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Abstract

My research uses cutting-edge econometric techniques to isolate and identify

the impact of various changes in the U.S. airline industry, whether coming from

an endogenous change in the market structure such as merger, or coming from a

(potentially) exogenous policy change such as the tarmac delay rule. My research

is primarily empirical and I have utilized large microeconomic data from the

airline industry.

In my first chapter, I use genetic matching and difference-in-difference to esti-

mate the impact of airline merger on vertical and horizontal product differentia-

tion. Different from many industries, airline services can be viewed as networks.

Correspondingly, merger can lead to significant network effects, in addition to

the commonly claimed synergy (economies of scale). There have been several

existing studies trying to link market structure with on-time performance and

my paper adds to this literature. The main contributions of our paper are three-

folds. First, I focus on one particular merger (between U.S. Airways and America

West) and carefully select sample periods to avoid contamination of confound-

ing factors. Second, I use panel matching together with endogenous weights to

construct a properly matched group: those that did not experience merger but

best resemble the treated group (from merging carriers). Comparing the treated

and matched groups allows us to do a proper difference-in-difference estimation

to evaluate the impact of merger. Third, and probably most important, while

I analyze the impact of merger on arrival delay, I take it one step further by

treating arrival delay as one measure of quality (vertical product differentiation).

I then introduce several other measures for vertical differentiation as well as hor-

izontal differentiation. To my knowledge, this is the first study of the U.S. airline
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industry taking this perspective.

To estimate the causal impact of merger, I use panel matching with a differ-

ence in difference approach. Maintaining the time series property is important in

terms of constructing a properly matched group, especially for the merger case.

To address this, I use the genetic algorithm to find the optimal weight for each

covariate per time period. Based on the optimal weights, a generalized Maha-

lanobis distance matrix is created. I construct the matched group by identifying

the panels with a minimum distance to the treated panels. Conditional on the

balanced covariates, I are able to address the selection issue and then use a diff-

in-diff estimation to gauge the impact of merger. Our results show that merger

reduces arrival delay (by 0.7 minutes), number of flights per route (by 10.7),

number of routes (by 61) and destinations (by 2.8). On the other hand, merger

has mostly insignificant impacts on our measures of horizontal differentiation.

My second chapter’s topic is motivated by both personal experience and the

extensive media coverage about the lengthy tarmac delay. As a response to

multiple lengthy tarmac delay cases, U.S. Dept of Transportation (DOT) released

a new tarmac delay rule in December 2009. The purpose of the rule is to eliminate

the lengthy tarmac delay and protect consumers’ rights. Carriers face a severe

financial penalty if they fail to provide opportunities for passengers to deplane

after a three-hour tarmac delay for domestic flights. This paper aims to examine

the impact of the tarmac delay rule, including carriers’ responses to the rule.

My third chapter studies the impact of quality uncertainty on flight tempo-

ral differentiation. There is an extensive literature studying optimal horizontal

product differentiation. It is well documented that when a firm moves its prod-

uct closer to its rival’s product space, there are two opposite effects on the firm’s

profitability: market share effect which improves profit and competition effect (or

xi



price effect) which reduces profit. More recently, Bester (1998) links the impact

of quality uncertainty with the pattern of equilibrium horizontal differentiation.

Their main finding is that quality uncertainty reduces the intensity of the price

effect, resulting in lower horizontal differentiation in the equilibrium.

Using two measures of horizontal differentiation: Time to noon and Gini co-

efficient, I directly test this hypothesis. After using a novel instrumental variable

to correct for endogeneity, I find that higher quality uncertainty is linked to less

horizontal differentiation, supporting Bester’s theoretical prediction. With higher

quality uncertainty, travelers do not view firms’ flights as close substitutes even

though their departure times may be close. This reduces competition intensity

(the price effect). As a result, the market share effect will dominate the price

effect and results in an “aggregation” in terms of horizontal differentiation.
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Chapter 1

An Application of Genetic Matching on the US Airlines

Merger

1.1 Introduction

Airline industry is a significant part of the U.S. economy. In 2012, it accounted

for “5.4% of our gross domestic product (GDP), contributed $1.5 trillion in total

economic activity, and supported 11.8 million jobs” (FAA 2014 economic impact

report). The U.S. airline industry has experienced significant consolidation in the

last decade or so. It is important in both theory and practice to understand the

impact of such consolidation. Much of the focus in existing studies has been on

pricing, in particular, the relationship between competition and price dispersion,

and the results have been mixed.1 Also commonly studied is airlines’ on-time

performance. Rupp, Owens and Plumly (2001) and Mazzeo (2003) both look

at the link between on-time performance and competition but reach different

conclusions. Prince and Simon (forthcoming) consider 5 recent mergers in the

airline industry and investigate how these mergers affect on-time performance.

They find that merger has a negative (worse on-time performance) short-term

impact, but no or positive long-term impact.

In this paper, we study the impact of one particular merger – that between

U.S. Airways and America West which took place in 2005. It is the first significant

merger since 2000, and the first of many to follow in the wave of industry consoli-

dation. US Airways, the nation’s then seventh-largest airline, and America West

1See, for example, Borenstein and Rose (1994), Stavins (2001), Geradi and Shapiro (2009) and
Dai, Liu and Serfes (2014).
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(the eighth-largest), were reported to have 361 planes, with 44,100 employees and

$10 billion in annual revenue at the time of merger. They had little overlap in

the routes they operated on: US Airways concentrated in the east coast while

America West in the west coast. Their merger did not immediately change how

the two companies operated, but they were to coordinate their schedules and

integrate their frequent flier programs over time. All flights would operate under

US Airways’ name after merger was completed.

For on-time performance, we focus on arrival delay and we find that merger

reduces the merging carrier’s arrival delay by about 1.3 minutes.2 Treating ar-

rival delay as a measure of quality (vertical differentiation), we then extend the

analysis to other measures of vertical differentiation. These measures include

number of flights per route, number of routes and number of destinations. Using

matching method, we find significant impact of merger on all these measures. In

particular, after merger, number of routes goes down by about 116 and number

of destinations decreases by about 1.96. Number of flights goes up after merger,

by almost 14 flights per route. Ignoring price impact, merger benefits consumers

with lower arrival delay and more flights, but hurts consumers with fewer options

(routes and destinations) to choose from.

Next, we analyze another aspect of differentiation across airlines - horizontal

differentiation. In contrast to vertical differentiation where all consumers prefer

high quality to low quality (everything else the same), under horizontal differenti-

ation, some consumers prefer one product while others prefer another. Horizontal

differentiation in the airline industry has scarcely been analyzed. We model and

measure horizontal differentiation by comparing the scheduled departure times

2To put this into perspective, average arrival delay in our sample is 12.277 minutes. Mazzeo
(2003) finds that a flight on a monopoly route is on average 1.35 minutes later than a similar
flight on a competitive route.
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(view scheduled departure time as a characteristic of the products). If flights

have the same scheduled departure time, then there is minimum product differ-

entiation on this product characteristic. But if one flight departs at 8am while

another at 10am, then different travelers may have different preferences between

these two flights (horizontal differentiation). To measure the degree of horizontal

differentiation, for each flight, we calculate the gap (in minutes) between this

flight and the closest (in terms of departure time) other flight. In one setting

(All carriers), we impose no constraint on the identity of the carrier of the closest

flight. In the other setting (Between carriers), we restrict the closest flight to

be from a different carrier. Using the gaps for flights, we then construct two

measures of horizontal differentiation: one scale-dependent (Gap) and the other

scale-independent (Gini).3 Our results show that merger reduces Gap All (gap

in the All carriers setting), but has only insignificant impact if we restrict the

identity of next flight’s carrier to be from different carriers (Gap Between) or

if we consider scale-independent measures (Gini All and Gini Between). It is

possible that this merger has little impact on the degree horizontal differentia-

tion, or perhaps, or more likely, that the impact was not captured by our specific

measures of horizontal differentiation. More research is needed in this direction

to improve our general understanding of merger impact.

1.1.1 Literature review

Our paper is closely related to the literature studying on-time performance in the

airline industry, in particular the link between on-time performance and compe-

tition. There have been increasing concerns regarding both increasing market

3More details about the construction of these horizontal differentiation measures can be found
in the Appendix.
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concentration and worsening flight delays in the U.S. airline industry. Rupp,

Owens and Plumly (2001) find that when routes become more competitive, on-

time performance gets worse. In contrast, Mazzeo (2003) finds that relative

to routes with competition, monopoly routes experience significantly more and

longer flight delays. In our paper, we use panel data together with matching

method to analyze the impact of merger on product differentiation, with the

commonly studied arrival delay as one measure of product differentiation.

Our paper is also related to the literature studying the impacts of merger.

Much of the focus is on how merger affects prices which typically centers on two

opposite mechanisms (see, for example, Carlton et. al. (1980), Kim and Singal

(1993) and Focarelli and Panetta (2003)). On one hand, merging firms may take

advantage of economies of scale or economies of scope, leading to lower costs and

potentially lower prices (efficiency effect). On the other hand, merger increases

market concentration and higher prices can be sustained as a result (market

power effect). Overall, the impact of merger on prices can be ambiguous. This

ambiguity in theory carries through to empirical settings where the findings are

also mixed, using data from the airline industry, the banking sector as well as the

hospital industry (e.g., Kim and Singal (1993), Prager and Hannan (1998) and

Dafny (2005)).4 In contrast to the abundance of literature on the price impacts

of merger, little has been done on the impact of merger on quality, at least for

the airline industry.5 The mechanisms of quality impacts are in similar spirit as

the mechanisms of price impacts. For example, merger allows merging carriers

to combine their resources and consolidate their services, potentially leading to

higher qualities. On the other hand, with less competition, merging carriers may

feel less pressure to compete on quality and thus may have an incentive to reduce

4See Prince and Simon (forthcoming) for a more detailed discussion of this literature.
5Exceptions include Prince and Simon which we will discuss in detail next.
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their investment in quality.6

Our paper is most closely related to Prince and Simon who analyzes the

impact of merger on on-time performance in the U.S. airline industry. Prince and

Simon analyze five recent U.S. airline mergers, focusing on several measures of

on-time performance. Distinguishing short-run and long-run impacts of merger,

they find that merger tends to reduce merging carrier’s on-time performance in

the short run (maybe due to the challenge of integrating the merging carriers), but

improves it in the long-run due to merger-induced efficiency gains. Our paper

differs from Prince and Simon in several perspectives. First, we consider the

more general question of product differentiation and analyze how it is impacted

by merger.7 We consider both vertical and horizontal differentiation, and on-time

performance is only one of the measures for vertical differentiation. Second, we

focus on a specific merger (that between US Airways and America West in 2005)

and carefully select sample periods to isolate the impact of merger and avoid

the contamination of other events (e.g., 9/11, financial crisis, other mergers).8

Third, and probably most importantly, while we all use diff-in-diff method to

identify the impact of merger, we used different comparison group to compare

with the treated group (i.e., the merging carriers and their routes). The initial

control group contain all routes which only non-merging carriers operate on.9 We

then use matching method to identify carrier-routes from the control group that

6In the case of airline industry, price effect has a perverse impact on quality. That is, by raising
price, demand and supply goes down which reduces the congestion of air travel, and leads to
better on-time performance.

7There are earlier studies looking at product differentiation in the U.S. airline industry but not
how it is impacted by merger. See, for example, Berry (1990) and Borenstein and Netz (1999).

8The downside of this approach is that since we only include the limited time after the merger
(before another merger takes place), our results are only for the short to medium-run impacts.

9We use control group and comparison group interchangeably. We do not include any of the
routes which merging carriers also operated on pre-merger, i.e., the overlapping routes. We
expect merger to affect the non-merging carriers on these routes as well. Correspondingly our
results are silent on the impact of merger on the overlapping routes.

5



mimic the carrier-routes in the treated group. These selected carrier-routes from

the control group then form the matched group. Next, we compare the treated

group with the matched group to isolate the impact of merger.

1.2 Econometric Model

In this section we introduce our econometric model and discuss the identification

strategy to estimate the impact of airlines merger on various measures of vertical

and horizontal product differentiations. First, we set up the model and discuss

why the standard estimation method such as fixed effect model and differences-in-

differences (DID) method provide inconsistent estimates of the impact of merger

on different measures. In addition, we discuss how propensity score matching

addresses the potential self selection of merging airlines and the limitations of

this method applying in our panel data. Finally we introduce the robust ge-

netic matching method to address the potential endogeneity of the impact of two

airlines merger on various outcome variables.

1.2.1 Model Setup

We define treatment as two airlines merge together. Thus the treated airlines are

US Airways and America West and the rest of the other seven airlines belong to

the control group. To estimate the impact of merger between US Airways and

America West on different vertical and horizontal product differentiations, we

consider the following fixed effect model:

Y ijt = α + µijt + γijt + β1Trtijt + β2X ijt + εijt (1)

where the outcome variable Y ijt represents various measurements of vertical and

6



horizontal product differentiation and the subscripts i, j, t denote carrier, route

and time respectively. As discussed the variable of interest Trtijt is a binary

indicator for treatment carriers in the post-merger periods. The set of control

variables Xijt includes a vector of route and carrier level characteristics.10 In

addition, we include year month fixed effects (µijt) and carrier route fixed effects

(γijt).

The decision of merger is potentially endogenous because whether two airlines

merge or not depends on their specific characteristics as well as the characteris-

tics of the operating routes. Merging and non-merging airlines differ over many

aspects such as financial conditions, route structure, market shares and many

others. The average treat effect estimator β1 of the above fixed effect model is

biased and inconsistent because the unobserved heterogeneity between merging

and non-merging carriers vary over time and this fixed effect model can only

control the time invariant unobserved hetrogeneity.

Next we consider the following differences-in-differences model:

Y ijt = α+β1Trt Carrierij+β2Post Trtt+β3

(
Trt Carrieri×Post Trtt

)
+β4Xijt+εijt

(2)

where Trt Carrierij is a binary variable for treatment carrier and Post Trtt is the

post-merger time dummy. The coefficient of the interaction term Trt Carrierij ×

Trt Mergert, β3 captures the average treatment effects of merger between US

Airways and America West on various outcome measures.

The coefficient of interest β3 in equation (2) is consistent under the assump-

tions that merger is exogenous and both treated and control group airlines have

similar trend in pre-merger time period. Clearly, two airlines self selected for

10See the summary statistics table for details about the controls.
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merger and hence we can not treat this event as exogenous. Since treated and

control group carriers differ on their observable and unobservable characteris-

tics, it is highly unlikely that they share similar trends in terms of the different

outcome variables. Therefore, DID estimates are also biased and inconsistent.

1.2.2 Propensity Score Matching

To address the potential self-selection of merger between US Airways and Amer-

ica West, we adopt the propensity score matching because according to Ru-

bin(1973), Heckman, LaLonde and Smith (1999) this method can largely reduce

the bias from endogenous selection conditional on the balanced observable covari-

ates. Another advantage of this method is that it selects most similar comparison

groups in terms of covariates, and the difference between treatment group and

matched comparison group is the treatment status. Thus, in a quasi-experimental

study the average treatment effect on treatment can be drawn by comparing the

matched treatment and control groups.

The outcome variable Yij denotes various measure of vertical and horizontal

and product differentiations and is defined as

Yij =


Yij(1) if Trtij = 1 that is i ∈ { US Airways, America West},

Yij(0) if Trtij = 0 that is i = Any other airlines

Following Rosenbaum and Rubin (1983) the average treatment effect on the

treated (ATT) airlines US Airways and America West can be written as

γ = E
[
Yij(1)− Yij(0) | Trtij = 1

]

8



This expression cannot be estimated directly, because Yij(0) is not observed for

treated airlines. To estimate the ATT (Average Treatment on the Treated) we

use the conditional independence and common support assumptions11.

The conditional independence assumption is the key identifying assumption

of propensity score matching estimation. Since this assumption is fundamentally

un-testable, we use a rich set of covariates including carrier level, route level

and carrier-route specific characteristics to meet this assumption. Under this

assumption, the average treatment effect for the subpopulation with Xij = xij

equals

γ = E
[
Yij(1)− Yij(0)|Xij = xij

]
= E

[
Yij|Trtij = 1, Xij = xij]− E[Yij|Trtij = 0, Xij = xij

] (3)

Heckman et al. (1998) and Smith and Todd (2004) argue that the propensity score

matching method minimizes the discrepancies of the observable characteristics

between treated group and control group when the sample selection is due to

observable characteristics. Thus by using propensity score matching we find a

reliable counterfactual control group since we have a very rich set of control

variables.

11The conditional Independence means the treatment status Trtij condition on Xij is as good
as random that is selection on observable covariates, Xi we obtain Yij(1), Yij(0) ⊥ Trtij |Xij .
The common support assumption implies that for all carrier i in treatment group, there
is a positive probability of either merging (Trti = 1) or not merging (Trti = 0), that is
η < Pr(Trtij = 1|Xij = xij) < 1− η for some η > 0.
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1.2.3 Mahalanobis Distance

In propensity score matching method we choose a control group based on the sim-

ilar values of the unidimensional distance metric propensity score.12 Estimated

propensity scores are one distance metric among many alternatives. Further,

the preference for a logit or probit specification is rarely justified in any for-

mal sense rather is typically adopted for simplicity. Another common method

of multivariate matching is based on Mahalanobis distance (CoChran and Rubin

(1973), Rubin (1979, 1980)). The Mahalanobis distance metric between units

with covariates xijt and x′ijt is defined as

DM =
√(

xijt − x′ijt
)
S
(
xijt − x′ijt

)′
(4)

where S is the sample covariance matrix. Therefore, Mahalanobis distance metric

measures the multivariate distance between individuals in different groups.

Rubin (2001) and Rosenbaum and Rubin (1985) show that Mahalanobis dis-

tance and propensity score matching can be compared in various ways. Under

normality assumption both the matching staisfy the equal percentage bias re-

duction property.13 Further, the resulting set of matches is invariant to affine

transformations of the covariates for both types of matching. However, Maha-

lanobis distance matching does not perform well when covariates have nonellip-

soidal distributions. Because of this limitation of Mahalanobis distance matching,

Rosenbaum and Rubin (1983) suggested matching on propensity score instead.

However, due to sampling variation and nonexact matching Trt ⊥ X|P (X) may

12The propensity score P (Xi) is the conditional probability of assignment to treatment given
the covariates: P (Xi) = Pr(Trt = 1|Xi) = E(Trti|Xi).

13This property implies that the percentage bias reduction is the same for all linear combinations
of regression coefficient β.
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not hold after matching on the propensity score. Therefore, Rosenbaum and

Rubin (1985) argue that in addition to propensity score, one should match on

individual covariates by minimizing the Mahalanobis distance to have balance co-

variates. Hence, Rosenbaum and Rubin (1985) recommend that one should first

match on the propensity score and then match based on Mahalanobis distance

within propensity score strata.

1.2.4 Genetic Matching

The genetic matching is based on the GenMatch algorithm proposed by Diamond

and Sekhon (2013). This algorithm searches a range of distance metrices to

find the particular measure that optimizes post-matching covariate balance. In

particular, the GenMatch algorithm is most applicable when the Mahalanobis

distance is not optimal for achieving balance in a given dataset. GenMatch

algorithm assigns a weight Wi to each potential distance metric for all matching

variables. In addition, the algorithm also weights each variable according to

its relative importance for achieving the best overall balance. To implement

the GenMatch algorithm we need to specify a specific loss function. Diamond

amd Sekhon (2013) propose a generalised version of Mahalanobis distance which

include an additional weight matrix:

GDM =
√(

xijt − x′ijt
)[
S−1/2W (S−1/2)′

](
xijt − x′ijt

)′
(5)

where W is a k × k positive definite weight matrix and S−1/2 is the Cholesky

decomposition of S. All elements of W are restricted to 0 except those down the

main diagonal which consists of k parameters that must be chosen.

Diamond and Sekhon (2013) recommend to include the propensity score as

11



one of the covariates. Thus X in equation (5) is replaced by Z where Z =

[P (X) X]. If optimal balance is achieved by simply matching on the propensity

score, then a zero weight will be assigned to all other covariates and genetic

matching will be equivalent to propensity score matching. Alternatively, when

we assign zero weight to the propensity score and weight 1 to every other variable

in Z, genetic matching becomes numerically equivalent to Mahalanobis distance

matching. Therefore, both propensity score and Mahalanobis distance matching

can be considered special cases of genetic matching. However, in general the

GenMatch algorithm finds that neither minimizing the MD nor matching on

the propensity score minimizes the loss function and thus searches for improved

metrics that optimizes covariate balance.

Diamond and Sekhon (2013) show that searching all possible weights to op-

timize the covriate balance for any given combinations of covariates, GenMatch

algorithm improves the overall covariate balance and gurantees asymptotic con-

vergence to the optimal matched sample. Therefore, by construction the algo-

rithm improves covariate balance for a specific loss function chosen by the applied

researchers. we use a loss function that minimizes the overall imbalance by min-

imizing the largest individual discrepancy, based on p−values from KS tests and

paired t-tests for all variables that are being matched on. This loss function

also includes individual balance measures that are sensitive to many forms of

imbalance, such as KS test statistics, and not simply difference of means tests.

Therefore, the GenMatch algorithm finds the weight W which optimizes the

above specified loss function. Diamond and Sekhon (2013) show that increasing

population size usually improves the overall balance achieved by this algorithm.

Since we use a large sample, GenMatch algorithm give us a robust control group

which satisfies the overall covariates balance.
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To make sure that our matched control group has a similar time trend as the

treatment group in the pre-merger time period we include a set of lag dependent

variables in Z while applying the GenMatch algorithm and to estimate the aver-

age treatment effect on the treated (ATT), we use the differences-in-differences

(DID) matching method developed by Heckman, Ichimura and Todd (1997) and

Heckman, Ichimura, Smith and Todd (1998). This estimator is analogous to

the standard DID regression estimator but we use a selected matched sample

as a control group instead of the entire comparison group. By construction our

matched control group is more similar to the treatment group.

We obtain the matched control group using the GenMatch algorithm along

with its generalized distance metric as shown in equation (5). However, the

GenMatch algorithm does not guarantee that the matched control group always

have a similar time trend. Therefore, we perform a test to check that whether the

common time trend assumption holds or not for each different outcome variables.

The test is based on the linear regression model:

Y ijt = δ0 + δ1t+ δ2

(
t× Treatmenti) +Xβ + ηijt (6)

where t represents the linear time trend, Treatmenti is the dummy variable for

merger airlines and X is the set of control variables. The statistical significance of

the coefficient δ2 implies that treatment and control groups have different linear

time trend. Note that if the common time trend assumption does not hold, the

coefficient of interest β3 in equation (2) is biased.
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1.3 Application to US Airways – America West merger

In this section, we apply the matching method to study the impact of the US

Airways – America West merger. We first discuss the data and present some

preliminary estimation results.

1.3.1 Data and preliminary estimation results

To analyze the impact of merger between US Airways and America West, we use

four sources of data, three of which from the Bureau of Transportation Statistics

(BTS). First is the On-Time Performance (hereafter OTP) data which provides

scheduled departure/arrival time, departure and arrival delays (in minutes) for

every non-stop domestic flight. Another data set we use is Air Carrier Financial

Reports, which provide financial information for the U.S. airlines. The third data

from BTS is Airline Origin and Destination Survey (DB1B), which allows us to

construct market structure variables such as HHI and market share. We also use

the MSA population data from Census.

Let us start with the OTP data which covers US certified airlines that account

for at least one percent of domestic scheduled passenger revenues. This dataset

provides information about on-time performance for non-stop domestic flights.

Merger between US Airways and America West was proposed on May 19, 2005

and approved on September 27, 2005. Our sample period starts on January 1,

2003 and ends on September 30, 2008. We choose this time period to minimize

the impact of confounding factors unrelated to the US Airways and America

West merger. In particular, we choose January 2003 as the starting period to

minimize the impact of: (i) acquisition of TWA by American Airlines (in April

2001) and (ii) 9/11 terrorism and the ensuing (demand and supply) shock on

14



the airline industry. Delta and Northwest announced their merger in April 2008

which was approved by the Department of Justice in October 2008. To avoid

the contamination of this subsequent merger, our sample does not include the

last quarter of 2008 or later. Since on-time performance is observed for each

directional flight, we define a route as a directional pair of origin and destination

airports, as is common in studies on airline on-time performance. For example,

ATL-DFW and DFW-ATL are two different routes which have different on time

performance. While on-time performance data (e.g., arrival delay) is at the flight

level, we aggregate data typically into carrier-route-quarter cells for our empirical

analysis. Other measures of vertical differentiation are calculated similarly. The

measures of horizontal differentiation are more tedious to derive and we discuss

them in detail in the Appendix.

Air Carrier Financial Reports are at the quarterly level, and cover large cer-

tificated U.S. carriers with annual operating revenue of $20 million or more. It is

a carrier level dataset, and we generate financial variables such as current liability

and current assets at the carrier-year level from this data source. Airline Origin

and Destination Survey (DB1B) contains summary ticket level data, which is a

10% sample of airline tickets from reporting carriers. We use DB1B data to con-

struct market structure variables such as number of carriers, market share and

HHI.14

We first report the summary statistics (at carrier-quarter level) which are

provided in Table 1.1. For quality measures, the average arrival delay is about

12.277 minutes. On average, each carrier operates on about 451 routes in a

quarter, and offers about 289 flights per route in a month. We also calculate

14Market structure variables can also be constructed using OTP data. However, only carriers
accounting for at least one percent of domestic scheduled passenger revenues are required to
report for OTP data. As a result, OTP data will systematically overlook smaller carriers,
leading to less accurate description of market structure.
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number of destinations at the carrier-route-quarter level, defined as geometric

mean of the number of destinations for each of the two end airports for a carrier-

route-month. Average number of destination is about 12.8. Note that all these

stats are calculated with data both before and after-merger. Table 1.1 also reports

the measures of horizontal differentiation. For example, the average gap between

a flight and its closest other flight is about 10 minutes.15

We consider the vertical differentiation (or quality) measures. On-time per-

formance is clearly a quality measure and we focus on arrival delay. In addition,

we consider number of flights, number of routes and number of destinations as

quality measures as well. More flights on a route give travelers more options to

choose from, and more likely to find a flight closer to their ideal one. More routes

and destinations give a traveler more options to fly with a single carrier, thereby

accruing frequent flier miles more quickly. It also gives the traveler more choices

when redeeming their frequent-flyer miles.

For horizontal differentiation, we construct and use the following measures:

Gap All, Gini All, Gap Between and Gini Between. They are derived using

flight scheduled departure times.16 Consider two flights with scheduled departure

times at 9am and 10am respectively. Some travelers may prefer the 9am flight

while others may prefer the 10am flight. Hence this is horizontal differentiation as

opposed to vertical differentiation where everyone prefers a product to another.17

15When calculating Gap Between, we restrict that the closest flight has to be from a different
carrier. This in general should increase the gap (in minutes). Therefore, we should expect
the mean of Gap All to be smaller than the mean of Gap Between. However, the restriction
of a different carrier requires at least two carriers in the market, i.e., we have to drop all
monopoly routes. Similarly, when calculating Gini Between, there have to be at least 3
flights to calculate the dispersion of Gap. Dropping out the monopoly routes when calculating
Gap Between likely is responsible for the counterintuitive stat that mean of Gap All is larger
than Gap Between.

16See the Appendix for more details on how these measures are constructed.
17Flight scheduled departure times may also have a vertical flavor. For example, most travelers

are likely to prefer a 10am flight to a 5am flight or an overnight flight. However, there is
a key difference between our vertical and horizontal differentiation measures. Our vertical
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Next, we investigate the impact of merger using estimation methods. We will

start with OLS and simple difference-in-difference (thereafter diff-in-diff). The

results are provided in Table 1.5. For OLS, our additional controls include HHI,

market share, number of carriers on the route, passengers, ticket price, load factor

and scheduled departure flights.

Diff-in-diff and the construction of “control” group

With merger (treatment) affecting some observations but not others, diff-in-

diff seems a natural choice to tease out the common trend which is not due to

merger and isolate the impact of merger. The treated group includes all routes

operated by the merging carrier(s). The comparison group consists of all other

carriers, but only routes where the merging carriers do not operate on. That

is, we only use non-overlapping routes to form the comparison group. This is

because, merger will affect the merging carriers on the routes they operate on.

This in turn affects the non-merging carrier on the overlapping routes, making

them inappropriate as comparison groups to study the impact of merger. In the

meantime, U.S. airline industry consists of only few major airlines (especially so

after the recent merger wave), with each operating on a significant portion of the

routes. Removing all overlapping routes thus significantly limits the choice and

size of comparison group, making it more difficult for diff-in-diff method to work

well.18 The additional control variables (estimates not reported) are the same as

in OLS regression. Also, note that for diff-in-diff to work well, the treated group

differentiation measures vary across carriers as it measures each carrier’s (average) product
quality. Our horizontal measures is common across carriers as they are aggregations of how
the products by different carriers differ from each other in a market.

18This problem is less severe here since the two merging airlines are both ranked outside top 5 at
the time of merger. However, in our falsification tests later on, we will introduce fake mergers,
for example, between American Airlines and Alaska Airlines. To construct, we exclude all
routes which the true merging carriers operate on (US and HP), as well as the routes which
the fake merging carriers (AA and AS) operate on. The latter further limits the choice and
size of comparison group.
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and the “control” group need to have the same common trend.

With simple diff-in-diff, we use the whole comparison group to control the

common trend. The problem is that merger is not an exogenous event – the fact

that US Airways and America West are merging but not other airlines suggest

that there is something special about the merging carriers.19 Controlling carrier

and route characteristics helps reduce this selection/endogeneity issue, but one

can do better. And this is what we we aim to do with diff-in-diff matching. The

main idea is to select a subsample out of the whole comparison group which best

resemble the “treated group”, to form a matched group. We then run diff-in-

diff using the treated and matched group, rather than using treated and whole

comparison group. Matched group better resembles the treated group because

that’s the criteria based on which they are chosen, and we will present a series of

evidence. But first we need to explain how the matching methodology works.

1.3.2 Market characteristics used for matching

We first discuss the variables we use for matching. There is no uniform theory on

what characteristics are good predictors for the various measures of vertical and

horizontal differentiation. Much of the empirical literature has shown that market

structure is important in capturing market competition and the corresponding

outcomes (e.g., price level, price dispersion). In line with this literature, we

use several market structure variables including market share and number of

passengers (at the carrier-route-month level), and number of carriers and HHI (at

the route-month level). Both are then aggregated from month to quarter-level.

We also use ticket price (at the carrier-route-quarter level) to take into account

19This is confirmed later on – the common trend assumption is rejected for several measures of
vertical differentiation.
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the cost/income heterogeneity across markets. Some route-level characteristic

are not particular to the airline industry, for example, distance. One variable

of particular interest to us is arrival delay which has been analyzed in various

existing studies. Other variables we choose include the number of canceled flights

and load factor, all aggregated to carrier-route-quarter level. We also want to use

historical arrival delays as part of the variables for matching. Combined, we

include all the explanatory variables in the last pre-merger period, as well as all

lags of the arrival delay.

One may think that carrier level variables (e.g., financial variables, bankruptcy

status) are also important. We did not include them for two reasons. First, carrier

characteristics is already partially reflected in the market structure variables (e.g.,

market share). Second, we want to reserve these carrier-level variables as part of

the control variables when we run diff-in-diff estimation after matching is done.

1.3.3 “Control” group: Matched vs. Comparison group

Using the matching method described in the previous section, we can construct

matched group(s) for each dependent variable.20 Since the criteria for a carrier-

route in the comparison group to be selected into the matched group is that they

best resemble the treated group, we should expect the matched group to better

resemble the treated group than the whole comparison group. In an effort to

establish support for this, next, we present a series of comparisons/tests.

20Briefly reiterate why we have different matched groups – this is because we use lagged de-
pendent variable in the matching process.
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Summary stats comparison

We first compare the summary stats for treated group, matched group(s) and

whole comparison group. Recall that matching is mostly based on a series of ex-

planatory variables, plus the lagged values of the dependent variable (e.g., arrival

delay). Summary stats for these variables are included in Table 1.2. We can say

that relative to the comparison group, matched group has mean values closer to

that of the treated group, for example, the market structure variables (market

share, HHI, number of carriers) and route characteristics (distance, passengers).21

Moreover, the matched group typically has lower standard errors as well.

Next, rely on more rigorous tests.

Common trend tests comparison

Table 1.3 presents the results for common trend tests. We can see that if the

whole comparison group is used, then the common trend assumption fails for all

4 vertical differentiation measures. If we use matched group(s), they still fail for

two measures, but now passes for number of destination, and passes for arrival

delay as well if we use all 9 lags of arrival delay in the matching process. One

can also find that matched group lead to lower t-stats on average. These all seem

to suggest that using matching to study merger impact potentially improves the

accuracy relative to standard diff-in-diff.22

21An exception is canceled flights for which the comparison group better resemble the treated
group.

22Of course, much more work is needed as common trend test still fails for several measures
even when using the matched group.
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Table 1.2: Summary Statistics All Pre-merger Periods for Airline Merger

Control only for Arrival Delay
Variable Treatment Comparison Matched

HHI (jt) .63 .685 .617
(.236) (.252) (.221)

Mkt Share (ijt) .603 .688 .615
(.3) (.291) (.272)

Num Carriers (jt) 3.335 2.932 3.134
(1.932) (1.89) (1.827)

Cancelled Flights (ijt) 5.416 5.207 4.409
(9.536) (9.848) (7.707)

Distance (jt) 1002.289 893.944 982.373
(679.861) (639.133) (642.287)

Passengers (ijt) 1217.621 1327.405 1194.238
(1158.178) (1533.834) (1089.138)

Load Factor (ijt) .717 .706 .725
(.121) (.118) (.112)

Mkt Fare (ijt) 195.243 189.077 200.579
(60.598) (77.096) (69.215)

Arrival Delay (ijt) 10.256 10.152 10.031
(5.068) (7.064) (4.537)

For each measurements, the first row is the mean value of the variable, second row is the t test statistics and
last row is the number of observations. carrier: i, route: j, month: t
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Table 1.3: Common Trend Comparison: Simple DiD vs. DiD Matching(9 lags)
vs. DiD Matching(4 lags)

(1) (2) (3)
Variable Simple Diff-in-Diff DiD Matching(9 Lags) DiD Matching(4 Lags)

Arrival Delay -0.067∗ 0.004 -0.129∗∗∗

(-2.51) (0.08) (-3.36)

Num Flights 3.967∗∗∗ 0.836 0.726
(4.07) (1.58) (1.31)

Num Dest 0.380∗∗∗ 0.338∗∗∗ 0.276∗∗∗

(10.46) (8.73) (6.66)

Num Route 10.590∗∗∗ 10.090∗∗∗ 12.740∗

(4.63) (6.70) (2.45)

All Gap -0.059 -0.073 0.042
(-0.76) (-1.00) (0.51)

All Gini 0.001 -0.000 0.000
(0.68) (-0.18) (0.15)

Bet Gap -0.015 -0.028 -0.000
(-0.26) (-0.58) (-0.01)

Bet Gini -0.003 -0.003 -0.003
(-1.96) (-1.59) (-1.88)

For each measurements, the first row is the coefficient for the variable in interest, second row is the t test
statistics. All models cluster standard error at carrier-route level. The t statistics in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01
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Falsification tests comparison

Next, we conduct two sets of falsification tests. In the first set, we include only the

pre-merger data which includes 10 quarters of data. We assign a fake treatment

date at the middle, with the first 5 quarters as the pre-merger period and the

last 5 quarters as the “post-merger period.” We then construct matched group

and run diff-in-diff as in matching diff-in-diff for the main model. The results

are reported in Table 2.6, third panel of Fake Merger Time. We report only

the estimate of the interaction term, which measures the impact of this fake

“merger” on the “treated group” on various product differentiation measures. We

see that the fake merger has no impact on most horizontal measures of product

differentiation, but seems to have impacts (significantly different from zero) on

some vertical measures. Moreover, matched group in general does better than the

whole comparison group. For example, when Between Gini is dependent variable,

our matching diff-in-diff pass the falsification tests but the standard diff-in-diff

fails (at 5% level). Also, the estimates for matched groups are in general smaller

(in magnitude) and have smaller t values relative to the estimates for the whole

comparison group. Of course, the matched groups still fail some falsification tests,

suggesting that effort to construct a better matched group is still much needed.

In the second set of falsification tests, we include both pre- and post-merger

data, but assigning two non-merging carriers to a fake merger. We sort airlines

alphabetically by their two-digit codes. Two fake mergers were considered. In

AAAS, we pick the first two airlines: AA and AS, or American and Alaska air-

lines, to “merge”. In UAWN, the last two airlines are assigned to the “treated”

group: UA and WN (United and Southwest). For each fake merger, the compari-

son group includes all routes that is not operated by airlines involved in either fake
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merger or the actual merger. We then use similar matching method to construct

matched group. Their diff-in-diff results are presented in Table 2.6 columns 2 and

5.23 We can see that matched group again has smaller magnitude of t values, and

the difference sometimes is significant in that the matching diff-in-diff passes the

falsification tests when the standard diff-in-dif fails. For example, see All Gap

and Between Gini for AAAS fake merger, and Arrival delay and All Gini for

UAWN fake merger.

diff-in-diff results comparison

We have shown that the whole comparison group and the matched group differ

in their composition, summary stats, common trend tests and falsification tests.

A natural question then is, if we use them to run diff-in-diff, would they still lead

to similar estimates? Table 1.5 present the estimation results which suggest that

the answer is no.

We will use the 9-lag matching to compare with the simple diff-in-diff. Simple

diff-in-diff results show that merger has significant impact on two horizontal dif-

ferentiation measures: All Gini and Between Gini, but the matching diff-in-diff

results show smaller (in magnitude) and insignificant impacts. For all vertical

measures, both set of results show significant merger impacts, but their magni-

tude can be quite different. Diff-in-diff matching results show that merger reduces

number of destinations by about 2 and a far more drastic reduction of 116 for

number of routes. This only leads to a mild increase of 2 flights per route after

merger. Merger also reduces arrival delay about 1.3 minutes. These merger im-

pacts are larger than their counterparts in column (2) by 40% or more except for

number of destinations.

23Again we report estimates for the interaction term only which measures “merger” impact.
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Table 1.5: Results Comparison: OLS vs. Simple DiD vs. DiD Matching(9 lags)
vs. DiD Matching(4 lags)

(1) (2) (3) (4)
Variable OLS Simple Diff-in-Diff DiD Matching DiD Matching

(9 Lags) (4 Lags)

Arrival Delay -0.232 -0.925∗∗∗ -1.313∗∗∗ -1.075∗∗∗

(-1.65) (-6.04) (-5.27) (-3.76)

Num Flights 1.159 7.773∗ 13.78∗∗∗ 11.26∗∗∗

(0.30) (2.12) (4.21) (4.05)

Num Dest -2.523∗∗∗ -2.033∗∗∗ -1.964∗∗∗ -2.095∗∗∗

(-15.05) (-12.09) (-9.40) (-8.51)

Num Route -97.88∗∗∗ -84.47∗∗∗ -115.8∗∗ -30.58
(-5.89) (-4.10) (-5.32) (-2.33)

All Gap -1.199∗∗∗ -1.050∗∗∗ -1.328∗∗∗ -1.122∗∗∗

(-4.55) (-4.05) (-4.35) (-3.38)

All Gini -0.232 0.019∗∗∗ 0.010 0.011
(-1.65) (3.45) (1.31) (1.54)

Bet Gap -0.484∗∗ -0.439∗∗ -0.243 -0.238
(-3.26) (-3.07) (-1.46) (-1.33)

Bet Gini 0.0134 0.0115 0.0165 0.010
(1.68) (1.50) (1.59) (0.98)

For each measurements, the first row is the coefficient for the variable in interest, second row is the t test
statistics. All models cluster standard error at carrier-route level. The t statistics in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01
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1.3.4 Another look at the data

Next, we look at the raw data in an effort to identify changes from pre- to

post-merger that led to our estimation results. We first identify the airports

that experience entry/exit by the merging carrier(s). Entry is defined as merging

carrier(s) operating at the airport for at least 5 months post-merger but none pre-

merger. Similarly, exit is defined as merging carrier(s) operating at the airport

for least 5 months pre-merger but none post-merger. We find that the merging

carrier(s) entered into 6 airports (4 of them in Hawaii), and exited from 2 airports.

They also changed their presence significantly (being present for at least 10 more

or 10 fewer months post-merger) at 5 airports: 1 of them experiences increase and

while 4 experience decreases. For the remaining airports (80 of them), merging

carriers “consistently” operated at these airports pre- and post-merger. Next, we

focus on these airports.

For each of these airports, we calculate how many routes the merging carriers

fly from that airport each month. We then average the number of routes for

all pre-merger and post-merger months respectively. Out of the 80 airports,

56 experience reduction in number of routes, for a total reduction of 79.295. 11

airports experience increases, for a total of 4.936.24 We then consider the airports

that both US and HP operated at pre-merger (there are 35 such airports). 32 of

them see lower number of routes post-merger, for a total reduction of 59.290. Only

2 airports see more routes, for a total of 1.018. We then consider how the non-

merging carriers behaved at these 35 airports where both US and HP operated at

pre-merger. Clearly merging carriers reduce their number of routes post-merger,

but is this due to merger or is it just time trend? To help answer this question,

2413 airports have equal number of routes pre- and post-merger.
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we consider the non-merging carriers. For each of the non-merging carriers, we

calculate its number of routes, and then average them over the pre- and post-

merger months respectively. Afterwards, we add them up across the non-merging

carriers. The number of routes by non-merging carriers went down at 4 airports,

for a total of 69.489. In contrast, 31 airports experienced increase, for a total of

581.798. Were these increases a response to merging carriers’ reducing presence

or were the non-merging carriers simply expanding? To get a better idea, we look

at airports where merging carriers do not operate on. There are 235 such airports.

67 of them experienced reduction in number of routes by the non-merging carriers,

for a total of 60.811, while 142 airports saw more routes post-merger, for a total of

508.087. This seems to suggest that while the merging carriers were contracting

in terms of number of routes, non-merging carriers were expanding, wether the

merging carriers operated at the airport or not.

Above we have used airport as the unit of analysis and compared number

of routes offered at each airport. Next, we use route as the unit of analysis and

analyze number of flights per route and arrival delay. We consider only the routes

that the merging carriers operated at both pre- and post-merger. For the routes

served by both US and HP pre-merger, the number of flights per route went down

from 79 to 65. For routes served only by US pre-merger, the comparison is 134 vs.

113. On the other hand, the routes served only by HP pre-merger experienced

an increase - number of flights per route went up from 101 to 108. Moving on

to non-merging carriers on these same routes, we find that number of flights per

route went down from 137 to 114. If we consider only the routes that USHP did

not operate on, the change was from 100 pre-merger to 89 post-merger.

We also check arrival delay and find that average arrival delay went down
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from 11 to 9 minutes on routes where both US and HP operated on pre-merger.25

On the same routes, arrival delay for non-merging carriers went up from 10.4 to

12.8 minutes.26

1.4 Conclusion

We analyze the impact of merger on various measures of product differentiation

(vertical and horizontal), using data from the U.S. airline industry. Based on

the matching diff-in-diff results, we find that the U.S. Airways and American

West merger reduces arrival delay about 0.7 minutes (which benefits consumers).

After merger, the merging carrier reduces the number of routes and destinations

which it offers non-stop service, and reduces the number of flights per route (all

3 reductions likely will hurt travelers). For horizontal differentiation, we focus on

the distribution of scheduled departure times (and thus gaps between neighboring

flights) across carriers. We find that merger reduces Gap All, suggesting that

flight gaps (in minutes) are more evenly distributed after merger, if we use all

flights to calculate the flight gaps. On the other hand, merger seems to have little

impact on the other three measures of horizontal differentiation: Gap Between,

Gini All and Gini Between. We also conduct several falsification tests and find

that our matching method, together with the covariates used for match, works

well for some measures of product differentiation but not for others.

Our paper contributes to the literature on the airline industry and the liter-

ature on merger impact. We extend the commonly studied on-time performance

to product differentiation in general, and identify the impact of merger on various

25Arrival delay actually went up from 10 to 12 minutes on routes only US operated pre-merger.
On routes where only HP operated on pre-merger, arrival delay went down from 9.7 to 8.2.

26If we only consider routes which US and HP do not operate on, arrival delay for non-merging
carriers also went up, from 10.6 to 13.5 minutes.
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measures of vertical and horizontal product differentiation. Properly evaluating

the impact of merger is very important to both academics and policy makers. We

propose a matching method which can be used to construct a properly matched

group. This matched group then can be compared with the treated group to

identify the impact of merger. Our method can be adapted to study other di-

mensions of merger impact, for example, how merger affect prices. It can also

be applied to settings where a market experiences a change other than merger,

whether this change is endogenous (driven by the market players themselves) or

exogenous (say by regulators).
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Chapter 2

Is the Tarmac Delay Rule a Panacea for Passenger Right

Protection?

2.1 Introduction

Delay has been a common occurrence in commercial air traffic. Delay can be due

to various factors such as bad weather, mechanical problems, or simply because

demand for facilities (airport or crew) exceeds their capacity. In the last case,

aircrafts may need to wait on the tarmac for their turn to take off. This wait

can be quite long during peak hours at busy airports, and can be a lot longer

when weather is bad. One may think it is easy to solve this problem by just

having the aircraft return to the terminal. However, there are several reasons

why this is undesirable. First, there may not be a gate immediately available

for the aircraft to come back to. More importantly, turning around forfeits a

plane’s position in the queue. As a result, the airline industry has seen many

flights with extended wait on the tarmac.1 This has raised public outcries and

as a result, U.S. Department of Transportation (hereafter DOT) imposed a new

rule to limit airline tarmac delays. In particular, the “new rule prohibits U.S.

airlines operating domestic flights from permitting an aircraft to remain on the

tarmac for more than three hours without deplaning passengers . . . (DOT 199-

09)”. The tarmac delay rule initially covers large and medium airports only (not

small or non-hub airports), with exceptions for safety and security as determined

by the pilot in command, or for significant disruption of airport operations as

1See, for example, “Passengers trapped on runway for 8 hours,” for a JetBlue flight,
www.cnn.com, February 15, 2007.
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determined by air traffic control. Otherwise violations of the new rule would lead

to hefty financial penalty of up to $27,500 per passenger. The intended objective

of the rule is to eliminate lengthy tarmac delay and protect passenger rights.

The law has largely achieved this goal. In 2009, there were a total of 868 flights

with tarmac delay more than three hours. However, this number went down

dramatically to 124 flights since the implementation of the tarmac delay rule.

The number went down further over time: there were 50 and 42 flights grounded

more than three hours in year 2011 and 2012 respectively.

As with every policy, there can be unintended consequences. In this paper, we

study the unintended consequences of U.S. DOT’s tarmac delay rule. The overall

impacts of eliminating lengthy tarmac delay by putting a hard time limit are

not as straightforward as it sounds, and concerns towards the possible negative

externality arise. It is often argued that tarmac delay is out of an airline’s control,

for example, in the case of congestion or bad weather. When flights approach the

three hour threshold, airlines are more likely to cancel their flights to avoid the

fine, and cancellation will lead to even more disruption for passengers who initially

are able to maintain their seats and may be able to depart soon. Consumers

may have a very different view towards tarmac delay and cancellation, since

cancellation involves an extra rearrangement and presumably longer total travel

time.

This is not the first study to investigate the tarmac delay rule and flight can-

celation. For example, Fukui and Nagata (2014) has confirmed that tarmac delay

rule induces “a risk-averse behavior of carriers causes higher flights cancellation

rate, and this side effects last at least two years”.2 However, my paper differs

2My results also confirm this hypothesis that cancellation rate increases after the implementa-
tion of the tarmac delay rule. My results also show that carriers improve the flight rearrange-
ment efficiency once a cancellation occurs.
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from earlier studies in several aspects. First, we use more rigorous econometric

techniques. The new rule initially only covers large and medium hub airports, so I

adopt a difference-in-difference strategy which identifies the difference of covered

and uncovered airport for the baseline estimation. Second, we take into account

network effects, in particular, by distinguishing between direct cancelation and

total cancelation. For a flight with multiple segments, a rule-induced cancela-

tion at a covered airport may lead to subsequent cancelations at rule-uncovered

airports (i.e., small or non-hub airports).3 If one ignores this network effect and

uses diff-in-diff method directly by comparing the treatment group (large and

medium airports) and control group (small and non-hub airports), the results

can be quite misleading. Our results show that for every direct cancelation the

tarmac delay rule induces, it leads to two indirect cancelation. Third, we inves-

tigate the possibility that the tarmac delay rule may have differential impacts on

different carriers, an issue raised by regional carriers. My results did not recover

significant difference between the rule’s impacts on legacy vs. regional carriers.

Fourth, I look at airlines’ response to the tarmac delay rule, in particular, their

rearrangement efficiency – the ability to reshuffle aircrafts across different routes

in its network once cancelation occurs. My results show that the likelihood of sub-

sequent flight cancellations decreases after the new rule which indicates carriers

take actions to improve the rearrangement efficiency.

On August 2011, the tarmac delay rule was revised to incorporate small and

non-hub airports (DOT, 2011a). As a result all airports were covered by the

revision. Given that most of the airlines adopt hub-and-spoke system, and a

3Relevant to this policy, DOT divides airports into 4 categories: large, medium, small and
non-hub, in decreasing size. A large hub/ median airport refer to an airport that accounts
for at least 1.00/ 0.25 percent of the total passenger enplanement in the United States. For
example, Oklahoma City and Tulsa airports are small airports while Jackson Hole (Wyoming)
and Evansville (Indiana) airports are non-hub airports.
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great amount of routes is between large/ median and small/ non-hub airports,

this policy extension actually profoundly changes the application of the tarmac

delay rule. This paper does not estimate the impact of policy extension because

the estimation strategy relies on the valid control and treatment groups. Since

the policy extension having all the airports covered by the new rule, it is unlikely

to find a reliable control group.

The rest of this paper is organized as follows. Section 2.2 offers more details

about the industry and policy background. Section 3 explains the data source and

variable construction. I discuss the model and estimation strategy in Section 4.

I first quantify the impacts of the tarmac delay rule, and the possible differential

impacts on legacy vs. regional carriers. I then analyzes airlines’ response in terms

of rearrangement efficiency. Section 5 presents the results and explanations. A

series of falsification tests are conducted in Section 2.6 and the results suggest

that our econometric models have adequately controlled confounding factors. I

conclude in Section 2.7.

2.2 Background

Economists have been mostly focused on pricing power in the airline industry.

More recently, researchers start to shift to non-price competition such as delays.

For passengers who care about total travel time, defined as the scheduled depar-

ture time to actual arrival time, tarmac delay is one of the delay measures they

should pay attention to. Airlines are likely to take tarmac time into account when

scheduling flights. For instance, flights departing from large and busy airport will

be assigned a longer outbound tarmac time than flights departing from smaller,

less busy airports. This discrepancy indicates that the airlines will adjust the

tarmac time according to the specific characteristics of the routes or airports.
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Also, tarmac time can involve significant seasonality, and airlines will schedule

longer tarmac time during bad weather seasons such as thunderstorm or snow

seasons. With all the adjustments, tarmac delay is still difficult to predict or

avoid. Lengthy tarmac delay incidents reached its peak in the summer of 2009.

According to the Bureau of Transportation Statistics, more than 500 flights ex-

perienced more than three hours of the lengthy tarmac delay that summer (from

June to August). DOT issued the tarmac delay rule on December 21, 2009, to

be effective on April 29, 2010.

Based on U.S. DOT’s documentation, the new tarmac delay rule prohibits

U.S. airlines operating domestic flights from permitting an aircraft to remain

on the tarmac for more than three hours without deplaning passengers, with

exceptions allowed only for safety or security or if air traffic control advises the

pilot in command that returning to the terminal would disrupt airport operations.

A year later, the tarmac delay rule was expanded to cover not only domestic

flights, but also set a four-hour limit to international flights. In this paper, I only

estimate the policy impact on domestic flights due to data availability.

The tarmac delay rule also requires the U.S. carriers to adopt contingency

plans for lengthy tarmac delays that include provisions for adequate food and

water within 2 hours and deplaning of passengers within 3 hours. Once the three-

hour threshold is reached, DOT requires the carrier to report the lengthy tarmac

delay immediately. Moreover, DOT has a specific record retention requirement

that will allow it to look back for a two-year period and determine both the

cause of the delay and whether the carrier adequately met its passengers’ needs

during the incident. If DOT identifies the violation of the rule, carrier may face

up to $27,500 per passenger civil penalty. Most of the time, the exact amount of

penalty is subject to negotiation. The table below lists the bills issued by DOT
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up until March 2015.

Table 2.1: DOT bills list

Carrier Date of Order Date of Incident Location Penalty ($)

American Eagle 11-14-11 05-29-11 ORD 900,000
Jet Blue Airways 08-20-12 03-03-12 JFK 90,000
Pakistan International Airlines 09-19-12 10-29-11 IAD 150,000
Copa Airlines 12-31-12 06-22-12 JFK 150,000
Virgin America 12-31-12 07-18-12 ORD 55,000
United Airlines 02-11-13 05-07-12 ORD 130,000
Caribbean Airlines 03-29-13 08-15-12 JFK 100,000
Air China 05-02-13 07-15-12 JFK 90,000
American Eagle 07-02-13 12-25-12 DFW 200,000
Avianca 08-09-13 08-24-13 MIA 100,000
United Airlines 10-25-13 07-13-12 ORD 1,100,000
Alaska Airlines 11-22-13 05-22-13 PHL 30,000
Qantas Airlines 01-15-14 03-21-13 DFW 90,000
British Airways 04-08-14 11-07-12 EWR 225,000
Air Europa 05-14-14 11-07-12 JFK 140,000
Rouge 10-28-14 01-11-14 BUF 90,000
Southwest 01-15-15 01-02-14 MDW 1,600,000

There have been concerns about the new rule, focusing on its unintended con-

sequences. Many believe that lengthy tarmac delays are caused by a combination

of bad weather and the air traffic control (ATC) condition, and these situations

in general are out of airlines’ control. As a consequence, reduction of lengthy

tarmac delays is often associated with increasing flight cancellation. Since the

new rule does not impose any restriction on departure delay, it is possible that

airlines may leave aircrafts at the gates longer (which increases departure delay)

and spend less time on the runway.4

The other concern is about the rule’s impacts on regional carriers’ who typ-

ically operate under code-share agreement with legacy other carriers and are

usually not responsible for scheduling. To investigate this concern, I also test

whether the new tarmac delay lead to differential impact on legacy and regional

carriers.

4We test this in Section 5 and find there is a significant .08 minutes increase in average delay
increase and .59 minutes decrease in taxi out.
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2.3 Data

The main data is comprised of On-time Performance (hereafter OTP) and T-100

data from Bureau of Transportation Statistics. I use sample period of 2008 -

2011Q3 to study the impacts of the initial tarmac delay rule before its extension.

OTP data are reported by domestic carriers that account for at least one

percent of domestic scheduled passenger revenue. It contains detailed information

on a daily non-stop flight’s scheduled departure time, scheduled arrival time,

departure and arrival delay in minutes, total elapsed time, whether a specific

flight is canceled and identification code for each flight. I supplement the on-

time performance data with T-100 data, which contains number of seats and

passengers at the carrier-route-quarter level. Due to potential punch errors or

miscalculation of the tarmac time, I remove the observations with negative “air

time” (flight time in minutes). I define a route as a directional airport-pair since

the tarmac delay and on-time performance in general can be directional specific

even for the same airport-pair.5 In other words, we treat ATL-ORD and ORD-

ATL as different routes because their tarmac times can be quite different. The

summary statistics is presented in Table 3.1.

2.3.1 The importance of addressing network effects

The OTP dataset is a disaggregated flight level data, with a unique identifier

“tail num” provided for each aircraft. Now consider a specific aircraft which flies

from airport A to B first and then onward to airport C. Suppose that A is a large

airport for which the initial tarmac delay rule applies, but B is a small airport

5In airline research, we see both directional and non-direction routes, and airport-pair vs. city-
pair. For our underlying topic of tarmac delay, it is natural to use directional airport-pairs as
routes.
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not covered. It is probably not surprising that if this aircraft’s flight from A to B

is canceled to comply with the tarmac delay rule, then its scheduled flight from B

to C will be canceled as well. In this sense, tarmac delay rule also affects flights

at airports not directly covered by the rule. I call this the network effects. As a

result, comparing the trip level total number of cancellation at covered and non-

covered airports misleadingly discounts the network effect-induced cancellation

and results in underestimating the true policy impact. To properly evaluate the

impacts of tarmac delay rule, I need to take into account the cancelations at

uncovered airports which are the consequences of rule-complying cancelation in

preceding segments.

Aircraft ID Total Trip # of cancellation First Cancel Airport Cancel Ratio

1 4 1 ORD .25
2 5 1 JFK .20
3 3 2 IAD .67
4 6 2 JFK .33

The “cancellation ratio” is defined as the ratio of total cancellations a given

aircraft experience over all the trips it serves per day. For instance, the first row

shows within a particular day aircraft 1 services 4 different non-stop directional

trips with its first cancellation at ORD, and this aircraft experiences 1 cancellation

in total, therefore, the cancellation ratio is .25 (1 total cancellation / 4 total trips).

It is possible that due to the network effect the total cancellation is more than

1 trip, which is the case for aircraft 3 and 4. For instance, the cancellation ratio

for aircraft 3 is .67 (2 total cancellations / 3 total trips).

To take into account the network effects, I investigate all the routes a given

aircraft services per day. The direct cancellation is defined as the first cancel-

lation for an aircraft within a day, and total cancellation is the total number of

cancellation an aircraft experiences within a day. Therefore, I’m able to identify
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all the downstream cancellations associated with the first cancellation from the

same aircraft. The “first cancellation” at large or medium airport is assumed

to be affected by the policy while the “first cancellation” at small or non-hub

airport is not. I aggregate flight level observations into aircraft level data, and

assign a binary variable with value 1 if aircraft’s first cancellation occur at large

or medium airport.

For an aircraft that serves multiple trips, the first cancellation is likely to

cause cancelation of subsequent trips. Only the increase in the number of first

cancellation is the direct impact of the new rule, while the downstream cancella-

tions should be viewed as the indirect impact. For instance, an aircraft serves a

series of trips: A�B�C�D�E, suppose the airline cancels trip B�C to avoid

the penalty from the tarmac delay rule, and this is likely to cause the cancellation

of downstream trip C�D. I treat the first cancellation B�C as the direct impact

of the new tarmac delay rule, while the downstream C�D cancellation is the

result of the network effect.

2.3.2 Measuring the Delay Increase

Departure delay is defined as the difference between the scheduled departure time

and the actual departure time from the origin airport gate. Since the new rule

does not impose any restriction on departure delay, it is possible that airlines may

trade tarmac delay with departure delay. That is, carriers may purposefully hold

the aircraft at the gate which increase the departure delay to avoid lining aircraft

in the queue on the runway when airport is highly congested. When looking at

departure delay, the same issue of network effects applies here, i.e., the standard

departure delay (as reported in OTP data) is also subject to network effects.

Therefore, in this paper I develop a measure that is independent between trips
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and is free from the “snowball effect”: the “average delay increase” is defined

as the different between current trip’s departure delay and the preceding trip’s

arrival delay. For instance, for an aircraft serving trips A�B�C�D�E, if the

aircraft’s arrival delay at airport B is 10 minutes and next trip’s departure delay

(which is at airport C) is 30 minutes, then “delay increase” is 20 minutes at

airport C for this particular aircraft. While if B’s arrival delay is also 10 minutes

and C’s departure is 10 minutes, then there is no “average delay increase” at

airport C.6

Therefore, I calculate each flight’s “average delay increase” at the origin air-

port and aggregate into carrier-origin airport-quarter cell to study whether the

airlines are more cautious and willing to sacrifice departure delay for the tarmac

delay. Although passengers care more about the total travel time or arrival delay

they experience, the delay increase is an important measurement from supply

side’s perspective since it decides whether carriers effectively use the aircraft.

2.4 Estimation strategy

2.4.1 The impact of policy on cancellation

The baseline estimation uses data from 2008 to August 23, 2011. This study

focuses on estimating the policy effect on cancellation, differential impact between

legacy and regional carriers, as well as carriers’ aircraft rearrangement efficiency

change.

I implement the difference-in-difference strategy to estimate the short run

6If the actual gap is less than scheduled gap, it will be a negative number
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policy effect on cancellation before the August 23, 2011 extension:

Yijt = α + µt + γjt + β1Policyt + β2Coveredj + β3Coveredj ∗ Policyt

+ β4Xijt + εijt

(2.1)

where i denotes the carrier, j refers to the origin airport and t is time (quar-

ter). Yijt includes number of cancellation without network effect (direct cance-

lation), with network effects (total cancellation) or delay increase. Policyt is a

binary variable with value 1 to denote the period after policy implementation,

which is April 2010. Coveredj is a binary variable to denote whether the ori-

gin airport is covered by the initial policy (i.e., large or medium airports), and

Coveredj ∗ Policyt is the interaction term. Xijt is a vector of carrier-origin air-

port level control variables. I include airport-level, number of passengers based

Herfindahl index (HHI) and market share to control for the market structure at

the origin airport, I also use total number of flights departing from the airport to

control for the traffic volume. µt is the year fixed effect and γjt is airport-quarter

fixed effect. Finally, in all models, the standard error is clustered at carrier-airport

level to account for the heterogenous correlation over time for each carrier-airport

pair.

2.4.2 The validity of diff-in-diff method

One of the key assumptions in the difference-in-difference model is the exogene-

ity of the policy. In our setting, while the tarmac delay policy targets on tarmac

delays longer than 3 hours, it does not impose any restriction on cancellation and

average tarmac delay time. The impact on cancellation and average tarmac delay

time, which is the focus of this paper, comes from the side-effect of the new rule.
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Therefore, the new rule is more likely a “shock” to the cancellation and average

tarmac delay time. In addition, the policy is applied at the airport level. As

long as an airport is a large or median hub airport, it is automatically covered by

the tarmac delay rule so airports can not self select into treated vs. control (or

comparison) group. At the airline level, as an important aspect of the consumer

protection program, the new policy is mandatory and applies to all airlines. Al-

though exemption requests have been made by several airlines over time, all the

exemption requests were rejected after an investigation.7 Carriers do not have

the ability to self-select into treated vs. control group either. Correspondingly,

the attrition or selection issue will not bias my estimation results.

Figure 2.1: Common Trend Comparison for Hub and Non-hub Airports

0

10

20

30

40

50

Av
e.

 N
um

. o
f T

ot
al

 C
an

ce
lla

tio
n 

pe
r Q

ua
rte

r

2008q1 2009q1 2010q1
Date

Treated

Control

Ave. Num. of Total Cancellation

0

10

20

30

Av
e.

 N
um

. o
f F

irs
t C

an
ce

lla
tio

n 
pe

r Q
ua

rte
r

2008q1 2009q1 2010q1
Date

Treated

Control

Ave. Num. of First Cancellation

.3

.35

.4

.45
Av

e.
 C

an
ce

lla
tio

n 
ra

tio
 p

er
 Q

ua
rte

r

2008q1 2009q1 2010q1
Date

Treated

Control

Ave. Cancellation ratio per Quarter

1.2

1.3

1.4

1.5

1.6

1.7

Av
e.

 C
an

ce
lla

tio
n 

M
ul

tip
lie

r p
er

 Q
ua

rte
r

2008q1 2009q1 2010q1
Date

Treated

Control

Ave. Cancellation Multiplier per Quarter

.2

.4

.6

.8

1

1.2

Av
e.

 D
ep

ar
tu

re
 D

el
ay

 p
er

 Q
ua

rte
r

2008q1 2009q1 2010q1
Date

Treated

Control

Ave. Departure Delay per Quarter

12

14

16

18

Av
e.

 T
ax

i O
ut

 p
er

 Q
ua

rte
r

2008q1 2009q1 2010q1
Date

Treated

Control

Ave. Taxi Out per Quarter

Source: Bureau of Transportation Statistics On-time Performance Data

Common Trend Comparison

As is common with diff-in-diff analysis, it is important to have similar pre-

7Due to a runway closure at JFK airport, JetBlue and Delta Air Lines asked for a temporary
exemption from the tarmac delay rule. American Airlines at the same time was also considering
applying for the same exemption.
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intervention time trend for the treated and control groups (common trend test).

To verify the validity of common time trend assumption in DiD, I restrict the

sample to pre-policy period and adopt the following estimation:

Yijt = α + µt + γjt + β1Tt + β2Coveredj + β3Coveredj ∗ Tt + β4Xijt + εijt,

(2.2)

where Tt is a (linear) time trend variable and Covered * Tt is the inter-

action term. For dependent variables (Yijt), I use direct cancellation (without

considering network effects), total cancellation (with network effect), delay in-

crease and cancellation ratio. The control variables (Xijt) are the same as in

equation (1). The interaction term (Coveredj ∗ Tt) allows me to assess whether

the pre-policy time trend is different for covered airports vs. their non-covered

counterparts. The results in Table 2.3 indicate that there is not a statistically sig-

nificant difference between the pre-policy time trends for covered airport-carrier

and non-covered airport-carrier pairs for all four dependent variables.

Differential impact on legacy vs. regional carriers

Regional carriers complain that they are typically not in charge of scheduling

flights and would have limited ability to reshuffle their flights in the presence

of lengthy tarmac delays. As a result, they argue that the policy hurts them

more and they should be exempted from the new tarmac delay rule (Answers to

Frequently Asked Questions Concerning the Enforcement of the Final Rule on

Enhancing Airline Passenger Protections, April 28, 2010). To analyze the validity

of this claim, I adopt a diff-in-diff-in-diff (DDD) estimation strategy to investigate

whether the policy have differential impact between legacy and regional carriers.
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In particular, I estimate the following model,

Num of cancellationijt = α + µt + γjt + β1Legacyi ∗ Coveredj ∗ Policyt

+ β2Coveredj ∗ Legacyi + β3Coveredj ∗ Policyt

+ β4Policyt ∗ Legacyi + β5Policyt + β6Legacyi

+ β7Coveredj + β8Xijt + εijt

(2.3)

The coefficient of interest is β1, the coefficient for the triple interaction term,

which measures the policy’s differential impact on legacy vs. regional carriers at

large or medium airport after the implementation of policy. Legacyi is a dummy

variable which takes value 1 if the operating carrier i is a legacy carrier (such as

American Airline, United Airline, Delta Airline, Hawaii Airline or Alaska Airline

etc.). The results are qualitatively the same whether I treat Southwest as a legacy

carrier or not.

2.4.3 Rearrangement efficiency

It seems reasonable as to airlines’ claim that most of the lengthy tarmac delays

are due to either weather or highly congested runway situation which are out

of the carriers’ control. In the meantime, it is possible that airlines can shuffle

aircrafts across routes to minimize downstream cancelations (rearrangement effi-

ciency), once cancellation occurs. In this section, we check whether/how airlines

respond to the new policy by improving the flight rearrangement efficiency once

cancellation occurs.

Total number of cancellations can be broken down into policy-complying di-

rect cancellation and network effects-induced indirect cancellation. Carriers can

improve their flight rearrangement to decrease the likelihood of downstream can-
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cellation so as to minimize the disturbance. I use the aircraft level data to analyze

the impact of the new tarmac delay rule on cancellation ratio. The econometric

model is as follows,

Cancellation ratioijt = α + µt + γjt + β1Policyt

+ β2Coveredj + β3Coveredj ∗ Policyt + β4Xijt + εijt

(2.4)

The coefficient β3 tells the mean change of cancellation ratio after implemen-

tation of the new tarmac delay rule. I also perform and verify that the common

trend test is passed. The decrease in the cancellation ratio means the likelihood

of cancelling downstream flights is lower, in other words, an improvement in the

flight rearrangement efficiency.

It is possible that rearrangement efficiency (or the change therein) may be

associated with the total number of trips an aircraft serves. In particular, it may

be easier to reshuffle trips when there are multiple trips left than there are only

one or two left. To test this hypothesis, I further divide the data by total number

of trips the aircraft serves and then compare the β3 across different groups.

2.5 Results

2.5.1 Baseline analysis

The new tarmac delay rule increases the cancellation mainly through two mech-

anism: the first one is the side-effect as the airlines try to protect themselves by

cancelling flights to avoid violating the 3 hours threshold. The second channel

is the network effects as upstream flight cancellation induces more downstream

cancellation. The results of the new tarmac delay rule on total number of can-
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cellation is presented in Table 2.4.

Compared to diff-in-diff results, the OLS result significantly underestimate

the impact on direct cancellation, total cancellation and delay increase. The

OLS result shows that the new tarmac rule increases roughly 1 direct cancellation

per carrier-origin airport-quarter, while the diff-in-diff result shows an increase

of 3 flights. Moreover, once the network effects are taken into account the total

cancellation significantly increase from 1.057 to 2.861 flights based on OLS result,

and rise from about 3.112 to about 6.2 flights based on diff-in-diff results.

Although the intended goal of tarmac delay rule is to protect passenger rights,

its indirect negative impact is not negligible. Comparing the results with vs.

without network effects also quantifies the “ripple effect” which provides mean-

ingful insight to the regulators: every initial cancellation leads to on average 2

downstream cancellation.

Table 2.4 columns 7-9 show that the impact is not limited to the cancellation.

Consistent with the hypothesis, the diff-in-diff results indicate a statistically sig-

nificant 0.0822 minutes average delay increase due to the new tarmac delay rule

at large or medium airports per quarter. The new rule effectively reduces the

likelihood of lengthy tarmac delay, but it also increases the delay minutes and

arguably increases the total travel time. The average delay increase indicates

every time flight passes through a large or medium hub airport it takes longer

time to serve a single segment than during the pre-policy period. Although the

average increase by 0.0822 seems not a stunningly large number, but based on

the summary statistics there are over 13000 flights departure from the airport

each quarter on average, the total delay increase is about 1114 minutes. Since

the average delay increase is based on each segment and does not account for

the “network effects” of delay, from the social welfare point point of view the
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consumers experience longer than 1114 minutes of delay increase. The last three

columns of Table 2.4 reveal the new tarmac delay rule also significantly decrease

the average taxi out minutes. The minutes that aircraft spend on the runways is

as important as departure delay for the sake of total travel time, I observe about

4% decrease in the taxi out after the policy change.

2.5.2 Differential impacts on legacy vs. regional carriers

In order to better understand whether the new tarmac delay rule impose differen-

tial impacts on legacy and regional carriers, I adopt the DDD estimation strategy.

The triple interaction term of legacy carrier, large or medium size airport and

policy indicator in column 3, 6 and 9 of Table 2.4 demonstrate that the new

rule does not impact legacy and regional carriers differentially. The insignificant

triple interaction coefficient in column 3 suggests that the new tarmac delay rule

imposes similar direct cancellation effect on both legacy and regional carriers.

The coefficient in column 6 shows that legacy and regional carriers also experi-

ence similar network effects once cancellation occurs. The result also shows both

types of carriers experience similar delay increase.

Although legacy carriers typically have more resources and more complicated

route networks to reshuffle their flights when needed, they do not seem to have

much of an edge over the regional carriers in reducing flight cancellation. Cor-

respondingly, our results suggest that there is no need to over-emphasize the

disadvantage of regional carriers in terms of the side-effect of the new rule.
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2.5.3 Rearrangement efficiency

As noted earlier, the new tarmac delay rule led to increase in direct cancellation,

total cancellation and the impacts do not seem to differ between legacy and

regional carriers. The baseline results suggest that direct cancellation on average

will lead to two more cancellations due to network effects. That is, two thirds of

the total cancellation is due to network effects. In this section I will investigate

whether carriers take actions to reduce the “cancellation network effect” after

the policy. I use cancellation ratio and cancellation multiplier to test the change

of “cancellation network effect”, where cancellation ratio is defined as the ratio

of canceled trips over all the trips an aircraft served per day, and cancellation

multiplier measures the number of downstream canceled flights over number of

first canceled flights.

Figure 2.2: Average Number of Flights Comparison over Time
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An important concept as explained in section 3.1 is the “first cancellation”,

the carriers would repetitively use same aircraft to serve different routes every
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day to aircraft utilization. The first time an aircraft experiences cancellation

would lead to subsequent routes’ cancellation, and only the “first cancellation”

occurring at large or medium airport is counted as affected by the new tarmac

rule.

Table 2.5 reports the results based on OLS, diff-in-diff and triple difference es-

timation for cancellation ratio and cancellation multiplier. It indicates that after

the new tarmac delay rule airlines reduce the cancellation multiplier by 0.0667,

but the new rule does not significantly affect the cancellation ratio. Although the

new rule arguably increase the indirect cancellation, the decrease of cancellation

multiplier lowers the possibility of subsequent cancelations. The triple difference

results are insignificant for both cancellation ratio and cancellation multiplier,

which indicates the legacy and non-legacy carriers respond similar to the new

rule in terms of rearrangement efficiency.

I also check for the case where the initial flight is canceled while the carrier

use different aircraft to supplement for the initial canceled flight. If so, then

passengers will not experience this cancellation and in my sample I will see two

flights from same carrier departing within a short time slot. If a flight is operated

by the same carrier as the former canceled flight and the scheduled departure time

gap is less than 30 minutes (includes the case that two flights depart at the same

time), then the following flight is defined as re-shuffled flight which is used to

cover up the initial cancellation. To test this possibility, I calculate the total

number of re-shuffled flights and the results are presented in Figure 2.3. We can

that only about 1% of flights shows “re-shuffle” behavior if the initial flight is

canceled, which suggests that this re-shuffling behavior should not significantly

affect the baseline result.
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Table 2.5: Cancellation Ratio and Cancellation Multiplier

Cancel ratio Cancel multiplier

(1) (2) (3) (4) (5) (6)

OLS DiD DDD OLS DiD DDD

Legacy 0.0159 -0.144∗∗∗

(1.27) (-3.65)

Policy -0.00638 -0.00212 -0.00660 0.0759∗∗ 0.112∗∗∗ 0.121∗∗∗

(-0.87) (-0.26) (-0.77) (2.85) (3.47) (3.57)

Covered * Policy -0.00775 -0.00496 -0.0667∗ -0.0543
(-1.02) (-0.57) (-2.52) (-1.79)

Legacy * Policy 0.0290 -0.0409
(1.70) (-0.78)

Legacy * Covered 0.0594∗∗∗ -0.0514
(3.68) (-1.13)

Legacy * Covered * Policy -0.0264 -0.0196
(-1.32) (-0.34)

Total flight -0.311∗∗ -0.308∗∗ -0.354∗∗∗ 0.690 0.712∗ 0.889∗∗

(-2.86) (-2.84) (-3.78) (1.93) (1.99) (2.81)

HHI -0.0584∗ -0.0580∗ -0.0520∗ 0.315 0.318 0.307
(-2.48) (-2.47) (-2.23) (1.74) (1.75) (1.82)

Constant 0.417∗∗∗ 0.420∗∗∗ 0.402∗∗∗ 1.338∗∗∗ 1.368∗∗∗ 1.427∗∗∗

(21.23) (21.16) (20.10) (17.34) (17.80) (18.50)

Observations 13999 13999 13999 13999 13999 13999

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

2.6 Falsification Test

One may think that our finding of significant policy impacts on cancelation is not

the true policy impact, but rather because I fail to properly control for factors

other than the policy (e.g., time trend). This is a legitimate concern for which I

perform several types of falsification tests.

The first two falsification tests are similar to each other. In both tests, I

restrict the sample to be non-covered airports only (but both before and after

policy change). And since they are not covered before or after the policy change,

we expect to see no “policy” impacts.

In the first falsification test, I assign small airports to the fake “treated group”

and non-hub airports to the control group. The same diff-in-diff strategy is

applied to estimate the impacts of this fake “policy change” and the results are
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Figure 2.3: Flights with Re-shuffle Behavior

10
0

15
0

20
0

25
0

30
0

35
0

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
N

um
be

r 
of

 fl
ig

ht
s

2008q1 2009q1 2010q1 2011q1 2012q1
date

Total cancellation Number of re-shuffled flights

presented in Table 2.6. If our estimation has properly controlled confounding

factors then we should see no impacts because there is no real policy change.

The results are consistent with this. In column 1, 4, 7 and 10, we do not find

significant difference between the fake treated group and the fake control group.

In the second falsification test, I sort all the non-covered airports alphabetically.

I then assign the first (second) half of airports to fake treated (control) group.

The same diff-in-diff strategy is applied with similar results. Results in columns

2, 5, 8 ,11 show there is no significant difference between the fake treated and

control group.

Next, I consider both covered and non-covered airports but restrict the sample

periods to pre-treatment periods only. I then divide the pre-treatment periods

into two period in terms of time, the first half being the “pre-treatment” period,

and the second half as the fake “post-treatment” period. Since the whole period

in this test is before the actual policy change, we would expect to find no policy

impact either. Our results are consistent with this. In particular, the interaction
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term between covered airport and policy interaction term in column 3, 6, 9 and

12 show no significant impacts. These three falsification tests indicates that our

econometric models have satisfactorily controlled confounding factors and the

policy impacts we find are likely to be the true policy impacts.

2.7 Conclusion, Policy Implication and Discussion

This paper studies the impacts of the U.S. DOT’s tarmac delay rule on flight

cancellation, departure delay, and average departure tarmac time. This rule aims

at reducing the lengthy tarmac delay and protect passengers’ rights. However, the

policy also has several unintended consequences which end up hurting passengers.

First, carriers cancel more flights to avoid the hefty penalty when tarmac time

approaches three hours. Second, carriers sacrifice departure delay to avoid having

flights on the tarmac when the airport is highly congested.

One key aspect in cancellation and departure delay estimation is the net-

work effect. Every flight is part of the airline’s network. Current trip’s on-time

performance (cancellation in particular) affects subsequent trips. This paper dis-

entangles tarmac delay rule’s direct and indirect impacts on cancellation. I also

use average delay increase to analyze the effect of new rule on departure on-time

performance. The average delay increase is calculated as the difference between

current trip’s departure delay and preceding trip’s arrival delay, which is a trip-

independent measure. The diff-in-diff results suggest that the new rule led to a

significant 3.112 increase of direct cancellation per (covered) airport-quarter. In

addition, I also observe a 0.0822 significant average delay increase per (covered)

airport-quarter.

Carriers likely realize the cost of increasing cancellation and take actions to

minimize total cancellation (and its corresponding economic impacts). My re-
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sults show that carriers are able to reduce the cancellation multiplier by 0.0667

which decreases the likelihood of subsequent flight cancellation. As a result,

the cancellation network effect only lead to a total of 6.2 flight cancellation per

airport-quarter (relative to a 3.1 direct flight cancellation). The positive impacts

of the new rule is not limited to the dramatic reduction of lengthy tarmac delay,

it also significantly reduces the average departure tarmac time. This paper also

addresses the concerns from the non-legacy carriers and shows that the policy

has no significant differential impact across legacy vs. regional carriers on direct

cancellation, total cancellation, average delay increase and average departure tar-

mac time minutes. I also show that legacy and non-legacy carriers have similar

cancellation ratio and cancellation multiplier, which helps rule out the case that

the similar direct and total cancellation increase is because two parties respond

to the new policy differently. This paper is not only a retrospective policy impact

study, it also shows the necessity of taking cancellation network effects and other

side effects into account when making policy decisions.
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Chapter 3

Product Differentiation and Quality Uncertainty in the

U.S. Airline Industry

3.1 Introduction

Vertical product differentiation occurs when consumers strictly prefer a high-

quality product over a low-quality product. On the other hand, horizontal dif-

ferentiation reflects how consumers have different tastes towards product char-

acteristics. The literature assumes that consumers have full information when

making a purchase decision. However, the perfect information assumption is

questionable, especially in the airline industry.

On-time performance is one of the most important measures of vertical dif-

ferentiation. Due to weather conditions, airline traffic congestion, or security

threats, only around 70% of flights (based on the years 2004- 2008) are reported

as on time. This paper empirically estimates the impact of on-time performance

on flight temporal differentiation.

In this paper, the flight temporal differentiation measure is based on the flight

departure time. Bester (1998) pointed out two theoretical effects that can influ-

ence horizontal differentiation: price competition effect and market share effect.

The price competition effect is compromised when consumers are imperfectly in-

formed about product quality. If so, the market share effect will dominate the

price competition effect. In order to gain a larger market share, companies lo-

cate close to each other and “agglomeration” is the result of market share effect.

Therefore, Bester concludes that if quality uncertainty exists then the market
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will end up with “minimum level of horizontal differentiation”.

Bester’s theoretical conclusion, however, may not be applicable to the airline

industry. For instance, the airline industry is not a typical monopoly market,

as assumed in both the Hotelling (1929) model and the Bester (1998) model.

Borenstein and Netz (1992) pointed out that the real world deviates from most of

the model’s assumptions: in the airline industry demand is elastic and passengers

are nonuniformly distributed in terms of preferred departure time. In addition,

every route is part of a network: scheduling is not entirely determined by the

characteristics of a single route. In addition, airlines compete on ticket price,

departure time, on-time performance and other factors at the same time.

Since each flight on the route competes with its closest preceding and closest

subsequent flights, and all other flights, I construct two measures for horizontal

differentiation: time to noon (TTN) and Gini coefficient. Although both mea-

sures are based on departure time, TTN emphasises specifically how a given flight

competes with all other flights on the route. Gini coefficient, on the other hand,

focuses on the differentiation between a flight and its closest neighboring flights.1

After correcting for potential endogeneity, I find that arrival delay increases flight

temporal differentiation on the route, whereas arrival delay decreases the differ-

entiation between a flight and its closest neighboring flights.

In section 2, I review the theories of horizontal differentiation, then discuss the

market share effect, price effect and delay cost as the deterministic driving forces

of horizontal differentiation in the airline industry. In addition, I review empirical

studies of horizontal differentiation and the difficulty of applying differentiation

theories to the airline industry. Section 3 covers the data and temporal differen-

tiation measures in the airline industry. Based on the theoretical indication, it is

1In this paper, “closest neighboring flights” refers the closest preceding flight and closest sub-
sequent flight.
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important to distinguish the three types of flights when discussing the impact of

on-time performance on temporal differentiation: own flight, one-sided flight and

two-sided flight. Section 4 discusses the estimation strategies. The major empir-

ical concern is the endogeneity issue. Therefore, I use route distance and arrival

delay of the previous trip as instrumental variables for temporal differentiation.

Results and interpretations are presented in section 5.

3.2 Theories and empirical studies of horizontal

differentiation

3.2.1 Theories of horizontal differentiation and quality

uncertainty

Hotelling’s location theory has been extended and applied to situations where

firms have more than one outlet. Following the Hotelling model, Martinez-Giralt

and Neven (1988) assume a duopoly market where each firm has two plants, in

which firms first choose locations and then compete for price. A key assump-

tion in their model is the quadratic transportation cost assumption. They find

that the firms intend to obtain minimum differentiation between their own plants

while locating plants away from their competitors. Gabszewicz and Thisse (1986)

further relax the quadratic assumption and allow two firms to locate as many out-

lets as they want to investigate whether Martinez-Giralt and Neven’s conclusion

is driven by the assumption that only two outlets are allowed. Gabszewicz and

Thisse show that the maximum differentiation equilibrium requires competitive

pairs of plants to locate evenly over the market space. Their result confirms the

maximum differentiation conclusion does not dependent on how many plants each

firm has.
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Similar to that of d’Aspremont, Gabszewicz, and Thisse (1979), Bester (1998)

employed the basic Hotelling duopoly model to show quality uncertainty may lead

to agglomeration. In the model, firms choose a location to maximize profit. If

a firm moves closer to its competitors, the market share of the moving firm will

increase. The opposing effect is the price effect: price competition is intensified

once companies are closer to each other. However, the price effect is compromised

in the imperfect information framework. Bester (1998) showed that consumers

learn about a seller’s quality after the purchase and then decide about repeat

purchases from the same seller. Unobservable quality reduces the incentives for

differentiation by relaxing price competition. In this repeat purchase setting, if

the frequency of the repeat purchase is small, then the market share effect is

likely to dominate the price effect. As a result, we would observe “minimum

differentiation” in the market. In the airline industry, when consumers purchase

the ticket they are not able to recognize whether their flights will be delayed.

Consumers are able to observe the quality of the on-time performance to some

extent, but severe weather conditions, congested airports, and late aircraft issues,

make the on-time performance hard to predict.

In this paper, I focus on three different driving forces that potentially affect

horizontal differentiation. The first two are universal among the literature. In

the price effect, firms intend to maximize the extent of horizontal differentia-

tion to reduce the price competition. However, the market share effect leads to

the minimum differentiation. The last driving force is the delay cost. Arrival

delay imposes an extra cost on the consumer in addition to the price and adjust-

ment cost, which occurs when actual departure time is different than consumer’s

scheduled departure time. Consumers need to cover the cost associated with

rescheduling their travel plans such as extra car rental fees and hotel re-booking
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costs. Therefore, the delay cost forces carriers to avoid clustering flights, which

works in the opposite direction as the market share effect.

3.2.2 Empirical studies of horizontal differentiation in

airline industry

In addition to the large amount of theoretical work on horizontal differentiation,

only a few empirical studies investigated temporal differentiation in the airline

industry. The most closely related empirical work is from Borenstein (1999).

He found a negative relationship between competition and product differentia-

tion after controlling for other factors that might affect departure-time crowding.

Borenstein also shows that price is a major factor in deciding the optimal amount

of horizontal differentiation. When prices are fixed, there is a strong tendency

for firms to crowd departure time. In addition, market structure has a significant

impact on horizontal differentiation: departure times are less differentiated if the

route is served by competing airlines than if it is served by a single firm.

In the classical Hotelling model, demand is assumed to be perfectly inelastic.

Many theoretical studies relax this assumption and extend the model to allow

for elastic demand. For instance, Eaton (1972) assumes a linear elastic demand

function. He finds that minimum differentiation is reachable with the market

length less than a threshold value. Eaton also derives the critical parameters to

satisfy the minimum differentiation. However, Eaton believes the equilibrium is

not stable since there is no pure Nash equilibrium. In the airline industry, the

inelastic demand assumption rarely holds. Instead, the elasticity is likely to vary

across market structures. For instance, the route with a dominant proportion

of business travelers has relatively inelastic demand, whereas routes with more
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tourists should be more elastic.

The scheduling of airline flight departures could be analyzed under the hor-

izontal differentiation framework. Analogous to the classical Hotelling model in

which the consumers are distributed over a finite line, passengers are distributed

over the 24-hour clock in the airline industry. However, passengers are not uni-

formly distributed.

The airline industry is much more complicated than a duopoly market. How-

ever, the flight temporal differentiation shares some common characteristics with

the classical Hotelling model in the sense that carriers both compete on ticket

price and market share at the same time. Carriers first decide the departure time

then compete for the price to maximize profit. Therefore, the two-stage departure

time and price competition strategy can be applied to the airline industry.

3.3 Data and measures of temporal differentiation

3.3.1 Data

The estimation period includes 2004-2008. The sample starts from 2004 to avoid

the influence of the September 11, 2001 and ends in 2008 to exclude the impact

from the airline merger wave. From 2004 to 2008, there is only one large carrier

merger: US Airways and America West. This merger has a relatively small

impact on the market structure since there are only a few overlapping routes

between US Airways and America West. The routes that either US Airways or

America West operate on should not experience a drastic change in the market

share. In this paper, I use a dummy variable to control for this merger.

The data includes three sources: Bureau of Transportation Statistics on-time

performance data, Airline Origin and Destination Survey (DB1B) and Air Carrier
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Statistics T-100 domestic segment data. The DB1B data is a 10% sample of

airline tickets from reporting carriers, including origin, destination and other

itinerary details of passengers information. I further limit the sample to ticket

prices higher than 15 U.S. dollars to exclude the tickets purchase by frequent

flyer miles. The on-time performance data contains detailed information on a

daily non-stop flight’s scheduled departure time, scheduled arrival time, both

departure and arrival delay minutes, and a unique identification code for an

aircraft. Due to the typing errors or miscalculations of the tarmac time, there

are some unrealistically lengthy tarmac delays in the on-time performance data.

In order to clean the data, I remove the observations with negative air fly times

and tarmac delays longer than 10 hours.

I supplement the on-time performance data with T-100 data, which contains

quarterly data on the number of seats and passengers. To avoid the contamination

from temporary or diverted routes, I restrict the sample to routes on which at

least 9 flights operated per quarter. In order to make the estimation manageable,

I aggregate data into carrier-route-quarter cells. I estimate least-squares and

instrumental variable with fixed effect models, weighting each observation by

the number of flights in that cell. Doing so yields the same estimation results

as using disaggregated flight-level data. I follow Borenstein and Rose (1994) to

define a route as a non-stop directional combination of origin and destination

pair since the arrival delay and related horizontal differentiation is route-level

phenomena. For instance, the Atlanta (ATL)-Chicago O’Hare (ORD) route is

treated differently than route Atlanta (ATL)-Chicago O’Hare (ORD).
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3.3.2 Measures of temporal differentiation

I follow the classic Hotelling model and assume the consumer utility function as:

U(a, pi, qi, yi, k, di) = qi − pi − t(ai − yi)2 − k(di) (3.1)

The main assumption is that consumers are a prior uninformed about qi of route

i and they can only learn the actual quality after experience the service of the

flight trip.2 Consumers are fully informed with the price (pi). Consumer’s ideal

departure time is ai and actual departure time is yi, t indicates the degree of

temporal differentiation, and t(a− yi)2 denotes consumer’s adjustment cost. k is

the consumer’s sensitivity to the delay, and di is the delay of route i.

In order to analyze the impact of on-time performance on temporal differen-

tiation, I construct two measures for temporal differentiation. Both measures are

based on the flight departure time gap. The first measure, TTN, is defined as:

Time to noon = |departure time− 12|. (3.2)

12 o’clock is assumed to be the middle point of a day. Each flight competes with

all the other flights on the route. A TTN value of 0 means minimum differen-

tiation and a value of 12 denotes maximum differentiation. That is, the smaller

the TTN, the stronger the incentive for a carrier to compete for higher market

share.3 Bester (1994) believes that the quality uncertainty mitigates horizontal

differentiation, which means a large arrival delay is associated with a small TTN.

However, some assumptions that Bester (1994) made are not applicable in the

2See detailed discussion: Bester (1998), Quality uncertainty mitigates product differentiation.
3This means in the equation (1) the t(ai−x−i)2 is small, and the market share effect dominates
the price effect if flights are clustered at 12 o’clock.
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airline industry.

The second measure is the Gini coefficient. Consider a given route-day which

contains more than 2 flights. For each flight (except the earliest and latest flights

of the day in terms of the scheduled departure time), I calculate two gaps: pre-

ceding gap is the gap between this flight and its closest preceding flight in terms

of scheduled departure times; subsequent gap is the gap between this flight and

its closest subsequent flight.4 Suppose that a given route-day has N flights that

are not the earliest/latest flights of the day.Some of the N flights may have the

same scheduled departure time (e.g., American and United may both offer a 10

a.m. flight on a given route). Then each of these flights has either preceding

or subsequent gap at zero. Suppose a flight is departing at 9 a.m., which has a

closest preceding flight departing at 7 a.m. and has a closest subsequent flight

departing at noon. Then there are a 2-hour closest preceding gap and a 3-hour

closest subsequent gap for the flight. We then have a total of 2N gaps.Sorting

both preceding and subsequent gaps in an ascending order, we can then calculate

the Gini coefficient.

With all the ranked departure gaps, I follow the usual expression to calculate

the Gini coefficient:

G =
2

(2N)2x̄

2N∑
i=1

i(xi − x̄) (3.3)

where G is the Gini coefficient,5 x̄ is the mean value of the ranked departure

gap distribution, N is the number of flights in the sample, 2N is the number of

ranked departure gaps, and xi is the ith ranked departure gap, where i = 1, ...,

4Such gaps are not calculated for the earliest and latest flights of the day since they miss either
a preceding or subsequent flight by definition. If multiple flights are tied for the earliest/latest
flight of the day, then the gaps are not calculated for any of these tied flights.

5The first and last flight in a day are excluded from the estimation since they only have one
neighboring flight. Therefore, only one gap can be calculated. I exclude first and last flight in
a day when calculate the Gini coefficient
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2N .6

The Gini coefficient is one of the most commonly used measures of inequality,

and it has many advantages that are particularly useful to measure flight tem-

poral differentiation. Since it is a scale-independent measure, there is no need to

normalize by the number of flights on the route. Therefore, the Gini coefficient

can be used to compare the temporal distribution across different markets. In

addition, the Gini coefficient is easy to interpret. A large Gini coefficient indi-

cates a greater inequality of the temporal distribution between a flight and its

closest neighboring flights.

In sum, TTN measures how a flight differs from all the other flights on the

route, whereas the Gini coefficient indicates how a flight differs from its closest

preceding and closest subsequent flights.

3.3.3 Own flight v.s. one-sided flight v.s. two-sided flight

It is important to differentiate three types of flights when discussing the flight

temporal differentiation. Borenstain and Netz (1999) partition horizontal differ-

entiation into average within- and between- differentiation according to whether

each pair of flights are scheduled by the same airline or is scheduled by different

airlines. I follow the similar idea and further separate three types of flight: own

flight, one-sided flight, and two-sided flight.

I partition flight types based on the characteristics of its closest preceding

and closest subsequent flights. Any given flight should fall into one of the three

categories: first is “own flight”, which is when both closest preceding and closest

subsequent flights are scheduled by the same carrier. Since its closest neighboring

6See detailed discussion from Karagiannis and Kovacevic (2000), a method to calculate the
jackknife variance estimator for the Gini coefficient.
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flights are both operated by the same carrier, the market share effect should have a

small impact on its temporal differentiation. The second one is called “one-sided

flight”. If a flight’s closest preceding or closest subsequent flight is scheduled

by a different carrier (not both flights), then it falls under the “one-sided flight”

category. Theoretically, the “one-sided flight” engages in minimum differentiation

with flights that are operated by competitors. On the other hand, the one-sided

flight maximally differentiates from flights under the same carrier. The last type

is “two-sided flight”. Both the closest preceding and closest subsequent flights

are operated by competitors in this case. Studying the impact of the on-time

performance on flight temporal differentiation without comparing these three

cases is misleading because different types of flights are subjected to different

levels of market share effects, price effects, and network effects. For instance,

on-time performance compromises price effect and enhances market share effect.

However, “own flight” is less affected by market share effect compared with “one-

sided flight” and “two-sided flight”. Therefore, on-time performance imposes a

smaller impact on horizontal differentiation for “own flight” than the others.

3.3.4 Summary statistics

Table 3.1 presents the summary statistics for measures of temporal differentiation,

including each of the samples that I study from 2004-2008. TTN is based on

minutes.

I provide the comparison of different flight types for both temporal differ-

entiation measures. The preliminary evidence shows that “own flight” group’s

TTN is significantly smaller than “one-sided flight” and “two-sided flight”. This

finding shows that when a flight and its closest neighboring flights are operated

by the same carrier, the market share effect dominates the price effect.
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The Gini coefficient shows the same pattern as TTN across different flight

types.7 The “own flight” group has a significantly smaller Gini coefficient than

the other two cases. One explanation is that “one-sided flight” and “two-sided

flight” carriers have stronger incentive to schedule flights closer to competitor and

increase the chance to sell to more consumers. The “own flight” group, which

both the closest preceding and closest subsequent flights are served by the same

carrier, has limited incentive to “steal” consumers from the closest neighboring

flights. Figure 3.1 presents the histogram of the Gini coefficient for all three

types of flights. The “own flight” Gini coefficient is clustered around 0.152 and

has a short tail. The “one-sided flight” and “two-sided flight” have a similar

shape. This also supports the conjecture that “own flight” does not compete

intensively with its closest neighboring flights. Both the summary statistics and

the histogram show that there are few extreme values for the Gini coefficient.

In addition to the market share and price effect, the delay cost also has a

significant impact on the flight departure schedule. In particular, a large hub

airport is much more crowded than small airports.8 We should expect a stronger

market share effect, price effect, and a larger delay cost in large hub airports.

However, it is unclear which effect dominates. Based on Table 3.1, both TTN

and Gini coefficients are larger in large hub (origin) airports than others.

Arrival delay denotes on-time performance, and is measured by the difference

between scheduled arrival time and actual arrival time. Arrival delay is set to

zero for any flights which arrive early. I use the total number of flights on a route

7To make the calculation manageable, the Gini coefficient is based on randomly selected 5th,
15th and 25th day of the month. After restricting the data, I have roughly 500,000 observa-
tions.

8Federal Aviation Administration (FAA) defines a large hub if the airport accounts for least 1
percentage of annual passenger boarding. Based on this definition, the following airports are
categorized as large hub airport: ATL, ORD, LAX, DFW, DEN, JFK, SFO, LAS, PHX, IAH,
CLT, MIA, MCO, EWR, SEA, MSP, DTW, PHL, BOS, LGA, FLL, BWI, IAD, SLC, MDW,
DCA, HNL, SAN and TPA.
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Figure 3.1: Histogram of Gini Coefficient by Flight Type
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a. Source: data is from U.S. Bureau of Transportation Statistics, the figure is based on author’s own calculation.
b. To make the calculation manageable, the Gini coefficient is based on randomly selected 5th, 15th and 25th
day of the month.
c. “Own flight” is defined as both its closest preceding and closest subsequent flights are scheduled by the same
carrier. “one-sided flight” is defined that a flight’s either the closest preceding or closest subsequent flight is
scheduled by a different carriers (not both flights). “two-sided flight” is defined as both closest the preceding
and closest subsequent flights are operated by competitors.

to account for the traffic volume at each airport. Number of flights by carrier

on route controls for the number of flights on the route served by the carrier. I

also include market structure variables to control for the route characteristics.

Market share is calculated as the ratio of the number of passengers served by the

carrier over the total number of passengers. Herfindahl index (HHI) is based on

the number of passengers, and is calculated by squaring the market share for each

carrier and then summing the squares. I use the load factor, which is calculated

as the number of passengers over the total number of available seats, to capture

the impact of the capacity constraint on strategic flight departure scheduling. If

the flight is nearly full, the incentive to locate the flight close to its competitor’s

is reduced.

72



3.4 Estimation strategies

In this subsection, I study the impact of on-time performance on flight temporal

differentiation. To gain some insight into the relationship, I use a panel fixed

effect model:

Yijt = α + µt + γij + β1delayijt + β2fareijt + β3load factorijt + β4# carriersjt

+ β5tot. f lights(r)jt + β6tot. f lights(c− r)ijt + β7mkt. shareijt

+ β8HHIijt + εijt

(3.4)

where i denotes the carrier, j refers to the directional route and t denotes

time. Yijt includes 2 different types of temporal differentiation measures: TTN

and Gini coefficient.9 µt is the year and quarter fixed effect, which is used to

control the time trend change and seasonality, γij is carrier-route fixed effect to

control for the time-invariant unobservable for each carrier-route pair. Finally,

in all models, the standard error is clustered at carrier-route level to account for

the correlation in the standard errors over time for each carrier-route pair. The

estimation is in the log-log form.10

I use the arrival delay to measure the on-time performance as a proxy for

quality uncertainty. The endogeneity issue is the major concern of the panel fixed

effect model. Although the panel fixed effect model controls the time-invariant

unobservable factors, the time-variant unobservable factors will bias the weighted

ordinary least square estimation. The second concern is reverse causality: a route

9Since the Gini coefficient is bounded between 0 and 1, the estimate results would be biased if
the predicted Gini coefficient is less than 0 or greater than 1. The result confirms the predicted
value is also bounded between 0 and 1, which indicates the validity of the regression.

10It is easier to interpret the result as the elasticity than the level change. The main results
are robust to linear and log-linear functional form.
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with “agglomerated” departure flights is more likely to experience a delay than

a route with evenly distributed departure flights.

To handle the endogeneity issue, I use two instrumental variables for the

arrival delay: route distance and arrival delay of the previous trip. Route distance

is predetermined for all the flights on the route, and therefore, is uncorrelated with

the flight departure time. Aircraft designed for middle-haul routes serve fewer

trips per day compare to those designed for short flights. For instance, it takes

1.5 hours for a short-haul aircraft to serve route Washington D.C. (DCA)- Boston

(BOS) and it can serve at least 5 similar routes per day. However, it takes 3.5

hours for a middle-haul aircraft to serve route Washington D.C. (DCA)- Dallas

(DFW) and it can only serve 2 similar routes per day. One of the major causes

of delay is “late aircraft delay”.11 As the route distance becomes longer and the

aircraft can only serve fewer trips per day, the likelihood of experiencing “late

aircraft delay” is lower.

The second instrument is the arrival delay of the previous trip. Each flight is

a part of the airline network and any single aircraft is scheduled to serve multiple

trips. The on-time performance of the current trip is significantly affected by

the punctuality of the previous trip served by same aircraft. Therefore, I use the

arrival delay of the previous trip as an instrumental variable for the current trip’s

on-time performance.12

11Based on the Bureau of Transportation Statistics on-time performance data, 76.05% of total
flights are reported on time, the major causes of delay are national aviation system delay
(7.82%), aircraft arriving late delay (6.98%), air carrier delay (6.04%), weather delay (0.93%)
and security delay (0.06%).

12I use “tail num” in the Bureau of Transportation Statistics on-time performance data to pin
down a unique aircraft.
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3.5 Results

3.5.1 Baseline estimation result

I include both OLS and IV results for TTN and Gini coefficient measures/outcomes.

Table 3.2 reports the baseline regression results. In addition to explaining the eco-

nomic intuition of the instruments in section 4, I also implement the following IV

tests: under-identification test, weak identification test, and over-identification.13

All three tests are passed at least at the 10% significance level for all the regres-

sions. I control for variables that affect TTN, time-invariant unobservable factors,

and time trend, the OLS result still underestimates the impact of arrival delay on

TTN. After correcting for endogeneity, the estimated coefficient of arrival delay

is about twice the OLS estimate. This result indicates that a 1% increase in the

arrival delay leads to 14.2% increase in the TTN.

The increase in the arrival delay compromises the price competition and firms

have a stronger incentive to compete for market share. This forces carriers to

locate their flights close to 12 o’clock in an effort to sell to more consumers.14

At the meantime, the arrival delay increases the delay cost, which reduces the

clustering incentive and drives flights away from 12 o’clock. The estimation result

supports the conjecture that the delay cost dominates the market share effect.

Column 3 and 4 compare the delay impact of non-large and large hub airports.

Since the on-time performance is generally worse in large hub airports, the delay

13The under identification test checks whether the instruments are relevant. The null hypothesis
is no correlation. The weak identification test checks whether instruments are correlated with
the regressors but weakly. The null hypothesis is the instrumental variable and endogenous
regressors are weakly correlation. The Hansen J over identification test checks the validity of
the over-identifying restrictions. “It tests whether the restrictions implied by the existence of
more instruments than endogenous regressors are valid” (P., Parentea and S., Silvac, 2012).
The null hypothesis the instruments are coherent with each other.

14According to the Hotelling model, if the market share effect dominates price effect firms will
locate in the middle of space and experience minimum differentiation.
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cost is accordingly larger. The comparison is consistent with the baseline result

that arrival delay increases the temporal differentiation measured by TTN and

the impact is stronger at the large hub airport. The results indicate a 1% increase

in arrival delay causes the gap between 12 o’clock and flight departure time to

increase by 17%.

Column 5 and 6 report the impact of the arrival delay on the Gini coefficient

based on the entire sample. The IV-based estimated coefficients of arrival delay

are positive and statistically significant, roughly twice as large as the coefficient

from OLS estimate. This implies the arrival delay decreases the flight temporal

differentiation when measured by Gini coefficient. One might argue that this

result is inconsistent with the temporal differentiation measured by TTN: the

arrival delay forces carriers to schedule flights away from 12 o’clock and increases

temporal differentiation. The Hotelling model assumes a duopoly model and each

firm is allowed to locate only one plant. Arrival delay increases the temporal

differentiation from the entire route’s perspective, which is measured by TTN.

But it decreases the differentiation between the flight and its neighboring flights,

which is measured by Gini coefficient. In sum, arrival delay drives the flight

departure time away from 12 o’clock but it also increases the incentive to compete

with its closest neighboring flights (either preceding or subsequent flight).

The estimated impact on Gini coefficient is statistically significant at the large

hub airport, but not at the non-large hub airport. I argued that in the large hub

airport there are more competitors on the route. Therefore, the carriers have

stronger desire to engage in a strategic scheduling. In this way, the product

quality uncertainty has a more significant overall impact.
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3.5.2 Time to noon across different market structure

As indicated by theoretical models, the level of flight departure differentiation

varies across different market structures. In this subsection, I present evidence to

show the impact of on-time performance on TTN across different market struc-

tures.

The Herfindahl index (HHI) is a commonly used measure for market concen-

tration. According to different quartile of HHI (25%, 50%, 75% and 100%), I

separate the whole sample into 4 sub-samples. The market concentration of the

route, which dictates whether or not a route is in a given sample, is possibly

determined in part by variables that are part of the residual in Equation (4).

The right-hand-side variables would be orthogonal to the residuals in a “com-

plete” sample, but it is possible that they are correlated with the residuals in

the nonrandom sub-samples. To handle this truncation issue, I first implement

the Heckman sample selection equation, then apply the instrumental variable ap-

proach to estimate Equation (4). The estimation results are reported in Table 3.3.

In all four sub-sample regressions, the impact of on-time performance on TTN

is positive. However, the coefficient of arrival delay is decreasing monotonically

as the market concentration increases. The results show that, going from the

first quartile to the fourth quartile the coefficient decreases from 18.3% to 6.11%.

Estimation supports the maximum differentiation hypothesis when the on-time

performance worsens, but the impact is larger when the market concentration is

close to perfect competitive market.

One of the explanations is that in the perfectly competitive market, consumers

are more sensitive to the delay cost since they have more options to choose from.

The delay cost dominates the market share effect, which drives carriers schedule
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flights away from the 12 o’clock. However, as the market concentration increases

and carriers have larger market power, the concern of increased delay cost be-

comes less important for carriers.

3.5.3 Impacts by different flight types

Gini coefficient is based on the departure time between a given flight and its

closest neighboring flights (both preceding and subsequent flights). It measures

how a flight differentiates from its nearest flights. Whether the flight and its

closest neighboring flights are operated by the same carriers determines how

they compete with each other. For instance, “own flight” has little incentive to

compete intensively with the closest neighboring flights since all the flights are

from the same airline. This indicates a small Gini coefficient. This is supported

by the summary statistics in Table 3.1. Therefore, it is important to compare

three different flight types.

Table 3.4 reports the impact of arrival delay on the Gini coefficient. The Gini

coefficient measures the departure inequality of a flight and its closest neighboring

flights, so an increase in the Gini coefficient implies a flight and its closest neigh-

boring flights are more unevenly distributed, in another word, less differentiated.

In all regressions, the estimated coefficients of arrival delay are positive.

First two columns report the results for “own flight”, the weighted OLS and

IV regression estimation have similarly sized estimated coefficient. Flights in

the “own flight” group have less incentive to compete for market share against

the closest neighboring flights. Therefore, the on-time performance does not

significantly affect the temporal differentiation of “own flight” type. However,

for a “one-sided” type of flight, the carrier has a strong incentive to schedule

the flight close to the competitor’s and away from its own flight as an effort to
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Table 3.3: Time to noon results

(1) (2) (3) (4)
Time to noon 0-25% 25%-50% 50%-75% 75%-100%

Arrival delay 0.183∗∗∗ 0.166∗∗∗ 0.146∗∗∗ 0.0611∗∗∗

(15.66) (14.60) (15.40) (9.70)

Ticket price 0.0643∗∗∗ 0.0407∗ -0.00529 -0.0332∗∗∗

(3.58) (1.87) (-0.32) (-2.67)

Load factor -0.0756∗∗∗ -0.0566∗∗ -0.0615∗∗ -0.0708∗∗∗

(-3.05) (-1.96) (-2.52) (-3.92)

# of carriers -0.00403 0.00376 0.0113 -0.00422
(-0.33) (0.39) (1.44) (-0.91)

# of flights on route 0.176∗∗∗ 0.268∗∗∗ 0.245∗∗∗ 0.339∗∗∗

(7.50) (11.82) (11.54) (8.62)

# of flights by carrier on route 0.0216 0.00301 -0.0124 0.00811
(1.16) (0.13) (-0.60) (0.21)

Market share 0.0299∗∗ 0.0314∗∗∗ 0.0151∗∗ 0.0422∗∗∗

(2.49) (2.96) (2.12) (3.22)

HHI -0.0697∗∗∗ 0.0797∗ -0.0204 0.0339
(-2.68) (1.95) (-0.76) (0.73)

Observations 16049 15617 15618 16177

Under identification test Y Y Y Y

Weak identification test Y Y Y Y

Over identification test Y Y Y Y

a. All models are weighted by the number of flights. The results are based on IV regression, in a panel fixed
effect setting. All the variables are in the log-log form. The instruments are route distance and arrival delay of
previous trip.
b. The under identification test checks whether the instruments are relevant. The null hypothesis is no
correlation. “Y” is used to denote the rejection of null hypothesis at 10% significance level.
c. The weak identification test checks whether instruments are correlated with the regressors but weakly. The
null hypothesis is the instrumental variable and endogenous regressors are weakly correlation. “Y” is used to
denote the rejection of null hypothesis at 10% significance level.
d. The Hansen J over identification test checks the validity of the over-identifying restrictions. The null
hypothesis the instruments are coherent with each other. “Y” denotes fail to reject the null hypothesis at 10%
significance level.
e. All models cluster standard error at carrier-route level. The t statistics in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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Table 3.4: Gini coefficient results

Own flight One-sided flight Two-sided flight

(1) (2) (3) (4) (5) (6)
Gini coefficient OLS IV OLS IV OLS IV

Arrival delay 0.0164 0.0163 0.0149∗ 0.0282∗∗ -0.000833 0.00851
(1.24) (0.96) (1.90) (2.36) (-0.18) (1.20)

Ticket price -0.116∗∗ -0.115∗∗∗ -0.0510∗ -0.0505∗∗ -0.00231 -0.00319
(-2.45) (-2.58) (-1.89) (-2.03) (-0.13) (-0.19)

Load factor -0.0692 -0.0703 -0.0321 -0.0379 -0.0200 -0.0189
(-1.40) (-1.54) (-0.85) (-1.09) (-0.95) (-0.97)

# of carriers 0.0249 0.0249 0.00350 0.00327 0.0427∗∗∗ 0.0439∗∗∗

(1.46) (1.55) (0.26) (0.26) (4.37) (4.83)

# of flights on route -0.785∗∗∗ -0.787∗∗∗ 0.478∗∗∗ 0.478∗∗∗ 0.343∗∗∗ 0.340∗∗∗

(-8.27) (-8.81) (11.92) (12.87) (13.95) (14.71)

# of flights by carrier on route 1.030∗∗∗ 1.032∗∗∗ -0.181∗∗∗ -0.181∗∗∗ 0.0317∗∗∗ 0.0331∗∗∗

(9.46) (10.08) (-6.05) (-6.53) (2.67) (2.96)

Market share 0.114∗∗∗ 0.114∗∗∗ 0.00610 0.00564 0.00661 0.00643
(2.70) (2.87) (0.46) (0.46) (1.10) (1.16)

HHI -0.148∗ -0.148∗ -0.0319 -0.0329 -0.153∗∗∗ -0.145∗∗∗

(-1.82) (-1.95) (-1.08) (-1.20) (-7.32) (-7.81)

Observations 29109 28665 24468 23893 36337 34943

Under identification test Y Y Y

Weak identification test Y Y Y

Over identification test Y Y Y

a. All models are weighted by the number of flights. All the variables are in the log-log form. The instruments
are route distance and arrival delay of previous trip.
b. The under identification test checks whether the instruments are relevant. The null hypothesis is no
correlation. “Y” is used to denote the rejection of null hypothesis at 10% significance level.
c. The weak identification test checks whether instruments are correlated with the regressors but weakly. The
null hypothesis is the instrumental variable and endogenous regressors are weakly correlation. “Y” is used to
denote the rejection of null hypothesis at 10% significance level.
d. The Hansen J over identification test checks the validity of the over-identifying restrictions. The null
hypothesis the instruments are coherent with each other. “Y” denotes fail to reject the null hypothesis at 10%
significance level.
e. All models cluster standard error at carrier-route level. The t statistics in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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“steal” consumers from the competitor. The estimated coefficients are presented

in columns 3 and 4. Both weighted OLS and IV coefficients for the arrival delay

are positive and statistically significant. After correcting for the endogeneity, an

1% increase of arrival delay will lead to 2.82% increase in the Gini coefficient.

The increased departure gap inequity implies that the arrival delay enhances the

market share effect and relaxes the price effect. As a consequence, the market

share effect dominates the price effect and delay cost. Based on the coefficient

estimated in columns 5 and 6, the on-time performance has no significant impact

on Gini coefficient for “two-sided” type flights. When a flight’s both proceeding

and subsequent flights are from competitors, on-time performance will not affect

flight departure differentiation.

3.5.4 Robustness tests

To gain some insight into the robustness of the conclusion, I use the departure

delay as the alternative proxy for on-time performance. Table 3.5 reports the

impact of departure delay on TTN across different levels of HHI. The result

is consistent with using arrival delay: all the estimated coefficients of on-time

performance are positive and significant, and the magnitude of the impact is

decreasing with the increased market concentration level.

Table 3.6 presents the impact on Gini coefficient of using departure delay,

the results for “own flight” and “two-sided flight” are almost the same as the

arrival delay based estimation. However, the “on-sided flight” is less robust: the

estimated coefficient is statistically insignificant and the magnitude is smaller

than arrival delay based measure. This inconsistency implies that consumers and

carriers care more about the arrival delay than departure delay.
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Table 3.5: Robustness check of time to noon

(1) (2) (3) (4)
Time to noon 0-25% 25%-50% 50%-75% 75%-100%

Departure delay 0.167∗∗∗ 0.151∗∗∗ 0.133∗∗∗ 0.0595∗∗∗

(15.68) (14.72) (15.49) (9.71)

Ticket price 0.0559∗∗∗ 0.0415∗ -0.00618 -0.0342∗∗∗

(3.15) (1.91) (-0.38) (-2.75)

Load factor -0.0823∗∗∗ -0.0658∗∗ -0.0617∗∗ -0.0747∗∗∗

(-3.32) (-2.29) (-2.53) (-4.12)

# of carriers -0.00406 0.00483 0.0112 -0.00382
(-0.33) (0.50) (1.47) (-0.82)

# of flights on route 0.180∗∗∗ 0.274∗∗∗ 0.253∗∗∗ 0.341∗∗∗

(7.59) (12.05) (12.04) (8.70)

# of flights by carrier on route 0.0217 0.00614 -0.0143 0.00714
(1.16) (0.27) (-0.70) (0.19)

Market share 0.0314∗∗∗ 0.0302∗∗∗ 0.0158∗∗ 0.0438∗∗∗

(2.65) (2.74) (2.25) (3.39)

HHI -0.0613∗∗ 0.0754∗ -0.0253 0.0306
(-2.37) (1.85) (-0.94) (0.66)

Observations 16051 15604 15604 16172

Under identification test Y Y Y Y

Weak identification test Y Y Y Y

Over identification test Y Y Y Y

a. All models are weighted by the number of flights. The results are based on IV regression, in a panel fixed
effect setting. All the variables are in the log-log form. The instruments are route distance and arrival delay of
previous trip.
b. The under identification test checks whether the instruments are relevant. The null hypothesis is no
correlation. “Y” is used to denote the rejection of null hypothesis at 10% significance level.
c. The weak identification test checks whether instruments are correlated with the regressors but weakly. The
null hypothesis is the instrumental variable and endogenous regressors are weakly correlation. “Y” is used to
denote the rejection of null hypothesis at 10% significance level.
d. The Hansen J over identification test checks the validity of the over-identifying restrictions. The null
hypothesis the instruments are coherent with each other. “Y” denotes fail to reject the null hypothesis at 10%
significance level.
e. All models cluster standard error at carrier-route level. The t statistics in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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Table 3.6: Robustness check of Gini coefficient

Own flight One-sided flight Two-sided flight

(1) (2) (3) (4) (5) (6)
Gini coefficient OLS IV OLS IV OLS IV

Departure delay 0.0148 0.0154 0.00987 0.0101 0.00187 0.00764
(1.07) (0.95) (1.29) (1.41) (0.42) (1.21)

Ticket price -0.116∗∗ -0.115∗∗∗ -0.0512∗ -0.0513∗∗ -0.00230 -0.00315
(-2.46) (-2.59) (-1.90) (-2.06) (-0.13) (-0.19)

Load factor -0.0693 -0.0711 -0.0307 -0.0311 -0.0216 -0.0193
(-1.40) (-1.56) (-0.82) (-0.89) (-1.02) (-0.99)

# of carriers 0.0250 0.0251 0.00351 0.00357 0.0425∗∗∗ 0.0439∗∗∗

(1.47) (1.56) (0.26) (0.29) (4.35) (4.84)

# of flights on route -0.784∗∗∗ -0.787∗∗∗ 0.479∗∗∗ 0.481∗∗∗ 0.343∗∗∗ 0.340∗∗∗

(-8.26) (-8.81) (11.93) (12.93) (13.93) (14.73)

# of flights by carrier on route 1.029∗∗∗ 1.031∗∗∗ -0.181∗∗∗ -0.181∗∗∗ 0.0317∗∗∗ 0.0331∗∗∗

(9.45) (10.07) (-6.04) (-6.53) (2.67) (2.96)

Market share 0.114∗∗∗ 0.115∗∗∗ 0.00631 0.00634 0.00656 0.00649
(2.70) (2.88) (0.47) (0.51) (1.09) (1.17)

HHI -0.148∗ -0.148∗ -0.0315 -0.0310 -0.153∗∗∗ -0.146∗∗∗

(-1.82) (-1.94) (-1.07) (-1.14) (-7.34) (-7.82)

Observations 29103 28665 24462 23896 36288 34928

Under identification test Y Y Y

Weak identification test Y Y Y

Over identification test Y Y Y

a. All models are weighted by the number of flights. All the variables are in the log-log form. The instruments
are route distance and arrival delay of previous trip.
b. The under identification test checks whether the instruments are relevant. The null hypothesis is no
correlation. “Y” is used to denote the rejection of null hypothesis at 10% significance level.
c. The weak identification test checks whether instruments are correlated with the regressors but weakly. The
null hypothesis is the instrumental variable and endogenous regressors are weakly correlation. “Y” is used to
denote the rejection of null hypothesis at 10% significance level.
d. The Hansen J over identification test checks the validity of the over-identifying restrictions. The null
hypothesis the instruments are coherent with each other. “Y” denotes fail to reject the null hypothesis at 10%
significance level.
e. All models cluster standard error at carrier-route level. The t statistics in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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3.6 Conclusion

Due to the weather, security, mechanical issues and other factors, on-time perfor-

mance is unpredictable. Meanwhile, the punctuality is one of the most important

quality measures in the airline industry. In the airline industry, the delay cost

reduces consumer’s welfare which is not at all accounted for in Hotelling based

theoretical models. Under the quality uncertainty framework, I assume three

driving forces that can affect flight temporal differentiation: market share effect,

price effect, and delay cost.

In this paper, I use route distance and arrival delay of a previous trip to

instrument for the arrival delay. The OLS with fixed effect model is likely to

underestimate the impact of on-time performance on flight temporal differentia-

tion. After correcting for the endogeneity, I find that the arrival delay significantly

increases the flight departure temporal differentiation from the entire route’s per-

spective, which contradicts Bester’s (1994) minimum differentiation conclusion.

The impact varies across different market structures: arrival delay has a larger

impact when the market concentration is low.

I also investigate how a flight’s departure time differs from its closest pre-

ceding and closest subsequent flights. For the “one-sided flight” group, on-time

performance significantly reduces the differentiation between the flight itself and

its closest neighboring flights. This finding indicates the quality uncertainty en-

hances the market share effect when one of the closest neighboring flights is served

by the competitor, leading to lower differentiation.
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Appendix

3.7 Instruction on how the data is cleaned and organized

The on-time performance data provides information for each flight. In order to

make the estimation manageable, we typically aggregate the flights into carrier-

route-month cell by weighting each observation by the number of flights in that

cell. Recall that we use directional routes, so A → B is a different route than

B → A. Since after the merge all the flights are operated under US Airways’

name, we create a carrier code “USHP” to denote both US Airways (US) and

America West (HP) pre-merger and the merged carrier post-merger. US Airways

is concentrated on the East Coast while America West is on the West Coast.

These two carriers have few overlapping routes. Assigning a common carrier

code will have negligible impact on the estimation results. After using a common

carrier code for both US Airways and America West and treating them as one

carrier throughout all the time periods, we are able to make pre- and post-merger

comparisons. Next, we describe how we derive our measures of vertical and

horizontal differentiation.

Vertical differentiation measures

Our first measure of vertical differentiation is arrival delay. This is observed

for each flight. We calculate its average at the carrier-route-month level. Our

second measure is number of flights per-route, which can be obtained by directly

counting the number of flights at the carrier-route-month level. We also derive

the number of destinations, at the carrier-route-month level. For each month, we

count how many destinations a carrier has flights originating from each of the

two end airports of the routes. We then calculate the geometric mean and use
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it as the number of destinations for that carrier-route-month. Number of routes

is calculated at the carrier-month level. For each carrier-month, we count the

number of distinct routes which the carrier operates flight on.15

Horizontal differentiation measures

We construct several measures to capture the distribution of flight scheduled

departure times. For each flight on a given route-day, we first calculate the gap

(in minutes) between it and the closest flight on the same route-day. We consider

two variations depending on whether there is restriction on the carrier identity

of the closet flight.

Gap/Gini between flights using all flights

In this setting, we impose no constraint on the carrier identify of the closest

flight. Therefore, we have a gap measure for each flight on a given route-day,

call it gap allmjt, where m is flight, j is route and t is day. We then square

gap allmjt for each flight and calculate the average across flights on the same

route-day, call it SqGap Alljt. Gap Alljt′ , our dependent variable, is the simple

average of SqGap Alljt across days of the month. We also use Gini coefficient to

measure flight distribution. Instead of calculate Gini coefficient at route-day and

then average them at the monthly level, 16 In order to calculate meaningful Gini

index, we restrict sample to routes with at least 3 flights per day.

Gap/Gini between flights from different carriers

For this measure, we restrict the gap to be between this flight and a flight of

a different carrier. This first rules all monopoly routes, being served by a single

15Even though number of routes is at carrier-month level, in the estimation we run it as if it
were at the carrier-route-month level, i.e., repetition across routes for the same carrier-month.
This allows us to take advantage of the variations explanatory variables across routes and
allows us to use route fixed effects as well.

16This is mostly to ease the computational burden. If we include all gap allmjt in a month, and
directly calculate Gini Alljt′ (at the route-month level) Calculating Gini at the route-day
level take significantly longer time.
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carrier. For remaining routes, some flights may still be dropped. Each flight

has up to two neighboring flights (possibly more if several flights have the same

departure time). We only include flights which have at least one neighboring

flight from a different carrier. For each of these flights, we calculate the shortest

gap between this flight and a neighboring flight from a different carrier, call

it gap betweenmjt, where m is flight, j is route and t is day. We then square

gap betweenmjt and calculate the average across flights on the same route-day,

call it SqGap Betweenjt. Gap Betweenjt′ (t′ for month), our dependent variable,

is the simple average of SqGap Betweenjt across days of the month. Similar to

Gini Allmjt′ , for any route-month, we group all gap Betweenmjt’s within that

month and on that route, and directly calculate Gini Betweenjt′ .
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