode, PathNumber, Position) 
Worksheets("PathThreads").Cells(152 + RangeCalc, 5) = 
PathUpperArc Value(FromNode, ToNode, PathNumber, Position) 
Worksheets("PathThreads").Cells(152 + RangeCalc, 6) = ArcUpper(FromNode, ToNode) 
Worksheets("PathThreads").Cells(l52 + RangeCalc, 8) = FromNode *Multiplier+ 
FromNodeThread 
Worksheets("PathThreads").Cells(152 + RangeCalc, 9) = ToNode *Multiplier+ 
ToNodeThread 

Next Position 
RangeCalc = RangeCalc + 1 

Next PathNumber 

End Sub 

Sub CheckPaths() 

For PathNumber = 1 To TotalNumberOfPaths 

128 



SumLower=O 
SumUpper=O 
PositionGood(PathNumber) = True 
For Position= LastPathPositionEnd(PathNumber) To 2 Step -1 

ToNode = EndPathNode(PathNumber, Position) 
FromNode = EndPathNode(PathNumber, Position - 1) 
ToNodeThread = EndPathThread(PathNumber, Position) 
FromNodeThread = EndPathThread(PathNumber, Position - 1) 
Sum.Lower= Sum.Lower+ PathLowArcValue(FromNode, ToNode, PathNumber, 

Position) 
Sum.Upper= Sum.Upper+ PathUpperArcValue(FromNode, ToNode, PathNumber, 

Position) 
If PathLowArcValue(FromNode, ToNode, PathNumber, Position)> 

PathUpperArcValue(FromNode, ToNode, PathNumber, Position) Then 
PositionGood(PathNumber) = False 
Next Position 

If SumLower = NodeValueLower(EndNode, EndThread(PathNumber)) _ 
And Sum.Upper= NodeValueUpper(EndNode, EndThread(PathNumber)) _ 
And PositionGood(PathNumber) = True Then 

GoodPath(PathNumber) = True 
Else: GoodPath(PathNumber) = False 
End If 

Next PathNumber 
End Sub 

Sub NumberPaths() 

RangeCalc = 0 
EndPatliNumber = 0 
OldTotalNumberOfPaths = TotalNumberOfPaths 
TotalNumberOfPaths = 0 
'MaxPathLength = 0 
~ode= EndNode 

For PathNumber = 1 To OldTotalNumberOfPaths 
If GoodPath(PathNumber) = True Then 

RangeCalc = RangeCalc + 1 
EndPathNumber = EndPathNumber + 1 
TotalNumberOfPaths = TotalNumberOfPaths + 1 
LastPathPositionEnd(EndPathNumber) = LastPathPositionEnd(PathNumber) 
Worksheets("PathThreads").Cells(l + EndPathNumber, 11) = EndPathNumber 
Worksheets("PathThreads").Cells(l + EndPathNumber, 13) = 

LastPathPositionEnd(EndPathNumber) 
Worksheets("PathThreads").Cells(l + EndPathNumber, 9) = PathNumber 

129 



For Position= LastPathPositionEnd(PathNumber) To 2 Step -1 
ToNode = EndPathNode(PathNumber, Position) 
FromNode = EndPathNode(PathNumber, Position - 1) 
ToNodeThread = EndPathThread(PathNumber, Position) 
FromNodeThread = EndPathThread(PathNumber, Position - 1) 
EndPathNode(EndPathNumber, Position) = EndPathNode(PathNumber, Position) 
EndPathThread(EndPathNumber, Position) = EndPathThread(PathNumber, 

Position) 
PathLowArcValue(FromNode, ToNode, EndPathNumber, Position)= 

PathLowArcValue(FromNode, ToNode, PathNumber, Position) 
PathUpperArcValue(FromNode, ToNode, EndPathNumber, Position)= 

PathUpperArc Value(FromNode, ToNode, PathNumber, Position) 
Worksheets("PathThreads").Cells(l + RangeCalc, 1 +Position)= 

(EndPathNode(EndPathNumber, Position))* Multiplier+ 
EndPathThread(EndPathNumber, Position) 

Next Position 
End If 
Next PathNumber 

End Sub 

Sub WritePaths() 

RangeCalc = 0 
For PathNumber = 1 To TotalNumberOfPaths 
For Position= LastPathPositionEnd(PathNumber) To 2 Step -1 
RangeCalc = RangeCalc + 1 

ToNode = EndPathNode(PathNumber, Position) 
FromNode = EndPathNode(PathNumber, Position - 1) 
ToNodeThread = EndPaihThread(PathNumber, Position) 
FromNodeThread = EndPathThread(PathNumber, Position - 1) 

Worksheets("PathThreads").Cells(l52 + RangeCalc, 22) = PathNumber 
Worksheets("PathThreads").Cells(152 + RangeCalc, 23) = ArcLower(FromNode, 
ToNode) 
Worksheets("PathThreads").Cells(152 + RangeCalc, 24) = 
PathLowArc Value(FromNode, ToNode, PathNumber, Position) 
Worksheets("PathThreads").Cells(l52 + RangeCalc, 25) = 
PathUpperArc Value(FromNode, ToNode, PathNumber, Position) 
Worksheets("PathThreads").Cells(l52 + RangeCalc, 26) = ArcUpper(FromNode, 
ToNode) 
Worksheets("PathThreads").Cells(152 + RangeCalc, 28) = FromNode *Multiplier+ 
FromNodeThread 
Worksheets("PathThreads").Cells(l52 + RangeCalc, 29) = ToNode *Multiplier+ 
ToNodeThread 

Next Position 

130 



RangeCalc = RangeCalc + 1 
Next PathNumber 
End Sub 

Sub CheckldenticalPaths() 

For PathNumber = 1 To TotalNumberOfPaths 
NumberMatches(PathNumber) = 1 
For j = 1 To TotalNumberOfPaths 

PathMatch(PathNumber, j) = 0 
If LastPathPositionEnd(PathNumber) = LastPathPositionEndG) Then 

PathMatch(PathNumber, j) = 1 
For Position= 2 To (LastPathPositionEnd(PathNumber) - 1) 

ToNodePathNumber = EndPathNode(PathNumber, Position) 
FromNodePathNumber = EndPathNode(PathNumber, Position - 1) 
ToNodej = EndPathNode(j, Position) 
FromNodej = EndPathNode(j, Position - 1) 
If ToNodePathNumber = ToNodej And FromNodePathNumber = FromNodej 

And (PathMatch(PathNumber, j) = 1) Then 

'If (PathArc(PathNumber, Position)= PathArc(j, Position)) And 
(PathMatch(PathNumber,j) = 1) Then 

PathMatch(PathNumber, j) = 1 
Else: PathMatch(PathNumber, j) = 0 
End If 

Next Position 
End If 
'Worksheets("DominantArcs").Cells(2 + PathNumber, 14 + j) = 

PathMatch(PathNumber, j) 
If (PathMatch(PathNumber,j) = 1) And (PathNumber <> j) Then 
NumberMatches(PathNumber) = NumberMatches(PathNumber) + 1 
Nextj 
Worksheets("DominantArcs").Cells(2 + PathNumber, 13) = 
NumberMatches(PathNumber) 
Next PathNumber 

End Sub 

Sub CombinePathThreads() 

'look through paths combinedpaths(combonumber, pathnumber) 

ComboNumber = 0 
For PathNumber = 1 To TotalNumberOfPaths 

ComboPathFound(PathNumber) = 0 
Next PathNumber 

131 



For PathNumber = 1 To TotalNumberOfPaths 
If ComboPathFound(PathNumber) = 0 Then 

ComboNumber = ComboNumber + 1 
CombinedPath(ComboNumber, 1) = PathNumber 
PathinPositioninCombo = 1 
For j = (PathNumber) To TotalNumberOfPaths 

If (PathMatch(PathNumber,j) = 1) And (PathNumber <> j) Then 
ComboPathFound(PathNumber) = 1 
ComboPathFoundG) = 1 
PathinPositioninCombo = PathinPositioninCombo + 1 
CombinedPath(ComboNumber, PathinPositioninCombo) = j 

End If 
PathsinCombo(ComboNumber) = PathlnPositioninCombo 
Nextj 

End If 
Next PathNumber 

NumberOfCombinedPaths = ComboNumber 

End Sub 

Sub Obtain Combo Threadlnfo() 

'Initialize lowthread/highthread min/max path distance 
For ComboNumber = 1 To NumberOfCombinedPaths 

MinimumPathDistance(ComboNumber) = 0 
MaximumPathDistance(ComboNumber) = 0 

1 

For PositioninCombo = 1 To PathsinCombo(ComboNumber) 
For Position= LastPathPositionEnd(CombinedPath(ComboNumber, 1)) To 2 Step -

LowThreadComboNumberPosition(ComboNumber, Position) = Infinity 
HighThreadComboNumberPosition(ComboNumber, Position)= 0 
Next Position 

Next PositionlnCombo 
Next ComboNumber 

For ComboNumber = 1 To NumberOfCombinedPaths 
LowThreadComboNumberPosition(ComboNumber, 1) = 1 
HighThreadComboNumberPosition(ComboNumber, 1} = 1 
For PositioninCombo = 1 To PathsinCombo(ComboNumber) 
PathNumber = CombinedPath(ComboNumber, PositionlnCombo) 
'Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) + 

1, 3 * (PositioninCombo - 1) + 25) = CombinedPath(ComboNumber, PositioninCombo) 
For Position= LastPathPositionEnd(PathNumber) To 2 Step -1 

ToNode = EndPathNode(PathNumber, Position) 

132 



FromNode = EndPathNode(PathNumber, Position - 1) 
ToNodeThread = EndPathThread(PathNumber, Position) 
FromNodeThread = EndPathThread(PathNumber, Position) 
LowerArcPositionlnCombo(ComboNumber, PositionlnCombo, Position) = 

PathLowArc V alue(FromNode, ToNode, PathNumber, Position) 
UpperArcPositionlnCombo(ComboNumber, PositionlnCombo, Position) = 

PathUpperArcValue(FromNode, ToNode, PathNumber, Position) 
'Worksheets("CombinedPaths").Cells((Max:PathLength + 2) * (ComboNumber- 1) 

+ Position, 3 * (PositionlnCombo - 1) + 25) = 
LowerArcPositionlnCombo(ComboNumber, PositionlnCombo, Position) 

'Worksheets("CombinedPaths").Cells((Max:PathLength + 2) * (ComboNumber- 1) 
+ Position, 3 * (PositionlnCombo - 1) + 26) = 
UpperArcPositionlnCombo(ComboNumber, PositionlnCombo, Position) 

'Worksheets("CombinedPaths").Cells((Max:PathLength + 2) * (ComboNumber- 1) 
+ Position, 6) = ArcLower(FromNode, ToNode) 

'Worksheets("CombinedPaths").Cells((Max:PathLength + 2) * (ComboNumber- 1) 
+ Position, 7) = ArcUpper(FromNode, ToNode) 

'Worksheets("CombinedPaths").Cells((Max:PathLength + 2) * (ComboNumber- 1) 
+ Position, 3) = FromNode 

'Worksheets("CombinedPaths").Cells((Max:PathLength + 2) * (ComboNumber- 1) 
+ Position, 4) = ToNode 

If ToNodeThread < LowThreadComboNumberPosition(ComboNumber, Position) 
Then LowThreadComboNumberPosition(ComboNumber, Position) = ToNodeThread 

If ToNodeThread > HighThreadComboNumberPosition(ComboNumber, Position) 
Then HighThreadComboNumberPosition(ComboNumber, Position)= ToNodeThread 

Next Position 
Next PositionlnCombo 
Next ComboNumber 

For ComboNumber = 1 To.NumberOfCombinedPaths 
For Position= LastPathPositionEnd(CombinedPath(ComboNumber, 1)) To 2 Step -1 
ToNode = EndPathNode(CombinedPath(ComboNumber, 1), Position) 
FromNode = EndPathNode(CombinedPath(ComboNumber, 1 ), Position - 1) 
Worksheets("CombinedPaths").Cells((Max:PathLength + 2) * (ComboNumber- 1) + 

Position, 9) = _ 
LowThreadComboNumberPosition(ComboNumber, Position) 

Worksheets("CombinedPaths").Cells((Max:PathLength + 2) * (ComboNumber- 1) + 
Position, 10) = _ 

HighThreadComboNumberPosition(ComboNumber, Position) 
Worksheets("CombinedPaths").Cells((Max:PathLength + 2) * (ComboNumber- 1) + 

Position, 12) = _ 
NodeValueLower(ToNode, 

LowThreadComboNumberPosition(ComboNumber, Position)) 
Worksheets("CombinedPaths").Cells((Max:PathLength + 2) * (ComboNumber- 1) + 

Position, 13) = _ 

133 



Node V alueUpper(ToNode, 
High ThreadComboNumberPosition(ComboNumber, Position)) 

LowerArcCompleteCombo(ComboNumber, Position)=_ 
Node ValueLower(ToNode, LowThreadComboNumberPosition(ComboNumber, 

Position))_ 
- Node ValueLower(FromNode, LowThreadComboNumberPosition(ComboNumber, 

Position- I)) . 
UpperArcCompleteCombo(ComboNumber, Position) = _ 

Node ValueUpper(ToNode, HighThreadComboNumberPosition(ComboNumber, 
Position))_ 

- NodeValueUpper(FromNode, HighThreadComboNumberPosition(ComboNumber, 
Position - 1 )) 

Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) + 
Position, 15) = _ 

LowerArcCompleteCombo(ComboNumber, Position) 
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) + 

Position, 16) = _ 
UpperArcCompleteCombo(ComboNumber, Position) 

Next Position 

Next ComboNumber 

End Sub 

Sub FindArc ValuesOnCombinedPath() 

For ComboNumber = 1 To NumberOfCombinedPaths 
PathNumber = CombinedPath(ComboNumber, 1) 
ComboPathLength(ComboNumber) = 0 

If Node ValueUpper(EndNode, High ThreadComboNumberPosition(ComboNumber, 
LastPathPositionEnd(PathNumber))) <> _ 
Node ValueLower(EndNode, LowThreadComboNumberPosition(ComboNumber, 
LastPathPositionEnd(PathNumber))) Then 

ShortestPathLength(ComboNumber) = _ 
NodeValueUpper(EndNode, HighThreadComboNumberPosition(ComboNumber, 
LastPathPositionEnd(PathNumber))) _ 
- Node ValueLower(EndNode, LowThreadComboNumberPosition(ComboNumber, 
LastPathPositionEnd(PathNumber))) 

For Position= LastPathPositionEnd(CombinedPath(ComboNumber, 1)) To 2 Step -1 

ToNode = EndPathNode(PathNumber, Position) 
FromNode = EndPathNode(PathNumber, Position - 1) 

134 



ComboPathLength(ComboNumber) = ComboPathLength(ComboNumber) + 
ArcUpper(FromNode, ToNode) -ArcLower(FromNode, ToNode) 
Next Position 

PositionLength(ComboNumber, 2) = ShortestPathLength(ComboNumber) 

For Position= LastPathPositionEnd(CombinedPath(ComboNumber, 1)) To 3 Step -1 
ToNode = EndPathNode(PathNumber, Position) 
FromNode = EndPathNode(PathNumber, Position - 1) 

PositionLength(ComboNumber, Position)= ShortestPathLength(ComboNumber) * 
(ArcUpper(FromNode, ToNode) - ArcLower(FromNode, ToNode)) I 
ComboPathLength(ComboNumber) 
PositionLength(ComboNumber, 2) = PositionLength(ComboNumber, 2) -
PositionLength( Combo Number, Position) 

Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber- 1) + 
Position, 18) = _ 

PositionLength(ComboNumber, Position) 

UpperArcCompleteCombo(ComboNumber, Position) = _ 
LowerArcCompleteCombo(ComboNumber, Position)+ 

PositionLength(ComboNumber, Position) 

Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) + 
Position, 21) = _ 

UpperArcCompleteCombo(ComboNumber, Position) 
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber- 1) + 
Position, 20) = _ 

LowerArcCompleteCombo(ComboNumber, Position) 

Next Position 

UpperAtcCompleteCombo(ComboNumber, 2) = _ 
LowerArcCompleteCombo(ComboNumber, 2) + PositionLength(ComboNumber, 2) 

End If 

Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber- 1) + 2, 
18) = _ 

PositionLength(ComboNumber, 2) 
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) + 2, 
21) = _ 

UpperArcCompleteCombo(ComboNumber, 2) 
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) + 2, 
20)= _ 

135 



LowerArcCompleteCombo(ComboNumber, 2) 

Worksheets("CombinedPaths").Cells((Max:PathLength + 2) * (ComboNumber- 1) + 
Position+ 1, 17) = _ 

ComboPathLength(ComboNumber) 
Worksheets("CombinedPaths").Cells((Max:PathLength + 2) * (ComboNumber- 1) + 
Position + 2, 17) = _ 

ShortestPathLength(ComboNumber) 

Next ComboNumber 
End Sub 

Sub FindNonDominatedPaths() 

' we are listing all end threads for each ComboNumber 
Worksheets("NonDominatedPaths").Cells(l * (NumberOfCombinedPaths + 2) + 4, 1) = 
"NonDominatedCombos" 
For ComboNumber = 1 To NumberOfCombinedPaths 

For PositionlnCombo = 1 To PathslnCombo(ComboNumber) 
PathNumber = CombinedPath(ComboNumber, PositionlnCombo) 
ThreadlnComboNumber(ComboNumber, EndPathThread(PathNumber, 

LastPathPositionEnd(PathNumber))) = 1 
ComboEndThreads(ComboNumber, PositionlnCombo) = 

EndPathThread(PathNumber, LastPathPositionEnd(PathNumber)) 
Worksheets("NonDominatedPaths").Cells(2 * (NumberOfCombinedPaths + 2) + 

ComboNumber + 4, 2 + PositionlnCombo) = ComboEndThreads(ComboNumber, 
PositionlnCombo) 

Next PositionlnCombo 
Next ComboNumber 

For ComboNumber = 1 To NumberOfCombinedPaths 
ComboNumberNonDominated(ComboNumber) = 1 
For Thread= 1 To WCardinality(EndNode) 

Worksheets("NonDominatedPaths").Cells(l * (NumberOfCombinedPaths + 2) + 
ComboNumber + 4, 3 + Thread) = ThreadlnComboNumber(ComboNumber, Thread) 

If ThreadlnComboNumber(ComboNumber, Thread) = 0 Then 
ComboNumberNonDominated(ComboNumber) = 0 
Next Thread 
If ComboNumberNonDominated(ComboNumber) = 1 Then 
Worksheets("NonDominatedPaths").Cells(l * (NumberOfCombinedPaths + 2) + 
ComboNumber + 4, 1) = ComboNumber 

If ComboNumberNonDominated(ComboNumber) = 1 And 
(MaximumPathDistance(ComboNumber) = Node V alueUpper(EndNode, 
WCardinality(EndNode ))) Then 

136 



Worksheets("NonDominatedPaths").Cells(l * (NumberOfComoinedPaths + 2) + 
ComboNumber + 4, 1) = ComboNumber 
Else 

ComboNumberNonDominated(ComboNumber) = 0 
End If 
Worksheets("NonDominatedPaths").Cells(l * (NumberOfCombinedPaths + 2) + 
ComboNumber + 4, 1) = ComboNumberNonDominated(ComboNumber) 
Next ComboNumber 

End Sub 

Sub MinimizeRegret() 

'SmallestMinimum = Infinity 
SmallestChange = Infinity 
'LargestMaximum = 0 
For ComboNumber = 1 To NumberOfCombinedPaths 

MinimumPathDistance(ComboNumber) = 0 
MaximumPathDistance(ComboNumber) = 0 
PathNumber = CombinedPath(ComboNumber, 1) 
For Position= LastPathPositionEnd(PathNumber) To 2 Step -1 

ToNode = EndPathNode(PathNumber, Position) 
FromNode = EndPathNode(PathNumber, Position - 1) 
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) + 

Position, 3) = FromNode 
Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) + 

Position, 4) = ToNode 
'Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) 

+ Position, 9) = NodeValueLower(ToNode, WCardinality(ToNode)) 
'Worksheets("CombinedPaths").Cells((MaxPathLength + 2) * (ComboNumber - 1) 

+ Position, 10) = NodeValueUpper(ToNode, WCardinality(ToNode)) 
MinimumPathDistance(ComboNumber) = MinimumPathDistance(ComboNumber) 

+ ArcLower(FromNode, ToNode) 
MaximumPathDistance(ComboNumber) = MaximumPathDistance(ComboNumber) 

+ ArcUpper(FromNode, ToNode) 
Next Position 
CumulativeDistanceChange(ComboNumber) = 

MaximumPathDistance(ComboNumber) - MinimumPathDistance(ComboNumber) 
'lfMinimumPathDistance(ComboNumber) < SmallestMinimum Then 
'SmallestMinimumCombo = ComboNumber 
'SmallestMinimum = MinimumPathDistance(ComboNumber) 
'End If 
'lfMaximumPathDistance(ComboNumber) < LargestMaximum Then 
'LargestMaximumCombo = ComboNumber 
'LargestMaximum = MaximumPathDistance(ComboNumber) 

137 



'End If 
If CumulativeDistanceChange(ComboNumber) < SmallestChange Then 
MinimizedRegretCombo = ComboNumber 
SmallestChange = CumulativeDistanceChange(ComboNumber) 
End If 
Worksheets("NonDominatedPaths").Cells(ComboNumber + 4, 4) = 

MinimumPathDistance(ComboNumber) 
Worksheets("NonDominatedPaths").Cells(ComboNumber + 4, 5) = 

MaximumPathDistance(ComboNumber) 
Worksheets("NonDominatedPaths").Cells(ComboNumber + 4, 7) = 

CumulativeDistanceChange(ComboNumber) 
Worksheets("NonDominatedPaths").Cells(ComboNumber + 4, 1) = 

ComboPathPoints(ComboNumber) 
Next ComboNumber 
Worksheets("NonDominatedPaths").Cells(2, 1) = SmallestChange 
Worksheets("NonDominatedPaths").Cells(2, 2) = MinimizedRegretCombo 
Worksheets("NonDominatedPaths").Cells(l, 1) = "SmallestChange" 
Worksheets("N onDominatedPaths "). Cells( 1, 2) = "MinimizedRegretCombo" 
Worksheets("NonDominatedPaths").Cells(4, 1) = "ComboPoints" 

End Sub 

Sub GetArcs() 

For FromNode = 1 To EndNode 
For ToNode = 1 To EndNode 

If ArcLower(FromNode, ToNode) < Infinity Then 
NumberOfArcs = NumberOfArcs + 1 
RangeCalc = RangeCalc + 1 
OriginatingNode(NumberOfArcs) = FromNode 
TerminatingNode(NumberOfArcs) = ToNode 

End If 
Next ToNode 

Next FromNode 
'loop= n /\ 2 

RangeCalc = 0 
For ComboNumber = 1 To NumberOfCombinedPaths 
PathNumber = CombinedPath(ComboNumber, 1) 

For Position= 1 To LastPathPositionEnd(PathNumber) 

ToNode = EndPathNode(PathNumber, Position+ 1) 
FromNode = EndPathNode(PathNumber, Position) 
ToNodeThread = EndPathThread(PathNumber, Position+ 1) 

138 



FromNodeThread = EndPathThread(PathNumber, Position) 

Worksheets("DominantArcs").Cells(2, 2) = "PathArc" 
Worksheets("DominantArcs").Cells(2, 3) = "PathNumber" 

For i = 1 To NumberOfArcs 
If (OriginatingNode(i) = FromNode) And (TerminatingNode(i) = ToNode) Then 

PathArc(ComboNumber, Position) = i 
RangeCalc = RangeCalc + 1 
Worksheets("DominantArcs").Cells(2 + RangeCalc, 2) = PathArc(ComboNumber, 

Position) 
Worksheets("DominantArcs").Cells(2 + RangeCalc, 3) = ComboNumber 
'Worksheets("DominantArcs").Cells(2 + RangeCalc, 30) = 

PathLowArc V alue(FromNode, ToNode, PathNumber, Position) 
'Worksheets("DominantArcs").Cells(2 + RangeCalc, 31) = 

PathUpperArc Value(FromNode, ToNode, PathNumber, Position) 
End If 
Nexti 

Next Position 
Next ComboNumber 

End Sub 

Sub EvaluateDominantArcs() 

For ComboNumber = 1 To NumberOfCombinedPaths 
PathNumber = CombinedPath(ComboNumber, 1) 
For Position= 1 To (LastPathPositionEnd(PathNumber) - 1) 
For i = 1 To NwnberOfArcs 

If PathArc(ComboNumber, Position)= i Then NumberOfPathsContainingArc(i) = 
NumberOfPathsContainingArc(i) + 1 
Nexti 
Next Position 
'Next PathNumber 
Next ComboNumber 

ArcslnShortPath = 0 
For i = 1 To NumberOfArcs 

Worksheets("DominantArcs").Cells(2 + i, 6) = i 
Worksheets("DominantArcs").Cells(2 + i, 5) = NumberOfPathsContainingArc(i) 
ArcslnShortPath = ArcslnShortPath + NumberOfPathsContainingArc(i) 

Next i 

'For i = 1 To NumberOfArcs 
' RelativeWorthArc(i) = NumberOfPathsContainingArc(i) I ArcslnShortPath 

139 



' Worksheets("DominantArcs").Cells(2 + i, 7) = RelativeWorthArc(i) 
'Nexti 

Worksheets("DominantArcs").Cells(2, 7) = "RelativeWorthArc" 
Worksheets("DominantArcs").Cells(2, 6) = "ArcNumber" 
Worksheets("DominantArcs").Cells(2, 5) = "NumberOfPathsContainingArc" 
Worksheets("DominantArcs").Cells(2, 10) = "PathNumber" 
Worksheets("DominantArcs").Cells(2, 11) = "PathPoints" 

For ComboNumber = 1 To NumberOfCombinedPaths 
PathNumber = CombinedPath(ComboNumber, 1) 
'For PathNumber = 1 To TotalNumberOfPaths 
PathPoints(ComboNumber) = 0 
For Position= 1 To (LastPathPositionEnd(PathNumber) - 1) 

PathPoints(ComboNumber) = PathPoints(ComboNumber) + 
NumberOfPathsContainingArc(PathArc(ComboNumber, Position)) 
Next Position 

PathPoints(ComboNumber) = PathPoints(ComboNumber) I 
(LastPathPositionEnd(CombinedPath(ComboNumber, 1)) - 1) 
Worksheets("DominantArcs").Cells(2 + ComboNumber, 10) = ComboNumber 
Worksheets("DominantArcs").Cells(2 + ComboNumber, 11) = 
PathPoints(ComboNumber) 
'Next PathNumber 
Next ComboNumber 

End Sub 

Sub WriteArclnfo() 
RangeCalc = 0 
For i = l To NumberOfArcs 
RangeCalc = RangeCalc + 1 
For PathNumber = 1 To TotalNumberOfPaths 
For Position= LastPathPositionEnd(PathNumber) To 2 Step -1 

ToNode = EndPathNode(PathNumber, Position) 
FromNode = EndPathNode(PathNumber, Position - 1) 
ToNodeThread = EndPathThread(PathNumber, Position) 
FromNodeThread = EndPathThread(PathNumber, Position - 1) 
'For i = 1 To NumberOfArcs 
If (PathArc(PathNumber, Position - 1) = i) Then 

RangeCalc = RangeCalc + 1 
Worksheets("Arclnfo").Cells(2 + RangeCalc, 2) = i 
Worksheets("Arclnfo").Cells(2 + RangeCalc, 3) = PathNumber 
Worksheets("Arclnfo").Cells(2 + RangeCalc, 5) = PathLowArcValue(FromNode, 

ToNode, PathNumber, Position) 

140 



Worksheets("Arclnfo").Cells(2 + RangeCalc, 6) = PathUpperArcValue(FromNode, 
ToNode, PathNumber, Position) 

Worksheets("Arclnfo").Cells(2 + RangeCalc, 11) = OriginatingNode(i) 
Worksheets("Arclnfo").Cells(2 + RangeCalc, 12) = TerminatingNode(i) 
Worksheets("Arclnfo").Cells(2 + RangeCalc, 8) = ArcLower(OriginatingNode(i), 

TerminatingNode(i)) 
Worksheets("Arclnfo").Cells(2 + RangeCalc, 9) = ArcUpper(OriginatingNode(i), 

TerminatingNode(i)) 
End If 
'Next i 

Next Position 
Next PathNumber 
Nexti 

End Sub 

Sub FindSubPathsQ 

RangeCalc = 1 
For SubPathLength = 3 To MaxPathLength 
Number= 1 
For ComboNumber = 1 To NumberOfCombinedPaths 

PathNumber = CombinedPath(ComboNumber, 1) 
For StartingSet = 1 To (LastPathPositionEnd(PathNumber)- SubPathLength) 

SubPathComboNumber(SubPathLength, Number) = ComboNumber 
Worksheets("SubPaths").Cells(RangeCalc + 2, 4) = Number 
For Position= 1 To SubPathLength 

SubPath(SubPathLength, Number, Position) = EndPathNode(PathNumber, 
StartingSet + Position) 

Worksheets("SubPaths").Cells(RangeCalc + 2, 2) = SubPath(SubPathLength, 
Number, Position) 

RangeCalc = RangeCalc + 1 
Next Position 

Worksheets("SubPaths").Cells(RangeCalc + 1, 3) = 
SubPathComboNumber(SubPathLength, Number) 

Number= Number+ 1 
RangeCalc = RangeCalc + 1 
Next StartingSet 

Next ComboNumber 
NumberOfSubPaths(SubPathLength) = Number - 1 
Worksheets("SubPaths").Cells(RangeCalc + 2, 5) = NumberOfSubPaths(SubPathLength) 
Next SubPathLength 

End Sub 

141 



Sub CheckldenticalSubPaths() 

'Initialize Match 
For SubPathLength = 3 To MaxPathLength 
For Number= 1 To NumberOfSubPaths(SubPathLength) 
For j = 1 To NumberOfSubPaths(SubPathLength) 

SubPathMatch(SubPathLength, Number, j) = 1 
ComboSubPathMatch(SubPathLength, Number, j) = 1 

Nextj 
Next Number 
Next SubPathLength 

RangeCalc = 1 
For SubPathLength = 3 To MaxPathLength 
RangeCalc = RangeCalc + 1 
For Number= 1 To NumberOfSubPaths(SubPathLength) 
NumberSubMatches(SubPathLength, Number)= 1 
RangeCalc = RangeCalc + 1 
For j = Number To NumberOfSubPaths(SubPathLength) 

For Position= 1 To SubPathLength 
If SubPath(SubPathLength, Number, Position) = SubPath(SubPathLength, j, 

Position) And (SubPathMatch(SubPathLength, Number, j) = 1) Then 
SubPathMatch(SubPathLength, Number, j) = 1 
Else: SubPathMatch(SubPathLength, Number, j) = 0 

End If 
Next Position 

Nextj 
Next Number 
Next SubPathLength 
End Sub 

Sub FindComboslnSubPaths() 

For SubPathLength = 3 To MaxPathLength 
For Number= 1 To NumberOfSubPaths(SubPathLength) 

ComboSubPathFound(SubPathLength, Number)= 0 
NumberSubMatches(SubPathLength, Number)= 1 

Next Number 

For Number= 1 To NumberOfSubPaths(SubPathLength) 
If ComboSubPathFound(SubPathLength, Number) = 0 Then 

For j =(Number+ 1) To NumberOfSubPaths(SubPathLength) 
If (SubPathMatch(SubPathLength, Number,j) = 1) Then 

ComboSubPathFound(SubPathLength, Number) = 1 
ComboSubPathFound(SubPathLength, j) = 1 

142 



NumberSubMatches(SubPathLength, Number) = 
NumberSubMatches(SubPathLength, Number)+ 1 

End If 
Nextj 

End If 
Next Number 

Next SubPathLength 

RangeCalc = 1 
Worksheets("SubPaths").Cells(2, 12) = "SubPathLength" 
Worksheets("SubPaths").Cells(2, 14) = "NumberSubMatches" 
For SubPathLength = 3 To MaxPathLength 

Range= 0 
RangeCalc = RangeCalc + 1 
For Number= 1 To NumberOfSubPaths(SubPathLength) 
If NumberSubMatches(SubPathLength, Number) > 1 Then 

RangeCalc = RangeCalc + 1 
Worksheets("SubPaths").Cells(RangeCalc + SubPathLength, 12) = SubPathLength 
Worksheets("SubPaths").Cells(RangeCalc + SubPathLength, 14) = 

NumberSubMatches(SubPathLength, Number) 
'Worksheets("SubPaths").Cells(RangeCalc + 2, 15) = Number 

For Position= 1 To SubPathLength 
Worksheets("SubPaths").Cells(RangeCalc + SubPathLength, 16 +Position)= 

SubPath(SubPathLength, Number, Position) 
Next Position 
Worksheets("SubPaths").Cells(RangeCalc + SubPathLength, 17 +Position)= 

SubPathComboNumber(SubPathLength, Number) 
For j =(Number+ 1) To NumberOfSubPaths(SubPathLength) 

If (SubPathMatch(SubPathLength, Number, j) .= 1) Then 
Range = Range + 1 
Worksheets("SubPaths").Cells(RangeCalc + SubPathLength, 17 +Position+ 

Range) = SubPathComboNumber(SubPathLength, j) 
End If 

Nextj 
End If 

Next Number 
Next SubPathLength 

End Sub 

143 



APPENDIXB 

FLOW CHART IDENTIFY CUT POINTS 

Begin 

Stopping Cut 
Point(Node) = 

infinity 

k=1, i =O, 
WCardinality(1) = 

1 

NumberUnordered 
(Node)= k-1 

End 

t = t+1 

t = t+1 

UnorderedCutPoints( Node,k) = 
Arclower(Node,i) + 
NodeValuelower(i,t) 

yes 

UnorderedCutPoints(Node,k) = 
ArcUpper(Node,i) + 
NodeValueUpper(i,t) . 

UnorderedCutPoints(Node,k)< 
StoppingCutPoint(Node)<infinity? 

StoppingCutPoint(Node )= 
UnorderedCutPoints(k,Node) 

k = k+1 

144 



APPENDIXC 

FLOW CHART ORDER CUT POINTS 

Temp = Infinity 
Stopping Position(Node)=1 

i=O 

yes 

CutPoints(Node, 1 )=Temp 

WCardinality(Node)= 1 

End 

z=1 

i=O 

CutPoints(Node,z) 
=Temp 

Temp= 
yes UnorderedCutPoints 

(Node,i) 

z =z+1 

CutPointCardinality 
(Node)= z-1. 
z =Number 

Unordered(Node) 

U rderedCutPo· 
Node,i)< Temp an 

UnorderedCutPoints 
(Node,i)>CutPoints 

(Node,z-1) 

yes 

Temp=Unordered 
CutPoints(Node,i). 
CutPointCardinality 

(Node)= z 

no 

StoppingPosition(Node) = z 

145 



APPENDIXD 

FLOW CHART DECREASE PATH LOW ARC VALUE 

Begin 

SubsequentChange= ... 
PathlowArcValue(Current)= 
PathUpperArcValue(Current) 

PositionNext=Position 

PositionNext=PositionNext -1 

End 

----no 

ToNodePrev=EndPathNode(PathNumber,PositonNext) 
FromNodePrev=EndPathNode(PathNumber,PositonNext-1) 

ToNodeThreadPrev=EndPathThread(PathNumber,PositonNext) 
From Node ThreadPrev=EndPathThread(PathNumber, PositonNext-1) 

MaxlterativeChange= PathUpperArcValue(Prev)-PathlowArcValue(Prev) 

axlterativeChange> 
SubsequentChange 

yes 

Maxlterarive Change = 0 

es 

Decrease CurrentPathlowArcValue by Max 
Increase Previous PathlowArcValue by Max 

Subsequent = Subsequent - Max 

Decrease CurrentPathlowArcValue by Subseq. 
Increase Previous PathlowArcValeu bySubseq. 

Subsequent= O 

PositionNext =2 

146 



APPENDIXE 

FLOW CHART INCREASE PATH HIGH ARC VALUE 

Begin 

SubsequentChange= ... 
PathlowArcValue(Current)
PathUpperArcValue(Current) 

PositionNext=Position 

PositionNext=PositionNext -1 

no 

End 

no 

ToNodePrev=EndPathNode(PathNumber,PositonNext) 
FromNodePrev=EndPathNode(PathNumber,PositonNext-1) 

ToNodeThreadPrev=EndPathThread(PathNumber,PositonNext) 
From Node ThreadPrev=EndPathThread(PathNumber,PositonNext-1) 

MaxlterativeChange= PathUpperArcValue(Prev)-PathlowArcValue(Prev) 

Maxlterative yes 
Ch an g e < O? 

'>------

Maxlterarive Change = 0 
no 

yes 

Increase Current PathUpperArcValue by Max 
Decrease Previous PathUpperArcValue by Max 

Subsequent = Subsequent - Max 

Increase Current PathUpperArcValeu bySubseq. 
Decrease PreviousPathUpperArcValue by Subseq. 

Subsequent = 0 

PositionNext=2 

147 



APPENDIXF 

SHORTEST PATHS 10-NODE NETWORK IV 

:c 0:: - N C") "lit' It) <O ~·O:: ..... N C") "lit' It) .. <O 
1-W w w .w w w w· ... w w w w w iU 

···~···. .····~~ 0 0 C 0 C 0 .·~· m Q .C c· C .,.c· 
0 0 0 i <O 0 o.; :IE·: 0 0 0 0 0 ·l•o· . 

::> z z z z . z .. ::, ' z z z z z z· z z 
... 

1 101 301 601 1001 270 101 402 704 1015 
2 101 301 601 . 1002 271 101 301 402 704 1015 
3 101 401 701 801 1002 272 101 201 501 704 1015 
4 101 301 601 1003 273 101 201 501 806 1015 
5 101 401 701 1003 274 101 401 703 806 1015 
6 101 401 701 801 1003 275 101 402 703 806 1015 
7 101 301 601 1004 276 101 301 402 703 806 1015 
.8 101 301 602 1004 277 101 201 501 703 806 1015 
9 101 401 602 1004 278 101 402 704 806 1015 

10 101 401 701 1004 279 101 301 402 704 806 1015 
11 101 401 701 801 1004 280 101 201 501 704 806 1015 
12 101 301 601 1005 .. 281 101 402 705 806 1015 
13 101 301 602 1005 282 101 301 402 705 806 1015 
14 101 401 602 1005 283 101 201 501 705 806 1015 
15 101 401 701 1005 284 101 301 601 705 806 1015 
16 101 401 701 801 1005 285 101 301 603 1016 
17 101 401 701 802 1005 · 286 101 401 603 1016 
18 101 401 702 802 1005 287 101 402 603 1016 
19 101 201 501 702 802 1005 288 101 301 402 603 1016 
20 101 301 601 1006 289 101 401 701 1016 20 
21 101 301 602 1006 290 101 401 702 1016 20 
22 101 401 602 1006 291 101 201 501 702 1016 
23 101 401 701 1006 292 101 401 703 1016 40 
24 101 401 701 801 1006 293 101 402 703 1016 
25 101 401 701 802 1006 294 101 301 402 703 1016 
26 101 401 702 802 1006 295 101 201 501 703 1016 
27 101 201 501 702 802 1006 296 101 402 704 1016 20 
28 101 201 501 803 1006 297 101 301 402 704 1016 
29 101 401 701 803 1006 298 101 201 501 704 1016 
30 101 401 702 803 1006 299 101 402 705 1016 20 
31 101 201 501 702 803 1006 .300 101 301 402 705 1016 
32 101 401 703 803 1006 301 101 201 501 705 1016 
33 101 402 703 803 1006 302 101 301 601 705 1016 
34 101 301 402 703 803 1006 303 101 201 501 806 1016 
35 101 201 501 703 803 1006 304 101 401 703 806 1016 
36 101 301 601 1007 305 101 402 703 806 1016 
37 101 301 602 1007 306 101 301 402 703 806 1016 
38 101 401 602 1007 307 101 201 501 703 806 1016 
39 101 401 701 1007 308 101 402 704 806 1016 
40 101 401 701 802 1007 309 101 301 402 704 806 1016 
41 101 401 702 802 1007 310 101 201 501 704 806 1016 
42 101 201 501 702 802 1007 311 101 402 705 806 1016 
43 101 201 501 803 1007 312 101 301 402 705 806 1016 
44 101 401 701 803 1007 313 101 201 501 705 806 1016 
45 101 401 702 803 1007 314 101 301 601 705 806 1016 
46 101 201 501 702 803 1007 315 101 301 603 1017 
47 101 401 703 803 1007 316 101 401 603 1017 
48 101 402 703 803 1007 317 101 402 603 1017 
49 101 301 402 703 803 1007 318 101 301 402 603 1017 
50 101 201 501 703 803 1007 319 101 401 701 1017 

148 



:I: 0:: ..... N ('I) 'I:!" U') <O :I: 0:: ..... N ('I) ,q- U') <O 
1-W w w w w w w 1-W w w w w w w 
~CD 0 0 0 0 0 0 ~CD 0 0 0 0 0 0 0.:::E 0 0 0 0 0 0 Q. :::E 0 0 0 0 0 0 :::> z z z z z z :::> z z z z z z z z 

51 101 301 602 1008 320 101 401 702 1017 
52 101 401 602 1008 321 101 201 501 702 1017 
53 101 401 701 1008 322 101 401 703 1017 
54 101 201 501 803 1008 323 101 402 703 1017 
55 101 401 701 803 1008 324 101 301 402 703 1017 
56 101 401 702 803 1008 325 101 201 501 703 1017 
57 101 201 501 702 803 1008 326 101 402 704 1017 
58 101 401 703 803 1008 327 101 301 402 704 1017 
59 101 402 703 803 1008 328 101 201 501 704 1017 
60 101 301 402 703 803 1008 329 101 402 705 1017 
61 101 201 501 703 803 1008 330 101 301 402 705 1017 
62 101 301 602 1009 331 101 201 501 705 1017 
63 101 401 602 1009 332 101 301 601 705 1017 
64 101 401 701 1009 333 101 201 501 806 1017 
65 101 401 702 1009 334 101 401 703 806 1017 
66 101 201 501 702 1009 335 101 402 703 806 1017 
67 101 201 501 803 1009 336 101 301 402 703 806 1017 
68 101 401 701 803 1009 337 101 201 501 703 806 1017 
69 101 401 702 803 1009 338 101 402 704 806 1017 
70 101 201 501 702 803 1009 339 101 301 402 704 806 1017 
71 101 401 703 803 1009 340 101 201 501 704 806 1017 
72 101 402 703 803 1009 341 101 402 705 806 1017 
73 101 301 402 703 803 1009 342 101 301 402 705 806 1017 
74 101 201 501 703 803 1009 343 101 201 501 705 806 1017 
75 101 301 602 1010 344 101 301 601 705 806 1017 
76 101 401 602 1010 345 101 201 501 807 1017 
77 101 401 701 1010 346 101 401 703 807 1017 
78 101 401 702 1010 347 101 402 703 807 1017 
79 101 201 501 702 1010 348 101 301 402 703 807 1017 
80 101 401 703 1010 349 101 201 501 703 807 1017 
81 101 402 703 1010 350 101 402 704 807 1017 
82 101 301 402 703 1010 351 101 301 402 704 807 1017 
83 101 201 501 703 1010 352 101 201 501 704 807 1017 
84 101 201 501 803 1010 353 101 402 705 807 1017 
85 101 401 701 803 1010 354 101 301 402 705 807 1017 
86 101 401 702 803 1010 355 101 201 501 705 807 1017 
87 101 201 501 702 803 1010 356 101 301 601 705 807 1017 
88 101 401 703 803 1010 357 101 402 706 807 1017 
89 101 402 703 803 1010 358 101 301 402 706 807 1017 
90 101 301 402 703 803 1010 359 101 201 501 706 807 1017 
91 101 201 501 703 803 1010 360 101 201 502 706 807 1017 
92 101 301 602 1011 361 101 401 502 706 807 1017 
93 101 401 602 1011 362 101 301 601 706 807 1017 
94 101 301 603 1011 363 101 301 603 1018 
95 101 401 603 1011 364 101 401 603 1018 
96 101 402 603 1011 365 101 402 603 1018 
97 101 301 402 603 1011 366 101 301 402 603 1018 
98 101 401 701 1011 367 101 401 701 1018 
99 101 401 702 1011 368 101 401 702 1018 

100 101 201 501 702 1011 369 101 201 501 702 1018 
101 101 401 703 1011 370 101 401 703 1018 
102 101 402 703 1011 371 101 402 703 1018 
103 101 301 402 703 1011 372 101 301 402 703 1018 
104 101 201 501 703 1011 373 101 201 501 703 1018 
105 101 201 501 803 1011 374 101 402 704 1018 
106 101 401 701 803 1011 375 101 301 402 704 1018 
107 101 401 702 803 1011 376 101 201 501 704 1018 
108 101 201 501 702 803 1011 377 101 402 705 1018 
109 101 401 703 803 1011 378 101 301 402 705 1018 
110 101 402 703 803 1011 379 101 201 501 705 1018 

149 



:c 0:: ..... N (") "q" U') <O :c 0:: .... N (") "q" U') <O 
1-W w w w w w w 1-W w w w w w w < co C C C C C C < co C C C C C C 
0.. :E 0 0 0 0 0 0 0.. :E 0 0 0 0 0 0 

:::> z z z z z z ::, z z z z z z z z 
111 101 301 402 703 803 1011 380 101 301 601 705 1018 
112 101 201 501 703 803 1011 381 101 201 501 806 1018 
113 101 201 501 804 1011 382 101 401 703 806 1018 
114 101 401 701 804 1011 383 101 402 703 806 1018 
115 101 401 702 804 1011 384 101 301 402 703 806 1018 
116 101 201 501 702 804 1011 385 101 201 501 703 806 1018 
117 101 401 703 804 1011 386 101 402 704 806 1018 
118 101 402 703 804 1011 387 101 301 402 704 806 1018 
119 101 301 402 703 804 1011 388 101 201 501 704 806 1018 
120 101 201 501 703 804 1011 389 101 402 705 806 1018 
121 101 402 704 804 1011 390 101 301 402 705 806 1018 
122 101 301 402 704 804 1011 391 101 201 501 705 806 1018 
123 101 201 501 704 804 1011 392 101 301 601 705 806 1018 
124 101 301 602 1012 393 101 201 501 807 1018 
125 101 401 602 1012 394 101 401 703 807 1018 
126 101 301 603 1012 395 101 402 703 807 1018 
127 101 401 603 1012 396 101 301 402 703 807 1018 
128 101 402 603 1012 397 101 201 501 703 807 1018 
129 101 301 402 603 1012 398 101 402 704 807 1018 
130 101 401 701 1012 399 101 301 402 704 807 1018 
131 101 401 702 1012 400 101 201 501 704 807 1018 
132 101 201 501 702 1012 401 101 402 705 807 1018 
133 101 401 703 1012 402 101 301 402 705 807 1018 
134 101 402 703 1012 403 101 201 501 705 807 1018 
135 101 301 402 703 1012 404 101 301 601 705 807 1018 
136 101 201 501 703 1012 405 101 402 706 807 1018 
137 101 201 501 803 1012 406 101 301 402 706 807 1018 
138 101 401 701 803 1012 407 101 201 501 706 807 1018 
139 101 401 702 803 1012 408 101 201 502 706 807 1018 
140 101 201 501 702 803 1012 409 101 401 502 706 807 1018 
141 101 401 703 803 1012 410 101 301 601 706 807 1018 
142 101 402 703 803 1012 411 101 201 501 808 1018 
143 10.1 301 402 703 803 1012 412 101 201 502 808 1018 
144 101 201 501 703 803 1012 413 101 401 502 808 1018 
145 101 201 501 804 1012 414 101 402 704 808 1018 
146 101 401 701 804 1012 415 101 301 402 704 808 1018 
147 101 401 702 804 1012 416 101 201 501 704 808 1018 
148 101 201 501 702 804 1012 417 101 402 705 808 1018 
149 101 401 703 804 1012 418 101 301 402 705 808 1018 
150 101 402 703 804 1012 419 101 201 501 705 808 1018 
151 101 301 402 703 804 1012 420 101 301 601 705 808 1018 
152 101 201 501 703 804 1012 421 101 402 706 808 1018 
153 101 402 704 804 1012 422 101 301 402 706 808 1018 
154 101 301 402 704 804 1012 423 101 201 501 706 808 1018 
155 101 201 501 704 804 1012 424 101 201 502 706 808 1018 
156 101 201 501 805 1012 425 101 401 502 706 808 1018 
157 101 401 702 805 1012 426 101 301 601 706 808 1018 
158 101 201 501 702 805 1012 427 101 301 603 1019 
159 101 401 703 805 1012 428 101 401 603 1019 
160 101 402 703 805 1012 429 101 402 603 1019 
161 101 301 402 703 805 1012 430 101 301 402 603 1019 
162 101 201 501 703 805 1012 431 101 401 701 1019 
163 101 402 704 805 1012 432 101 401 702 1019 
164 101 301 402 704 805 1012 433 101 201 501 702 1019 
165 101 201 501 704 805 1012 434 101 401 703 1019 
166 101 402 705 805 1012 435 101 402 703 1019 
167 101 301 402 705 805 1012 436 101 301 402 703 1019 
168 101 201 501 705 805 1012 437 101 201 501 703 1019 
169 101 301 601 705 805 1012 438 101 402 704 1019 
170 101 301 602 1013 439 101 301 402 704 1019 

150 



::c 0::: ..- N C") "It' ll) (0 ::c 0::: 1""" N C") "It' ll) (0 

1-W w w w w w w 1-W w w w w w w <(a) C C C C C C <(a) C C C C C C a.. :E 0 0 0 0 0 0 a.. :::E 0 0 0 0 0 0 
::::> z z z z z z :::, z z z z z z z z 

171 101 401 602 1013 440 101 201 501 704 1019 
172 101 301 603 1013 441 101 402 705 1019 
173 101 401 603 1013 442 101 301 402 705 1019 
174 101 402 603 1013 ·443 101 201 501 705 1019 
175 101 301 402 603 1013 444 101 301 601 705 1019 
176 101 401 701 1013 445 101 201 501 807 1019 
177 101 401 702 1013 446 101 401 703 807 1019 
178 101 201 501 702 1013 447 101 402 703 807 1019 
179 101 401 703 1013 448 101 301 402 703 807 1019 
180 101 402 703 1013 449 101 201 501 703 807 1019 
181 101 301 402 703 1013 450 101 402 704 807 1019 
182 101 201 501 703 1013 451 101 301 402 704 807 1019 
183 101 201 501 804 1013 452 101 201 501 704 807 1019 
184 101 401 701 804 1013 453 101 402 705 807 1019 
185 101 401 702 804 1013 454 101 301 402 705 807 1019 
186 101 201 501 702 804 1013 455 101 201 501 705 807 1019 
187 101 401 703 804 1013 456 101 301 601 705 807 1019 
188 101 402 703 804 1013 457 101 402 706 807 1019 
189 101 301 402 703 804 1013 458 101 301 402 706 807 1019 
190 101 201 501 703 804 1013 459 101 201 501 706 807 1019 
191 101 402 704 804 1013 460 101 201 502 706 807 1019 
192 101 301 402 704 804 1013 461 101 401 502 706 807 1019 
193 101 201 501 704 804 1013 462 101 301 601 706 807 1019 
194 101 201 501 805 1013 463 101 201 501 808 1019 
195 101 401 702 805 1013 464 101 201 502 808 1019 
196 101 201 501 702 805 1013 465 101 401 502 808 1019 
197 101 401 703 805 1013 466 101 402 704 808 1019 
198 101 402 703 805 1013 467 101 301 402 704 808 1019 
199 101 301 402 703 805 1013 468 101 201 501 704 808 1019 
200 101 201 501 703 805 1013 469 101 402 705 808 1019 
201 101 402 704 805 1013 470 101 301 402 705 808 1019 
202 101 301 402 704 805 1013 471 101 201 501 705 808 1019 
203 101 201 501 704 805 1013 472 101 301 601 705 808 1019 
204 101 402 705 805 1013 473 101 402 706 808 1019 
205 101 301 402 705 805 1013 474 101 301 402 706 808 1019 
206 101 201 501 705 805 1013 475 101 201 501 706 808 1019 
207 101 301 601 705 805 1013 476 . 101 201 502 706 808 1019 
208 101 201 501 806 1013 477 101 401 502 706 808 1019 
209 101 401 703 806 1013 478 101 301 601 706 808 1019 
210 101 402 703 806 1013 479 101 201 501 809 1019 
211 101 301 402 703 806 1013 480 101 201 502 809 1019 
212 101 201 501 703 806 1013 481 101 401 502 809 1019 
213 101 402 704 806 1013 482 101 402 705 809 1019 
214 101 301 402 704 806 1013 483 101 301 402 705 809 1019 
215 101 201 501 704 806 1013 484 101 201 501 705 809 1019 
216 101 402 705 806 1013 485 101 301 601 705 809 1019 
217 101 301 402 705 806 1013 486 101 402 706 809 1019 
218 101 201 501 705 806 1013 487 101 301 402 706 809 1019 
219 101 301 601 705 806 1013 488 101 201 501 706 809 1019 
220 101 301 602 1014 489 101 201 502 706 809 1019 
221 101 401 602 1014 490 101 401 502 706 809 1019 
222 101 301 603 1014 491 101 301 601 706 809 1019 
223 101 401 603 1014 492 101 301 603 1020 
224 101 402 603 1014 493 101 401 603 1020 
225 101 301 402 603 1014 494 101 402 603 1020 
226 101 401 701 1014 495 101 301 402 603 1020 
227 101 401 702 1014 496 101 401 701 1020 
228 101 201 501 702 1014 497 101 401 702 1020 
229 101 401 703 1014 498 101 201 501 702 1020 
230 101 402 703 1014 499 101 401 703 1020 

151 



:c 0:: ...... N C") ..... It) }D. 
-i!: ffi . ..... ·N C") ..... It) co 

... w w w w w w w w w w w w w· 
<Cm C C C C Q Q ·<Cm Q C C C C C 
D.. :iE 0 0 0 0 0 0 D.. :iE 0 0 0 0 0 0 

:::> z z z z z z :, z z z z z z z z 
231 101 301 402 703 1014 500 101 402 703 1020 
232 101 201 501 703 1014 501 101 301 402 703 1020 
233 101 201 501 805 1014 502 101 201 501 703 1020 
234 101 401 702 805 1014 503 101 402 704 1020 
235 101 201 501 702 805 1014 504 101 301 402 704 1020 
236 101 401 703 805 1014 . 505 101 201 501 704 1020 
237 101 402 703 805 1014 506 101 402 705 1020 
238 101 301 402 703 805 1014 507 101 301 402 705 1020 
239 101 201 501 703 805 1014 508 101 201 501 705 1020 
240 101 402 704 805 1014 509 101 301 601 705 1020 
241 101 301 402 704 805 1014 510 101 201 501 808 1020 
242 101 201 501 704 805 1014 511 101 201 502 808 1020 
243 101 402 705 805 1014 512 101 401 502 808 1020 
244 101 301 402 705 805 1014 513 101 402 704 808 1020 
245 101 201 501 705 805 1014 514 101 301 402 704 808 1020 
246 101 301 601 705 805 1014 515 101 201 501 704 808 1020 
247 101 201 501 806 1014 516 101 402 705 808 1020 
248 101 401 703 806 1014 517 101 301 402 705 808 1020 
249 101 402 703 806 1014 518 101 201 501 705 808 1020 
250 101 301 402 703 806 1014 519 101 301 601 705 808 1020 
251 101 201 501 703 806 1014 520 101 402 706 808 1020 
252 101 402 704 806 1014 521 101 301 402 706 808 1020 
253 101 301 402 704 .806 1014 522 101 201 501 706 808 1020 
254 101 201 501 704 806 1014 523 101 201 502 706 808 1020 
255 101 402 705 806 1014 524 101 401 502 706 808 1020 
256 101 301 402 705 806 1014 525 101 301 601 706 808 1020 
257 101 201 501 705 806 1014 526 101 201 501 809 1020 
258 101 301 601 705 806 1014 527 101 201 502 809 1020 
259 101 301 603 1015 528 101 401 502 809 1020 
260 101 401 603 1015 529 101 402 705 809 1020 
261 101 402 603 1015 530 101 301 402 705 809 1020 
262 101 301 402 603 1015 531 101 201 501 705 809 - 1020 
263 101 401 701 1015 532 101 301 601 705 809 1020 
264 101 401 702 1015 533 101 402 706 809 1020 
265 101 201 501 702 1015 534 101 301 402 706 809 1020 
266 101 401 703 1015 535 101 201 501 706 809 1020 
267 101 402 703 1015 536 101 201 502 706 809 1020 
268 101 301 402 703 1015 537 101 401 502 706 809 1020 
269 101 201 501 703 1015 538 101 301 601 706 809 1020 

152 



APPENDIXG 

FLOW CHART COMBINE PATH THREADS 

Begin 

Check_ldentical_Paths 

ComboNumber = 0 
PathNumber=O 

PathNumber= 
PathNumber+1 

PathNumber= 
PathNumber+1 

NumberOfCombinedPaths = 
ComboNumber 

End 

no ComboPathFound 
(PathNumber)=O 

ComboN umber= ComboNumber+ 1 
CombinedPath(ComboNumber, 1 )=PathNumber 

Path I nPositionCombo=1 
j = PathNumber 

j = j +1 

es 

es no 

ComboPathFound(PathNumber)=1 
ComboPathFound0)=1 

PathlnPositionlnCombo=PathlnPositionlnCombo+1 
CombinedPath(ComboNumber,PathlnPositionlnCombo)=j 

~-------------PathlnCombo(ComboNumber)= 
PathlnPositionlnCombo 

153 



APPENDIXH 

FLOW CHART FIND VALUES ON COMBINED PATH 

Begin 

ComboNumber=O f-----------, 

ComboNumber= ComboNumber+1 
PathNumber=CombinedPath(ComboNumber, 1) 

ComboPathlength(ComboNumber)=O 
ShortestPathlength(ComboNumber)=NodeValueUpper(EndNode,HighThreadComboNumberPosition(ComboNu;nber,LastPat 

hPositionEdnd(PathNumber))-NodeValuelower(EndNode,LowThreadComboNumberPosition(ComboNumber, 
LastPathPositionEnd(PathNumber)) 

Position=O 

Position= 
Position+1 

no 

es 

yes 
End 

ToNode=EndPathNode(PathNumber,Position)) 
FromNode=EndPathNod(PathNumber,Position-1)) 

ComboPathlength(ComboNumber)= ComboPathlength(ComboNumber)+ 
ArcUpper(FromNode,ToNode)-Arclower(FromNode,ToNode) 

Positionlength(ComboNumber,2) = 
ShortestPathlength(ComboNumber) 

Position=O 

Position= 
Position+1 

ToNode=EndPathNode(PathNumber,Position)) 
FromNode=EndPathNode(CombinedPath(PathNumber,Position-1 )) 

Positionlength(ComboNumber,Position)=ShortestPathlength(ComboNumber)* 
(ArcUpper(FromNode,ToNode)-Arclower(FromNode,ToNode))/ComboPathlength(ComboNumber 

Positionlength(ComboNumber,2)=Positionlength(ComboNumber,2)
Positionlength(ComboNumber,Position) 

UpperArcCompleteCombo(ComboNumber,2)= 
LowerArcCompleteCombo(ComboNumber,2)+Positionlength(ComboNumber,2) 

154 



APPENDIX I 

FLOW CHART CHECK IDENTICAL SUB-PATHS 

Begin 

yes 

NumberSubMatces 
(SubPathLength,Number)= 

NumberSubMatces 
(SubPathLen th,Number)+1 

SubPathMatch(Sub 
Pathlength, 

Number, j) = 1 

no 

lnitialize_Match 

SubPathMatch(Sub 
Pathlength, 

Number, j) = 0 

155 

SubPathLength= 
SubPathLength+1 

Number=O 

Number= Number+1 

NumberSubMatches 
(SubPathLength,Number)=1 

j=Number 

Position=O 

Position=Position+1 

es no 



· APPENDIXJ 

FLOW CHART FIND SHARED SUB-PATH INFO 

Begin 

SubPathlength=2 

SubPathlength= 
SubPathlength+1 

Number=O 

Number= Number+1 

SubPosition=1 
NumberOfCombinedSubPaths(SubPathlength)= 
NumberOfCombinedSubPaths(SubPathlength)+1 

CombinedSubPath(SubPathlength,NumberOfCombinedSubPaths 
(SubPathLength),SubPosition,Number) 

=SubPathComboNumber(SubPathlength,Number) 
j = Number+1 

yes 

End 

no 
SubPathPosition = SubPosition+1 

CombinedSubPath(SubPathlength,NumberOfCombined 
~'-'-------I~ SubPaths(SubPathlength),SubPosition,Number) 

=SubPathComboNumber(SubPathlength,j) 

156 



APPENDIXK 

FLOW CHART GET ARCS 

Begin NumberOfArcs = O 
FromNode=O 

FromNode= 
FromNode+1 

ToNode=FromNode 

ToNode=ToNode+1 

s 

NumberOfArcs = NumberOfArcs + 1 
OriginatingNode(NumberOfArcs) = 

FromNode 
TerminatingNode(NumberOfArcs) = 

ToNode 

PathNumber=O 

PathNumber= PathNumber+1 

Position=1 

Position = Position+1 

ToNode=EndPathNode(PathNumber, Position+1) 
FromNode=EndPathNode(PathNumber,Position) 

ToNodeThread=EndPathThread(PathNumber,Position+ 1) 
FromNodeThread=EndPathThread(PathNumber,Position) 

i=O 

no 

PathArc(PathNumber,Position) = i 

157 



VITA 

Sherri Shearon A very 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: QUALITATIVE OPTIMIZATION: DEVELOPMENT OF A 
METHODOLOGY FOR DETERMINING THE SHORTEST 
PATH OF A NETWORK WITH INTERVAL-VALUED ARC 
LENGTHS. 

Major Field: Industrial Engineering and Management 

Biographical: 

Personal Data: Born in Winter Garden, Florida, on September 7, 1965, the 
daughter of Nathan Eugene Shearon and Jeanne Lee Finch. 

Education: Graduation from Enid High School, Enid, Oklahoma in May 1984. 
Received Bachelor of Arts degree in Mathematics from California 
State University at Fullerton, Fullerton, California in January 1989. 
Received Masters of Science degree in Mathematics from Trinity 
College, Hartford, Connecticut in May 1995. Completed the 
requirements for the Doctor of Philosophy with a major in Industrial 
Engineering and Management at Oklahoma State University in 
December 2003. · 

Experience: Worked as a computer analyst for.Pratt & Whitney Aircraft from 
1989 to 1990; taught and tutored in the Math Center at Trinity College 
from 1992 to 1995; taught as an adjunct lecturer and instructor at the 
University of Central Oklahoma in the Department of Mathematics 
and Statistics from 1995 to 2001; worked as a research assistant in the 
School of Industrial Engineering and Management from 2001 to 2002; 
taught in the Department of Mathematics at Oklahoma State 
University in 2002; taught as a graduate teaching assistant in the 
School of Industrial Engineering and Management in 2003. 

Professional Memberships: INFORMS, Institute for Operations Research and the 
Management Sciences; Alpha Pi Mu, Industrial Engineering Honor 
Society. 


