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Abstract

The Goddard Formation is the basal unit of the Late Mississippian-Early Pennsylva-

nian Springer Group of Oklahoma. This Formation is part of a stacked oil and condensate

play in the South Central Oklahoma Oil Province (SCOOP). Unconventional production

of the Goddard has been ongoing since 2012. However, published geochemical interpre-

tations for this formation are still few. This study characterized regional trends in the

organic geochemistry of the Goddard Formation within the Anadarko Basin. Bulk geo-

chemical and biomarker analyses were used to develop an organofacies model for the

Goddard. Bulk geochemical and biomarker data were also used to conduct source rocks

and oil correlations. Explanations for an unusual abundance of tricyclic terpanes in this

Formation were also evaluated.

This study evaluated 15 source rocks and 11 oils from the Goddard in the Anadarko

Basin. An outcrop sample and oil seep from the neighboring Ardmore Basin were

also included in the sample set. Analyses were conducted using Rock-Eval pyrolysis,

whole oil-gas chromatography, gas chromatography (GC), gas chromatography-mass

spectrometry (GCMS), and gas chromatography-mass spectrometry-mass spectrometry

(GCMSMS) methods.

Geochemical data collected in this study classified the Goddard Formation as a Type

B organofacies. This organofacies type reflects a marine depositional environment dom-

inated by siliciclastic sedimentation. Biomarker analyses indicated that the depositional

environment for the Goddard was suboxic with normal to slightly elevated salinity and

a non-stratified water column. The presence of fusinite and benzo(e)pyrene supported
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a periodic but minor contribution of oxidized terrestrial plant matter following wildfire

events. Comparison of the biomarker signature for both the source rock and oils revealed

a striking similarity. The most useful biomarker family for correlation of Goddard source

rocks and oils was the tricyclic terpanes.

Tricyclic terpanes dominated the m/z 191 chromatogram for both Goddard oils and

extracts. Neither thermal stress nor biodegradation were able to account for the abun-

dance of tricyclic terpanes. Fractionation mechanisms were also inconsistent with the

geochemical similarity between the oils and extracts. Finally, the abundance of algae-like

Tasmanite fossils, a proposed precursor for tricyclic terpanes, was low in the Goddard. In-

terpretations in this study support a non-Tasmanite precursor for the tricyclic terpanes. A

non-Tasmanite precursor may still have been a marine algae similar to Tasmanite. Glacial

production of iron-rich loess and a major mass extinction during the Late Mississippian

would have been conducive to blooms of low-diversity algal communities in setting such

as the Anadarko Basin.

Future work in the Goddard could include studies of stable carbon isotopes to look for

indicators of algal blooms and explore correlation with total organic carbon. Additional

biomarker studies could focus on outcrops in the nearby Ardmore Basin to assess whether

abundant tricyclic terpanes are only found in the Goddard Formation within the Anadarko

Basin.
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1. Introduction

1.1. The Goddard Formation

The Goddard Formation is a Chesterian mudstone found in both the Ardmore and

Anadarko Basins of Oklahoma (Figure 1). This formation defines the base of the

Mississippian-Pennsylvanian Springer Group (Figure 2). The first unconventional pro-

duction from the Goddard began in 2012 in the South Central Oklahoma Oil Province

(SCOOP) of the Anadarko Basin. Both oil and condensate are currently produced from

the Goddard. Total organic carbon (TOC) in the Goddard is typically three to four percent

and formation thickness varies from 60-120 feet (Eagle Rock Energy Partners, 2015). The

Goddard Formation joins a long list of unconventional reservoirs in both Oklahoma and

the United States as a whole (U.S. EIA, 2011; Jacobs et al., 2014).

Figure 1: Present day geologic provinces of Oklahoma and South Central of Oklahoma
Oil Province (SCOOP) (modified from Cardott, 2012b)
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Figure 2: Simplified stratigraphic column for the Springer Group (after Cardott, 2012b;
after Eagle Rock Energy Partners, 2015)

Prior to 2012, descriptions of the Goddard Formation in publicly available literature

were cursory and typically overshadowed by the overlying sands in the Springer Group.

This paucity of literature was due not only to historic naming discrepancies discussed

in the following chapter, but also to the historic economic importance of the Springer

Sands in Oklahoma. Before 2012, the Goddard Formation was only recognized as a

potential source rock for the gas produced from Springer Group Sands. Even now that the

Goddard Formation has been recognized as an unconventional resource in its own right,

the Goddard is still often referred to as the Springer Shale (Nash, 2014; Bates, 2015).

The Springer Group’s reputation as a conventional reservoir in Oklahoma was estab-

lished in the mid 1900s (Reedy and Sykes, 1959; Peace, 1965). Gas production from

Springer reservoirs began as early as 1925 in areas such as the Carter-Knox and Sho-
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Vel-Tum fields (Reedy and Sykes, 1959; Peace, 1965; Andrews, 2008). Gas production

was greatest during the 1960s until the mid-1980s when rates peaked (Andrews, 2008).

Since 1992, gas production from Springer Sands has held steady around 200 billion cubic

feet (Bcf) per year (Andrews, 2008). In 2005, the Oklahoma Geological Survey (OGS)

reported that Springer reservoirs, combined with the Morrow, accounted for 28 percent of

gas production for Oklahoma (Boyd, 2008). In comparison, oil production from Springer

sand reservoirs has been in a steady decline. As of 2004, oil production from Springer

sands had fallen below five million barrels a year (Andrews, 2008).

At present, the economic importance of the Goddard relative to the Springer Sands

is more balanced. Production data for horizontal, hydraulically-fractured Goddard wells

indicates several favorable characteristics: slow decline from initial production; a high

siliciclastic content that promotes formation brittleness; and minimal produced water

(Stratas Advisors, 2014; Davis et al., 2015). These characteristics contribute to a lower

cost for unconventional production relative to similar domestic plays (Stratas Advisors,

2014; Bates, 2015). Well tests performed in 2014 estimated that the expected ultimate

recovery for a 4,500 ft. horizontal well in the Springer would average 940 thousand

barrels of oil equivalent (Mboe) (Nash, 2014; Oil and Gas Investor This Week, 2015a). A

single Goddard well completed in 2015 reported a daily production of over 1300 barrels

(bbl) oil and 456 million cubic feet (Mcf) gas (Oil and Gas Investor This Week, 2015b).

In 2014, the breakeven estimate for unconventional production in the Goddard Formation

was approximately 43 USD (Bates, 2015; Stratas Advisors, 2015). These characteristics

may allow the Goddard Formation to remain economically resilient during the current

bear market for the oil and gas industry (Bates, 2015; Oil and Gas Investor This Week,
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2015a; Oil and Gas Investor This Week, 2015b; Stratas Advisors, 2015).

1.2. Purpose and Objectives

While the amount of production data for the Goddard are increasing, geochemical

interpretations for this formation are still sparse in publicly available literature (Jones and

Philp, 1990; Kim and Philp, 2001; Wang and Philp, 2001; Continental Resources, 2014).

This scarcity is unfortunate, because geochemical data can add tremendous value to

production and exploration strategy for new petroleum systems (Magoon and Dow, 1994;

Moldowan et al., 1985; Peters and Cassa, 1994). Additionally, geochemical analysis of

the Goddard would improve understanding of paleo -depositional, -climatic, and -biologic

conditions for the Anadarko Basin during the Late Mississippian-Early Pennsylvanian

transition. This boundary marks a critical period that is underrepresented in the geologic

record of Oklahoma. Unconventional resources in general are also still a recent type

of play; a thorough geochemical evaluation of all such plays should be done whenever

feasible.

The objective of this study is to characterize regional trends in the organic geochem-

istry of the Goddard Formation within the Anadarko Basin of Oklahoma. Interpretations

are based on biomarkers and select bulk geochemical data from both source-rocks and

oils. From these interpretations, a preliminary organofacies model is developed. This

organofacies model can be used to guide future exploration, production, and development

in the Goddard play. An additional objective of this study focuses on a specific family of

biomarkers: the tricyclic terpanes. These biomarkers are present in unusually high abun-
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dances in the Goddard Formation. Possible mechanisms for enrichment will be evaluated

using additional biomarkers and the organofacies model developed for the Goddard.

1.3. Organofacies

The approach taken to characterize source rocks in this study is primarily based

on the organofacies model developed by Pepper and Corvi (1995). Pepper and Corvi

(1995) defined an organofacies as “a collection of kerogens derived from common organic

precursors, deposited under similar environmental conditions, and exposed to similar

early diagenetic histories” (Figure 3). Organofacies interpretations are also compared to

kerogen types defined by the more commonly used Pseudo-van Krevelen (PVK) model.

The PVK model is often used to screen source rocks because of the simple dataset needed

for classification; more extensive interpretation using the PVK model is limited for the

same reason. Justifications for using organofacies as the primary method of source rock

characterization are discussed in the following sections.

1.3.1. Thermal Stress

Characterization methods such as the PVK diagram define source rock kerogen using

parameters that are sensitive to thermal stress (Peters and Cassa, 1994; Dembicki, 2009).

With increasing thermal maturity, kerogen generates hydrocarbons and becomes depleted

in both hydrogen and carbon (Peters and Cassa, 1994). This depletion can cause different

kerogen types to converge on the diagram (Figure 4a). Mixing of kerogen types can

cause shifting into inaccurate zones on the PVK diagram (Figure 4b). When these
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limitations are either avoided or minimized, methods like the PVK diagram may be useful

for screening. However, at high thermal maturities these pitfalls are unavoidable and the

PVK model cannot be used to meaningfully interpret depositional conditions and kerogen

types (Pepper and Corvi, 1995). Organofacies models require more information to create

but provide more meaningful and comprehensive interpretations regardless of subsequent

thermal alteration.

Figure 4: Pitfalls of the Pseudo-van Krevelen diagram for characterizing kerogen type at
(a) high thermal maturities and in (b) cases of kerogen mixing (after Dembicki, 2009)

1.3.2. Biomarker Integration

The comprehensive nature of organofacies was also considered compatible with the

biomarker-focused approach taken in this study. Biomarkers are molecular fossils that

can be associated with precursor compounds from once-living organisms (Treibs, 1936;

Tissot and Welte, 1984). The origins and applications of biomarkers are diverse, but
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altogether, these chemical fossils can be used to infer the age, thermal history, extent

of alteration, and depositional conditions for source rocks and their expelled hydrocar-

bons (Shanmugam, 1985; Aquino Neto, 1986; McCaffrey et al., 1996; Farrimond, 1999).

Organofacies, by definition, integrate all four of these components (Pepper and Corvi,

1995). Biomarkers are also inherently linked to biology. Organofacies are well suited to

integrating variables that influence life, such as climate, into a meaningful source rock

characterization. By comparison, models such as the PVK Diagram are limited to char-

acterizing kerogen types and this strategy can often be lead to simplistic interpretations

of source rocks (Dembicki, 2009).

1.3.3. Exploration and Production Strategy

Organofacies directly apply to exploration and production strategy. Whereas the

definition of organofacies has expanded, the original relationship between organofacies

and petroleum generation profiles is still applicable (Pepper and Corvi, 1995; di Primio

and Horsfield, 2006). For example, Type A or B organofacies would begin generating oil

at 95-105°C whereas a Type D or E organofacies would only begin generating oil around

120°C or higher (Pepper and Corvi, 1995; Figure 5). Organofacies also correlate to the

type and volume of hydrocarbons generated by a source rock (di Primio and Horsfield,

2006). A Type C organofacies would be more prone to generating oil whereas a Type D

organofacies would have a higher gas to oil ratio from the onset of hydrocarbon generation

(Pepper and Corvi, 1995).
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Figure 5: Organofacies generation profiles in MMbbl per square kilometer of source
rock (from ZetaWare Inc., 2015)

1.4. Tricyclic Terpanes in the Goddard

The Goddard has a geochemical fingerprint distinct from all other source rocks in the

Anadarko Basin. The most diagnostic biomarkers of Goddard-sourced hydrocarbons are

the tricyclic terpanes. Tricyclic terpanes are ubiquitous at low levels in almost all oils and

source rocks (Chicarelli et al., 1988; Philp et al., 1989; Azevedo et al., 1992; de Grande

et al., 1993; Tao et al., 2015). In the Goddard, however, these compounds are present at

concentrations so high they obscure the hopanes on the m/z 191 chromatogram. Globally,

such an abundance of tricyclic relative to pentacyclic terpanes is only seen in a handful of

oil families and source rocks (Aquino Neto et al., 1986; Figure 6).
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1.4.1. Debated Origins

Tricyclic terpanes, also known as cheilanthanes, are present in almost all known

source rocks and oils (Chicarelli et al., 1988; Philp et al., 1989; Azevedo et al., 1992;

de Grande et al., 1993; Tao et al., 2015). The lower homolog tricyclic terpanes were

first recognized in 1971 in the bitumen and oils of the Green River Shale (Anders and

Robinson, 1971; Gallegos, 1971). By definition, lower homolog tricyclic terpanes extend

from C19-C24 (Aquino Neto et al., 1982). Extended tricyclic terpanes are defined as

those C25 and greater (Peters, 2000). de Grande et al. (1993) identified tricyclic terpanes

extending out to C54 and it’s likely the series extends even further.

There is still uncertainty regarding precursors for both the lower and extended tricyclic

terpanes. Identification of a specific precursor would add greater understanding to

organofacies interpretations based on the tricyclic terpanes. Some early work suggested

that tricyclic terpanes were derivatives or degradation products of other biomarkers. One

hypothesis proposed that lower tricyclic terpanes were derived from the degradation

of pentacyclic terpanes (Anders and Robinson, 1971). Subsequent analyses of natural

and synthesized tricyclic terpanes were unable to show a direct relationship between

pentacyclic terpanes and the lower tricyclic terpanes (Aquino Neto et al., 1982). Other

structural differences between the tricyclic and pentacyclic terpanes, such as side chain

attachment points, support that tricyclic terpanes are not derived from the hopanes (Philp

et al., 1992). Additional research has explored biomarker precursors such as ketones

and alkanes but with little success (Azevedo et al., 2001). Some studies have focused

specifically on the extended tricyclics and have suggested that these extended compounds
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are also produced through degradation of existing biomarkers. (Moldowan et al., 1983).

Observations of both in-situ and synthesized extended tricyclic terpanes also suggest

that extended tricyclic terpanes have different origins than the lower tricyclic terpane

homologs (Moldowan et al., 1983). For example, proposed precursors for the extended

tricyclic terpanes included the polyprenols (Heissler et al., 1984). Degradation pathways

are still uncertain, but the overall importance of biomarker degradation as a source of

tricyclic terpanes is probably minimal.

The search for a direct biologic precursor has met with mixed success. Various studies

have demonstrated that land plants (Simoneit et al., 1993) and bacteria (Aquino Neto et

al., 1982) are unlikely precursors. There is strong support, however, for at least one

algae-like organism as a direct precursor for tricyclic terpanes (Simoneit et al., 1990;

Guy-Ohlson and Boalch, 1992). This organism, the now-extinct Tasmanites, is thought to

have been similar to a modern, marine unicellular green algae of the genus Pachysphaera

(Simoneit et al., 1990; Boalch and Guy-Ohlson, 1992; Guy-Ohlson and Boalch, 1992).

Product-precursor studies have focused on source-rocks where Tasmanite fossils make

up the majority of the organic matter (Figure 7). One of the most well-known of

these so-called Tasmanite shales is a Permian age source rock in Tasmania (Simoneit

et al., 1990; Aquino Neto et al., 1992; Azevedo et al., 1992). Simoneit et al. (1990)

described a Tasmanian Tasmanite sample with 29 percent total organic carbon that was

dominated by the Tasmanite fossil. Another study by Azevedo et al. (1992) looked at a

similar Tasmanian sample where the Tasmanite fossil contributed 80 percent of the total

organic carbon. Both of these groups extracted the Tasmanite rocks and recorded “major

amounts” (Simoneit et al., 1990) of tricyclic terpane compounds (Simoneit et al., 1990;
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Azevedo et al., 1992). The Tasmanites studied by Azevedo et al. (1992) were thermally

immature (Vitrinite reflectance, or %Ro, of 0.3-0.4) which supports that hypothesis that

tricyclic terpanes are derived from in-situ biologic precursors and not thermally degraded

biomarker precursors.

Other Tasmanite shales have been extracted and analyzed with similar results. Work

done by Aquino Neto et al. (1992) used Devonian Tasmanites from Brazil, Triassic

Tasmanites from Alaska, and the classic Permian Tasmanite from Tasmania. All three

samples were either immature or in the early oil window (Aquino Neto et al., 1992).

In each of the extracts, tricyclic terpanes were detected in equal or greater abundance

relative to the hopanes (Aquino Neto et al., 1992). More recent work has used laser

micropyrolysis gas-chromatography mass-spectrometry to analyze individual Tasmanites

fossils rather than bulk rock extracts (Greenwood et al., 2000). The pyrolysates from

these studies contained high abundances of tricyclic terpanes and no bacterial hopane

compounds (Greenwood et al., 2000). The only Tasmanite shale that has not demonstrated

a product-precursor link between the Tasmanites fossil and abundant tricyclic terpanes

is a Silurian-Devonian Tasmanite from Turkey (Dutta et al., 2006). Dutta et al. (2006)

analyzed fossils of Tasmanites as well as a closely-related algae genus in this sample using

Curie point pyrolysis-gas chromatography-mass spectrometry; tricyclic terpanes were not

found in the pyrolysates from the Tasmanite fossils but were present in pyrolysates for

other, closely-related algae genera (Dutta et al., 2006). This work demonstrates that the

relationship between Tasmanites and tricyclic terpanes is not absolute and supports the

existence of other, albeit less common, precursors (Dutta et al., 2006).

Stable isotope analyses also support the product-precursor link between Tasmanites
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and tricyclic terpanes. For example, a study by Simoneit et al. (1993) looked at extracts

from Tasmanian Tasmanites. Simoneit observed that the δ13C of the bulk kerogen was

enriched (-16.6‰) compared to other Permian marine organic matter (δ13C = -25‰ to

-30‰) (Simoneit et al., 1993). Compound-specific isotope analysis showed that tricyclic

compounds were further enriched by approximately 10‰ when compared to the normal

alkanes and isoprenoids in the extract (Simoneit et al., 1993). The δ13C values for

the alkanes and isoprenoids were -18‰ to -24‰ (Simoneit et al., 1993). Simoneit

et al. (1993) proposed that this unique enrichment was the result of either unusual

environmental conditions related the Tasmanite-rich source rocks or unusual biologic

fractionation specific to the Tasmanite algae. The same enrichment of δ13C values in

tricyclic terpanes from Tasmanian Tasmanite has been observed in other Tasmanite shales

(Simoneit et al., 2005).

Uncertainty regarding precursors for the tricyclic terpanes has not diminished their

utility as biomarkers. Instead, the applications for the tricyclic terpanes are based on

empirical observations.

1.4.2. Response to Alteration

Tricyclic terpanes have several applications as thermal maturity indictors for source

rocks and oils. One maturity parameter is based on the isomerization of tricyclic terpanes.

Beginning at C20, the primary stereoisomer of the tricyclic terpanes has a 13β(H), 14α(H)

configuration (Aquino Neto et al., 1986; Farrimond et al., 1999); in immature sediments,

a 13α(H), 14α(H) isomer is also present (Aquino Neto et al., 1986). Other isomers,
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including the 13β(H), 14β(H) and 13α(H), 14β(H) have been identified in low maturity

sediments (Chicarelli et al., 1988). However, these latter isomers are thermally labile and

begin to isomerize during the earliest stages of diagenesis (Chicarelli et al., 1988). Studies

of immature sediments in the Espirito Santo Basin of Brazil showed that the 13α(H),

14α(H) isomer decreases with respect to the 13β(H), 14α(H) with depth in the sediment

column (Aquino Neto et al., 1986). Aquino Neto et al. (1986) identified an equilibrium

ratio of 0.9 which is reached around %Ro 0.5-0.6. By the late oil window, this equilibrium

ratio for tricyclic terpanes C25-C29 may achieve parity (Farrimond et al., 1999; Peters,

2000). Different organic matter input does not appear to influence isomerization rates,

so this maturity parameter is applicable irrespective of kerogen type (Aquino Neto et al.,

1986).

Tricyclic terpanes also have a greater resilience to thermal stress than do the hopanes

(Zhusheng et al., 1988; Farrimond et al., 1999; Wenger et al., 2002). As an oil or source

rock enters the late oil window, hopanes are degraded more quickly than the tricyclic

terpanes (Farrimond et al., 1999). By the end of the late oil window, thermal stress only

appears capable of bringing the hopane to tricyclic terpane ratio to parity (Zhusheng et

al., 1988; Philp et al., 1992; Peters, 2000). Thermal stress sufficient to further degrade the

hopanes relative to the tricyclic terpanes would also cause a noticeable alteration to the

tricyclic terpanes, steranes, and normal alkanes (Zhusheng et al., 1988; Philp et al., 1992;

Peters, 2000).

Ratios and absolute abundances of the lower tricyclic terpanes can also be used as

thermal maturity proxies (Zhusheng et al., 1988; Tao et al., 2015). In immature samples,

the absolute abundance of the C23 tricyclic terpane is greater than C21 and C20 homologs
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(Zhusheng et al., 1988). This ratio often reverses by the late oil window (Zhusheng et al.,

1988; Huang et al., 2015; Tao et al., 2015). Tricyclic terpanes from C23 to C26 are also

influenced by depositional conditions (Zumberge et al., 2000), so they are best used as

maturity parameters for samples with similar organofacies.

Because of their isoprenoid side chain, tricyclic terpanes are also more resistant

to biodegradation than both the hopanes and steranes (Azevedo et al., 1992). During

microbial degradation, steranes are destroyed at the same time that hopane and tricyclic

terpanes compounds begin to experience demethylation (Alberdi et al., 2001; Wenger

et al., 2002). The demethylation occurs at C10 for both families and produces 17-nor-

tricyclic terpanes and 25-norhopanes (Alberdi et al., 2001). Demethylation of the hopanes

begins before demethylation of the tricyclic terpanes (Alberdi et al., 2001). As such, the

relative extent of demethylation for the tricyclic and pentacyclic terpanes can be used to

compare the extent of biodegradation in different samples.

1.4.3. Organofacies and Exploration Applications

Another application of the tricyclic terpanes, particularly for this study, is organofa-

cies interpretation. Most tricyclic terpane parameters used for inferring depositional con-

ditions are based on the lower homologs. For example, the absence of tricyclic terpanes

above C20 is well correlated with Type D and E terrigenous organofacies (Alberdi et al.,

2001). Lower tricyclic terpane homologs are also less abundant in source rocks and fluids

associated with freshwater or hypersaline depositional conditions. Tricyclic terpanes are

more abundant in source rocks and oils associated with marine carbonate or saline lacus-
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trine conditions (de Grande et al., 1993). As suggested by Mello (1988), this variation

in abundance may be due to salinity levels; precursors for the tricyclic terpanes appear

to favor conditions of normal to elevated salinity rather than hypersaline or freshwater

conditions (de Grande et al., 1993). Indeed, Philp et al. (1989) observed tricyclic ter-

panes in equal abundance to hopanes in oils from a brackish depositional environment

with salinity levels similar to typical marine environments. In the same study, oils gener-

ated from source-rocks deposited under inferred hypersaline conditions had much lower

abundances of tricyclic terpanes (Philp et al., 1989).

Ratios of lower tricyclic terpane homologs can also be used to distinguish carbonate,

lacustrine and marine organofacies. The C19 and C20 tricyclic terpanes are often abundant

in oils associated with terrestrial or freshwater lacustrine depositional environments (Tao

et al., 2015). The C21, C22, C23, and C24 homologs are primarily used to differentiate

source rocks and oils associated with marine carbonate and lacustrine organofacies

(Zumberge et al., 2000). Source rocks deposited in saline, lacustrine environments

often have C23 as the dominant tricyclic terpane homolog (Zumberge et al., 2000; Tao

et al., 2015). The C25 and C26 homologs are useful for differentiating oils associated

with lacustrine and marine organofacies (Zumberge et al., 2000). As mentioned above,

thermal stress alters the relative abundance of the lower homologs, so lower tricyclic

terpane parameters should only be compared among samples of similar thermal maturities

(Farrimond et al., 1999).
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1.4.4. Mechanisms for Enrichment

While almost ubiquitous in oils and source rocks, tricyclic terpanes are usually less

abundant than the hopanes. There are only a handful of source rocks in which the tricyclic

terpanes are present in equal or greater abundance than the hopanes; most of these source

rocks are the so-called Tasmanites (Aquino Neto et al., 1992).

One proposed mechanism for tricyclic terpane enrichment assumes that the Tasmanite

algae is the precursor for the tricyclic terpanes and that these algae experienced periodic

blooms (Guy-Ohlson and Boalch, 1992; Kim and Philp, 2001). Such blooms would

not only increase the amount of organic matter being deposited but would also ensure

a homogeneous organic matter source. This mechanism was mentioned in several

Tasmanian Tasmanites studies (Simoneit et al., 1993; Revill et al., 1994).

Kim and Philp (2001) invoked the algal bloom mechanism in a survey study of

Mississippian source rocks from the Anadarko Basin. The survey study included several

samples that were time-equivalent to the Goddard and displayed a similar abundant

tricyclic terpane signal (Kim and Philp, 2001). The Mississippian sample in the study

was listed and identified as Chester in age but could likely have been from a stratigraphic

interval that today is considered part of the Goddard (Kim and Philp, 2001). This regional

study is the only previous instance of a high-tricyclic terpane signal being observed in

Oklahoma (Kim and Philp, 2001). Another study of tricyclic terpane-rich source rocks in

the Hartford Basin of Connecticut mentions the algal bloom mechanism as well (Kruge

et al., 1990b). In the East Berlin Formation of the Hartford Basin, an increase in tricyclic

terpanes coincides with indicators of increased precipitation. Increased runoff may have
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delivered additional nutrients and triggered blooms (Kruge et al., 1990b).

There are, however, some issues with the Tasmanite algae bloom model. Tricyclic

terpane enrichment in Tasmanite fossil-poor formations has been seen in rock extracts

from China as well intervals in the Hartford Basin mentioned above (Philp and Zhao-

An, 1987; Kruge et al., 1990a; Kruge et al., 1990b). Conversely, formations within the

Anadarko Basin such as the Woodford Shale are known to be rich in Tasmanite fossils yet

they do not have an abundant tricyclic terpane signal (B. Cardott, Oklahoma Geological

Survey, Personal Communication, March 16th, 2016).

One explanation for an apparent lack of precursor fossils could be an incomplete

understanding of the Tasmanite fossil. If Tasmanites are indeed similar to the modern

green-algae Pachysphaera, then they may have had a two-phase life cycle (Guy-Ohlson

and Boalch, 1992). The commonly recognized morphology of the Tasmanite corresponds

to the non-motile, spherical of the Pachysphaera (Guy-Ohlson and Boalch, 1992). If the

Tasmanite has an additional motile-phase similar to the Pachysphaera algae, this phase

may be going unrecognized in tricyclic terpane-rich rocks.

There are also discrepancies in δ13C isotope values expected of an algal bloom

model (Aquino Neto et al., 1992; Simoneit et al., 1993). Under bloom conditions,

rapidly growing algae can cause a local drawdown of CO2 (Coale et al., 1996). While

photosynthesis kinetically favors 12C bearing CO2, an overall reduction in CO2 would

cause algae to discriminate less against 13C bearing CO2 (Simoneit et al, 1993). As a

result, the δ13C for organic matter would be enriched (Simoneit et al., 1993). However,

some Tasmanite extracts from Brazil and Alaska are no more enriched in 13C than

contemporary Tasmanite-poor source rocks (Aquino Neto et al., 1992; Simoneit et al.,
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1993). While there is strong evidence that the Tasmanite fossil is a precursor for the

tricyclic terpanes, there is even more compelling evidence to suggest that there are

additional, unknown precursors.

Abiotic mechanisms may also play a role in the enrichment of tricyclic terpanes.

A straightforward mechanism for tricyclic terpane enrichment is thermal stress. As

previously discussed, tricyclic terpanes are more resistant to thermal stress than the

hopanes and steranes. Enrichment of tricyclic terpanes is partially attributed to thermal

stress in oil and source rock studies of the Anadarko (Philp et al., 1992), Sichuan

(Zhusheng et al., 1988), and Hartford Basins (Kruge et al., 1990a; Kruge et al., 1990b).

However, additional biomarker parameters in those studies do not support severe thermal

alteration (Zhusheng et al., 1988; Kruge et al., 1990a; Kruge et al., 1990b; Philp et

al., 1992). In the Hartford Basin, source rocks dominated alternately by tricyclic and

pentacyclic terpanes were observed within the same formation in strata of equal thermal

maturity (Kruge et al., 1990a). Therefore, thermal stress may not even play a role in the

enrichment of tricyclic terpanes in some cases.

Migration fractionation is another proposed mechanism for tricyclic terpane enrich-

ment. Laboratory studies simulating hydrocarbon expulsion indicate that certain biomark-

ers elute and migrate at faster rates (Zhao-An and Philp, 1987). In column chromatogra-

phy simulations, tricyclic terpanes eluted before the hopanes (Zhao-An and Philp, 1987;

Zhusheng et al., 1988). Early, immature expulsions of oil could plausibly be enriched

in tricyclic terpanes while later charges could have more typical distributions of hopanes

and tricyclic terpanes. Migration could further enhance the abundance of tricyclic ter-

panes relative to hopanes (Zhao-An and Philp, 1987; Zhusheng et al., 1988; Kruge et al.,
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1990a).

Unsurprisingly, in-situ observations of bitumen and oils indicates that migration

fractionation mechanisms are more complex than simulations. Kruge et al. (1990b)

observed that mature bitumen in the Hartford Basin were actually enriched in tricyclic

terpanes compared to related oils and overlying, less mature source rocks (Kruge et

al., 1990b). To explain this apparent contradiction, Kruge et al. (1990b) suggested

that asphaltenes in bitumen could be retaining tricyclic terpanes and other maltene

compounds. The occlusion (Ekweozor, 1984) of tricyclic terpanes within the matrix of

resin and asphaltene fractions has been observed in several other simulations (Ekweozor,

1984; Jones et al., 1987; Zhao-An and Philp, 1987). Polar fractions may act as

natural molecular sieves; rather than being expelled, early maltene fractions are trapped

and protected in polar fractions (Kruge et al., 1990b). Ekweozor (1984) observed

that chemically degraded asphaltenes from two different tar sands generated maltenes

dominated by tricyclic terpanes rather than hopanes. A subtler enrichment of tricyclic

terpanes was observed by Jones et al. (1987) after pyrolyzing a bitumen from Switzerland.

While poorly understood, both fractionation and asphaltene occlusion appear to play a

role in enriching the abundance of tricyclic terpanes in oils and source rocks.
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2. Geologic Setting

The following chapter reviews the tectonic and paleoclimate conditions controlling

the deposition of the Goddard Formation. The problematic history of Upper Mississippian

stratigraphy in the Anadarko Basin is also discussed.

2.1. Tectonics of the Late Mississippian

Johnson et al. (1989) divided the Phanerozoic history of North America into three

phases. The first phase spanned the Cambrian to the end of the Mississippian and

was a time of quiescent deposition within the expansive Oklahoma Basin (Figure 8).

The Oklahoma Basin was a broad, shallow marine embayment and was characterized

primarily by carbonate deposition (Visher, 1989). The depocenter of the Oklahoma Basin

was the Southern Oklahoma Aulocogen, a remnant from the rifting of Laurentia during

the late Precambrian and early Cambrian (Hemish and Andrews, 2001). There were

numerous proto-basins in addition to the Southern Oklahoma Aulocogen in the Oklahoma

Basin (Johnson et al., 1989; Visher, 1989).

As the onset of the Ouachita Orogeny neared in the Late Mississippian, deposition of

siliciclastic sediments in the form of mudstones and sandstones increased slowly into the

Oklahoma Basin (Johnson et al., 1989). A major deposition of mudstone and sandstones

occurred during the Chesterian series of the Late Mississippian and heralded the early

stages of tectonic collision between Laurussia and Gondwana (Johnson et al., 1989). It

was at this time that the siliciclastic sediments of the Goddard were deposited. Later units

in the overlying Springer Group are even richer in coarse-grained siliciclastic sediments
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Figure 8: The Oklahoma Basin (modified from Johnson et al., 1989)

than the Goddard (Andrews, 2008). The Springer Group marked the true onset of the

Ouachita Orogeny as well as the second phase of geologic history in the Phanerozoic

Mid-Continent (Johnson et al., 1989; Visher, 1989).

While the first phase of Phanerozoic history was characterized by deposition, the

second phase was a balance of disruptive tectonic activity, erosion, and deposition. The

Ouachita Orogeny shaped and defined the various proto-basins within the expansive

Oklahoma Basin (Visher, 1989). The Southern Oklahoma Aulocogen developed into the

Anadarko Basin while the Ardmore Basin formed from one of the smaller proto-basins

in the Oklahoma Basin (Visher, 1989). The Anadarko and Ardmore Basins are the only

known locations where the Springer Group and its basal member, the Goddard Formation,
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can be found today in the subsurface (Hemish and Andrews, 2001).

Major uplift and erosion across the Mississippian-Pennsylvanian boundary created

a pre-Pennsylvanian unconformity across most of the North American midcontinent

(Beckman and Sloss, 1965). The pre-Pennsylvanian unconformity is present above the

Goddard in the Ardmore Basin as well as in the northern Anadarko Basin where the

basin is relatively shallow (Wang and Philp, 2001). An exception to this unconformity

is in the deep Anadarko Basin where the Goddard provides a continuous record of

deposition across the Mississippian-Pennsylvanian boundary (Visher, 1989). Continued

deposition during the Pennsylvanian and Permian contributed up to 18,000 and 7,000

feet of sediment, respectively, into the depocenter of the Anadarko Basin (Visher, 1989).

These sediments were a mix of carbonate, evaporite, and clastic sediments (Visher, 1989).

Today, the Anadarko Basin is the deepest cratonic basin in the United States (Johnson

et al., 1989). The asymmetrical Anadarko Basin is up to 40,000 feet thick along the

southern margin and thins to several thousand feet towards the northwest (Johnson et

al., 1989; Figure 9). The southern boundary of the Basin is defined by the Wichita and

Amarillo Uplifts while the Nemaha Uplift serves as an eastern boundary (Visher, 1989).

The Cimarron Arch outlines the western extent of the Basin (Visher, 1989). To the north,

the Anadarko Basin shallows and transitions into a broad shelf referred to as the Hugoton

Embayment (Visher, 1989).

The Goddard is present only in the deepest areas of the Anadarko Basin, and is

produced as an unconventional resource in Grady, Stephens, and Garvin County in

Oklahoma. Within the Anadarko Basin, the Goddard is present as a siliceous mudstone

with occasional zones of expandable clays such as illite and smectite (Wang and Philp,

25



Fi
gu

re
9:

C
ro

ss
se

ct
io

n
of

th
e

A
na

da
rk

o
B

as
in

(m
od

ifi
ed

fr
om

Jo
hn

so
n

et
al

.,
20

08
;m

od
ifi

ed
fr

om
C

ar
do

tt,
20

12
a)

26



2001; Ardmore Geological Society, 2015). Zones targeted as unconventional resources

have TOC between three to four weight percent (Eagle Rock Energy Partners, 2015).

The thickness of the Goddard varies from a few hundred feet thick to 2000 feet thick

(Ramon et al., 1997; Hemish and Andrews, 2001). At present, there are only informally

recognized zones within the Goddard Shale. Geochemical studies by Wang and Philp

(2001) support an open marine depositional environment for the Goddard within the

Anadarko Basin.

The Ardmore basin is southeast of the Anadarko Basin and trends along a similar

northwest-southeast axis. A major fault with several thousand feet of displacement

separates the Anadarko and Ardmore Basins (Hemish and Andrews, 2001). The Ardmore

Basin is bounded by the Criner Hills to the southwest and the Arbuckle Mountains to the

North. To the southeast, the basin is gradually buried by Cretaceous sediments rather than

being defined by a structural boundary (Hemish and Andrews, 2001).

The Goddard is present in both the surface and subsurface of the Ardmore Basin.

Hemish and Andrews (2001) described the Goddard in the Ardmore Basin as a fissile,

non-calcareous, grey shale with intermittent sandstones. Occasional calcareous zones

have also been identified in the Goddard (Peace, 1965). As in the Anadarko Basin, the

thickness of the Goddard ranges from 2,500 feet in some areas to zero where it has

been eroded away (Hemish and Andrews, 2001). The Goddard in the Ardmore Basin

is also considered to have been deposited under normal marine conditions (Hemish and

Andrews, 2001).
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2.2. Paleoclimate of the Late Mississippian

The Late Mississippian Ouachita Orogeny was a result of Laurussia and Gondwana

colliding to form the supercontinent of Pangaea (Rascoe and Adler, 1983; Perry, 1989).

This event was concurrent with several changes in global paleoclimate, most notably

the Late Paleozoic Ice Age (LPIA) and the larger shift from a global greenhouse to an

icehouse state (Shi and Waterhouse, 2010). The complexity surrounding the formation of

Pangaea and the onset of the LPIA (Crowell, 1978; Smith and Read, 2000; Soreghan et

al., 2008; López-Gamundı́ et al., 2010) is beyond the scope of the study. Nonetheless, a

few observations can be made regarding the effect of Pangaea’s formation and the LPIA

on the local paleoclimate of the Oklahoma Basin during the Late Mississippian.

One major development during the Mississippian-Pennsylvanian transition was the

closing of the Rheic Seaway as Gondwana approached and collided with the Laurus-

sian landmass (Qiao and Shen, 2014; Figure 10). This change in global oceanic and

atmospheric currents is considered a primary trigger for the LPIA and the glaciation of

southern Gondwanan (Smith and Read, 2000). Closure of the subequatorial Rheic Sea-

way would also have disrupted biologic communication between the east and western

edges of the forming supercontinent (Smith and Read, 2000). The onset of major glacia-

tion coincided with the deposition of the Goddard during the Visean (Smith and Read,

2000). While glacial ice was likely not present in the equatorial depositional environment

of the Goddard, glaciation still indirectly influenced conditions during the deposition of

the Goddard.

With the onset of glaciation, eustatic sea level in the Oklahoma Basin began to
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Figure 10: Closing of the Rheic Ocean (modified from Smith and Read, 2000)
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regress at the end of the Late Mississippian (Rascoe and Adler, 1983). The clay-rich

Goddard likely marks a high stand in sea level while the younger sand-rich units of rest

of the Springer Group support a third-order regression in relative sea level (Hemish and

Andrews, 2001). A more detailed description of sequence stratigraphy for the Goddard

is discussed by Rush (2016). Goddard sediments are characteristic of an open marine

environment dominated by mudstone with occasional pulses of sand from turbidites

(Andrews, 2008) as eustatic sea level regressed. Geomorphological evidence for deltas

and fluvial features is seen in the units of the Springer Group overlying the Goddard

(Johnson et al., 1989).

Temperatures during the LPIA reached a global minimum which has not been sur-

passed in the past 600 million years (Shi and Waterhouse, 2010). As the greenhouse to

icehouse transition progressed, pCO2 levels dropped while oxygen levels rose (Shi and

Waterhouse, 2010). The order of magnitude for the changes in these atmospheric gasses

was large enough that this period of time is referred to as both the Late Paleozoic Carbon

Dioxide Minimum and the Late Paleozoic Oxygen Pulse (Shi and Waterhouse, 2010).

Another change brought on by the LPIA was a global increase in loess (Smith

and Read, 2000; Soreghan et al., 2008). The primary mechanism responsible for

increased production of terrestrial eolian silt was glacial grinding (Soreghan et al., 2008).

Other minor mechanisms for loess production, such as chemical weathering and fluvial

processes, operate continuously throughout the geologic record but contribute minimal

loess relative to glacial grinding (Soreghan et al., 2008).

Loess can increase biologic productivity by effectively seeding terrestrial and marine

systems with bioavailable nutrients. A two-phase study demonstrated the response iron
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seeding could produce in open ocean environments (Martin et al., 1994; Coale et al.,

1996). In both studies, the addition of bioavailable iron triggered plankton blooms as

well as local CO2 drawdowns related to the increase in productivity (Coale et al., 1996).

Continental dust is mentioned as a natural source for bioavailable iron (Coale et al.,

1996). Increased loess production from early glaciation in the Late Mississippian could

therefore have facilitated expansive, recurring plankton blooms in marine settings that

would otherwise have been limited in iron.

2.3. Biology of the Late Mississippian

In addition to being a time of incipient tectonism and glaciation, the Late Mississip-

pian was also a time of transition for the biosphere. A major mass extinction event during

the Serpukhovian coincided with the forming of Pangaea and the onset of the LPIA (Pow-

ell, 2008). The Serpukhovian extinction event is outranked only by the classic Big Five

(McGhee et al., 2013; Figure 11). During the Serpukhovian period, between 28 to 39 per-

cent of marine genera are estimated to have gone extinct (Powell, 2008; McGhee et al.,

2013). One characteristic that appears to have been a strong predictor for survival is lati-

tudinal range. The preferential survival of species with larger latitudinal ranges has been

observed in several regions and genera (Bonelli and Patzkowsky, 2008; Powell, 2008; Shi

and Waterhouse, 2010; Qiao and Shen, 2014). An explanation for the improved survival

of genera with greater range is that they were better adapted to the overall decrease in

global temperature and increase in seasonality that occurred with the onset of the LPIA

(Powell, 2008).
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Figure 11: Major mass extinctions of the Phanerozoic ranked by taxonomic severity
(from McGhee et al., 2013)

Another biologic response to the Serpukhovian Extinction was a decline in macro-

evolution rates. Many studies focusing on the rate of origination and evolution during

the Late Paleozoic focus on large, easily documented organisms such as brachiopods

(Powell, 2008; Shi and Waterhouse, 2010; Qiao and Shen, 2014). In these studies,

genera with wide latitudinal range tended to expand and displace species with warmer or

narrower temperature ranges (Powell, 2008; Shi and Waterhouse, 2010; Qiao and Shen,

2014). Global diversity decreased as invasive, homogeneous communities increased their

latitudinal extent (Shi and Waterhouse; 2010, Qiao and Shen, 2014). The rate of species

origination remained low until the end of the LPIA (Powell, 2008; Shi and Waterhouse,

2010).
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2.4. Defining the Goddard Formation

The Goddard Formation plays a geologically important role in Oklahoma; as the

sole formation to conformably straddle the Mississippian-Pennsylvanian boundary in

Oklahoma, the Goddard contains clues to a murky period in the state’s geologic past.

However, the stratigraphic definition of the Goddard has consistently fluctuated since

the formation was first identified. The lack of consistency regarding the definition of

the Goddard contributes to the difficulty of correlating and studying intervals of this

formation (Hemish and Andrews, 2001).

The underlying Caney Shale and overlying Springer group were both recognized prior

to the naming of the Goddard Formation (Westheimer, 1956). Taff defined the Caney

Shale in 1901 (Westheimer, 1956). Taff also described the overlying unit as the Glenn,

which included the modern Goddard, Springer, and additional overlying Pennsylvanian

strata found in the Arbuckle mountains into a massive assemblage (Westheimer, 1956).

The Springer was carved out of the basal Glenn Formation and officially named by

Goldston in 1922 (Westheimer, 1956). While Goldston’s Springer designation was

generally accepted, the larger Glenn formation quickly fell out of use as it was criticized

for being too expansive and including already named formations (Girty and Roundy,

1923; Westheimer, 1956).

Through the early 1900s, the Springer Group became fairly well delineated; the Rod

Club Sandstone served as an easily identifiable boundary between the Springer and the

shales below (Westheimer, 1956; Figure 2). Interest in the sandstone units of the Springer

was also spurred by their role as conventional gas reservoirs in the Mid-Continent. There
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are various names for each of the four main sandstone units of the Springer in both

the surface and subsurface (Peace, 1965; Hemish and Andrews 2001). As noted by

Hemish and Andrews (2001), the correlation between subsurface and surface names for

the Springer sands is poor. Correlation of the shales within the Springer Group is even

more challenging as the shales lack formal names and are typically referred to in relation

to their underlying sandstone unit (Westheimer, 1956; Peace, 1965; Hemish and Andrews,

2001).

The boundaries of the Goddard Formation were defined almost by omission. The

sands of the Springer served as a sharp upper boundary for the Goddard. The dark

black shales of the Mississippian Caney Shale also served as a soft boundary between

the true Caney and the overlying Goddard (Westheimer, 1956; Peace, 1965). Before

Westheimer assigned the interval the name of Goddard in the mid-1950s, the shales of

the Late Mississippian were often called the Pennsylvanian-Caney or the Penn-Caney

(Bennison, 1956; Westheimer, 1956; Branson, 1957; Rascoe and Adler, 1983). This

term was misleading as the Penn-Caney unit was known to be Mississippian in age as

early as the 1950s (Westheimer, 1956). Other papers have also included some or all of

the Springer Group in the Mississippian, although the upper units of the Springer Group

are most certainly Pennsylvanian in age (Reedy and Sykes, 1959; Brown and Northcutt,

2008).

At present, the Goddard Formation is known to belong to the Chesterian Series of the

Late Mississippian (Andrews, 2008). The Goddard Formation is included as the basal

unit of the Springer Group, which spans the Late Mississippian and extends into the early

Pennsylvanian (Andrews, 2008). The inclusion of the Goddard within the Springer Group
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is due to convenience rather than a genetic relationship; the shale above the Rod Club

Member of the Springer Group is almost impossible to distinguish from the Goddard

in the field (Westheimer, 1956; Peace, 1965). The type section for the Goddard can be

found at the Goddard Ranch in Johnston County, Oklahoma where some 2850 feet of

the Goddard is exposed (Westheimer, 1956). Currently, some independent producers in

Oklahoma have popularized the term Black Marker for the zone of the Goddard targeted

for unconventional production in the Anadarko Basin (Eagle Rock Energy Partners,

2015).
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3. Methods

3.1. Sample Selection

The objective of this study was to gain an understanding of geochemical trends in

the Goddard Formation within the South Central Oklahoma Oil Province (SCOOP).

Therefore, samples were selected to cover the extent of the SCOOP as thoroughly as

possible (Figure 12). A total of 16 source rocks, 11 oils, and 1 oil seep asphalt were

analyzed (Table 1). A flowchart for the analysis workflow used in this study is shown in

Figure 13.

Fifteen of the 16 rock extracts were either whole or side-wall core. The core samples

were obtained from four wells located in Stephens and Grady County, Oklahoma. Sample

SR-15 was a source rock extract from a core sample studied by Jones and Philp (1990);

this study identified the SR-15 sample as Springer in origin (Jones and Philp, 1990).

Only the aliphatic and aromatic fractions for SR-15 were available for analysis. An

additional outcrop sample, OC-1, was collected outside of the SCOOP in Pontotoc

County, Oklahoma. The outcrop was located in an area mapped as Springer by the

Oklahoma Geological Survey (OGS) (Ham et al., 1990). The outcrop sample was

collected from a two-foot deep hole dug away from any deep root networks or standing

water. The oil seep sample was also collected outside of the SCOOP in Carter County.

This asphalt sample, AS-1, was sourced from an oil seep in an unnamed, abandoned

quarry. The 11 oil samples were obtained from 11 different wells in Stephens and Grady

County. All 11 wells were drilled horizontally and hydraulically fractured. Oils OL-8
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Table 1: Sample names and locations for Goddard oils and source rocks
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and OL-9 were produced from two wells less than a mile apart and both wells targeted

the same Goddard interval.

3.2. Experimental

3.2.1. Rock-Eval Pyrolysis

Rock-Eval pyrolysis (Rock-Eval) is a routine technique used to rapidly evaluate the

generative capacity, thermal maturity, and approximate kerogen type of a source rock

(Peters, 1986). The basic pyrolysis method heats a finely crushed rock sample in an

inert atmosphere at a programmed rate (Peters, 1986). As the sample is heated, free

hydrocarbons are released and measured, as are the subsequent products from kerogen

cracking at higher temperatures (Peters, 1986). Samples thought to be contaminated by

oil-based mud may be pre-extracted with an organic solvent such as dichloromethane

(DCM) prior to Rock-Eval analysis. Pre-extraction however, will reduce the amount of

free hydrocarbons measured in the sample. All core and outcrop samples in this study

were determined to have minimal oil-based mud contamination and were analyzed either

without pre-extraction or briefly rinsed in DCM followed by methanol.

Rock-Eval data were collected and interpreted in the form of pyrograms and reported

data. Two methods of Rock-Eval pyrolysis were used; the difference between the

results of these two methods is most pronounced when interpreting the free and sorbed

hydrocarbons (Figure 14). In the traditional Rock-Eval method, the S1 peak corresponds

to all liberated hydrocarbons in a source rock, both free and sorbed. The S2 peak

represents the potential generative capacity of a source rock. Typically, as a source rock
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matures, the S1 peak increases and the S2 peak diminishes. The S3 peak corresponds

to inorganic CO2; this peak is used to approximate the carbonate fraction of a sample.

The S4 peak corresponds to the inert kerogen in a source rock; inert kerogen is unable

to generate additional hydrocarbons. As with the S1 peak, the S4 peak also increases

with source rock maturation (Peters, 1986). The following samples were screened by

GeoMark Petroleum Services Ltd. using traditional Rock-Eval pyrolysis: SR-1, SR-2,

SR-3, SR-4, SR-5, SR6, and OC-1. A Rock-Eval 6 apparatus was used to evaluate these

samples. An adequate mass of the SR-15 core sample was not available, so that sample

was not screened using Rock-Eval.

The remaining eight core samples were screened by IFP Energies nouvelles using a

method of Rock-Eval developed in 2015 specifically for unconventional shales (Romero-

Sarmiento et al., 2015a; Romero-Sarmiento et al., 2015b). This method also uses a Rock-

Eval 6 device but the heating program is designed to increase the separation of certain

hydrocarbons in an unconventional shale e.g. sorbed vs. free hydrocarbons (Figure 14).

Specifically, the traditional S1 peak is split into an Sh0 peak for light, free hydrocarbons

and a Sh1 peak which corresponds only to the heavier, free hydrocarbons in the shale

(Romero-Sarmiento et al., 2015b). The sum of Sh0 and Sh1 peaks in this unconventional

method are equivalent to the S1 peak obtained using traditional Rock-Eval (Romero-

Sarmiento et al., 2015a; Romero-Sarmiento et al., 2015b). The sum of the S0 and S1

peaks can be used to estimate oil-in-place (Romero-Sarmiento et al., 2015b). A full

description of the temperature program for this unconventional-shale method can be found

in (Romero-Sarmiento et al., 2015b).
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Figure 14: Comparison of idealized pyrograms and temperature profiles for traditional
and unconventional Rock-Eval methods (after Peters, 1986; Romero-Sarmiento et al.,

2015a)
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3.2.2. Petrographic Analysis

Two samples were selected for petrographic analysis; OC-1 and SR-14. Both samples

were prepared and interpreted by Brian Cardott at the OGS. The vitrinite reflectance

of both samples was determined using methods outlined in ASTM, 2011 and Cardott

(2012a). A description of kerogen macerals was also recorded for each sample based

on the identification procedures outlined in Cardott (2012a). Thin sections of six core

samples were also prepared for analysis on a scanning electron microscope (SEM).

Elemental analyses and SEM images for these thin sections were provided courtesy of

Will Rush at the University of Oklahoma Institute of Reservoir Characterization.

3.2.3. Source Rock Extraction

Fifteen source rock samples were extracted for this study. To prepare each source

rock sample for extraction, approximately 50 g of sample were rinsed thoroughly with

methanol and DCM and allowed to dry for 24 hours.

After being cleaned and dried, each sample was crushed using either a Coorstek

porcelain mortar and pestle or Spex 8000 Mixer/Mill. For the Mixer/Mill, no more than

eight g of rock chips were crushed at a time. Rock chips were introduced to a cylindrical,

metal vessel containing several steel balls (Figure 15). The vessel was then sealed using

a two-part cap and O-ring and secured in the mill. Each run of the mill lasted no longer

than five minutes. After each run, the contents of the vessel were sieved. Fragments larger

than 40 mesh were returned to the vessel for further crushing. For both the mortar and

pestle and ball mill, the crushing process was repeated until 50 g of 40-mesh sample was
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Figure 15: Vessel for Spex 8000 Mixer/Mill

obtained.

A cellulose thimble was pre-extracted in a Soxhlet apparatus for 12 hours using

MeOH:DCM (v/v = 1:1). Following pre-extraction, 50 g of 40-mesh sample was then

introduced into the cellulose thimble and covered with glass wool. Solvent from the pre-

extraction was discarded and fresh solvent was added to the Soxhlet assembly. Activated

copper was also added to the assembly to scavenge sulfur from the extract. Each sample

was then extracted for 24-36 hours.

Once the Soxhlet extraction was complete, the resulting extract was dried using a

Yamato HiTEC RE-51 Rotary Evaporator and a BM-51 heated bath. The water bath was

heated to 37°C while the sample was rotated at a rate of 100 revolutions per minutes. The

cellulose thimble containing the extracted sample was dried for 24-48 hours in a fume

hood before being stored. The extract was then transferred to a 20 mL vial. After drying

using an Organomation Model 112 Analytical Evaporator, the extract mass was obtained.
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3.2.4. Asphaltene Precipitation

To precipitate the asphaltene fraction of both the source rock extracts and oils, 100-

200 mg of sample was introduced into a centrifuge tube. With the centrifuge tube partially

submerged in a Branson Model 2510 Sonicator, approximately 2mL of n-pentane was

added dropwise to the sample. This dropwise addition of n-pentane was repeated four

additional times, after which n-pentane was introduced continuously until solvent levels

reached the shoulder of the centrifuge tube. The sample was then placed in a freezer for at

least 12 hours, after which the sample was centrifuged in a Thermo Scientific IEC Model

K centrifuge for 5 minutes to settle precipitated asphaltenes. The maltene fraction was

filtered and weighed. Any precipitated asphaltenes were also collected.

3.2.5. Column Chromatography

A silica column was used to fractionate prepared maltenes for all samples except OC-

1 and AS-1. Sample OC-1 and AS-1 were fractionated using an alumina column. Results

from silica column fractionation were compared to alumina and HPLC fractionation

methods. Comparison studies were conducted by Dr. Thanh X. Nguyen at the University

of Oklahoma Organic Geochemistry Group; the quality of fractionation achieved in all

three methods was determined to be equivalent. A silica column was prepared using

a shortened Pasteur pipette with a glass wool filter. Approximately 6.1 g of silica was

added to the column and agitated to facilitate settling. Before use, the silica was heated

at 120°C for 24 hours. Pentane was used to flush air from the column. 8 to 10 mg of

maltene was introduced to the column and allowed to completely infiltrate the surface of
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the column before 2 mL of pentane was introduced to mobilize the aliphatic fraction of

the maltene. To mobilize the aromatic fraction, 4 mL of C6:DCM (v/v = 7:3) was then

introduced to the column. 8 mL of CHCl3:MeOH (v/v = 98:2) were used to mobilize the

remaining polar nitrogen, sulfur, and oxygen (NSO) compounds. Branched and cyclic

alkanes were further isolated from selected aliphatic fractions using the method described

by West et al. (1990).

3.2.6. Gas Chromatography

Gas chromatography was used to analyze both whole oils and aliphatic and aromatic

fractions. Whole oils were analyzed on an Agilent Technologies 6890 Gas Chromato-

graph using a split injection method. The column used was a J&W Scientific DB-Petro

column (250um inner diameter and 25um coating). Helium was used as a carrier gas at a

flow rate of 1.4mL/min. The temperature program for whole oil analysis was as follows:

the initial temperature began at 40°C and was held for 1.5 minutes. Then the temperature

was increased at a rate of 2°C/minute until the temperature reached 130°C. At that point,

the temperature continued to increase at a rate of 4°C/minute until the 300°C. The final

temperature of 300°C was held for 35 minutes.

Aliphatic and aromatic fractions were analyzed on an Agilent Technologies 6890 Gas

Chromatograph using a splitless injection method. The column used was a fused silica

J&W Scientific 122-5544G DB-5ms (250um inner diameter and 25um coating). The

carrier gas used was helium and the flow rate was 2mL/min. Both aliphatic and aromatic

fractions were diluted to concentrations of 3mg/mL hexane. The temperature program
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used began at 40°C for 1.5 minutes, followed by an increase in temperature at a rate of

4°C/minute until 300°C. The final temperature of 300°C was held for 14 minutes.

3.2.7. Gas Chromatography - Mass Spectrometry

An Agilent Technologies 7890A Gas Chromatograph (GC), paired with an Agilent

Technologies 5975 XL Mass Selective Detector, was used to analyze aliphatic and

aromatic fractions. Selected branched and cyclic saturate fractions were also analyzed.

The ionization energy for the MS was 70eV for the electron impact mode. The ion

source temperature was 250°C and the quadrupole analyzer was maintained at 200°C. The

interface temperature between the GC and mass spectrometer (MS) was 310°C. Single ion

monitoring (SIM) and multiple ion detection (MID) modes were used to analyze selected

ions for both fractions. The column used for the GC was a J&W Scientific DB-5MS

122-5562 fused silica column (250um inner diameter and 25um coating). The flow rate

for the carrier gas, helium, was 1.4 mL/min. The same dilution of 3mg/mL hexane was

used to prepare both fraction. Samples were run using splitless capillary injection. The

temperature program for GCMS analysis began at 40°C and was held for 1.5 minutes.

The temperature was then increased at a rate of 4°C/minutes until a temperature of 310°C

was reached. A temperature of 310°C was maintained for another 51.5 minutes.

3.2.8. Gas Chromatography-Mass Spectrometry-Mass Spectrometry

A Thermo Scientific Trace 1310 GC coupled with a Thermo Scientific TSQ 8000

Triple Quadrupole MS was used to analyze the branched and cyclic fractions of 10 oils
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and 13 extracts. Sample diluted to 6 mg/mL with hexane before injection. The column

used was a J&W Scientific fused silica DB-5MS 12205562 (250um inner diameter and

25um coating). Helium was used as the carrier gas for the GC at a flow rate of 1.4 mL/min.

The GC temperature program began at 40°C and was held for 1.5 minutes before the

temperature was increased at a rate of 4°C /minute until a target temperature of 310°C

was reached. A temperature of 310°C was then held 55.5 minutes. Argon was used as a

collision gas for the second MS quadrupole. The fore line pressure was maintained at 75

mTorr and the ion gauge pressure was 1.6c10-5 Torr. Temperatures in the ion source and

GC-MS interface were both held at 300°C.
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4. Results

4.1. Bulk Geochemical Data

Bulk geochemical characteristics for source rock include TOC content, thermal

maturity, and general kerogen characterization. Core samples were screened for these

characteristics using Rock-Eval (Table 2). A range of 2-12 weight percent TOC has

previously been observed within producing intervals of the Goddard Formation (Ardmore

Geological Society, 2015). The TOC values obtained in this study will provide additional

data to understand lateral trends in TOC for the Goddard within the Anadarko Basin.

Thermal maturity trends for the Goddard Formation are less precisely mapped compared

to formations such as the Woodford (Cardott, 2012b; Cardott, 2013). Thermal maturity

data from this study will contribute to more accurate thermal models for the Goddard

Formation. Whole oil analysis was also used to screen oils for thermal maturity,

biodegradation, and mixing.

4.1.1. Total Organic Carbon Content

The TOC content for 15 source rocks was obtained using Rock-Eval (Table 2). All

TOC values are listed as a percent of the total source rock weight. Rock-Eval data for

SR-15 were not available. The range of TOC for samples analyzed using conventional

Rock-Eval was 0.86 wt. % to 7.77 wt. %; the median total organic carbon content was

4.45 wt. %. The sample with the lowest total organic carbon, SR-5, also had the highest

carbonate content at 48.26 wt. %. Although multiple samples were collected from three
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of the four sets of core, the sampling interval was determined to be too coarse in each

case to provide meaningful interpretation of the vertical variation in TOC.

Eight of the core samples (SR-7 to SR-14) were analyzed using a new method

for Rock-Eval developed for unconventional resource shales by IFP Energies nouvelles

(Romero-Sarmiento et al., 2015b; Table 2). This method evaluates classic Rock-Eval

parameters as well as hydrocarbon content (HC, mg HC/g rock). The hydrocarbon content

indices (S1) for SR-5 to SR-10 and OC-1 were between 0.81 and 3.12 mg HC/g rock.

These values are considered relatively low (Peters et al., 1986; Romero-Sarmiento et al.,

2015b). A cross-plot modified from Jarvie (2012) of the hydrocarbon content index and

TOC indicates that SR-2, SR-4 to SR-10, and OC-1 all fall into the so-called low-oil

content or oil show category. (Jarvie, 2012; Romero-Sarmiento et al., 2015b; Figure

16). Samples SR-1, SR-3, and SR-11 to SR-14 all plot much higher; the range of the

hydrocarbon content index for these samples is 8.73-13.69 mg HC/g rock. When the

hydrocarbon content for each of these samples is plotted against their respective TOC

values, these samples are predicted to freely produce oil based on the hydrocarbon content

categories developed by Jarvie (2012; Figure 16). The IFP Energies nouvelles provided

oxygen index data but not S3 peak data or carbonate content for samples SR-7 to SR-14

(Table 2).
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Figure 16: Cross plot of TOC (wt. %) and hydrocarbon content (mg HC/g rock) to
infer oil shows in unconventional resource shales (after Jarvie 2012)
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4.1.2. Thermal Maturity

Early estimates of thermal maturity for Goddard source rocks relied on vitrinite

reflectance maps produced by Cardott (2012a) for the Woodford Shale. The underlying

Woodford is stratigraphically proximal to the Goddard (Johnson et al., 1989) and %Ro

trends for the Woodford have been thoroughly mapped (Cardott, 2012b). While thermal

maturity values are likely greater for the Woodford than the Goddard, such maps provided

trends and upper limits to thermal maturity during initial screening.

Rock-Eval was used to assess the thermal maturity of the Goddard core and outcrop

samples in this study. The Tmax temperatures were directly obtained from Rock-Eval

pyrograms and used to calculate equivalent values for vitrinite reflectance (Table 2).

Pyrograms for all samples were reviewed to assess data quality. No Rock-Eval data were

available for the SR-15 sample.

A complete list of Tmax values for all rock extracts can be found in Table 2. The

Tmax temperatures for the rock samples ranges from 427°C to 461°C. Generally, a Tmax

temperature of 435-445°C corresponds to the onset of oil generation while 470°C marks

the end of the oil window (Peters, 1986). The actual onset of oil generation varies based

on kerogen type (Peters, 1986; Pepper and Corvi, 1995). Calculated vitrinite values

ranged from 0.53 %Ro to 1.15 %Ro. Sample OC-1 was the only sample with a vitrinite

value below the early oil window. The thermal maturities of the majority of the core

samples was nearing or within the late oil window.

Vitrinite reflectance for two samples, OC-1 and SR-14, was manually measured by

Brian Cardott of the OGS to assess the accuracy of calculated vitrinite values (Table 2).
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The measured values were within an acceptable margin of error for the calculated vitrinite

reflectance. For OC-1, the measured vitrinite reflectance was 0.60 %Ro. Only three suit-

able vitrinite clasts were found in the sample; 20 vitrinite macerals are needed for statisti-

cal significance measurements (Cardott, 2012a). However, additional bitumen reflectance

measurements and green-colored fluorescence of Tasmanite algae were consistent with a

vitrinite reflectance of 0.60 %Ro (Figures 17).

The mean %Ro for SR-14 was 1.26 %Ro, based on 28 vitrinite measurements. This

value was higher than the %Ro of 0.95 calculated from Tmax. This discrepancy may be

caused by an abundance of inertinite-like vitrinite included in the measurement. The

small size of individual vitrinite macerals may also have contributed to possible errors

in calculating thermal maturity from vitrinite. The calculated vitrinite reflectance may

also have been inaccurate; Tmax is influenced by organic matter input and fusinite was

moderately abundant in SR-14. An adjusted bitumen reflectance of 1.04 %Ro for SR-14

was more consistent with the calculated vitrinite reflectance.
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4.1.3. Kerogen Characterization

As mentioned in previous chapters, initial kerogen characterization is often done using

the PVK model because kerogen types can be assigned using minimal bulk geochemical

data (Peters, 1986). Bulk geochemical data alone are typically insufficient to develop

a meaningful organofacies interpretation. Organofacies characterization is discussed in

the next chapter following a more comprehensive analysis of both bulk geochemical and

biomarker data.

The original van Krevelen model was developed from empirical observations based

on a subset of coals and their respective elemental hydrogen and oxygen abundance

normalized to carbon (van Krevelen, 1950). The use of this model has expanded beyond

coals, and elemental measurements have been replaced with oxygen and hydrogen index

parameters easily obtained through routine Rock-Eval (Tissot and Welte, 1984). The

modern PVK diagram is used to characterize kerogen type based on these oxygen and

hydrogen indices (Peters, 1986). The four kerogen types include: Type I, very oil-

prone; Type II, oil prone; Type III, gas-prone; and Type IV, inert (Peters, 1986). Type

I kerogens are often associated with lacustrine conditions while Type II kerogens are

typically designated as marine in origin. Type III kerogens are sourced from terrestrial

plant matter. The Type IV category includes residual kerogens with no capacity for

hydrocarbon generation.

The majority of core samples fell within the region of the diagram where the four

kerogen type curves converge (Figure 18). This pattern is typical of samples with thermal

maturities beyond the early oil window and highlights a weakness of the PVK model.
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Figure 18: Pseudo van Krevelen diagram for Goddard source rocks (after Peters, 1986)
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Nevertheless, most of the core samples plotted closely along the Type I and II kerogen

trends and had low OI values. Sample OC-1 fell along the Type I kerogen curve with

an HI of 770 and an OI of 10. As OC-1 was determined to be thermally immature, its

location on the PVK diagram can more confidently be attributed to original kerogen type

of OC-1.

Brian Cardott, of the Oklahoma Geological Survey, also analyzed kerogen macerals

for OC-1 and SR-14. Tasmanites were present in both samples, but not in high abundance

compared to Tasmanite shales or even local Oklahoma source rocks such as the Wood-

ford Shale. Sample SR-14 also contained moderately abundant fusinite macerals (Figure

19). Fusinite is associated with the burning of woody terrestrial organic matter (Cardott,

2012a). Additional SEM analysis was conducted by Will Rush, at the University of Ok-

lahoma Institute of Reservoir Characterization, on thin sections from SR-1, SR-2, SR-3,

SR4, SR-5 and no evidence of abundant Tasmanites fossils was noted (W. Rush, Uni-

versity of Oklahoma Institute of Reservoir Characterization. Personal Communication,

February 22nd, 2016).

4.1.4. Whole Oil-Gas Chromatography

Crude oils can be analyzed using gas chromatography without additional preparation.

Whole oil analysis provides preliminary information regarding both thermal maturity and

biodegradation. As thermal maturity increases, n-alkanes are generated through thermal

cracking and increase in abundance relative to pristane and phytane (Tissot et al., 1971;

Shanmugam, 1985). Biodegradation reverses this trend and increases the ratio of pristane
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and phytane to the n-alkanes. Thermal maturity and biodegradation assessments can be

confounded by organic matter input which influences the distribution of n-alkanes and

isoprenoids (Didyk, 1978; Alexander et al., 1981; Shanmugam, 1985).

Whole oil analysis can also indicate mixing. When a secondary condensate mixes

with a residual oil, a whole oil-gas chromatogram often displays a bimodal distribution of

n-alkanes (Figure 20). Mixed organic matter inputs have also been suggested as another

cause for the bimodal distribution of n-alkanes (Henry and Lewan, 1999).

Eleven Crude oils were evaluated using gas chromatography. All oils were character-

ized as low-wax with the n-alkanes in all samples extending out to C29-C37. The carbon

number preference of the n-alkanes in whole oil-gas chromatograms was near one for all

oils (Peters et al., 2005). Evidence of possible, but slight, biodegradation was seen in all

samples. A bimodal distribution was also observed in almost all oils. Two representative

whole oil-gas chromatograms are shown in Figure 21. The abundance of light hydrocar-

bons from C5-C7 was pronounced in oils such as OL-2. Oils such as OL-7 displayed more

normal n-alkane distributions yet still had an abundance of light-end hydrocarbons.

Light-end hydrocarbons (<C9) were also analyzed for each of the crude oils. Thermal

stress, biodegradation, and evaporative fractionation each have varying influence on

light-end aromatics, paraffins, naphthenes, and n-alkanes. Relative changes in the

abundance of these compounds are described as changes in aromaticity and paraffinicity

(Thompson, 1987). Aromaticity compares aromatic hydrocarbons to normal alkanes of

the same carbon number while paraffinicity compares paraffin and naphthene abundance

(Thompson, 1987). Specific aromaticity and paraffinicity ratios can be compared to one

another to interpret the extent of alteration in oils. For example, Thompson compared
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two specific aromaticity and paraffinicity ratios in his B-F diagram (Thompson, 1987).

All Goddard oils cluster together on the B-F diagram (Figure 22). Sample OL-9 has a

slightly higher aromaticity ratio that causes it to plot outside the main cluster. Sample

OL-10 has the highest paraffinity ratio and also plots slightly apart from the main cluster.

Overall, the most notable observation for these oils is their similarity.

Figure 22: B-F Plot of Goddard crude oils (after Thompson, 1987)

63



4.2. Fraction Yields

Only two source rock samples, SR-6 and SR-7, were determined to be insufficiently

rich in bitumen for further analysis. The remaining 13 source rock samples yielded 83.78

to 706.20 mg of bitumen. The bitumen component was precipitated to yield an asphaltene

and maltene fraction (Table 3). A summary of the aliphatic, aromatic, and NSO fraction

data is included in Table 4 and a ternary diagram showing the relative abundance of the

aliphatic, aromatic, and NSO fractions for the oils and extracts is shown in Figure 23. For

the oils, the aliphatic fraction ranged from 79-90 percent of the total recovered fraction.

As would be expected (Hunt, 1996), the relative abundance of the aliphatic fraction was

less for the extracts than the oils; the relative percentage for the aliphatic fractions was

between 56-75 percent. Sample OC-1 had a minor aliphatic fraction and approximately

equal aromatic and polar fractions.

Table 3: Extraction data for Goddard source rocks
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Figure 23: Ternary diagram of fraction data for Goddard source rocks and oils

4.3. Biomarker Analysis

4.3.1. n-Alkanes and Isoprenoids

The distribution of n-alkanes and isoprenoids in chromatograms of aliphatic fractions

from source rocks and oils can be used to interpret the approximate thermal maturity and

extent of biodegradation, (Tissot et al., 1971; Shanmugam, 1985). As thermal maturity

increases, n-alkanes are generated through thermal cracking of kerogen or already gen-

erated n-alkanes; this process increases the abundance of short-chain n-alkanes as well

as relative abundance of n-alkanes to isoprenoids such as pristane and phytane (Shan-

mugam, 1985). Biodegradation reverses this trend and preferentially removes the n-

alkanes over isoprenoids (Tissot et al., 1971; Shanmugam, 1985). The effects of biodegra-
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Table 4: Fraction data for Goddard oils and source rocks
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dation and thermal alteration are most commonly observed using the ratios of pristane/C17

and phytane/C18 (Shanmugam, 1985). In addition to biodegradation and thermal stress,

depositional conditions can also influence the distribution of isoprenoids. The relative

abundance of pristane and phytane are closely linked to redox conditions of the initial

depositional environment (Didyk et al., 1978; Bylinkin, 1987). For the oils and source

rocks in this study, Pr/Ph values range from 0.77 to 1.86. Selected n-alkane and isoprenoid

ratios are included in Table 5 and plotted in Figure 24.

Table 5: n-Alkane and isoprenoid ratios for Goddard oils and source rock extracts
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Almost all the aliphatic chromatograms for both the oils and source rock extracts

shared a similar distribution of n-alkanes as shown in Figure 25a. Most of the aliphatic

fractions were dominated by the short-chain C12-C18 n-alkanes. The longest-chain n-

alkane identified was C37.

The two samples that differed from the distribution described above were OL-3 and

SR-15. In OL-3, the aliphatic fraction was dominated by the C10-C21 n-alkanes (Figure

25b). The aliphatic fraction of SR-15 was dominated by the C14-C33 n-alkanes. Sample

SR-15 was also the only sample that had a bimodal distribution of the longer chain n-

alkanes; the C18-C21 n-alkanes were diminished in SR-15 (Figure 25c).
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Figure 25: Chromatograms of (a) Ol-7 oil, (b) Ol-3 oil, and (c) SR-15 source rock
extract aliphatic fractions. Pristane (Pr) and Phytane (Ph) are labeled
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4.3.2. Tricyclic Terpanes

With the exception of AS-1, OC-1, SR-5, and SR-15, the tricyclic terpanes dominated

the m/z 191 aliphatic chromatograms (Figure 26; Table 6). Sample AS-1, OC-1, and

SR-15 all had a more typical distribution of tricyclic terpanes relative to the pentacyclic

terpanes (Figure 27; Table 7). The signal intensity in the m/z 191 chromatogram for SR-5

was too low to clearly distinguish any hopanes or tricyclic terpanes. Extended tricyclic

terpanes were identified out to C45 in SR-1. In the majority of oils and rock extracts, the

tricyclic terpane series extended to C41. In OC-1, SR-5, and SR-15, the longest extended

tricyclic terpanes identified were C25, C29, and C23, respectively.

For the majority of oil and source rock extracts that had an abundant tricyclic terpane

signature, the most abundant peak on the m/z 191 chromatogram was the C23 tricyclic

terpane. A smaller number of samples had either the C28 or C29 tricyclic terpane as their

most abundant peak; for these samples, the C23 was typically almost equal in abundance

to the highest peak. The C19 and C20 tricyclic terpanes were present in extremely low

abundance for all oil and extract samples. The C26 tricyclic terpanes co-eluted with the

C24 tetracyclic terpane. The ratio of the C24 to C23 tricyclic terpane was calculated for

all samples except OC-1, SR-5, and SR-15. In these three rock extracts, the C24 and C23

tricyclic terpanes were either absent or unable to be clearly quantified. The ratio of the

C24 to C23 tricyclic terpanes for the remaining samples ranged from 0.61 to 1.26. The

lowest values were most often associated with rock extracts while the higher values were

generally associated with oils.

The tricyclic terpanes have their first chiral center at the C22 carbon beginning with
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Table 6: Peak Identification for compounds labeled in the m/z 191 aliphatic
chromatogram for the tricyclic terpane-rich samples. Individual S/R epimers are not

labeled
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Table 7: Peak Identification for compounds labeled in the m/z 191
aliphatic chromatogram for sample with normal distributions of

tricyclic and pentacyclic terpanes
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the C25 tricyclic terpane (Farrimond et al., 1999; Peters, 2000). The 22S epimer is

thought to elute before the 22R epimer because the second eluting isomer appear to be

more susceptible to biodegradation (Peters, 2000). For unaltered samples with thermal

maturities at or beyond the oil window, the 22S/R ratio for the C25-C29 tricyclic terpanes

epimers approaches parity.

4.3.3. Pentacyclic Terpanes

Pentacyclic terpanes, or hopanes, are derived from the membrane lipids of prokaryotic

organisms (Ourisson et al., 1982). The ubiquity of prokaryotic organisms is reflected in

the near universal presence of hopanes in oils and sediments associated with all types

of organofacies. As Ourisson and Albrecht (1992) described them, the hopanes are the

“most abundant family of complex organic substances on earth.”

Hopanes were evaluated using both SIM GCMS ( m/z 191) and GCMSMS. For the m/z

191 chromatograms, only samples OC-1, AS-1, and SR-15 had any detectable hopanes.

The OC-1 extract had abundant hopanes from C30 to C35. The AS-1 asphalt extract had

particularly well preserved hopanes (Figure 27). In both OC-1 and AS-1, the abundance

of the homohopanes decreased incrementally from C31 to C35 (Table 7). For SR-15

, the C29 to C35 hopanes were detected although the C34 and C35 homohopanes were

only present in low abundance. The m/z 191 chromatograms for all other samples were

dominated by the tricyclic terpanes. For these tricyclic terpane-rich samples, additional

GCMSMS analyses revealed only trace amounts of the C30 hopane and the homohopanes.

While hopanes are mainly used for correlation of oils and source rocks, they can also
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be used as biodegradation proxies (Ourisson and Albrecht, 1992). The 25-norhopanes,

also known as the demethylated hopanes, are a series of compounds derived from the

regular hopanes (McCaffrey et al., 1996; Peters et al., 1996). These demethylated hopanes

appear once biodegradation has reached heavy to severe levels (Wenger et al., 2002).

When present, the C29 25-norhopane can be observed using SIM GCMS (m/z 191 and m/z

177). No 25-norhopanes were observed in any of the Goddard samples.

Hopanes are also affected by thermal stress (Peters and Moldowan, 1991; Ourisson

and Albrecht, 1992). For example, with increasing thermal stress, the relative abundance

of hopanes to tricyclic terpanes decreases (Seifert and Moldowan, 1978). After thermal

maturity has reached the condensate window, it is possible for hopanes to be entirely

obscured by more resilient biomarkers such as the tricyclic terpanes.

Specific terpanes can also be used to infer depositional conditions. For example,

gammacerane is a C30 pentacyclic triterpane associated with stratified water columns

(Sinninghe Damasté et al., 1995). Conditions that favor stratified waters also tend to

favor increased salinity; therefore, gammacerane is loosely associated with hypersaline

depositional conditions (Sinninghe Damasté et al., 1995). A possible gammacerane peak

was observed in the m/z 191 chromatogram of AS-1. Gammacerane was not observed in

any samples with abundant tricyclic terpanes.

4.3.4. Steranes

Steranes were determined using SIM GCMS ( m/z 217 and m/z 218). These com-

pounds have a variety of precursors. Each of the regular steranes is believed to be at least
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partially derived from algae (Huang and Meinschein, 1979). Cholestane (C27) is specif-

ically sourced from red algae as well as phytoplankton (Huang and Meinschein, 1979).

Ergostane (C28) is strongly associated with various fungal precursors as well as diatoms

and phytoplankton (Huang and Meinschein, 1979; Volkman, 1986; Weete et al., 2010).

Stigmastane (C29) is associated with higher land plants as well as green algae (Huang and

Meinschein, 1979; Volkman, 1986). There is increasing evidence that bacteria may also

be able to biosynthesize sterols (Pearson et al., 2003).

The variety and overlap of regular sterane precursors is the primary reason that

steranes are poor indicators of depositional environment (Moldowan et al., 1985). One

exception is 24-n-propylcholestane, which is derived from 24-n-propylsterols synthesized

by the modern marine algae order Sarcinochrysidales (Moldowan et al., 1990). The

relationship between 24-n-propylcholestanes and marine oils and source rocks has been

well demonstrated (Peters et al., 1986; Moldowan et al., 1990). The presence of 24-n-

propylcholestanes was confirmed in all Goddard samples.

While the utility of steranes for organofacies interpretation is variable, the relative

abundances of the regular steranes is useful for correlation (Moldowan et al., 1985). For

all the Goddard samples, the dominant regular sterane was C27; the C29 regular sterane was

the next most abundant. The C28 regular steranes were typically present in low abundance.

A representative m/z 218 chromatogram is shown in Figure 28. For OC-1, SR-15, and AS-

1, the C29 sterane was most abundant followed by C27 and C28 (Figure 29). The overall

abundance of steranes was very low in both oil and source rocks extracts.

Regular steranes are also used as thermal maturity proxies. Thermal stress is primarily

reflected in the isomerization of the steranes. Thermal stress causes isomerization at C14
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and C17 for regular steranes; in thermally immature samples, the ratio of β β/(α α+β

β) isomers hovers around 0.25 and increases to 0.7 by the late oil window (Seifert and

Moldowan, 1986). The ratio of β β/(α α+β β) isomers for the C27, C28, and C29 regular

steranes appeared to have reached the equilibrium point in all samples except OC-1.

Unlike the regular steranes, the monoaromatic steranes (MAS) may be used to classify

depositional environment as well as thermal stress (Moldowan et al., 1985). There is less

overlap in the distributions of the C27-C29 MAS relative to the regular steranes (Moldowan

et al., 1985). The difference in distribution is attributed to MAS being preferentially

derived from a more limited set of sterol precursors than the regular steranes (Mackenzie,

1982; Moldowan et al., 1985). The MAS were observed using SIM GCMS ( m/z 253) but

were absent from all samples except the OC-1. In OC-1, MAS appeared to be present but

were too highly degraded to be interpreted. Triaromatic steranes (TAS), observed using

SIM GCMS ( m/z 231), were present in all samples. Two representative chromatograms

are shown in Figure 30. The TAS are thought to be form from thermally degraded MAS

(Moldowan et al., 1985). The ratio of TAS relative to the sum of both TAS and MAS

reaches one by the late oil window (Mackenzie et al., 1981; Mackenzie et al., 1982).

Short-chain homologs (C20-C22) of both the MAS and TAS were present only in low

abundance.
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Figure 30: m/z 231 chromatogram for abundant TAS in SR-2 and Ol-5
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4.3.5. Sesquiterpenoids

Bicyclic sesquiterpanes such as drimane and homodrimane are used as alteration

proxies. Both compounds are less resistant to biodegradation than steranes and hopanes

(Williams at al., 1986; Wenger et al., 2002). The presence of either drimane or homodri-

mane in all of the Goddard samples indicates that only slight biodegradation has occurred

(Williams et al., 1986; Wenger et al., 2002).

Bicyclic sesquiterpanes can also be used for correlation. All samples contained low

to moderate amounts of drimane (Figure 31a). Drimane was always present in greater

abundance relative to homodrimane in the Goddard samples. The slight variation in

the abundance of drimane for the Goddard samples is worth noting as other biomarker

parameters, such as the regular steranes and tricyclic terpanes, do not vary much within

the Goddard. The precursor for drimane is unknown but the ubiquity of drimane supports

a microbial source (Alexander et al., 1983). Variation in the abundance of drimane may

be related to variation in microbial organic matter input. Homodrimane was present in

low abundance in all samples except AS-1 (Figure 31b). Homodrimane was also present

in greater abundance relative to drimane in AS-1.
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Figure 31: m/z 123 chromatogram for (a) SR-10 and (b) AS-1
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4.3.6. Aryl Isoprenoids

Aryl isoprenoids are derived from biomarkers whose precursors are sulphur bacteria

(Summons and Powell, 1987). These bacteria thrive under conditions of photic zone

anoxia (Connock, 2015) and are associated with hypersaline depositional conditions

(Summons and Powell, 1987). Aryl isoprenoids can be observed in both the m/z 133

and m/z 134 ion chromatograms using GCMS SIM. Aryl isoprenoids were absent in all

samples except OC-1, SR-15, and AS-1. In both the OC-1 and SR-15, a series of aryl

isoprenoids was easily identified (Figure 32a). The AS-1 asphalt extract appeared to have

a less evident series of aryl isoprenoids. For all other samples lacking aryl isoprenoids,

abundant alkyl and methyl benzenes were observed (Figure 32b). The three samples that

contained aryl isoprenoids were also the only samples that has abundant hopanes rather

than tricyclic terpanes.

4.3.7. Pyrogenic Polycyclic Aromatic Hydrocarbons (PAHs)

Highly peri-condensed PAHs, such as benzo(a)pyrene (B(a)P), benzo(e)pyrene

(B(e)P), benzo(ghi)perylene (B(ghi)Per), and perylene (Pe) are considered to be indica-

tors of high-temperature, organic matter alteration (Arinobu et al., 1999; Kaiho et al.,

2013). As environmental indicators, the pyrogenic PAHs are therefore associated with

wildfires and the combustion of higher plants (Arinobu et al., 1999; Hasegawa, 2001;

Kaiho et al., 2013; Marynowski et al., 2015). Some of the pyrogenic PAHs are known

to have additional sources unrelated to forest fires. For example, a biologic precursor for

perylene is thought to be present in fungi (Grice et al., 2009) while benzo(e)pyrene is
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Figure 32: m/z 133 chromatogram for (a) OC-1 and (b) SR-10. Filled circles indicate
the aryl isoprenoids present in OC-1. Note the absence of the aryl isoprenoids in SR-10
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thought to be sourced from algae when found in source rocks deposited under euxinic

marine conditions (Grice et al., 2007). The presence of pyrogenic PAHs in marine source

rocks is also associated with erosion following forest fires (Kaiho et al., 2013). The abun-

dance of pyrogenic PAHs can be compared with higher plant biomarkers to distinguish

unaltered plant matter input from oxidized plant matter associated with wildfire events

(Kaiho et al., 2013). Thermal stress can rapidly degrade pyrogenic PAHs. Perylene is

completely degraded by 0.7 %Ro and only trace amounts of benzo(a)pyrene remain by

0.8 %Ro (Marynowski et al., 2015). Laboratory experiments have demonstrated that

benzo(e)pyrene and benzo(ghi)perylene likely form from thermally degraded perylene

(Marynowski et al., 2015).

Pyrogenic PAHs were observed using GCMS SIM ( m/z 252 and m/z 276). In the

oils and source rocks of the Goddard, the only pyrogenic PAHs observed were B(e)P

and B(ghi)P. Figure 33 displays several m/z 252 chromatograms that are representative of

the distribution of B(e)P for the Goddard samples. The B(e)P was observed in moderate

abundance in SR-8, SR-9, SR-10, SR-11, SR-12, SR-13, and SR-14 and low relative

abundance in SR-1, SR-2, SR-3, SR-4, and SR-5. The B(ghi)P was observed in trace

abundances only in SR-8, SR-9, SR-10, SR-11, SR-12, SR-13, and SR-14.
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Figure 33: m/z 252 chromatogram for (a) Ol-8, (b) SR-8, and (c) SR-14.
The peak for benzo(e)pyrene (B(e)P) is labeled
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5. Discussion

The objective of this study was to characterize regional trends in the organic geochem-

istry. Prior to this study, geochemical interpretations for the Goddard Formation were

limited to a handful of samples from surveys of source rocks and oils in the Anadarko

Basin (Jones and Philp, 1990; Kim and Philp, 2001; Wang and Philp, 2001). While thor-

ough geochemical analyses were conducted for these samples, interpretations were ge-

ographically limited and not truly applicable to a regional interpretation of the Goddard

Formation.

Results from this study were used to develop an organofacies interpretation for the

Goddard based on the model established by Pepper and Corvi (1995). Regional trends

in thermal maturity and biodegradation for Goddard samples within the SCOOP were

also observed. These interpretations were in turn used to evaluate the feasibility of

various mechanisms for tricyclic terpane enrichment. Finally, a signature assemblage

of biomarkers was identified and applied to oil and source rock correlation.

5.1. Organofacies

Characteristics of the organofacies defined by Pepper and Corvi (1995) are reviewed

in Section 1.3 (Figure 3). Bulk geochemical and biomarker data from this study support

that the Goddard most closely aligns with the Type B organofacies. The Type B

organofacies is associated with marine environments, siliciclastic sedimentation, and

algal and bacterial organic matter. The equivalent kerogen classification would be a Type

II marine kerogen (Pepper and Corvi, 1995).
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The abundance of the aliphatic fraction relative to the aromatic is loosely correlated

with depositional environment. For the majority of Goddard oils and extracts, the

aliphatic fraction is 75-90% of the extract. The abundant aliphatic fraction relative to the

aromatic fraction suggests a clastic-rich depositional environment equivalent to a Type B

organofacies (Peters et al., 2005). High thermal maturity also contributes to a relatively

abundant aliphatic fraction. The SEM analysis confirms the clay-rich lithology of the

Goddard. The low wax content of the n-alkanes for the oils and source rocks also supports

a normal marine, Type B organofacies over a lacustrine Type C organofacies. Precursors

associated with freshwater algae are also associated with waxier lipids than marine algae

(Pepper and Corvi, 1995; Waples and Curiale, 1999).

Pristane and phytane are both isoprenoid hydrocarbons derived primarily from phytol,

a component of chlorophyll a (Bendoraitis et al., 1962; Brooks et al., 1969; Didyk et

al., 1978). Bacterial lipids and zooplankton may also be minor sources of pristane,

phytane, phytol, and other intermediate precursors (Blumer and Thomas, 1965; Maxwell

et al., 1971; Didyk et al., 1978). Organic matter input can also influence the abundance

of pristane to phytane; greater abundances of pristane are often seen in source rocks

associated with waxy, terrestrial plant matter (Brooks et al., 1969).

The relative abundance of pristane to phytane is correlated with redox conditions.

Anoxic deposition conditions are thought to favor the preservation of phytane while oxic

conditions hasten the degradation of phytane (Didyk et al., 1978). Therefore, Pr/Ph values

below 0.8 are associated with anoxic depositional conditions while values greater than 3.0

are associated with oxic conditions (Didyk et al., 1978). The Pr/Ph values between 0.8-

3.0 are not considered highly specific on their own. The Pr/Ph values for the oils and
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source rocks in this study range from 0.77 to 1.86. The value at .77 is still considered to

be within the non-specific range for the Pr/Ph value.

Although the Pr/Ph values for the Goddard are not within the diagnostic ranges,

Pr/Ph values for the Goddard samples are still consistent with siliciclastic lithology

and marine depositional environments (Moldowan et al., 1985; Peters and Moldowan,

1993). The Pr/Ph values between 0.8 and 3.0 can also be corroborated with additional

biomarker parameters for more specific interpretations. For example, low abundances of

C27 diasteranes with low Pr/Ph values have been correlated to anoxic redox conditions

(Moldowan et al., 1986). Abundant diasteranes in most of the Goddard samples supports

suboxic to normal rather than anoxic redox conditions (Moldowan et al., 1986).

The methyltrimethyltridecylchroman (MTTC) ratio is another parameter that can be

compared to the Pr/Ph (Sinninghe Damasté et al., 1993). The MTTC ratio compares

the trimethyl chroman isomer to the abundance of all the methyl chromans (Sinninghe

Damasté et al., 1993). This ratio is used as a paleosalinity indicator; under normal marine

conditions, the trimethyl isomer is by far the most abundant of the chromans (Sinninghe

Damasté et al., 1987; Sinninghe Damasté et al., 1993). The trimethyl isomer was the

only chroman detected in both the extracts and oils (Figure 34). The MTTC ratios was

therefore approximately one for all samples. Correlation with Pr/Ph values suggests a

normal saline depositional environment for the Goddard (Sinninghe Damasté et al., 1993).

The presence of the 24-n-propylcholestanes in all oils and source rocks is a high-

confidence indicator of marine algae and therefore an open marine environment. The

C24/C23 tricyclic terpane ratio helps distinguish the Type A marine carbonate organofacies

from Type B marine siliciclastic organofacies (Zumberge et al., 2000). The ratio of
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Figure 34: m/ m/z 149 chromatogram for (a) Ol-2 and (b) SR-14. The trimethyl
isomer is labeled (5,7,8-triMe-MTTC)
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C24/C23 is greater than 0.6 for all Goddard oils and extracts, which is consistent with

marine and paralic shales rather than carbonate or marl source rocks (Zumberge et al.,

2000). The C25/C26 tricyclic terpane ratio distinguishes the Type B marine from Type C

lacustrine organofacies (Zumberge et al., 2000). The dominance of C25 relative to C26 also

supports a Type B marine organofacies over a Type C lacustrine organofacies. The low

abundance of both the C19 and C20 tricyclic terpanes in the oils and source rock extracts

terpanes implies that the source rock is neither a freshwater, lacustrine organofacies nor

one of the terrestrial organofacies (Tao et al., 2015).

The low abundance of gammacerane and the absence of aryl isoprenoids in the

Goddard source rocks and oils has several potential explanations. It is possible that the

precursor organisms for gammacerane and the aryl isoprenoids were simply not present

during the deposition of the Goddard. As a result of the Ouachita Orogeny, the Anadarko

Basin was increasingly isolated during the Late Mississippian. The Serpukhovian mass

extinction also caused a decrease in biodiversity across the globe (Shi and Waterhouse,

2010; Qiao and Shen, 2014). These circumstances could have led to a homogeneous and

slowly-changing biologic community in the Anadarko Basin that lacked the precursor

organisms for gammacerane and the carotenoid-derived aryl isoprenoids. A simpler

explanation is that water column stratification and photic zone anoxia did not occur during

deposition of the Goddard Formation as aryl isoprenoids are indicative of such conditions.

For example, aryl isoprenoids are highly specific for the Woodford Shale; this formation

was deposited during a global anoxic event when photic zone anoxia was well established

(Connock, 2016). The moderately high Pr/Ph values already suggest that anoxic and

euxinic conditions were absent during the deposition of the Goddard. Gammacerane and
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aryl isoprenoids are also loosely correlated with hypersaline conditions. The presence

of extended tricyclics in all samples but OC-1, AS-1, and SR-15 suggests that salinity

levels were only normal to slightly elevated during the deposition of the Goddard (Mello

et al., 1988). Extended tricyclic terpanes are typically reduced or absent in in the oils

and source rocks associated with hypersaline depositional environments (Philp et al.,

1989; de Grande et al., 1993). Normal salinity is consistent with the high MTTC ratios

mentioned previously. Abundant aryl isoprenoids and relatively low tricyclic terpanes

in OC-1, AS-1, and SR-15 suggest that these three source rocks were deposited under

different conditions than the Goddard samples described above. These three source rocks

may even be from a different formation; the presence of aryl isoprenoids in source rocks

in Oklahoma is closely associated with the Woodford Shale (Connock, 2015). Aryl

isoprenoids and additional biomarker parameters for the Woodford Shale suggest photic

zone anoxia and a highly stratified water column (Connock, 2015).

The presence of fusinite macerals in SR-14 and moderately abundant B(e)P in many of

the extracts suggest a contribution of organic matter from wild fires to Goddard sediments

(Arinobu et al., 1999; Hasegawa, 2001; Kaiho et al., 2013; Marynowski et al., 2015). The

Pr/Ph values above 0.8 and a lack of aryl isoprenoids support that B(e)P originates from

higher plants rather than algal organic matter deposited in euxinic conditions (Grice et al.,

2007.) The absence of PAHs such as Pe and B(a)P can be attributed to the high thermal

maturity of the source rocks samples; if either Pe or B(a)P were present in the Goddard,

they would have been completely thermally degraded by 0.8 %Ro (Marynowski et al.,

2015). Increased seasonality during the LPIA would have favored seasonal wildfires

and continual input of burnt organic matter (Shi and Waterhouse, 2010). Atmospheric
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oxygen levels above 30% during the Late Mississippian would also have been conducive

to wildfires (Graham et al., 1995; Shi and Waterhouse, 2010). A minor contribution

of terrestrial organic matter is still compatible with the characterization of the Goddard

Formation as a Type B organofacies. Erosion following wildfires could have dispersed

burnt plant matter into paralic and marine settings, although fusinite deposition is likely

limited to proximal, rather than deep marine, depositional environments (Scott and Jones,

1994).

5.2. Thermal Maturity

Trends in Tmax and calculated vitrinite reflectance for the Goddard source rocks (Table

2) are consistent with overall trends in thermal maturity for the Anadarko Basin (Carter et

al., 1998). Maturity values are similar to the stratigraphically proximal Woodford Shale

(Cardott, 2012b). A comparison of n-alkanes to isoprenoid shows that the Goddard

samples are thermally mature and have not been greatly affected by biodegradation

(Shanmugam, 1985). Sample OC-1 is the only immature sample in this study. The

thermal maturities of the remaining extracts fall within late oil window. This assessment

is consistent with the reports that unconventional Goddard production in the SCOOP is

approximately 50% oil and 75% liquid overall (Continental Resources, 2014).

The low abundance of hopanes in both oils and extracts rendered many of the hopane-

based thermal maturity parameters unusable. The overall scarcity of hopanes would seem

to indicate severe thermal alteration. However, the level of thermal stress required to

completely degrade the hopanes would also severely degrade the n-alkanes, isoprenoids,
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tricyclic terpanes, and steranes. No such alteration was observed in any samples lacking

hopanes. The use of tricyclic terpanes for thermal maturity proxies was also avoided, as

the general abundance of tricyclic terpanes did not appear to be related to thermal stress.

The equilibrium value of the β β/(α α+β β) ratio for regular sterane isomers appears

to have been reached for all oils and extracts except OC-1. The equilibrium value for this

ratio is typically reached around the end of the late oil window (Seifert and Moldowan,

1986) which is consistent with the calculated vitrinite reflectance for the source rocks and

the condensate-like appearance of many of the oils.

The ratio of TAS/(TAS+MAS) in both oil and source rocks samples appears to have

reached the equilibrium value of one. This parameter indicates that the maturity of these

samples has at least reached the late oil window (Mackenzie et al., 1982). The relative

abundance of short-chain (C21-C22) homologs for both the MAS and TAS serves as a

maturity parameter for highly mature samples and is applicable from the late oil window

into the condensate window (Mackenzie et al., 1981; Riolo et al., 1986). With increasing

maturity, these short-chain homologs become more abundant relative to the regular MAS

and TAS (Mackenzie et al., 1981; Riolo et al., 1986). The low abundance of these short-

chain homologs indicates that the maturities for both oil and source rocks samples have

not progressed much farther than the beginning of the late oil window (Mackenzie et al.,

1981; Riolo et al., 1986). These observations are consistent with the vitrinite reflectance

values for the source rock extracts (Mean %Ro=1.0) as well as the inferred thermal

maturity for the oils.
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5.3. Biodegradation

An initial review of the n-alkane and isoprenoid distributions for Goddard oils sug-

gests that the extent of biodegradation for all samples is slight at most. The overall distri-

bution of the n-alkanes conforms to the typical distribution for a mature, nondegraded oil.

Exceptions include AS-1 where n-alkanes have been entirely degraded and SR-15 which

lacks n-alkanes below C15 and also displays reduced C18-C21 n-alkanes. A relative com-

parison of n-alkanes and isoprenoids suggests only slight biodegradation for the Goddard

oils (Shanmugam, 1985; Figure 24). A B-F plot also supports that most of the oils group

are only slightly biodegraded (Thompson, 1987; Figure 22).

Whole oil-gas chromatograms for the Goddard oils indicate the possibility mixing,

such that a later charge of either oil or condensate may have obscured evidence of

early biodegradation. However, mechanisms for mixing in an unconventional mudstone

reservoir are uncertain. Evidence for mixing or multiple episodes of generation is

insufficient to assert that any heavy or severe biodegradation could have been masked

by mixing of biodegraded and fresh oil.

The presence of regular steranes, TAS, and tricyclic terpanes also supports that

biodegradation has at most been slight (Wenger, 2002). The low abundance of hopanes

and MAS might be assumed as an indicator of heavy to severe biodegradation. However,

as previously discussed, the low abundance of MAS is likely caused by the high thermal

maturity of both oils and source rocks. The severe levels of biodegradation required to

affect the MAS would also degrade the tricyclic terpanes, TAS, and n-alkanes (Wenger,

2002), and these biomarkers are all abundant in the Goddard oils and source rocks. The
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low abundance of hopanes is likely related to the Goddard’s organofacies and not severe

levels of biodegradation.

No 25-norhopanes were observed in any of the oils. The 25-norhopanes are thought

to form during microbial methylation of hopanes (McCaffrey et al., 1996; Peters et al.,

1996). Production of the 25-norhopanes is thought to possible only under anaerobic

conditions (Bennett et al., 2007). The absence of 25-norhopanes may indicate that

anaerobic conditions were not achieved during the biodegradation of the Goddard oils.

Additional biomarker parameters only suggest that slight to moderate biodegradation has

affected the Goddard oils. If the Goddard oils were mixtures of heavily biodegraded and

unaltered oils, then the addition of fresh oil would also have replenished some of the

more conspicuously absent biomarkers such as the hopanes and steranes. Therefore, it is

proposed that the level of biodegradation affecting the Goddard oil is at most slight.

5.4. Tricyclic Terpane Signature

Abundant tricyclic terpanes are often explained by thermal maturity, biodegradation,

and the presence of Tasmanite fossils (Zhusheng et al., 1988; Kruge et al., 1990a; Kruge

et al., 1990b; Philp et al., 1992; Simoneit et al., 2005). Occasionally, fractionation

mechanisms related to expulsion and migration are invoked (Kruge et al., 1990a; Kruge

et al., 1990b). Fractionation is difficult to support, however, as the complexities of this

process are still poorly understood.

As previously discussed, biodegradation cannot explain the dominance of the tricyclic

terpanes in the oils and extracts of the Goddard Formation. Severe levels of biodegrada-
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tion would be needed to entirely degrade the hopanes (Wenger et al., 2002), but there is no

evidence of such extreme biodegradation in any of the Goddard samples. Sample SR-15 is

excluded from this last statement, as it likely originates from a non-Goddard source rock.

Severe thermal stress also fails to explain the relative abundance of tricyclic terpanes in

the Goddard. All of the Goddard samples were within the beginning of the late oil win-

dow based on multiple maturity proxies (Mackenzie et al., 1981; Riolo et al., 1986; Seifert

and Moldowan, 1986). Such levels of thermal stress would be insufficient to entirely de-

grade the hopanes. Thermal stress sufficient to affect the hopanes would certainly affect

additional biomarkers including the steranes, bicyclic terpanes, and n-alkanes (Tissot et

al., 1971; Shanmugam, 1985; Seifert and Moldowan, 1986). Again, there is no evidence

for such severe alteration in the Goddard. At most, slight to moderate biodegradation and

thermal stress may have enhanced an existing abundance of tricyclic terpanes.

Petrographic analyses of Goddard core samples only indicate a low abundance Tas-

manite fossils for SR-14. Sample OC-1 contained moderate amounts of Tasmanite fossils,

but as discussed in the next section, this sample was determined not to be sourced from

the Goddard. No Tasmanite fossils were definitively identified in SEM analyses.

The absence of classic, spherical Tasmanite fossils does not entirely preclude other

forms of Tasmanites from being present in the Goddard. As mentioned previously, the

Tasmanite fossil is thought to be similar to the marine, Pachysphaera algae (Simoneit et

al., 1990). These algae have a two-phase life cycle that consists of a spherical, non-motile

phase and a non-spherical, motile phase (Guy-Ohlson and Boalch, 1992). It is possible

that Tasmanites may be abundant in the Goddard but in a form that has not yet been

recognized. However, it is unlikely that only one life-cycle phase of the Tasmanite would
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be present to the exclusion of all other phases over any length of geologic time.

If the Goddard truly lacks Tasmanite fossils, that would support the existence of a

non-Tasmanite precursor for the tricyclic terpanes (Simoneit, 1990; Aquino Neto et al.,

1992; Azevedo, 1992; Dutta et al., 2006). Non-Tasmanite sources would still likely

be algal-like precursors that would thrive within a Type B, marine organofacies. The

consistent tricyclic terpane signature of the Goddard supports a precursor organism prone

to widespread blooms that would produce a homogeneous source of organic matter.

5.5. The Goddard Fingerprint

5.5.1. Goddard Oil-Source Rock Correlation

The overall geochemical characteristics for both the Goddard oils and source rocks in

this study were strikingly consistent. As the source rock and oil samples were collected

from locations throughout the SCOOP, the geochemical fingerprint for the Goddard is

highly applicable for oil and source rock correlation in this region of the Anadarko Basin.

The most diagnostic biomarker family for both the oils and source rocks of the

Goddard Formation is the tricyclic terpanes (Figure 26). To date, no other source rock in

Oklahoma has been observed to have such an abundance of these biomarkers. Globally,

the Goddard is one of only a few source rocks that has a greater abundance of tricyclic

terpanes relative to hopanes yet is not characterized as a Tasmanite source rock (Zhusheng

et al., 1988; Kruge et al., 1990a; de Grande et al., 1993). The distribution of tricyclic

terpanes is virtually identical in both oils and source rock extracts. The most abundant

tricyclic terpane peak for source rocks was C23. The C28 and C29 tricyclic terpanes were
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present in equal or greater abundance relative to the C23 peak for most of the oils.

Cholestane (C27) was the most abundant regular sterane in all of the Goddard oils

and source rocks. Ergostane (C28) was the least abundant peak for all of the oils and

source rocks. In comparison, the Woodford Shale tends to have a lower abundance of

both cholestane (C27) and ergostane (C28) relative to stigmastane (C29).

The low abundance of MAS and high abundance of TAS in the oils and source rocks

Goddard may have applications for correlation. The low abundance of MAS is mostly

explained by the high maturity of both the oils and source rocks in this study (Mackenzie

et al., 1982). However, the absolute absence of MAS in the majority of samples is

unusual, even for source rocks and oils that have reached the late oil window in terms of

thermal maturity. Other thermally mature source rocks in the Anadarko Basin, such as the

Woodford, appear to retain at least a moderate abundance of MAS at similar maturities.

Goddard oils and source rocks also contain distinct distributions of bicyclic sesquiter-

panoids. Homodrimane is essentially absent from both source rock and oils while drimane

is typically abundant in both types of samples. In comparison, the Woodford Shale has

abundant homodrimane and only trace drimane.

The absence of proxies for salinity and water column stratification is also characteris-

tic of all the Goddard oils and source rocks in this study. The m/z 133 and m/z 134 chro-

matograms are dominated by methyl- and alkylbenzenes rather than the aryl isoprenoids.

The lack of aryl isoprenoids in the Goddard is a stark contrast to formations such as the

Woodford Shale which are rich in aryl isoprenoids (Connock, 2015).
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5.5.2. Non-Goddard Oils and Source Rocks

While the majority of oil and core samples conformed to the biomarker fingerprint

described above, three samples deviated from the biomarker assemblage associated with

the Goddard: OC-1, AS-1, and SR-15. The distribution of n-alkanes for OC-1 was

similar to that seen in the Goddard; the short-chain C12-C18 n-alkanes are most abundant

and the sample displayed a low wax content. Sample SR-15 had a bimodal n-alkane

distribution unlike any other rock extract. The absence of n-alkanes in AS-1 was attributed

to biodegradation.

The three rock extracts also lacked the abundant tricyclic terpane seen in the Goddard.

Instead, all three extracts had the more typical distribution of hopanes (Figure 27). The

low abundance of tricyclic terpanes suggests that the depositional environment and the

organic matter input for these three samples was different than the Goddard oils and

source rocks. Sample AS-1 was the most highly degraded sample in this study; the

absence of the tricyclic terpane signal in AS-1 strongly implies that the abundant tricyclic

terpane signal in the Goddard is not caused by biodegradation. Sample SR-15 is also

likely within the same range of thermal maturity as the Goddard core samples, which

suggests that thermal maturity is not the primary cause for the abundant tricyclic terpane

signal.

The sterane fingerprint for the three extracts are also distinct from the Goddard

samples. The dominant regular sterane in OC-1, AS-1, and SR-15 was stigmastane (C29)

and not cholestane (C27). The 24-n-propylcholestane is also only abundant in the AS-1

extract. In SR-15 and OC-1, 24-n-propylcholestane is present in relatively low abundance
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compared to the Goddard oils and source rocks. Sample OC-1 also had abundant MAS,

although this abundance is likely due to the lower maturity of the sample.

Aryl isoprenoids were observed in OC-1 and SR-15 and possibly in AS-1 sample.

Biodegradation may have affected the aryl isoprenoid abundance in AS-1.

The biomarker signatures for the three extracts are still consistent with a Type

B, siliciclastic marine organofacies. However, the depositional environment for these

samples may have been more saline than the depositional environment inferred for the

Goddard oils and source rocks. A more saline depositional environment may partially

explain the dominance of pentacyclic terpanes relative to the tricyclic terpanes.

Both OC-1 and SR-15 were originally identified as Springer (Ham et al., 1990;

Jones and Philp, 1990). It is possible that both samples are from one of the unnamed

shales of the Springer Group rather than the Goddard Formation. As mentioned by both

Westheimer (1956) and Peace (1965), the physical appearance of the Goddard Formation

and overlying shales in the Springer group is almost identical. Sample OC-1 was also

collected from the Ardmore Basin. The distinct depositional and biologic conditions

present in the Anadarko Basin during the Late Mississippian may have been absent from

the Ardmore Basin. Sample AS-1 was collected from an oil seep anecdotally attributed to

the Goddard Formation (Ardmore Geological Society, 2015). Based on the data collected

in this study, the source of the oil at this seep does not exhibit any of the biomarker

characteristics associated with the Goddard Formation. The biomarker assemblage for

AS-1, specifically the abundant aryl isoprenoids, is more characteristic of the Woodford

Shale (Connock, 2015).
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6. Conclusions

Geochemical analyses of source rock extracts and oils characterize the Goddard as a

Type B organofacies. The Type B organofacies describes a marine depositional environ-

ment dominated by siliciclastic sedimentation. Biomarkers associated with hypersalinity,

water column stratification, and euxinia were not observed in any Goddard samples; this

distinctive absence distinguishes the Goddard from the Woodford Shale, which is rich in

monoaromatic steranes, carotenoids, and aryl isoprenoids and is highly associated with

euxinic, saline, and stratified waters.

The abundance of tricyclic terpanes in oils and source rocks from the Goddard is likely

related to unique climatic and biologic conditions present in the Anadarko Basin during

the Late Mississippian. The Late Mississippian Serpukhovian mass extinction would

have favored low-diversity communities with the potential to leave undiluted geochemical

signatures in the rock record. The similarity between the biomarker assemblages of oils

and source rocks supports such a homogeneous organic matter source. The onset of

glaciation in the Late Mississippian and subsequent increase in loess production would

also have facilitated nutrient seeding and algal blooms in marine environments. An algal

bloom model is consistent with the laterally homogeneous biomarker fingerprint for the

oils and source rocks of the Goddard and the inferred algal precursor for the tricyclic

terpanes.

A specific precursor for the tricyclic terpanes is still undetermined. While tricyclic

terpanes have long been associated with Tasmanites, petrographic and SEM analysis

identified very few of these algal-like fossils. It is more likely that the tricyclic terpanes in
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the Goddard are sourced from a yet-unknown algal precursor. Whether tricyclic terpanes

are sourced from Tasmanites or another green alga, the paleoclimate interpretation for

the Late Mississippian supports a low-diversity, high-abundance community consistent

with the laterally and vertically homogeneous biomarker signal of the Late Mississippian

Goddard across the Anadarko Basin.

The abundance of tricyclic terpanes in the Goddard may have been enhanced by

thermal stress.; the majority and of the oil and source rock samples in this study

were within the late oil window. Thermal alteration may have caused preferential

decomposition of hopanes relative to the tricyclic terpanes. However, thermal stress alone

does not explain the relative abundance of tricyclic terpanes relative to hopanes; if that

was the case, then one would expect to see abundant tricyclic terpanes in all highly mature

source rocks and fluids. Evidence for biodegradation in the Goddard was also minimal.

Biodegradation likely played only a small role in enhancing the abundant tricyclic terpane

signature.

The above interpretation has several implications for unconventional exploration

and production in the Goddard. A fairly homogeneous source rock could reduce risk

regarding product quality as the characteristics of produced fluids would be consistent.

The exception to this observation is the apparent mixing in the oils. Identification

of the Goddard as a Type B organofacies will also improve the basin models for the

Goddard. The possibility of a single, algal organic matter source would influence the

kinetic behavior of the Goddard; source rocks dominated by a homogeneous source of

algal sources are well correlated with narrow generation and expulsion windows. The

potential for early expulsion from the Goddard should be considered when placing wells
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and calculating estimated ultimate recovery (EUR). Additionally, oil expelled from the

Goddard may have migrated and mixed with Woodford or Mississippian sourced oils.

While the Goddard has a chemical fingerprint distinct from the other major source rocks

in the Anadarko Basin, it is undetermined how much mixing is needed to obscure the

abundant tricyclic terpanes and introduce sufficient abundances of biomarkers typically

absent from the Goddard. The uncertainty regarding mixing has implications for mass-

balance accounting for source rock generation in the Anadarko Basin of Oklahoma.
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7. Future Work

The intent of this study was to evaluate the geochemistry of the Goddard Formation

and assess depositional organofacies, thermal maturity, and possible reasons for an

unusually high abundance of tricyclic terpanes. However, there were additional areas

of work not explored in this study which would add value to exploration in the Goddard

Formation. Suggested areas of future work are listed below.

• Stable isotope analysis using carbon isotopes could be used to detect signatures

indicative of algal blooms or for particular local climate conditions. Such work

could use the core and outcrop samples from this study as no isotope analysis has

been done on the samples.

• As the source rocks in this study are rare examples of a tricyclic terpane-rich,

Tasmanite fossil-poor source rock, additional SEM and petrographic analysis may

help identify non-Tasmanite precursors.

• High-resolution outcrop studies of the Goddard could reveal vertical trends in

biomarker fingerprints. No suitably extensive Goddard outcrops were able to be

located for this study. The samples used in this study were only able to reveal

lateral trends within the Anadarko Basin

• Additional outcrop and core samples from the Ardmore Basin could be evaluated.

Sample OC-1 was collected in the Ardmore Basin from a location mapped as

Springer but did not display the typical biomarker assemblage associated with the

Goddard source rock and oil samples in this study. As the Goddard is physically
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indistinguishable from the shales of the Springer Group in the field, OC-1 may

have come from one of the unnamed Springer shales. Another possibility is that

conditions responsible for the Goddard Formation’s distinct biomarker assemblage

may only have existed in the Anadarko Basin and not in the Ardmore Basin.

• The biomarker fingerprint developed for the Goddard Formation could assist with

surficial mapping of the Goddard Formation and the overlying Springer Shales,

specifically the Rod Club Shale. While the physical appearance of the Goddard

Formation and the Rod Club shale may be similar, the biomarker assemblage may

be sufficient to distinguish the two shales.
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Sinninghe Damasté, J. P., Kenig, F., Koopmans, M., Koster, J., Schouten, S., Hayes, J.
M., Leeuw, J. W., 1995. Evidence for gammacerane as an indicator of water column
stratification. Geochimica et Cosmochimica acta 59, 1895-1900.

Smith, L. B. Jr., Read, J. F., 2000. Rapid onset of late Paleozoic glaciation on
Gondwana: Evidence from Upper Mississippian strata of the Midcontinent, United
States. Geology 28, 279-282.

Soreghan, G. S., Soreghan, M. J., Hamilton, M. A., 2008. Origin and significance of
loess in late Paleozoic western Pangaea: A record of tropical cold? Paleogeography,
Paleoclimate, Paleoecology 268, 234-259.

Stratas Advisors, 2014. Springer Shale’s Economic Leap out from the pack: Insights
from North American Shale Service.

Summons, R. E., Powell, T. G., 1987. Identification of aryl isoprenoids in source rocks
and crude oils: Biological markers for the green sulphur bacteria. Geochimica et
Cosmochimica Acta 51, 557-566.

Tao, S., Wang, C., Du, J., Liu, L., Chen, Z., 2015. Geochemical application of tricyclic
and tetracyclic terpanes biomarkers in crude oils of NW China. Marine and Petroleum
Geology 67, 460-467.

Thompson, K. F. M., 1987. Fractionated aromatic petroleums and the generation of
gas-condensates. Organic Geochemistry 11, 573-590.

Tissot, B. P., Califet-Debyser, Y., Deroo, G., Oudin, J. L., 1971. Origin and evolution of
hydrocarbons in early Toarcian shales, Paris Basin, France. American Association of
Petroleum Geologists 55, 2177-2193.

Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and occurrence. Springer. Berlin.

121



Treibs, A., 1936. Chlorophyll and hemin derivatives in organic mineral substances.
Angewandte Chemie 49, 682-686.

U.S. Energy Information Administration, 2011. Review of emerging resources: U.S.
shale gas and shale oil plays: Analysis & Projections.
http://www.eia.gov/analysis/studies/usshalegas

Visher, G. S., 1989. Anadarko Basin history from stratigraphic response patterns. In:
Johnson, K. E. (Ed.), Anadarko Basin Symposium. Oklahoma Geological Survey
Circular 90, 221-224.

Volkman, J. K., 1986. A review of sterol markers for marine and terrigenous organic
matter. Organic Geochemistry 9, 83-99.

Wang, H .D., Philp, R. P., 2001. Geochemical characterization of selected oils and
source rocks from the Chester Formation, Springer Formation, and Morrow Group of the
Anadarko Basin. In: Johnson, K. E. (Ed.), Pennsylvanian and Permian Geology in the
Southern Midcontinent. Oklahoma Geological Survey Circular 104, 41-57.

Waples, D. W., Curiale, J. A., 1999. Treatise of petroleum geology, Handbook of
petroleum geology: Exploring for oil and gas traps. Chapter 8: Oil-oil and oil-source
rock correlations: American Association of Petroleum Geologists Special Volumes.

Weete, J. D., Abril, M., Blackwell, M., 2010. Phylogenetic distribution of fungal sterols.
PLoS ONE 5 (5) e10899.

Wenger, L. M., Davis, C. L., Isakson, G. H., 2002. Multiple controls on petroleum
biodegradation and impact on oil quality. Society of Petroleum Engineers. Reservoir
Evaluation & Engineering 5, 375-383.

West, N., Alexander, R., Kagi, R. I., 1990. The use of silicalite for rapid isolation of
branched and cyclic alkane fractions of petroleum. Organic Geochemistry 15, 499-501.

Westheimer, J. M., 1956. The Goddard Formation. Petroleum Geology of Southern
Oklahoma 1, 392-396.

Williams, J. A., Bjorøy, M., Dolcater, D. L., Winters, J. C., 1986. Biodegradation in
South Texas Eocene oils—Effects on aromatics and biomarkers. In: Leythaeuser, D.,
Rullkotter, J. (Eds.), Advances in Organic Geochemistry 1985. Pergamon Press, Great
Britain. Organic Geochemistry 10, 451-461.

122



ZetaWare Inc., 2015. KinEx [computer software]. Available from
http://www.zetaware.com/products/kinex.

Zhao-An, F., Philp, R. P., 1987. Laboratory biomarker fractionations and implications
for migration studies. Organic Geochemistry 11, 169-175.

Zhusheng, J., Philp, R. P., Lewis, C. A., 1988. Fractionation of biological markers in
crude oils during migration and the effects on correlation and maturation parameters. In:
Mattavelli, L., Novelli, L. (Eds.), Advances in Organic Geochemistry 1987. Pergamon
Press, Great Britain. Organic Geochemistry 13, 561-571.

Zumberge, J. E., Illich, H., Brown S., Cameron, N., 2000. Biomarker geochemistry of
lacustrine-sourced crude oils: A world-wide survey. In: American Association of
Petroleum Geologists International Conference and Exhibition, October, 2000,
Indonesia, American Association of Petroleum Geologists Search and Discovery, 90913.

123



Appendix A. Whole Oil-Gas Chromatograms
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Appendix B. GC Aliphatic Chromatograms
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Appendix C. GCMS m/z 191 Chromatograms
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