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ABSTRACT

" This dissertation addresses the problem of machine recognition of
the speech of people afflicted with cerebral palsy. At the time of this
writing, machine recognition of speech has not developed to the point of
general applicability for use by government, industry or the general pub-
lic. Progress has been made to the extent that there are.isolated word
recognition machines that are in use by some companies, and some special
purpose devices are being marketed.

Abnormal speech recognition allows the oppertunity for a fresh look
at machine recognition of speech, and, as a consequence of the intended
limited application of the approaches presented in this paper, novel ap-
proaches were examined that ultimately will result in the development of
a machine for abnormal word recognition.

It must be made clear that no attempt was made to spectrally di;-
tinguish abnormal speech from normal speech. Both types 6f speech are
comprised of stéchastic signals that contain vast amounts of information.
Although it is recognized that the general population finds it extremely
difficult to understand handicapped speech, there is no reason to believe
that the speech of people with cerebral palsy cannot be coded for recog-
nition by machines. The utterances of cerebral palsy victims are distin-
guishable, and this is demonstrated by the fact that they do communicate

with people who learn to understand their speech.



Coding of speech was a major task and the method used in this pa-

paper, called Lumped Linear Prediction, is considered to be the major

contribution of this research to speech recognition, Lumped linear
prediction applies linear predictive coding to the entire speech wave
of an utterance. The difference is in application. Other researchers
use linear prediction, a form of Wiener filtering, to code segments of
speech using a small number (8 to 16) of coefficients for each segment.
The segments are 100ms to 300ms in duration. Lumped linear prediction,
in this particular research, uses eight coefficients to code an entire
utterance. This is a dramatic reduction in the dimensionality of
training patterns used for pattern recognition. Rather than searching
for a means to efficiently classify several hundred or even thousand
coefficients, the efforts here were directed toward determining a
suitable pattern recognition scheme for words that were coded with
just eight coefficients. Good results were obtained for a small vocab-
ulary (tenwords). Extension to larger vocabularies, although depen-
dent upon other factors, can be achieved by using more coefficients.
With respect to pattern recognition, an important observation
was made that the number of iterations required for convergence to sol-
ution weight vectors is tremendously influenced by the deletion of pat-
terns during the training process. Patterns are deleted based on the
condition that discriminant conditions are satisfied during training;
that is, for a pattern X belonging to class Wi if it is determined that
Di(x) > Dj(x) (where Dj(x) = W} « X, j =1, «eiy M, j #1), then this

pattern is deleted from the training set.



GLOSSARY

Autocorrelation

The correlation of a function with itself. Assuming that a sequence of
N speech samples {s(n)} = {s(0), s(1), ..., s(N-1)} is available, an
autocorrelation sequence r (2) is generated as follows:

N-1 -2
r(2) = §  s(n) s(n+2) for 20
n=0

Autoregressive Filter

When a time series {vk} is generated from a time series {uk} in
accordance with the equation

,B S

v =A u +A ...+ A D Vel "

u -
r k-r

v - ees ™ Bs vk-s ,

the term autoregressive is used when there are no A terms other than
Ao' This is a recursive filter when the k™ value of v depends on the

preceeding k-s values of v.

Convergence
To approach a limit as the number of term increases without limit.
Specifically, in solving for solution weight vectors W(K) for discrim-

inant functions, the limit is reached when W(K+1) = W(K), where K is
the number of iterations.

Correlation

The correlation between wave forms is a measure of the similarity or

viil



relatedness between the waveforms.

Criterion Function

A function so chosen that if its minimum value is achieved when
W ii > 0, where Yi is the i™" row of an N x (n+1) matrix X of a

system of inequalities
X-W>0

then finding the minimum of the function for all i, i =1,2, ..., N, is
equivalent to solving the given system of linear inequalities. The
criterion function is denoted as J(W, X).

Decision Surface

The n dimensional surface that is generated by the equation

— - — -1 ]
D(x) = wli) . X, where W' = (Wys Wop «euy Wn + 1) and

X

x|
[

n

when n = 2, the equation is that of a line; it is the equation of a
plane when n = 3 and of a hyperplane when n > 3.

Deterministic

Based on the assumption that pattern classes are separable, determinis-
tic refers to algorithms that are developed without making any assump-
tions concerning the statistical properties of the pattern classes.



Dichotomization

The act of dividing into classes or groups.

Discriminant Functions

Scaler and single-valued functions of pattern vectors X that define
decision boundaries which separate pattern classes on the basis of
observed vectors.

Disjoint

Classes A or B having no common elements - they are non-intersecting.

Fricatives

Sounds characterized by frictional passage of the expired voice or
voiceless breath against a narrowing at some point in the vocal tract;
such as, f, u, th, s, 2, sh, zh and h.

Glottal

Pertaining to the glottis.
Glottis

The vocal apparatus of the larynx, consisting of the true vocal cords
(plica vocalis) and the opening between them (rima glottidis).

Hyperplane

(See Decision Surface)

Inverse Filter

A filter that is defined by the equation



1)

M -
Alz) = ] a z ' (a

with M > 2K + 1, where K is the number of formants for a speech wave.
A(z) is an all-zero filter.

Nasal

Sounds that are uttered through the nose with the mouth passage occluded
(as m, n, ng); also, sounds uttered with the mouth open, the soft palate
Jowered and the nose passage producing a resonance.

Phoneme

A member of the set of the smallest units of speech that serve to dis-

tinguish one utterance from another in a language or dialect.

Phonological

Relating to the science of speech sounds (especially the theory of sound
changes in a language).

Plosives

Utterances produced by the expelling of breath after the closing of the

oral passages in the production of a stop consonant, as after the b in
bat.

Recursive Filter

(See Autoregressive Filter)

Segmentation

The formation of several units of a speech sample for purposes of ana-
lysis of the speech wave or speech recognition.

Separable

Classes of patterns that are capable of being disassociated.

xi



Statistical

This is in reference to algorithms that are equivalent to Baye's deci-
sion functions '

di(x) = p("i/X)

These are distinguished from the deterministic case in that only the
patterns of class w, are considered in the estimation of p(X/*i). No
learning takes placé since patterns of other classes do not influence
the estimation process.

Template

A pattern that is characteristic (having all of the important attributes)
of the patterns belonging to a given class. The template is used for
pattern matching. No training is required.

Training

The process of determining decision functions through a series of ad-
justments. Arbitrary decision functions are initially assumed, and
through a sequence of iterative steps, these decision functions are
made to approach optimum or satisfactory forms.

Vocal Tract

An accoustical tube which is non-uniform in cross-sectional areas -
terminated by the lips at one end and by the vocal cord constriction at
the other end. 1t |s approximately 17 cm long in the adult male and is
deformed by movement of the articulators} that is, the lips, jaw, tongue
and velum. The cross-sectional area of the foEward portion of the tract
can be varied from zero to approximately 20 cm”.

Voiced

Uttered with vocal cord vibration.

Bayes' (lassifier

M
A classifier which minimizes total expected loss, ri(i) = z Lij p mi/XL
. -=‘

p— 1
That is,a pattern X may belong to any of M classes and the expected loss

xii



incurred in assigning observation X to class wj is given by rj(i).

The Bayes' classifier assigns a pattern X to the class with the lowest
value of r.

xiil



CHAPTER |

INTRODUCT ION

Cerebral palsy is 'a persisting qualitative disorder appearing be-
fore the age of three years, due to a nonprogressive damage to the brain."
[6] [t has many forms with varying degrees of severity of effect on mo-
tor activity. The patterns of paralysis are paraplegic, diplegic, and
pseudobulbar.

Damage to the nervous system is often recognized at birth or soon
thereafter by some abnormality of breathing, sucking and swallowing, co-
lor of mucous membrane, or responsiveness.

A particular form is Congenital Choreoathetosis (Double Athetosis)
wherein every voluntary act is marred by intense involuntary mcvements,
leaving the patient nearly helpless. The tongue may extrude from the
mouth with unsightly drooling, and the face is contorted in a never end-
ing series of grimaces. Speech is slurred or inarticulate and punctuated
by grunts and unpleasant throat sounds. The hands are engaged in con-
stant writhing, and all attempts to use the limbs results in a slow,
spreading spasm of the entire limb or all of the musculature. Patients
are many times erroneously classified as mentally defective because of

the motor and speech impairment. No doubt, in some instances this is



correct, but others retain intellectual function and can be educated.
The less severly affected patients often make successful occupational
adjustments.

Corrective operations and therapy will often have significant
effect towards overcoming the handicaps of the cerebral palsied to the
extent that once the communications gap is bridged, in a cerebral palsy
center for instance, students often demonstrate more than adequate cog-
nitive skills; however, communications remains for many of them a sig-
nificant social and learning barrier once they venture outside the walls
of a rehabilitation center. Of course, the limit to which the severity
of affliction can be corrected or ameliorated will vary from individual
to individual; so that, a student who might have barely made intelligible
utterances as a pre-teen could progress to the point of normal speech
while remaining confined to a wheel chair. Another student might never
overcome the speech handicap.

Approximately six out of every one-thousand newly born and fifteen
out of every one-thousand people in this country are afflicted with some
form of cerebral palsy. There are approximately nine-thousand victims in
the state of Oklahoma. Sixty to sixty-five percent of those diagnosed as
cerebral palsy victims are mentally retarded [25]. The remaining thirty
to thirty-five percent of the victims may have severe physical handicaps
and their speech in general is difficult to understand, but once a lis-
tener has learned to correctly decipher their utterances, he is able to
carry on a conversation. |

Using the microprocessor, it is expected that a machine can be de-

signed that will recognize and display the speech of the voice handi-



capped. Although suitable techniques have been in existence for a number
of years, the idea of a machine for this purpose would have had little
attraction because of thé expense involved and the size and.therefore
Jimited accessibility of the machine. It is also important to point out
that such a machine would have very little if any utility for people

with normal speech.

There is a sizable literature covering speecn recognition, voice
recognition, speech synthesis, vocoders, etc. The digital computer has
allowed research in these areas to grow by leaps and bounds as a conse-
quence of its speed and memory capabilities. Present techniques in
speech analysis and synthesis will be markedly enhanced by machine im-
provements alone. There are instances in which machines have been de-
signed and programmed to accept limited verbal instructions. In fact,
pattern recognition techniques exist not only for spoken but for optical
input, but there has been no published research on abnormal speech rec-
ognition. Existing techniques are almost uniformly limited because they
lack general application. For example, in speech recognition, there is
no technique at the time of this writing that maintains a high level of
accuracy as the number of speakers increases. There are other techniques
that will maintain a reasonably high, ninety-two to ninety-five percent,
recognition accuracy for a relatively large number of male speakers us-
ing a limitéd vocabulary. Women and children with their normally higher
fundamental voice frequencies cause a significant increase in recognition
error when they are added to a predominantly adult male speaker popula-
tion [7].

The performance requirements for a speech machine for the voice



handicapped are less stringent than would be the requirements for a
machine intended for general application; therefore, the prospect of ul-
timate success is encouraging. The object of this effort is Fo investi-
gate and develop a speech trainer/learner that will allow cerebral palsy
victims to self-adjust their speech so that their speech is compatible
with machine recognition. Simply stated, the machine would learn pre-
dictive coefficients of the speech waveforms from the trainee while the
trainee learns to exercise greater muscle control. There is no intent of
significant speech rehabilitation. To the extent that rehabilitation
does occur, it would be considered purely a bonus of the training pro-
cess.

The machine would not be affected by.tﬁe quality of speech (unlike
peopie); however, not having perceptual skills, the machine will rely
completely on the speaker to provide it with input that would statis-
tically match what is contained in memory. Also the machine's vocabu-
lary would largely depend on the user, with new words being added as
progress is made.

Users of the machine, speech therapists, teachers and parents would
have to understand that ultimate proficiency with the machine would re-
sult only after long and tedious work. In many respects, working with
the machine would not significantly differ from working with any other
rehabilitative therapy. The ultimate benefit would result when the cer-
ebral palsy victim ventures out into the world with a device that would

make communications with the outside world a little easier.



Design Considerations and Background Information

Vocabulary. It will be necessary to develop a vocabulary having at-
tributes such as maximal spectral separability and broad language utility
in order to have high machine recognition reliability. The first attrib-
ute would require that such features as frequency and amplitude patterns
of words be distinquishable. Although the speech wave of a given word
may not be exactly reproducible with repeated enunciations, a correlation
of the speech waves for the utterances must be shown to exist. This same-
ness or correlation must be unique for a given word, but distinct for
different words. Learning algorithms require that patterns be separable
in order for weight vector convergence to occur,

Secondly, the words must be useful. The trainer/learner will not
necessarily have a vocabulary that would be adaptable to grammatically
and syntactically correct phrases and sentences. Users must be able to
make themselves understood.

To illustrate the above, consider the word list that is used by be-
ginning students at the Cerebral Palsy Center in Norman, Oklahoma. The
list is happy, eat, hungry, drink, thirsty, potty, bed, sleep, sad, hot,
go, play, T.V., stop, cold, home, Daddy, Mama, brother, sister, | love you,
letter, candy, clothes, and coat. Cold and coat when spoken by one of
these children might sound alike, say as '''Ko'. One needs not look at a
speech spectrograph or speech wave in order to know that this would be
unacceptable to the machine. Although more advanced children and adults
might have considerably larger vocabularies, the initial vocabulary of
the trainer/learner must be such that users will have the same kind of

utility that this beginning list has.



Consideration must be given to the sounds (syllables, words, and

- phonemes) that are more easily uttered by the handicapped. These sounds
cannot be uniquely determined for a broad category of people._ The train-
ing process would determine words for each individual that should be mod-
ified or deleted. For example, if the '"th" of thirsty could not be easily
spoken, the machine could easily be programmed to recognize '"'irsty' and
display thirsty. In some instances, total sound substitutions might be
made; so that cold, for example, might be assigned ''Ka'' for machine rec-
ognition as cold. These considerations apply primarily to the initial
vocabulary used in the early stages of training. Ultimately each user
would design his own vocabulary.

Real-Time Feature Extraction Techniques. A means of generating

patterns from spoken words in real time with a minimal amount of com-
puter memory is a major technical task. There are numerous techniques
that have been highly successful in isolated word recognition. On a
large computer, these techniques might be used indiscriminately. How-
ever, microprocessors are not easily adaptable to performing some tasks
primarily because of memory size and smaller sets of instructions codes.
Yet they are very attractive from both cost and size standpoints.

The abject in this project is to simply match patterns, the technique
used to characterize information for pattern recognition need not be
elaborate. To summarize from Schafer and Rabiner [28]: The main de-
cisions to be made in the design of word recognition systems are 1), How
to normalize for variations in speech; 2). What is the parametric repre-
sentation; 3). How does the system adapt to a new speaker or new vocabu-

lary; 4). How does one measure the similarity of two utterances; and 5).



How to speed up matching. These items are defined and elaborated upon in
the following chapters.

Handicapped speech differs from what might be called normal speech.
The analytical or linquistic difference is not considered in this paper.
Handicapped speech can be understood by people with some effort, and with
some additional effort machines can be designed which will likewise rec-

ognize handicapped speech.



CHAPTER TWO

BACKGROUND AND RECENT DEVELOPMENTS

“"Nature, as we often say, makes nothing in vain, and man
is the only animal whom she endowed with the gift of speech.
And whereas mere voice is but an indication of pleasure or
pain, and is therefore found in other animals, the power of
speech is intended to set forth the expedient and inexpedi-
ent, and therefore the just and the unjust. And it is a
characteristic of man that he alone has any sense of good
and evil, of just and unjust, and the like, and the associa-
tion of living beings who have this sense makes a family
and a state'.

Aristotle, Politics.

Communication, particularly over distances, has been a technical
preoccupation of man over the ages. '‘The ancient Greeks are known to
have used intricate systems of signal fires which they placed at
judiciously selected mountains to relay messages between cities." [9]
Quoting further from Flanagan, '"History records other efforts to over-
come the disadvantages of acoustic transmission. In the sixth century
B.C., Cyrus the Great of Persia is supposed to have established lines
of signal towers on high hilltops, radiating in several directions
from his capital. On these vantage points he stationed leather-lunged
men who shouted messages along, one to the other. Julius Caesar report-
edly used similar voice towers in Gaul.' Our progress has been substan-

tial, and technology promises that this progress will continue.



One'of the applications in speech research is the design of a compu-
ter and accompanying software that will accomplish mechanical transla-
tion from one or several languages to a given language. Taube states
that, "it is tacitly assumed that a one-to-one correspondence exists
between the language of the original text and that of the translation.
If this assumption is correct then it is .possible to envisage a purely
mechanical process--in the broad sense--which if applied to the input
text will result in an output translation, and which if reapplied to the
translation will reproduce the original input test'" [31]. 1t is clear
that in general this one-to-one correspondence does not exist. Mech-
anical translation is further complicated by the polysemy of words and
contextual considerations.

"No purely automatic procedure is available or is in view that
would enable presently existing (non-learning) computers to resolve
the polysemy of the word 'pen’ in such sentences as 'the pen is in the
box,' and 'the box is in the pen,' within the same contexts that would
enable a human reader (or translator) to resolve it immediately and
unerringly [311."

Taube notes that as of 1961 the expenditure of research in mech-
anical translation, exclusive of machine costs, was approximately
$3,000,000 per vear. This amount would have been sufficient to hire
300 full-time translators at $10,000 per year, or to train 300 trans-
lators at a $10,000 training cost per translator. Over the years
this would produce a reasonably large body of competent translators--
especially if it is added to the present annual expenditure for train-

ing in languages. Furthermore training in languages may remove the



need for translation.

The above represents a research effort involving speech that
is at best on the outskirts of man's ability to solve using the com-
puter. However, other objectives, some of which are even broader in
scope and benefit, fall well within the realm of reasonable and pro-
ductive research efforts. The remaining overview is based on White's
paper [35].

Isolated word recognition has been shown to be realizable. Some

examples of systems currently in use follow:

1. Data entry by quality control inspectors (Owens-111inois
Corp. uses it for inspection of T.V. faceplates; Ford
Motor Company for assembly line inspection of cars; Con-
tinental Can for inspecting pull ring can lids; Tecumseh
products for compressor inspection; Union Carbide for
manipulating nuclear products at Oakridge, Tenn.; a semi-
conductor manufacturer uses it with microscopes, inspect-
ing microscopic components);

2. Control of materials handling equipment (United Airlines
for baggage handling; Kresge for control of package
routing system);

3. Special purpose computer programming (a manufacturer uses
isolated word recognition to program automatic machine
tools); and |

k. Editing of financial information (EMI, Ltd., England uses
it to collect numerical data from a variety of sources

to prepare monthly financial statements) [35].

10



The other extreme, that is, real-time, continuous speech recog-
nition systems accepting unrestricted vocabularies with unknown
speakers are not as easily realized with today's technology and know-
ledge. Continuous speech recognition/understanding systems limited
in vocabulary size and number of speakers and requiring carefully pro-
nounced speech on a particular topic are within the realm of possi-
bility. The Advanced Research Projects Agency of the U.S. Depart-
ment of Defense (ARPA) is sponsoring a $15 million five-year speech
understanding project to accomplish this intermediate problem of
recognition/understanding with a limited vocabulary. The research
has been performed at Bolt, Beranek and Newman; Carnegie-Mellon Univ-
ersity; Lincoln Laboratory of MIT; Stanford Research Institute; Sys-
tems Development Corp.; Haskins Laboratories; Speech Communications
Research Laboratory; Sperry-Rand; and the University of California at
Berkeley. The goal of the ARPA speech understanding project is to
achieve continuous speech understanding for a one-thousand word vocab-
ulary for a specific task (e.g. making airline reservations) for a
small number of speakers in near real-time on a '"big' computer (e.g.,

PDP-10).

Technical Considerations
Explicitly or implicitly, spectral analysis is involved in speech
recognition. This may be in terms of encoding of speech using auto-
correlations of the amplitude variations of speech, in terms of linear
predictive coding, zero crossing statistics, spectral analysis, per se,

or other analytical techniques.



The initial parametric representation of speech may contain re-
dundant or irrelevant information that can be safely removed without
requiring recognition of any speech sounds--this is data compression.
Data compression reduces the computational load for all subsequent
processing. Formant tracking is the most common approach to speech
data compression. ''Formant tracking is the monitoring of time evolu-
tion of the major peaks of the power spectrum of speech. The formants
are produced by the resonances of the vocal cavity." [35] Speech spec-
trography has shown that the patterns of formants is the dominant fea-
ture of speech spectrograms.

Linear predictive coding has made formant tracking a favorite
technique among speech researchers., Fast Fourier transforms, as a
counter example, requires considerably more computational power. Also,
zero-crossing techniques are less efficient in general because of the
great variety in the speech wave.

Formant tracking is often used for word recognition. However, the
recognition of subpatterns in speech may be more promising for contin-
uous speech recognition. When subpatterns can be recognized, only the
name of the subpattern need be saved, and the detailed data represent-
ing the subpattern can be discarded,

The similarity between the machine's word prototypes and an un-
known word can be measured using correlation functions, filter functions,
and geometric distance functions. Geometric functions, as a case in
point, operate in N-dimensional spaces defined by N parameters of para-
metric representations of speech, and are typified by Euclidean, Cheby-

shev, and Hamming distance functions. For example, the similarity

12



between two steady state sounds can be defined to be inversely pro-
portional to the Euclidean distance between the sounds, where the
coordinates of each sound are defined to be its average pass band
energies in a bandpass filter bank.

The approach to word recognition ef exhaustively matching all proto-
types is inefficient and can perhaps be improved by using subword pro-
totypes. In considering a more efficient scheme a look at phoneme
recognition is appropriate. Spoken words can be represented as strings
of phonemes, a basic sound unit of speech. In spoken English about
38 phonemes (16 vowels and 22.consonants) are typically used. The two
basic advantages in phonemic recognition are that phonemes make pos-
sible (1) selective recall of word prototypes and (2) reduction of
memory requirements to store word prototypes (data compression). Sel-
ective recall reduces the number of prototypes that need to be processed,
and data compression reduces memory requirements.

Recall of Word Prototypes. In the word recognition schemes des-

cribed above, templates are serially processed until the correct tem-
plate is found. Theoretically, a much more efficient process would be
to find some sort of key that could alter the order in which templates
are processed so that the correct template would more likely be pro-
cessed earlier.

Phonemes might provide such a key. The idea is to recognize pho-
nemes first and use them to form words which then cause likely word tem-
plates to be processed. This is a "hypothesize and test' paradigm. A
rough classification decision is made on the basis of phonemic spelling

and this rough classification is verified by resorting to template
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matching. The computational expense of recognizing phonemes is small
relative to ;hat required for word recognition because there are many
more words than phonemes, and phonemes are smaller than words. |If
phoneme recognition were perfect, then.there would be no need to match
word prototypes at all; properly spelled English words could be re-
trieved directly from memory using a dictionary indexed with phonem-
ically spelled words--or English could be learned phonemically. How-
ever, phonemic strings are often full of errors, so it is necessary to
be able to resort to template matching to verify tentative spellings.

Consider how phonemic encoding achieves data compression. The gen-
eral principle is that data compression results from storing thé names.
of phonemes themselves, The original data presﬁmably coﬁ]d represent
many more phonemes than need to be distinguished by having different
names. More specifically, if a givén phoneme is a common element in
a group of patterns, then data compression is achieved by storing the
detailed information about that phoneme only once and thén replacing
the phoneme by its name wherever else it occurs; The name of the pho-
neme can then be used to find the detailed information about the pho-
neme whenever necessary.

The field of pattern recognition has many mechanisms for genera-
ting features and transforming their representation. Whatever the
strategy for generating intermediate features, the functions of a fea-
ture must be to remove redundancy and irrelevant information from
speech, This makes the ultimate classification decisions easier since

the information that must be analyzed presumably has less noise.
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Recent Advances

Some recent advances in speech recognition are [34].

1.

10.

Linear predictive coding (LPC) for data compression and
spectral smoothing (Atal, Markel, Marloul, |takura)
Vocal tract area function and vocal tract length from
LPC model of vocal tract (Wakita)

Linear predictive residual as a speech sound similar-
ity measure for steady-state sounds (ltakura)

Dynamic programming for time alignment of unknown and
reference utterances (Saito et al.,ltakura, White and
Neely)

Cepstral and Cosh distance functions for speech

sound similarity measurements (Markal and Gray)

Markov models for representing the time evolution of
speech understander's state of knowledge (Baker)
Dimensionality reduction for speech data by principal
component analysis shows that parametric represgntations
other than formant frequencies and bandwidths are just
as adequate for the representation of speech data (Pols,
et al.)

Pitch tracking by center clipping, infinite peak clipping,
and autocorrelation analysis (Dubnowski et al,)

Convex hulls in speech energy profiles for syllable seg-
mentation (Mermelstein); and

Beginning and ending of utterance detection by amplitude,

zero crossing, and back-tracking (Rabiner and Sambur)



Linear predictive coding (LPC), a form of Wiener filtering, is
a very important development in automatic speech recognition. Its
primary use is to represent speech in a highly compressed form and to
produce spectral smoothing that clearly reveals formants. The power
of LPC does not lie in the accuracy of its representation of speech
or speech spectra but in that it is a computationally efficient means
of getting formant peaks and in that it produces a compact representa-
tion of speech.

Linear predictive ceding implicitly imposes a model of a nonbran-
ching acoustic tube on speech. Wakita [33] derives the important result
that both the cross-sectional area and the length of the vocal tube can
be simply calculated along with the LPC coefficients. By normalizing
a random speaker's vocal tract shapé and length to some standard value,
a major step forward is achieved toward independence from the need to
retrain recognition systems for new speakers.

The linear predictive residual (LPR) is £he error that remains
when a linear predictive filter is applied to a time series represen-
tation of speech. This is also known as "matched filtering'" in pattern
recognition. ltakura [12] gives a computationally efficient formula
for calculating the log ratio of two linear predictive residuals. He
proceeds to show experimentally that such a ratio gives an excellent
speech sound similarity measure when the unknown residual is used in
the denominator and different template sounds are used in the numerator.
The ltakura similarity function makes it possible to achieve signifi-
cant computation economies in implementation of word recognition by

making it possible to perform all preprocessing and similarity
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measurements relatively simply in the time domain.

Dynamic programming is a well-known technique in operations re-
search which, like LPC, has only recently made an impact on speech rec-
ognition. It is an extremely useful technique for achieving nonlinear
time adjustment (warping) to align multiple syllabic utterances. Al-
though the technique had been used prior to 1970 in Japan, Russia, and
France, the speech community in the U.S. did not start using it until
1974 when ltakura introduced it along with the linear predictive res-
idual during his stay at Bell Labs. The power of dynamic programming was
revealed more forcefully when White and Neely showed that, on the one
multisyllabic vocabulary they tested, a 20-fold reduction in error was
obtained with dynamic programming compared to the best linear time
alignment strategies known to them.

The CEPSTRAL and COSH distance functions were proposed and tested
as time domain similarity measures for speech sounds by Markel and
Gray [ 10, 15]. Their properties make them slightly preferrable to the
Itakura LPR measure.

Dimensionality reduction with principal components analysis is
a standard technique in pattern recognition. It is essentially the
same as the Kurhunen Loeve technique (K.S. Fu). Pols [26]was able to
use principal components analysis to identify Dutch vowel sounds as
accurately as could be done by hand analysis of formant frequencies
and bandwidths. This demonstrated that entirely automatic techniques are
capable of performing as well at identifying vowel; as laborious hand
analysis. Dimensionality reduction with principal components analysis

can actually improve recognition as well as reduce data
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rates for representing speech.

Pitch tracking by center clipping; infinité peak clipping, and
autocorrelation analysis is important for its accuracy and simplicity.
The accuracy of this approach is reported to be as good as the CEPSTRAL
approach--meaning that it is as good as the best knoﬁn. Peak and center
clipping produce a speech wave with only three states: -1, 0, 1. This
reduces autocorrelation analysis to addition and subtraction, and it
brings about a dramatic reduction in the computational burden associa-
ted with pitch tracking [ 8].

Syllable segmentation with conyex hulls is a novel approach to an
important problem. Almost every speech researcher tries his hand on
syllable or phoneme segmentation at one time or another: Paul Mermel-
stein [19] has proposed a simple algorithm that will work on any contin-
uous approximately convex function and will find the important dips and
valleys. He applies his "convex hull'' strategy to speech energy pro-
files and does a good job of segmenting syllables in speech. It would
be misleading to suggest that the use of convex hulls solves the seg-
mentation problem in general. The most reliable way to segment speech
is to recognize its constituent sounds, and even this approach has
errors. The value of convex hulls is their simplicity and the fact
that good syllable segmentation is obtained most of the time.

Detecting the beginnings and endings of utterances is an old prob-
lem that must be faced by every speech recognition system builder. The
solution presented by Rabiner and Sambur [27] is one of the simpler and

more accurate ones in the literature.
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Fundamental Problems

The fundamental problems of speech recognition are exciting be-
cause they are general, and their solutions will have an impact upon all
aspects of machine perception. The fundamental problems arise from the
fact that the information needed to identify a speech sound is often
not spread over a large time interval; that s, it is often a function
of context. This phenomenon is extensive; it occurs frequently in all
types of speech sounds: in phonemes, in syllables, in words and even
in sentences. This is an example of a fundamental problem in artific-
ial intelligence in which local ambiguity is inherent in the data and
can be removed on]9 with information from global sourées. Speech re-
search is contributing to the solution of this general problem. White
[35] illustrates the nature of local ambiguity and methods for dealing
with it through the example of phonemes. ‘

If the approximately 38 phonemes of general American English could
be recognized accurately, then it would be relatively easy to recog-
nize an unlimited vocabulary of English words. Unknown speech would
first be converted to strings of phonemés which would be converted to
standard orthography by looking up words in a dictionary based on pho-
neme spelling. This approach has considerable appeal.

Phoneme recognition has been attempted with and without feedback
from the context surrounding the phoneme. Those attempts which have
used only local information have failed except for highly artificial
speech. The information needed to identify a phoneme is often not pre-

sent in the phoneme itself. For example, if vowels are preceded by
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the consonants '"'1'"' or ''r'', the vowels are changed so much that they
are quite often misclassifiéd if taken out of context. Phonemes are
strongly affected by neighboring phonemes because of thé physical iner-
tia of the tongue and other articulators. This inertia is exacerbated
in people with motor problems. Evidently speech is composéd of a ser-
ies of sound targets that speakers usually fail to reach but with no
loss of intelligibility because listeners can properly interpret the
~gestures toward the sound targets by ‘using contextha1 information.

Attempts to circumvent the local phonemic ambiguity problem lead
to the development of phonological rules governing the,;ffects of
phonemes on neighboring phonemes. Phonological rules représént a type
of syntactic rule for phonemes (instead of words) télling what sequences
of phonemes are legal. Phonological rules are usually intended to
cope with commonly occuring coarticulation phenomena. It does not ap-
pear to be practical to design phonological rules to deal with erratic
personal speaking idosyncracies and mumblings. There are nonetheless
very real sources of acoustic ambiguity with which people have no trou-
ble coping. So,we look further than phonological rules in our search
for a solution to the ''local acoustic ambiguity' problem.

Attempts to avoid the local acoustic ambiguity inherent in phoneme
use leads to the use of larger units such as syllables or words. The
use of larger units is dictated by the fact that larger units tend to
have smaller amounts of internal ambiguity. Syllables are more robust
than phonemes, and words are more robust than syllables, A significant
source of experimental evidence demonstrating that larger models pro-

mote accuracy comes from the fact that the most accurate speech
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recognition systems known today use utterance prototypes rather than
smaller units. For instance, White and Neely [36] were able to achieve
99.6% cbrrect recognition for a 91 word vocabulary using utterance mod-
els (templates). This is significantly better than any system based on
a smaller unit. However, such high recognition scores apply only to
isolated utterance recognition where all acoustic information necessary
to identify a word is present in the word itself. Continuous speech
often contains words that are acoustically ambigquous, which people rec-
ognize easily with contextual information but which machines using

only word templates would fail to recognize, So, the ultimate solution
is not to be found with the use of utterance-sized units;

It is becoming increasingly clear that there is no single speech
unit, nor is there a single set of rules that satisfactorily avoids
all commonly occuring acoustic aberrations in speech. The solution to
the problem seems to be approachable only asymptotically through the
use of ever increasing numbers of large units; models, rules and other
sources o% knowledge. A significant challenge to artificial intelligence
is the need to combine large numbers of models and rules.

Model is used to mean the same thing as ''source of knowledge''. The
problem is how to use models differing in reliability and computation
expense to optimize efficiency. Because large models are typically more
expensive to store and use, it is White's [35] opinion that larger units
should be used in a "feedback' mode and would become involved only by
the partial recognition of smaller units. This is based on the extremely
important {dea that the recognition of computationally cheap sound units

can eliminate the need to recognize some computationally expensive sound
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units.

A solution to the fundamental problem of local acoustic ambiguity
is to have models of speech sounds at all levels (phoneme, syllable,
word, phrase) and a strategy allowing lower models to call on higher
models to resolve local ambiguities and a strategy allowing the higher
models to call on lower models to request further analysis. The higher
level models are needed for conservation of computational resources
(both memory and computation).

Note that higher level models may be embodiéd in rules as well as
templates., For instance, phonological rules and language syntax per-
form the function of removing local ambiguity by reference to a larger
context. A particularly interesting set of rules is that governing the
application of ''check morphemes''--suffixes, prefixes, or articles--added
to words or inserted in phrases which require agréément in person, gen-
der, and temporal reference between words.,

Examples that illustrate the above ideas follow. To start, let
us consider a detailed example of problems encountered in attempting to
use models for words only. In this examplé, no models are allowed for
phonemes or syllables or other subword units, Word prototypes are en-
coded with representations derived from signal processing techniques.

According to White, the best signal-processing speech compression
techniques known today require approximately 1000 bits per second to
produce marginally intelligible speech, Given the typical computational
requirements to match prototypes and unknowns, it is possible to show
that general purpaose computers are two orders of magnitude too slow to

match an unknown utterance against several thousand utterance prototypes
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in real time. The memory-to-processor bandwidth is too small and the
processor speed itself is insufficient. It {s also true that there is
not enough storage in most random access memories to store templates
for several thousand words if the templates are stored in the original
parametric representation of the signal processor. Thus, if word tem-
plates are to be encoded in terms of signal-processing representation,
they must be stored on disks and used sparingly. In other words, the
use of word prototypes may produce high accuracy, but encoding the
prototypes in the representation produced by the signal processor
requires so much storage and processor power that this approach must
be limited to isolated word recognition for small vocabulariés and to
machines with significant computational power.

There are two general ways to reduce the disparity betwéen data
processing needs and abilities. One way is to rely on faster hardware,
The other way is to use artificial intelligence/pattern recognition
techniques to optimize performance of existing hardware. Artificial
intelligence/pattern recognition techniqués can be used in conjunction
with a number of "source. of knowledge'' (‘'intermediate models“ or
features'') so that computationally inexpensive knowledge controls the

application of more expensive knowledge.

Improving System Performance
White [35] asserts that ultimate improvements in speech recognition
will not result from more accurate i{dentification of short speech sounds,
but that the major gains wiil come from being able to resolve local

acoustic ambiguity with information arising from larger speech segments.

23



The important problems seem to be how to represent and use sources of
knowledge arising from global environments.

There are at least four categories of mechanisms for reducing
the disparity between data rate processing needs and abilities:
(1) special purpose hardware, (2) improved speech data compression
techniques, (3) robust speech representation through normalization
techniques, and (4) - dictionary compression and directed search through
the use of hierarchy of speech subunits. In this latter category, in-
formation from larger speech intervals is allowed to affect the resolﬁ-
tion of local acoustic ambiguity in speech subunits. |In giving esti-
mates of performance improvement, White used the performance of an iso-
lated utterance system using utterance prototypes and an exhaustive
search of the dictionary of prototypes as a standard of comparison.

Special Purpose Hardware. An order of magnitude increase in data

rate processing ability can be expected from new computer architecture
by incorporating higher memory-to-processor bandwidths and special pur-
pose processors. Alternative approaches include the use of parallel
processing, custom LS|, and/or optical computers.

Speech Encoding and Data Compression. Speech compression is not

likely to reduce data rates by more than a factor of four. According

to White, the information theoretic minimum mean number of bits required
to transmit speech information, including the speaker's emotional

state, identify, and semantic context, is probably between 100 and 200
bits per second. So speech compression is already within an order of
magnitude of its theoretical limit.

Improved Representation Through Mormalization Techniques. Whatever
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prototypical speech units are used, the representation for them can be
made less variable by normalization techniques. The use of these tech-
niques means essentially that fewer templates or special rules are need-
ed to represent a speech sound faithfully. This means that less pro-
cessing needs to be done to match any unknown to a prototypical sound.
These techniques include normalization by (1) wvelocity, (2) amplitude,
(3) time, (4) speaker spectra, (5) dynamic range, and (6) noise sub-
traction.

1) Velocity normalization is the shortening of steady state spectra
segments to remove artificial variations in sound duration due to var-
fations in speaking rate. ("Velocity' refers to the time rate of

change of the spectra).

2) Amplitude normalization is the removal of speech amplitude as a
parameter in speech sound similarity measurement. This ensures that

a sound that varies in energy but not in its spectral composition is
still interpreted as the same sound.

3) Time normalization is the stretching or shrinking of the length of
time elapsed between given speech segments, The goal is to align the
time of occurance of unknown speech events relative to reference speech
events to see how well they match. Dynamic programming is an excellent
way of achieving this.

k) Speaker spectra normalization is the transformation of the power
spectral density function in order to remove the effects of differing

vocal tract length. This is required only for systems that attempt
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to recognize speech from different speakers without retraining. It can
be achieved by using the LPC model as shown by Wakita [32] or by using
bandpass filtered data as shown by Pols et al.

5) Dynamic range normalization is the determination of the energy var-
iations of the speech in order to adjust thresholds to allow energy to
be used in segmentation and segment labeling.

6) Noise subtraction normalization is the determination of the energy
of ambient noise and the subtraction of that energy from the input
signal so that only the speech signal {s left.

Improved Dictionary Compression and Search Strategies. Dramatic

increases in data processing capabilities can be expected from using
a hierarchy of speech sound subunits to promote dictionary compression
and "'directed search' dictionary retrieval strategies. Two orders of
magnitude improvement can be expected for a vocabulary of 1000 words
or more when the baseline system uses exhaustive search. The basic idea
of directed search is that the identification of computationally cheap
sound units makes the more expensive units easier to find in a diction-
ary. Computaéionally more expensive soﬁnd units are those that require
more bits to store and more processing to match. White calls these -
"larger units'. When the correct larger units are recalled from memory,
the quality of the match between the larger units and the unknown
speech will reveal which of the retrieved units is correct.

For instance, the partially correct spelling of a word unit in
terms of phonemic subunits might make it possible to find the word in a
dictionary without an exhaustive search, An imperfect match dictionary

retrieval method could be achieved by changing the spelling of the word
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until it hits an entry in the dictionary. Control of spelling changes
could come from phonological rules, secondary spellings produced by
acoustic analysis, or reference to moré general sound classes.

By using a hierarchy of sound units, the effective reduction in
recognition time can be expected to be approximately a log function of
vocabulary sizes rather that a linear function. Thus, the. relative
savings will be larger for larger vocabularies.

Hierarchal organization provides contextual constraints by virtue
of the fact that every subunit has the context provided by the larger
units above it in the hierarchy. This contextual information can control
the operation of pattern classifiers to achieve significant improvements
in classifier efficiency. Properly applied contextual {nformation may
be the most promising method to increase the apparént computational pow-
er of pattern recognizing machines.

Finally, hierarchically organized spééch subunits and ‘'directed
search'' are techniques that permit utilization of contextual informa-
tion to control processing. These techniques are general and provide
an example of techniques developed for speech recognition that apply to

a great many problems in pattern recpgnition;
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CHAPTER THREE

PATTERN RECOGNITION
(An Overview)

Even with normal speech, that is speech not affected by motor
problems, the variations in utterances are significant. The human brain
is capable of determining the most likely utterance on the basis of the
acoustic wave, the context of the speech, the facial expression and body
gestures. All of these signals are present to some extent in the com-
munication of the cerebral palsy victim, but they are grossly modified,
thus making the recognition process more difficult for humans.

Accepting the experience of others as a guide [2],[14], twelve to
sixteen linear predictor coefficients per speech segment are optimum for
formant analysis around 10 KHz, Assuming in the worst case that this
number of coefficients might be necessary for pattern recognition, it may
be desirable to find a means of reducing the dimensionality of the pat-
tern vectors by extracting as much meaningful information as possible
from the pattern vectors in order to optimize the pattern recognition
process. This "feature selection'" process would make '"learning'' a com-
putationally slower process. Preliminary investigations indicate that
considerably fewer predictor coefficients are required, and feature

selection will not be used initially,
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Pattern recognition can be subdivided into three major categories:
deterministic, statistical and syntactical. Syntactical will not be
used here. Deterministic and statistical require that discriminant or
decision functions be determined that will allow the dichotomization of
pattern classes. Let Wy Woy eeey wn]be designated as the m possible

pattern classes to be recognized, and let

x|
I

be the feature measurement vector where X; represents the izb-feature
measurement. Then, the discriminant function Di(;) associated with
pattern class Wy i=1, ..., m, is such that if the input pattern
represented by the feature vector x is in class Wiy denoted as E};mi,

then the value Di(;) must be the largest. That is, for all ;emi,
Di(x) > Dj(x), iy, =1, veey,my 1 # ] (3-1)

Thus, in the N dimensional feature space Qx’ the boundary or partition,
called the decision boundary, between regions associated with classes

W, and wj, respectively, is expressed by the equation
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D;(;) - Dj(;‘-) =0 (3-2)

Deterministic Pattern Recognition

Deterministic pattern classifiers are those whose decision func-
tions are generated from training patterns by means of iterative '""learn-
ing' algorithms. Once a type of decision function has been specified,
the problem becomes the determination of the coefficients. Determinis-
tic algorithms are capable of ""learning" the solution coeffic}ents from
the training sets whenever these training pattern sets are separable by
the specified decision functions. Deterministic algorithms are devel-
oped without making any assumption concerning the statistical properties
of the pattern classes. On the other hand, statistical algorithms
attempt to approximate p(wi/§), the conditional density function.of
class Wiy which can then be used as Bayes [ 10],[23]1,[ 32] decision func-
tions.

The Perceptron Approach. The basic perceptron or linear error

correction model is an implementation of a linear decision function.
The response of the machine is proportional to the weighted sum of the
associative array features; that is, if we let X; denote the ith fea-

ture and W, the corresponding weight for that feature, the response

is given by

+ . : .
D= T w.Xx =W-(')~, where W(') = W, (3-3)

ik

For the two class case, if D > 0, the pattern belongs to the class w,, if

l’
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D <0, it belongs to W, -

For multiclass problems, where M is the number of classes, respon-
ses D], D2 ceey Dm are observed, and the pattern is assigned to class
W5 if D, > Dj for all j # i.

The perception algorithm is stated as follows: [22]

1) From the training pattern set and with an arbitrarily selected set

=(7)

of weight vectors, calculate Di(§) = +xfori=1, ..., M, where

=(i)

is the weight vector for class w,.
2) If a pattern §'be]onging to category is presented to the machine

with the result that some decision function, say the jth (i #]) is

.th . th

larger than the i, the weight vectors for the lth and j  decision

functions are then modified by the addition and subtraction respectively

of the pattern vector X. Let the i'" and jth

modification be denoted by (1) apa 74
=(i)" =(j)!

weight vectors w and w

weight vectors prior to

respectively. The adjusted

, where the prime indicates an adjusted

vector, are then

WSl (3-4)
o LS (3-5)

A1l other weight vectors remain unchanged.
The coefficient ¢ is the correction increment and can be any of the fol-
lowing:
a) a positive constant so that the distance moved by a discrim-
inant function toward a particular decision surface is always
the same.

b) a fraction so chosen that the distance moved toward a deci-
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sion surface is some fixed fraction of the original distance of the

weight vector from the decision surface; that is

.- Alw(i) . xl

E— y A=0,1or2 . (3-6)
X * X

In this instance, the initial weight vectors are non-zero.

For A = 0, the weight point is not moved.

For A = 1, the weight point is moved to the pattern decision
surface.

For A = 2, the weight point is reflected across the pattern deci-

sion surface to a point an equal distance on the other side.

Piecewise Linear Classifiers. [23] This is an extension of the
perceptron classifier. A piecewise lineaé classifier consists of R
banks of subsidiary discriminators with each bank corresponding to one
of the pattern classes. That is, in the perceptron approach, one dis-
criminator is used to adjust weight vectors for all classes; whereas,
in this instance, several discriminators for groups of classes perform
the adjustments. The term "subsidiary'" is used because the bank of dis-
criminators can be thought of as one large discriminator. A pattern
class is presented to the machine and the values of all of the subsidi-
ary discriminants are calculated. The pattern is then placed in the
class corresponding to the bank containing the highest valued subsidiary
discriminant. |

The weight vectors are calculated and determined in the same
manner as in the perceptron approach. The difference in training has

to do with the creation of subclasses. In this research, pairs of
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classes were used to determine the subsidiary discriminant functions.
Larger subdivisions require more computation time for pattern matching
without the benefit of lower recognition error.

The Potential Function Approach. |If sample pattern points are

likened to potential energy sources, the potential at any of these
points attains a peak value and then decreases at any point away from
the sample pattern point ;k. Using this analogy, we may visualize the
presence of equipotential contours which are described by a potential
function K(?}Ek). For patterns in pattern class w,, we may imagine
that the cluster of sample patterns forms a ''plateau' with the sample
points located at peaks of a group of hills. The plateaus of the
various classes are separated by ;alleys in which the potential is said
to drop to zero. The potential functions dichotomize the pattern hyper-
space and can, therefore, be considered decision functions.

The potential for any sample pattern point can be characterized

by the expression

KGR = 22" 0009 R (3-7)

where ¢i60, i=1, ..., m, are orthonormal functions over the region
of definition of the patterns. The Ai, i=1, ..., are real numbers
different from zero and chosen in such a way that the potentiai func-

tion K(x,xk) is bounded for X U, ..U

Potential functions are computed successively as patterns are

h

presented. The cumulative potentials at the kt iterative step are
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determined by the aggregate of individual potential functions. This
cumulative potential, which will be denoted ki(;)’ where i is the number

of iterations, is determined in such a way that if the training pattern

§4z+] is incorrectly classified, the cumulative potential is modified.
If the pattern is classified correctly, the cumulative potential is
unchanged at this step. To clarify, the cumulative potential is simply
the adjusted potential after several iterations.

Orthonormal and Orthogonal Functions. For multivariate functions,

the orthonormality condition in vector form is expressed as

J_ 4@, R, (K = 8, (3-8)
X

Jj
where for n variables, the weighting function is u(x) = u(x],x2 ceey xn)

¢i(§) = ¢i(X],X2, ceey X ), J denotes the multiple integral,

n -
X
b b b Tifi=j
J J ces [ T and aij = (3-9)
X|=a Xx,=a X =a 0if i #j

However, the functions are used in their orthogonal form because
the orthonormal form is numerically more complex. It should be noted
that theoretical developments of potential functions require that the
orthonormal form be used.

A complete system of orthogonal functions of n variables, Xpee e X
may be constructed as follows: Groups of n functions from the one-var-
iable set are multiplied together after proper substitution of the var-
iables x],xz, cees xn. If the original functions are orthogonal in

the interval a<x<b, the resulting n-variable functions 919 ¢ys «.. are

orthogonal over the hypercube a:gjfp, i=1,2, ..., n. For example,
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the functions of a multivariate set with n = 4, are formed as follows:

6,00 =9, (x))8,(x,)8, (x,)8, (x,)
8,(x) = 8, (x)8,(x,)8, (x3)0, (x,)
4300 = 8,(x))8,(x,)8,(x;)8, (x,) (3-10)
by (X) = 8, (x))8, (x;)85(x,) 8, (x,)

05() = 8,(x)8,(x,)8, (x,)8, (x,)

The Legendre, Laguerre and Hermite Polynomials constitute three
sets of polynomials well-suited to pattern recognition. They are easy
to generate and they satisfy the Weierstrass approximation theorem,
which states that any function which is continuous in a closed interval
a<x<b can be uniformly approximated within any prescribed tolerance
over that interval by some polynomial.

The orthogonal Legendre polynomial functions may be recursively

generated by the equation

(k + Dp, . (x) - (2k + l)ka(x) + kPk_](x) =0, k > 1 (3-11)

k+1
where Po(x) = 1 and P](x) = x. These functions are orthogonal within
the interval ~1<x<1, and they are orthogonal with respect to the weight-
ing function u(x) = 1.

The Laguerre polynomials may be generated using the recursion re-

lation
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Lpyy (0 = (=)L (x) + KL (x) = 0,k 21 (3-12)

k+](x

where Lo(x) = 1 and L](x) = 1-x. These polynomials are orthogonal in
the interval 0 < x < = with respect to the weighting function u(x) = e-x.
The Hermite Polynomial functions are generated by the recursion re-

lation

(x) - 224, (x) + 2KH,_ (x) = 0, k> 1. (3-13)

k+l
where Ho(x) = 1 and H](x) = 2x. These functions are orthogonal with
respect to u(x) = e_xz on the interval - @ < x < =, hence the range of
variables is of no concern with these polynomials.
The algorithm for the potential function case is as follows:
At the beginning of training, the initial cumulative potentials
(]) (x), k (2)(-) (m)(;) are assumed to be zero. The superscripts

indicate the class membership. Suppose that at the (k + 1)st iterative

step a sample pattern §k+] belonging to class we is presented. |If

K N> k3 Gz, ) for all j # i (3-14)

k+1 k+1

the potentials are not changed, that is,
(l) -
k+| (j (X)]’ i = ’2’-'-,M (3']5)
However, if X1 € 95 and for some %

(l)(x

o) < W) (3-16)

then the following corrections are made
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KD 6 =k @+ k&R, (3-17)

K2 @ -k P@ - k&R,

e

Kk(j)(x), j= ];---aL’ e My J A, T # L

The decision functions are the potential functions and are denoted as

Dk“)(;).

Statistical Pattern Recognition
"By means of statistical considerations it is possible to derive a
classification rule which is optimal in the sense that, §n an average
basis, its use yields the lowest probability of committing classifica-

tion error."[10] The Bayes classification rule,

— @)p Mo,
D.(x) =p (“’i/I)=pw' P w'), i=1,...,m (3-18)
! p(x)

sets the standard of optimum classification performance and this is the

basis of statistical formulations for pattern classification algorithms.
In equation (3-18), p(“i/X) is the conditional density function of

class w;. P(mi) is the a priori probability of class Wes p(;}wi) is

the probability density function of X when X belongs to w, and p(x) is

the probability density function of §l

Regression Functions. Stochastic approximation methods are em-

ployed to find the roots of a regression function. If the regression
function represents the derivative of a properly formulated criterion
function, finding the root of the derivative function yields the min-
imum of the criterion function.

Let g(w) be a function of w having a single root w so that g(w) = 0.
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Assume that g(w) is negative for all values of w less than ; and posi-
tive for all values of w greater than &. Most functions not satisfying
this condition can be made to do so by multiplying by -1.

Consider that instead of g(w) we are able only to observe noisy
values of g{w), denoted h(w). The error between the true values and
the noisy observation at any point w is given by g(w) - h{w). It is
assumed that h(w) is unbiased, that is

E {h(w)} = g(w), (3-19)
and that the variance of the observation h(w) from g(w) éhould be finite
for all values of w; that is,

oFw) = E Lg(w) - h(w)]%} (3-20)

It is assumed that cz(w) < L for all w, where L is a finite, positive
constant. This latter assumption precludes observations so far from
the true value of g(w) that the root seeking procedure would never be
able to recover. In other words, the noisy observations should be
reasonably well behaved.

With the above assumption, the Robins-Monro algorithm [ 231,[ 10]
can be used to seek the root &, of the function g(w). If w(l) repre-
sents the initial, arbitrary estimate of &, and w(k) the estimate at
the kth iterative step, the Robbins-Monro algorithm updates the estimate
according to the relation

w(k+1) = w(k) = a.h [w(k)] (3-21)
where k is the interation count and o is a member of a sequence of

positive numbers satisfying the conditions
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lim @ = 0
k> o "@:\“
¥
I a = (3-22)
=1
z ukz < o
k=1

An example is the harmonic series

* = {1/} = {1,%,1/3,...}

The Robbins-Monro (R-M) algorithm makes corrections on the esti-
mates which are proportional to the previous observations h [w(k)].
Large overcorrections are avoided by assuming that g(w) is bounded by
a straight line on either side of the root. The bounding function that
is used is given by

gt | < A] w = w[+8 < = (3-23)
where A is the slope of the lines and + B are the values of g(w) just
to the right and left of ; respectively. From the figure below, it is
evident that as long as the root lies in some finite interval, the ex-

istence of an A and B which will satisfy expression (3-23) can always

be assumed. slope = A__
Aa(w), hw) -
B - .
I
1. :
T

:\\\root ;

| Bounding line
Alw - wT +B=0

Figure 3-1
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With the conditions of (3-19), (3-20), (3-22) and (3-23) being
satisfied, the R-M algorithm converges to Q in the mean-square sense,

that is,

lim {Ejw(k) - w2} = 0 (3-24)

k > o
Expression (3-24) says that as the number of iterations approaches in-
finity, the variance of the estimate w(k) from the root W will approach
zero.

The decrea;ing significance of the correction factors oy with
increasing k, the number of iterationﬁ,has the effect of decreasing
the magnitude of the adjustment with successive iterations. Since any
sequence {ak} satisfying Equation (3-22) must decrease with increasing
k, the R-M algorithm is generally slow to converge. To accelerate con-
vergence, o, should be kept constant during steps in which h[w(k)] has
the same sign. This procedure is based on the fact that changes in the
sign of h[w(k)] tend to occur more often in the vicinity of the foot &.
For points far away from the root large corrections are desired. The
corrections should be.smaller as the root is approached.

For the multidimensional case, we have that the weight vector w
isws= (w],w

yeessWoSW ), where W, are associative weights for fea-

2

tures X, and Wl corresponds to an appended 1. [t is desired to find

n+l

the root of a regression function g{w) from the noisy observations
h(w). With w(1) representing the initial (arbitrary) estimate of the
root W; and w(k) the estimate at the kth iterative step, the multidi-

mensional R-M algorithm updates the estimate according to

wik+1) = w(k) - ukh['ﬁ(k)] - (3-25)
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where o is the same as described earlier. Satisfying the same con-

ditions as for the two dimensional case, the multidimension R-M al-
gorithm converges in the mean-square sense; that is, if the noisy ob-
servations are unbiased, their variation from g(w) is finite, and if
the regression function is bounded, then we have, as was the case for

equation (3-24),

lim € {||w(k) - W ||’ =0 (3-26)

k + o

~

and Prob{||1im w(k) - W'IIZ} = 1, where

k + =
A

[w(k) - w |]2 is the magnitude squared of the vector [w(k)-w].

Stochastic Approximation for Decision Function Estimation. The

densities p(wilz) are to be estimated for implementation of the Bayes'

decision functions Di(;D =p®i/x), i =1, ..., M. The approach taken

by Tou and Gonzalez [31] is to expand the decision functions over a set
of known functions according to the relation

K+1
Di(;) = p(wi/§) Tz wijﬂj(x) = W}-Elx) (3-27)

=1
where :
B(x) = [g,(x), ¢2(;3,...,¢k(§),]].
A vector x* can be defined such that
"6, ()7
b, (x)

X% = : (3-28)
9y (x)

S

Tou and Gonzales use several mathematically expedient manipulations to

obtain a more useful form of equation (3-27). The argument that
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follows is the most acceptable. One of the most commonly used types
of generalized decision function is that in which the functions {ﬂi(I)}

are of a polynomial form. In the simplest case these functions are

linear; that is, if x = (xl,xz,...,xn)', then ﬂi(i) X.s With K = n.
Under th{s condition we obfain

Plu,/X) =W - X
).

The only information that is available during training is the class

where Wy = (wil’wiz""’win’wi,n+l
membership of each pattern vector. For each class, let us define a ran-
dom classification variable, ri(§), with the following property,

ri(;) - 1, if X e w; (3-30)

0, otherwise
any distinct values can be used. One and zero are arbitrary.

Since we desire knowledge of p(“i/x) only for classification pur-
poses, let us interpret ri(§) as being a noisy observation of p(“i/x),
that is,

ri(§3

plw /%) +n | (3-31)
where n is a noise factor which is assumed to have zero expected value,
so that E {ri(i)} = € {p(*i/X)}. The idea is to seek an approximation
to p(“i/X) of the form W}’-E'by observing values of ri(§). Consider
the criterion function J(G},?} = E {|ri(§) - wi'(x)l}. The minimum

of the function is zero, and it occurs when W}(?) = ri(;a. In other
words, the minimum occurs when the pattern X is classified correctly.

This follows from the fact that r,(?) is a known classification variable
i
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during training. Therefore, if W{)—(—= ri(ﬂ for all patterns of the
training set, G}is capable of classifying all of these patterns correctly.
Since it is assumed that E{riGa} = E{p(*i/x }, J(W},?) can also
be expressed as J(Wi ,X) = E{lp(mi/ﬂ -;v-i (x)|}. This equation states that
finding the minimum of J(W},i) corresponds to finding an average app-
roximation to p(wi/§3. In other words, the approximation is such that
the expected value of the absolute difference between the function
p(mili) and its approximation is zero.
We are interested in finding the minimum of a function J(w,x) which

is the expected value of some other function f(w,x), that is,

J(w,x) = E {f(w,x)} and . (3-32)

3J(w,x) _ . 8f(w,x) -

2w - E BT (3-33)
The root of 221%%22- can now be successively estimated by invoking the

ow

R-M algorithm with

hiw(k)] = A£G
ow

(3-34)

w = w(k)

Using w (K+1) = w(k) - akh[W(k)], we obtain the general algorithm,

(k1) = w(k) - o ﬁg—"l

w=wk) : (3-35)
where w(1) is arbitrarily chosen.

It is worth emphasizing that the statistical algorithm will con-
verge to the approximation regérdless of whether or not the classes

are strictly separable or not. The price is the rate with which the

statistical algorithm achieves convergence.
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Increment-Correction Algorithm. Let the criterion function be

given as
I, X) = E{|r () - Wk} (3-36)
where -
1 ifxe w,
r.(x) =

0 Otherwise
The minimum of J(W},?) with respect to W} is achieved when the patterns
are classified correctly.

The partial of J with respect té W} is

aJ
ow.
i

= E{-x sgn [l‘i(;) - Wi“;]} (3-37)
where sgn (arg) = 1 or -1 depending on whether or not the argument is
greater than zero.

Letting h(W}) = -X sgn [ri(ia - W}-x] and substituting into the
general algorithm of (3-35) yields |

Wi(kﬂ) = Wi(k) + uk(‘f(k) sgn {ri[;(k)l - Wi'(k)';(k)} (3-38)
wi(]) is arbitrarily chosen and k is the iteration number. Using the
definition of sgn, (3-38) may be written as

Wi(k) + akx(k), if Wi(k)i(k) < ri[I(k)]

w(k+1) = ) _ _ - _ (3-39)
wi(k) - akx(k), if wi(k)x(k) z_ri[x(k)]

This algorithm makes an adjustment on the weight vector at every step.
This is in contrast with the perceptron algorithm, where a correction
is made only when a pattern is misclassified.

The iterative procedure of (3-38) or (3-39) is said to have
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converged to an error-free solution when all training patterns of

Wes i=1,...,M, have been correctly classified. In the strictest sense
this means that Wi'-;= ri(;), i.e., Wi;= 1 ifxe w; and Wi'-;= 0
otherwise. In terms of correct recognition, it is sufficient to require
that for all patterns of class Wi DiGa > Dj(§D for all j # i

where

D (x) = w.*x and D, (x) = WJ.?{. (3-40)
]

When the classes under consideration are not strictly separable with
the specified decision functions, we are assured that in the limit the
solution will converge to the absolute-value approximation of P(mi/§),
as indicated by the criterion function of (3-36). Since the Bayes de-
cision functions,are identically equal to these probability density
functions we are therefore guaranteed an absolute-value approximation to
the Bayes classifier.

The Method of Potential Functions. Observed data can belong to

either class w; or wj, but cannot belong to both. In view of this as-
sumption, partition boundaries can be generated to categorfze the pat-
tern classes. The méjor problem of pattern classification lies in the
generation of partition boundaries on the basis of the observed sample
patterns known to belong to a certain class. |t might be that sample
patterns taken from different pattern classes do not form disjoint sets.
Consequently, no partition boundaries can be generated to completely
separate the pattern classes. For each pattern class, only a probabil~
ity can be determined for assignment to class w, or class E}. The
problem of probabilistic classification lies in training the machine to

determine correctly the probability that new patterns belong to a par-
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ticular pattern class on the basis of individual observations during
the training process when the association of the sample pattern and
the corresponding classes is given. a priori.

With stochastic patterns, the classification of new patterns is
based on the set of conditional probabilities P(Yi/X), i = 1,2,...,M,
which are in effect the recognition functions. If P(“i/x) > P(“j/%)
for all j # i, the new pattern X is assigned to class W The recog-
nition function can be estimated iteratively from the training sample
pattern by application of the potential function method. Let the rec-
ognition function P(“i/x) be approximated by ;k(§). The function
¥k(§) is defined as follows

0 , if =@ < %kGa <0

f (D = ?fk(x) ,if 0 < f () < (3-41)
0 ,if|<fk(§)<w
whereA m
f (x) = z cJ.(k)ﬂJ.Ga (3-42)

j=1
In this expansion, the functions ﬂj(x) are given, and cj(k) are unknown
coefficients determined during training. The potential function assoc-

iated with any pattern point X is given, as in the deterministic case,

by m

S 2
K{x,x,) = = A7 g8.(x)8.(x -4

(3 =z 2% 8,609, &) (3-43)
The recursive algorithm for the determination of the approximation
function fk(§) may be stated as follows. Starting with %o(;) = 0, when

a sample pattern ;} is presented to the machine, the potential function

associated with any pattern point Ek is K(E;?k% and three situations may
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arise:

1) IfX, ¢ w, and %°(§}) >0, or x; ¢ v, and %o(?}) < 0, then

1

%](§) = %o(x). In other words if the machine makes a correct classifica-

tion for pattern X, fo(§) remains unchanged. Note that this is a mathemat-

ical expedient--the situation cannot occur.

2) If ;1 e w, and %0(?]) < 0, then %](x) ?"o(x) + u]k(§,§,)
3) If X ¢ w; and fo(xl) > 0, then f](x) = fo(i) - o K(x]x]).

After the presentation of all sample patterns to the machine, the
is K(x,x

potential function associated with X, ). If X +1 €9 and

k1 k+1 k

fk(xk+l) >0, or X, ¢ w, and fk(xk+]) < 0, then

fla® = £ (), o (3
If kal € w, and fk(;k+1) < 0, then

- R . (3-45)

flar = T (0 + oy KOGX L),
If Ykﬂ £ w, and f, (xk_H) > 0, then

R . L (3-146)

Fag®) = FLG) - o kGGx )

The coefficient o k=1,2,..., form a sequence of positive

numbers satisfying the conditions

lim

Kook =0 (3-47)
Y o = (3'“8)
k=1 K :
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k:]uk? <@ (3-49)

The harmonic series satisfies these conditions.
Tou and Gonzalez state that for the range from zero to one, the

function fk(x) converges to the recognition p(wF/E) with increasing k.
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CHAPTER FOUR

LINEAR PREDICTIVE CODING OF SPEECH

A major concern in speech recognition is the parametric representa-
tion of the speech. Linear predictive coding has been highly success-
ful in various speech analysis and recognition projects. Markel's algo-
rithm is straightforward and fast, so that linear predictive coding as
formulated by Markel [14] is the basis for the parametric representation
used in this project. |

Atal and Hanauer [2] state that the vocal tract can be represented
as a discrete time-varying linear filter. If it is assumed that the
variations with time of the vocal tract can be approximated with suf-
ficient accuracy by a succession of stationary shapes, it then would be
possible to define a transfer function in the complex z-domain for the
vocal tract.

Nonnasal voiced sounds have no zeros and are therefore adequately
represented by an all pole recursive filter. Unvoiced and nasal sounds
usually include anti-resonances (zeros) as well as the resonances
(poles). The zeros lie within the unit circle in the z-plane; hence
each factor in the numerator of the transfer function can be approxima-
ted by multiple poles in the denominator. Atal and Hanauer further note
that zeros in most cases contribute only to the spectral balance and

that an all pole model of the vocal tract can approximate the affect of
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of anti-resonances on the speech wave in the frequency range of interest
to any desired degree of accuracy.

The combined contribution of the glottal flow, the vocal tract move-

ment and radiation are represented by a single recursive filter as

shown below.

én

Y

Sn
P

Y as
k=1 k' n=-k

Time-Varying
Linear Predictor |

The output of the linear filter at the nth sampling instant is
- Z Acn-k (4-1)

where the predictor coefficients a, account for the filtering action of
the vocal tract, the radiation and the glottal flow, and Sn represents
the nth sample of the vocal-cord excitation (a pulse). Equation (4-1)
says that the value of the speech wave at the nth instant is determined
by the past p sample§ of the speech.

The transfer function of the linear filter is

1

P -

(!-kg_:-]akz k

T(z) = (4-2)

For stability, there are p poles of T(z) which are real or occur in
conjugate pairs.
The number of coefficients p required to represent any speech seg-

ment adequately is determined by the number of resonances and
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anti-reasonances of the vocal tract in the frequency range of interest,
the nature of the glottal volume flow function, and the radiation.

For analysis, Atal and Hanauer suggest twelve coefficients at a sam-
pling rate of 10 KHz. The predictor coefficients 3 together with the
pitch period, the rms value of the speech sample, and a binary parameter
to indicate whether the speech is voiced or unvoiced provide an excel-
lent approximation of the speech wave over a time interval during which
the vocal tract shape is assumed to be constant. The vocal tract shape
is not constant during speech production, so Atal and Hanauer adjusf
these parameters every five to ten milliseconds.

Historical Development. [14] Speech analysis using the maximum

likelihood estimation method was developed by S. Saito and L. ltakura in
1966. in 1968, B.S. Atal and M. R. Schroeder published a method for
linear prediction of the speech wave. In 1975, J. D. Markel observed
that both of the basic analysis equations, independently developed, were
derivable as special cases of R. Prony's method originally formulated

in 1795 and extended to a least square formulation as early as 1924 [13].
From the analysis equations, moderate bit-rate speech transmission
systems have been developed. Markel's paper [ 17] shows that the basic
analysis approach is transformable into a formant extraction algorithm
and, moreover demonstrated that high quality formant trajectory estima-
tion is possible even for the more difficult problem of closely spaced
formants and fast transitions. Markel developed an algorithm that is
linear, fast and accurate. Because of the speed and accuracy of Mar-
kel's algorithm, it is extremely attractive for the task of phoneme,

word, phrase or sentence coding.
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An Autocorrelation Method of Linear Prediction
In 1973, Markel and Gray published an article containing a recur-
sive solution for the predictor coefficients [14]. Given a set of N

data points {xn} not all equal to zero, where X, = 0 for n < 0 or n > N-1,

the correlation sequence for these data will be denoted by {rk} where

N-1-|k|
"= T = nzo xn X . K| (4-3)

To estimate the discrete spectrum of their autocorrelation sequence,
an autoregression filter is defined with a transfer function given by

definition as

— U -
H(z) = el . 4 (4-1)
where ¢ is a gain term,
M A
= -2 _ -2 _ -
A(z) =1 + QZ] az " = QZO az ", a =1 (4-5)

M is the number of coefficients, and a_, are the predictor coefficients.

2
The autoregression filter has a unit sample response that satisfies the

equation

m
h, = g8, = y ah _, (4-6)

where ako is the Kroneker delta.
Assuming stability of the filter, its autocorrelation sequence can
be expressed as
© o

Po=n’ ) PregPiey = ) hkhk + |8 - v (4-7)

=00 k=—0°

Assuming causality of the filter(h, = 0 for k < OLthe lower limit in

k

each of the sums can be replaced by a finite term rather than minus
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infinity.

If equation (4-6) is rewritten as
m
%o = L APkegr 3 7] (4-8)
2=0
multiplied by h
m

ah_v = gzo aPy.y I8 obtained. Since the filter is causal, h-v =0

K=y and summed over all values of k, the result

for v > 0. From equation (4-6) it is seen that h, = 0. Thus, equation

(4-6) can be rewritten as

m
Z a,p,_ =0, forv>0 . (4-9a)
oo “72my

m

ap

Py = 02, for v=20 (4-9b)

g=0 **

Since there are M + 1 parameters in the autoregression filter, ay
through an and o, a set of M + 1 requirements must be met. In particu-
lar, it is required that the first M + 1 values of the filter autocorre-~
lation values match the first M + 1 data autocorrelation values; that
is,

M = P> for K = 0,1,...,M,

This requirement along with equations (4-9a) and (4-9b) yields
m

ar, =0,y =1,2,....M (4-10a)
gop & A-v

and
m
Yy a,r,=o (4-~10b)
=0 * ¥

Equations (4-10a) and (4-10b) are identical to those obtained in the
formulation of the inverse filter and its equivalent problems, Equa-

tions (4~10b) gives an expression for a gain term to be used in
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approximating the spectrum of the original error.
The coefficients ars az, . e ey am can be obtained by either
solving the set of M simultaneous autocorrelation equations indicated

by equation (L-10a) or by minimizing the quadratic form

m m
Q=) } a, r,_ a,witha =1 (4-11)
=0 u=0 £ 4-v v o
. 3Q _ . .
Since 5=— = 0 gives precisely (4-10a)
v

Introducing matrix notation, equations (4-10) and (4-11) are

rewritten respectively as

RA=B (4=12a)
m ~
and
—_ =T = -
Q=A RyA (4-12b)
where
- ]
To " rm
r] l"o l'.l . . l’m_]
" To Tm-2
Rm = - - L ] L] (4-]3)
'm o1 w2 o -
A' = [1, ays s+ - ey am] , and (4-14a)
B' = [6%, 0,0, ...,001 (4-14b)
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Markel and Gray observed that the quadratic forms Q and Q, expressed
in equations (4-11) and (4-12) along with the positive definite property
of the covariance or autocorrelation matrix, R, suggested the intro-
duction of an inner product definition such that Q can be a norm square
of a vector in that space. This approach lead to a compact derivation
of the recursive solution to equation (4-10a).

+
The Inner Product Formulation. Let polynomials F(z), F (z),

G(z), and U(z) be defined by the summations

] [~

F(z) = ) sz'k, Fi(z) = y fk*zk, (4-15a)
k==c =00
and
6(z) = | gz U@ = ] ek (b150)
k=~ ~co
Where

oo

F+(z) = F(%Q, for fk real and fk" is the complex conjugate of fk.

If R(z) is the Z-transform of the correlation sequence {rk}, then

by application of the Z-transform inversion integral, we have that

0 k-1 i
M= Fop = T JP R(z)z dz, (4-16)

where T is a simple closed contour which encircles the origin of the
Z-plane. |If the unit circle is chosen as the contour, then,

_1 4T ie -jke (b=
" = 5 [_" R(e e)e de, (4-17)
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where j = /=T. Now, if the inner product is defined as

<F(z}, G(z)> = E%T [r R(2)F* (2)6(2) 2 Vdz (4-18a)
m . . .
= -;—n- [_."R(eJ e)F*(.eJ e)G(eJ e)d R (4~18b)

then it is clear that the autocorrelation sequence Fiai Can be written as
= <z z > (4=19)

Thus, the inner product formulation allows the autocorrelation equation

(4-10a) to be rewritten as

T -i -k
J a.<z ',z >=0,k=1,2, ..., M (4-203a)

fz aiz-', z7Ks 20, k=1, 2, .., M, (4-20b)
or by application of equation (4~5)
k

<A(z), z > =0,K=1,2, ..., M (4-20c)

Hence, A(z) is orthogonal to z-k for K=1, 2, ..., M,
Markel and Gray show that equations (4-18) are a valid inner

product definition by showing that
1) Conjugate symmetry holds, that is
%
<F(z), G(z)> =<G(z), F(z)>

2) Linearity holds, that is
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<cF(z), aG(z) + bulz)> =

ac” < F(z), G(z)> + bc*<F(z), u(z)>

where a, b, and ¢ are complex constants, and

3) the inner product has a positive norm, that is

<F(z), F(z)> >0, for F(z) # 0
Other useful properties are that

<2’ "F(2), 27"6(2) > = <F(2), G(z)> (4-21)
and

<F(z), 6(z) > =<1, F'(z) 6(z)> (4-22)

Equations (4-18) are expressed as transform domain relationships.

can also be expressed in the discrete sample domain as

F(2), 6(2) > =<] f2 5 Jz e’
k==~ L=~
[« <] 0 _k -2
=) I fg9,<z ,z >
k== g=-w k7L ’
=k§-m lé-w fk 9 kg (4-23)

The quadratic Q given in equation (4-11) can be equivalently written in

inner product notation as
Q=< A(2), A(z) > (4-24)

and the gain term o2 given in equation (h-lO?).asA.'
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o2 = < Al2), 1> (4-25)

It follows also that Q can now be expressed as the norm square
1 AGE) 112 = <A@2), Alz)> = Q (4-26)
of the vector A(z) in the inner product space.

The Recursive Solution
To recursively solve for the vector a(z), start with an inverse
filter of degree M and proceed to an inverse filter of degree M + 1
with a final result A(z) = Am(z). Let Am(z) represent the inverse

filter of degree M

M -k : .
A2 =1 a7, (4-27)
k=0
where Ao = 1 for all M. Initially it is assumed that all coefficients
Ak 2re real. It will be later shown that this assumption is justified.
By applying equations (4-21), (4-22) and (4-16) to the orthogonality
property (4-20), it is possible to obtain a polynomial Bm(z) of degree

m+ 1 in terms of the polynomial Am(z) of degree m that is also

orthogonal to powers of zul.

Thus,
<Am(z), 2 ¥ < zz, A (%0 >
= < z-m-‘+£, z'm']Am(é) > | (4-28)
=0, =1, 2, , M
Defining an index -k = -m~=1 + & and a polynomial

58



8 (2) = 2" ™D an(1/2). (4-29)
a new orthogonality relationship
-k

<z °, Bm(z)> = 0, k=1,2, ..., m (4-30)

is obtained. From equations (4-27) and (4-29)

_ =(m1) § k
B (2) =2 kZO a2 (4-31a)
or
m+1 -k
B (z) = kzl b\ Z (4-31b)
where an = am’ ] =k and bm’ ]l = Pmo = 1. At this point, two poly-

nomials Am(z) of degree m and Bm(z) of degree m+l have been defined.

Each is orthogonal to the powers of z from z-] toz ", Now, if A

(z),

a polynomial of degree m+l, can be found such that: (1) the coefficients

m+1

of z ] are equal to 1, and (2) Am+](z) is orthogonal to the powers of

Z from z~! to z-(m+])

, then the recursive procedure will have been solved.
Any linear combination of Am(z) and Bm(z) will be a polynomial

of degree m+l since Bm(z) is of degree m+l. Any linear combination of

Am(z) and Bm(z) will be orthogonal to the powers of z from 27! toz "

as a consequence of equations (4-28) and (4-30). Since the coefficient

of z° is unity in Am(z) and zero in Bm(z), the linear combination
Aner(2) = A (2) + k B (2) (4-32)

where km is some, as of yet, unspecified constant, defines a polynomial

Am+](z) of degree m+] satisfying the first requirement. To satisfy the
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(z)

second requirement, it is only necessary to choose km so that A

is orthogonal to z-(m+]);

m+1
therefore, defining

a =<2 ™D g () (4-33)
and
B =< z'(m+|), Am(2)> . (4-34)
the inner,product < z-m-],Am+](z)> = 0
immediately results in
= - . ’ [*..
kn = m o /Bae (4-35)

By applying equation (4-23), it can be readily noted that if Am(z) has
only real coefficients, then a and Bm will be real. Therefore, km and

finally the coefficients of A_,,(z) will be real.

mt1
Since from equation (4-27), Ao = 1 is the starting point, the
assumption of real coefficients in the derivation was justified. Initial

conditions in the recursion are obtained from equations (4-33) and (4-34)

as
- S S
o = <z, Bo(z)> =<z ,z >=r (4-36a)
8= <z, A(R)> =<2, 2% = (4-36b)
and
ago = | (4-36¢)
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The recursive solution of the autorrelation equations is com-
pletely specified at this point in terms of the above initial conditions
and the parameters am, Bm, and km' At step m, knowing km’ equation
(4-32) is used to determine Am+](z) in terms of Am(z) and Bm(z). Com-

putationally, from equations (4-27) and (4-31b)

e = 1 , =0
am+],2 N
e ¥ kmam,m+l-2 , 2 =1,2,...,m (4-37)
k , & = m+l
m

Based upon the inner product formulation, it is possible to obtain
several different computational expressions for the parameters o and
Bm in terms of the filter parameters a Kk’ k=0, 1, ..., m at recursion m
First, by applying equations (4-29), equation (4-33) can be equi-
valently written as

NI WO

Q

<Am(z), 1> (4-38a)

By applying equation (4-23), the computational form is equivalent to

m
@« =) a. r, _ (4-38b)

By applying the orthogonality relationship equation (4-20a), o can

also be written as

a
m

<Am(z), Am(z) > (4-38¢)
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in addition, by applying equations (4-21), (4-22) and (4-29),

6 = <z

(m+1) A(é%. z-(m+l) A(%Q >

o

. <Bm(z), Bm(z) > (4-38d)

Computationally, from equation (4-23), equations (4-38c) or (4-38d) are

equivalent to

(4-38e)

~13

0 k=0 i ri-k amk

The coefficients @ can also be calculated recursively. From

equation (4-38a) and equation (4-32),

=a = <Am+] (Z)’ > - <Am(z)9 1>

%ol m

<Am(z) + kmBm(z), 1> - <Am(z), ] >

k<B (2), 1> (4-38f)
But from equation (4-29) and equation (4-22),

=(mE1) oy g
=k <Z Am(z) 1>

Q
!
=]
|

=k <z-(m+l)’ Am(z) >,and hence with equation (4-34),

the computational form is

a =a_ + kmsm’ (4-38g)

mt1

or by applying (4-35),
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el = m (I-km) (4-38h)

By applying equation (4-19) and equation (4-21) to the definition

equation (L4-34), B is obtained as

B = (4-39a)

m a

me Tmtl-g

I ~3

2=0
By applying the orthogonality relationship (4-20a), Bm can also be

written as

B, = <B (2), A (z) > (4-39b)

Markel's Algorithm
The recursive solution that gives the predictor coefficients can

be described in algorithmic terms as follows: The quantities Tor T
]

eeey rare given. At the completion of steps m, the quantities Ao
’

a ses B O Bm have been calculated. To obtain step m+l, hn is

ml’ ° mm

obtained from equation (4-35), the coefficients {am+] k} are obtained

’

from equation (4-37), and « are obtained from equations (4-38)

1 Pl

and (4-39). As initial values for m = 0, a =1l a =r, and B_=ry.

This procedure is carried out until step M is obtained yielding the

inverse filter

=§m,fm'k=0,l,.”,M.

k

) -k
A(z) =1 +) az " yhere a
k=1 K

The gain term 02 is by inspection of equation (4-24) and (4-38a),

o? =0 (4-Lo)
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Equation (4-38b) gives a physical interpretation of the a, term,
which is: e is precisely the least squares error or energy output from
the inverse filter. Also a is equal to Qm, the value of the quadratic
from equation (4-11) which is normalized at step m. Thus, if {nn} is
a normalized autocorrelation sequence, where ro = 1, @ will satisfy the
relationship 0 < o < ap = 1 <..u< @, = 1 (since each additional stage
must decrease the squared error below that of the previous stage).

|8n| is bounded by the squared error o . The recursive gain ‘term
k. has the important physical interpretation that if Ihﬂ|< 1, the poly-
(2)

nomial A_.,(z) corresponds to a stable filter and if lﬁn|> LA
corresponds tc an unstable filter. Thus, by use of the recursion

procedure for solving equation (4-10a), it is possible to test for
stability at any step M without actually having to apply a polynomial

root-solving program to see if any roots lie outside the unit circle.

If the polynomial Am(z) is unstable at stage m, all further recursions
remain unstable.

Markel also determined that M is not a strong function of the
particular speech sound. However, it is a strong function of the
system sampling rate. For 6< FS<18 KHz, the equation M = Fs + y
where Yy = 4 or 5 and FS is truncated to a ones or tens decimal
place, has been found generally sufficient for the analysis. The
physical interpretation of this result is simply that independent of

the sampling rate, roughly one.complex pole pair is required to span

every 700 Hz.
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Lumped Linear Prediction

Having presented the above formulation, a radical departure is
made from [ts normal application. Without great effort, normal speech
can be produced with few variations; that is, the speech wave for a
given utterance is relatively unchanged from one time to another. As
8 worse case, cerebral palsy victims can produce speech that is under-
standable to a listener after a ''training' period, but their speech
wave would contain a great variations for a repeated utterance. This is
a function of the lack of motor control that can affect the glottis
and the articulators as severely és the limbs. Note that physical or
emotional stress has a compounding effect on their motor control and
exacerbates speech production.'

It was as a consequence of the above considerations, that prototype
template matching was considered the least appropriate approach for pat-
tern recognition of abnormal speech. Even though linear predictive
coding gives what amounts to a spectral representation of speech, the
spectral differences in abnormal speech might be so great as to make
template matching futile. The pattern recognition approaches described
in Chapter three appeared more suitable for the kinds of spectral var-
iations that were expected.

The difficulty with the standard application of LPC with respect
to pattern recognition stems from the fact that the size of the training
sets is related (in a nonlinear fashion) to the length of the pattern
vectors. Tou suggests that the size of the training sets per class

(the number of vectors) should be ten times larger than the pattern
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vector length (number of elements per vector). If we sample at 10 Kz
and solve for 12 predictor coefficients for 50 segments (200 samples
in length) of an utterance, a total of 600 coefficients wouldlbe re-
quired for that utterance. We could expect that as many as 4000
training vectors per class for pattern recognition would be needed.
If this were the case, the solution to the problem would clearly not
be practical.

As mentioned earlier, after the wave has been digitized, often
pre-emphasized and multiplied by a Hamming window, segments of the
speech are scanned one at a time either continuously or in an over-
lapping manner. These segments are within the range of 100 to 300
samples. A very accurate representation of the speech wave is obtaina-
ble from this procedure.

The approach taken here is to lump all spectral information
of an utterance by solving for one set of predictor coefficients. That
is, instead of solving for a set of predictor coefficients for speech
wave segments, a set of coefficients for the entire speech wave is ob-
tained without segmentation. It is not possible to recover spectral
information from the inverse filter by doing this. However, one might
expect that enough information about an utterance is contained in these
Tumped coefficients so that coding of the utterance for machine recog-
nition could be accomplished. The major question is whether the utter-
ance is uniquely coded: and if it is not, how large a vocabulary of
words can be coded in this manner to make this technique viable. The
Justification for this approach has been given. The efficacy of the

approach can be found through experimentation.
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CHAPTER 5
EXPERIMENTAL RESULTS
Experiments

The primary objective of the required experiments was to determine
which learning algorithm would perform best for pattern recognition using
the lumped linear predictive coefficients described in Chapter 4. Best
performance was measured by the rate of convergence of the algorithm and
the subsequent recognition error obtained using a given algorithm. Rec-
ognition error is the number (percentage) of words that were not recog-
nized during pattern recognition. Incorrect classification of words
did not occur.

The experiments were performed as follows. Isolated words were
recorded on analog tape and then digitized at approximately 6000 Hz over
a two-second interval. A trigger signal was used to initiate analog
to digital conversion on one track of the tape and speakers were required
to say a word immediately after a trigger signal, thereby assuring that
the entire utterance was sampled.

Based on plots of the speech wave (see Figure 5-1) for various
words an attempt to isolate the most significant parts of the word was
done as follows. The beginning point was determined by searching for a

difference between ten consecutive samples that was greater than a
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Bracketed numbers indicate sample ranges
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preset threshold. The threshold was decided upon after looking at sam-

ples whose differences were less than a preset threshold. This procedure

does not take into account the following kinds of problems (26).

l.

Weak fricatives (/f th, h/) at the beginning or
end of an utterance.

Weak plosive bursts (/p, t,k/).

Final nasals.

Voiced fricatives at the ends of words which
became devoiced.

Trailing off of certain voiced sounds; such as
the final /i/ becomes unvoiced sometimes in words

like '"'three" (/th-r-i-/) or "binary" (/b-al-n-e-r-i/).

The end point detection procedure described above was not expected to

isolate all of the acoustic or spectral information contained in an

utterance, but it was intended to and did isolate the portions of the

utterances that would be adequate for these experiments. Again, by

observing samples of the data, it was determined that out of the approx-

imately twelve thousand samples per word that approximately nine thou-

sand contained the utterances. The technique employed here isolated

between 50% and 100% of these nine thousand samples.

The recordings were made in a closed but not sound~proofed room.

Ambient noise came primarily from central air conditioning.

Fifteen enunciations of ten words were used. Ten of these were

for training. The other five were for pattern recognition per se.

Eight predictive coefficients were calculated. This number of
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coefficients was chosen arbitrarily.

In addition to the above, it should be mentioned that no normal-
ization of the speech waves (see Chapter 2) was done. However, amplitude
normalization was done on each set of predictive coefficients. The sets
of coefficients were divided by the largest in magnitude of the coeffi~
cients in each set as an attempt to accelerate the rate of convergence
during training. The relative values of the coefficients with respect
to each other in a given set were unchanged, but significant magnitude
di fferences between sets of coefficients for a given word were removed.

The experiments were performed twice. The first, with normal
speech, was used to debug the various programs. The second, was a twenty~
five year old female afflicted with cerebral palsy. Her speech was sim-
ilar to that of a person under the influence of a sedative or another
kind of depressant drug. Although her speech was somewhat slurred, it
was intelligible. The results given below are with this subject's speech.

Words were selected from the training list of words and phrases
used by the Cerebral Palsy Center in Norman, Oklahoma. The words are as
follows:

hungry
sleep
eat
thirsty
happy
bed
play

go
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T. v.

stop

Results
See Chapters 3 and 4 and the appendices for explanations and exam-
ples of the various techniques, flowcharts and examples that are appli-
cable to the items below.

Linear Error Correction (LEC). This program was executed without

pattern deletion (see below). Convergence to solution weight vectors
using this algorithm was not achieved for any of several vocabulary sizes
and different word groups. Initial weight vectors that were used includ-
ed 1) zero-weight vectors, 2) the average of the training vectors for
each class, and 3) selected weight-vectors from each class.

It is important to note that by allowing sufficient time conver-
gence using this approach might have ultimately been achieved; for, as
will be seen later, just two classes could require over 5000 iterations
before convergence was achieved. For multiclass training sets, itera-
tions of this size are for all practical purposes useless.

LEC with Pattern Deletion. This approach greatly accelerated

the rate of convergence to solution weight vectors for the multiclass
case. In this experiment, patterns that satisfy discriminant functions
were deleted from the training classes during execution of the program.
Recalling from Chapter 3, the condition to be satisfied was that
for a given pattern x belonging to class W,
D, (0 > 0,(x)
forall i, j=1,2, ..., M, where i # j. If a given pattern satisfies

this condition, then there is no reason to keep it in the training pat-

71



tern class, and the total number of training patterns would be reduced

as conyergence proceeds. The great improvement in the rate of conver-
gence was unexpected. Convergence was achieved in twenty-four iterations
for the words ''go'’, 'eat', ''bed", "happy", ''sleep', and '"thirsty''. The
recognition error was 50%. The words that were not recognized were 'eat',
"bed'', and 'sleep'. This recognition error is considered to result pri-
marily from the size of the training classes.

Piecewise Linear Error Correction (PWL). This approach proved to

be more successful. The pattern deletion technique was not applied in
this program, but similar benefits are expected when it is applied.
Solution weight vectors were sought for all distinct pairs of words in
the vocabulary. Convergence was obtained for every word grouping, but
with great differences in the rate of convergence for different pairs of
words. For instance, '"hot' and ''go'' converged in only nine iterations;
whereas, '"hot' and "eat' required 745 iterations for convergence. As
many as 5,000 plus iterations were required for some of the pairs.

The recognition error varied with the vocabulary size. For eight
words, ''sleep', '"eat", "thirsty', "happy", 'bed", 'play', "go'" and
“"hungry'', the recognition error was 12%. '"Thirsty'" was not recognized.
When "T.V." and "'stop'" were added to this list, the error increased to
as much as 37%. Failure occurred with "thirsty' and "play' in one in-
stance and with "thirsty'", "play" and '"stop'" in another test. The recog-
nition error changed with different enunciations of the same word; for
instance, a different enunciation of "happy' increased the error for a

ten word vocabulary to 40%.
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Fractional Error Correction (FEC). This approach gave results

that were similar to those above when applied with PWL. When FEC was
applied to LEC, convergence was achieved, but the magnitudes of the

uz)

weight vectors were extremely large (on the order of 10 . Numbers of
this magnitude when applied to discriminant functions renders the func-
tions meaningless.

The Potential Function Approach. Potential functions formed from

Legendre polynomials and containing nine terms have the form

= 4

K(i,xk) =] +i£]xixki’

The x; are coefficients that are determiﬁed as training proceeds. Their
initial values are arbitrary. The xki are features of the training pat-
terns. Adjustments to the cumulative potential functions are made
according to the same rules that apply to the perceptron algorithm. So
for nine terms, there is no benefit in terms of rate of convergence or
recognition error to be derived from this approach.

Using additional terms in the polynomials obtained by applying |
the techniques described in Chapter 3, can only decrease the rate of
convergence. This is because the terms would look like xixkixjxkj and
x?xzi, where i, j =1, ..., my i # j and n represents some power deter=-
mined from the recursion relation that generates the Legendre polynomials.
These additional terms cannot increase the rate of convergence because
the predictive coefficients are between zero and one, so terms similar
in magnitude to the original nine terms of the LEC approach would be
added to the functions. At best, the rate of convergence of the LEC

approach would be equalled, but it would not be increased by using
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potential functions.

Increment Correction (Statistical). A program was written and

executed, but this approach is considered unnecessary fdr this problem
for the following reasons: adjustments in this and all statistical
approaches considered in this study are based solely on a priori know-
ledge of the class membership of the training patterns. No discriminat-
ing conditions are invoked in order to determine whether an adjustment
should be made and all weight vectors are continuously adjusted until
convergence is achieved. Since the only condition for convergence is
that‘Wk+](§D = Wk(?), convergence is assured as a consequence of the
fact that oy approaches zero as k, the number of iterations, gets very

large (see Chapter 3).
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CHAPTER 6
DISCUSSIONS

The Effectiveness of Coding Words

Using Lumped Linear Predictive Coefficients

Lumping the predictive coefficients so that one set of eight or
more coefficients could code an entire word represents a new approach.
Word production can be represented as a series of events in time and
those events, using lumped linear prediction, are considered, in aggre-
gate, unique for spectrally different words. This approach was chosen
partly because it is computationally attractive and better suited for
application in various learning algorithms; that is, the choice of
eight or more coefficients for the coding of words offers considerable
computational advantages over several hundred coefficients.

Coding of even a limited number of words using this approach,
increases the likelihood of developing a useful machine for abnormal
word recognition irn the near future. Cerebral palsy victims often use
a word board that contains useful words and phrases. The numbers zero
through nine and the alphabet are also on this board. The user points
to the appropriate letter to spell a word or to words and/or phrases to
form a sentence. This is done when trying to communicate with someone

who does not recognize cerebral palsy speech and when using new words.
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This pointing process is tedious, slow and frustrating to both the user
and to the interlocator. Using the lumped linear predictive approach
of this study, these words can be coded for machine recognition.

Some of the words found on these word boards are the following:

Nouns Verbs Places~Things Prepositions
daddy go school in
mommy come home of
sister eat bed behind
brother drink book through
you car beside
it typewriter between
i hot on
me cold over
under
below
up
down -

Comparisons of Various Learning Algorithms

Piecewise Linear Error Correction. Although the best results

(7 out of 8 words correctly recognized) were obtained using this algo-
rithm, it is not the preferred learning algorithm. This is because
separate weight vectors are generated for every distinct pair of words;
that is, for ten words, there would be forty-five weight vectors as

opposed to just ten using linear error correction. Clearly, the memory
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size and time for pattern recognition would be considerable using this
approach.

Linear Error Correction. With the deletion of patterns as train-

ing proceeds, this algorithm converges at an acceptable rate; The recog-
nition error was high, but this can be greatly improved by increasiﬁg
the number of patterns.

It should be noted that the errors using LEC and PWL var?ed with
the test words. This is a further indication that too few training pat-
terns were used. Indeed, if the recommendation of Tou and Gonzalez
concerning the size of the training classes with respect to the number
of elements in the training patterns had been followed, then eighty
training patterns per word would have been.used for the eight predictive
coefficients. Based on the results of these experiments, it is felt
that the recognition error can be greatly decreased without resorting to
training classes that are quite this large.

Fractional Error Correction and Potential Functions. These

algorithms are considered inappropriate for this study for the reasons
given in Chapter 5.

Statistical Algorithms. These offer no real advantage for word

recognition. These algorithms are slow to converge because adjustments
on weight vectors are made at every step during training. Furthermore,
once convergence is achieved, recognition errors can be expected to be
higher than with deterministic algorithms because as the number of
iterations increases, o (see Chapter 3) will become so small that
incremental adjustments on the weight vectors will be negligible. As

a consequence, the fact that deterministic algorithms converge to
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solution weight vectors makes them more suitable for word recognition.
it is only when deterministic algorithms fail to converge that statisti-

cal algorithms should be used for pattern recognition problems.

End-Point Detection

Extension of this study to a larger vocabulary will require better
end-point detection so that all significant parts of the utterance are
isolated. The technique that was employed in the experiments of Chapter
5 was adequate for a small and predetermined vocabulary, however, the
extension of this study to vocabularies whose words will not be subjected
to human scrutiny of the speech wave would require a more powerful algo-
rithm.

Rabiner and Sambur (26) reported the results of their end-point
detection algorithm in February, 1975. This algorithm is based on two
measures of the speech signal, zero (level) crossing rate and energy.
Rabiner and Sambur reported that the algorithm is capable of performing
correctly in any reasonable acoustic environment in which the signal-to-
noise ratio is on the order of 30 dB or higher.

An important assumption is that during the first 100 ms of the
recording (also sampling) interval, there is no speech present. Thus,
during this interval, the statistics of the background noise are meas-
ured. ‘These measurements include the average and standard deviation
of the zero crossing rate and the average energy. The zero (level)
crossing rate of the speech is defined as the number of zero (level)
crossings per 10 ms interval. The energy, E(n), is defined as the sum

of the magnitudes of 10 ms (for a 10 KHz sampling rate) of speech
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centered on the measurement interval; that is,
50
E(n) = [ Is(n+ )],
i==50
where s(n) are the speech samples. The choice of a 10 ms window for
computing the energy and the use of a magnitude function rather than a
squared magnitude function were dictated by the desire to perform the
computations in integer arithmetic and, thus, to increase computation
speech.
Using these definitions, background and signal measurements are

made that allow for very accurate isolation of the utterance using

Rabiner and Sambur's algorithm. See appendix B for flowcharts.

Other Considerations

The purpose of normalization is to make repetitions of the same
word more uniform. As discussed in Chapter 2, there are various nor-
malization techniques. The one that is most readily applicable is am~
plitude normalization, for it can be accomplished by searching for the
largest (magnitude) sample and dividing the speech samples by it. It
should be mentioned that this is not necessarily preferred over ampli~
tude normalization of the predictive coefficients, because the latter
is considerably faster. Other variational effects can be offset by the
size of the training sets.

The 6 KHz sampling rate, which is considered low, was used be-
cause of limitations of the equipment. Greater resolution of the speech
wave by increasing the sampling rate is required for extending the vo-

cabulary size.
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Finally, cerebral palsy victims often move their heads in an
uncontrolled fashion; therefore, an attached close speaking microphone
would be required in order to minimize signal level variations due to

this movement.

Pattern Deletion During Training

During the early stages of this research, it was thought that the
time required for convergence to solution weight vectors using linear
error correction was excegsive. There is no way to predict the requir-
ed number of iterations for convergence, and there was always the pos-
sibility that the patterns were not seperable. As was mentioned previ-
ously, different initial weight vectors were used, but there was no
improvement in achieving convergence. Close scrutiny of the weight vec-
tors showed that after a number of iterations (this varied with class
sizes and different groups of classes) that the weight vectors were fluc-
tuating--apparently around solution weight vectors. Indeed this fluctu-
ation was almost periodic during some computer runs. It should be noted
that the test for ‘convergence was done in integer arithmetic. Further-
more, all pattern classes converged to solution weight vectors when the
piece-wise linear error correction algorithm was applied. Although
this does not imply that as larger groups the classes would be seperable,
success with PWL and the fluctuation of the weight vectors using LEC
strongly suggested that the classes were seperable. Also, attempts at
pattern recognition using weight vectors that were not solution weight
vectors always resulted in recognition of some of the wrods. These

latter weight vectors were obtained by stopping training after an
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arbitrarily selected number of iterations.

The cost and time of allowing training to continue until conver-
gence was achieved would have been prohibitive. Clearly, 5000 or more
iterations could not be permitted, and, if there was to ever be prac-
tical application of this research (meaning with larger vocabularies)
this dilemma had to be resolved. The solution was unexpectedly simple
and effective. Various authors suggest removing patterns from the train-
ing classes as these patterns demonstrate that discriminant conditions
are satisfied. The training classes would be reduced in size and hence
training would be accelerated. Indeed training is accelerated, for con-
vergence had never been achieved before for more than three words when
LEC was applied. Now convergence for six classes was achieved in twenty-
four iterations.

The reason for applying these kinds of learning algorithms was that
prototypical templates of words were not being used. For each word,
there are significant variations between different enunciations. Now it
is to be expected that for every word class there will be come patterns
having greater spectral similarity to each other than to the other mem-
bers of the class, and the codes of these words will bear greater simi-
larity. Hence, as training proceeds, some of the training patterns will
satisfy discriminant conditions.

Even with a small vocabulary consisting of only ten training pat-
terns per word, the number of calculations that are performed during a
number of iterations is impressive. For every pattern, the discriminant
function value must be calculated for the particular pattern with every

weight vector. These functions are then compared and weight vector
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adjustments are made accordingly. By deleting patterns, the total
number of computations is dramatically reduced.

Indeed as the solution weight vectors were approached, the num-
ber of calculations per iteration approached numbers like twenty,
twelve, ten, etc. as opposed to several hundred. So deletion of pat-
terns during training is a very important procedure for successful

application of the algorithms that were discussed in this dissertation.
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CHAPTER 7

CONCLUS ION

Normal speech production, a series of glottal epochs with articu-
latory shaping, is produced with normal motor control and can be made in
a highly repetitive fashion. Normal speech usually conforms to a given
dialect of a given language so that it is readily understood. In con-
trast, the motor control problems of cerebral palsy victims are often
sufficiently severe to inhibit the movements of the glottis and of the
articulators, but the afflicted persons can develop the ability to make
utterances that approximate those of normal speech through long and
intense training. These approximations or attempts at speech produc-
tion are often so far removed from readily recognizable patterns that
communication represents a tremendous problem for cerebral palsy vic-
tims. The important consideration is that these attempts at speech
production are often consistent ercugh to allow others to learn to rec-
ognize the speech of the persons with cerebral palsy. In other words,
if the ability to make reasonable approximations of the words in their
vocabulary on a repetitive basis did not exist, then cerebral palsy
victims would not be able to communicate verbally.

The most important assumption that was made in undertaking this

study was that if normal speech can be coded and recognized by machines,
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then the speech of the cerebral palsy victims who are capable of approx-
imating normal speech can also be coded a&d recognized by machines if
their utterances are unique for different words.

Segmentation of the speech wave, although necessary for spectral
analysis of speech, is not computationally attractive for machine recog-
nition of speech. Because of variational considerations in abnormal
speech and of the computation time required for convergence of learning
algorithms, the several glottal events required for speech production
were lumped into one spectral event per word in this dissertation by
calculating a small set of linear predictive coefficients that would
code words for machine recognition. This is lumped linear predictive
coding of the speech wave. Limitations in vocabulary size are accepted
because of the gains made in memory utilization and computational speed.

Ten words that were spoken by a person with a slight voice handi-
cap were coded and recognized by a computer with a significant degree
of success: 50% to 89% recognized. The approaches of this study, lumped
linear prediction of the speech wave used with the perceptron algorithm
or its variations, may be extended to larger vocabularies by using the
techniques described in Chapter 6.

An 1BM 370, Model 158, computer was used for this study. If a
machine that can be used by the voice handicapped is to be realized,
then the approaches used in this study should be applied to a micro-
processor. The realizations of such a machine can be the goal of fur-

ther efforts.
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APPENDIX A

FLOWCHART AND PROGRAM FOR LUMPED

LINEAR PREDICTION

Explanation of program variables and parameters:

(See Chapter 4 for equations and explanations)

1.

The subroutine for calculating the autocorrelation numbers

is straightforward; therefore it is not shown on the flow-

chart.
BETA = 8
ALPHA = «
PMM+ 1, L) = a . )
! = = =
AA'(M + 1,L) a1, g k(m) when L = m + 1

A1) = a;, the coefficients predictor
NC is the maximum number of coefficients

M,L,and 1 are array indices
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INPUT SPEECH

LOCATE
END
POINTS

CALCULATE

AUTOCORRELA-
ION NUMBERS

FOR EACH
WORD
TNITIALIZE ML
BETA (M)
ALPHA (M)
CALCULATE
Y K(M)
ETR
K(1) - aipHa
Y
INCR M
INCR L
L =1 and NO
oM+ AA(M+1,L) = 1
YES
FOR I=1,...M
CALCULATE ACI) = AA(I,M)
AA(M+1,L)
j§4 CALCULATE Yy
:T‘ AA' (M+1,L) ‘ STOP >
CALCULATE
BETA(M) and
ALPHA (M)
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Program
for

Lumped Linear Prediction
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Z7GOFTOBFOO1 DD DSN=LEARNADISP=0LDsVCL=3ER=003580sLABEL=(1v9eIN),

/7 UNIT=2400

/77G0.5YSIN DD *
ddddaddoaaddiddddddgdaddaddaddduddadgadddidddddddddddddddddolddddaddddd ol od oo of o
CTHE FIRST WORD IS HAPPY

C THE SECUND WCRD IS EAT

C THE THIRD WORD IS HUNGRY
C THE FOURTH WORD IS DRINK
C THE FIFTH WORD IS THIRSTY
C THE SIXTH WORD IS BEDRSTY
C THE SIXTH WORD IS BED

C THE SEVENTH WORD IS SLEEP
C THE EIGHTH WCRD IS SAD

C THE NINTH WOURD IS HOT

C THE TENTH WORD 1S GO

C THE ELEVENTH WORD IS PLAY
C THE TWELFTH WORD IS TeVe
C
C
<
C
C
C
C
C
C
C

sNeNeNsNaNsNaNeNaNsNsl

THE THIRTEENTH WORD IS STOP
THE FOURTHEENTH wORD IS COLD
THE FIFTEENTH WCROD [S DACOY
THE SIXTEENTH wCRD IS MCMMY
THE SEVENTEENTH WURD IS BRUTHER
THE EIGHTEENTH WORD IS SISTER C
THE NINTEENTH WCRD IS LETTER C
THE TWENTIETH WORD IS I LQVE YGU
*N* IS USED TU INDICATE THE NUMBER OF PARAMETERS
CCCCCCCCCCCCCCCCCCCCCLCCCCCLCCCLCCCCCCCCCCCLCCCCCCTCCCCCCCLCCecececeececcec
INTEGER INDEX1 s INDEX24GsHsX(9000)+sTsUsFsSAV1ISAV2,DIFF
INTEGER SAV3, CNT
REAL K(9)
DIMENSION R(9)s BETA(Y9)s ALPHA(9)s AA(9359)s A(8)sCARD(20)
SAV1I = 13 SAV2 = 000
T =1
u =1
50 READ(8,20)CARD
20 FORMAT(20A4)
READ(8y21)X
21 FORMAT(18[4)
GO YO 2009
SAV3 = 180

s NaNsNaNs)

CNT = 1

22 DO 200 1 = c£AvV3,89949
J=1+1
DIFF = XtJ) - X{(1)

DIFF IABS(DIFF)
SAV1 = 1
IF(DIFF «4GT 45)GC TC 999

200 CONT INUE

S99 CNT = CNT + 1
IF(CNT=3)23+24+24

23 SAV3 = SAvV]
GO TO 22
24 1 SAV ]

1000 N 1
1 1 +
J I +
DIFF = X(J) - X(I)
DIFF = ITABS(DIFF)

1001 IF(DIFF-2)1002,1002,1000

1002 N N + 1
1 1 + 1
J I + 1 88
DIFF = X(J) = X(I)

£ =

Nt TAQCIMNTE Y

"
~ o

nwun




1005 IF(N-1000;1001+1003,»1003
1003 SAvV2 = |
GO TO 2000
1006 SAV2 = 9000
2000 N =1
R(N) = 0.0
DO 31 M = SAV1S5AV2
RIN) = (X{M) % X(M)) + R{N)
31 CONTINUE
N =2
1 H = SAVZ2-N-1
RIN) = 0.0
DO 2 M = SAVl +H

L =M+ N

2 RI(N) = (X(M)%X(L)) + RI(N)
N =N+1
IF(N=9)1s1+4

4 N =1

L =1
I =1
M =1
AA(ls1l) = 10 ‘
BETA(1) = R{(2)
ALPHA(1) = R(1)
K(1) = ~(BETA(1)/ALPEA(L1))

S G =M+ 1
AA(GsL) = 140
6 L=L +1
INDEX2 = M + 1 -~ L
IF(L = G)74+8+9 .
7 AA{GsL) = AA(M,L) + (K{M)®AA(M, INDEX2))
GO TO 6
8 AA(G,L)
I =1+ 1
GO TO 6
9 L =1
M=M+ 1
INDEXZ2 = M + 1 - L
BETA(M) = 0.0
ALPHA(M) = Qa0

K(M)

10 BETA(M) = (AA(M,L)%R{INDEXZ2)) + BETA(M)
ALPHAIM) = (AAIMIL)I®R(L)) + ALPHA(M)
L =L+ 1 ’

INDEX2 = M + 1 - L
IF(L-M)104+10,11

11 K{(M) = —-(BETA(M)/ALPHA(M))
42 IF{M - 8)12.12414
12 L =1

GO TG S

14 WRITE(7,15)CAKRD
1S FORMAT(20A4)

DO 16 I=1,8

ACI) = AA(B-1)

16 WRITE(7,17)A(I1)

17 FORMAT(B8F942)
CCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCTCCCCCCCCCCCCCCCCeee
C THIS COMPUTED TRANSFER IS MADE NECESSARY BY THE D IFFERENCE :
C IN THE NUMBER OF REPETITIONS OF EACH WGRD
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECece

72 F = 11

73 IF(U=F)18,1G,19

18 U=U+1
GO T0 S50
19 u=1 89

T - -




100 STCP
END
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'APPENDIX B

FLOWCHARTS OF RABINER AND SAMBUR'S

END-POINT LOCATION ALGORITHM

Explanation of program variables
1. A zero crossing threshold, 1ZCT, for unvoiced speech is chosen
as the minimum of a fixed threshold, IF (25 crossings per 10
ms), and the sum of the mean zero crossing rate during silence,
TZC, plus twice the standard deviation of the zero crossing
rate during silence; that is,
1ZCT = MIN(IF, TZC + zallzc)

Peak energy, IMX, and silence energy, IMN, are used to calculate
the following:
2. 11 is a level that is 3 percent of IMX, (adjusted for the si-
lence energy); that is,
11 = 0.03%(IMX ~ IMN) + IMN
3. 12 is a level that is set to four times the silence energy;
that is,
12 = LxIMN
L. ITL, the lower threshold, is the minimum of 11 and 12; that is,
ITL = MIN(IT, 12)
5. 1TU, the upper threshold, is five times the lower threshold;

that is,
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ITU = S5*ITL

The algorithm for a first approximation of the beginning point
location is shown in Figure B-2. The algorithm begins by searching
from the beginning of the interval until {TL is exceeded. [f the
energy falls below ITL before it rises above ITU, a new beginning point
is obtained by finding the first point at which the energy exceeds ITL,
and then exceeds |TU before falling below ITL; eventually such a gé- |
ginning point must exist. The ending point is determined in a similar
manner and is shown in Figure B-3. The beginning and ending points are
labeled N1 and N2, respectively.

N1 and N2 are initial estimates. The algorithm proceeds to exam=-
ine the interval from Nl and N1-25, a 250-ms interval preceeding
the initial beginning point, and counts the number of intervals where
the zero crossing rate exceeds the threshold 1ZCT. |If the number of
times the threshold was exceeded was three or more, the starting point
is set back to the first point (in time) at which the threshold was
exceeded. Otherwise, the beginning point is kept at N1. Rabiner and
Sambur's rationale Behind this strategy was that for all cases of inter-
est, exceeding a tight threshold of zero (level) crossing rate is a
strong indication of unvoiced energy.

A similar search procedure is used on the ending pofnt of the ut-
terance to determine if there is unvoiced energy in the interval from

N2 to N2 + 25.
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S{n} = SPEECH

!

COMPUTE STATISTICS OF
2ERD CROSSING RATE,
12C,Uy,c. DURING
SILENCE

THRESHOLD
12CT

1

CONPUTE
ENERGY - E(n)

COMPUTE PEAK
EMERGY - INIX,
SILENCE
ENERGY - IMN

COMPUTE LOWER
ENERGY

THRESHOLD ~ ITL,

UPPER

100 Hz - HIGH-PASS
4000 Hz - LOW-PASS
10 kHz = SAMPLING RATE

THRESHOLD - 1TV,

i

1

SEARCH FORWARD
FOR STARTING
POINT, Ny —
BASED ON
ENERGY THRESHOLDS

SEARCH BACKWARD
“FOR ENOING
POINT, Nz-
BASED ON
ENERGY THRESHOLDS

b

!

SEARCH FROM Ny
TO Ny - 25 FOR
NUMBER OF POINTS, M,

SEARCH FROM N
TO N2+25 FOR
NUMBER OF POINTS, M2

AT WHICH AT WHICH
2CR = 12CT 2CR 2 12CT
Ny REMAINS NO Nz REMAINS
UNCHANGED UNCHANGED
YES

Figure B-1.

Ny CHANGED TO
LAST INDEX FOR
WHICH 2CR 2 12CT

Ny CHANGED TO
LAST INGEX FOR
WHICH 2CR 2 12CT

Flowchart for the Endpoint Algorithm.
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me1
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Etm} 2 1TL
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Figure B-2. Flowchart For the Beginning Point
Initial Estimate Based on Energy Considerations.
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Figure B-3.

I me= Ny I

1s
£lm) > ITL YES
?
"G

mem-1

Flowchart for the Ending Point Initial Estimate
Based on Energy Considerations.




APPENDIX C
FLOWCHART AND EXAMPLE PROGRAMS
OF PATTERN RECOGNITION ALGORITHMS

The flowchart that is given on the next page is basically appli-
cable to all of the pattern recognition techniques that were discussed
in Chapter 3. For the deterministic algorithms, only the subroutine
has to be changed for weight adjustments. For the statistical algo-
rithms, the adjustments of weight vectors are made solely on the basis
of a priori knowledge of class membership and so no comparison of dis~
criminant functions is needed in statistical programs.

Explanation of program variables and parameters:

(See Chapter 3 for equations and explanations)

1. Y(1,d,Z) =1 classes containing J patterns with Z components

in each pattern.

2. W(1,Z) = 1| weight vectors corresponding to | classes with Z

components in each vector.

3. S(1) = | discriminant functions.
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Y(1,J,Z) - PREDICTOR COEFFICIENTS

Y

INITIALIZE
WEIGHT
VECTORS
w(1,2)

Yy

SET ITERA-
TION COUNT

Y

DELETE

PATTERN
J

NO

/

" NORMALIZE
Y(1,5,2)

CALCULATE
DISCRIMINANT
FUNCTIONS

S(1) FOR EACH
PATTERN J

LL PATTERN
J USED ~

NO

INCREMENT K

K =
PREDETER-

G

Figure C-1. Flowchart for Linear Error Correction
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Program
for
Linear Error

Correction
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LA =8 A 4 4 L - a v

X1 = Y(1edeZ2)
IF(X1)151+51002+150
C THESE STEPS THROUGH 2000 ROUND OFF THE PATTERN VECTORS
1S1 X1 = ABS(Y(IsJsZ))*A + 0,00001 :
= X1 *100.0 + 1.0

X1 = T/7100.0
GO TC 1001
150 X3 = Y(14+JsZ)%A + 000001
T = X1 %1000 + 1.0
T=T7T+ 2
X1 = T/7100.0
GO TO 1003
1001 X2 = ABS{(X1)
X1 ABS(X1)
X3 {X1 - X2)*10
IV X3
1030 IF(IU-5)1004410051007
1004 Y(L1I+J+Z) = —X2/A
GO TG 2000
1005 X4 = (X2/7A)1%10.0

XS = X4

IX6 = (X4=X5)%10
N =1
C = 2%N

1008 IF(C~IX6)1006+1007+1006
1006 N = N + 1

IF(N-4)1008+1008,1006
1007 X9 = X2/10.0

X111 = X9

X12 = (X9-X11)#%10 + 1
1016 X12 = X12 + 1
1017 X13 = X11% 10 + X12

IX20 = X13 - X2
IF(IX20-2)1018,105041050
1050 X13 = X13 - 1
1018 Y(1,J+2) = —=X13/A
GO TO 2009
1009 X8 = X2/A
Y(IsJsZ)= —XB8
GO TO 2000
1002 Y(IsJsZ) = Y{IsJe2)
GG TO 2000
1003 X2 = X1
X3 = (X1 - X2)%*10
IU = X3
1040 IF(IU-5)1010,1011,1014
1010 Y(IeJdsZ) = X2/A
GO To 2000
1011 X4 = (XZ2/7A)%*1060

X5 = X4

IX6 = (X4=-X5)%10
N =1
C = 2%N

1012 IF(C~IX6)1013+10144+1013
1013 N = N + 1

IF(N-4)101241012,1015
1014 X9 = X2/10.0

X1l = X9

X12 = (X9~X11)%10 + 1
1021 X12 = X12 + 1
1020 X13 = X11% 10 + X12

IX20 = X13 - X2 100
IF(IX20-2)10704+1060+1060
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GO TO 2000

101S Y(lI+JsZ) = X2/A

2000 CONTINUE
IF(A«EQ01000)GC TO 999
DO 8000 K = 1,9
DO 8000 I = 1+E

8000 W(IsK) = SAV(I+K)
K =1

400 I=13J=1;3R=13Z=1

91 DO 700 R=1sE

700 S(R)}=0.0
DO 6 R = 14E
DO 6 Z=1,9

6 S(R) = S(R) + Y(IsJeZ)*W(Rs2Z)
IF(Ll.EQel)GC TC 705

GO TO 499
705 R = 1

L =2

CNT = 1

7 IF(S(R)-S(L))601+601,10
601 TEMP1=L
TEMP2=R
CALL ADJUST
10 L =L + 1
IF(L-E)7+7411
11 IF(CNT.EQ.1)GU TCO 807
4 = Jd + 1
GO TO 808
807 CALL DELETE
WRITE(6+104)144
WRITE(6+104)ISTCRU(I)
IF{ISTORJ(I)«EQel1)GO TC 41
808 IF(J-ISTORJ(I))I91+91,441"
499 IF(I-E)15+500+500
15 R =1 L = R + 1
CNT = 1
17 IF(S(R)-5(L))602,602,+21
602 TEMPI=L

TEMPZ=R
CALL ADJUST
21 L=L+1
IF(L-E)17+17522
22 L=1

24 IF{S(R)=S(L))603+603+27
603 TEMP1=L
TEMP2=R
CALL ADJUST
27 L=L+1
IF(L-R)24+404+40
40 IF(CNTLEQ.1)GC TO 809
J = J + 1
GO 70 81¢
809 CALL DELETE
WRITE(6+104)1,J
WRITE(69104)ISTCRJ(I)
IF(ISTORJ(1)eEQ.1)GO TO 41
810 IF(J-ISTORJ(I))O21:91,41
S00 L=1;3R=1
CNTY = 1
699 IF(S(R)-S(L))703+s703,701
703 TEMPL1= L
CALL ADJUST
701 L =L + 1




811

812
41

42
€001
5000
5001

53
A

o
604

6038
804

OHAMMNONHNODO

610

605
57

58

59
61

62
720
60
63
70
108
i01
102
80

T
w

AOOO

F
C7000
C7001
C
C
C
C7002
C
C7003
C7004

C7005

.- BRIV W AW & P T WwWaa
J=J + 1
GO 70 812

CALL DELETE
WRITE(6+104)1,J
WRITE(6+104)ISTCRJ(I)
IF(ISTORJ(1)EGel1)GC TO 41!
IF(J=ISTORJ(I)IS1+91+41
I=1+1

IF(I-E)42442+6001

J=1

GO TO 91

R =1

DO 5001 Z = 1,9

IW(R+Z) = W(R+Z)%100.0
ISAV(R9 <L) = SAV(ReZ)*100.0
CONT INUE

Z =1
IF(IW(R+Z)~-ISAV(R+2Z))610+60+610

THE STEPS BELCW (S000 THRU 804) MARKED WITH A *C* REPRESENT AN

TTEMPT TO FORCE CONVEKGENCE TO A DIFFERENCE BETWEEN WEIGHT VECTOURS
F SUCCESSIVE ITERATIONS OF (0e0Se

IDIFF(R+Z) = I#(R+Z) — ISAV(R.Z)

IF({IDIFF{R+Z)=5)60+s804,804

IW{R+Z) = IwW(RsZ) - IDIFF(RsZ)/2

WIRsZ) = TW(R»Z)/10040

DO 605 R = 1.E

DO 605 Z = 1,9

SAV{R+sZ) = w(Re2)

CONT INUE

WRITE(6458) K .

FORMAT{'OTHE WEIGHT VECTORS FOR THE®'+1X, 'NUMBER'+1XsI44,1Xs
+*ITERATION ARE:Y)

WRITE(O+61 IRy (W(R»Z)sZ=1+9)sRk=1+E)

FORMAT(1X3s 13+:9E12e3)

WRITE(6+4102)CNT

K=K+1

IF{K-2000)400,400+100

2=7Z+1

IF(Z-9)53+53+63

R=R+ 15 2 =13 U =R

IF{R-E)S5000+5000470

R =1

WRITE(6+108)

FCRMAT(011)

WRITE(6 ¢80)(Re(W(RsZL)+Z=139) sR=1,4E)

WRITE(6+102)K

FORMAT(1Xs 141X+ *ITERATIONS WERE REQUIRED FUR CGNVERGENCE?)
FORMAT(1Xe " WORD" 31X313+1X+GE1243)

GO0 TC 100

HESE STEPRPS WERE USED TO CHECK FOR SATISFACTION FUO THE ALGORITHM
ITHOUT ABSUOLUTE CUNVERGENCE BY CHECKING TU SEE wWHETEER FOR R=1

G(l1) wAS THE LARGEST CISCRIMINANT FUNCTIONe NOTE THATH THE INEEGER

GRM CF THE WEIGHT VECTORS WAS USEDe
DU 7601 R = 14E

S(R) = 040

DO 7002 R =" 1,E

DO 7002 Z = 1.9

VW(Rs2) = SAVI(R.,2Z)

S(R) = S(R) + Y(131+2)%W(R+2Z)
R =153 L = 2
IF(S(R)=S(L))7004+7004+7006
DO 7005 R = 1,.E

DD 7005 Z = 14§ 102
W(Re+Z) = SAVI(Rs+2Z)

_~— - —
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C7007
104
100

200
206
201

202
211

205
212

210

- = . T i
IF(L-E)70034+7007,7007
IF(S(R)~S(L))70044+,70C4+70
FORMAT(1Xs514)

STCP

END

SUBROUTILNE ADJUST

INTEGER CNT

"INTEGER Qs TEMP1+sTEMPZ2+sTEMP34s ZsE

DIMENSION Y(20010+9)+sD(20+9)sW(20:9)+S5(20)+sISTCRJI(20)
COMMON Y+ TEMPl s TEMP2sTEMP3 9S 01 90JeZ+E+CNTSsWHLISTCRY
C =1,

CNT = CNT + 1

Q =1

IF{Q~-TEMP1)20€,2025206

IF(Q-TEMP2)201,205,201

Q=Q + 1

IF(Q-E)200+200,210

D0 211 Z = 1+6

W(QeZ) = WH{QsZ) = CkY(1sJs2Z)

Q=Q + 1

GO TO 200

DO 212 Z = 1,9 .

W(QeZ) = W(QGeZ) + CxY(1eJs2)

Q =Qa + 1

GO TO 200

RETURN

END

SUBROUTINE DELETE

C THIS SUBROUT INE PELETES PATTERNS THAT SATISFY DISCRIMINANT
C CONDITIGNS ' :

4000
3999

4001

DIMENSICN ISTORJ(20)» Y(2091039)eS(20)9sW(20+9)
INTEGER CNT, 2

COMMUN YoTENMPL +TEMP24TEMP3 sSelesJsZsEsCNTIWLISTCRY
CNT = 1

IF(JeGELISTCRU(INIGO TO 3999

J2 = ISTORJ(TI) - 1

DO 4000 Jl = J,sJd2

Jé4 = J1 + 1

DO 4000 Z = 1,9

Y(1sJ1e2Z) = Y(1eJas2Z)

IF(ISTORJU(TI)«EQe1)GD TO 4001

ISTCRJ(I) = ISTCRI(I) - 1

RETURN

END

i03
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CXARRE ARG ERAE KRR KRR R R TR CR KRR KR AR KL AR DR R KD E R ERE R KRR KKK KA AR 1
THE FIRST WORD IS GO
THE SECOND wWORKD IS EAT
THE THIRD WORD IS BED
THE FQOURTH IS HAPPY
THE FIFTH WORD IS SLEEP
THE SIXTH WORD IS THIRSTY
THE SEVENTH WCRD IS HUNGRY
CQEH ettt e e Ak o ok ok K A R K R B A Rk K R AR R R Kk R bk kR Rk Rk & A1
INTEGER B+ C :
REAL LARGI sLARG2,LARCG3
DIMENSION Y{(20+1:+G)y W (20+9)y S(20)
C THE LETTER C REPRESENTS THE NUMBER OF CLASSES
cCc =27
READ(S»1)({Y(T9elsK)esK=1s9)9s1I=1,C)
1 FORMAT(F9.2)
READ(S+2)((W(1+K)eK=199)sI=14C)
2 FCRMAT(E12e3)
C NORMALIZATION
1 1
J 1
449 K 2
450 K1 = K + 1
397 LARG1 = ABS{Y(I+:JsK))
LARG2 = ABS(Y(IsJsK1l))
IF(LARG2 4GT L AKG1)GC TO 451
452 K1 = Ki + 1
IND = K
IF(K1-8)397:397+453
451 IND = K1
K =K + 1
1F(K~=8)397 +397,453
453 LARG3 = ASS(Y(I.J+IND))
DO 454 K = 248
Y{I«+JsK)} = Y{I+JsKI/LARG3
454 CONTINUE
I =1+1
IF(I1.LEC)GC TQ 449

(e NaNaNaNaNeNs!

C

C CALCULATICN OF THE DISCRIMINANT FUNCTIONS®' VALUES FOR THE CASE I=1l.
1 =1
DO 20 M = 1,C

20 S(M) = 0.0
D0 4 M =1,C
DO 4 N = 146
4 S(M) = S(M) + Y(1lel oN)FU(MsN)

L = 2

C PATTERN RECOGNITION FUR THE CASE I = le
S IFIS(1)=-S(L))6+,6,7
6 BRITE(6+,90)L
GC TC 9
7 L =L + 1
IF{(L-C)S+5.8
8 WRITE(64+91)
9 I =1 + 1
IF(1I-C)21,2C0,200
C CALCULATION OF THE DISCRIMINANT FUNCTIONS' VALUES FOR THE CASES
C I GREATER THAN CNE |

21 DC 10 M =1,C
10 S(M) =040

DO 11 M = 1.C

DU 11 N = 1.9 105
11 S(M) = S{M) + Y{Is1leN)ZW(MeN)

L d




v PAILIERN RECUGNITIUN FOR THE CASE I GREATER THAN ONEe
12 IF(S(I)Y-=-S(L))13,13,14
WRITE(6+92) 1L

13
14
15
16
| g

18

19

200

80

81

29
30

31

39

90

g1
92

93
100

$SEXEC

GO TQ 9
L=L + 1

IF(L-C)124+12+15

L =1

IF(S(1)=-S(L))17+17,18
WRITE(6+92)1sL

GO TO 9
L=L+1
8 =1-1

IF(L-B)16+16,19

WRITE(6+93)1

GO 70 9

DO 80 M = 1,C
S(M) = 0.0

DO 81 M = 1.C
DO 81 N = 1.9

S(M) = S(M) + Y(Is1sN)XW(MsN)

L =15 1 =C

s B =C -1

IF(S{I)-S(L))30+30,31
WRITE(6+492)1sL

GO 70 100
L =1L+ 1

IF(L-B)29+29,39

WRITE(6+63)1
GO TO 100
FORMAT{*0THE

+*THE FAILURE

FORMAT (* OTHE
FORMAT(*OTHE

+*THE FAILURE

FORMAT(*OTHE
STOP
END

ATTEMPT wAS FCR WORD NUMBER ONEs',1X,

UCCURED WITH VECTUR NUMBER'+1X+s12+%e"')

WORD SPOKEN WAS NUMBER 19)

ATTEMPT WAS FCR WORD NUMBER®91X9129s1Xs"e®s1Xs
CCCURRED WITH WEIGHT VECTOR'"4.1Xe12)

WORD SPCKEN WAS NUMBER®*9#1X,12)
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Excerpt from Program for Piece-wise Linear approach with

Fractional Error Correction of the Weight Vectors (Deterministic)
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400 AY = 1 § J = 1
91 DO 700 R = 1.2
700 S(R) = 0.
DO 6 R = 1.2
DO 6 &4 = 1.9
6 S(R) = S(R) + Y(AYeJeZ)*W(Rs2Z)
=155 L =2

IF{S(R)-S(L))601.601,11
601 TEMP1l = L § TEMP2 = R
CALL ADJUST
11 J = J + 1
IF(J=10)91 91441
41 AY = EI
4 =1
93 DO 701 R
701 S(R) = 0.
PO 702 R = 1e2
DC 702 Z = 1.9
702 S(R) = S(R) + Y(AYsJeZ)%EW(RW2Z)
R =2 ;s L=1
IF{(S(R)=S(L))703+703.,704
703 TEMPL = L § TEMP2 = R
CALL ADJUST
7706 J = U + 1
IF(J~-10)83+53,6001

le2

6001 R = 1
5000 DO 5001 Z = 1.9
INW{R,Z) = W{R4Z)*100a
ISAV(R+Z) = SAV(R+Z)*100.
5001 CUONTINUE
L =1
53 IF(IW{R+Z)=1ISAV(R+2))610+604610
610 DO 605 R = 1,2 .
DO 605 Z = 1+
SAV(RsZ) = W(ReZ)

605 CONTINUE
IF{K=1690) 62:62,+57
57 WRITE(64+458)K
58 FCRMAT{*O0THE WEIGHT VECTORS FUOR THE'y1Xs ‘NUMBER®y I1Xs1a 4+ 11X,
+YITERATIUON ARE:?)
WRITE(O6+61 )1e (W ([12)s2=1,49)
. WRITE(6+61)EL1s (WIEL1+2)+2=14+9)
61 FORMAT(1X,13,9E1243)
WRITE(6+,102)CNT
62 K = K + 1
I1F(K=-2000)400+400,92
60 Z = Z + 1
IF(Z-9)53+53463
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63 R =R + 1 3 2 =1
IF(R-2)5000,5000+70
70 WRITE(6+80)1+(W(I92Z)+Z=149)
WRITE(6+80)EL+(W(ELsZ)sZ=1+9)
WRITE(64102)K
102 FORMAT(1Xs1491Xs*ITERATIONS WERE REQUIRED FOR CCNVERGENCE')
80 FORMATI1Xs*"WORD*s1X9s1351X99E1263)
92 E1 = El1l + 1
IF(EL1-F)401+401,30
401 K =1 3 CNT = 1
GO TO 400
301 =1+ 1
IF(I.£EQ.F)GC TC 100
K =1 3 CNT = 1

E1 =1 + 1

GO TO 400
100 STOP

END

SUBKRUOUT INE ADJUST
INTEGER CNT,AY
INTEGER Q+sTEMP1+TEMP22TEMP 3 +Z4E
DIMENSION Y(2031049)3D0(20+9)+3%{(20+9)+5(20)
COMMON Y+ TEMPL »TEMP2sTEMPI3 39S 91sJesZrEsCNTsWHAY
CNT = CNT + 1
Q =1 )
200 IF(Q-TEMP1)206+4599+206
206 1F{Q-TEMP2)201+5959+201
201 @ = Q¢ + 1
IF(Q=-2)200+200+210
4999 DOCTwY = 0.
DO 5000 Z = 1.9
DOTHY = DOTWY + Y{(AY s JsZ)%XW(Qs2Z)
S000 CONTINUE
DOTWY = ABS(DOTRY)*2.
DOTYY = 0.
DO 5001 Z = 1,9
DOTYY = DOTYY + Y(AYsJeZ)XY(AYeJsl)
5001 CONTINUE
C = DOTWY/DCTYY
202 DU 211 Z = 1,9
211 W{GsZ) = W (QsZ) — CHY(AYsJs2Z)
Q= + 1
GO TQ 200
5699 DOTwWY = Qe
D0 6000 Z2 = 149
DCTWY = DUTWY + Y(AYsJsZ)%EW(Qs2Z)
€000 CONTINUE
DOTwYy
DOTYY

ABS(DOTWY ) %2,
Oe

nn
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€001

205
212

210

DO 6001 Z = 1,9

DOTYY = DOUTYY + Y(AYsJrZ)XY(AYesJe<l)
CONTINUE

C = DOTwWY/DOTYY

DO 212 Z2 = 1+9

W(QeZ) = WI(Qe2Z) + CXEY(AYJo2Z)
Q=Q+ 1

GO TO 200

RETURN

END
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C
C

INTEGER E1 sCoClsCNTosCNT1eZeFesSAV
INTEGER WD +wD1 ¢SAV]1,D1,SAV2

REAL LARGL+LARG2+,LARG3
DIMENSION WORD(80)sY(9)sW(20+38+9)s5(20,38)

C REPRESENTS THE NUMBER CF WORDS
C =10
El = C ~- 153 Cl1 = 2%C - 23 F = El
READ(S+2)(WGRD(I)sI=1+40)

2 FORMAT(4A4)

3 FORMAT(E12.3)
WRITE(6+80)

80 FAORMAT(1X+*THE INPUT LIST 1S2ev)
WRITE(6+81)(WORD(I)sI=1,40)
WRITE(6+600)

600 FORMAT(1Xs//91Xs*THE QUTPUT IS:v)

81 FORMAT(1Xs4A4)
READ(S+3)((n (1l +J92)92=1+9)+J=1,18)
READ(S593)((W(23J9Z2)eZ2=199) +J=1+16)
READ(S+3)((w(3+Js2)s2=1:9)9sJ=1s14)
READ(Ss3)((W(49JeZ)s2=199) sJ=1,12)
READ(503)((W(50492)92=1|9)0J=1010)
READ(Se3){ {(w{63J+2)12=1:9) s4=1198)
READ(593)( (W (7T 9JeZ)92=1+9) 9J=1+6)
READ(S+3)((W(83sJsZ2)s2=1+9) +J=11+4)
READ(Ss3)({Ww(SeJs2Z)92=1+9) 9J=1,2)
K =1

1 I =15 SAV =1
SAvVZ2 =1
SAV]1 = K .
READ(S5+s70+END=100)(Y(Z)+Z2=1+9)
NCGRMAL IZATION
449 K = 2
450 K1 = K + 1
397 LARG1 = ABS(Y(K))
LARG2 = A8S(Y(K1l))
IF(LARG2 «GT4LARG1)GO TO 451
452 K1 = K1 + 1
IND = K
IF(K1-8)397+397+453
451 IND = Kl
K =K + 1
IF(K=8)397 s397+453
453 LARG3 = ABS(Y(IND))
DC 454 K =2,8
Y{K) = Y(K)/LARG3
454 CONT INUE
K = SAvVl
DO 4 N = 1,C}
S(1sN) = 0o
4 CONTINUE
DO 9 N = 1.C1
D0 9 2 =149
S(1sN) = S{1sN) + Y(Z2)%EW(1sNe2Z)
9 COCNTINUE
CNT1 = 1
KNT = 1

150 1 = 1

N = 15 N1 = 25 KNT = 1}

Dl = C1 - 2
5] IF(S(I9N)—S(I‘Nl))6v6o7”2
6 IF(NI-D1)61+4004+400




-~ .- (AT N - (ASA N ) v a
SAVZ2 = N1j SAV = (N1/2) + 1§ I = SAVy N = 13 N1l = 2
IF(I—-1)10,1C,+63 o
63 LIM = (C-S5AV)=%2
GO TO 11
10 LIM = 2%C-2
11 IF(KNT~-Cl1)12,12,200
12 IF(CNT1-2)99,150,200
99 LIM1L = LIM - 1
IF(1I-LIM1)64,400+,400
64 DO 13 N = 1.LIM
S{IN) = 0o
13 CONTINUE
DO 14 N = 1,.,LIM
00 14 Z = 1,9
S(IsN) = SCIsN) + Y{(ZIEW(I sNsZ)
14 CONTINUE
CNT1 = CNT1 + 1
N = 13 N1 = 2
GO TO 5
C
C THIS SECTION FOR LAST 2 WORDS
400 S(Fsl) = Qe
S(Fs+2) = 0o
WD = 4x%K
WDl = WD - 3
DO 401 Z = 149
S{Fsl) = S(Fsl1) + Y(2Z) % W(Fs142Z)
S(Fs2) = S(Fs2) + Y{(Z)%W(F+2,2)
401 CUONTINUE ’
IF{S(Fs1)-5S(F+2))402+402+403
402 WRITE(6+92){(WORD{(L)sL=0wD1yWD)
GG TC 60
403 WRITE(6591)(WCRD(L) +L=uD1sWD)
GO TO €0
C
C THIS INDICATES FAILURE TO RECGCNIZE WORD(K)
200 wD = 4x%K
WDl = WD -3
WRITE(6+92)(WLRO(L)sL=%D1,WD)

GO TO 60
C
C THIS SECTION SETS I TC THE NUMBER CORRESPONDING TO THE
C DISCRIMINANT FUNCTICN WHGOSE VALUE (35 THE LARGEST FOR THE KTH WORD.
C THIS IS USED CNLY WHEN THE SAME VALUE OF SAV IS ENCGUNTERED ON A
C CONSECUTIVE RUN.
300 SAV = (N1/2) + 1
D0 301 N = SAV,Cl1
S{1sN) = 0.
301 CUNTINUE
Dl = C1 -~ 2
IF(N1-D1)65+40Cs400
65 DU 302 N = SAV,Cl
DG 302 Z = 1,9
S(1sN) = S(1eN) + Y(2)%W(1sNs2Z)
302 CONTINUE
N = N1+ 15 Nl = N1 +# 27 1 =1
CNT1 = 1
GO0 TC S
C

7 KNT = KNT + 1
IF(1-1)20,20,30

30 LIM = (C=SAV)%2
G0 To 21

20 LIM = 2%C-2 13




60

91
92
70
100

IF(KNT=C1)8+84200
IF(NI-LIM)SsS5+22

WD = 4%K

wD1 = wD - 3
WRITE(6491 ) (WORD(L)eL=wD1sWD)
K=K+ 1

IF(K-C)1+s1,100

FORMAT (1Xs4A4)
FORMAT(1 X, *ERRCR WITH® ¢1Xe4A4)
FORMAT(F9.2)

sSICcP

END
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//7 EXEC wWATFIV

HnooonbnanOon

C
C

INTEGER EsRoZsSONsF sTsUs X 9B oX12 s X119X1L39CeX2¢XS5+X3
DIMENSION Y(20+1049)s D(20)y W(20+9)+sISTORJ(20)
REAL ITER '

REAL LARGl1 s LARGZ2, LARG3

E REPRESENTS THE NUMBER OF CLASSESs M REPRESENTS THE NUMMBER OF
PATTERNS

1

THE COUNTER ¢+ ICNTsy CONTROLS WHETHER A PATTERN SHOULD BE DELETED ANC
RESET EVERY TIME A PATTERN IS DELETED $O THAT FCR EVERY PATTERN Tt
COUNT IS STARTED AT 1 AND INCREMENTED TO A MAXIMUM OF (E-1).
ICNVRG IS INCREMENTED FOR ALL COMPARISCNS ORNLY IF OL1SCRIMINANT
CONDITICONS ARE SATISFlEDe AT THE END OF EACH ITERATION ICNVRG IS
CGMPARED TO THE LIMIT (LIM) WHICH IS THE MAXIMUM NUMBER CBTAINED
IF CONVERGE NT CONDITICNS ARE SATISFIEDe

COMMON Y»ISTORJs ICNTs Jol

E= 3 M= 10

READ(Ss1)(((Y(LsJsZ)sZ=198)sJ=1sM)s[=1+E)

FORMAT{F9.2)

STEPS THROUGH 2 SET THE LAST ELEMENT IN Y(IsJsZ) TO 140

2
T

449
450
397

452

451

453

455
398

DO 2 1 = 1,E

DO 2 J = 1M o
Y(I+J99) = 140 l
HE 400 SERIES ACCUMPL ISHES AMPLITUDE NORMALIZATION.
DO 368 I 1,E

DO 358 J 1eM

K= 2

Kl = K + 1

LARG1 = ABS(Y(I,JsK))

LARG2 = ABS(Y(IsJsK1)) "
IF(LARGZ2eGTLARG1)GO TO 451

Kl = K1 + 1

IND = K

IF(K1-8)397+397+453

IND = K1

K =K+ 1 !
IF(K-8)397 397,453 :
LARG3 = ABS(Y(IsJsIND))

DO 455 K = 2,8

Y(IsJsK) = Y(IsJsKI/LARG3

CUNTINUE

CONT INUE

THE 1000 SERIES ROUUNDS OFF THE PATTERNS ELEMENTS TO THE SECOND DECI

P

999
1000

LACE
A = 1000
GO TU 1000
A = 100
00 2000
DO 2000
DG 2000 2

ot
it

1E
1,10
1+8

o
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151

150

1001

1030

1004
100S

1008
1006

1007

1016
1017

1059

1018

1009

1002

1003

1040
1010

1011

X1 = Y(1eJde2)
IF(X1)151+1002,150

X1 = ABS(Y(IesJys2))%A + 0,00001
T X1 %1000 + 1.0

T T+ 2

X1 = T/Z/10040

GO TO 1001

X1 = Y(IeJsZ2)%A + 000001
T = X1 #1000 + 1.0
T=T+ 2

X1 = T/710040

GO TO 1003

X2 = ABS(X1)

X1 = ABS(X1)

X3 = (X1 - X2)%10
IU = X3

IFCIU-5)10C4+10054+1007
GO TO 2000
Y{(IedeZ) = =-X2/A
X4 = (X2/A)*%10.0
XS = X4

IX6 = (X4=-X5)%10
N =1
C = 2%N
IF(C=-IX6)1006+,1007,1006
N =N+ 1
IF(N=4)100841008+s10009
X9 = X2/71040

X1l = X6

X12 = (X9-X1il)%10 + 1
X12 = X12 + 1

X13 = X11% 10 + Xl12

IX20 = X13 - X2
IF(IX20-2)1018,+1050,1050
X13 = X13 - 1 .
Y{IeJdeZ) = —-X13/A

GO TG 2000

X8 = X2/A

Y{(IesdsZ)= —X8

GO T8 2000

Y{IedsZ) = Y(IsJs2)

GG TQ 20090

X2 = X1
X3 = (X1 - X2)*%*10
IU = X3

IF(IU-5)1010+1011+1014
Y{lsJdsZ) = X2/A

GU TOQ 2000

X4 = (X2/7A)%10.0
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12
13

14

103

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

o

DO 13 R = 1,E

D(R) = 0.0

DO 14 K = 1,9

DO 14 R = 1,.E

D(R) = D(R) + Y(leJeK)®W(RK) .
IF(1EQe1)GC TG 103 ;
GO TO 20

R =15 L = 2

IF(D(R) «GT«DIL)IGL TC 16
GO TG 17

ICNT = ICNT + 1 ‘
ICNVRG = ICANVRG + 1

L =L + 1

IF(LLEE)GO TO 15

F = E=-1

IF(ICNT «EQ.F)GO TG 18
J=J + 17 ICNT = 0

GO 10 19

CALL DELETE
IFC(ISTURJ(I)eEQel1)GLG TO 30
IF(JLESISTCRU(IIIGC TOC 12
GO TQ 30

IF({I.GEE)GC TO 31

R =I5 L =R+ 1
IF(D(R)«GT «D(L)IGC TO 22
GC TC 23

ICNT = JCNT + 2

ICKRVRG = ICNVRG + 1

L =L+ 1

IF(LLESE)GC TG 21

L =1

IF(D(R) «GTD(L))IGC TC 25
GO TG 26

ICNT = ICNT + 1

ICNVRG = TCAVRG + )

L =L + 1

IF(LeLTR)GC TC 24

F = E -1

IF{ICNT «EQWF)IGC TC 27

GO TGO 28

CALL DELETE

GO T 29

J = J + 15 ICNT = 0

IF(ISTORJ(I)eEQe1)GO TO 30
IF{JJLE«I3TCRJ(I)IGE TO 12
I =1+ 1

IF(leGTLE)GC TC 37

J = 13 ICNT = 0

GO TQ 12
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C
C
C

C

C
<

X5 = X4
IX6 = (X4-X5)%10

N =1
C = 2%N .
1012 IF(C-IX533i0i3+1014,1013 ¢

1013 N = N + 1
IF({N-4)10124+1012,1015
1014 X9 = X2/10.0

X11 = X9

X12 = (XS-=-X11)*10 + 1
1021 X12 = X12 + 1
1020 X13 = X11% 10 + X12

IX20 = X13 - X2
IF(I1X20-2)1070+1060+1060
1060 X13 = X13 - 1
1070 Y(IsJ4+2Z) = X13/A
GG TO 2000
1015 Y(1s+Js2) = X2/A
2000 CONT INVE
IF(A«EQ.1000)GC TC 959
STEPS THROUGH 39%9¢ SET THE INITIAL NUMBERS OF PATTERNS FOR THE
VARYING L CLASS S51Z2ES5 THAT RESULT FROM DELETING PATTERNS THAT
SATISFY DISCRIMUNANT CINDITICGNS.
DO 3996 J = 1l+M
3996 ISTORJ(J) = M
STEPS THRUUGH (10) STATISTICALLY DETERMINE CLASS WEIGHT VECTORS
ITER = 105 J = 15 ICNT = 17 ALPHA = 1.0

DO 3 K = 1,499
DO 3 I = 1+E
3 W(IsK) = 0.0
4 1 =153 4 =1
'S DO 6 K = 146
6 FCN = 160 — W{IesKI%*Y(IsJdsK)
IF{FCNeGT«0.0)GU TO 7
SAN = -1
GO T0 8
7 SAN = 1
8 DO 9 K = 1,6
9 W(I«K) = W{TIsK) + ALPHARSUNXY (I sJsK)
301 J=J + 1
IF(JLELISTCRJ(IIIGO TO S
I =14+ 1
IF(ILE.E)GC TO 10
GO TO 11
10 J = 1
GG TO 5

STEPS THRUUGH 36 COPARE DISCRIMINANT FUr _TIDNS FCR AL PATTERNS TC (

FCR CCAVERGENCE
1} I = 13 ICNVRG = 05 J = 15 ICNT =0
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31
32

33

34

35
36

L =13 R=1
IF(D(R) «GT &D(L))IGC TO 33
GC TO 34

ICNT = ICNT + 1

ICNVRG = LCNVRG # 1
L=L+1

IE(L+LT.E)GC TO 33
F=sE-1

IF(ICNT «EQ.F)GO TQ 35
J=J 4+ 1; ICNT =0

GO TO 36

CALL DELETE
IF(ISTORJ(1)¢EQe1)GE TD 30
IF(JeLELISTCRJ(I)IGO TO 12
GC TC 30

C STEPS THROUGH 38 CHECK FCR CONVERGENCE

37
42
38

LIM = 0; I =13 F=E - 1
J1 = ISTORJ(1)

LIM = LIM + F%Jl

I =1 + 1

IF(ILE.E)GC TO 42
IF(ICNVRG,GELLIM)GO TO 41
ITER = ITER + 140 :
ALPHA = L/ITER

C ITER IS OFF BY ONE (GREATER THAN IT SHOULD BE)

39

40

41

S8

IF(ITERW.E «15300)G0 TYC 40
WRITE(6+58)ITER
YRITE(O+61 (R (W(Re2)e2T199)aR=1,4E)
WRITE(6+200)ICNVRG

WRITE(6,200)LIM

IF(ITER«LE a200060)GC TC 4

GC TO 100
WRITE(D180)(Re(W(RsZ)s2=199) eR=1,E)
WRITE(E,»102)ITER

WRITE(E +200)ICNVRG

WRITE(6+200)LIM

GU TG 100

FORMAT(*OTHE WEIGHT VECTORS FOR THE %31 Xs*NUMBER®y1XsF6els1X,

+PITERATICN ARE®)

61
80
102
200
100

FORMAT (1Xs 134 9E1243)

FORMAT(1Xs ¢ WORO® » 1Xs13+1Xs9E1263)

FORMAT(1X+F6els? ITERATIONS WERE REQUIRED FOR CCNVERGENCE®)
FORMAT(1X,15)

sTOP . \
END

SUBROUTINE CELETE

C THIS SUBROUTINE DELETES PATTERNS THAT SATISFY DISCRIMINANTS CONDXIC4

DIMENSIUN ISTORJ(20)+Y(20+,1046G)
INTEGER Z
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4000
3999

4001

COMMON YsISTORJe ICNT, Jo I
ICNT = 0
IF(JeGEISTCRJ(I)IGO TO 3999
J2 = ISTORJ(I) - 1

DO 4000 J1 = Jed2

Ja = Jl + 1
DO 4000 2 = 1.6
Y(IedleZ) = Y(1sJ4e2)

IF{ISTORJ(I)«EQ.1)GC TC 4001
ISTORJ(I) = ISTCRJ(I) - 1
RETURN

END
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