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FORWARD 

Arsenic (As) is a ubiquitous element found in the earth's crust all over the world. 

It has been used in medicines, cosmetics, bronzing, as wood preservative, herbicides, 

desiccants, and in the production of solid-state devices. Concern over arsenic in the soil 

has stemmed from the reduction of the maximum contaminant level for As in drinking 

water. The threat of As leaching in to groundwater or surface waters has caused great 

concern. Furthermore there are concerns over ecological effect of As in soils. Soil 

properties have the greatest influence on the extractability and bioavailability of As from 

the soil. Soil screening levels based on soil properties can be developed to determine 

the threat of leaching and bioavailability to plants and soil organisms. Amending soil 

that· have a high potential of As leaching and bioavailability with chemical immobilzation 

treatments may help to reduce clean-up activities while reducing the ecological and 

human health risk. The first part of this manuscript investigates soil properties that 

influence leaching and bioavailability to plants. Extraction methods are evaluated as 

indirect measurements of plant and earthworm bioavailability. Chapter 2 explores 

sever?tl iron immobilization treatments to reduce As extractability and toxicity with 

emphasis on the affect to multiple pathways. The leaching . potential ( extractability), 

plant bioavaiJability and earthworm _bioavailability are addressed. In Chapter 3 human 

. availability pathways are examined in . the iron. remeditated arsenic soils including 

potential red_uctions in risk for cancerous and non-cancerous, effects. The manuscript is 

arranged as defined by CBE Style M~nual (Souncil of Biological Editors). 
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CHAPTER I 

ARSENIC EXTRACTABILITY AND BIOAVAILABILITY 

FROM SOILS WITH VARIOUS PROPERTIES 

ABSTRACT 

There is growing concern over arsenic contaminated soil affect on ecological 

health. Currently there are no set ecological soil screening levels for arsenic in soils. 

Total arsenic content is not an accurate indicator of the extractability or bioavailability to 

soil organisms. Application of toxicity test and soil modifying factors can be used to 

established arsenic levels that adequately protect the soil ecosystem. Soil properties 

that have been identified as modifying factors are pH, clay content, organic carbon and 

Fe-oxides. Identifying which properties have the greatest influence on arsenic 

extractability and bioavailability can prove essential for ecological health. Therefore the 

objective of this study was to examine the soil properties and their relationship to 

arsenic extractability and plant and earthworms bioavailability. The reduction of plant 

yield is most related to the amount of Fe-oxides in the soil (r = 0.71). Uptake of 

arsenic by plants is more complex with influences from Fe-oxides, amount of clay and 

organic carbon. These· relationships were found in all statistical methods; linear 

regression, backwards multiple regression and path analysis for measured plant 

endpoints. In general, arsenic extractability was most reduced by the presence of Fe

oxides. Simple regression and backwards multiple regression indicate that Fe-oxides, 
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amount of clay and pH can all influence how much arsenic can be extracted from the 

soil. Path analysis results indicate that amount of clay is the most· significant soil 

property followed by Fe-oxides and pH. Relating extractability with plant and earthworm 

endpoints revealed several extractions that have the potential to be used to predict 

toxicity. Pore water arsenic and Bray-1 extractable arsenic had strong relationship to 

plant yield and accumulation and earthworm mortality. Modifying factors for arsenic in 

soils could be applied for amount of Fe-oxides found in a soil followed by amount of clay 

and to a less extent amount of organic carbon and pH. Furthermore, due to the strong 

relationship between Bray-1 extractable arsenic and plant yield, this would be a good 

predictor of soil arsenic phytotoxicity. These results can aid in development of 

ecological soil screening levels. 

Keywords- Arsenic Arsenic extractability Plant bioavailable arsenic Earthworm 

toxicity Soil properties Phytotoxicity 

INTRODUCTION 

Arsenic {As) is a ubiquitous element found in the earth's crust all over the world. 

It has been used in medicines, cosmetics,· bronzing, as wood preservative, herbicides, 

desiccants, and in the production of ·solid-state devices. -All these industries contribute 

to the increase of arsenic containing compounds in the · environment. Natural 

uncontaminated ·soils in the U.S. can contain from 1 to 40 mg/kg arsenic depending on 

the parent material from which the soil was formed (O'Neill, 1995, Adrianna, 1986). 

Igneous rocks contain As concentrations from· 1-15 mg/kg. Sedimentary rocks such as 
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shales, mudstones and slates, can contain significantly more As, up to 900 mg/kg. 

Sandstones and limestones range from 1-20 mg/kg As (O'Neill, 1995, Adrianna, 1986). 

Arsenic is found as a constituent in many minerals and is a frequent component of 

sulfide ores in the form of arsenides of nickel, cobalt, copper, and iron. Arsenicpyrite 

(FeAsS) is the most abundant and common As-containing mineral. Other common As 

minerals are engargite (CuAsS4), orpiment (As2S3) and realgar (As4S4) (Tamaki and 

Frankenberger 1992, Thorton and Farago 1997, Francesconi and Kuehnelt 2002). 

Arsenic is a known human carcinogen causing skin, liver, bladder, kidney and 

lung cancers. Low level As exposure can cause stomach and intestinal irritation, fatigue, 

abnormal heart rhythm, darkening of the skin as well as impaired nerve function (US 

ATSDR 1999). Exposure to As can be through inhalation or ingestion of soil, intake of 

contaminated groundwater, dermal exposure through soil or water and indirectly 

through consumption of plants grown on contaminated soil. There are concerns not 

only for human health but there are great concerns in soil ecosystems where organisms 

are in direct contact with the soil. Arsenic has detrimental effects on soil organisms and 

plants causing stunted growth, lack of reproduction and even death. 

Arsenic is a metalloid of Group Va of the periodic table with properties that allow 

_it to form alloy$ .with various metals and covalent bond with carbon, hydrogen, oxygen 

and sulfur. The oxida~ion states of As are -3, 0, +3, and +5._ The complex ions Aso2-, 

Asal-, HAsO/~, and H2As03- are the most common mobile forms of As in soil (Kabata-

Pendias and Pendias 1992, O'Neill 1995.). There is a sirpilarity between As and 

phosphorus chemistry. The oxidation states and electron orbitals (4s24p3) are similar . . - , . 

between As and phosphorus, as well as their dissociation constants and solubility 

products from their salts (Adriano 1986, Kabata-Pendias and Pendias 1992). Both 
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arsenate and phosphate form oxyanions in the + 5 oxidation state in soils. However 

phosphate is stable over a wider range of Eh and pH conditions than arsenate. Because 

of their chemical similarity, arsenates and phosphates in soil are assumed to react 

similarly forming insoluble compounds with Fe, Al and Ca. Arsenic (V) can become 

immobilized by coprecipitation with hydrous iron oxides (Adriano 2002). 

In soils under oxidizing conditions, arsenate (V) is the most stable species 

(Thornton and Farago, 1997). The reaction for As acid (As V) in aqueous solutions are: 

(i) H3AS04 + H20 ~ H2AS04- + H30+ 

(ii) H2AS04- + H20 ~ HAso/- + H30+ 

(iii) HAso/- + H20 ~ Asol- + H30+ 

pKa 2.20 

pKa 6.97 

pKa 11.53 

The pKa values indicate that As(V) would be thermodynamically stable over 

normal soil pH rariges; from pH range 2-7 as (ii) H2AS04- form and at pH 7.0 as (iii) 

HAso/- form. Arsenic has been found to readily leach and be highly bioavailable in soils 

with low amounts of clay and oxides (O'Neill 1995, Woolson et al. 1988, Jacobs et al. 

1970, Manning and Goldberg 1997). The mechanisms in reduction of arsenic solubility 

by soil components may be due in part to adsorption reactions. Adsorption reactions 

are complex and mainly occur on the surfaces of clay, oxides or hydroxides of Fe, Al and 

Mn, caicium carb~nates and/or organic matter (Sadiq 1997). In general there is a 

decrease in As(V) adsorption with increasing pH (Smith 1998, Lumsden et al. 2001, 

Pierce and Moore 1980, Xu et al'. 1988). This can be attributed to two factors 1) the 

increasing pH c~uses the negative surface potential to i'ncrease and 2) the increasing 

amount of negatively charged As(V) species present in the soil solution (Adriano 2002, 

Xu 1988, Hingston et al 1968). 
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Smith et al. (1999) found that Australian soils high in oxides adsorbed three

times as much As(V) than soils low in oxides. Like phosphate, As is strongly adsorbed 

by amorphous Fe-oxide and to a lesser extent to Al-oxides. The adsorption of As in soils 

has been positively correlated to ammonium oxalate extracted Fe (amorphous Fe

oxides) (Livesey and Huang 1981, Jones et al. 1999 Manning and Goldberg 1997). 

Generally clay particles are negatively charge silicate minerals that preferentially adsorb 

positively charged species, not As oxyanions. However As mobility and bioavailability 

are greater in sandy soils than clayey soils and significant correlations have been found 

with As(v) adsorption and clay content (Woolson 1973, Livesey and Huang 1981). The 

positive charges originating from the crystal edges of the silicate clay minerals may 

contribute to the adsorption of As and its reduced bioavailability (Livesey and Huang 

1981). It has also been reported that sorption of As occurs by chemisorption or ligand 

exchange on clay surfaces, mainly by replacing or competing with phosphate (Sadiq 

1997; Piece and Moore 1980). Clays are often coated with Fe and Al oxides as well, 

thereby varying directly with the clay content of a soil (Adriano 2002, Smith et al. 1998, 

Schutless and Huang 1990) 

Arsenates behave much like phosphate in the plant-soil system, but As is 

phytotoxic. Arsenate (Asal-) can be. taken up via the phosphate transport system by 

most organisms. . Arsenate is thought to replace phosphate in energy transfer 

phosphorylation reactions (Tamaki and Frankenberger 1992, Bhumbla and Keefer 1994). 

In general the transfer of As from soil: to plant is usually low. Arsenic induces 

phytotoxicity resulting in restricted .plant growth, and in essence protects humans and 

animals from plants with high As content (Smith et al. 1998). The effect of phytotoxicity 
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is influenced by As source, As species, and the soil type~ with sandy soils being more 

toxic than clayey soils (Sheppard 1992). 

Earthworms have a particularly intimate contact with the soil, ingesting large 

amount of soil and having a limited barrier between soil solution and organisms. For 

this reason, and with their importance in terrestrial food webs, earthworms are ideal test 

organisms for toxicity test in contaminated soils (Langdon et al. 1999). Sodium arsenate 

has been shown to be highly toxic to earthworms (Langdon et al., 1999, Fisher and 

Koszorus 1992, Meharg et al. 1998) causing yellow discoloration, lesions and swelling 

along the body and death. 

To adequately protect soil ecosystems and restore them when necessary, 

characterization of soil in As contaminated areas need to be identified and define what 

levels of As in these soils constitute a hazard to soil organisms. Currently there is no set 

ecological soil screening levels for soils in the United States. Ecological soil screening 

levels are amounts of chemicals that have been identified to pose no or little risk to soil 

organisms (USEPA 2000). If site measurements of As are found to be lower than the 

ecological soil screening level, then the site can be removed from further evaluation 

from the ecological risk assessment process. Soil screening levels are based on toxicity 

test performed on ecological indicators such as lettuce or earthworms. Current 

guidelines are based on total As in the soil, which is not a good indicator of toxicity. Soil 

modifying factors affect the toxicity of As to soil organisms .. ,Arsenic can be divided up in 

to different fractions or pools based on availability or association with solid phases. The 

different fraction of As can be identified using different extractions. Because of the 

chemical similarity between As and phosphorus, the same type of extraction procedures 

have been utilized to describe As in soils. 
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Several properties have been identified that affect As extractability and 

bioavailability. These properties include pH, clay content, organic matter and Fe-oxides. 

Identifying which properties have the greatest influence on As extractability and 

bioavailability can prove essential for soil screening levels and clean-up activities. 

Therefore the objective of this study was to examine the soil properties pH, clay, organic 

carbon and Fe-oxide and determine their relationship to As extractability and 

bioavailability. The second objective is to determine which extraction method most 

readily predicts or models the toxicity of As to plants and soil organisms (earthworms). 

MATERIALS AND METHODS 

Twenty-two soils from Oklahoma and Iowa were selected based on their soil 

properties. Soil properties used for the selection process were pH, %organic carbon, % 

clay, cation exchange capacity, and amount of iron and aluminum oxides (Table 1.0). 

Soil pH was determined using 1:1 soil:water ratio (Thomas SSSA, 1996). The 

hydrometer method (Gee and Bauder 1986) was used to determine texture (% clay). All 

soils were pretreated with H20 2 to remove organic matter. The amount of Fe and Al

oxides were determined using a modified Tamm's reagent (Loeppert and Inskeep 1996, 

McKeague and Day, Schwertmann SSSA 1996). Percent organic carbon was determined 

using the acid dichromate digestion method (Heanes, 1984, Nelson and Sommers, SSSA 

1996). And cation exchange capacities of non-calcarious soils Were determined using 

BaCh replacement method (Hendershot and Duquette 1986). Cation exchange capacity 

of calcareous soils was determined according to the method of Polemic and Rhoades 

(1977). 
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The soils were spiked with 250 mg/kg As using H2NaAs04•7H20, The soils were 

saturated with the As solution, mixed thoroughly, and then dried at 105°C for 24 hours. 

The wetting/drying process was repeated two more times, for a total of three wet/dry 

cycles to promote reaction between the soil and As. Complex, slow solution and 

precipitation reactions are affected by soil wetting/drying cycles (Wauuchope 1983). 

The electrical conductivity (EC) was measured (1: 1, soil :water ratio) at the conclusion of 

the wet/dry cycles followed by leaching with de-ionized water when EC exceeded 1.5 

dS/m. Leaching was done by transferring the soil into a 5 gallon bucket, flooded with 

de-ionized water, allowing the mixture to settle for 30 h, then removing the excess 

water. This was repeated until the EC was reduced to below 1.5 dS/m. All soils were 

then dried at 105°C, ground using a ball grinder, sieved to pass 2mm sieve and stored 

in plastic containers. Texture was checked on random samples to insure there were no 

texture changes due to grinding. Total soil As content was determined by EPA method 

3051 (USEPA, 1994). 

Plant Growth and Arsenic Uptake with Soil Properties 

Several plant methods were used for evaluation. All test were done with lettuce, 

Lactuca sativa var. Paris Island Cos. 

Germination Test 

. Fifty grams of soil was placed into a deep petri dish and temperature adjusted to 

24±2°C (EPA 600/3-88/029, ASTM E .1598). One day prior to planting, water was added 

to 120% of water-holding capacity (field capacity at -1/J bar). Twenty lettuce seeds 

(Latuca sativa var. Paris Is.) were pla~ed into the petri dish and covered with 25g 

artificial soil (water added to 25% · or 6.2 mL/25g). Artificial soil was composed of 
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69.5% silica sand, 20% kaolin clay 10% 2-mm sieved Sphagnum peat moss and 

approximately 0.5% CaC03 added to adjust the pH to 7 .0. The petri dishes were 

covered and incubated at 24± 2°C in the dark for 48 hours followed by sequencing 16 h 

of light and 8 h of dark until termination of the test (Baud-Grasset 1993). Germination 

was first determined after 120 hours (5 days) by counting the number of seedlings 

(leaves or stems) that protruded above the soil surface. After the germination count, 

soils were watered to 120% of field capacity. Petri dishes were placed on a tray and put 

into large clear plastic bags to retain moisture and allow the seedlings to grow for 

another 120 hours (5 days) without the hindrance of a lid. After 10 days, a second 

seed germination count was taken. (EPA 600/3-88/029, ASTM E 1598). 

Shoot Elongation Test/Early seedling growth 

The germination study was continued in the growth chamber for a total of 17 

days of growth (12 days after more than 50% relative seed germinated) (EPA 600/3-

88/029, ASTM E 1598). After counting the total number of plants, each plant was 

removed and measured from the hypocotyl to the leaf tip. 

Phytotoxicity/Bioaccumulation in Lettuce - 8 Week Bioassay 

The first plant bioassay was an eight-week growth test utilizing lettuce plants 

(Lactuca ·sativa var. Paris Island Cos). The plants were grown in triplicate with 750 g of 

dried soil/pot and a volume of 100 ml of vermiculite. The vermiculite was mixed with 

the soils to improve with water infiltration and drainage. Plastic pots (15 cm diameter) 

without drain holes were used to grow the lettuce. Each soil was tested for available N

P-K prior to planting and fertilized with the needed nutrients of an equivalent 120 

lbs/acre N (60 mg/kg), 60 lbs/acre P (30 mg/kg), and 60 lbs/acre K (30 mg/kg) (Lorenz 
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and Maynard, 1988). Ten seeds were placed into each pot and slightly covered with 

soil. The pots were watered to 120% of field capacity (-1h bar) and placed in a 

constant temperature room modified with a mix of grow lights, incandescence and soft 

white florescent bulbs to achieve the light spectrum needed for lettuce growth. The 

plants were grown for 8 weeks with watering every 2-3 days to 120% of field capacity 

and fertilized every two weeks with 45 lbs/acre N-P-K to ensure adequate plant 

nutrients. Lighting was cycled with 16 hours light and 8 hours dark and temperature 

maintained at 20 ± 4° C. At the conclusion of the test the plants were harvested 

washed 3 times with de-ionized water, dried at 60°C for 48 hours and weighted. Plants 

were mechanically ground using a Wiley mill (Jones and Case 1990) stainless steel 

grinder, or hand ground when plant matter was small. The ground plant material was 

placed in plastic sample bags and stored at room temperature. 

To determine As accumulation, a sample of dried plant material ( <0.2 g) was 

mixed with 5ml of 20% Mg(N03)2 and 5ml of cone. trace metal grade nitric acid. The 

samples were covered with watch glasses and digested at 80°C overnight (16-20 hours). 

The watch glasses were removed the next day and temperature was gradually increased 

to 200°C to dry the samples. Drying time took 12-14 hours and was spread over two 

days. Preliminary analysis indicated that samples must be totally dry to achieve As 

recovery from the plant material. The samples were placed in a muffle furnace and 

heated to 450°C at a rate of 0.8°/min then held at 450°C for 6 hours (Ybanez et al. 

1992). The ashed samples were mixed with 4ml of 50% trace metal HCI and heated 

until resolubilized (rv80°C for 1 hour). The samples were cooled, then 0.25ml of 40% 

Potassium iodide - 4% ascorbic acid solution was added 24 hours prior to As analysis by 
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inductively coupled plasma atomic emission spectroscopy with hydride generation (ICP

HG). 

Modeling & Statistics 

All statistics were done using SAS for Windows V8 (SAS Institute 2002) and 

GraphPad Prism 3.0 (1999). Three different statistical models were used to compared 

and determine the soil properties that most influence As bioavailability. Simple (e.g. 

linear, exponential) regression models were run separately for each soil property and 

each lettuce endpoint. Lettuce endpoints used included % seed germination, % relative 

seed germination, shoot length, % relative shoot length, yield, and % relative yield. 

Where '% relative' is a ratio of the lettuce endpoint in arsenic spiked soil to control soils 

expressed as a percent. A backwards step-wise multiple regression technique was used 

to derive empirical model that capable of preciting effects of bioavailabile As to soil 

properties. The backwards stepwise multiple regression is also known as step down 

multiple regression. This modeling procedure starts with a full model and eliminates 

variable that do not significantly (P<0.05) enter the regression equation. The initial 

model composed of single variable (e.g. pH), squared variable term (e.g. pH2) and inter

correlated variables (e.g. pH x OC, pH x clay and pH x Fe) for the soil properties pH, OC, 

Fe-oxide and clay. 

Lastly, path analysis was done for each lettuce endpoint to determine indirect 

and direct effects. Path analysis is a statistical method that partitions simple correlation 

coefficients between dependent variables (lettuce endpoints) and independent variables 

(soil properties) into direct and indirect effects. Soil properties and graphical 

representation of path analysis are shown in Fig. 1. Path analysis direct effects (Pii) are 

derived from multiple linear regression of soil properties on lettuce endpoints and 
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indirect effects (rii) from simple correlation values (Pearson correlation) between soil 

properties (Basta et al. 1993). The multiple regression format includes Y = a(A) + b(B) 

+ c(C) + d(D). Where Y = lettuce endpoint as previously defined, A, B, C, and D are 

soil properties pH, % organic carbon, % clay and Fe-oxide content and a, b, c, and d 

are coefficents 

Mathematically path analysis is determined by the equations: 

ris = Pis + ri2P2s + r13P3s + ri4P4s 

r2s = ri2Pis + P2s + r23P3s + r24P4s 

r3s = ri3Pis + r23P2s + P3s + r34P4s 

r4s = ri4Pis + r24P2s + r34P3s + P4s 

[1] 

[2] 

[3] 

[4] 

Where rii corresponds to the simple correlation coefficient between soil property and 

lettuce endpoint. Pii are path coefficients or direct effects of soil properties on endpoints 

(Fig. 1) derived from multiple regression. Subscript designation (1) corresponds to pH, 

(2) to % organic carbon, (3) to % clay and (4) to amount of Fe-oxide as determined by 

modified ammonium oxalate and (5) corresponds to the lettuce endpoints. Therefore 

riiPii are the indirect effects of soil properties on lettuce endpoints. For example, Pis = 

direct effect of pH on lettuce endpoint, ri2P2s = indirect effect of OC on pH effecting 

lettuce endpoint, r13P3s = indirect effect of clay on pH effecting lettuce endpoint, and 

ri4P45 = indirect effect of Fe-oxide on pH effecting lettuce. endpoint. In addition an 

uncorrelated residual (U) was determi,ned from this model using the equation: 

U=.JI-R 2 

Low uncorrelated residual (U) and high R2 values will indicate that the path 

analysis model explains most of the variation. 
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The results are presented in a matrix format with the main diagonal indicating 

direct effects and off-diagonal elements designating indirect effects. The position of 

each element in the matrix corresponds to the respective normal equations above (Eq. 

(1), (2), (3), and (4)). 

Soil Arsenic Extractability 

Soils were extracted with five different soil extractions and digestion for total 

metal content (EPA 3051). All samples were extracted in duplicate and included reagent 

blanks and spikes (Appendix A). Modeling and statistics were done using SAS for 

Windows VB (SAS Institute 2002) and GraphPad Prism 3.0. Three different statistical 

approaches were used to determine the soil properties that most influence As 

extractability. Simple regression models were run for each soil property and each 

extractant. A backwards step-wise multiple regression technique was used to derive a 

model thc1t related As extractability to multiple soil properties. And path analysis, as 

described previously, was done for each extraction method to determine indirect and 

direct effects of soil properties on As extractability. 

Pore Water 

To measure the amount of As in the soil pore water, 40 g of soil was saturated 

.with DDW until .a slurry or paste was formed as described by J. Rhoades (1996) when 

mei;lsuring ,electrical cqnductivity. The soil slu~ry was allowed to sit for 36-48 hours to 

equilibrate, ~i?<in,g intermittedly. The soil solution removed by centrifugation at 12,500 

. RPM fqr 10 minutes. The supernant was decanted and filtered through 0.45 micron 

syringe filter, acidified and analyzed for As (mg/L) using an inductively coupled plasma 

atomic emission spectroscopy (ICP). 
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Bray-1 Extraction 

An extracting solution of 0.03M NH4F and 0.025M HCI was used to determine the 

plant available As. One gram of soil was mixed with 10 ml of Bray-1 solution and 

shaken on a reciprocating shaker for 5 minutes. The solution was centrifuged at 7500 

RPM for 5 minutes then syringed filtered through 0.45 micron filters and analyzed on 

ICP for plant available As and phosphorus (Kuo 1996). 

Sodium Phosphate Extraction 

The amount of As associated with water soluble, weakly adsorbed and strongly 

adsorbed can be measured using this method (Yamamoto 1975). A volume of 600 ml 

of O.lM Na2HP04 was added to 400 ml of O.lM NaH2P04. A soil:solution ratio of 1:10 

(2g:20ml) was mixed and shaken for 1 hour on a reciprocating tabletop shaker. The 

solution was filtered through 0.45 micron syringe filter and analyzed on inductively 

coupled plasma atomic emission spectroscopy with hydride generation (ICP-HG) for As 

(Yamamoto, 1975). 

Modified Hydroxylamine HCI Extraction 

Hydroxylamine Hydrochloride solution is used to extract the water soluble, 

weakly and strongly adsorbed As, Mn-oxide and some amorphous Fe-oxide As (Ross and 

Wang; 1993). The extracting solution, 0.25M NH20H•H20 and 0.25M HCI is modified by 

adding 0.025M H3P04 (Amacher and Kotuby-Amacher 1994) to prevent re-adsorption of 

the As. ·Soil (4 g; <250 micron' fraction) is mixed with 100 ml of solution and shaken for 

18 hours on a tabletop recipricating shaker. Samples were suction filtered through 0.45 

micron filters and analyzed using ICP-HG. (Amacher and Kotuby-Amacher 1994, Ross 

and Wang 1993) 
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Modified Acid Ammonium Oxalate Extraction 

To measure the amount of As associated with water soluble, weakly adsorbed, 

strongly adsorbed and amorphous Fe-oxide. An acid ammonium oxalate method (0.2M 

ammonium oxalate + 0.2M oxalic acid and O.lM ascorbic acid) was modified with added 

0.025M H3P04 to prevent the re-adsorption of As. The final pH of the solution was 2.7. 

Soil (0.5 g, <250 micron fraction) was mixed with 20 ml of the modified acid 

ammonium oxalate solution and shaken on a reciprocating tabletop shaker for 4 hours 

(Loeppert and Inskeep 1996, McKeague and Day, Schwertmann, SSSA 1996). The soil

solution mixture was centrifuged and filtered through 0.45 micron syringe filter. 

Analysis for As, iron, and other elements of interest was performed on ICP. 

Total Content of Arsenic 

Total As was done by nitric acid microwave digestion, EPA Method 3051 (USEPA 

1994). This confirms the total amount of As added to each soil. Certified reference 

material (CRM020-050, RTC Corporation, Laramie, WY, USA) as well as blanks and 

spikes were digested and analyzed on ICP (Appendix A). 

Extractability of Arsenic with Biological Endpoints 

Several biological endpoints were used to evaluate the ability of soil extractions 

to predict As toxicity and accumulation. Biological endpoints that were used includes 

lettuce seed germination, lettuce shoot elongation, 8-week lettuce bioassay, 5-week 

lettuce bioassay and earthworm toxicity test. Seed germination, shoot elongation and 

the 8-week lettuce bioassay are described in the previous section. 
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Phytotoxicity/Bioaccumulation in Lettuce - 5 Week Bioassay 

The 5-week lettuce bioassay was performed by Department of Plant and Soil 

Sciences at Oklahoma State University with use of the Center of Environmental Research 

Lab (CERL) constant temperature chamber. The 8-week lettuce bioassay had loss of 

several plants in the test soils due to arsenic content. To further determine the ability of 

phosphate to reduce arsenic toxicity and increase yield, this 5-week test was performed. 

Lettuce plants (Lactuca sativa var. Paris Island Cos) were grown in triplicate using 700 g 

dried soil/pot with added vermiculite to help with water infiltration and drainage. A 15 

cm plastic pot without drain holes were used to grow the lettuce. Prior to planting, soil 

in each pot was fertilized with a (15-30-15, N-P-K) commercial fertilizer to supply 400 

mg P/kg (800 lbs/acre), 200 mg N/kg (400 lbs/acre) and 200 mg K/kg soil (400 

lbs/acre). Ten seeds were placed into each pot and slightly covered with soil. The pots 

were watered and placed in a growth chamber. The plants were grown for 40 days 

(referred to as 5 week bioassay) with a light cycle of 16 hours light and 8 hours dark 

and temperature maintained at 20°C ± 4° C. At the conclusion of the test the plants 

were harvested washed and dried at 60°C for 48 hours then weighted. Plants were 

hand ground or crushed and placed in plastic sample bags and stored at room 

temperature. Nitric acid digestions were done ·of all plant material, and analyzed for As 

on ICP. 

Earthworm Toxicity Test 

The earthworms were cultivated and tests were run by the Department of 

Zoology at Oklahoma State University. The earthworm, Eisenia andrei, was used in a 

28-day toxicity test to determine the ability of extractions to predict toxicity and uptake 

by earthworms. Each test was done in trfplicate·for each soil. Canning jars (473 ml) 
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were used as the environmental chambers to house the worms. Two hundred grams of 

soil was placed into each jar and wet to just over field capacity (-1h bar). The soils 

were mixed and water added as needed. Earthworms were removed from growth 

chambers and allowed to depurate for 24 h by placing in a clean environment (no soil) 

and allowing the worms to eliminate soil from the gut. Ten worms were weighted out 

for each jar and placed into the container. At least one hole was poked into the tops of 

the lids to allow air exchange. The jars were placed on trays and put into a constant 

temperature chamber with 16 hours light, 8 hours dark and 20 ± 4° C. The worms 

were check daily for mortality for the first 5 days, then about every 3 days after that. 

Mortality was determined if the worms failed to respond when gently poked or prodded. 

Dead worms were removed, rinsed in de-ionized water and frozen at 4°C. Every seven 

days the worms were fed 1 tsp of manure. At the end of the toxicity test (28 days), all 

worms were removed from the jars and rinsed in de-ionized water. Worms were 

depurated for 24 hours then weighted, and frozen at 4 °C. 

To determine the amount of bioaccumulated As one worm from each jar (total of 

3 worms per soil) was digested. The worms were placed into pre-weight crucibles and 

oven dried at 80°C overnight. The dried worms were weighted and digested as describe 

by Ybanez et al. (1992) with noted modifications as described for 8-week plant digest. 

ICP-Hydride Generation 

To determine low level As concentration and to remove potential interferences 

found on direct analysis of sample digest, ICP-hydride generation was used. The 

hydride generator is a batch type produced by Thermo Jarrell Ash (TJA) for the IRIS TJA 

ICP. Reaction rates for hydride generation are controlled by several variables: 1) 

chemical forms of the As, 2) oxidation state of the hydride-forming element, 3) acid 
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concentration, and 4) concentration of the Na8H4 reducing agent. The least error 

occurs when these condition are set so that the reaction goes to completion 

instantaneously. Inorganic As, arsenate (V) and arsenite (III), can be reduced to arsine 

gas through the hydride process, although reduction of arsenate is more time 

consuming. Therefore all samples (10-50 ml) are pre-treated with 40% potassium 

iodine + 4% ascorbic acid solution (0.5 ml) to reduce all As to arsenite (III), the faster 

reacting arsenic form (TJA, Dedina and Tsalev, 1995). Hydrochloric acid is used as the 

sample medium to form hydrides. Samples were mixed with concentrated HCI to a 

concentration of 3 molar. The efficiency of hydride formation is constant at HCI 

concentrations above one molar (Dedina and Tsalev 1995). A 0.5% NaBH4 solution with 

0.42% NaOH for stability was used as the reducing agent. Acidified sample and base 

were pumped to the reactor chamber at a rate of 3.25 ml /minute with a 2 minute rinse 

between samples to eliminate carry over. Arsine gas was separated in a gas-liquid 

separator via nebulizer directly into the ICP argon plasma. 

RESULTS AND DISCUSSIONS 

Plant Growth and Arsenic Uptake with Soil Properties 

Germination Test and Shoot Elongation 

A count of the number of seeds germinated was taken at two points: 5-days 

after planting and 10-days after planting. The 5-day count tended to be inconsistent 

among repetitions. At 10-days, repetitions were much more consistent with no loss of 

seedlings. Therefore a 10-day germination test was used for all analysis. Extremely 
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high levels of arsenate are known to inhibit seed germination (Wauchoe 1983). 

Although in this test, mean seed germination was 60% with a range from O % to 96.7% 

(Table 3) indicating that less than half the soils had toxic levels of available As to inhibit 

seed germination. Simple regressions with soil properties pH, % organic matter, % clay 

and Fe-oxide content indicate that the amount of clay was the only measured soil · 

property to be significantly (P=0.001) correlated with germination (Fig. 2). The mean 

% relative germination (% germination in As spiked soil/ % germination from control 

soils *100) was 64.5% and also correlated with % clay (P<0.0001, Fig. 3). Shoot 

lengths ranged from Oto 2.96 cm with an overall mean length of 1.69 cm (Table 3). In 

comparison, the shoot length from the control soil was much higher with an overall 

mean of 3.2 cm (1.91-4.33 cm). The mean % relative shoot length (shoot length from 

As spiked soil/shoot length from control soils *100) was 50% with a range of O to 

99.8% relative shoot length (Table 3). · Both shoot length from As spiked soil and % 

relative shoot length, results in the same relationship with soil properties. The amount 

of clay showed a strong correlation (P<0.01) to this test without regard to the way the 

data is expressed (Fig. 4 and 5). Shoot length seems to be more sensitive in detecting 

variation is As toxicity in the early stages of lettuce development with more variability in 

response from the soils. 

Multi-regression and Path Analysis for Germination and Shoot Elongation Tests 

The results of the backwards stepwise multiple regressions (Table 4) indicate 

that Fe, soil pH x Fe interaction and pH x clay interaction, were the soil properties that 

were important for influencing the effect of added As on seed germination and shoot 

elongation (R=0.84, P<0.0001 and R=0.76, P=0.0012 respectively). Linear regressions 

did not show any relationship with pH and germination or shoot elongation. The 
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influence of pH on these results may be due to indirect effects of pH on the clay and Fe-

oxide adsorption sites. The multiple regressions for the % relative germination and % 

relative shoot length were somewhat different. The results (Table 4) indicate that clay 

along with a pH x Fe interaction explains most of the variability in % relative 

germination (R=0.89, P<0.0001). Whereas clay, pH and interactions between pH x 

clay and Fe x clay explained most of the variability in the empirical model for % relative 

shoot length (R=0.84, P=0.006, Table 4). 

Path analysis provides a somewhat different explanation than correlation analysis 

for seed germination (Table 5). Both path analysis and simple regressions indicate that 

clay strongly affects seed germination this is also seen in the empirical model for % 

relative germination (Table 4). However, path analysis indicates an additional 

relationship between Fe-oxides and seed germination (P<0.05) that due to indirect 

effects is not apparent with Simple regressions. The indirect effect of clay on Fe-oxide is 

very large signifying a close relationship between these two soil properties. The % 

relative germination path analysis results were nearly identical to germination (Table 5). 

The results for path analysis and simple correlation analysis for shoot elongation 

indicate that the amount of clay is the soil property with the most influence (Fig. 4, 

Table 5). Soil pH, found in multiple regression equations, shows a small direct and no 
r 

indirect effect suggesting that this soil property is not important for germination or shoot 

elongation. The path analysis direct-effects indicate that clay and Fe-oxide affect % 

relative shoot length (P<0.05 and P<0.01 respectively). The % relative shoot length 

may be a better representation of the potential effects of soils properties on early 

lettuce growth. Overall, the property with the most significant effect on germination 
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and early seedling growth in As contaminated soils is the amount of clay followed by Fe-

oxide content in a soil. 

8-Week Bioassay: Lettuce Yield and Arsenic Accumulation 

The yield of the 8-week lettuce bioassay was lost in about % of the test soils 

possibly due to a combination of inherit fertility deficiencies and As content. It has been 

shown that in As contaminated soils plants live longer and have higher yields at high soil 

P concentrations (Meharg and Macnair 1991, Carbonell-Barrachina 1998). Heeraman et 

al. (2001) found that increase of added phosphorus on mine soil increased the yield of 

fescue grass significantly. If the plants are P-sufficient, phosphate is a very effective 

competitive inhibitor of arsenate by suppressing the root uptake system (Meharg and 

Macnair 1991, Carbonell-Barrachina et al. 1999). The presence of phosphate inhibits the 

uptake of arsenate whereas the presence of arsenate only mildly inhibits the uptake of 

phosphate (Tamaki and Frankenberger 1992, Burlo et al. 1999). A P:As ratio of 4: 1 or 

less causes phytotoxicity on wheat with reduced yield (Adriano 1986). At a P:As ratio of 

1: 1 and available As concentrations above 10 mg/kg, stunting occurred in the wheat. 

Woolsen et al. (1973) found reduced phytotoxicity at available P:As ratio of 0.7:1 to 

42.5: 1. In this study the P:As ratio for lettuce 8-week bioassay ranged from 3.34: 1 to 

0.02:1 as determined by Bray-1 soil extraction. Fig. 6 shows the linear relationship 

(P<0.001) between yield from 8-week lettuce bioassay and P:As ratio as determined by . . . . 

Bray-1 extraction. There is strong evidence (r2= 0.70) that with added P-fertilizer 

additional yield would have ensued. 

The uptake of As reduces plant growth and at higher availability causes various 

detrimental effects (Onken and Hossner 1995). Abnormalities with regard to growth, . . . 

chlorosis and necrotic spots and leaf tips were seen for about half of the soils tested. In 
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several soils (Mansic A, Mansic B, Hanlon, Perkins, Pratt B) the seeds would germinate, 

grow for 2-3 weeks then die. This suggests that the level of As is not immediately toxic 

to inhibit seed germination in most soils. This is supported by germination test results 

with high germination rates. High As availability has been shown to result in poor shoot 

survival of lima beans (Woolsen 1973). As arsenic accumulates in the plant tissue and 

phosphate uptake is inhibited, the result is detrimental effects and reduced growth as 

compared to the controls (Appendix A). 

Lettuce yield from 8-week lettuce bioassay ranged from O to Sg dry weight with 

a overall mean of 0.84g. The linear regressions indicate that Fe-oxide (P<0.0001), 

amount of clay (P=0.005) and amount of organic carbon (P=0.008, Fig. 7) have a 

significant relationship to total yield. The % relative yield ranged from O to 75.6 % 

relative. This is the ratio of the yield from the As spiked soils to the yield from the 

controls expressed as a percent (Appendix A). There is a reduction of yield from the As 

spiked soils compared to the control soil due to the increase of As in the soil. The soil 

properties that have the strongest correlation to the % relative yield are the amount of 

Fe-oxides (r2=0.76, P<0.0001), followed by clay (r=0.28,P=O.Ol) and organic carbon 

(r=0.21, P=0.03, Fig. 8). 

The amounts of As accumulated in the leaves after 8-weeks ranged from 2 to 30 

mg/kg dry weight with a mean of 11 mg/kg As (Appendix A). Control lettuce plants had 

As levels below detection limits. Wauchope (1983) reported that As concentrations in 

plant tissue above 3.4 to 10 mg/kg are toxic to lettuce and other leafy vegetables. In 

general, lettuce with higher As content had lower yields as compared to the controls. 

The main difference in how much As is accumulated by plants is controlled by the 

availability of As in soils (Wauchope 1983). The exponential regression explain the 
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relationship best between soil Fe-oxide (R2=0.65) and clay (R2=0.37) and the amount of 

As accumulated in lettuce (Fig. 9). Both clay and Fe-oxides are sinks for As providing 

adsorption sites and possible complexation with As that would reduce As availability and 

toxicity of added As (Adriano 1986, Woolson 1973). 

Multi Regression and Path Analysis for Lettuce Yield and Accumulation 

Backwards multi-regression for (8-week bioassay) lettuce yield, % relative yield 

and As accumulation is shown in Table 4. The regression for yield indicates that Fe

oxide and amount of clay are the main soil properties affecting yield (R = 0.95, 

P<0.0001). There are also interactions between pH x Fe-oxide and organic carbon x 

Fe-oxide. The multiple regression for % relative yield specifies that Fe-oxide and 

amount of clay are the main soil properties that explain most the variability (R = 0.95, 

P<0.0001). There are also significant interactions between pH x Fe-oxide, pH x clay 

and Fe-oxide x clay. The multi-regression equation for As accumulation (R= 0.91, 

P=0.0008) includes organic carbon, Fe-oxide and amount of clay with and interaction 

between pH x day (Table 4). 

Unlike either simple regression or the multiple regressions, path analysis 

indicates that only Fe-oxide (P<0.01) is important for lettuce yield all the other soil 

properties were found .to be a combination of indirect effects (Table 5). The same 

conclusions are found with % relative yield. Path analysis for As accumulation in lettuce 

indicates that several properties have ,an affect on lettuce uptake of As. Soil pH 

(P<0.05), organic -carbon (P<0.01) and Fe-oxide (P<0.01) all have an affect on the 

arnount of As taken up by the plant. Correlation analysis does not show the relationship 

between organic carbon and As accumulation due to the indirect effect of Fe-oxides on 

this parameter. Low uncorrelated residual (U) values and significant R2 values in path 
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analysis suggest that the model explains most of the variation in lettuce yield and As 

accumulation. 

Soil properties are modifying factors that help define the way a biological 

organism reacts to and accumulates nutrients and contaminants. A summary (Table 6) 

of soil properties found to explain variability in each of the lettuce endpoints indicates 

that a variety of results can be acquired depending on the type of statistical analysis 

performed, although certain trends in the results can be established. The amount of 

clay and Fe-oxide in the soil have a dominant effect on the ability of a plant to survive, 

grow and accumulate As. 

Arsenic Extractability and Soil Properties 

The average amount of As extracted by the various methods followed the order: 

pore water (20.6 mg/L, 7.52 mg/kg) < Bray-1 extraction (45.5 mg/kg) < Na-phosphate 

extraction (65.3 mg/kg) < hydroxylamine HCI extraction (102.5 mg/kg) < ammonium 

oxalate extraction (217.5 mg/kg). The amount of As extracted by each method and the 

percent of total As extracted are shown in Table 7. The % of total for pore water As 

was determined from 40 g of spiked soil and the measured weight of water added to 

each soil to make a slurry (Appendix). Spiked recoveries ranged between 94 to 102% 

recovery with a mean of 98.7% As recovered. Result of each extraction method 

including repetitions, spike recoveries and detections limits are reported in Appendix A. 

The pore water extraction only measured the most readily available/water soluble As in 

the soil. This fraction is important since it is considered to be the most readily available 

to plants and soil organisms and the most easily leached to groundwater. Pore water As 

ranged from < 0.2 to 162.6 mg/L, with a mean of 20.6 mg/L As in solution or 3.8% of 

total As, normally less than 5% of total As is water-soluble (Adrianna 2001). The 
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dissimilarity in pore water As indicates that soil properties modify the As levels. Only 

three soils had > than 5% pore water As, Dougherty, Pratt A and Pratt B. All three soils 

were both low in% clay and Fe-oxide content. 

The Bray-1 extractant is commonly used to determine plant available 

phosphorus. Arsenate, since is chemically similar, can be extracted by Bray-1 to 

determine the amount of plant available As (Wauchope, 1983, Huang and Fuji, 1996). 

The Bray-1 extraction measures the water soluble, weakly adsorbed (non-specific) which 

is the plant available fraction of As in the soil. This extraction causes the slight 

dissolution of Fe and Mn oxides and extracts As associated with poorly ordered alumina 

silicate gels and allophane (Lombi et al. 2000). Bray-1 extraction ranged from 2.9 to 

142 mg As/kg soil with a mean of 45.5 mg/kg. This is 21.4% of the total As extracted 

(1.3 to 65% extractable). The Na-phosphate extraction measures, in addition to the 

previous fractions, the strongly (specifically) adsorbed As. Phosphate competes with 

arsenate for adsorption sites and is more effective than other anions (e.g. nitrate and 

sulfate) to extract arsenate from soils (Lombi et al. 2000). The range of extractable As 

was 11.9 to 201.6 mg As/kg, with an average of 30% of the total As extracted (5.1 to 

95.8%). The hydroxylamine extraction is a more aggressive extraction resulting in 80.7 

to 156 mg As/kg, 45.9% of the total As extracted (37-75.4%). This extraction is able to 

release the surface bonded and some of the occluded As from Mn, Al and Fe-oxide As. 

The ammonium oxalate extraction is able to dissolve the amorphous and crystalline Fe 

and Al-oxides releasing the associated As. An average of 96.7% of the total As 

extracted (78.2 to 115%), with a range of 173.9 to 277 mg As/kg was extracted. This 

indicates that the majority of the As in these soils resided in the amorphous Al and Fe-
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oxide fraction ( tv4Q to 60%). The variability in extractability is due to the range of soil 

properties. 

In general, As mobility is greater in sandy soil than clayey soils (Adriano 2002). 

Pore water and Bray-1 extractions measure the most loosely bound As and that with the 

greatest potential to leach from soil. Exponential regressions describe the relationship 

between pore water As and clay (R2=0.67) and Fe-oxide (R2=0.79, Fig 10). Similarly, 

exponential regression also describe the relationship between Bray-1 As and clay 

(R2=0.48) and Fe-oxide (R2=0.43, Fig. 11). The soil pH (R2=0.49) and Fe-oxide 

(R2=0.43) had the strongest expoenential regression with Na-phosphate extractable As 

(Fig. · 12). In general, as the amount of Fe-oxides in soil increased, the amount of 

extractable As decreased. Fe-oxides are attributed to being the major 

adsorption/complextion site for As in most soils (Chen et al., 2002, Smith et al. 1998, 

Lombi et al. 2000). 

The linear regressions for ammonium oxalate suggest a more complex 

relationship (Fig. 13). The amount of clay (r2=0.41, P=0.002), Fe-oxide (r=0.41, 

P=0.001) and organic carbon (r=0.49, P=0.0004) all have significant linear 

relationships to the amount of As extracted. In contrast Hydroxylamine HCI extracted As 

does not relate to any of the measured soil properties (Fig. 14). 

Multiple Rearession 

A backwards, stepwise multi~regression was done to further investigate the 

relationship with multiple soil properties and As extractability and to develop a model to 

describe this relationship (Table 8). The soil properties pH, fe,-oxide and amount of clay 

were all found to be significant with pore water extractable. As (R=0.88, P=0.0004). 

Bray-1 extraction produced a bit more complex relationship with significant interactions 
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between organic carbon x clay and organic carbon x Fe-oxide and significant 

properties of clay and organic carbon (R=0.81, P=0.0008). Organic carbon is not 

thought to be a significant sink for As in soils. The significance of organic carbon maybe 

due to the indirect effect it can have on clay and Fe-oxides by the introduction. of strong 

reducing agents which influence the processes that control mobilization and 

extractability of As (Chen et al. 2002). 

The multi-regression for Na-phosphate extractable As also has a more complex 

equation with significant soil properties clay, organic carbon and pH and interaction 

existing between pH x organic carbon, organic carbon x clay and iron x organic 

carbon (R=0.94, P<0.0001, Table 8). The final equation, for ammonium oxalate 

extractable As, is only significant for Fe-oxide, with an interaction between organic 

carbon x Fe-oxide (R=0.78, P=0.0001). The multi-regression technique eliminated all 

soil properties (P<0.05) for hydroxylamine HCI extractable As. This extraction appears 

to extract about 50% of the As in soil not relating to any measured soil properties. 

Path Analysis 

Path Analysis pulls apart the influence of each soil property and identifies the 

direct and indirect affect of each soil property on the extractability of As. Table 9 shows 

the direct and indirect effects for the soil properties pH, organic carbon, Fe-oxide and 

clay content and the· regression significance (r) for each extractant. To determine the 

weight of indirect effects, they can be compared to an r-table where n=22, this will 

indicate · the strength of the indirect effects and are noted on Table 9. Simple 

regressions for pore water indicated that Fe:oxide and clay content had significant 

relationship to the amount of As in this fraction. In path analysis, (Table 9) only clay 

· content is fol.ind to be significant to the amount of pore water As. Fe-oxide, which was 
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also found in multiple regression, can be attributed to the indirect affect of clay. 

Therefore the soil property with the greatest influence on pore water As is clay. This 

similar result was also found with Bray-1 extractable As. The amount of Fe-oxide was 

significant using simple regression but in path analysis it is found to be due to the 

indirect affect of clay (Table 9). Na-phosphate is able to remove arsenate from strong 

adsorption sites. Both pH and Fe-oxide had significant linear relationships with Na

phosphate extractable As and the same conclusions are found with path analysis. 

Arsenate adsorption has been found to be pH dependent with the amount of arsenate 

adsorbed decreasing with increasing pH (Liu et al. 2001, Darland and Inskeep 1997). 

The path analysis for ammonium oxalate As indicates that the amount of 

extractable As is related to the soil properties organic carbon and clay content. Iron, 

found to be significant with simple regression, is attributed to the indirect affect of 

organic carbon and clay content on Fe-oxide. Organic matter generally has a low 

affinity for As, however, humic substances in the soil can serve as strong reducing 

agents and can influence the processes that control mobilization and extractability of As 

(Chen et al. 2002). 

Table 10 shows a summary of simple simple regression, backwards multi

regression and path analysis for the select soil properties and soil extraction methods. 

Extractability of Arsenic with Biological Endpoints 

Total As in soils is not an accurate representation of the fraction of As that is 

bioavailable to plants and soil organisms; Fig, 15 shows the plant and earthworm 

response to tota!As concentration in soil. There are no significant relationships between 

total As and lettuce bioassay and earthworm toxicity test. This is consistent with the 

finding of Bech E:?t al. (1997) that found there were no relationships between total As in 
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soil and available As to plants. An extracted fraction of As can gives an indirect 

measurement of As bioavailability to earthworms and plants. To determine which 

extraction best correlated with bioavailable As, simple regressions were completed 

between multiple endpoints and each extractant. 

5-Week Bioassay 

Bray-1 extracted P:As ratio (Fig. 6) indicated that with additional P fertilizer more 

yield would have ensued. To test the effect of added P on lettuce yield in As 

contaminated soil, a 5-week bioassay was conducted with excess P fertilizer added. The 

resulting yield was increased and toxicity reduced in nearly all soils as a result of the 

added fertilizer (Table 11). The 5-week lettuce bioassay had an average yield of 2.4g 

dry weight with a range of <O.Olg to 7.2g dry weight. This is almost three times the 

average yield from the previous study (0.84g). The mean % relative yield also increased 

from 22.8% to 30.8% with a range of 0.15% to 99.2%. The As accumulation in lettuce 

tissue ranged from <1 mg/kg to 40.6 mg/kg. This range is high as compared to leafy 

and other vegetable. Woolsen (1973) tested green beans, lima beans, radish, tomato, 

cabbage and spinach and found As concentrations < 10 mg/kg in leaf tissue. Wauchope 

(1983) reported <0.4 mg/kg in leafy vegetables; tobacco 1-78 mg/kg, and legumes from 

1-14 mg/kg. The reason for the higher arsenic levels may be due to increase in soluble 

As (Table, 11). • Figure 21 shows the strong relationship between plant available (Bray-1) 

As from the fertilized soils and arsenic ·concentration in lettuce. Arsenate can be taken 

up via the phosphate transport system and is thought to replace phosphate in energy 

transfer phosphorylation reactions (Tamaki and Frankenberger 1992, Bhumbla and 

Keefer 1994). The addition of phosphate fertilizers to As contaminated soils promotes 

the release of soluble As· a result of competitive adsorption between phosphate and 
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arsenate (Darland and Inskeep 1997, Peryea and Kammereck 1997). The results of the 

addition of phosphate fertilizers may increase plant yield but also has the potential to 

increase soluble As for plant uptake and increased potential As leaching to groundwater. 

Arsenic Extractability and Lettuce Endpoints 

Pore water As had a significant correlation to early stages of plant growth 

including germination and shoot length (Fig. 16). This fraction of As is the most readily 

available and it has the most effect on early plant growth. An exponential regression of 

pore water and lettuce yield and % relative yield from the 8-week lettuce bioassay 

(R2=0.30 and R2=0.59 respectively) and 5-week lettuce bioassay (R2=0.84 and R2=0.90 

respectively, Fig. 17) best explains this relationship. A linear relationship between As 

content in lettuce and soil pore water are significant (r2=0.42, P = 0.01 and r2=0.67, P 

= 0.0004) for both lettuce bioassays (Fig. 18). Arsenic content in corn plants grown in 

As contaminated soil has been shown to have a strong linear correlation to water-

extracted As with total As soil levels< 25mg/kg (Sadiq 1986). 

Bray-1 has previously shown a relationship between plant yield and As added to 

soil (Wauchope 1983, Jacobs et al. 1970). Jacobs et al. (1970) applied O - 710 kg/ha 

sodium arsenate to a field then planted potatoes, peas, snap beans and sweet corn. 

Every crop showed a significant correlation between Bray-1 As and yield. Similarly, 

lettuce yield, arsenic accumulation and to a lesser extent germination and shoot length 
. ' 

had a significant correlation to Bray-1 extractable As (Fig. 19, 20 and 21). 

Na-phosphate had the best relationship with the lettuce yield (R2=0.60) from 5-

week bioassay and % relative yield from both 8-week and 5-week bioassays (R2=0.53 

and R2=0.61 respeC1:iv~ly, Fig. 23). The other lettuce endpoints (Fig. 22 and 24) had no 

significant relationship to this fraction of As. Na-phosphate is able to release the As 
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bound to sorption sites, similar to the way a phosphate fertilizer would release As bound 

to sorption sites. For maximum plant growth, major nutrients must be in ample supply. 

The 5-week bioassay received additional phosphate fertilizer where as the other tests 

received none or little fertilizer. Arsenate and phosphate compete for adsorption sites. 

With added phosphate some of the adsorption sites held by arsenate will be replaced by 

phosphate. Once the sites are filled the remaining arsenate and phosphate will be in 

solution and available for plant uptake. With the limited number of adsorption sites and 

twice as many ions competing for them, this allows for more phosphate in solution. At 

low available As concentration (e.g. arsenic bound to Fe-oxides) this can stimulate plant 

growth by the increase in soluble phosphate for plant uptake (Carbonell-Barrachina 

1995, Carbonell-Barrachina 1998, Marin et al. 1992, Jacobs et al. 1970.). When 

phosphate concentrations are low, the plant is unable to take-up the needed phosphates 

and arsenate is accumulated by the plant. This creates a situation in which the plant 

reacts as if there is a P-deficiency and in turn takes up more arsenate. Arsenic can 

substitute for P in the plant, but is unable to carry out the role of P in energy transfer; 

therefore the plant reacts as if there is a P deficiency (Burle et al. 1999, Heeraman et al. 

2001). 

Ammonium oxalate extractable As had a significant correlation to shoot 

elongation (r2=0.20, P=0.04, Fig. 25) and lettuce yield in the 8-week lettuce bioassay 

(r2=0.47, P=0.0005, Fig. 26). The As accumulation in lettuce had no relationship to 

ammonium oxalate As' (Fig. 27). Hydroxylamirie Hydrochloride extracted As has no 

significant relationships to any of the measured lettuce endpoints (Appendix A). 

An important step in determining toxicity of a chemical is generating a dose

response curve. A dose-response or concentration~response curve establishes the 
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relationship between exposure to a substance and the incidence and severity of an 

effect. Concentration-response curves are used to plot the results of this experiment. 

The x-axis plots the log concentration of As extracted by Bray-1 and the y-axis plots the 

response from each test. Bray-1 extracted As was selected because it had the strongest 

relationship with the most lettuce endpoints or responses. The equation used to 

produce these curves (GraphPad 3.0): 

y = 100 
} +} 0(log/C50-X)•Hil/S/ope 

(1) 

Where Y = Lettuce endpoint expressed as the % relative yield or germination 

X = log Bray-1 extracted As mg/kg 

Hill Slope = the steepness of the curve 

Concentration-response curves were produced to find an IC50 (inhibitory 

concentration which induced a response in 50% of the samples) or and IC20 (inhibitory 

concentration that induced a response in 20%) (GraphPad 3.0). For% relative yield the 

resulting IC50 was 7.98 and 72.4 mg/kg Bray-1 As for the 8-week and 5-week lettuce 

bioassays respectively (Fig. 28). The IC20 can be calculated using the equation 

(Motulsky 1999): 

. ( 80 )71 
IC20 = * IC so 

100-80 

Where H = Hill slope 

The ICio for% relative yield were 1.92 and 42.0 mg/kg'Bray-1 As for the 8-week 

and 5-week lettuce bioassays respectively (Fig. 28): The R2 was 0.44 and 0.70 for the 

8-week and 5-week bioassays respectively. The large difference in the IC20 from these 

bioassay is most probably a result of the lowered As toxicity in the 5-week bioassay due 

to the addition of phosphate fertilizer. The IC50 and IC20 for% relative germination:are 

33 



69.2 mg/kg and 17.2 mg/kg Bray-1 As respectively. This curve has a very shallow slope 

indicating that germination requires a large change in Bray-1 As concentration before a 

resulting lower germination rate. 

Earthworm Toxicity Test and Extractable Arsenic 

Toxicity test are effective way of determining the level of toxicity of a particular 

soil to the test organism. It also gives an indication of the amount of contaminant that 

might be transferred up the food chain. The ability to characterize a soil and its 

contaminant as hazardous can be difficult. Currently total content of As in soil is used to 

determine clean-up levels. This does not always prove to be the best choice for the soil 

ecosystem. Toxicity test help to determine whether the soil is hazardous to the local 

fauna. But these test are time consuming and require support personnel. Finding a 

quick extraction method that can determine if a soil needs to be further assessed can 

aid in the clean-up process. The five extractions described previously, are used in 

simple regression models from a 28-day earthworm toxicity test. Earthworm mortality 

and As accumulation are correlated to each extraction and examined. Earthworm 

mortality ranged from no mortality to 100% mortality with a mean of 21.2 % mortality 

(Appendix A). Arsenic body burdens ranged from 32.3 to 628.5 mg/kg dry weight, with 

a mean of 300.3 mg/kg. The test soils were all spiked to obtain a target level of 250 

mg/kg total As with a mean result of 226 mg/kg As. Therefore the variability in 

response and As body burden indicates that there is a difference in toxicity dependent 

on the soil and not the total As in the soil. A fraction, or extractable portion of As, may 

describe the toxicity of As to earthworm, Earthworm mortality had the best relationship 

to pore water. As (R2=0.41, Fig. 29) .and Bray-1 As (r=0.35, P=0.004, Fig. 30). 

Earthworm exposure to soil As is through soil contact with the epidermis and through 
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adsorption across the gut (Meharg et al. 1998, Langdon et al. 2001). With greater 

soluble As in the soil, there is greater As exposure to the earthworm. The earthworms 

are much more affected by the soluble forms of As than the strongly adsorbed or 

complexed As. There was also a weak relationship (P=0.09) with ammonium oxalate 

extracted As and earthworm mortality (Fig. 33). This may be associated with the 

relationship between amount of Fe-oxide and earthworm mortality found in correlation 

analysis (Table 12). The remaining extractions are much more aggressive thereby 

removing a greater fraction of As from the soil consequently not a good representation 

of the fraction of As affecting earthworm viability (Fig. 31 and 32). 

Concentration-response curves were produced for earthworm mortality and pore 

water and Bray-1 As (Fig. 34). The equation used for this curve (uphill curve) was 

(GraphPad 3.0): 

Y= 100 
1+10(1ogLC50-X)•HillS/ope 

The lethal concentration at which 50% (LC50) of the worms died was 120.2 

mg/kg Bray-1 As and 79.4 mg/L pore water As. The LC20, the concentration at which 

20% of the worms died, was 37.1 mg/kg Bray-1 As and 4.05 mg/IL Pore water As 

Where: 

I 

LC" -( 1002~ 20Y ; L~so 

The Hill slope for Bray-1 (1.44) is ~u~h. steeper than pore water (0.47). This 

indicates that smaller changes in Bray-1 As concentration can cause greater earthworm 

mortality. A steep slope or higher slope factor reflects the magnitude of the range of 

"doses" between non-affected concentration and a lethal or effective concentration. The 

steeper, the curve the slighter the margin of safety or the more toxic the substance. 
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Earthworm As accumulation did not correlate to any extraction method at the 

P<0.05 level. Bray-1 As (Fig. 30) and Na-phosphate As (Fig. 31) had a weak 

correlation (r=0.17, P=0.07 and r=0.18, P=0.06 respectively) to As accumulation in 

the earthworm. More data would be needed before using these methods for toxicity 

assessment. Living earthworms are able to regulate their burdens by homeostatic 

controls over As accumulation and through detoxification processes (Meharg et al. 

1998.) In addition edaphic conditions affect arsenate bioavailability (Meharg, et al. 

1998). Table 12 shows correlation analysis for the soil properties pH, % organic carbon, 

Fe-oxide and % clay. These results indicate the potential of pH (P=0.09) to influence As 

accumulation by earthworms. As pH increases the amount of As that becomes available 

increases due to reduction of sorption sites and increase of negatively charged As 

species thereby increasing the amount of labile As (Manning and Goldberg, 1996). 

Peijnenburg et al. (1999) found that pH had a direct influence on the elimination rate of 

As from the earthworm. At soil pH (CaCl2) greater than 5, As is elimination from the 

earthworm. But at soil pH (CaCl2) apove 6.75 there is no further elimination of As from 

the earthworm and body concentration increase_ linearly. Evidence suggests that As is 

taken up primarily from the solid soil matrix or via an exposure route related to the soil 

matrix e.g. uptake from the labile or extractable portion (Peijnenburg et al. 1999). It 

has been shown that soil properties can reduce the labile or extractable portion of As 

from the soq matrix. Properties that have the. gre.atest influence of reducing the labile 

portion of As would _be clay and Fe-oxides. 
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CONCLUSIONS 

Plant bioavailable As varied depending on soil properties. Results indicate that 

Fe-oxide and amount of clay have the most influence on lettuce yield in As contaminated 

soils. Arsenic accumulation by lettuce was much more complex relationship indicating 

several soils properties; Fe-oxide, amount of clay and pH, all have an influence on As 

uptake. The results illustrate that at different stages of lettuce growth and 

development, a range of soil properties can affect shoot growth, yield and accumulation 

in As contaminated soils. Models may be useful for predicting potential risk of As in soil. 

Path analysis models provided quantitative causative influence of As bioavailability for 

lettuce yield and accumulation of As. 

The majority of As in spiked soils was found in association with Fe-oxides. The 

soil properties that influence extractability of As differed depending on the regression 

model and extraction method. But overall the extractability of As is dependent on Fe

oxides and clay. 

There are several extractants that have a high correlation to plant bioavailable 

As. Extractions have more value than soil properties alone when determining the 

amount of As that is posing a risk to the environment. Soil properties act as modifying 

factors and influence the amount of As that is extracted. Pore water and Bray-1 have 

strong relationship to seed germination, early shoot growth, and lettuce yield. In 

addition Bray-1 extraction estimates As accumulation in lettuce. Earthworm mortality is 

strongly correlated to pore water and Bray-1 As. Na-phosphate extraction had the best 

relationship (P<0.08) with As accumulation in earthworms. More investigations are 

needed to confirm use of this extraction to predict As uptake. Basing all bioavailability 

on one or more soil properties is not adequate in determining the risk associated with As 

37 



content in soil. Just as soil fertility is based on the amount of a nutrient that is 

extracted, so should bioavailability and risk due to As in soils. 
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Table 1. Soil properties pH, %Organic carbon, % Clay, Cation exchange capacity (CEC), 

and Fe and Al - oxide as determined by ammonium oxalate extractant from selected 

soils (Controls). 

CEC 
Fe- Al-

Soil Name pH pHl'sp 0/oOC 0/oClay 0/o Silt cmol/kg 
Oxide Oxide 
mg/kg mg/kg 

Bernow B 5.6 4.45 0.30 26.3 19.4 6.70 873 2270 

Cannisteo 7.8 7.55 3.00 38.8 51.3 30.5 1680 1510 

Dennis A 6.2 4.90 1.90 23.8 40.0 9.80 1680 8070 

Dennis B 6.5 5.60 0.80 45.0 41.9 14.6 2080 8510 

Dougherty 5.7 5.00 1.20 11.3 21.3 3.30 291 594 

Efaw 4.1 4.00 1.20 17.5 54.4 4.60 1210 4100 

Hanlon 7.7 7.00 1.60 17.5 23.8 16.3 832 2850 

Haskell 4.9 4.65 1.20 11.3 70.6 4.80 863 3570 

Kirkland 5.5 5.10 1.45 31.3 57.5 14.0 1420 2980 

Luton 7.4 7.15 2.00 71.3 38.8 32.4 3110 9730 

Mansic A 8.0 7.95 1.50 30.0 43.8 16.5 839 752 

Mansic B 8.4 8.00 0.53 35.0 42.5 11.7 873 2210 

Osage A 7.2 6.00 2.60 55.7 53.8 28.3 2710 14200 

Osage B 6.6 6.15 2.00 61.3 47.5 27.5 2740 14800 

Perkins 4.4 4.30 0.85 10.0 30.0 3.00 759 2180 

Pond Creek 
A 

5.2 4.65 1.90 28.8 62.5 10.7 1330 2890 

Pond Creek 
B 

6.0 5.95 0.80 32.5 48.8 12.5 1390 3270 

Pratt A 6.7 6.30 0.90 5.00 3.75 4.40 250 382 

Pratt B 6.1 6.00 0.50 6.25 1.25 3.40 240 349 

Richfield 7.2 7.55 1.10 41.3 51.3 22.3 1420 1870 

Summit A 7.6 7.25 2.40 45.7 53.8 29.4 4210 11400 

Summit B 7.0 6.65 1.25 56.8 48.8 27.6 2690 5670 

T - pH of soil after spiking with 250 mg/kg arsenic and leaching of the soil 
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Table 2. Arsenic chemical extractants and their respective literature f re erences. 

Chemical Extractant 
Arsenic Species 

References 
Extracted 

Bray-1 
Water Soluble 

0.03 MNH4F + 0.025 MHCI 
Weakly Adsorbed 

Bray and Kurtz, 1945 as 

(Plant Available) described by Kuo, 1996 

Sodium Phosphate 
Water Soluble 

0.06 M Na2HP04 + 0.04 M 
Weakly Adsorbed Yamamoto, 1975 

NaH2P04 
Strongly Adsorbed 

Hydroxylamine HCI Water Soluble McKeague and Day, 

Weakly Adsorbed 1966 as descrribed by 

0.25 M NH20H•H20 and 
Strongly Adsorbed Ross and Wang, 1996, 

0.25 M HCI and 0.25 M H3po4 
Mn-oxide and modified by Amacher 

Some Amorphous Fe-oxides and Kotuby-Amacher, 
1994 

Acid Ammonium Oxalate 
Tamm's Reagent 0.175M Water Soluble McKeague and Day, 

ammonium oxalate Weakly Adsorbed 1966, as describe by 

(NH4)2C204, 0.1 Moxalic acid 
Strongly Adsorbed Loeppert and Inskeep 

(H2C204) + 0.025 M H3PQ4 
Amorphous Fe-oxides 1996: Schwertmann I 

SSSA, 1996, 

45 



Table 3. Ten day % seed germination, %relative seed germination, shoot length, and 

% relative shoot length results. 

Soil 

Bernow B 

Canisteo A 

Dennis A 

Dennis B 

Dougherty A 

Efaw A 

Hanlon A 

Haskell 

Kirkland A 

Luton A 

Mansic A 

Mansic B 

Osage A 

Osage B 

Perkins A 

Pond Creek A 

Pond Creek B 

Pratt A 

Pratt B 

Richfield B 

Summit A 

Summit B 

Overall Mean 

10-day 
0/o Germ 

80.0 

86.7 

30.0 

90.0 

0 

83.3 

38.3 

73.3 

62.5 

95.0 

58.3 

96.7 

61.7 

93.3 

6.7 

48.3 

90.0 

13.3 

1.7 

96.7 

26.7 

88'.3 

60.0 

010 Relative 
Germ 

85.3 

98.1 

31.6 

96.4 

0 

NA 

44.2 

NA 

47.2 

121.3 

62.5 

112.1 

67.3 

102.6 

7.4 

56.9 

105.9 

17.8 

2.1 

105.5 

29.6 

96.4 

64.5 
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Shoot 
Length, 

cm 

1.95 

2.12 

0.63 

2.48 

0 

1.88 

1.75 

2.27 

1.37 

2.63 

1.58 

2.05 

2.36 

2.96 

0.36 

2.20 

2.65 

0.53 

0.17 

2.35 

0.58 

2.18 

1.7 

0/o Relative 
Shoot Length 

56.8 

54.5 

26.5 

63.4 

0 

NA 

40.5 

NA 

57.3 

64.6 

71.2 

61.5 

58.7 

91.6 

9.18 

83.1 

63.6 

16.1 

9.43 

99.8 

14.4 

58.4 

so.a 



~ 

"' 

Table. 4. Backwards. stepwise multiple regression using the soil properties pH, % organic carbon, Fe-oxide (ammonium oxalate 

extracted), and % clay for lettuce bioassay endpoints: % germination, %relative germination, shoot length, % relative shoot length, 

8-week lettuce yield, 8-week % relative yield, and 8-week arsenic accumulation (n=22, P < 0.05). 
~ . " ' 

Method 

0/o Germ 

0/o Relative 
Germination2 

Shoot Length. 

Regression Equation for soil properties pH, O/oOC, Fe-oxide, and O/oClay 

[%Germ] = 4.73 + (0.025*Fe) - (0.005* pH*Fe) + (0.33* pH*Clay) 

[%Relative Germ] = -'1.69 + (2.80*Clay) - (9.52E-4*pH*Fe) 

[Shoot] = 0.305 + (0.00062*Fe) - (0.0001 * pH*Fe) + (0.007* pH*Clay) 

5:;0~t:!:~2 [%Relative Shoot]= -77.0 + (7.97*Clay) + (2.06*pH2) -(0.96*pH*Clay) - (7.15E-5*Fe*Clay) 

Total Yield 
(8-week) 

010 Relative 
Yield (8-week) 

As 
Accumulation.1 

[Yield] = 406.29 + (0.41 *Fe) - (45.96*Clay) + (0.96*Clay2) :- (0.097* pH*Fe) + (0.17* OC*Fe) 

[%Rel. Yield]= 13.5 + (1.86E-6*Fe2) + (0.104*Clay2) + (0.0025*pH*Fe)-(0.49*pH*Oay)-(8.6E-4*Fe*Oay) 

[As] = 21.22 + (8.71 *OC) - (0.002*Fe) + (0.01 *Clay2) - (0.11 * pH*Clay) 

1 For this regression n=15, P=0.01 
2 For this regression n=20 

R p 

0.84 <0.0001 

0.89 <0.0001 

0.76 0.0012 

0.84 0.0006 

0.95 <0.0001 

0.95 <0.0001 

0.91 0.0008 



Table 5. Path analysis indicating direct effects (underlined) and indirect effects of the 

soil pH, %organic carbon, %clay and Fe-oxide on lettuce endpoints: % germination, % 

relative germination, shoot length, % relative shoot length, 8-week lettuce yield, 8-week 

% relative yield, and 8-week arsenic accumulation. (*designates a r-table significance at 

P<0.05, ** designates a r-table significance at P<0.01). 

Endpoint pH oc Fe Clay r R2 u 

pH -0.21 -0.05 0.01 0.53* 0.27 0.59** 0.64 

O/oGermination oc -0.06 -0.20 -0.25 0.58** 0.06 

n=22 Fe 0.00 -0.11 -0.49* 0.85** 0.26 

Clay -0.10 -0.10 -0.35 1.20** 0.66** 

O/o Relative pH 0.02 -0.06 0.02 0.46 0.44 0.79** 0.46 

Germination oc 0.01 -0.25 -0.25 0.59 0.09 

n=20 Fe 0.00 -0.13 -0.49* 0.89 0.28 

Clay 0.01 -0.12 -0.35 1.23** 0.76** 

pH -0.23 -0.03 0.00 0.46* 0.21 0.50* 0.71 

Shoot oc -0.06 -0.10 -0.17 0.50* 0.18 

Elongation Fe 0.00 -0.05 -0.32 0.74** 0.37 

n=22 Clay -0.10 -0.05 -0.23 1.04** 0.66** 

O/o Relative pH -0.12 -0.02 0.02 0.42 0.29 0.53** 0.68 

Shoot oc -0.03 -0.08 -0.28 0.53 0.14 

Elongation Fe 0.01 -0.04 -0.55* 0.81 0.23 

n=20 Clay -0.05 -0.04 -0.40 1.12** 0.63** 

Lettuce Yield pH -0.01 0.05 -0.01 -0.04 -0.01 0.74** 0.51 

8-week oc -0.00 0.17 0.43 -0.05 0.55** 

Bioassay Fe 0.00 0.09 0.83** -0.07 0.85** 

n=22 Clay -0.00 0.08 0.59** -0.09 0.57** 

O/o Relative pH -0.05 0.01 -0.01 -0.07 -0.12 0.78** 0.46 
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Endpoint pH oc Fe Clay r R2 u 

Yield oc -0.01 0.05 0.50* -0.08 0.46* 

8-week Fe 0.00 0.03 0.96** -0.11 0.87** 

n=22 Clay -0.02 0.02 0.68** -0.16 0.53** 

Lettuce 
pH -0.53* 0.13 -0.20 0.11 -0.49 0.76** 0.49 

Arsenic oc -0.09 0.78** -0.78** 0.08 -0.01 

Accumulation Fe -0.09 0.54* -1.14** 0.14 -0.55* 

n=15 Clay -0.29 0.32 -0.79** 0.20 -0.56* 
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Table 6. Summary of Linear Regression, Backwards multiple regression and Path Analysis illustrating the relationship between soil 

properties: pH, % organic carbon, iron oxide, % clay and lettuce endpoints: % germination, % relative germination, shoot length, % 

relative shoot length, 8-week lettuce yield, 8-week % relative yield, and 8-week arsenic accumulation (*designates and r-table 

significance at P<0.05, ** designates and r-table significance at P<0.01). 

Simple Regression 
Backwards Multiple Regression 

(• = P<0.05, Path Analysis 
•• = P<0.01) 

C• = P< o.os) 

pH oc Fe Clay pH oc Fe Clay Interaction pH oc Fe Clay 

Germination ** * 
pH X Fe 

* ** pH X clay 

O/oRel. Germ * ** * pH X Fe * ** 

Shoot Length ** * 
pH X Fe 

** pH X clay 

O/o Rel. Shoot 
** Length * * 

pH X clay 

Fe x clay * ** 

Lettuce yield pH X Fe 
(8-week * ** ** * * ** 

bioassay) QC X Fe 

pH X Fe 

O/oRel. Yield * ** * * * pH X clay ** 
Fe x clay 

As 
Accumulation 

* (8-week * ** ** ** pH X Clay * ** ** 
bioassay) 



u, ..... 

Table 7. Arsenic concentrations and amount and percent of total As (italics) extracted by pore water, Bray-1, Na-phosphate, 

hydroxylamine HCI and ammonium oxalate procedures from 22 soils spiked with arsenic. 

Soil 

% 
Pore % Pore I Bray_ l % Bray-1 Phosphate % Hy~roxyl- Hydroxy rmmonium 

water water As Extracted Extract, Phosphate amine HCI HCI Ox. As, 
As Extracted.I mg/kg As mg/L Extracted mg/L Extracted mg/L 

mg/L .As As As 

% 
Ammon Total 

Ox As, 
Extracted mg/kg 

As 

Bernow B 

Canisteo A 

0.19 

8.44 

0.03 

2.62 

26.3 

37.8 

10.3 

16.8 

37.3 

102 

14.6 

45.3 

81.4 

111 

31.9 

49.3 

223 

239 

87.4 

106 

255 

225 
--+---.. --·------·--.. +---------.... - .. -·-·t---.. --·-.. ---.. --.. --.--.. ---............ --1--.. - ... ,.--.. ·------.. ·--...... - .................... +--·--....... _______ .. , .............. _,_ .... ___ ..... _, _____ .... ___ .... _ .. 

Dennis A 0.30 0.07 I 10.6 4.5 11.9 

Dennis B 0.003 0.001 I 2.91 1.3 15.6 

5.1 

7.0 

94.0 

79.4 

40.2 

35.7 

232 

174 

99.4 

78.2 

234 

222 
-----··----·----.. 1----·----· .. --, .. ·----·---t·-.. -·----·-·--·----.... --.. ------.. t---·----............. - ... ·-·-·---·--·-.......... t .. -----, ............... ______ .. ,, ...... __________ .. __ ...... 1, .................. --, ............... ______ .. _ .. , ....... _., ..... ___ , .... ,-1 .... , .... - ........ _ .. ____ .. , ___ .. _ 

Dougherty A I 98.8 13.8 I 90.5 44.3 

Efaw A 1:·06 0.80 151.2 22.9 -------·--·-- ---,-· .. ···---·-·-.. ·----------·-- _____ ,, __ , _____________ ...... , ... --,. 

Hanlon A 13.9 2.95 77.0 33.8 

Haskell 3.81 0.94 35.7 17.2 

Kirkland A 2.01 

Luton A 1.49 

0.47 37.3 

0.51 40.6 

16.5 

16.8 

I 64.3 31.4 I 103 50.3 

36.0 16.1 1102 45.5 
·--·--··-------·--------·--·--·····---··"·--·--·----.. ·····---·-·---···- ---------------------------------------------------

61 26.9 105 46.2 

25.8 12.4 157 75.4 

40.5 

98.7 

17.9 

40.9 

103 

112 

45.5 

46.3 

I 194 95.1 

215 96.3 
-------------------··--·---------···-----·· ···--··· ... -·-·--··-··---------· 

227 99.5 

215 103 

223 

278 

98.7 

115 

I 205 

223 
·---------------···············"····" 

228 

208 

226 

242 
·-----·--i---------·-·-·--------·------t----·--·-- . __ .. ___ ,. __ -t-·--·-----------·-------·---.. --........ _,,, _____ ,.,1-------------------------·--·---·"--·----------------------·-·"1--------------.. -----·--·"---------"--·-·--------------------.. ···----,--------·-----.. --------------

Mansic A 16.9 

Mansic B 20.3 

4.87 29.3 

3.71 8.6 

14.5 

4.1 

95.2 

202 

47.2 

95.8 

110 

113 

54.8 

53.6 

209 

193 

104 

91.5 

201 

210 
·--------------1----·-·-------~-------------J-.------···--··---------·-·-·-"··"'""""---------------------·-··-·-------------------'----------------····-·--·-·-·-----------------·--------------·---------·-·"----'··------......... ,-,,--------.... 
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.. . '• 

Soil 

Osage A 

Osage B 
-------

Perkins A 

Pond Creek A 
.. _. _____________ .. _ .. __ , 

Pond Creek B 

Pratt A 
-------

Pratt B 

Richfield B 
---·-·-----·-··-··-··-·-----

Summit A 

Summit B 
------

Overall Mean 

Pore %/'ore 
water water 

As Extracted 
mg/L As 

0.23 0.05 

0.12 0.03 
-·-·-·---·-· .. ·--·---·-·-.. ·---

10.1 1.26 

7.49 1.86 
-------·-----.. -

0.49 0.10 

94.4 24.1 
_____ ,. ___ .. ,_ .. ______________ 

163 23.7 

8.61 2.27 
--·--·--------··-... -.. ·-·--

0.31 0.08 

0.02 0.005 
r----····------·--------· 

20.6 3.8 

Bray - 1 % Bray-1 
As Extracted 

mg/kg As 

12.2 4.6 
,. 

10.1 4.3 
__ ... , .. _, _________ , ____ ,,.,,_,, __________ 

62.7 27.4 

43.0 18.9 
----------------.. --.. --.. 

40.3 17.7 

113 75.7 
__ ... ,_ ................. ,, ____ 

142 65.0 

110 47.1 -.. -----·-·-·-·----............................. 

7.0 2.7 

12.3 5.1 
--·-·---·--.. -·----""·""·--------

45.5 21.4 

% % % 

Phosphate Phosphate Hydroxyl- Hydroxy ~mmonium Ammon Total 
Extract, Extr. cti d amine HCI HCI Ox. As, Ox As, 
mg/L :s e mg/L Extracted mg/L Extracted mg/kg 

As As 

25.3 9.6 109 41.3 275 104 265 

27.3 11.7 108 46.1 250 107 234 
r-----, ....... ,_, .... -, ... ,----·-······---.. --,----.......... ,, ______________ ,,,.,,,,_, ________ ,.,_ .. ... -... --··-···--.... - ........... ______ ........ _,_ .. ___ ·---.. -------... 

57.9 25.3 101 44.2 210 91.8 229 

39.9 17.6 93.6 41.2 222 97.8 227 
...... ------.. --................... , _______ .... ________ ............ --.............. _, ___ .... ,,. ,_ .. _ .. __________________ ........... , ... __ ,,., .. ___________ .... ·-----·-·-.. - ........... -... 

45.4 19.9 103 45.3 218 95.3 228 

93.3 62.7 81.8 55.0 151 101 149 
--·-·-·--·----...... ______ ............ ·-·--···-··-.. ··-- --·--••HM--H-.. •-••-.. •-------.. -• .. - .. _ .. _ .... _. ___ ............. --.. -·--· .... ·-·--·-- ········· ____ .............. ---··--· 

130 59.4 80.7 36.9 186 85.2 218 

154 65.9 105 44.9 219 93.4 234 
·---·-.. _ .. ___ ................. _____ . __ ... _ --........... _ ......... -·-·--·_ ........ -........ _ ........ _ - ................. ___ ........ - ........... -......................... ___ ........... _ ········ -····· ............................ _ ......... 

45.4 17.6 107 41.6 233 90.5 258 

27.7 11.4 93.9 38.6 210 86.2 243 
.... ·-·-.. ·-----···-·----------........... --. -·--·--·---................. ·-----·-······· ...................... _ ,__ ........... --........ -........................ -----·--····---.............. _ ·---.......... ___ .... _ ...... 

65.3 30.1 102 45.9 218 96.7 226 
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Table 8. Backwards stepwise multiple regression for various arsenic extraction methods using soil properties pH, % organic carbon, 

Fe-oxides (mg/kg, ammonium oxalate), and % clay (n=22, P < 0.05). 

Method Regression Equation for soil properties pH, 0/oOC, Fe-oxide, and 0/oClay R p 

Pore water 
·[As]=- 281.0 + (134.G*pH) - (0.014*Fe) - (3.54*Clay) - (10.9*pH2) + (7.6x10-7 * Fe2) + 

(0.04*Clay2) 0.88 0.0004 

Bray-1 [As] = -132.3 - (4.3*Clay) - (26.4*0C2) + (2.77*0C*Clay) - (0.003*0C*Fe) 0.81 0.0008 

Na-Phosphate [As] =49.68-(3.2*Clay)+(4.7*pH2)+(20.82*0C2)-(23.8*pH*OC)+(2.4*0C*Clay)-(0.003*Fe*OC) 0.94 <0.0001 

Hydroxylamine 
NA 0.0 HCI 

Ammon Ox [As] = 197.6 - (5.12x10-7*Fe2) - (O.OOS*OC*Fe) 0.78 0.0001 



Table 9. Path analysis indicating direct effects (underlined) and indirect effects of the 

soil pH , % organic carbon, % clay and Fe-oxide (ammonium oxalate extracted) on 

extractability of arsenic using five different extractions (n=22, * designates r-table 

significance at P<0.05, ** designates r-table significance at P<0.01). 

Extraction pH oc Fe Clay r R2 u 

pH 0.40 -0.05 -0.00 -0.35 -0.001 0.41 0.77 

Pore Water oc 0.11 -0.19 0.10 -0.37 -0.35 

Fe -0.00 -0.10 0.19 -0.55** -0.46* 

Clay 0.18 -0.09 0.14 -0.78** -0.55** 

pH 0.23 -0.01 0.00 -0.24 -0.02 0.44* 0.75 

Bray-1 oc 0.06 -0.05 -0.10 -0.26 -0.35 

Fe -0.003 -0.03 -0.18 -0.38 -0.60** 

Clay 0.10 -0.03 -0.13 -0.54* -0.59** 

pH 0.68** -0.06 0.00 0.01 0.64** 0.70** 0.55 

Na-Phosphate oc 0.18 -0.21 -0.22 0.01 -0.24 

Fe -0.01 -0.11 -0.42* 0.02 -0.52* 

Clay 0.30 -0.10 -0.30 0.02 -0.07 

pH 0.07 0.10 0.00 -0.04 0.13 0.11 0.94 

Hydroxylamine oc 0.03 0.36 -0.03 -0.04 0.31 

HCI· Fe -0.001 0.19 -0.05 -0.06 0.08 

Clay 0.03 0.18 -0.04 -0.08 0.09 

pH -0.24 0.14 0.00 0.21 0.11 0.68** 0.57 

Ammon oc -0.06 0.54** 0.01 0.23 0.72** 

Oxalate Fe 0.00 0.28 0.02 0.34 0.64** 

Clay -0.11 0.26 0.01 0.47* 0.64** 
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Table 10. Summary of Linear Regression, Backwards multiple regression and Path Analysis illustrating the relationship between the 

extractability of arsenic and soil properties: pH, % organic carbon, iron oxide and % clay (*designates and r-table significance at 

P<0.05, ** designates and r-table significance at P<0.01). 

Simple Regression Backwards Multiple Regression 
(•=P<0.05, ••=P<0.01, (• = P< 0.05) 

Path Analysis 
E=Exponential, L=Linear) 

Extraction pH oc Fe Clay pH oc Fe Clay Interaction pH oc Fe Clay 

Pore Water **E **E * * * ** 

Bray-1 **E **E 
QC X Clay 

* * * 
QC x Fe 

pH X QC 
Na- **LE *E Fe X QC 

Phosphate * * * ** * 
QC X Clay 

Hydroxyl-
amine HCI 

Ammonium **L **L **L Ox. * QC x Fe ** * 



Table 11. Lettuce yield and Bray-1 extracted arsenic from 8-week and 5-week bioassays. 

8-Week Bioassay 5-Week Bioassay 

Yield, Lettuce Bray-1 Bray-1 
Yield, Lettuce Bray-1 Bray-1 

Soil AsConc. As p AsConc. As p 
mg mg/kg mg/kg mg/kg 

mg mg/kg mg/kg mg/kg 

Canisteo A 0 37.8 9.69 129 167 570 

Dennis A 1396 5.14 10.6 36.20 6837 39.3 41.8 120 
...... _______ .. ______ .............................................. _ .. _ .............. -........ _______ .. _________ .... ______ .,.,.,,, __ ,, ___ ,,,, .. _ .. ______ ............ ............. ______ ...................... ,----··········-.. ·-··--·--.. ,-................. __________ , .. , ... 

Dennis B 

Dougherty A 

Efaw A 

Hanlon A 

Haskell 

Kirkland A 

Luton A 

MansicA 

Mansic B 

Osage A 

Osage B 

49.3 

0 

280 

43.0 

2042 

429 

2196 

0 

1.33 

5037 

3783 

2.14 

16.6 

16.5 

2.91 2.50 5725 

90.5 26.80 38.0 

51.2 85.72 1771 

77.0 94.36 224 

22.72 35.7 88.15 1381 

16.48 37.3 54.85 2178 

9.30 40.6 69.88 2901 

29.3 1.10 41.3 

8.60 0.19 17.7 

6.27 12.2 58.73 4503 

3.80 10.1 34.43 4924 

Perkins A 17.0 62.7 52.47 268 
···-·-········· ....... ,_, ..... ·-----.. --.. ·----·-·--.................................... _____ .... ____ .... ___________ .. __ ........... , __ , ...... , ___ _ 

Pond Creek A 505 29.8 43.0 123.65 1827 

Pond Creek B 47.3 15.1 40.3 36.22 2200 

Pratt A 0 113 22.64 14.7 

2.42 

0.76 

26.5 

28.5 

29.6 

14.8 

4.58 

5.16 

5.60 

40.6 

9.42 

19.3 

192 

91.4 

169 

112 

104 

139 

207 

53.2 

51.4 

45.9 

120 

138 

99.6 

201 

36.5 

489 

347 

534 

437 

326 

573 

269 

2.5 

265 

285 

304 

635 

301 

317 

Pratt B O 142 31.71 8.00 216 327 
.. ____________ ................................................................ ________ , ................ __ , .............. --............. _ ...................................... _,_ ................. ,_ ....................................................................................................... ,_, __ .......... .. 

Richfield B 33.3 110 28.25 53.7 217 378 

Summit A 1464 3.24 7.02 10.06 7179 1.6 51.6 170 

SummitB 1135 5.87 12.3 4.96 4310 1.12 43.8 87.6 

Overall Mean 842 11.5 45.5 52.3 2154 15.0 118 323 
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Table 12. Linear regression coefficients for earthworm mortality and accumulation and 

the soil properties pH , % organic carbon, iron (ammonium oxalate, mg/kg) and % clay. 

Soil Properties 

pH (1:1 water) 

r2 
p 

Earthworm Mortality 

0.10 
0.15 

y = -7.09x + 63.8 

Earthworm As 
Accumulation 

0.15 
0.09 

y = 56.3x - 43.52 
---- .... _." _______ .... ____ .., .. __________ .. ___________________ .. _______________ .................... _____ , .............. _ ........ __ 

O/o Organic 
Carbon 

Fe-oxide 

0/o Clay 

r2 
p 

r2 
p 

0.07 
0.23 

y = -10.7x + 36.3 

0.24 
0.03 

y = -0.003x + 36.8 

0.03 
0.50 

y = 41.2x + 240 

0.14 
0.12 

y = -0.015x + 383 
--··-·-----·-··-··········----·······--····-·-·······--··--··········-----··---·-------·--·····-·-·-·-----·-·············-·········-·-

r2 
p 

0.34 
0.005 

y = -0.88x + 49.2 

57 

0.001 
0.89 

y = -0.32x + 311 



pH 

Clay 
Endpoint 

oc 

Fe-oxide 

Fig. 1. Graphical representation of path analysis for the relationship between soil 

properties pH, clay content, organic carbon, Fe-oxide and endpoint. 
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Fig. 2. Ten-day Germination rates on 22 arsenic spiked soils with soil properties soil a) 

soil pH, b) % clay, c) % organic carbon, and d) Fe-oxides (ammonium oxalate). 
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Fig. 4. Shoot length of lettuce grown on 22 arsenic spiked soils with soil properties a) 

soil pH, b) % clay, c) % organic carbon, and d) Fe-oxides (ammonium oxalate). 
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Fig. 12. Na-phosphate extracted arsenic from 22 arsenic spiked soils with soil properties 

a) soil pH, b) % organic carbon, c) % clay, and d) Fe-oxides (ammonium oxalate). 
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CHAPTER II 

IRON-BASED REMEDIATION ON 

ARSENIC CONTAMINATED SOILS: 

EVALUATION OF INVERTEBRATE AND PHYTO- TOXICITY 

ABSTRACT 

Arsenic is a ubiquitous element found in many minerals all over the world. In 

addition to natural deposits, As compounds have been used for hundreds of years as 

pesticides, herbicides, desiccants, wood preservatives and as a byproduct in mining 

activities. With the lowering of drinking water standards for As, there is emergent 

interest in remediating As contaminated soils. For a remediation effort to be successful 

and useful in multiple applications, the remediation must be able to reduce risk of 

potential leaching and be ecologically beneficial for soil invertebrates and plants. Re

vegetation of remediated sites is essential for reduction of wind blown particles and soil 

stabilization. The objective of this study is to evaluate four iron-containing materials: 

Fe2(504)J, FeCl3, zero-valence Fe, and Fe-water treatment residual (WTR) for 

remediation of As (250 mg/kg) contaminated/spiked soils and one slag waste medium. 

Multiple pathways were investigated including As extractability (leaching potential), plant 

phytotoxicity and earthworm toxicity. All Fe-treatments used in the soils were effective 

in reducing the most soluble As (pore water and Bray-1 As) thereby redu~ing the threat 

of leaching. The largest decrease in soluble arsenic was in the Fe-WTR treatment. Pore 
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water As decrease by 98.4% across all media and Bray-1 As decrease by 75.7% across 

all soils. There were also improvements in seed germination, shoot elongation and 

shoot yield across all soils and treatments. There is some evidence that Fe-oxide 

content is principal Fe form for reduction of arsenic solubility and improvements in plant 

viability. Concentration-response curves establish an IC20 = 40.3 mg/kg Bray-1 As for 

seed germination and IC20 = 22.0 mg/kg Bray-1 As for shoot yield. Earthworm arsenic 

bioaccumulation was decreased in all Fe-treatments in three of the four soils. The 

sandy Pratt soil had reduced As body burdens in the Fe-Chloride and Fe-WTR 

treatments. In situ treatment of arsenic contaminated soils using Fe-WTR provided the 

most effective Fe-source to reduce As solubility, improve plant response and reduce 

bioaccumulation of As by earthwoms. 

Keywords - Arsenic Arsenic extractability Iron remediation In situ remediation 

Plant bioassay Phytotoxicity of arsenic Earthworm accumulation of arsenic 

INTRODUCTION 

Arsenic (As) is in the nitrogen group of elements (N, P, As, Sb, Bi). Although 

arsenic is described as a metalloid, its behavior is more of a non-metal forming covalent 

compounds or found in anionic species. Many minerals in nature contain As compounds 

with approximately 60% being arsenate, 20% sulfides and sulfosalts and the remaining 

20% as arsenides, arsenites, oxides and elemental As (O'Neill 1995). Argillaceous 

sedimentary rock (shales, mudstones, slates) has been found to contain as high as 900 

mg/kg As (O'Neill 1995). In addition to natural deposits, As compounds have been used 
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for hundreds of years as pesticides, herbicides, desiccant for cotton after defoliation and 

as a wood preservative. Arsenic is also found in significant quantities in phosphate 

fertilizers with the content depending on the source of the phosphate rock. In the UK, 

an average content was found to be 7.7 mg As/kg in rock phosphate (O'Neill 1995). 

Besides natural occurrence of As, mining activities have increased the concentration of 

As in soils and water. The process of removing metals from ore tends to increase 

unwanted metals and metalloids, such as Pb and As, in local soil and water. Mine 

tailings have shown to have as high as 10,000 mg/kg As, although not all is bioavailable 

or soluble. 

There is some similarity between the chemical behaviors of P and As, both form 

oxyanions (arsenate and phosphate) in the +5 oxidation state in aerobic soils, but 

phosphate is more stable over a wider range of Eh and pH conditions than arsenate. 

The distribution of As chemical forms in a solution is pH dependent. It is generally 

thought that anoxic soil solution i.e., pe+pH<6, the most abundant species of As is 

As(III) whereas in an oxic soil solution (pe+pH>lO), As is mainly present as As(V) 

species (Sadiq 1997, O'Neill 1995, Masscheleyn et.al. 1991). The more toxic arsenite 

(Asa}-) is readily oxidized to arsenate (Asai-) in air, surface waters and aerobic soil. 

There is a potential of As leaching into an anaerobic environment and reducing to the 

more toxic arsenite. In addition, microbial activity can cause methylation, demethylation 

and/or changes .in oxidation state. 

In soils, clays have a net negative charge therefore have a preference for 

positively charged ions from the soil solution, not oxyanions.- The oxyanion forms of As 

can compete with or replace phosphates adsorbed on the positive sites of clay surfaces, 

although this is thought to be an insignificant amount of the total As adsorption. It is 
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generally accepted that organicarsenical complexes constitute a minor fraction of the 

total dissolved As in soil solution and, therefore, for all practical purposes, can be 

ignored. The basis of the adsorption is due to charge produced by hydration, specific 

adsorption, changes in cation coordination, isomorphous substitution, crystallinity, etc. 

Iron oxide/hydroxide surfaces have been found to effectively adsorb As in soils (Manning 

and Goldberg 1997, Livesey and Huang 1981, Carey et. al. 1996). Fe oxides/hydroxides 

have a zero charge at pH ranging from 7-10 (mean around 8.5) therefore higher pH 

favors net negative charge and lower pH enhances net positive charge on these 

surfaces. Many researchers have reported associations between Al oxide/hydroxide 

content and As concentrations in soil (Livesey and Huang 1981, Carey et al. 1996). Al 

oxides and hydroxides, like Fe oxides surfaces, may play a role in As 

adsorption/chemisorption. In acidic conditions Al oxides and hydroxides have a net 

positive charge therefore may partake in adsorption in acidic soils but may have a 

limited role in the near neutral or alkaline soils. Mn oxide surfaces are expected to play 

a limited role in the adsorption of As in soils with pH>4 because of the net negative 

charge. Carbonate minerals are unstable in acidic soils, but may play a role in the 

alkaline soils, particular in· calcareous soils (pH 7.5 to 8.5, carbonate content 10 to 

lOOOg/kg CaC03 equivalent). In calcareous soils the dominant forms of As are 

controlled by the reactive levels of Ca after consuming the reactive Fe (Sadiq 1997). 

The leaching of As from contaminated soils is inhibited by the presence of 

hydrated Fe and Al oxides, clay and some organic matter. Reducing the amount of 

leachable As is especially important in areas with shallow water tables and in mining 

areas and areas with high amount of As in parent materials. The most common 

valence state in aerobic water is As(V) or arsenate, As(III) prevails in anaerobic soil and 
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groundwater. In the pH range of 4-10, the predominant As(III) is neutrally charged 

whereas As(V) is negatively charged (EPA Office of Water, Sadiq, 1997). Due to the 

negative charge, the ability to remove As(V) is greater than the removal As(III). Several 

treatment technologies have been developed for removal of As(V) from drinking water. 

Pre-oxidation of As(III) to As(V) by the use of chlorine, ferric chloride, and potassium 

permanganate have been employed. Ferric sulfate and alum then can be added to 

coagulate the As from the water .. Other treatments for As removal from water are 

reverse osmosis and ion exchange filters (Nikolaidis et al.2000). More recently iron 

fillings or zero-valence iron has been investigated as a filter. Elemental iron oxidizes to 

form ferrous iron (Fe+2) in an aerobic environment. Then iron (III) will precipitate 

arsenic as FeAs04 or FeAsS if sulfate is present in sufficient amounts. Inorganic As is 

removed from water by forming precipitates, co-precipitates and by adsorption reaction 

onto the ferric hydroxide solids. 

Elemental iron has also been used in the remediation of gold mining waste (Macy 

1999). The As in the mining waste pond is oxidized producing As(V) that readily binds 

with magnetic iron beads. The beads are then removed using magnets and the As 

removed from the beads allowing the beads to be re-used. The As is reduced by 

microbes and precipitated with sulfide in the presence of sulfide-reducing bacteria. The 

final end product is an arsenosulfide that can be removed from the contaminated area. 

In general the transfer of As from soil to plant is usually low and not readily 

translocated to leaves and fruit. Several species of plants (tomatoes, carrots, grapes, 

cabbage, Sudan grass, cotton) are able to tolerate soils high in As with most of the As 

concentrated in the roots (Adriano 2002, Wauchope 1981). Arsenates behave much like 

phosphate in the plant-soil system. Arsenate (As043-) can be taken up via the 
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phosphate transport system. Arsenate is thought to replace phosphate in energy 

transfer phosphorylation reactions (Tamaki and Frankenberger 1992, Bhumbla and 

Keefer 1994). Arsenic induces phytotoxicity resulting in restricted plant growth, and in 

essence protects humans and animals from plants with high As content (Smith et al. 

1998). The effect of phytotoxicity is influenced by As source, As speciation, and the soil 

type, with sandy soils being more toxic than clayey soils (Sheppard 1992). 

Earthworms have a particularly intimate contact with the soil, ingesting large 

amount of soil and having a limited barrier between soil solution and organisms. For 

this reason, and with their importance in terrestrial food webs, earthworms are ideal test 

organisms for toxicity test in contaminated soils (Conder et al. 2001, Langdon et al. 

1999). Studies on earthworms have shown that pH, amount and type of organic matter, 

and soil type have the greatest affect on the bioavailable fraction of contaminants in a 

soil (Lanno, et al., 1998; Sample et al., 1999; Wong, et al., 1999; Sijm et al., 2000). 

Lower pH (acid soils) tends to make heavy metals more available therefore more toxic. 

Clay soils tend to have higher cation exchange capacity enabling them to hold 

contaminants and resulting in lower bioavailability. Heavy metals have been found to 

bioaccumulate in earthworms at different rates in different soils as well as in different 

genera of earthworm. In addition metals and metalloids may accumulate differently 

with the presence of other stressors or contaminants. Rida and Bouche (1994) did 

toxicity test using 186 sites in Mediterranean South France with the native species of 

earthworms found at those sites. They found that the species Scherotheca was 

particularly sensitive to high levels of Cd, Cu, Pb, and Zn in contrast to other worms. In 

general, earthworms tend to accumulate more Zn and Cd than other metals (Pb, Ni) 

found in the soil. Scherotheca was found to concentrate even more Cd and Zn than 
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other earthworm species. Copper was found to accumulate in the earthworms at the 

same level as found in the soil. In soils that contain sub-lethal As concentrations ( 40 

mg/kg), As bioconcentrates in earthworms (Lumbricus terrestris) over time even 

exceeding soil concentrations in less than 12 days (Meharg et al. 1998). Higher soil As 

levels, especially when present as Na2As04, are highly toxic to earthworms causing 

yellow discoloration, lesions and swelling along the body and death (Langdon et al. 

1999, Meharg et al. 1998). 

Rida and Bouche (1994) found that body concentrations of heavy metals in the 

earthworms were a toxic burden and could enter the food chain. This transfer into the 

food chain can sometimes concentrate into predators. Although the earthworms that 

were tolerant of the heavy metals may continue to survive, the metals may reach 

sensitive targets when transferred into the food chain (biomagnification). Callahan et al. 

(1991) used earthworm to do an on-site assessment of a soil contaminated with 

organochlorine pesticide (chlorodane) and DDT (plus DDT residues). The result showed 

that the organochlorine pesticide caused greater mortality that the DDT, but the 

earthworm body burden of the DDT was at a high enough level to present a potential 

food chain impact. This study was also able to locate areas of the contaminated site 

that were at a higher risk (high mortality) and may require more clean up. 

Physical removal of a metal·. or metalloid contaminated soil by excavation and 

transporting the contaminated soil to hazardous waste landfill is the most commonly 

used method of soil remediation in the United States. Although soil removal ensures a 

"clean" site, increasing cost of excavation and transport and limited number of 

hazardous waste landfill have promoted research and development of other alternatives. 
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Since metals and metalloids can not be degraded or destroyed alternative 

technologies are used to manipulate the soil or waste so that the mobility of the 

contaminants or total content are reduce to an acceptable level (USEPA 1997). Two 

alternative technologies used are 1) metal removal through pump and treat or soil 

washing systems and 2) immobilization/stabilization methods (Mulligan et al. 2001). 

Metal removal can be done either in situ or ex situ, through soil washing or pump-and

treat technology. This approach can be difficult, time-consuming and incomplete due to 

the strong reactions between metal cations and soil components. Soil washing with acid 

solutions increases the removal of the metal cations but can leave the soil sterile and 

difficult for plant rehabitation. As an alternative, chelating agents or surfactants have 

been used which readily bind and remove metals. Immobilization of heavy metals is 

generally achieved through increasing the pH, causing precipitation, and binding the 

metal cation in the soil. This approach is not effect for As due to its oxyanion structure. 

Immobilization of As has been tested using ferric chloride and ferric acetate. In an in 

situ pilot scale study, ferrice chloride and ferrice acetate reduced leaching of As 

contaminated soil over an 11-day period (Stammier et al. 1992). 

Several methods are used to determine the effectiveness of remediation. The 

most common way is through chemical extraction of the contaminant. This type of 

measurement can indicate the effectiveness of a treatment to reduce soluble forms of 

the contaminant but it does not give an indication of how living organisms are affected 

by the remediation. Solvent extraction was used to remediate a soil contaminated with 

polychlorinated biphenyls (Meier et al. 1997). PCB concentrations were reduced to clean 

up goal of 2 mg/kg. Acute toxicity test were done on two species of earthworms: E 

fetida and L terrestris both before and after treatment. No acute toxicity was seen on 
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the positive control soil. But, neither species survived after a few days on the 

remediated soil, this is thought to be due to remaining solvent (isopropanol) in the soil. 

Once the soil was allowed to stand (storage), no acute toxicity (14-day test) was 

observed. It is thought that this was due to evaporation or biodegradation of the 

isopropanol solvent. Using a variety of bioassays (higher plants and soil invertebrates) 

in conjunction with chemical analysis is necessary when assessing the efficiency of 

remediation and the potential risk to the ecosystem (Phillips et al. 2000, Baud-Grasset et 

al. 1993, Conder et al. 2001). 

Ecological risk assessment can be defined as the evaluation of the potential 

adverse effect that human activity or exposure to environmental stressors has on the 

plants and animals of an ecosystem (CENR 1999). Every ecosystem whether, water, soil 

or sediment, have a variety of conditions and interactions to contemplate. Assessing 

related risk in a soil or terrestrial ecosystem is challenging. Soils are a varying and 

complex system composing of at least three phases; solid, air and water. In addition 

most soil organisms depend on soil abiotic factors, i.e. minerals organic matter, for 

survival. During an ecological risk assessment, some extractable fraction or total 

concentration of the contaminant is used in determining the risk associated with a 

contaminated ecosystem (CENR 1999, USEPA 1994b). The amount of the contaminant 

that is bioavailable to organisms in the environment can modify the amount and type of 

clean up that is necessary and the risk associated with the contaminant. In addition, 

toxicity test can be used to determine if remediation has been successful. Toxicity test 

are used to expose a test organisms to a contaminated medium e.g., soil, water or 

sediment, and evaluate the effect of the contaminant on survival, growth, reproduction, 

or other characteristics of the organisms (endpoint). These test help to determine if the 
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concentrations of the contaminant are bioavailable and are high enough to cause 

adverse effects. There are two primary types of ecological risk: 1) risk tolerated by an 

organism due to a chemical(s) and 2) risk coming from organisms having a toxic burden, 

thereby contaminating its predators (food chain) (EPA 1994a). 

Most soil remediation studies to date have concentration on the reduction of 

leaching or some other extractable fraction of As in soil. Other studies have look at the 

As bioavailability to plants or soil invertebrates but none have investigated the effect on 

multiple pathways. For a remediation effort to be successful and useful in multiple 

applications, the remediation must be able to reduce risk of leaching and be ecologically 

beneficial for soil organisms and plants. Re-vegetation of remediated sites is essential 

for reduction of wind blown particles and soil stabilization. It is known that amorphous 

Fe-oxide has a high adsorption capacity for As in soils and water (Adriano 2001, Smith 

et al. 1998). In fact, some water treatment facilities use amorphous Fe-oxides as a 

coagulant in the drinking water production process. For example ferric chloride can be 

added to drinking source water to form a gel and flocculate sediment. Alkalinity is 

adjusted by adding Ca(OH)2 to neutralize the H+ formed from Fe hydrolysis. 

FeC/3 + 3H20 ow· > Fe(OH) 3 ..!- flocculant 

Other Fe-salts, e.g. FeC'3 and Fe(S04)3, can be used to form amorphous Fe-oxide by the 

process: 

FeC/3 + 3H20 ~ Fe(OH) 3 + 3Cr + 3H+ 

Fe(S04 ) 3 +3H20~Fe(OH)3 +3SO; +3H+ 

Zero-valence iron (zero-Fe) is fine shavings from industrial uses. In principle, the 

chemical process that takes place for zero-Fe to form amorphous Fe: 
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2Fe 0 +02+4H+ ~ 2Fe 2+ 

2H+ + Fe 2+ + Yz 0 2 ~ Fe 3+ + H 20 

Fe 3+ + 3H7 0 ~ Fe(OH) 3 amorphous 

The initial amorphous FeOOH can be gradually transformed into crystalline iron-

oxides (e.g. goethite FeOOH or hematite Fe203) depending on aging time. 

The objective of this study is to evaluate four iron-containing materials for 

remediation of As contaminated soils and one waste medium. Each remediation 

treatment is evaluated for reduction of As in multiple pathways. The pathways _under 

consideration are As extractability (leaching potential), plant toxicity, and earthworm 

toxicity and resulting potential food chain effect. 

MATERIALS AND METHODS 

Four soils were selected to provide a range of amorphous Fe-oxide content 

(Table 1). One slag waste soil was also selected to test the ability of iron-based 

remediation methods on mining waste. Various soil properties of the soils selected for 

this study are shown in Table 1. Soils were spiked with 250 mg/kg As using reagent 

grade Na2AS04. The As was dissolved in ll of de-ionized distilled water and mixed with 

the soil in large aluminum pans. The soils were thoroughly saturated and mixed well, 

and then put into a drying oven set at 65-70°C for 24 h. After the initial drying, the 

soils were saturated again, mixed and dried another two times for a total of 3 wet/dry 

cycles. After the last drying cycle the soil was homogenized and divided into subsets for 

iron remediation/treatment. The slag waste had an As .content of 370 mg As/kg waste 

material. 
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Four iron sources used for remediation of the As contaminated soils were 

Fe2(S04)3, FeCl3, Peerless-Iron (a zero valence elemental iron) and Fe-water treatment 

residue, (Fe-WTR sold commercially as Fe-humate). Fe-WTR is a by-product of water 

treatment facilities that use iron as a coagulant in the drinking water production process 

All soils and slag waste were treated on a 20: 1 Fe:As molar ratio (66 mmol/kg Fe 

/kg soil) as shown in Table 2. Iron chloride and Fe2(S04)3 were dissolved in ll de

ionized distilled water and thoroughly mixed with the soils additional water was added 

as needed to make slurry. Zero-Fe and Fe-WTR were mixed with dry soil then saturated 

and mixed again. The saturated soils were place in a constant temperature room set at 

33 ± 4 °c. The soil-treatments were saturated and mixed thoroughly 2-4 times a week. 

Sub-samples of each soil-treatment were taken weekly and pore water pH, As and iron 

content was measured (Appendix B). After 4 weeks of incubation the pore water pH 

and As content were constant and the incubation was terminated. The pore water pH 

and electrical conductivity (EC) were measured on each soil-treatment. If the EC 

exceeded 2 dS/m, the soils was leached by mixing the soil with excess de-ionized water 

in a bucket, allow the soil to settle (sit un-disturbed for >24 h), then removed the 

excess water. If the pH was below 4 the soil was gently limed (5-10 g lime/kg soil) with 

CaC03 to achieve the target pH of 5.0. The FeCl3 and Fe2(S04)3 treatments produce acid 

from hydrolysis that caused the pH to decrease greatly. The soils were then oven dried 

at 70°C and place in sealed containers. 

Soil Arsenic Extractability 

Soils were extracted with five different soil extractions and wet acid digestion for 

total metal content (EPA, 3051). All samples were extracted in duplicate and included 
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reagent blanks and spikes (Appendix B). Statistics were done using SAS for Windows VB 

(SAS Institute 2002) and GraphPad Prism 3.03 (GraphPad 1999). 

Soil Pore Water 

To measure the amount in the soil pore water 40 g of soil was saturated with de

ionized distilled water until a slurry or paste was formed as described by J. Rhoades 

(1996) when measuring electrical conductivity. Enough water was added to insure at 

least 5 ml of water available after centrifuging. The soil solution was allowed to sit for 

48 h to equilibrate, mixing intermittedly. The soil solution was transferred to tubes and 

centrifuged at 12,500 RPM for 15 minutes. The supernant was decanted and filtered 

through 0.45µm syringe filter, acidified and analyzed for As and other elements of 

interest on inductively coupled plasma atomic emission spectroscopy (ICP). 

Bray-1 Extraction 

An extracting solution of 0.03M NH4f and 0.025M HCI is used to determine the 

weakly adsorbed, weakly soluble and plant available As (Chapter 1). One gram of soil 

was mixed with 20 ml of Bray-1 solution and shaken on a tabletop reciprocating shaker 

'for 5 minutes. The solution was centrifuged at 7500 RPM for 5 minutes then syringed 

filtered through 0.45µm filters and analyzed on ICP for phytoavailable As and 

phosphorus (Kuo 1996). 

Sodium Phosphate Extraction 

The amount of As associated with water soluble, weakly adsorbed and strongly 

adsorbed can be measured using this method (Yamamoto 1975). The extractant 

solution is prepared by mixing 600 ml of O.lM Na2HP04 with 400 ml of O.lM NaH2P04. 

Soil, 1 g, was placed into a 50 ml polystyrene centrifuge tube mi.xed with 10ml of the 
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phosphate solution. The tubes were shaken on a tabletop shaker for 8 h then 

centrifuged for 5 minutes at 10,000 RPM and filtered through 0.45µm filters. Arsenic 

concentrations were determined using ICP-Hydride generation (ICP-HG). 

Modified Hydroxylamine HCI Extraction 

Hydroxylamine Hydrochloride solution is used to extract the water soluble, 

weakly and strongly adsorbed As, Mn-oxide and some amorphous Fe-oxide As (Ross and 

Wang 1993). The extracting solution, 0.25M NH20H•H20 and 0.25M HCI is modified by 

adding 0.025M H3P04 (Amacher and Kotuby-Amacher 1994) to prevent re-adsorption of 

the As. One gram of soil was placed into a 250 ml polystyrene container and mixed 

with 100 ml of the solution and shaken for 18 h on a tabletop reciprocating shaker. 

Samples were suction filtered through 0.45µm filters and analyzed for As using ICP-HG 

(Amacher and Kotuby-Amacher 1994, Ross and Wang 1993). 

Modified Acid Ammonium Oxalate Extraction 

To measure the amount of As associated with water soluble, weakly adsorbed, 

strongly adsorbed and As associated with amorphous Fe-oxide. An acid ammonium 

oxalate method (0.2M ammonium oxalate + 0.2M oxalic acid and O.lM ascorbic acid) 

was modified with added 0.025M H3P04 to prevent the re-adsorption of As (Amacher 

and Kotuby-Amacher 1994). The final pH of the solution was 2.7. One-gram soil was 

mixed with 50 ml of the modified acid ammonium oxalate solution and shaken on a 

reciprocating tabletop shaker for 2 h. The soil-solution mixture was centrifuged and 

filtered through 0.45µm syringe filter. The solution was analyzed for As, iron and other 

elements . of interest on ICP (loeppert and Inskeep 1996, McKeague and Day, 

Schwertmann SSSA 1996). 
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Total Content of Arsenic and other Metals 

Total As, Fe and other elements were determined by nitric acid microwave 

digestion, EPA Method 3051 (USEPA 1994). This analysis was performed to confirm the 

total amount of As in soil after processing. Certified reference material (CRM020-050, 

RTC Corporation, Laramie, WY, USA) as well as blanks and spikes were used for quality 

assurance/quality control (Appendix B). 

Plant Bioassay 

Plant bioassays were used for evaluation of As remediation treatments to reduce 

As phytotoxicity. All bioassays were conducted with lettuce, Latuca sativa var. Paris 

Island Cos. The test methods were a 10-day germination test and a 17-day shoot 

elongation test. Both tests were done with negative controls (no As added control soil 

and artificial soil) and positive controls (spiked soil or untreated slag). The test methods 

are described below: 

Germination Test 

Fifty grams of soil was placed into a deep petri dish and temperature adjusted to 

24±2°C (EPA 600/3-88/029, ASTM E 1598). One day prior to planting, water was added 

to 120% of water-holding capacity (field capacity at -1h bar). Twenty lettuce seeds 

(Latuca sativa var. Paris Is.) were placed into the petri dish and covered with 25g 

artificial soil (water added to 25% or 6.2 ml/25g). Artificial soil was composed of 

69.5% silica sand, 20% kaolin clay 10% 2-mm sieved Sphagnum peat moss and 

approximately 0.5% CaC03 added to adjust the pH to 7 .0. The petri dishes were 

covered and incubated at 24± 2°C in the dark for 48 hours followed by sequencing 16 h 

of light and 8 h of dark until termination of the test (Baud-Grasset 1993). Germination 
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was first determined after 120 hours (5 days) by counting the number of seedlings 

(leaves or stems) that protruded above the soil surface. After the germination count, 

soils were watered to 120% of field capacity. Petri dishes were placed on a tray and put 

into large clear plastic bags to retain moisture and allow the seedlings to grow for 

another 120 hours (5 days) without the hindrance of a lid. After 10 days, a second 

seed germination count was taken (EPA 600/3-88/029, ASTM E 1598). 

Shoot Elongation Test/Early Seedling Growth 

The germination study was continued for a total of 17 days of growth (12 days 

after more than 50% of control seed germinated) (EPA 600/3-88/029, ASTM E 1598). 

After counting the total number of plants, each plant was remove and measured from 

the hypocotyl to the leaf tip. Fresh weight was determined for the shoot portion 

collected from each plate. The plants were dried at 70°C for 48 h to determine dry 

matter (EPA 600/3-88/029, ASTM E 1598). 

Soil Invertebrate Bioassay 

The earthworm, Eisenia andrei, was used in a 28-day toxicity bioassay to 

determine the effect of As and Fe-treatments on ecotoxicity to soil invertebrates. Each 

bioassay was performed in triplicate for each soil and treatment. Glass jars ( 473 ml) 

were used as the environmental chambers for the worm bioassay. The worms were 

acquired from the Department of Zoology at Oklahoma State University. Soil, 200 g, 

was placed into each jar and water added to field capacity (-1h bar). The soils were 

mixed and water added as needed. Earthworms were removed from growth chambers 

and allowed to depurate for 24 h by placing in a clean environment (no soil) and 

allowing the worms to eliminate soil from the gut. After depuration, 10 worms were 
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weighed and placed into each glass jar. Perforated lids were place on jars to allow air 

exchange and minimize loss of moisture. The jars were placed into a constant 

temperature chamber with 16 h light, 8 h dark at 20 ± 4° C. The worms were check 

daily for mortality for the first 5 days, then about every 3 days after that. Mortality was 

determined if the worms failed to respond when gently poked or prodded. Dead worms 

were removed, rinsed in de-ionized water and frozen at 4 ° C. Every seven days, 1 tsp of 

manure was placed on top of the soil to feed the worms. The horse manure is collected 

from a local farmer, dried, blended and stored in plastic containers. At the end of the 

toxicity bioassay (28 days), all worms were removed from the jars and rinsed in de

ionized water. Five, or half of the remaining worms, were depurated for 24 h. The 

remaining undepurated worms were weighed and frozen at 4°C. After 24 h the 

depurated worms were washed, weighed and frozen at 4°C until analysis. 

One depurated worm and one un-depurated worm from each jar were digested 

to determine the amount of bioaccumulated As (total of 3 worms per soil and Fe

treatment). Arsenic analysis was determined by wet digestion/dry ashing (Ybanez et al. 

1992, Chapter 1) followed by measurement of As by inductively coupled plasma atomic 

emission spectroscopy with hydride generation (ICP-HG). 

Measurement of As by ICP-HG 

To determine low level As concentration and to remove potential interferences 

found on direct analysis of sample digest, ICP-hydride generation was used. The 

hydride generator is a batch type produced by Thermo Jarrell Ash (TJA) for the IRIS TJA 

ICP. Reaction rates for hydride generation are controlled by several variables: 1) 

chemical forms of the As, 2) oxidation state of the hydride-forming element, 3) acid 

concentration, and 4) concentration of the NaBH4 reducing agent. The least error 
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occurs when these condition are set so that the reaction goes to completion 

instantaneously. Inorganic As, arsenate (V) and arsenite (III), can be reduced to arsine 

gas through the hydride process, although reduction of arsenate is more time 

consuming. Therefore all samples (10-50 ml) are pre-treated with 40% potassium 

iodine + 4% ascorbic acid solution (0.5 ml) to reduce all As to arsenite (III), the faster 

reacting As form (TJA, Dedina and Tsalev, 1995). Hydrochloric acid is used as the 

sample medium to form hydrides. Samples were mixed with concentrated HCI to a 

concentration of 3 molar. The efficiency of hydride formation is constant at HCI 

concentrations above one molar (Dedina and Tsalev 1995). A 0.5% NaBH4 solution with 

0.42% NaOH for stability was used as the reducing agent. Acidified sample and base 

were pumped to the reactor chamber at a rate of 3.25 ml /minute with a 2 minute rinse 

between samples to eliminate carry over. Arsine gas was separated in a gas-liquid 

separator via nebulizer directly into the ICP argon plasma. 
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RESULTS AND DISCUSSIONS 

The pH of the soil treatments/additives was monitored weekly during the 

incubation period for changes in pH and pore water As. By the end of the four-week 

incubation period, the pH and pore water As had become constant (Appendix B). The 

zero-valence Peerless iron treatments had the most flux with the overall tendency to 

increase pH. The pore water As levels during the incubation period stayed consistent in 

the Bernow and Dennis soils and slag waste material. The Perkins soil had a decrease in 

pore water As over time, and then stabilized towards the end of the four weeks. The 

Pratt soil, with the highest level of pore water As, fluctuated throughout the incubation 

period. 

Reduction of Arsenic Extractability 

The amendments did not react the same in all materials, this indicates the 

importance of soil physical and chemical properties on As in soils. In general, the soils 

with higher initial amounts of clay and Fe-oxide had less of a reduction in extractable As 

than those with less clay and Fe-oxide content (Table 3). 

All treatments reduced pore water As in all the spiked soils (Fig. 1). The slag 

waste media did not have a significant reduction of pore water As, in fact the zero-Fe 

treatment increased the pore water As. Pore water As is the fraction that is most water 

soluble, available and has the greatest potential risk for leaching into groundwater and 
. . 

cause toxicity. 

The Bray-1 extractant is commonly used to extract phosphate from soil to 

determine the amount of phosphates that are plant available. Arsenate, since is 

chemically similar, can be extracted by Bray-1 to determine the amount of plant 

available As (Wauchope, 1983; Huang and Fuji, 1996). This fraction has shown good 
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correlation to plant available As and reductions in yield due to As contamination 

(Chapter 1). Bray-1 causes the slight dissolution of Fe and Mn oxides and extracts As 

associated with poorly ordered alumina silicate gels and allophane (Lombi et al., 2000). 

Overall, Fe-WTR treatment had the greatest reduction of Bray-1 extractable As in the 

spiked soils (Fig. 2). The greatest reduction resulted in the soils with the least amount 

of clay content. The other treatments also were successful in reducing the amount of 

Bray-1 extractable As in the spiked soils. The Fe-chloride and Fe-sulfate treatments had 

the greatest reduction of Bray-1 extractable As in the slag waste. The slag waste 

material is a waste product that results from the smelting of ores for lead, which is also 

high in iron mixed with soil. During the smelting process lime or carbonate is added 

producing a pH >7.0 waste material. When Fe-chloride or Fe-sulfate is mixed with this 

type of material, a visibly aggressive reaction between the slag waste and the acidic Fe

solutions results. These conditions along with a temporary reduction of pH, may have 

allowed enough reduction in pH to allow a reaction between Fe and As. The other 

treatments did not have this type of reaction with the slag waste. 

The Na-phosphate extraction measures, in addition to the previous fraction, the 

strongly (specifically) adsorbed As. Phosphate competes with arsenate for adsorption 

sites and is more effective than other anions (nitrate and sulfate) in extracting arsenate 

from soils (Lombi et al., 2000). All soil treatments had a decrease in Na-phosphate. 

extractable As (Fig. 3). Fe-WTR treatment had the greatest reduction of extractable As, 

similar to Bray-1 results. The amount of reduction by these treatments depended on 

the soil and the amount of clay in the soil (Table 3, Fig. 3). None of the treatments 

reduced Na-phosphate extractable As in the slag waste. 
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Hydroxylamine HCI acid extraction is much more aggressive releasing some of 

the As associated with Fe-oxide as well as the water soluble, weakly and strongly 

adsorbed As. There were not as many significant reductions of extractable As from the 

treatments for this fraction of As. Fe-WTR additive had the most significant reduction of 

extractable As from all soils and slag waste (Fig. 4). 

Ammonium oxalate extraction is able to release the previous mentioned fraction 

of arsenic as well as arsenic associated with Fe, Al and Mn-oxides. The results were 

mixed depending on the soil or medium (Fig. 5). The Bernow soil had no significant 

change in ammonium oxalate extractable As, where as the Dennis soil had significant 

reductions in the Fe-chloride and Fe-sulfate treatments. The Perkins and Pratt soils had 

similar results with Fe-WTR having the greatest amount of reduced extractable As. The 

slag waste material has either no change or increase amount of extractable As. 

ArsenicandPmntBmassays 

The Perkins Fe-sulfate treated soil resulted in lower than anticipated pH and was 

not conductive or plant or earthworm survival; therefore it was removed from the 

following sections. There were no significant differences (P < 0.05) between 

germination rates in the treated soils and controls (positive and negative) in Dennis soil 

or the slag waste material (Fig. 6). Bernow had an increase germination rate in the Fe

WTR treatment over the positive control (spiked soil). Pratt soil had an increased 

germination rate, as compared to the positive control (40%), for all amendments (77.5-

88.3%, Table 4). The Perkins soil had significant increased germination · rates, as 

compared to the spiked soil (33%), for the treatments zero-Fe, Fe-chloride and Fe-WTR 

(85-88%, Table 4). Extremely high levels of arsenate are known to inhibit seed 

germination (Wauchoe 1983). Although in this test, overall mean seed germination was 
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81.3% with a range from 33% to 94% indicating that only a few soils had toxic levels of 

arsenate to inhibit seed germination (Table 4). 

The mean shoot length was 3.9 cm and mean shoot yield (dry weight) was 40.1 

mg. Most of the amended soils had an increase in dry weight as compared to the 

positive controls (Table 5). The slag waste had no significant change in yield or shoot 

length. Pratt soils had an increase in shoot length across all treatment (Fig. 7). The 

Perkins soil had increase shoot length across all treatments. The Bernow soils had an 

increase shoot length in all treatments except zero-Fe. And the Dennis soils had no 

significant increases or decreases in shoot length. Two soils displayed some As toxicity 

resulting in low germination and shoot growth. Pratt soil had the lowest amount of Fe

oxide and clay content resulting in high pore water As (282 mg/L) in the positive control 

soil. The high level of pore water As resulted in poor germination ( 40%) and retarded 

growth (3.7mg dry weight, 0.93 cm shoot length). Untreated Perkins soil had the 

second highest pore water As (18.4 mg/L) that resulted in low germination (33%). 

Perkins has double the amount of Fe-oxide and clay content than Pratt soil and resulted 

in better growth in the untreated Perkins soil (10 mg dry yield, 2.07 cm shoot length) 

although it was well below the average yields and growth rate. The high pore water As 

may be due to a combination of low clay and .low Fe-oxides content (Chapter 1). 

Although all soils had relatively the same amount of Fe used for remediation, the 

amount of Fe-oxide varied greatly depending on the Fe-source (Table 4). In general the 

most Fe-oxides were found in the Fe-wrR treatment. This may be the reason Fe-wrR 

had the greatest amoUnt of soluble As reduction and the highest plant responses. The 

amount of Fe-oxides has more influence on plant viability (% germination and shoot 

yield) than the total Fe content (Fig. 12). 
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Relationship Between Arsenic Extractability and Plant Bioassays 

The lettuce endpoints (germination, shoot length, and shoot yield) were 

compared to different fractions of As by correlating endpoints to the various extractions. 

The hydroxylamine HCI extraction and acid ammonium oxalate did not have any 

correlation with any lettuce endpoint (Appendix B). Both these extractants are more 

aggressive and have not been shown to correlate to plant available As from soils 

(Chapter 1). The predominant concentrations of pore water As was< 1 mg/L, therefore 

without a good distribution of pore water As the data was removed from further 

discussion (Appendix B). The remaining extractions, Bray-1 and Na-phosphate, have 

significant correlation (P < 0.01) with plant endpoints (Fig. 8 and 9). These extractions 

have been shown to correlate to plant endpoints including yield and As accumulation 

(Chapter 1). 

An important step in determining toxicity of a chemical is generating a dose-

response curve. A dose-response or concentration-response curve establishes the 

relationship between exposure to a substance and the incidence and severity of an 

effect. Concentration-response curves are used to plot the results of this experiment. 

The equation used to produce these curves (GraphPad 3.0): 

Y B Top-Bottom 
= ottom+ . . . l + 1 Q (log IC50-X)•H1//Slope 

Where, Y = Lettuce endpoint or response 

X = log Bray-1 or Na-phosphate e?(tracted As mg/kg 
. . 

Hill Slope = the steepness .of the curve 

. Top and Bottom refer to the curve where Bottom is the Y value at the bottom 

plateau; Top is the Y value at the top plateau, and LogICSO is the X value when the 

response is halfway between Bottom and Top (GraphPad 1999). 
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The x-axis plots the log concentration of As extracted by Bray-1 and Na-

phosphate As and the y-axis plots the response from each test. Concentration-response 

curves were produce to find an IC50 (concentration at which 50% of the samples are 

inhibited) and IC20 (concentration at which 20% of the samples are inhibited). The IC20 

can be calculated using the equation (Motulsky 1999): 

I 

( 80 )H IC20 = * /C50 
100-80 

Where H = Hill slope 

For% germination the resulting IC50 was 44.7 mg/kg Bray-1 As and 49.0 mg/kg 

Bray-1 As for % relative germination (Fig. 10). The IC20 was 40.3 mg/kg and 43.5 

mg/kg Bray-1 As respectively. The small differences in these two values indicate that 

there is little difference on how you express these results. The concentration - response 

curve for shoot length had IC5o of 69.2 and shoot yield was 41.7 mg/kg Bray-1 As, the 

IC20 were 39.7 and 22.0 mg/kg Bray-1 As respectively. Na .. phosphate concentration -

response curves resulted in an IC2o of 26.9 and 30.1 mg/kg Na-phosphate As for 

germination and % relative germination. The IC20 for shoot length and yield was 23.2 

and 25.9 mg/kg Na-phosphate (Fig. 11). 

Hill sl0pe or slope factor (the steepness of the curve) represents the magnitude 

of the range of "doses 11 b~tween non-effected concentration and a lethal or effective 

conc~ntration. The steeper the curve, th~ slighter the margin of safety or the more 

toxic the substance (Motulsky 1999), The Hill slope for Bray-1 As germination and % 

relative germ,ination was muc_h steeper (H=·:13.5 and -11.7 respectively) than for either 

shoot length (H=.,2.39) o.r shoot yield (H=2.17). This indicates that Bray-1 As has a 

greater toxic effect on seed germination than on shoot growth. 
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Remediation Treatments and Earthworm Bioassay 

Earthworms are in direct contact with the soil all of their lives and ingest large 

amount of soil thereby making them an ideal organism for assessing bioavailability and 

contaminant toxicity to soil organisms. In addition earthworms can tolerate an 

environment high in heavy metals and toxic compounds because either they do not 

absorb the metal, excrete it efficiently or accumulate it in a non-toxic form (Ireland, 

1983). Earthworm mortality ranged from 0% to 100% with an average of 11.6% 

mortality (Table 7). One amended soils had 100% mortality Pratt zero-Fe. Since the As 

spiked soil did not have 100% mortality it can be concluded that the death of the worms 

was due to multiple factors, not just As concentration. Screening with treatments and 

clean soils (no As) had 100% mortality in the zero-Fe treatment in Pratt soil. Several 

heavy metals were analyzed (EPA 3051) in the zero-Fe material, but concentrations 

were not enough to cause mortality (Appendix B). Mortality may be due to other 

physio-chemical properties (e.g. change in redox conditions) only prevalent in the sandy 

soil. 

Depurated worms have little ( <0.04g) or no soil left in the gut of the earthworm. 

· · The As (mg/kg dry weight) that remains is from the earthworm tissue or bioaccumulated 

As. The undepurated worms will contain soil in the gut as well as arsenic 

· bioaccumulated in the earthworm tissue (mg/kg dry weight). Generally the undepurated 

worms had · greater As concentrations · thari · the depurated worms the difference 

depending on the soil (Table 8). Earthworms from sandy soils have the highest levels of 

As concentrations where as earthworms from soils high in indigenous clay and Fe-oxide 

had the lowest levels of As concentrations. Bernow and Dennis soils, in all treatments, 

for both depurated and undepurated worms, had decreased As concentrations (Fig. 13 
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and 13). The Perkins soil had decrease As concentrations in the depurated and 

undepurated earthworms. The sandy Pratt soil had decreased earthworm As 

concentration in Fe-chloride and Fe-WTR treatments. The Pratt Fe-sulfate treatment 

had the same As concentration as spiked soil and the Pratt zero-Fe treated soil had 

100% mortality. The slag waste showed mixed results. The undepurated earthworms 

across all treatments showed a significant (P<0.05) decrease in total As (mg/kg dry 

weight, Fig. 14). The depurated worms from the slag waste had significant decrease in 

the amount of As accumulated only in the Fe-sulfate and Fe-WTR treatments (Fig. 13). 

The slag waste zero-Fe and Fe-chloride amendments had no change in As accumulation 

as compared to the untreated slag waste. 

The ranges in As body burdens from treated soils were 29.6 to 364 mg/kg As. 

The overall averages across all soils and treatments were 147 mg/kg As and 163 mg/kg 

As for depurated and undepurated worms respectively. At these high concentration 

there is a potential risk for food chain transfer of the contaminant. Fe-WTR had the 

greatest reduction (86.5% depurated and 78.9% undepurated) of As concentrations in 

the earthworm. Overall the As concentrations in Fe-WTR treated soils were 30.6 and 

65.4 mg/kg_ As for depurated and undepurated earthworms respectively. The remaining 

treatments, zero-Fe, Fe-chloride and Fe-sulfate, had about 30% reduction of As body 

burdens in :depurated worms and 40% in. undepurated worms, although in these 

treatments As body burdens were· much greater (150 to 190 mg/kg As, Table 8). 

Extractable As was correlated. with earthworm mortality and As body burdens. 

Due to the low mortality there were no s.ignificant correlations to extractable As and 

mortality. Na-phosphate (Fig. 16) and Bray-1 (Fig. 15) had the best correlation to As 

body burd~ns in bott;i depurated (R2 = 0.81 and 0.70. respectively) and undepurated 
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(R2= 0.83 and 0.72 respectively) earthworms. Weaker correlations were found in 

ammonium oxalate extractable As (Fig. 17) with depurated (R2 = 0.41) and undepurated 

(R2 = 0.42) As body burdens. This indicates that several fraction of As (soluble, 

adsorbed, Fe-oxide associated) are available for earthworm bioaccumulation. The actual 

amount that is bioaccumulated is dependent on the properties of each soil. Overall, the 

addition of iron to the soils decreased the amount bioaccumulated by the earthworms. 

SUMMARY AND CONCLUSIONS 

In situ treatments may be a better alternative for soil remediation than other 

options. Soil washing and extraction processes may cause more damage to the soil and 

ecology resulting in new difficulties and longer recovery for the ecosystem. Removing 

contaminated soil can be expensive, and it is becoming more difficult to find landfills 

that are equipped for contaminated material. Therefore amendments that not only 

reduce leaching but also reduce bioavailability of As in soil could be a better approach. 

Of the four amendments tested Fe-WTR has the best overall performance for reduction 

of leaching, phytotoxicity and invertebrate bioavailability. The Fe-chloride amendment 

was next effective in reduction of leaching and bioavailability. The Fe-sulfate and zero

Fe amendments were not as effective in respective to invertebrate toxicity although they 

were effective in reduction of leaching potential. The Bray-1 and Na-phosphate 

extractions were the best predictive extractions for plant growth, earthworm mortality 

and As body burden in the treated soils and slag waste. Concentration-response curves 

for % seed germination indicate a Bray-1 As IC20 = 40.3 mg/kg and IC20 = 22.0 mg/kg 

Bray-1 As for yield. Na-phosphate As concentration-response curves had an IC20 of 
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response curves had an IC20 of 26.9 mg/kg As and 25.9 mg/kg As for germination and 

shoot yield respectively. Nearly every Fe-treatment in every soil was able to reduce the 

Bray-1 As and Na-phosphate As to below these levels. Use of Bray-1 and Na-phosphate 

extractants for soils screening may be a useful tool in the ecological risk assessment 

process. 
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Table 1. Select soil properties including pH (1:1 water), % sand, % silt and % clay, % 

organic carbon and amount of iron and aluminum oxides as measured from modified 

acid ammonium oxalate extraction. 

Soil pH O/o O/o O/o 0/oOrganic Fe-oxide Al-oxide 
(1:1 Sand Silt Clay Carbon mmole/kg mmole/kg water) 

Slag 
7.75 na na 59.1 3.13 60 8.22 Waste 

Dennis 6.16 17.5 41.9 40.6 0.80 7.07 15.5 

Perkins 4.37 60.0 30.0 10.0 0.85 4.64 8.56 

Bernow 5.16 56.9 19.4 23.8 0.30 3.66 10.7 

Pratt 6.35 90.0 3.75 6.25 0.90 0.99 2.48 

Table 2. Weight of iron treatments added (66 m moles/kg) to 1 kg of 250 mg/kg arsenic 

spiked soil. 

Iron Source · 0/o Iron Amount added to 
1 kg soil 

Peerless-Fe 100% 3.69 g 

. , FeC'3 • 6H20 20.7 % 17.9 g 

Fe2(S04)3 
21.3 % 17.3 g 

· (76.4°/o pure) 

Fe-WTR 2.80 % 132 g 
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Table 3. % Change in extractable arsenic (pore water, Bray-1, Na-phosphate, 

hydroxylamine HCI, and ammonium oxalate) from each treated soil. 

010 Decrease {increase) in extractable arsenic 

Pore Water Bray-1 Na-P04 HaHCL AmmOX 

Positive Cont O O O O 0 

Slag Waste zero-Fe 

59.1°/o clay Fe-chloride 

33.5°/o Fe-oxide Fe-sulfate 

Fe-WTR 

Positive Cont 

Dennis zero-Fe 

45.0°/o clay Fe-chloride 

3.4°/o Fe-oxide Fe-sulfate 

Fe-WTR 

Positive Cont 

Perkins zero-Fe 

100/o clay Fe-chloride 

2.2% Fe-oxide Fe-sulfate 

Fe-WTR 

Positive Cont 

Bern ow zero-Fe 

26.3°/o Clay Fe-chloride 

1.5°/o Fe-oxide Fe-sulfate 

Fe-WTR 

Positive Cont 

Pratt zero-Fe 

5.0°/o clay Fe-chloride 

1.5°/o Fe-oxide Fe-sulfate 

Fe-WTR 

(326) 

16.6 

89.2 

94.6 

0 

43.3 

62.7 

58.4 

100 

0 

46.7 

95.2 

67.9 

100 

0.0 

92.0 

94.9 · 

95.9 

100 

0 

42.8 

91.2 

71.3 

97.4 
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33.0 

73.7 

72.1 

(22.1) 

0 

55.4 

54.4 

59.2 

31.1 

0 

74.3 

83.9 

48.4 

90.2 

0.0 

77.0 

84.1 

78.8 

86.4 

0 

81.8 

78.9 

68.7 

95.2 

(55.4) 

(64.2) 

(62.3) 

26.4 

0 

27.3 

25.7 

19.1 

46.0 

0 

38.9 

57.9 

60.0 

82.6 

0.0 

38.8 

52.5 

50.9 

51.9 

0 

75.0 

68.5 

65.4 

89.7 

3.74 

3.81 

6.55 

26.7 

0 

10.1 

10.7 

12.9 

29.4 

0 

(14.8) 

(7.59) 

27.2 

26.6 

0.0 

7.43 

(3.75) 

(8.68) 

15.7 

0 

10.6 

11.4 

54.1 

39.4 

(48.0) 

(15.7) 

(27.6) 

9.28 

0 

(0.4) 

15.1 

12.7 

(32.0) 

0 

(21.9) 

(4.50) 

6.10 

22.8 

0.0 

(1.19) 

(2.82) 

(3.44) 

(6.33) 

0 

(49.0) 

(28.2) 

22.8 

27.6 



Table 4. Ten day germination test and shoot elongation for controls and treated arsenic 

spiked soils and corresponding amorphous Fe-oxide levels (ammonium oxalate). Values 

with the same letter are not significantly different at the P = 0.05. 

Fe-oxides Avg.shoot 
Soil Treatment mmol/kg 

O/o Germ length, 
cm 

Slag Waste Positive Cont 121 83.3 a 4.84 a 

Slag Waste zero-Fe 216 81.7 a 4.11 a 

Slag Waste Fe-chloride 214 75.0 a 3.92 a 

Slag Waste Fe-sulfate 239 83.3 a 4.35 a 

Slag Waste Fe-WTR 397 86.7 a 4.52 a 

Slag Waste Negative Cont 93.8 a 4.66 a 

Dennis Positive Cont 12.1 81.7 a 4.18 ab 

Dennis zero-Fe 34.3 83.3 a 4.22 ab 

Dennis Fe-chloride 26.5 95.0 a 4.63 b 

Dennis Fe-sulfate 28.1- 76.7 a 4.36 ab 

Dennis Fe-WTR 193 83.3 a 4.26 ab 

Dennis Negative Cont 14.1 93.3 a 3.99 a 

Perkins Positive Cont 9.3 33.3 b 2.07 b 

Perkins zero-Fe 55.8 85.0 a 4.43 a 

Perkins Fe-chloride 50.4 85.0 a 4.33 a 

Perkins Fe-WTR 137 88.3 a 4.08 a 

Perkins Negative Cont 9.3 90.0 a 3.84 a 

Bern ow Positive Cont 5.4 78.3 b 3.41 a 

Bern ow zero-Fe 35.0 86.7 b 3.81 ac 

Bern ow Fe-chloride 31.5 85.0 b 4.58 b 

Bern ow Fe-sulfate 24.0 83.3 b 4.37 be 

Bern ow Fe-WTR 152 90.0 a 4.31 be 

Bern ow Negative Cont 7.3 85.0. b 4.26 ab 

Pratt Positive Cont 2.7 40.0 b 0.93 b 

· Pratt zero-Fe 53.4 80.0 a 4.14 a 

Pratt · Fe-chloride 34.4- 83.3 a 3.67 a 

Pratt Fe-sulfate 16.0 80.0. a 3.76 a 

Pratt Fe-WTR 110 88.3 a 3.93 a 

Pratt Negative Cont 2.0 77.5 ;- a 3.45 a 
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Table 5. Shoot dry weight results for controls and treated arsenic spiked soils and 

corresponding amorphous Fe-oxide levels (ammonium oxalate). Values with the same 

letter are not significantly different at the P = 0.05. 

Fe-oxides 
Average Yield Average 

Soil Treatment 
mmol/kg 

(dry weight), Yield/plant, 
mg ms 

Slag Waste Positive Cont 121 47.7 a 2.90 

Slag Waste zero-Fe 216 47.7 a 2.90 

Slag Waste Fe-chloride 214 39.3 a 2.50 

Slag Waste Fe-sulfate 239 46.7 a 2.80 

Slag Waste Fe-WTR 397 39.7 a 2.30 

Slag Waste Negative Cont 47.5 a 2.50 

Dennis Positive Cont 12.1 41.5 b 2.50 

Dennis zero-Fe 34.3 43.7 b 2.70 

Dennis Fe-chloride 26.5 71.0 a 3.70 

Dennis Fe-sulfate 28.1 42.7 b 2.90 

Dennis Fe-WTR 193 57.0 ab 3.40 

Dennis Negative Cont 14.1 41.3 b 2.20 

Perkins Positive Cont 9.3 10.3 C 1.10 

Perkins zero-Fe 55.8 45.3 a 2.70 

Perkins Fe-.chloride 50.4 38.0 ab 2.20 

Perkins Fe-WTR 137 45.0 a 2.60 

Perkins Negative Cont 9.3 31.0 b 1.70 

Bern ow Positive Cont 5.4 28.3 be 1.70 

Bern ow zero-Fe 35.0 46.7 ab 2.70 

Bern ow Fe-chloride 31.5 57.3 ab 3.30 

Bernow. Fe-sulfate 24.0 39.7 ac 2.30 

Bern ow Fe-WTR 152 45.3 ab 2.50 

Bern ow Negative Cont 7.3 39.0 C 2.60 

Pratt Positive Cont 2.7 3.7 C 0.70 

Pratt zero-Fe 53.4 31.7 a 2.00 

Pratt Fe-chloride 34.4 33.3 a 2.00 

Pratt. Fe-sulfate 16.0 28.0 a 1.80 

Pratt Fe-WTR 110 43.7 b 2.50 

Pratt Negative Cont 2.0 29.7 ab 2.00 
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Table 6. Pearson correlation coefficients for soil properties pH, amount of clay, ammonium oxalate extractable Fe and Al and total 

metals (iron, aluminum, manganese and calcium) for arsenic extractability from all soils/materials and treatments. Only soils (no 

slag waste material) are included in this data set. 

pH Clay Fe Fe Tot Al AITot Mn Tot Ca Tot 

r 0.25 -0.41 -0.23 -0.64 -0.51 -0.40 -0.47 -0.51 
Pore Water 

p 0.24 0.05 0.28 0.003 0.01 0.08 0.04 0.02 

r 0.12 -0.46 -0.23 -0.62 -0.52 -0.51 -0.43 -0.42 
Bray-1 

p 0.58 0.02 0.28 0.003 0.01 0.02 0.06 0.06 

..... r 0.31 -0.24 -0.21 -0.51 -0.37 -0.28 -0.26 -0.33 
N Na-Phosphate 00 

p 0.13 0.26 0.32 0.02 0.07 0.23 0.26 0.14 

Hydroxylamine r 0.26 -0.02 010 -0.37 0.2 0.1 -0.21 -0.12 

HCI p 0.21 0.92 0.64 0.11 0.91 0.95 0.37 0.59 

Ammonium r 0.17 -0.39 0.31 -0.56 -0.22 -0.65 -0.47 -0.26 
Oxalate 

p 0.42 0.06 0.14 0.01 0.30 0.002 0.04 0.25 



Table 7. Earthworm Mortality from a 28 day toxicity bioassay on 5 soils with four different 

iron treatments. Values with the same letter are not significantly different at the P = 0.05. 

28 day 
Depurated Undepurated 

Soil Treatment D/o worm worm 

Mortality 
weight, weight, 

mg/worm mg/worm 

Slag Waste Positive Cont 3.3 a 217 231 
Slag Waste zero-Fe 0 a 206 191 
Slag Waste Fe-chloride 3.3 a 206 236 
Slag Waste Fe-sulfate 0 a 187 181 
Slag Waste Fe-WTR 10 a 206 222 

Artificial Soil Negative Cont 0 a 153 182 

Dennis Positive Cont 6.7 a 193 212 
Dennis zero-Fe 3.3 a 189 202 
Dennis Fe-chloride 0 a 185 200 
Dennis Fe-sulfate 0 a 182 203 
Dennis Fe-WTR 0 a 200 192 
Deni:,is Negative Cont 0 a 205 226 
Perkins Positive Cont 22.7 b 205 174 
Perkins zero-Fe 0 a 187 184 
Perkins Fe-chloride 3.3 a 174 177 

Perkins Fe-WTR 0 a 200 212 
Perkins Negative Cont 0 a 245 239 
Bern ow Positive Cont 3.3 a 175 174 
Bern ow zero-Fe 0 a 166 153 
Bern ow Fe-chloride 3.3 a 162 181 
Bern ow Fe-sulfate 0 a 198 171 
Bern ow Fe-WTR 0 a 180 196 
Bern ow Negative Cont 0 a 173 163 

Pratt Positive Cont 70 b 184 143 
Pratt zero-Fe 100 C 0.0 0.0 
Pratt Fe-chloride 0 a 209 189 
Pratt Fe-sulfate 20 a 170 185 
Pratt Fe-WTR 0 a 194 216 
Pratt Negative Cont 0 a 164 173 
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Table 8. Earthworm arsenic body burdens from depurated and undepurated worms from a 

28-day toxicity test and the % decrease of arsenic body burden due to remediation of 

contaminated soils with Fe-treatments. 

Depurated As 
Undepurated O/oDecrease O/oDecrease 

Soil Treatment body burden, 
As body As body As body 

mg/kg 
burden, burden burden 
mg/kg De~urated Unde~urated 

Bern ow Positive Cont 303 352 0.0 0.0 

Bern ow zero-Fe 128 112 57.8 68.1 

Bern ow Fe-chloride 86.0 93.4 71.6 73.4 

Bern ow Fe-sulfate 81.7 111 73.0 68.6 

Bern ow Fe-WTR 35.0 73.6 88.4 79.1 

Bern ow Negative Cont 5.87 2.42 
....... ........... ·-·-·-·····-···--·····-···-····-·······---······- ............................................................ ................................................. 

Dennis Positive Cont 107 126 0.0 0.0 

Dennis zero-Fe 71.6 86.5 33.3 31.5 

Dennis Fe-chloride 75.1 88.8 30.0 29.7 

Dennis Fe-sulfate 54.2 71.3 49.5 43.5 

Dennis Fe-WTR 23.6 36.3 78.0 71.2 

Dennis Negative Cont 8.28 7.13 
................ __________ ................ ................................... -.... , ......... 

Perkins Positive Cont 457 467 0.0 0.0 

Perkins zero-Fe 323 342 29.3 26.7 

Perkins Fe-chloride 310 247 32.1 47.1 

Perkins Fe-WTR 29.6 72.4 93.5 84.5 

Perkins Negative Cont 6.87 5.06 
.......................................................................................................... 

Pratt Positive Cont 475 521 0.0 0.0 

Pratt zero-Fe 100% Mortality 

Pratt Fe-chloride 314 364 33.8 30.2 

Pratt Fe-sulfate 487 506 (2.6) 3.0 

Pratt Fe-WTR 32.6 74.8 93.1 85.7 

Pratt Negative Cont 4.04 3.72 
··········-·-······-· .. -·-···-··-·-··-·--··-··-······-·-.. -·-·······--·· .. 

Slag waste Positive Cont , 1.57 268 0.0 0.0 

Slag waste zero-Fe. 1~0, 202 . (14.6) 24.8 

Slag waste Fe-chloride 175 149 (11.9) 44.6 

Slag waste Fe-sulfate 94.7 106 39.5 60.5 

Slag waste Fe-WTR 32.3 70.0 79.4 73.9 

Slag waste Positive Cont 5.37 3.77 

130 



..... 
w ..... 

1200 

.J 900 ._ 
IC\ 
::1. 
u ·-C 
C1J 
f 600 
ra ... 
~ 
ra 
3: 
f 300 
0 
D. 

0 

1---
--- - -· ; Perkins 

Slag Waste I Dennis 
I 

a 
x20 
-

a 160 
so I a 

40 

30111 b 

20 
10 Ill I I rl I I 111 )ii ii C 

L bll b b b l.~-;,~:~:~r ~ ' - - -,--, r -r r 

d 
)TI T 

e 
"O N "II "II "II 
OIDIDIDID 
111 -, I I I 

-·On 111 :e er. ~ :T C < .. - - -t 
ID ID SI al';:g 
n -· ,.. 
0 Q. ID 
:::J ID ... 

"O N "II "II "II 
OIDIDIDID 
U, -, I I I 

-· o n 111 :E er. ~ :T C < .. - - -t 
ID ID SI al' ;:11:J 

n ii !ti g ID ... 

"O N "II "II "II 
OIDIDIDID 
Cft -, I I I 
-• 0 n Ill C er. I :TC< 
< "II - - ""i 
ID ID SI al' ;:11:J 
n -· ,.. 
0 Q. ID 
:::J ID ... 

-· 1-

Be mow 

a 

b C C 

~ , ~ ,_~ ,-d ' 
"O N "II "II "II 
OIDIDIDID 
U, -, I I I 

-·On 111 :e er. 4, :T C 

~ ID ~~;j 
n ii ft g ID ... 

Fig. 1. Pore water arsenic from positive control and treated arsenic spiked soils and mine waste material. 
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CHAPTER III 

ARSENIC BIOACCESSIBILITY FROM IRON-BASED REMEDIATED 

ARENIC CONTAMINATED SOIL 

ABSTRACT 

Alternative technologies for remediation of arsenic contaminated soils have 

gained increasing attention. Immobilization of soil contaminants by treating with Fe

compounds is successful in reducing potential leaching and phytotoxicity to plants. This 

study investigates the ability of four Fe-compounds: zero-valence Fe, FeCl3, Fe2(504)3, 

and Fe-water treatment residuals (Fe-WTR), to reduce gastrointestinal (GI) 

bioaccessibility in As contaminated soil. Four As-spiked soils, Dennis, Bernow, Perkins, 

Pratt and one slag waste were treated with the Fe-compounds and incubated for 4 

weeks with intermitted wetting/drying to promote reaction between the soil and Fe

compounds. Hu~an GI accessibility was .estimated using a modified in vitro method 

(1 % pepsin and 0.15M NaCl) and %relative bioavailability (%RBA= GI-As/Total As 

*100) was determined. All Fe-treatment reduced arsenic %RBA. Dennis soil went from 

16.6% (untreated) to 10.3% with zero-Fe, 10.9% with FeCl3, 12.0% with Fe2(504)3 and 

8.6% with Fe-WTR treatment. B_ernow followed the same. pattern with untreated soil 

%RBA of 17.3% to 13.9%, 10.2%, 10.5% and 5.1 % with zero-Fe, FeCl3, Fe2(504)3 and 

Fe-WTR treatments respectively. Perkins soil went from 38.3% (untreated) to 19.2% 

with zero-Fe, 15.6% with FeCl3, 25.9% with Fe2(S04)3 and 7.1 % with Fe-WTR 

treatment. Pratt soil had the highest %RBA, 83.7%, in the untreated soil to 20.7% with 
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zero-Fe, 24.3% with FeCl3, 32.5% with Fe2(S04)3 and 6.8% with Fe-WTR treatment. 

Slag material went from 39.8% (untreated) to 32.5% with FeC'3, 32.8% with Fe2(S04)3 

and 24.1 % with Fe-WTR treatment. Hazard quotients and human health risk from soil 

ingestion were reduced with the addition of Fe-compounds to arsenic contaminated soil. 

Although the Fe-WTR was inconsistent in amorphous Fe content, it had the greatest 

reduction across all soils and slag and provides the greatest reduction of human 

exposure to As from contaminated soils. 

Keywords- Arsenic Arsenic extractability bioavailable arsenic human health 

arsenic remediation iron remediation risk assessment 

INTRODUCTION 

Arsenic is a notorious toxic element found all over the world as an indigenous 

element in soil. It has been used for decades as herbicides, desiccants and insecticides. 

More recent industrial used of arsenic include solid-state devices, laser material and 

bronzing. Mining and smelting activities has traditionally resulted in areas with high 

amounts of arsenic contamination. These activities are important sources of 

environmental degradation and have adverse effect on the environment from exposure 

to heavy metals and metalloids, in particular arsenic. Sites high in soil arsenic poise a 

risk to human health, phytotoxicity and contamination of soil and water. All soluble 

inorganic forms of arsenic appear to have toxic effects on humans. Various forms of 

arsenic have been shown to cause skin cancer and possibly increase the risk of 

developing lung, bladder, colon and kidney cancer (Hrudey et al. 1996, National Toxicity 
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Program). The primary routes of exposure to arsenic and arsenic compounds for 

humans are inhalation, ingestion and dermal contact. Inhaled airborne arsenic has been 

found to be rapidly absorbed into the systemic circulation through deposition in the 

respiratory tract (Adriano 2002). Eighty-five to 90% of water-soluble arsenic (III) in 

lungs can be bioavailable to humans (Hrudey et al. 1996). Ingestion of arsenic can be 

in the form of water, food or soil. Humans and animals rapidly absorb water-soluble 

inorganic arsenic. Bioavailability of other As species varies with the chemical form and 

water solubility (Adriano 2002). Organic arsenic, mainly found in food, is bioavailable 

depending on water solubility. Arsenobetaine-rich seafood are readily eliminated from 

the body in an unchanged form and seldom accumulate to toxic levels whereas, 

arsenosugars found in seaweed are metabolized (Smith et al. 1998). Generally organic 

arsenic found in seafood, has low toxicity to humans and as a result there is little 

potential hazards from consumption. Soil bound arsenic, generally, are unlikely to be a 

threat for human accumulation in uncontaminated areas. In contaminated area, 

residents nearby have a risk of arsenic ingestion through soil or dust. Children are 

especially at risk due to incidental ingestion of soil (Basta et al. 2001). 

Incidental soil ingestion is due to hand-to-mouth activity and represents a 

significant direct exposure pathway for non-dietary sources of arsenic in contaminated 

areas (Chaney and Ryan 1994, Duggan et al. 1985, Wixson and Davies 1994). Arsenic 

contaminated soils often present an unacceptable risk to human health and must be 

remediated. The traditional way of remediating a metal or metalloid contaminated soil, 

have involved physical removal by excavation and transporting the contaminated soil to 

hazardous waste landfill. Some may believe this is the best way to "clean" the site, but 
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with the increasing cost of excavation and transportation and the limited number of 

hazardous waste landfill, other alternatives have become attractive (EPA 1997). 

Two alternative technologies being used are metal removal through a pump and 

treat or soil washing system and immobilization/stabilization methods. Metal removal 

can be done either in situ or ex situ, through soil washing or pump-and-treat technology 

(EPA 1997). This approach can be difficult, time-consuming and incomplete due to the 

strong reactions between metal cations and soil components. Soil washing with acid 

solutions increases the removal of the metal cations but can leave the soil sterile and 

difficult for plant rehabitation and is ineffective for arsenic removal. As an alternative, 

chelating agents or surfactants that readily bind and remove metals have been used 

with some success. Immobilization of heavy metals is generally achieved through 

increasing the pH, causing precipitation, and binding the metal cation in the soil (EPA 

1997). This approach is not effect for arsenic due to its oxyanion structure. 

Immobilization of arsenic has been tested using ferric chloride and ferric acetate. In an 

in situ pilot scale study, ferric chloride and ferric acetate reduced leaching of arsenic 

contaminated soil over an 11-day period (Stammier et al. 1992). Iron is considered on 

of the best. metallic material· for remediation because it's nontoxic and inexpensive 

(Shokes and Moller 1999); 

Current arsenic risk assessment and toxicity study values for oral bioavailability 

are based on arsenic in drinking water in which arsenic is in a soluble form and has high 

bioavailability (e.g. 95% to 100%). Use of these values in determining the risk to 

human health from arsenic contaminated soil does not reflect the actual availability to 

humans. Bioavailability of arsenic in soils can be defined as the percentage of inorganic 

arsenic absorbed into the. body from soil as compared to that absorbed from drinking 
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water. Using rabbits and an in vitro method, Davis et al. (1992) found that several 

factors control the accessibility of metals from the soil. These include mineral 

composition, amount of encapsulation, and rate of dissolution in the gastrointestinal (GI) 

tract. Arsenic in soil was found to be five times less available than As from Na2HAs04 

salt (Rodriguez et. al 1999). Animal models, as human surrogates, have been used to 

determine contaminant bioavailability via the ingestion pathway. Immature swine, rats, 

and rabbits have been used to simulate GI bioavailability to humans (Dieter et al. 1993, 

Rodriguez et. al 1999, Ruby et al. 1999). Determining bioavailability with animal models 

is expensive and time consuming, requiring specialized facilities and specialized 

personnel. Chemical in vitro laboratory methods do not have the disadvantages 

associated with animal models and have been successfully used to estimate arsenic 

bioavailability (Rodriguez et. al 1999, Ruby et al. 1999). 

Treatment of arsenic contaminated soils with various Fe-containing compounds 

has shown to be effective in reducing potential risk of arsenic leaching and reducing 

arsenic phytotoxicity to plants (Chapter 2). Little information is available for the 

bioaccessibility of arsenic from contaminated soils treated with Fe-compounds. The 

objective of this work is to evaluate the effectiveness of four Fe-treatments: zero

valence Fe, FeCl3,· Fei{S04)3 ·and Fe-water treatment residuals, to reduce soil arsenic 

accessibility to human GI systems. 

MATERIALS AND METHODS 

Four soils were selected to provide a range of 'amorphous Fe-oxide content 

(Table 1). One slag waste soil Was also selected to 'test the ability of iron-based 
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remediation methods on mining waste. Various soil properties of the soils selected for 

this study are shown in Table 1. Soils were spiked with 250 mg/kg arsenic using 

reagent grade NaiAs04. The arsenic was dissolved in ll of de-ionized distilled water 

and mixed with the soil in large aluminum pans. The soils were thoroughly saturated 

and mixed well, and then put into a drying oven set at 65-70°( for 24 h. After the 

initial drying, the soils were saturated again, mixed and dried another two times for a 

total of 3 wet/dry cycles. After the last drying cycle the soil was homogenized and 

divided into subsets for iron remediation/treatment. 

Four iron sources were used for remediation/immobilization/treatment the 

arsenic contaminated soils. Two iron sources were reagent grade Fe2(S04)3 and FeCl3• 

The third iron source is Peerless-Iron, a zero valence iron. The last source is Fe-water 

treatment residue, Fe-WTR (sold commercially as Fe-humate). It is a by-product of 

water treatment facilities that use iron as a coagulant in the drinking water production 

process. All soils and slag waste were treated on a 20: 1 Fe:As molar ratio as shown in 

Table 2. Iron chloride and Fei(S04)3 were dissolved in ll de-ionized distilled water and 

thoroughly mixed with the soils additional water was added as needed to make slurry. 

Peerless-Fe (zero-Fe) and Fe-WTR were mixed with dry soil then saturated and mixed 

again. The saturated soils were place in a constant temperature room set at 33 ± 4 °c. 

The soil-treatments were saturated and mixed thoroughly 2-4 times a week. Sub

samples of each soil-treatment were taken weekly and pore water pH, arsenic and iron 

content were measured (Appendix B). After 4 weeks of incubation the pore water pH 

and arsenic content were stable and the incubation was terminated. The pore water pH 

and electrical conductivity (EC) were measured on each soil-treatment. If the EC 

exceeded 2 dS/m, the soil was leached by mixing the soil with excess de-ionized water 
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in a bucket, allow the soil to settle (sit un-disturbed for >24 h), then removed the 

excess water. If the pH was below 4 the soil was gently limed (5-10 g lime/kg soil) with 

CaC03 to achieve the target pH of 5.0. The FeCl3 and Fe2(S04)3 treatments are very acid 

forming which caused the pH to decrease greatly. The soils were then oven dried at 

70°C and place in sealed containers. Total arsenic, iron and other elements were 

determined using a nitric acid microwave digestion, EPA Method 3051 (USEPA 1994). 

This analysis was performed to confirm the total amount of arsenic in soil after 

processing. Certified reference material (CRM020-050, RTC Corporation, Laramie, WY, 

USA) as well as blanks and spikes were used for quality assurance/quality control 

(Appendix B). 

In vitro (IVG} Method to Assess Human Bioavailability. 

The ability of treatments to reduce As bioavailability to humans was evaluated by 

using a modified in vitro gastrointestinal (IVG) method (Rodriguez et al., 1999). 

Modifications made to the Rodriguez procedure were elimination of dough-dosing 

additive. A pepsin solution consisting of 10g/L Pepsin and 8.78g NaCI/L was mixed well 

then purged with argon gas for 30-60 minutes using an air stone and stir plate for 

mixing. Decanol was added as needed (rvlml) to control foaming. One gram of test 

soil was placed into a tall 300ml beaker. Once purged, 150ml of pepsin solution was 

added to the soil and placed into a water bath set at 37°C. The water bath was 

equipped with a submersible stir plate. The soil~pepsin solution was mixed with a stir 

bar while drops of cone. trace metal grade hydrochloric acid was added to reduce the 

pH to 1.8. Once the pH reached the target, the mixture was held at that pH for one 

hour while monitoring and adjusting pH as needed. At the end of the hour, a sample of 

the mixture was removed and ·.centrifuged for 5 minutes at 10,000 RPM. The sample 
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was filtered through 0.45micon filter and stored at 4 °C until analysis with inductive 

couple plasma-hydride generation. 

Measurement of As by ICP-HG 

To determine low level arsenic concentration and to remove potential 

interferences found on direct analysis of sample digest, inductively coupled plasma 

atomic emission spectroscopy with hydride generation (ICP-HG) was used. The hydride 

generator is a batch type produced by Thermo Jarrell Ash (TJA) for the IRIS TJA ICP. 

Reaction rates for hydride generation are controlled by several variables: 1) chemical 

forms of the arsenic, 2) oxidation state of the hydride-forming element, 3) acid 

concentration, and 4) concentration of the NaBH4 reducing agent. The least error 

occurs when these condition are set so that the reaction goes to completion 

instantaneously. Inorganic arsenic, arsenate (V) and arsenite (III), can be reduced to 

arsine gas through the hydride process, although reduction of arsenate is more time 

consuming. Therefore all samples (10-50 ml) are pre-treated with 40% potassium 

iodine + 4% ascorbic acid solution (0.5 ml) to reduce all As to arsenite (III), the faster 

reacting As form (TJA, Dedina and Tsalev, 1995). Hydrochloric acid is used as the 

sample medium to form hydr\des. Samples were mixed with concentrated HCI to a 

concentration of 3 molar. The efficiency of hydride .formation is constant at HCI 

concentrations above one molar (Dedina and Tsalev 1995). A 0.5% NaBH4 solution with 

0.42% NaOH for stability was used as the reducing agent., .Acidified sample and base 

were pumped to the reactor chamber at a rate of 3.25 ml /minute with a 2 minute rinse 

between samples to -eliminate carry over'. . Arsine gas was separated in a gas-liquid 

separator via nebulizer directly into the ICP argon plasma .. Tri-n-butylphosphate was 

added to samples to reduce foaming (Murer et al. 1992) 
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RESULTS AND DISCUSSIONS 

Remediation Affect on IVG Bioaccessibility 

Soil Fe-treatments were successful in reducing the amount of bioaccessible (IVG) 

arsenic from contaminated soils (Fig. 1). All the amended soils, Dennis, Bernow, Perkins 

and Pratt, across all treatments had significant (P < 0.05) reduction of IVG arsenic 

availability as compared to the positive controls. The greatest reduction of IVG As was 

obtained with the Fe-WTR treatment in all soils and slag waste material (Table 3). The 

largest decrease was in the Pratt soil with > 70% reduction of IVG As in all Fe-treated 

soils. Fe-WTR had the best success with a reduction of IVG As from 250 mg/kg 

(positive control) to 28.2 mg/kg IVG As (Table 3). In general, greatest reduction in the 

arsenic contaminated soil treatments followed the order Fe-WTR> Fe-chloride ::::: zero-Fe 

> Fe-sulfate. The slag waste material somewhat different trend with reduction followed 

the order Fe-WTR> Fe-chloride = Fe-sulfate. The zero-Fe amendment has no 

significant difference from the untreated slag. 

The As solubilized by the IVG procedure was greatly influenced by the amount of 

indigenous clay in the soil. The positive controls that had the lowest amount of IVG As 

were the soils with the greatest amount of clay (Table 3). Arsenic bioaccessibility 

followed the order Dennis (40.6% clay) < Bernow (23.8% clay) < Perkins (10.0% clay) 

< Pratt (6.25% clay). Geophagia, the phenomena where animals intentionally ingest 

non-nutritive soil, may detoxify contaminants by providing adsorption sites. Geophagia 

has been shown to be a positive factor in such issues as: the response to stress and 

arthritis in rats (Burchfield et al., 1977), reducing the 137Cs content of meat and eggs in 
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hens (Andersson et al., 1990), and reducing the pH and ammonia level in the intestines 

of ruminants fed low quality roughage supplemented with molasses (Stephenson et al., 

1992). Geophagia has also been reported for humans. Early Indians of the American 

Southwest and Mexico intentionally consumed clays with wild potatoes in order to 

eliminate the bitter taste and to prevent stomach pains and vomiting associated with 

eating large quantities of wild potatoes (Johns, 1986). Geophagia may have detoxified 

alkaloids, tannins, and quinones in the pre-evolved potato (Johns, 1986). Arsenic 

bioaccessibility followed the order Dennis ( 40.6% clay) < Bernow (23.8% clay) < 

Perkins (10.0% clay) < Pratt (6.25% clay). 

Human Health Risk Assessment 

Remediation of arsenic contaminated soils is usually risk-based. Risk is a 

function of bioavailability. Carcinogenic risk is calculated by the following equation: 

where: 

Risk = CDI x SF 

Risk = A unitless probability (e.g., 1 x 10-6 meaning 1 in 1,000,000) 

CDI = Chronic daily intake, averaged over 70 yr (mg/kg-d) 

SF = Cancer slope factor (mg/kg/d) 

Furthermore, . . ·CDJ(mg I kg-day)=· CS• JR •CF• EF • ED (BIO) 
BW•AT 

Where: 

CS = Chemical concentration in soil (mg/kg) 

IR = Ingestion Rate (mg soil/day) . 

CF = Conversion factor (10-6 mg/kg) 
' . 

EF = Exposure frequency (days/year) 

ED :;: Exposure duration (years) 

BW = Body weight (kg) 
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AT = Averaging time (period over which exposure is averaged - days) 

BIO = "Gastro-intestinal bioavailability" 

Current risk assessment methodologies for heavy metaljmetalloids contaminated 

soils utilize total metal content for chemical concentrations (CS) in the soil rather than 

bioavailable concentrations. Bioaccessibility-bioavailability of contaminated soil can be 

depicted as a multi-step process (Fig. 2). The contaminant goes through dissolution in 

the gastrointestinal tract followed by contaminant absorption into systematic circulation. 

Since the rate-limiting step for soil arsenic is contaminant dissolution, the IVG %Relative 

Bioavailability (%RSA) gives a reasonable measure of bioavailability for human health 

risk assessment (Rodriguez et. al 1999). The bioavailability (BIO) factor or %RBA can 

be used to adjust the total content for the amount of contaminant that is bioaccessible 

at a specific site. 

The potential for non-carcinogenic effect (hazard quotient) is evaluated by 

comparing an exposure levels over a specific period (e.g. life-time) with a reference 

dose (RfD) derived for a similar exposure period. 

where: 

Hazard Quotient = CDI 
RJD 

CDI = chronic daily intake averaged over 70 yr (mg/kg-d) 

RfD = reference dose (mg/kg-d) 

Toxicity data (SF and RfD) for arsenic have been derived from tocxicological 
. : ' 

. studies performed . ~sing soluble forms of arsenic and can be accessed through 

Integrated Risk Information System (IRIS) from USEPA (www.epa.gov/iris). 

Bioavailability-bioaccessibility data (IVG) can be used to provide more accurate exposure 

assessments that will result in more reasonable and site-specific risk estimates. 
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Chronic daily intakes (CDI) were determined for soil As for children (ED= 6y) 

and adults (ED=SO). The ingestion rate (IR) of 200 mg/d for children and 100 mg/g 

for adults were employed. Exposure frequency (EF) was 260 d/yr (5 days a week) for a 

child and 208 d/yr ( 4 days/wk) for an adult, since they tend to spend less time outdoors. 

Exposure duration (ED) depends on whether the assessment was for a lifetime exposure 

or residence exposure, 6 years was used for children and 50 years was used for adult. 

The default body weight (BW) for children is 16 kg and 70 kg for and adult. The 

averaging time (AT) is determined by multiplying the ED by 365 days or 2190 days for a 

child and 18250 days for an adult. Relative bioavailability (BIO) was determined by the 

IVG method (Table 3). The CDI, calculated for each soil and treatment, show a 

substantial decrease in the potential intake of arsenic with Fe-treatments (Table 4 and 

5). 

The USEPA has classified arsenic as a human carcinogen and set the oral slope 

factor to 1.5 (mg/kg)/d for ingestion of inorganic arsenic (IRIS). Risk for each soil and 

treatment is shown in Table 6. In addition, exposure to inorganic arsenic can cause 

chronic health hazards such as Blackfoot disease and, skin lesions. The oral Reference 

dose has been set at 3E-4 mg/kg-d (IRIS), and related Hazard Quotients (HQ) are found 

in Table 6. Potential for significant effects are noted when non-carcinogen hazard 

quotients are greater than one. The HQ for children are < 1 in all the Dennis and 

Bernow Fe-treated soils and the Pratt and Perkins Fe-WTR treatment. The HQ for an 

adult is < 1 in all soils and treatments including the positive controls. The Risk factor for 

children and adults are greater than the generally acceptable level of lE-6, but the 

treated soils do show a noticeable decrease in risk. 
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CONCLUSIONS 

The Fe-treatments were successful in reducing the amount of in vitro gastric 

arsenic concentrations. The Fe-WTR treatment had the best overall success with the 

greatest reduction of % relative bioavailable arsenic. Hazard quotients (HQ) for non

carcinogen effects were at an acceptable levels ( <1) for adults in all Fe-treatments. HQ 

for children was < 1 in the high clay soils of Dennis and Bernow with all Fe-treatment. 

Only the Fe-WTR treatment in Pratt and Perkins has a HQ < 1. Although calculated risk 

was not at acceptable levels (lE-6) there was a substantial decrease due to Fe

treatment. Iron was added in excess amount (20:1 molar ratio) thereby not a limiting 

factor. This type of remediation may be more appropriate for soils with lower level 

arsenic contamination (e.g. <100 mg/kg As) and possibly for ecological remediation 

where there is limited_ human-soil contact. In addition there is still a need to validate 

the IVG method for treated soil with the use of an appropriate animal model. 
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Table 1. Select soil properties including pH (1:1 water), percent sand, silt and clay, 

percent organic carbon and amount of iron and aluminum oxides as measured from 

modified acid ammonium oxalate extraction . 

i I 

Soil pH O/o O/o O/o O/oOrganic J Fe-oxide Al-oxide 
(1:1 Sand Silt Clay Carbon I mmole/kg mmole/kg I water) 

Slag 
7.75 na na 59.1 3.13 60 8.22 Waste 

Dennis 6.16 17.5 41.9 40.6 0.80 7.07 15.5 

Perkins 4.37 60 30 10 0.85 4.64 8.56 

Bern ow 5.16 56.9 19.4 23.8 0.30 3.66 10.7 

Pratt 6.35 90 3.75 6.25 0.90 0.99 2.48 

Table 2. Weight of iron treatments added (66 m moles/kg) to 1 kg of 250 mg/kg arsenic 

spiked soil. 

Iron Source 0/o Iron Amount added to 
1 kg soil 

Peerless-Fe 100 % 3.69 g 

FeCl3 • 6H20 20.7 % 17.86 g 

Fe2(S04)3 21.3 % 17.29 g (76.40/o pure) 

Fe-WTR 2.8% 131.8 g 
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Table 3. IVG results from Fe-treatments on arsenic contaminated soils. IVG arsenic 

represents the amount of arsenic extracted from one gram of soil and the correlating % 

decrease due to Fe-treatments. The % relative bioavailability (%RSA) is calculate from 

the total arsenic content. 

IVG 010 Total As 
O/o 

As, Decrease k 0/o RBA Decrease 
mg/ks (increase) mg/ g (increase) 

Untreated 160 403 39.8 a 

Slag Waste zero-Fe 153 4.71 361 42.2 b (6.19) 

59.1°/o clay Fe-chloride 121 24.2 374 32.5 C 18.3 

60 mmol Fe Fe-sulfate 120 24.9 366 32.9 C 17.4 

Fe-WTR 78.1 51.2 325 24.1 d 39.5 

As-Spike 40.3 243 16.6 a 

Dennis zero-Fe 23.1 42.5 225 10.3 b 37.8 

40.6°/o clay Fe-chloride 25.6 36.4 235 10.9 b 34.3 

7.07mmol Fe Fe-sulfate 25.6 36.4 213 12.1 b 27.3 

Fe-WTR 20.1 50.1 235 8.56 C 48.3 

As-Spike 98.4 257 38.3 a 

Perkins zero-Fe 48.9 50.3 255 19.2 C 49.8 

10°/o clay Fe-chloride 41.7 57.6 268 15.6 d 59.3 

4.64 mmol Fe Fe-sulfate 58.9 40.2 228 25.9 b 32.4 

Fe-WTR 16.9 82.8 239 7.08 e 81.5 

As-Spike 47.8 276 17.3 a 

Bernow zero-Fe 32.6 31.6 234 14.0 b 19.5 

23.8°/o clay Fe-chloride 26.0 45.5 255 10.2 C 41.1 

3.66 inmol Fe Fe-sulfate 27.9 41.7 266 10.5 C 39.6 

Fe-WTR 11.4 76.2 222 5.13 d 70.4 

As-:Spike 250 · 299, 83.7 a 

Pratt zero-Fe 64.3,. 74.3 , 311 20.7 d 75.3 

6.25°/o clay Fe-chloride 72.1 71.2 297 24.3 C 71.0 

0.99 mmol Fe Fe-sulfate 69.7 72.1 215 32.5 b 61.2 

·Fe-WTR 28.2 88.7 414 6.81 e 91.9 
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Table 4. Chronic daily intakes (CDI) for children exposed to arsenic contaminated soils. 

IR= 200 mg/d, CF= lE-6 kg/mg, EF=260 d/y, ED = 6y, BW=16 kg, AT= 2190 d 

SOIL Treatment cs BIO CDI 
mg/kg 0/oRBA (mg/kg)/d 

Slag Positive Cont 403 39.76 1.4E-03 

Slag Zero-Fe 361 42.22 1.4E-03 

Slag Fe-chloride 374 32.48 1.lE-03 

Slag Fe-sulfate 366 32.85 1.lE-03 

Slag Fe-WTR 325 24.05 7.0E-04 

Dennis Positive Cont 243 16.56 3.6E-04 

Dennis Zero-Fe 225 10.30 2.lE-04 

Dennis Fe-chloride 235 10.88 2.3E-04 

Dennis Fe-sulfate 213 12.05 2.3E-04 

Dennis Fe-WTR 235 8.56 1.SE-04 

Perkins Positive Cont 257 38.25 8.SE-04 

Perkins Zero-Fe 255 19.20 4.4E-04 

Perkins Fe-chloride 268 15.58 3.7E-04 

Perkins Fe-sulfate 228 25.86 S.2E-04 

Perkins Fe-WTR 239 7.08 1.SE-04 

Bern ow Positive Cont 276 17.32 4.3E-04 

Bern ow Zero-Fe 234 13.95 2.9E-04 

Bern ow Fe-chloride , 255 10.20 2.3E-04 

Bern ow Fe-sulfate 266 10.46 2.SE-04 

Bern ow Fe-WTR 222 5.13 1.0E-04 

Pratt Positive Cont 299 83.69 2.2E-03 

Pratt Zero-Fe 311 . 20.67 S.7E-04 

Pratt Fe-chloride 297 24.30 6.4E-04 

Pratt Fe-sulfate 215 32.51 6.2E-04 

Pratt Fe-WTR 415 6.81 2.SE-04 
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Table 5. Chronic daily intakes (CDI) for adults exposed to arsenic contaminated soils. IR 

= 100 mg/d, CF= lE-6 kg/mg, EF=208 d/y, ED = soy, BW=70 kg, AT= 18250 d 

SOIL Treatment cs BIO CDI 
(mg/kg} (RBA} (mg/k-d} 

Slag Positive Cont 403 0.40 1.3E-04 

Slag Zero-Fe 361 0.42 1.2E-04 

Slag Fe-chloride 374 0.32 9.9E-05 

Slag Fe-sulfate 366 0.33 9.SE-05 

Slag Fe-WTR 325 0.24 6.4E-OS 

Dennis Positive Cont 243 0.17 3.3E-05 

Dennis Zero-Fe 225 0.10 1.9E-05 

Dennis Fe-chloride 235 0.11 2.lE-05 

Dennis Fe-sulfate 213 0.12 2.lE-05 

Dennis Fe-WTR 235 0.09 1.6E-05 

Perkins Positive Cont 257 0.38 8.0E-05 

Perkins Zero-Fe 255 0.19 4.0E-05 

Perkins Fe-chloride 268 0.16 3.4E-05 

Perkins Fe-sulfate 228 0.26 4.SE-05 

Perkins Fe-WTR 239 0.07 1.4E-05 

Bern ow Positive Cont 276 0.17 3.9E-05 

Bern ow Zero-Fe 234 0.14 2.7E-05 

Bernow ' Fe-chloride '255 0.10 2.lE-05 

Bernow Fe-sulfate · 266 0.10 2.3E-05 

Bernow Fe-WTR 222 0.05 9.3E-06 

Pratt Positive Cont 299 0.84 2.0E-04 

Pratt Zero-Fe 311 0.21 5.2E-05 

Pratt Fe-chloride 297 0.24 S.9E-OS 

Pratt Fe-sulfate 215 0.33 5.7E-05 

Pratt Fe-WTR 415 0.07 2.3E-05 
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Table 6. Calculated Hazard Quotient (RfD=3E-4 mg/kg-d) and Risk (SF=l.5 mg/kg-d) 

for child and adult. 

SOIL Treatment Child Adult Child Risk Adult Risk 
HQ HQ mg/kg-d mg/kg-d 

Slag Positive Cont 4.75 0.43 2.14E-03 1.96E-04 

Slag Zero-Fe 4.53 0.41 2.04E-03 l.86E-04 

Slag Fe-chloride 3.60 0.33 1.62E-03 1.48E-04 

Slag Fe-sulfate 3.57 0.33 1.61E-03 1.47E-04 

Slag Fe-WTR 2.32 0.21 1.04E-03 9.54E-05 

Dennis Positive Cont 1.19 0.11 5.38E-04 4.92E-05 

Dennis Zero-Fe 0.69 0.06 3.09E-04 2.83E-05 

Dennis Fe-chloride 0.76 0.07 3.42E-04 3.13E-05 

Dennis Fe-sulfate 0.76 0.07 3.42E-04 3.13E-05 

Dennis Fe-WTR 0.60 0.05 2.68E-04 2.45E-05 

Perkins Positive Cont 2.92 0.27 1.31E-03 1.20E-04 

Perkins Zero-Fe 1.45 0.13 6.53E-04 5.97E-05 

Perkins Fe-chloride 1.24 0.11 5.57E-04 5.lOE-05 

Perkins Fe-sulfate 1.75 0.16 7.86E-04 7.19E-05 

Perkins Fe-WTR a.so 0.05 2.26E-04 2.07E-05 

Bern ow Positive Cont 1.42 0.13 6.38E-04 5.83E-05 

Bernow Zero-Fe 0.97 0.09 4.36E-04 3.99E-05 

Bern ow Fe-chloride 0.77 · 0.07 3.48E-04 3.18E-05 

Bern ow .· Fe-sulfate 0.83 0.08 3.72E-04 3.40E-05 

Bernow Fe-WTR 0.34 0.03 1.52E-04 1.39E-05 

Pratt Positive Cont 7.42 0.68 3.34E-03 3.05E-04 

Pratt Zero-Fe 1.91 0.17 8.59E-04 7.85E-05 

Pratt Fe-chloride 2.14 0.20 9.63E-04 8.81E-05 

Pratt Fe-sulfate 2.07 0.19 9.31E-04 8.52E-05 

Pratt Fe-WTR 0.84 0.08 3.77E-04 3.44E-05 
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APPENDIX A 

Table 1 Results from a 10-day seed germination test and shoot elongation test done on 

22 arsenic spiked soils. 

Average Average 
Average shoot Average Shoot Average% Average% 
%Germ legnth, cm %Germ legnth,cm Relative Relative 

Soil As-soil As-soil Controls Controls germ shoot length 

Bernow B 80.0 2.0 93.8 3.44 85.3 56.79 
Cannisteo 86.7 2.1 88.3 3.89 98.1 54.52 
Dennis A 30.0 0.6 95.0 2.39 31.6 26.45 
Dennis B 90.0 2.5 93.3 3.90 96.4 63.41 
Dougherty 0.0 0.0 83.3 1.91 0.0 0.00 
Efaw 83.3 1.9 

Hanlon 38.3 1.8 86.7 4.33 44.2 40.51 
Haskell 73.3 2.3 
Kirkland 62.5 1.4 88.3 2.39 47.2 57.26 
Luton 95.0 2.6 78.3 4.08 121.3 64.56 
Mansic A 58.3 1.6 93.3 2.23 62.5 71.18 
Mansic B 96.7 2.1 86.3 3.33 112.1 61.54 
Osage A 61.7 2.4 91.7 4.03 67.3 58.69 
Osage B 93.3 3.0 91.0 3.23 102.6 91.63 
Perkins A 6.7 0.4 90.0 3.87 7.4 9.18 
Pond Creek A 48.3 2.2 85.0 2.65 56.9 83.11 
Pond Creek B 90.0 2.7 85.0 4.17 105.9 63.57 
Pratt A 13.3 0.5 75.0 3.26 17.8 16.10 
Pratt B 1.7 0.2 78.3 1.77 2.1 9.43 
Richfield 96.7 2.4 91.7 2.36 105.5 99.82 
Summit A 26.7 0.6 90 4.00 29.6 14.43 
Summit B 88.3 2.2 91.7 3.72 96.4 58.44 
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Table 2. Dry yield from lettuce grown on As spiked soil and control soils during the 8-

week bioassay. 

Arsenic Soil Arsenic Soil Arsenic Soil 
Average Average Average Control Soil Control Soil 0/o Relative 

Yield/pot Yield/plant Yield/pot Yield /pot Yield /pot Yield 

Soil (g} (g} (mg} (g} (mg} 

Bernow B 0.06 0.02 62.7 0.40 397 15.8 

Canisteo 0.00 0 0 6.07 6072 0.0 

Dennis A 1.40 0.57 1396 2.16 2158 64.7 

Dennis B 0.05 0.02 49.3 0.18 184 26.8 

Doughtery A 0.00 0 0 1.65 1649 0.0 

Efaw 0.28 0.05 280 1.45 1451 19.3 

Hanlon A 0.04 0.01 43.0 3.64 3640 1.2 

Haskell 2.04 0.51 2042 4.01 4007 51.0 

Kirkland A 0.43 0.15 429 2.54 · 2537 16.9 

Luton 2.20 0.72 2196 7.24 7235 30.4 

MansicA 0.00 0 0 2.72 2717 0.0 

Mansic B 0.00 0.001 1.33 3.05 3050 0.0 

Osage A 5.04 1.52 5037 7.32 7317 68.8 

Osage B 3.78 0.79 3783 5.01 5005 75.6 

Perkins 0.02 0.03 17.0 1.08 1077 1.6 

Pond Creek A 0.51 0.17 sos 5.71 5714 8.8 

Pond Creek B 0.05 0.01 47.3 1.64 1639 2.9 

Pratt A 0.00 0 0 2.65 2654 0.0 

Pratt B 0.00 0 0 1.10 1104 0.0 

Richfield B 0.03 0.01 33.3 3.23 3227 1.0 

Summit A 1.46 0.18 1464 2.34 2340 62.5 

SummitB 1.14 0.36 1135 2.07 2073 54.8 
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Table 3. Lettuce endpoints from 8-week bioassay (mean yield, mean % of control yield 

and mean arsenic accumulation) grown on 22 arsenic spiked soils. 

Yield, 8-week 
O/o Relative Lettuce As 

Soil Bioassay, Yield content, 
mg mg/kg 

Bernow B 62.7 15.8 7.78 
Canisteo A 0.0 0.0 n/a 
Dennis A 1396 64.7 5.14 
Dennis B 49.3 26.8 2.14 
Dougherty A 0.0 0.0 n/a 
Efaw A 279.7 19.3 16.6 
Hanlon A 43.0 1.2 16.5 
Haskell 2042 51.0 22.7 
Kirkland A 428.7 16.9 16.5 
Luton A 2196 30.4 9.30 
Mansic A 0.0 0.0 n/a 
Mansic B 1.3 0.0 3.74 
Osage A 5037 68.8 6.27 
Osage B 3783 75.6 3.80 
Perkins A 17.0 1.6 n/a 
Pond Creek A 505.0 8.8 29.8 
Pond Creek B 47.3 2.9 15.1 
Pratt A 0.0 0.0 n/a 
Pratt B 0.0 0.0 n/a 
Richfield B 33.3 1.0 n/a 
Summit A 1464 62.5 3.24 
Summit B 1135 54.8 5.87 
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Table 4. Arsenic concentrations in lettuce grown during the 8-week bioassay on arsenic 

spiked soils. Repetitions, standard reference material, and detection limits are included. 

Average 
Wt. Dry As1890* As1937 As 1890 As St Dev 

Soil Rep plant, g µg/L µg/L OF mg/kg mg/kg %Co Var 

Bernow B 1 0.017 13.5 13.4 588 7.9 7.78 2.6 

2 0.048 49.5 49.7 208 10.3 33.7 

3 0.025 12.7 12.7 400 5.1 _ .. _________ .... _ ............. -......... _ ........................................ -.... ·-·-.. --.. --.. -----·-.. -----··--.. -----------.... ----·--·--·-.. --......... , ____ .. ,_,_ .......................... -.. ____ ....................... _ ............. -,.----·-·-··· 

······-·-9!.'.!!~!~~ .. ~ ... --·····-···-·····N/ A_··-·-·····-·--·---·-----········-··-·----········-·--·---···-···--- ·--··-······-···-··-·-··········-·······-·-········-----·····-·····-········ 

Dennis A 1 

3 

0.172 

0.203 

91.1 

101 

90.8 58.1 5.30 5.14 

101 49.3 4.98 4.4 

Dennis B 1 0.081 17.4 17.4 123 2.14 2.14 __ ........................... ,-----·----------.................. __________ .. ,_ ........ , .... --...................... -----·-·'""""·-·-·- ··--·-·--·-···-·------........ , ____ .. ,, .......... __ ........... .. 
......... J~<>.l:!_9h~".9' A ___ N/ A --···-·--··---·-·----····--·····-·-····-···--·····----··-·--··-·---··---·--·-·····-················--·--··--·······-···-······----·············--···--···-········· 

Efaw A 2 0.077 127.5 129 130 16.6 16.6 ··--·---, ............................... ,,-------···--.. ·----.... ·-·--.. ·-----------.. ·--.... --................. __ ...................... -------.. - .. ---·-.. ·--·-............................... _____ ...................................................... ----·-----
Hanlon A 1 0.038 77.88 78.33 263 20.5 16.S 5.6 

3 0.049 61.28 61.47 204 12.5 34.2 ... -------·····-·-·······-··· ......................... _ .............. -·-··--------·-·------.. ·---·-·_ .. ___ ............... -·--·--·--.. -------------............................ _____ ............. __ ... , ................ . 
Haskell 1 0.183 400 398 54.6 21.8 22.7 1.6 

2 0.19 467 469 52.6 24.6 7.1 

3 0.21 456 460 47.6 21.7 

Kirkland A 1 0.118 274 272 84.7 23.2 16.S 5.9 

2 . 0.105 129 129 95.2 12.3 35.9 

3 0.168 234 231 59.5 13.9 -·--................................................ - ...................... _., ........ _ ............... -----.. -·-----·-.... - ........... ·---·---... , ........ --.-· ............... _. ___ , __ ,_, ...................... -.................................................. --.......... ----·········-................. . 

Luton 2 0.198 155 157 50.5 7.82 9.30 2.1 

··-·······----·-···---··-·----. 3 -··-··--·.Q_J~_2-_. __ ··--· ... ?.QL_·-············--£°--~·····---?.:?..J ................ _J.Q& ............. _ ...... --·-··-·--·---···············l.?.:.?. ........... . 

.................. _!"..1a!!si~~--N/ A······--·-----··········-------··-···-··--·-················----·····-········-··---······-·······-·······················--.. ··································· .. --.---·-----··-···-···········-··-·-···········-·-·-············· 

·····----~.~~.!.i.i..!:.= ... ~.·---·· N/ A·······--·-···--·--··---·-··-·--·············--·-·········---·-··-···-···-·-····-················----------·-·-··--··············-·······-·-··-·---··-··············----····························· 

Osage A 1 0.186 93.4 93.2 53.8 5.02 6.27 

2 0.175 132 132 57.1 7.56 20.2 

3 0.2 12s 12s· so.a 6.24 
......... ·------·--, ... -...... - ............ ------··-·-........... -·--··· .. --·-·-.. ·--·-·--··-···-·----······-· .. --.. -·--··-·-........... _. _______ ... _ ...... __ .. ___ ... , .. ---·-·········· ...................... -·-·--··· ........ ---· .. --·-·-· .. "-··-·-

Osage B 1 0.19 59.3 59.4 52.6 3.12 3.80 0.85 

2 0.198 94.0 93.5 50.5 4.75 22.3 

3 0.208 73.3 73.3 48.1 3.52 

....... ___ _!)er_~ins ~-·-·--····N/ A····-··-···-·--···-·-······--··-········---······· .. ··---·-········-·--··-··········-·····--··-·---·-···· ············----·················· ········--····················--·········-·-· 

Pond Creek A 1 0.018 53.6 53.9 556 29.79 29.8 ... _._, ____ ............ __ , ..... - ... -.... -... -·-·-·-----·-· .... -.. --.... ·--·-.. ·------·-· ...... _ .. ___ ................. - ....................... --·----·-----··--·-.. ,-........................ -.. --................................... - ............ -............... .. 

Pond Creek B 1 0.024 32.5 32.6 417 13.53 15.1 2.5 

2 0.041 73.5 74.0 244 17.92 16.3 

3 0.056 77.3 77.8 179 13.80 .................. ·------·----·-·-.. -·---·-·--.. --.. --............ ----........ - ....... --·-·---·--.... -... --·----· .. -·--·-------··-.............................. _____ ............................. - ................................ . 

_. ___ '.>.!.~.~~----N/ A_··----·------·-·-·-··-----·-···········---··········-··---·-·--·---···-······-·····-··---·-·····-····-············-····--·--······-···········--···-·--· 
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Average 
Wt. Dry As1S90* As1937 As 1890 As St Dev 

Soil Ree elantl g µg/L µg/L OF mg/kg mg/kg %Co Var 

Pratt B 

Richfield B 

Summit A 1 0.194 53.4 53.0 51.5 2.75 3.24 0.66 

2 0.209 62.2 62.2 47.8 2.97 20.5 

3 0.085 34.0 33.7 118 4.00 ............................... -......................... ....... ·-·-··---······· .. ··-····--........... _ ....... ......................................... ·······························-

Summit B 1 0.192 110 110 52.1 5.75 5.9 0.2 

3 0.203 122 121 49.3 5.99 2.8 

Wt. Dry As1890* As1937 O/o 

el ant µg/L µg/L OF As mg/kg Recovery 

Plant SRM 0.194 122.3 122.3 52.8 6.46 80.8 

Plant SRM 0.172 116 117.5 59.6 6.91 86.4 

Plant SRM 0.201 118.4 118.3 51.0 6.04 75.5 

* primary line 

Detection limit determined by running the blank 7 times with a correction factor of 3. 

Detection Limit As1890* As1937 

Standard deviation 1 0.36 0.83 

Low= Std*5 ppb 1.80 4.15 

High = Std*lO j2Qb 3.59 8.29 

* primary line 
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Table 5. Lettuce yield,% relative yield and As concentration in tissue from 5-week 

bioassay. 

Lettuce Yield, Lettuce As cone. % Relative 
Soil mg mg/kg Yield 

Bernow B 
Canisteo A 129 39.3 1.84 
Dennis A 6837 2.42 99.5 
Dennis B 5725 0.76 89.0 

Dougherty A 38.0 0.87 
Efaw A 1771 26.5 31.7 

Hanlon A 224 28.5 2.78 
Haskell 1381 29.6 22.6 

Kirkland A 2178 14.8 67.2 
Luton A 2901 4.58 57.3 
Mansic A 41.3 0.94 
Mansic B 17.7 0.49 
Osage A 4503 5.16 64.4 
Osage B 4924 5.60 90.5 
Perkins A 268 3.27 

Pond Creek A 1827 40.6 34.2 
Pond Creek B 2200 9.42 49.2 

Pratt A 14.7 0.24 
Pratt B 8.00 0.15 

Richfield B 53.7 1.03 
Summit A 7179 1.60 86.8 
Summit B 4310 1.12 43.8 

175 



Table 6 Correlation coeffiecents (r) and Pvalues between soil properties pH (1:1 water), 

% clay, % organic carbon and Fe-oxide (ammonium oxalate extracted) from 22 soils 

used in arsenic spiking study. 

pH 0/oClay 0/oOC Fe 

pH r 0.43 0.27 -0.02 
p 0.05 0.23 0.94 

0/oClay 
r 0.43 0.52 0.73 
p 0.05 0.02 <0.001 

0/oOC 
r 0.27 0.52 0.52 
p 0.23 0.02 0.015 

Fe 
r -0.02 0.73 0.52 
p 0.94 <0.001 0.015 
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Table 7. Pore water arsenic extracted from 22 arsenic spiked soils. 

Dry 
Water Arsenic Average 

St Dev. As 
Average 

Soil Rep Soil, g Added, Cone. As Cone. %Co Var OF 
mg/kg 

As 
ml mg/L mg/L mg/kg 

Bernow B 1 40.0 18.4 0.19 0.19 0.01 0.46 0.088 0.086 

2 40.0 18.3 0.18 3.2% 0.46 0.084 

Canisteo A 1 40.0 28.0 8.46 8.4 0.03 0.70 5.92 5.88 

2 40.0 27.7 8.42 0.3% 0.69 5.83 

Dennis A 1 40.0 25.7 0.27 0.30 0.04 0.64 0.173 0.17 

2 40.0 21.0 0.32 12.2% 0.53 0.169 

Dennis B 1 40.0 21.7 0.003 0.00 0.00 0.54 0.002 0.001 

2 40.0 21.4 0.002 27.4% 0.53 0.001 

Dougherty 1 40.0 11.4 100.2 98.8 2.02 0.29 28.7 28.2 

A 2 40.0 11.4 97.4 2.0% 0.28 27.7 

Efaw A 1 40.0 17.6 4.00 4.06 0.08 0.44 1.76 1.78 

2 40.0 17.5 4.11 1.9% 0.44 1.79 

Hanlon A 1 40.0 19.5 13.78 13.9 0.13 0.49 6.70 6.71 

2 40.0 19.3 13.96 0.9% 0.48 6.72 

Haskell 1 40.0 20:6 3.83 3.8 0.02 0.51 1.97 1.96 

2 40.0 20.5 3.80 0.5% 0.51 1.94 

Kirkland A 1 40.0 20.8 2.00 2.01 0.02 0.52 1.04 1.06 

2 40.0 21.4 2.02 0.8% 0.53 1.08 

Luton A 1 40.0 33.3 1.50 1.5 0.01 0.83 1.24 1.24 

2 40.1 33.4 1.48 0.9% 0.83 1.23 

MansicA 1 40.0 23.2 16.99 16.9 0.20 0.58 9.85 9.81 

2 40.0 23.4 16.71 1.2% 0.59 9.78 

Mansic B 1 40.0 15.6 20.77 20.3 0.71 0.39 8.09 7.80 

2 40.0 15.2 19.76 3.5% 0.38 7.52 

Osage A 1 40.0 25.3 0.23 0.23 0.00 0.63 0.143 0.14 

2 40.0 25.1 0.23 0.1% 0.63 0.142 

Osage B 1 40.0 26.8 0.12 0.12 0.01 0.67 0.078 0.08 

2 40.0 26.6 0.13 5.9% 0.66 0.084 

Perkins A 1 40.0 11.3 9.94 10.1 0.19 0.28 2.81 2.87 

2 40.0 11.5 10.20 1.9% 0.29 2.94 

Pond Creek 1 40.0 22.6 7.44 7.49 0.08 0.56 4.19 4.22 

A 2 40.0 22.6 7.55 1.1% 0.56 4.26 

Pond Creek 1 40.0 19.5 0.51 0.49 0.02 0.49 0.247 0.24 

B 2 40.0 19.4 0.48 4.6% 0.48 0.231 
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Dry 
Water Arsenic Average 

St Dev. As Average 
Soil Rep Soil, g 

Added, Cone. As Cone. %Co Var DF 
mg/kg As 

ml mg/L mg/L mg/kg 

Pratt A 1 40.0 15.3 91.84 94.4 3.56 0.38 35.1 35.9 

2 40.0 15.2 96.87 3.8% 0.38 36.7 

Pratt B 1 40.0 12.2 159.70 162.6 4.03 0.30 48.6 51.7 

2 40.0 13.3 165.40 2.5% 0.33 54.9 

Richfield B 1 40.0 24.6 8.55 8.6 0.08 0.61 5.25 5.31 

2 40.0 24.8 8.66 0.9% 0.62 5.36 

Summit A 1 40.0 26.8 0.54 0.31 0.32 0.67 0.362 0.21 

2 40.0 26.8 0.09 101.8% 0.67 0.059 

SummitB 1 40.0 27.5 0.02 0.02 0.00 0.69 0.012 0.01 

2 40.0 27.6 0.02 0.2% 0.69 0.012 

Detection limit determined by running the blank 7 times with a correction factor of 3. 

Detection Limit Arsenic 

Standard deviation 0.034 
Low= Std*S ppb 0.17 
High = Std*lO ppb 0.34 

178 



Table 8. Bray-1 extractable arsenic from 22 arsenic spiked soils (8-week bioassay). 

As1972 Average St Dev P 1782 Average St Dev As:P 

Soil Rep mg/kg As mg/kg O/o CoVar mg/kg P mg/kg %Covar ratio 

Bernow B 1 25.7 26.25 0.72 6.22 6.28 0.09 4.2 

2 26.8 2.75 6.34 1.36 

Canisteo A 1 37.5 37.56 0.14 9.56 9.69 0.18 3.9 

2 37.7 0.38 9.82 1.88 

Dennis A 1 10.6 10.83 0.37 35.3 36.2 1.29 0.3 

2 11.1 3.40 37.1 3.56 

Dennis B 1 2.79 2.78 0.02 2.55 2.50 0.07 1.1 

2 2.77 0.66 2.45 2.97 

Dougherty 1 88.8 91.01 3.11 26.5 26.8 0.48 3.4 

A 2 93.2 3.42 27.1 1.79 

Efaw A 1 49.1 51.34 3.19 83.3 85.7 3.46 0.6 

2 53.6 6.21 88.2 4.04 

Hanlon A 1 75.1 77.60 3.48 91.5 94.4 4.07 0.8 

2 80.1 4.48 97.2 4.32 

Haskell 1 34.0 35.95 2.81 82.8 88.2 7.57 0.4 

2 37.9 7.83 93.5 8.58 

Kirkland A 1 35.9 37.26 1.89 53.4 54.8 2.09 0.7 

2 38.6 5.07 56.3 3.80 

Luton A 1 39.8 40.58 1.16 68.2 69.9 2.39 0.6 

2 41.4 2.86 71.6 3.42 

MansicA 1 26.7 29.31 3.75 0.91 1.10 0.26 26.8 

2· 32.0 12.79 1.28 24.02 

Mansic B 1 14.6 8.66 8.41 0.25 0.19 0.07 45.0 

2 2.71 97.11 0.14 38.57 

Osage A 1 12.1 12.35 0.36 58.1 58.7 0.93 0.2 

2 12.6 2.92 59.4 1.58 

Osage B 1 9.75 10.08, 0.47 34.1 34.4 0.52 0.3 

2 10.4 4.62 34.8 1.50 

Perkins A .1 60.7 62.68 2.83 50.9 52.5 2.28 1.2 

2 64.7 4.51 54.1 4.34 

Pond Creek 1 41.6 42.91 1.79 121 124 4.17 0.3 

A 2 44.2 4.17 1270 3.37 

Pond Creek 1 39.5 40.53 1.48 35.5 36.2 0.98 1.1 

B 2 41.6 3.66 36.9 2.71 
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As1972 Average St Dev P 1782 Average St Dev As:P 

Soil Rep mg/kg As mg/kg 010 Covar mg/kg P mg/kg %Covar ratio 

Pratt A 1 119 112.70 9.19 23.6 22.6 1.35 5.0 

2 106 8.16 21.7 5.97 

Pratt B 1 145 141.30 5.37 32.2 31.7 0.74 4.5 

2 138 3.80 31.2 2.32 

Richfield B 1 105 109.70 6.79 27.0 28.3 1.77 3.9 

2 115 6.19 29.5 6.28 

Summit A 1 6.77 6.84 0.09 10.2 10.1 0.26 0.7 

2 6.90 1.33 9.87 2.60 

SummitB 1 12.0 12.14 0.13 4.92 4.96 0.06 2.4 

2 12.2 1.11 5.01 1.24 

Spiked recoveries for arsenic and phosphate. 

As1890 As1937 As1972 As 1980 P1782* P1859 P 1782 
Ofo 

Soil Ree mg/L mg/L mg/L Recovery mg/L mg/L 010 Recovery 

Bray-1 spikes 1 4.84 4.75 4.87 96.9 4.65 4.18 94.2 
2 4.96 4.86 5.01 99.3 4.84 4.83 96.5 

As1890 As1937 As1972* P 1782 P 1859* 
Detection Limit Stdev 1 0.012 0.019 0.024 0.062 0.015 

5* StdDev Low 0.062 0.095 0.118 0.309 0.074 
10* StdDev High 0.123 · 0.189 0.235 0.618 0.147 

Detection Limit Stdev 2 0.013 0.015 0.040 0.054 0.035 
5* StdDev Low 0.067 0.077 0.198 0.272 0.174 
10* StdDev High 0.133 0.154 0.395 0.543 0.348 
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Table 9. Na-phosphate extractable (Yamamoto, 1975) arsenic from 22 spiked soils. 

micro g /L Dilution As Avg.As St Dev 

Soil Ree As1890 As1937** Factor mg/kg mg/kg %Co Var 

Bernow B 1 371.8 370.1 100 37.01 37.26 0.35 

2 375.4 375.1 100 37.51 0.95 

Canisteo A 1 99.61 99.83 1000 99.83 101.7 2.60 

2 103.5 103.5 1000 103.5 2.55 

Dennis A 1 12.07 12.04 1000 12.04 11.90 0.21 

2 11.81 11.75 1000 11.75 1.72 

Dennis B 1 177.4 176.0 100 17.6 15.58 2.86 

2 134.0 135.5 100 13.55 18.39 

Dougherty A 1 66.62 67.15 1000 67.15 64.28 4.06 

2 60.71 61.41 1000 61.41 6.31 

Efaw A 1 36.32 36.66 1000 36.66 36.01 0.93 

2 35 35.35 1000 35.35 2.57 

Hanlon A 1 623.7 621.6 100 62.16 61.39 1.10 

2 605.2 606.1 100 60.61 1.79 

Haskell 1 276.3 275.6 100 27.56 25.78 2.52 

2 241.2 240 100 24 9.76 

Kirkland A 1 412.1 411.6 100 41.16 40.49 0.95 

2 397.9 398.1 100 39.81 2.36 

Luton A 1 969.8 . 968.4 100 96.98 98.74 2.49 

2 100.5 100.3 1000 100.5 2.52 

MansicA 1 966.7 963.2 100 96.32 95.15 1.65 

2 ~3.6 93.98 1000 93.98 1.74 

Mansic B 1 2032 2035 · 100 203.5 201.6 2.76 

2 200.8 199.6 1000 199.6 1.37 

Osage A 1 64.06 63.83 400 25.53 25.34 0.27 

2 62.96 · .. 62.89 400 25.16 1.05 

Osage B 1 69.5 69.29. 400 27.72 27.34 0.54 

2 67.38 67.39 400 26.96 1.97 

Perkins A 1 147.4 147.7 400 · 59.08 57.9 1.67 

2 141.7 141.8 400 56.72 2.88 

Pond Creek A 1 . 98.31 98.58 400 39.43 39.94 0.71 

2 100.4 · 101.1 400 40.44 1.78 
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micro g /L Dilution As Avg.As St Dev 

Soil Ree As1890 As1937** Factor mg/kg mg/kg %Co Var 

Pond Creek B 1 108.3 108.9 400 43.56 45.36 2.55 

2 117.7 117.9 400 47.16 5.61 

Pratt A 1 280.1 279.6 400 111.8 93.26 26.28 

2 187.3 186.7 400 74.68 28.18 

Pratt B 1 314.2 311.5 400 124.6 129.8 7.38 

2 338.2 337.6 400 135.0 5.69 

Richfield B 1 389.1 386.5 400 154.6 154.3 0.45 

2 385.7 384.9 400 154.0 0.29 

Summit A 1 112 111.8 400 44.72 45.44 1.02 

2 116 115.4 400 46.16 2.24 

SummitB 1 69.37 69.17 400 27.67 27.70 0.04 

2 69.48 69.32 400 27.73 0.15 

Detection limit determined by running the blank 7 times with a correction factor of 3. 

Phosphate 
spike 1 

Detection limit As1890 As1937 
Standard deviation 1 0.19 0.231 
Low= Std*S ppb 0.95 1.155 
_ High = Std*lO ppb 1.9 2.31 

As1890 As1937 
Standard deviation 2 0.476 0.525 
'Low= Std*5 ppb 2.38 2.625 
Hi~h = Std*lO eeb 4.76 5.25 

Al3082 As1890* As1937 As1972 Ca3158 Fe2714 Mg2802 Mn2576 
mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

50.2 5.295 _ 5.14 5.18 5.398 56.3 18.98 20.4 

% Recovered 100.4 105.9 102.8 103.6 108.0 112.5 94.9 102.1 .................. -...... -----------·--·--·-----, .. _____ , .... ___ ....... -_ ............. ____ .... _, .. ___________ .. , ............ , ____________ ........................... _,_ .. ., ........... -....................... .. 

Phosphate 
spike 2 48.7 5.1 5.0 5.0 5.3 55.4 18.82 19.4 

% Recovered 97.4 101.6 99.6 100.4 106.4 · 110.8 94.1 96.9 
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Table 10. Hydroxylamine HCI extractable arsenic from 22 arsenic spiked soils. 

As1890** As1937 As1890 Average As St Dev 

Soil Ree micro g/L micro g/L mg/kg mg/kg %Co Var 

Bernow B 1 342.8 340 85.70 81.4 6.13 

2 308.1 305.9 77.03 7.54 

Canisteo A 1 440.7 439.4 110.18 111 0.71 

2 444.7 441.4 111.18 0.64 

Dennis A 1 380.9 378.4 95.23 94.0 1.77 

2 370.9 376.4 92.73 1.88 

Dennis B 1 330.9 327.9 82.73 79.4 4.72 

2 304.2 300.7 76.05 5.95 

Dougherty A 1 434.9 434.4 108.73 103 8.33 

2 387.8 382.3 96.95 8.10 

Efaw A 1 436.6 431.6 109.15 102 10.68 

2 376.2 371.8 94.05 10.51 

Hanlon A 1 423.3 421.3 105.83 105 0.83 

2 418.6 416.2 104.65 0.79 

Haskell 1 831.2 830.7 207.80 157 72.11 

2 423.3 418.1 105.83 45.98 

Kirkland A 1 407.7 403.4 101.93 103 1.47 

2 416 410.9 104.00 1.43 

Luton A 1 464.3 462.3 116.08 112 6.08 

2 429.9 429.2 107.48 5.44 

Mansic A 1 407.6 401.7 101.90 111 12.14 

2 476.3 .473.4 119.08 10.99 

Mansic B 1 453.4 451.6 113.35 113 0.92 

2 448.2 443.2 112.05 0.82 

QsageA ' 1 437.5 435.8 109.38 109 0.04 

2 
.. 437.3 435.2 109.33 0.03 

Osage B 1 437.5 438.1 109.38 108 1.79 

2 427.4 425.3 106.85 1.65 

Perkins A 1 430.6 428.8 107.65 101 9.21 

2 378.5 375 94.63 9.11 

Pond Creek A 1 368.4 364.3 92.10 93.6 2.09 

2 380.2 376.2 95.05 2.23 
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As1890** As1937 As1890 Average As St Dev 

Soil Ree micro g/L micro g/L mg/kg mg/kg %Co Var 

Pond Creek B 1 394.9 389.3 98.73 103 6.65 

2 432.5 428.7 108.13 6.43 

Pratt A 1 341.3 337.7 85.33 81.8 4.93 

2 313.4 313.2 78.35 6.03 

Pratt B 1 336.9 333.7 84.23 80.7 5.00 

2 308.6 305.8 77.15 6.20 

Richfield B 1 415 409.1 103.75 105 1.82 

2 425.3 421.3 106.33 1.73 

Summit A 1 431.3 428.2 107.83 107 1.04 

2 425.4 420.4 106.35 0.97 

Summit B 1 382.4 380.7 95.60 93.9 2.46 

2 368.5 367.7 92.13 2.62 

S~iked recoveries of arsenic. 

O/o Recovery 010 Recovery 
Soil seike Ree As1S90** As1937 As 1937 As 1890 

Pratt B As Spike 50 1 390.1 387.7 101.0 100.8 
Canisteo A As Spike 50 1 478.1 472.1 96.5 97.4 
Efaw A As Spike 50 1 486.4 481.2 99.9 100.0 
Pratt B As Spike 100 2 415.3 412.2 101.6 101.6 
Pratt B As Spike 100 2 408.3 404.7 99.7 99.9 
Efaw A As seike 100 . 2 486.9 481.4 102.0 102.2 

As1890 As1937 Mn2576 Mg2802 
mg/L ·mg/L Fe2714mg/L Al3082mg/ L mg/L mg/L 

Detection 
Limit St Dev 0.0111 0.035 0.066 0.0755 0.0007 0.0022 

7/8/02 5*Stdev low 0.0556. 0.175 0.33 0.3775 0.0035 0.011 

lO*StDev hi2h 0.1112· 0.35 0.66 0.755 0.007 0.022 
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Table 11. Ammonium Oxalate+ 0.025M H3P04 extractable arsenic from 22 arsenic 

spiked soils. 

Rep As1890** As1972 Total As Average As St Dev %Co 
Soil (mg/L) (mg/L) (mg/kg) (mg/kg) Var 

Bernow B 1 5.56 5.54 222.4 223.0 0.74 

2 5.59 5.52 223.5 0.33 

Canisteo A 1 5.71 5.65 228.4 239.0 14.88 

2 6.24 6.21 249.4 6.23 

Dennis A 1 5.92 5.89 237.0 232.5 6.34 

2 5.70 5.69 228 2.73 

Dennis B 1 4.42 4.41 177.0 173.9 4.27 

2 4.27 4.23 170.9 2.46 

Dougherty A 1 4.97 4.96 198.9 194.5 6.28 

2 4.75 4.71 190.0 3.23 

Efaw A 1 5.34 5.34 213.5 215 2.09 

2 5.41 5.37 216.5 0.97 

Hanlon A 1 5.72 5.62 228.7 226.8 2.72 

2 5.62 5.52 224.8 1.20 

Haskell 1 5.53 5.54 221.2 214.8 8.94 

2 5.21 5.22 208.5 4.16 

Kirkland A 1 5.54 5.45 221.4 223.2 2.49 

2 5.62 5.53 224.9 1.12 

Luton A 1 6.34 6.31 253.5 277.6 34.14 

2 7.54 7.49 301.8 12.30 

MansicA 1 4.86 4.80 194.5 208.8 20.25 

2 5.58 · 5.54 223.2 9.70 

Mansic B 1 5.07 4.96 202.6 192.6 14.17 

2 4.56 4.56 182.7 7.36 

Osage A 1 6.30 6.16 252 275.1 32.61 

2 7.45 7.27 298.1 11.86 

Osage B 1 5.84 5.79 233.4 249.9 23.28 

2 6.66 6.58 266.4 9.31 

Perkins A 1 5.17 5.20 206.9 209.9 4.30 

2 5.32 5.34 213.0 2.05 

Pond Creek A 1 5.32 5.24 212.9 222.0 12.81 

2 5.78 5.69 231.0 5.77 

Pond Creek B 1 5.50 5.44 219.9 217.6 3.28 

2 5.38 5.31 215.2 1.51 
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Rep As1890** As1972 Total As Average As St Dev %Co 
Soil (mg/L) (mg/L} (mg/kg} (mg/kg} Var 

Pratt A 1 4.01 3.95 160.2 150.8 13.29 

2 3.54 3.49 141.4 8.82 

Pratt B 1 4.17 4.17 166.6 186.1 27.55 

2 5.14 5.14 205.6 14.80 

Richfield B 1 5.64 5.61 225.6 218.7 9.73 

2 5.30 5.28 211.8 4.45 

Summit A 1 5.64 5.64 225.6 233.0 10.52 

2 6.01 5.98 240.5 4.51 

SummitB 1 5.37 5.33 214.8 209.5 7.41 

2 5.11 5.09 204.3 3.54 

Arsenic SQiked recoveries. 

As1890* As1972 As1890 O/o 
Soil Ree mg/L mg/L Recovery 

Summit B - As Spike 2 14.55 14.59 94.4 
Luton A - As Spike 1 16.04 16.08 97.0 
Kirkland A - As Spike 2 15.28 15.39 96.6 

Detection limit determined by running the blank 7 times with a correction factor of 3. 

Al3082 As1890* As1937 As1972 Fe2714 Mg2802 Mn2576 
mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

St Dev 1 0.0311 0.03242 0.0199 0.0429 0.0287 0.0026 0.0004 

5*St Dev Low 0.1555 0.1621 0.1 0.2145 0.144 0.013 0.002 
10*St Dev t!!2h 0.311 0.3242 0.199 0.429 0.287 0.026 0.004 
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Table 12. Ammonium Oxalate +0.025 M H3P04 extractable iron and aluminum 

Soil Rep Fe-oxide Average Fe- Al-oxide Average Al-
Bernow B 1 3957 4001 1199 1177 

2 4044 1154 
Canisteo A 1 1440 1509 1580 1680 

2 1577 1779 
Dennis A 1 8184 8074 1745 1676 

2 7964 1606 
Dennis B 1 7124 8514 1881 2083 

2 9904 2286 
Dougherty A 1 646 594 300 291 

2 542 282 
Efaw A 1 4024 4102 1201 1211 

2 4180 1221 
Hanlon A 1 2879 2854 841 832 

2 2829 824 
Haskell 1 4256 3574 899 863 

2 2891 827 
Kirkland A 1 2948 2977 1420 1416 

2 3006 1412 
Luton A 1 8904 9730 2872 3109 

2 10556 3346 
MansicA 1 751 752 801 839.4 

2 753 878 
Mansic B 1 485 477 593 569.6 

2 468 546 
Osage A 1 12648 14168 2404 2712 

2 15688 3020 
Osage B 1 14292 14766 2706 2736 

2 15240 2766 
Perkins A 1 2161 2181 769 759 

2 2202 749 
. Pond Creek A 1 2810 2891 1246 1329 

2 2973 1411 
Pond Creek B 1 3266 3265 1381 1394 

2 3264 1408 
Pratt A 1 368 382 264 250 

2 396 236 
Pratt B 1 354 349 259 240 

2 344 221 
Richfield B 1 1936 1870 1441 1420 

2 1804. 1399 
Summit A 1 11004 11376 4068 4208 

2 11748 4348 
Summit B 1 5732 5668 2715 2693 

2 5604 2671 
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Table 13. Total arsenic content of 22 spiked soils as determined by USEPA method 3051. 

Soil Rep Total As mg/kg 
Average As, St Dev 

mg/kg Co Var 
Bernow B 1 256 255 0.43 

2 255 0.17 
Canisteo A 1 226 225 1.26 

2 224 0.56 
Dennis A 1 230 234 5.37 

2 238 2.30 
Dennis B 1 229 222 9.80 

2 216 4.41 
Dougherty A 1 213 205 12.48 

2 196 6.10 
Efaw A 1 223 223 0.15 

2 223 0.07 
Hanlon A 1 222 228 7.79 

2 233 3.42 
Haskell 1 198 208 14.02 

2 218 6.75 
Kirkland A 1 226 226 0.26 

2 226 0.12 
Luton A 1 240 242 2.43 

2 243 1.01 
Mansic A 1 204 202 3.22 

2 199 1.60 
Mansic B 1 214 210 4.48 

2 207 2.13 
Osage A 1 262 265 4.44 

2 268 1.68 
Osage B 1 238 234 5.69 

2 230 2.43 
Perkins A 1 221 229 9.64 

2 235 4.22 
Pond Creek A 1 233 227 8.55 

2 221 3.77 
Pond Creek B 1 231 228 4.37 

2 225 1.91 
Pratt A 1 153 149 6.43 

2 144 4.32 
Pratt B 1 207 218 16.01 

2 230 7.33 
Richfield B 1 233 234 1.15 

2 235 0.49 
Summit A 1 259 257 2.50 

2 255 0.97 
Summit B 1 238 243 6.94 

2 248 2.85 
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Table 14. Earthworm Mortality and arsenic accumulation from a 28-toxicity test in 22 

arsenic spiked soils (Bradham, 2002). 

Average Average 
Earthworm O/o Earthworm As 

Soil Mortali!,l Accum, mg/kg 
Bernow B 0.00 234.5 
Canisteo A 26.67 524.6 
Dennis A 0.00 197.3 
Dennis B 0.00 32.25 
Dougherty A 43.33 453.6 
Efaw A 96.67 n/a 
Hanlon A 10.00 548.7 
Haskell 20.00 232.2 
Kirkland A 6.67 528.6 
Luton A 3.33 451.7 
Mansic A 13.33 439.6 
Mansic B 23.33 236.9 
Osage A 0.00 136.1 
Osage B 0.00 173.5 
Perkins A 26.67 299.0 
Pond Creek A 46.67 55.80 
Pond Creek B 16.67 328.8 
Pratt A 30.00 59.78 
Pratt B 96.67 n/a 
Richfield B 6.67 628.5 
Summit A 0.00 316.7 
Summit B 0.00 128.8 
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APPENDIX B 

Table 1. Pore water pH and arsenic concentrations from each week during the 

incubation phase of treatment. 

Bern ow 
Dennis 
Perkins 
Pratt 

Slag Waste 

Bern ow 
Dennis 
Perkins 
Pratt 

Slag Waste 

Bern ow 
Dennis 
Perkins 
Pratt 

Slag Waste 

Bern ow 
Dennis 
Perkins 
Pratt 

Slaq Waste 

weekO 
4.65 
6.41 
4.42 
7.00 
7.73 

week O 
4.65 
6.41 
4.42 
7.00 
7.73 

zero-Fe pH 
week 1 week2 week 3 week4 

5.00 5.22 4.44 5.37 
6.30 6.36 6.20 6.61 
5.21 5.80 5.25 6.54 
7.31 7.57 7.09 7.89 
7.78 7.92 7.98 7.78 

zero-Fe As concentration (mg/L) 
week 1 week 2 week 3 week 4 

0.07 0.10 0.03 0.03 
0.02 0.02 0.01 0.02 
0.42 0.58 0.25 0.22 
0.96 0.68 0.46 1.42 
7.73 7.78 7.92 7.98 

FeCl3 pH 
week 1 week2 week3 week4 

2.31 2.32 2.39 2.28 
2.87 2.92 3.02 3.01 
2.15 2.10 6.20 2.34 
2.16 2.24 2.73 2.42 
7.00 7.14 6.98 7.20 

FeCl3 As concentration (mg/L) 
week 1 week 2 week3 week4 

0.48 0.47 0.39 0.40 
0.03 0.02 0.01 0.02 
4.87 5.54 6.70 2.73 
5.24 7.74 4.28 8.73 
0.02 0.02 0.01 0.02 
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Fe2(S04)3 pH 
week 0 week 1 week2 week 3 week4 

Bern ow 4.65 2.95 3.00 3.07 3.02 
Dennis 6.41 3.37 3.43 3.41 3.41 
Perkins 4.42 2.31 2.63 2.57 2.47 

Pratt 7.00 2.13 2.21 2.39 2.39 
Slag Waste 7.73 7.79 7.79 7.72 7.86 

Fe2(S04)3 As concentration (mg/L) 
week 1 week 2 week 3 week4 

Bern ow 0.38 0.46 0.69 1.77 
Dennis 0.05 0.13 0.11 3.26 
Perkins 4.92 5.02 5.49 7.12 

Pratt 53.39 85.30 33.15 13.37 
Slag Waste 0.02 0.03 0.02 0.04 

Fe-WTR pH 
weekO week 1 week2 week 3 week4 

Bernow 4.65 5.25 5.23 5.33 5.17 
Dennis 6.41 5.82 5.85 5.91 5.96 
Perkins 4.42 5.23 5.28 5.37 4.43 

Pratt 7.00 5.64 5.61 5.77 5.41 
Slag Waste 7.73 7.87 7.78 7.75 7.63 

Fe-WTR As concentration (mg/L) 
. week 1 week2 week3 week4 

Bern ow 0.03 0.06 0.05 0.03 
Dennis 0.06 0.09 0.05 0.07 
Perkins 0.13 0.10 0.93 0.07 

Pratt 0.20 0.28 0.07 0.06 
Slag Waste 0.06 0.05 0.05 0.06 
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Table 2. Pore water arsenic from 4 soils and slag waste treated with zero-Fe, FeC'3, 

Fez(S04)3 or Fe-water treatment residuals (Fe-WTR). 

Soil Treatment Rep 
As1890 Average As, 
mg/L mg/L 

Bern ow Spike 1 0.7775 0.787 
Bern ow Spike 2 0.7972 
Bern ow Zero-Fe 1 0.0658 0.063 
Bern ow Zero-Fe 2 0.0599 
Bern ow FeCl3 1 0.0421 0.040 
Bern ow FeCl3 2 0.0376 
Bern ow Fei(S04)3 1 0.0384 0.032 
Bern ow Fe2(S04)3 2 0.0263 
Bernow Fe-WTR 1 0 0.00 
Bern ow Fe-WTR 2 0 
Bernow Control 1 0.0049 0.007 
Bern ow Control 2 0.0080 
Dennis Spike 1 0.0513 0.048 
Dennis Spike 2 0.0453 
Dennis Zero-Fe 1 0.0266 0.027 
Dennis Zero-Fe 2 0.0282 
Dennis FeCl3 1 0.0210 0.018 
Dennis FeCl3 2 0.0150 
Dennis Fei(S04)3 1 0.0171 0.020 
Dennis Fe2(S04)3 2 0.0231 
Dennis Fe-WTR 1 0.00 
Dennis Fe-WTR 2 0 
Dennis Control 1 0.0117 0.014 
Dennis Control 2 0.0168 
Perkins Spike 1 18.28 18.4 
Perkins Spike 2 18.50 
Perkins Zero-Fe 1 0.4898 0.490 
Perkins Zero-Fe 2 
Perkins FeCl3 1 0.045 
Perkins FeCl3 2 0.0445 
Perkins Fe2(S04)3 1 0.3505 0.295 
Perkins Fe2(S04)3 2 0.2403 
Perkins Fe-WTR 1 0 0.00 
Perkins Fe-WTR 2 0 
Perkins Control 1 0 0.00 
Perkins Control 2 0 
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Soil Treatment Rep 
As1890 Average As, 
mg/L mg/L 

Pratt Spike 1 275.9 283 
Pratt Spike 2 289.1 
Pratt Zero-Fe 1 0.6202 0.647 
Pratt Zero-Fe 2 0.6735 

Pratt FeCl3 1 0.0984 0.099 

Pratt FeCl3 2 0.1005 

Pratt Fe2(S04)3 1 0.3041 0.324 
Pratt Fe2(S04)3 2 0.3445 
Pratt Fe-WTR 1 0.0129 0.030 
Pratt Fe-WTR 2 0.0463 
Pratt Control 1 0.0263 0.027 
Pratt Control 2 0.0272 
Slag Untreat 1 0.1919 0.191 
Slag Un treat 2 0.1905 
Slag Zero-Fe 1 1.098 0.815 
Slag Zero-Fe 2 0.5322 
Slag FeCl3 1 0.1973 0.159 
Slag FeCl3 2 0.1215 
Slag Fei(S04)3 1 0.0174 0.021 
Slag Fe2(S04)3 2 0.0238 
Slag Fe-WTR 1 0.0143 0.010 
Slag Fe-WTR 2 0.0062 

Detection Limit Low DL High DL 
St Dev 1 0.01044 0.0522 0.1044 
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Table 3. Bray-1 extracted arsenic from 4 soils and slag waste treated with zero-Fe, 

FeCl3, Fei(S04)3 or Fe-water treatment residuals (Fe-WTR). 

Soil Treatment Rep 
As cone Average SD 
mg/kg As, mg/kg CoV · 

Bern ow Spike 1 28.28 28.2 0.19 
Bernow Spike 2 28.01 0.7 
Bern ow Zero-Fe 1 6.478 6.47 0.01 
Bernow Zero-Fe 2 6.459 0.2 
Bernow FeCl3 1 4.475 4.47 0.01 
Bernow FeCl3 2 4.456 0.3 
Bernow Fei(S04)3 1 5.863 5.96 0.14 
Bernow Fe2(S04)3 2 6.059 2.3 
Bern ow Fe-WTR 1 3.841 3.83 0.01 
Bernow Fe-WTR 2 3.822 0.4 
Bern ow Control 1 0.039 0.07 0.05 
Bernow Control 2 0.103 63.7 
Dennis Spike 1 3.093 3.15 0.08 
Dennis Spike 2 3.201 2.4 
Dennis Zero-Fe 1 1.382 1.40 0.03 
Dennis Zero-Fe 2 1.426 2.2 
Dennis FeCla 1 1.439 1.44 0.00 
Dennis FeCl3 2 1.432 0.3 
Dennis Fei(S04)3 1 1.185 1.28 0.14 
Dennis Fe2(S04)3 2 1.382 10.9 
Dennis Fe-WTR 1 2.18 2.17 0.02 
Dennis Fe-WTR 2 2.155 0.8 

. Dennis Control 1 0 o.oo 0.00 
Dennis Control 2 0 0.0 
Perkins Spike 1 . 72.01 70.2 2.54 
Perkins Spike 2 68.42 3.6 
Perkins Zero-Fe 1 18.1 18.1 0.06 
Perkins Zero-Fe 2 . 18.02 0.3 
Perkins FeCl3 1 11.19 11.3 0.16 
Perkins· · FeCl3 2 11.42 1.4 
Perkins Fe2(S04)3 1 ' 37.47 36.2 1.77 
Perkins Fe2(S04)3 2 34.97 4.9 
Perkins Fe-'WTR 1 6.82 6.86 0.06 
Perkins Fe-WTR 2 6.902 0.8 
Perkins Control 1 0.292 0.28 0.02 
Perkins Control 2 0.266 6.6 
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Soil Treatment Rep 
As cone Average SD 
mg/kg As, mg/kg CoV 

Pratt Spike 1 121.2 120 1.48 
Pratt Spike 2 119.1 1.2 
Pratt Zero-Fe 1 21.72. 21.9 0.18 
Pratt Zero-Fe 2 21.97 0.8 
Pratt FeCl3 1 26.19 25.4 1.11 
Pratt FeCb 2 24.62 4.4 
Pratt Fe2(S04)3 1 37.04 37.6 0.83 
Pratt Fe2(S04)3 2 38.21 2.2 
Pratt Fe-WTR 1 5.66 5.81 0.21 
Pratt Fe-WTR 2 5.952 3.6 
Pratt Control 1 0.152 0.10 0.08 
Pratt Control 2 0.044 77.9 
SLAG Untreat 1 0.501 0.37 0.18 
SLAG Untreat 2 0.247 48.0 
SLAG Zero-Fe 1 0.266 0.25 0.02 
SLAG Zero-Fe 2 0.235 8.8 
SLAG FeCl3 1 0.089 0.10 0.01 
SLAG Fe Cb 2 0.108 13.6 
SLAG Fei(S04)3 1 0.101 0.10 0.00 
SLAG Fe2(S04)3 2 0.108 4.7 
SLAG Fe-WTR 1 0.488 0.46 0.04 
SLAG Fe-WTR 2 0.425 9.8 

As1972* As 1972 % 
mg/L Recovery 

Bray-1 1 5.040 100.8 
Bra:i-1 2 4.813 96.3 

As1972* 
Detection Limit Stdev 1 0.024 

5* StdDev Low 0.118 
10* StdDev High 0.235 

Detection Limit Stdev 2 0.040 
5* StdDev Low 0.198 
10* StdDev High 0.395 
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Table 4. Na-phosphate extracted arsenic from 4 soils and slag waste treated with zero-

Fe, FeCb, Fe2(S04)3 or Fe-water treatment residuals (Fe-WTR). 

Soil Treatment Rep As1890* Average As St Dev 
mg/L mg/kg Co Var 

Bernow Spike 1 26.11 26.1 0.08 
Bernow Spike 2 26.00 0.3 
Bernow Zero-Fe 1 16.08 15.9 0.19 
Bernow Zero-Fe 2 15.81 1.2 
Bernow FeCl3 1 12.49 12.4 0.15 
Bernow FeCl3 2 12.27 1.2 
Bernow Fe2(S04)3 1 12.76 12.8 0.04 
Bernow Fei(S04)3 2 12.81 0.3 
Bernow Fe-WTR 1 12.49 12.5 0.04 
Bern ow Fe-WTR 2 12.55 DA 
Bern ow Control 1 0 0.00 0.00 
Bern ow Control 2 0 
Dennis Spike 1 23.62 21.8 1.56 
Dennis Spike 3 20.98 7.2 
Dennis Spike 4 20.87 
Dennis Zero-Fe 1 15.33 15.9 0.75 
Dennis Zero-Fe 2 16.39 4.8 
Dennis FeCl3 1 16.40 16.2 0.26 
Dennis FeCl3 2 16.03 1.6 
Dennis Fei(S04)3 1 16.62 17.7 1.47 
Dennis Fe2(S04)3 2 18.69 8.3 
Dennis Fe-WTR l 11.05 11.8 1.05 
Dennis Fe-WTR 2 12.53 8.9 
Dennis Control 1 0.26 0.26 0.00 
Dennis Control 2 0.26 0.9 
Perkins Spike 1 36.99 39.3 2.28 
Perkins' Spike 3 39.38 5.8 
Perkins Spike 4 41;55 
Perkins Zero-Fe 1 24.41 24.0 0.58 
Per.kins Zero-Fe 2 23.60 2.4 
Perkins FeCl3 1 16.80 16.6 0.36 
Perkins FeCl3 2 16.30 2.2 
Perkins Fe2(S04)3 3 15.61 15.7 0.18 
Perkins Fe2(S04)3 4 15.87 1.2 
Perkins Fe-WTR 1 6.79 6.83 0.06 
Perkins Fe-WTR 2 6.87 0.8 
Perkins Control 1 0.15 0.14 0.01 
Perkins ·control 2 0.13 8.0 
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Soil Treatment Rep 
As1890* Average As St Dev 

mg/L mg/kg Co Var 

Pratt Spike 3 78.17 76.3 2.67 
Pratt Spike 4 74.39 3.5 
Pratt Zero-Fe 1 19.91 19.1 1.16 
Pratt Zero-Fe 2 18.28 6.1 
Pratt FeCl3 3 25.08 24.1 1.46 
Pratt FeCl3 4 23.02 6.1 
Pratt Fe2(S04)3 1 27.17 26.4 1.54 
Pratt Fe2(S04)3 2 25.03 5.8 
Pratt Fe2(S04)3 3 28.12 
Pratt Fe2(S04)3 4 25.11 
Pratt Fe-WTR 1 6.54 7.84 1.05 
Pratt Fe-WTR 2 8.56 13.4 
Pratt Fe-WTR 3 8.81 
Pratt Fe-WTR 4 7.44 
Pratt Control 1 0 0.00 0.00 
Pratt Control 2 0 
SLAG Un treat 1 9.34 8.31 1.46 
SLAG Untreat 2 7.28 17.6 
SLAG Zero-Fe 1 12.56 12.9 0.51 
SLAG Zero-Fe 2 13.27 3.9 
SLAG FeCl3 1 13.04 13.6 0.85 
SLAG FeCl3 2 14.24 6.2 
SLAG Fe2(S04)3 1 13.06 13.5 0.60 
SLAG Fe2(S04)3 2 13.91 4.4 
SLAG Fe-WTR 1 5.21 6.12 1.29 
SLAG Fe-WTR 2 7.02 21.0 

As1890* As1937 
mg/L mg/L 

Phosphate spike 1 5.295 5.139 

% Recovered 105.9 102.8 

Phosphate spike 2 5.1 5.0 

% Recovered 101.6 99.6 

As1937 
As1890* mg/L mg/L 

... 

Detect Limit St Dev 7/1/02 0.01134 0.0188 
Low Stdev*S 0.057 0.094 
High Stdev*lO 0.11 0.19 
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Table 5. Hydroxyamine HCI extracted arsenic from 4 soils and slag waste treated with 

zero-Fe, FeC'3, Fe2(S04) 3 or Fe-water treatment residuals (Fe-WfR). 

As1890 Dilution As Average SD 
Soil Treatment Re~ mg/L Factor mg/kg As, mg/kg CoV 

Bernow Spike 1 0.6945 100 69.5 73.1 5.16 
Bern ow Spike 2 0.7675 100 76.7 7.06 
Bern ow Zero-Fe 1 0.6809 100 68.1 67.7 0.60 
Bernow Zero-Fe 2 0.6724 100 67.2 0.89 
Bern ow FeCl3 1 0.7151 100 71.5 75.8 6.12 
Bern ow FeCl3 2 0.8017 100 80.2 8.07 
Bernow Fe2(S04)3 1 0.7859 100 78.6 79.4 1.20 
Bern ow Fe2(S04)3 2 0.803 100 80.3 1.51 
Bern ow Fe-wrR 1 0.6169 100 61.7 61.6 0.11 
Bernow Fe-WfR 2 0.6154 100 61.5 0.18 
Bernow Control 1 0.0212 100 2.12 3.7 
Bernow Control 2 0.0748 100 7.5 
Dennis Spike 1 0.7974 100 79.7 79.2 0.77 
Dennis Spike 2 0.7865 100 78.7 0.97 
Dennis Zero-Fe 1 0.69 100 69.0 71.2 3.15 
Dennis Zero-Fe 2 0.7345 100 73.4 4.42 
Dennis FeCl3 1 0.7073 100 70.7 70.7 0.04 
Dennis FeCl3 2 0.7067 100 70.7 0.06 
Dennis Fe2(S04)3 1 0.6089 100 60.9 69.0 8.75 
Dennis Fe2(S04)3 2 0.7327 100 73.3 12.69 

Fe2(S04)3 1 0.6503- 100 65.0 
Fe2(S04)3 2 0.7665 100 76.6 

Dennis Fe-wrR 1 0.5781 100 57.8 55.9 2.72 
Df:!nnis Fe-wrR 2 0.5396 100 54.0 4.87 
Dennis Control 1 0.0211 100 2.1 2.4 
Dennis Control 2 0.026· 100 2.6 
Perkins Spike 1 0.8029 100 80.3 86.0 8.05 
Perkins ·Spike 2 0.9167 100 91.7 9.36 

. Perkins Zero-Fe 1 1.1191 100 111.9 · 98.7 18.68 
Perki.ns Zero-Fe 2 0.8549 100 85.5 18.92 
Perkins FeCl3 ·1 '·· 0.9034 100 90.3 92.5 3.06 
Perkins FeCl3 2 . 0.9466 100 94.7 3.31 
Perkins Fe2(S04)3 1 0.5876 100 58.8 62.6 5.37 
Perkins Fe2(S04)3 2 ·0.6636 100 66.4 8.58 
·Perkins Fe-WTR 1 0.6726 100 67.3 63.1 5.84 
Perkins Fe-WTR 2 0.59 100 .,59.0 9.25 
Perkins Control 1 0.026 100 2.6 1.8 
Perkins Control 2 0.0094 100 0.9 
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Pratt Spike 2 0.8256 100 82.6 83.9 4.97 
Spike 1 0.8523 100 85.2 5.93 

Pratt Zero-Fe 1 0.7222 100 72.2 75.0 3.93 
Zero-Fe 2 0.7778 100 77.8 5.24 

Pratt FeCl3 1 0.6649 100 66.5 74.4 11.12 
FeCl3 2 0.8221 100 82.2 14.95 

Fe2(S04)3 1 0.3758 100 37.6 38.5 1.28 

Pratt Fe2(S04)3 2 0.3938 100 39.4 3.32 
Pratt Fe-WTR 1 0.5713 100 57.1 50.8 8.93 
Pratt Fe-WTR 2 0.4449 100 44.5 17.58 
Pratt Control 1 0.0142 100 1.4 1.4 
Pratt Control 2 0.0139 100 1.4 
SLAG Untreat 1 1.4384 100 143.8 152 11.82 
SLAG Untreat 2 1.6056 100 160.6 7.77 
SLAG Zero-Fe 1 1.4802 100 148.0 147 2.14 
SLAG Zero-Fe 2 1.4499 100 145.0 1.46 
SLAG FeCl3 1 1.4124 100 141.2 146 7.29 
SLAG FeCl3 2 1.5155 100 151.6 4.98 
SLAG Fe2(S04)3 1 1.4345 100 143.5 142 1.73 
SLAG Fe2(S04)3 2 1.41 100 141.0 1.22 
SLAG Fe-WTR 1 1.111 100 111.1 112 0.75 
SLAG Fe-WTR 2 1.1216 100 112.2 0.67 

As1890 As1937 As1890 °/o 
mg/L mg/L Recovery 

Hydroxylamine HCI spike 1 4.9017 4.833 98.0 
Hydroxylamine HCI spike 2 4.9507 4.903 99.0 

Perkins spike Fe(S04) 1 1.6948 1.732 110.7 
Pratt spike FeCl3 1 2.0129 2.07 105.8 
Pratt - 1 Fe~l3 Spike + As=2 2.7044 2.672 98.5 

Perkins - 1 zero-Fe S~ike + As=2 3.0927 3.128 93.9 

As1890 mg/L As1937 mg/L 

Detection Limit St, Dev 0.0139 0.0229 
5*Stdev low 0.0694 0.1145 

lO*StDev high 0.1388 . 0.229 

As1890 mg/L As1937 mg/L 
Detection Limit St Dev 0.0111 0.035 

7/8/02 5*Stdev low 0.0556 0.175 
lO*StDev high 0.1112 0.35 
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Table 6. Ammonium oxalate extracted arsenic from 4 soils and slag waste treated with zero-Fe, FeCl3, Fe2(S04)3 or Fe-water 

treatment residuals (Fe-WfR). 

Soil Treatment Re Al3082 As1890* Fe2714 DF Al Average Fe Average As Average StDev 
P mg/L mg/L mg/L mg/kg Al mg/kg mg/kg Fe mg/kg mg/kg As mg/kg Co Var 

Bern ow Spike 3 8.853 1.0679 3.768 80 708.2 699 301.4 307 85.4 86.9 2.1 
Bern ow Spike 4 8.624 1.1046 3.898 80 689.9 311.8 88.4 2.4 
Bern ow Zero-Fe 1 5.744 0.91227 19.66 100 574.4 546 1966 1955 91.2 87.9 4.7 
Bern ow Zero-Fe 2 5.166 0.84638 19.44 100 516.6 1944 84.6 5.3 
Bern ow FeCl3 1 7.809 0.91432 17.9 100 780.9 546 1790 1763 91.4 89.3 2.9 
Bernow FeCl3 2 7.313 0.87261 17.36 100 731.3 1736 87.3 3.3 

Bern ow Fe2(S04)3 1 7.862 0.83598 12.5 100 786.2 756 1250 1341 83.6 89.9 8.9 
N Bemow Fe2(S04)3 2 9.009 0.96176 14.32 100 900.9 1432 96.2 9.9 0 
w 

Bernow Fe-WTR 1 9.575 0.91978 86.63 100 957.5 844 8663 8542 92.0 92.4 4.6 

Bemow Fe-WTR 2 9.613 0.98499 84.21 100 961.3 8421 98.5 5.0 
Bern ow Fe-WTR 1 17.96 1.7343 170.4 50 898 959 8520 86.7 

Bern ow Fe-WTR 2 17.4 1.8079 161.3 50 870 8065 90.4 

Bern ow Control 1 5.501 0 3.881 100 550.1 576 388.1 407 0.0 o.o 0.0 
Bern ow Control 2 6.012 0 4.267 100 601.2 426.7 0.0 

Dennis Spike 1 9.154 0.69967 6.921 100 915.4 895 692.1 678 70.0 70.7 Ll 
Dennis Spike 2 8.75 0.71485 6.638 100 875 663.8 71.5 1.5 
Dennis Zero-Fe 1 8.025 0.71532 20.55 100 802.5 819 2055 1920 71.5 71.0 0.8 

Dennis Zero-Fe 2 8.346 0.70446 17.84 100 834.6 1784 70.4 1.1 

Dennis FeCl3 1 8.341 0.62032 15.56 100 834.1 807 1556 1482 62.0 60.0 2.8 
Dennis FeC'3 2 7.793 0.58056 14.08 100 779.3 1408 58.1 4.7 

Dennis Fe2(S04)3 1 7.687 0.64374 16.76 100 768.7 746 1676 1569 64.4 61.7 3.7 

Dennis Fe2(S04)3 2 7.226 0.59078 14.61 100 722.6 1461 59.1 6.1 



Soil Tre t ent RI Al3082 As1890* Fe2714 DF Al Average Fe Average As Average StDev 
a m ep mg/L mg/L mg/L mg/kg Al mg/kg mg/kg Fe mg/kg mg/kg As mg/kg Co Var 

Dennis Fe-WTR 1 12.96 0.9732 109.9 100 1296 1273 10990 10795 97.3 93.4 3.4 

Dennis Fe-WTR 2 12.49 0.92519 106 100 1249 10600 92.5 3.6 

Dennis Fe-WTR 1 25.61 1.8493 214.2 so 1281 10710 92.5 
Dennis Fe-WTR 2 24.62 1.8247 212.1 so 1231 10605 91.2 
Dennis Control 1 8.077 0 7.495 100 807.7 836 749.5 790 0.0 0.0 0.0 
Dennis Control 2 8.633 0 8.31 100 863.3 831 0.0 

Perkins Spike 1 4.961 1.3337 4.652 100 496.1 488 465.2 517 133.4 132 3.1 

Perkins Spike 1 9.652 2.5714 13.04 so 482.6 652 128.6 
Perkins Spike 2 4.859 1.3444 4.346 100 485.9 434.6 134.4 2.4 

N 
Perkins Zero-Fe 1 4.135 1.5045 29.23 100 413.5 485 2923 3119 150.5 161 10.1 

0 Perkins Zero-Fe 3 6.517 2.028 38.91 80 521.4 3112.8 162.2 6.3 ..i:. 

Perkins Zero-Fe 4 6.498 2.1329 41.5 80 519.8 3320 170.6 
Perkins FeCh 1 5.803 1.3838 27.98 100 580.3 577 2798 2817 138.4 138 0.4 
Perkins FeCl3 2 5.736 1.37777 28.35 100 573.6 2835 137.8 0.3 
Perkins Fe2(S04)3 1 4.514 1.3147 17.03 100 451.4 420 1703 1592 131.5 124 10.5 

Perkins Fe2(S04)3 2 3.883 1.1666 14.8 100 . 388.3 1480 116.7 8.4 

Perkins Fe-WTR 1 6.731 1.007 72.11 100 673.1 684 7211 7673 100.7 102 1.8 

Perkins Fe-WTR 2 6.955 1.0328 81.35 100 695.5 8135 103.3 1.8 

Perkins Control 1 4.401 0.00247 4.429 100 440.1 462 442.9 519 0.2 0.2 0.1 
Perkins Control 2 4.835 0.00165 5.947 100 483.5 594.7 0.2 28.1 

Pratt Spike 1 1.237 1.2332 1.144 100 123.7 120 114.4 150 123.3 125 10.1 
Pratt Spike 1 2.335 2.2709 4.937 so 116.8 246.85 113.5 

Pratt Spike 2 1.162 1.2461 1.066 100 116.2 106.6 124.6 8.1 
Pratt Spike 4 1.527 1.7256 1.635 80 122.2 130.8 138.0 
Pratt Zero-Fe 1 1.827 2.0292 31.91 100 182.7 170 3191 2983 202.9 186 15.0 



Soil Treatment Rep Al3082 As1890* Fe2714 DF Al Average Fe Average As Average StDev 
mg/L mg/L mg/L mg/kg Al mg/kg mg/kg Fe mg/kg mg/kg As mg/kg Co Var 

Pratt Zero-Fe 1 3.389 3.4861 58.62 so 169.5 2931 174.3 
Pratt Zero-Fe 2 1.562 1.8091 28.26 100 156.2 2826 180.9 8.1 
Pratt FeCl3 1 1.091 1.707 20.86 100 109.1 102 2086 1921 170.7 160 15.0 
Pratt FeCl3 2 0.9551 1.4945 17.56 100 95.51 1756 149.5 9.4 
Pratt Fe2(S04)3 1 1.698 1.8398 16.55 so 84.9 138 827.5 892 92.0 96.4 
Pratt Fe2(S04)3 2 1.811 1.9625 18 so 90.55 900 98.1 
Pratt Fe2(S04)3 2 2.397 0.99085 9.477 100 239.7 947.7 99.1 
Pratt Fe-WTR · 1 4.495 0.88972 61.13 100 449.5 456 6113 6170 89.0 90.4 2.0 
Pratt Fe-WTR 2 4.631 0.91767 62.26 100 463.1 6226 91.8 2.2 

Pratt Control 1 1.274 0.0188 1.115 100 127.4 134 111.5 111 1.9 2.2 0.4 
N Pratt Control 2 1.401 0.02445 1.094 100 140.1 109.4 2.4 18.5 0 
U1 SLAG Untreat 1 4.641 0.9511 69.35 100 464.1 448 6935 6744 95.1 91.3 4.0 

SLAG Untreat 1 9.127 1.7441 136.8 so 456.4 6840 87.2 
SLAG Untreat 2 4.232 0.91568 64.58 100 423.2 6458 91.6 4.3 

SLAG Zero-Fe 1 6.918 1.4641 121.1 100 691.8 690 12110 12090 146.4 135 11.9 
SLAG Zero-Fe 3 8.578 1.5339 148.9 · 80 686.2 11912 122.7 8.8 
SLAG Zero-Fe 4 8.635 1.7038 153.1 80 690.8 12248 136.3 
SLAG FeCl3 1 5.938 1.0442 108.8 100 593.8 611 10880 11940 104.4 106 1.8 
SLAG FeCb 2 6.271 1.0692 130 100 627.1 13000 106.9 1.7 
SLAG Fe2(S04)3 1 7.114 1.1979 137.2 100 711.4 693 13720 13370 119.8 117 4.6 
SLAG Fe2(S04)3 2 6.751 1.1324 130.2 100 675.1 13020 113.2 4.0 
SLAG Fe-WTR 1 12.6 0.88424 234.9 100 1260 1170 23490 22215 88.4 82.8 7.9 
SLAG Fe-WTR 2 10.8 0.77212 209.4 100 1080 20940 77.2 9.6 



As1890* As1937 Fe2714 As1890 As1937 Fe2714 
mg/L mg/L mg/L %Recover %Recover %Recover 

Matrix spike 1 2.1823 2.219 4.604 109.1 111.0 115.1 
2 2.0134 2.037 4.326 100.7 101.9 108.2 
3 2 1.974 4.27 100.0 98.7 106.8 

Pratt FeCl3 
spike+ 2ppm 1 3.4508 3.452 29.86 93.09 92.67 96.76 
SLAG Fe(S04) 
s~ike + 2~~m 2 3.0517 2.974 127.4 97.42 95.02 90.87 

Al3082 As1890* As1937 Fe2714 
N mg/L mg/L mg/L mg/L 0 
O'I 

Detection Limit St Dev 1 0.0311 0.03242 0.0199 0.0287 
5*St Dev Low 0.1555 0.1621 0.1 0.144 
lO*St Dev High 0.311 0.3242 0.199 0.287 

Detection Limit St Dev 2 0.0945 0.0761 0.012 0.031 
5*St Dev Low 0.4725 0.3805 0.06 0.155 
lO*St Dev High 0.945 0.761 0.1196 0.31 

Detection Limit St Dev 3 0.0328 0.01294 0.019 0.2302 
5*St Dev Low 0.164 0.0647 0.095 1.151 
lO*St Dev High 0.328 0.1294 0.19 2.302 



Table 7. Total Metal content (EPA 3051) from <0.25 mm fraction of soil and slag waste. 

As Fe Al Mn Ca Mg p Mo Zn 
Soil Treatment mg/kg mg/kg m51/k9 mg/kg mg/kg m51/k9 mg/kg mg/kg mg/kg 

Slag Waste Positive Cont 409 80950 15245 788 61975 11273 17.6 26.5 15740 
Slag Waste zero-Fe 361 67475 18403 694 56775 11793 17.8 20.9 11530 
Slag Waste Fe-chloride 374 72125 17155 672 50750 11110 17.7 19.9 12010 
Slag Waste Fe-sulfate 366 73425 16938 680 52550 11440 17.9 20.6 12195 
Slag Waste Fe-WTR 325 90300 14528 846 50725 8760 38.2 24.9 11425 

Dennis Positive Cont 243 31700 43733 560 1220 3837 160.4 5.0 55.3 
Dennis zero-Fe 225 31873 34360 512 1161 3241 138.6 4.8 60.5 
Dennis Fe-chloride 235 33053 40165 443 3055 3524 154.8 4.9 59.6 
Dennis Fe-sulfate 213 32243 37323 502 3236 3157 146.6 5.0 54.7 
Dennis Fe-WTR 235 49243 32920 653 3529 2989 731.0 6.8 56.9 

N Perkins Positive Cont 257 7828 12180 85.9 805 1232 197.4 1.9 29.6 0 
'J Perkins zero-Fe 255 10693 12185 109 1271 1227 196.0 1.9 31.3 

Perkins Fe-chloride 268 11923 9028 73.6 1305 1278 196.8 1.8 32.6 
Perkins Fe-sulfate 228 9758 9730 43.9 143 1007 153.6 1.8 24.6 
Perkins Fe-WTR 239 23653 11183 206 2100 1050 13.1 4.5 24.1 
Bernow Positive Cont 276 16115 30823 46.2 1064 2048 95.0 4.1 36.8 
Bern ow zero-Fe 234 16170 23665 54.1 1371 1624 79.2 4.1 32.9 
Bern ow Fe-chloride 255 18710 27718 56.3 1803 1893 94.7 4.4 36.5 
Bern ow Fe-sulfate 266 19403 28490 60.4 2432 1950 94.6 4.2 37.1 
Bern ow Fe-WTR 222 29675 21073 168 2202 1448 584 5.8 29.4 

Pratt Positive Cont 299 5003 7153 80.3 973 1403 2.9 1.9 27.9 
Pratt zero-Fe 311 8203 5540 92.9 853 1154 2.5 2.4 28.5 
Pratt Fe-chloride 297 7105 5608 32.0 1231 1062 2.5 1.8 25.9 
Pratt Fe-sulfate 215 6695 4660 30.5 1475 875 2.3 1.7 30.8 
Pratt Fe-WTR 414 35998 10183 321 4330 1589 24.9 7.2 30.2 



Table 8. Earthworm toxicity test on arsenic spiked soils and slag waste remediated with four different iron amendments, results 

including arsenic content,% mortality and worm weight. 

Depurated Undepurated 28 d OJi Depurated Undepurated Average 
Soil Treatment worm, As worm, As Mo..:;i; worm weight, worm weight, worm weight 

mg/kg mg/kg mg/worm mg/worm mg/worm 
Bernow As-Spike 302.9 351.8 3.3 174.5 174.2 174.3 
Bernow zero-Fe 128.0 112.1 0 165.9 153.0 159.4 
Bernow FeCl3 86.0 93.4 3.3 161.7 181.3 171.5 
Bernow Fe2(S04)3 81.7 110.6 0 197.5 170.6 184.0 
Bernow Fe-WTR 35.0 73.6 0 179.7 195.8 187.8 
Bernow Control 5.9 2.4 0 173.4 163.3 168.3 
Dennis As-Spike 107.3 126.2 6.7 192.7 212.2 202.5 
Dennis zero-Fe 71.6 86.5 3.3 188.8 201.5 195.2 

g Dennis FeCl3 75.1 88.8 O 185.4 200.3 192.9 
Dennis Fe2(S04)3 54.2 71.3 O 181.6 203.3 192.4 
Dennis Fe-WTR 23.6 36.3 0 200.3 192.0 196.1 
Dennis Control 8.3 7.1 0 205.1 226.1 215.6 
Perkins As-Spike 456.9 466.7 22.7 204.7 174.3 189.5 

· Perkins zero-Fe 290.9 342.0 0 186.8 184.3 185.5 
Perkins FeCl3 321.1 247.0 3.3 173.5 176.5 175.0 
Perkins Fe2(S04)3 39.4 100 0.0 0.0 0.0 
Perkins Fe-WTR 29.6 72.4 0 199.7 211.5 205.6 
Perkins Control 6.9 5.1 0 245.4 239.1 242.3 

Pratt As-Spike 474.8 566.6 70 184.2 142.5 163.3 
Pratt zero-Fe 304.3 100 0.0 0.0 0.0 
Pratt FeCl3 314.4 363.8 0 208.5 189.4 199.0 
Pratt Fe2(S04)3 487.0 506.0 20 169.7 184.6 177.2 
Pratt Fe-WTR 32.6 74.8 0 193.7 216.4 205.1 
Pratt Control 4.0 4.0 O 163.7 173.4 168.6 



N 
0 
I.O 

Soil 

Slag Waste 
Slag Waste 
Slag Waste 
Slag Waste 
Slag Waste 

Artificial Soil 

Treatment 

Untreated 
zero-Fe 
FeCl3 

Fe2(S04)3 
Fe-WTR 
Control 

Depurated Undepurated 28 d DA Depurated Undepurated Average 
worm, As worm, As Mo~i; worm weight, worm weight, worm weight 

mg/kg mg/kg mg/worm mg/worm mg/worm 
156.6 268.1 3.3 217.2 231.2 224.2 
179.5 201.7 0 206.0 190.7 198.4 
175.3 148.5 3.3 205.8 236.3 221.1 
94.7 106.0 0 186.8 181.2 184.0 
32.3 70.0 10 206.1 222.0 214.1 
5.4 6.6 0 152.8 181.5 167.1 



Table 9. Earthworm arsenic body burdens and respective decrease (increase) as 

compared to positive control (arsenic spiked) from Fe-remediated arsenic contaminated 

soils and one slag material. 

Average As 0/o Decrease Average As 0/o Decrease 
body (increase) body (increase) 

burden, due to burden, due to 
Soil Treatment mg/kg treatment mg/kg treatment 

Bern ow Positive Control 303 352 

Bernow Fe0 128 57.8 112 68.1 

Bern ow FeCl3 86.0 71.6 93.4 73.4 

Bern ow Fe2(S04)3 81.7 73.0 111 68.6 
Bernow Fe-\lVTR 35.0 88.4 73.6 79.1 
Bern ow Negative Control 5.87 2.42 
Dennis Positive Control 107 126 

Dennis Fe0 71.6 33.3 86.5 31.5 

Dennis FeCl3 75.1 30.0 88.8 29.7 

Dennis Fe2(S04)3 54.2 49.5 71.3 43.5 
Dennis Fe-\lVTR 23.6 78.0 36.3 71.2 
Dennis Negative Control 8.28 7.13 
Perkins Positive Control 457 467 

Perkins Fe0 323 29.3 342 26.7 

Perkins FeCl3 310 32.1 247 47.1 

Perkins Fe2(S04)3 39.4 39.4 
Perkins Fe-WTR 29.6 93.5 72.4 84.5 
Perkins Negative Control 6.87 5.06 

Pratt Positive Control 475 521 

Pratt Fe0 304 304 

Pratt FeCl3 314 33.8 364 30.2 

Pratt Fe2(S04)3 487 (2.6) 506 3.0 
Pratt Fe-WTR 32.6 93.1 74.8 85.7 
Pratt Negative Control 4.04 3.72 

Slag waste Positive Control 157 268 

Slag waste Fe0 180 (14.6) . 202 24.8 

Slag waste FeCl3 175 (11.9) 149 44.6 

Slag waste Fe2(S04)3 94.7 39.5 106 60.5 
Slag waste Fe-\lVTR 32.3 79A 70.0 73.9 
Sla9 waste Control-Artificial 5.37 3.77 
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