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ABSTRACT

This  d is s e r ta t io n  addresses the problem o f  machine reco g n it io n  o f  

the speech o f  people a f f l i c t e d  w ith  cereb ra l p a lsy . At the time o f  th is  

w r i t in g ,  machine recogn it ion  o f  speech has not developed to  the p o in t o f  

general a p p l i c a b i l i t y  fo r  use by government, industry  or the general pub­

l i c .  Progress has been made to  the e x te n t  th a t  th e re  are  is o la te d  word 

recogn it ion  machines th a t  a re  in use by some companies, and some specia l  

purpose devices a re  being marketed.

Abnormal speech reco g n it io n  a llows the o p p o rtu n ity  fo r  a fresh  look 

a t  machine recogn it ion  o f  speech, and, as a consequence o f  the intended  

l im ite d  a p p l ic a t io n  o f the approaches presented in th is  paper, novel ap­

proaches were examined th a t  u l t im a te ly  w i l l  r e s u l t  in the development o f  

a machine fo r  abnormal word re c o g n it io n .

I t  must be made c le a r  th a t  no attem pt was made to  s p e c t r a l ly  d is ­

t in g u ish  abnormal speech from normal speech. Both types o f  speech are  

comprised o f  s to ch as tic  s ig na ls  th a t  conta in  vas t amounts o f  in fo rm atio n .  

Although i t  is recognized th a t  the general population  f in d s  i t  extrem ely  

d i f f i c u l t  to understand handicapped speech, th e re  is  no reason to  b e l ie v e  

th a t  the speech o f people w ith  cerebra l palsy cannot be coded fo r  recog­

n i t io n  by machines. The utterances o f  cerebra l palsy v ic t im s  are  d i s t i n ­

gu ishab le , and th is  is demonstrated by the fa c t  th a t  they do communicate 

w ith  people who learn to  understand t h e i r  speech.
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Coding o f  speech was a major task and the method used in th is  pa-  

paper, c a l le d  Lumped L in ear P r e d ic t io n , is considered to  be the major 

c o n tr ib u t io n  o f  th is  research to  speech re c o g n it io n .  Lumped l in e a r  

p re d ic t io n  a p p lies  l in e a r  p r e d ic t iv e  coding to  the e n t i r e  speech wave 

o f  an u tte ra n c e . The d i f fe r e n c e  is in a p p l ic a t io n .  Other researchers  

use l in e a r  p re d ic t io n ,  a form o f  Wiener f i l t e r i n g ,  to code segments o f  

speech using a small number (8 to  16) o f  c o e f f ic ie n ts  fo r  each segment. 

The segments are  100ms to  300ms in d u ra t io n .  Lumped l in e a r  p re d ic t io n ,  

in th is  p a r t i c u la r  research, uses e ig h t  c o e f f ic ie n ts  to  code an e n t i r e  

u tte ra n c e .  This  is a dram atic  reduction  in the d im en s io n a l ity  o f  

t r a in in g  p a tte rn s  used fo r  p a tte rn  re c o g n it io n .  Rather than searching  

fo r  a means to  e f f i c i e n t l y  c la s s i f y  several hundred or even thousand 

c o e f f ic ie n t s ,  the e f f o r t s  here were d ire c te d  toward determ ining a 

s u i ta b le  p a t te rn  re co g n it io n  scheme fo r  words th a t  were coded w ith  

j u s t  e ig h t  c o e f f ic ie n t s .  Good re s u lts  were obta ined fo r  a small vocab­

u la ry  (ten  words). Extension to la rg e r  v o ca b u la r ie s ,  although depen­

dent upon o th er  fa c to r s ,  can be achieved by using more c o e f f ic ie n t s .

With respect to  p a t te rn  re co g n it io n , an im portant observation  

was made th a t  the  number o f  i t e r a t io n s  requ ired  f o r  convergence to s o l ­

u tion  weight vectors  is tremendously in fluenced by the d e le t io n  o f p a t­

te rns  during the t r a in in g  process. P atterns  a re  d e le ted  based on the 

c o n d it io n  th a t  d is c r im in a n t cond itions  are  s a t is f i e d  during t r a in in g ;  

th a t  is ,  fo r  a p a tte rn  X belonging to c lass w . , i f  i t  is determined th a t  

D .(x )  > D j(x )  (where (x) = Ŵ  • X, j  = 1, . . . ,  M, j  4  i ) , t h e n  th is  

p a tte rn  is  de le ted  from the t r a in in g  se t .

VI  I



GLOSSARY

A u to co rre la t io n

The c o r re la t io n  o f  a fu n c tio n  w ith  i t s e l f .  Assuming th a t  a sequence o f  
N speech samples { s ( n ) }  = { s ( 0 ) ,  s ( l ) ,  s ( N - l ) }  is a v a i la b le ,  an
a u to c o rre la t io n  sequence r  (&) is generated as fo l lo w s:

N-1 -  &
r(& ) = ^ s (n ) s(n+&) fo r  S>0

n=0

Autoregressive F i l t e r

When a time ser ies  {Vj^} is generated from a time se r ie s  {u^} in 

accordance w ith  the equation

"k + A, V l  + ••• V r  - «I V l  - 

®2 V z  ■ " & V s  ,

the term autoregress ive  is used when there  are  no A terms o th er  than 
A^. This is a recu rs ive  f i l t e r  when the value  o f  v depends on the

preceeding k-s values o f  v .

Convergence

To approach a l im i t  as the number o f  term increases wJ_thout l i m i t .  
S p e c i f ic a l ly ,  in so lv ing  fo r  s o lu t io n  weighj^ vectors_W(K) fo r  d is c r im ­
inant fu n c t io n s , the l i m i t  is reached when W(K+l) = W(K), where K is  
the number o f  i t e r a t io n s .

C o rre la t io n

The c o r r e la t io n  between wave forms is a measure o f  the s im i l a r i t y  or

v i i l



re la tedness  between the waveforms.

C r i te r io n  Function

A fu n c tio n  so chosen th a t  i f  I t s  minimum value is achieved when 

W • X. > 0 ,  where X. is the  i^^ row o f  an N x (n+1) m a tr ix  X o f  a 

system o f  in e q u a l i t ie s

X • W > 0

then f in d in g  the minimum o f  the fun c tio n  fo r  a l i  i ,  i = 1 ,2 , . . . ,  N, is 
e q u iva len t to  so lv ing  the given sys_tem o f l in e a r  in e q u a l i t ie s .  The 
c r i t e r io n  fu n c tio n  is denoted as J(W, X ) .

Decision Surface

The n dimensional surface th a t  is generated by the equation  

D (x ) = • X, where w' = (W^, . . . ,  Wn + 1) and

X =

when n = 2, the equation is th a t  o f  a l in e ;  i t  is the equation o f  a 
plane when n = 3 and o f  a hyperplane when n > 3-

D e te rm in is t ic

Based on the assumption th a t  p a tte rn  classes are separable, d e te rm in is ­
t i c  re fe rs  to  a lgorithm s th a t  a re  developed w ithout making any assump­
t io n s  concerning the s t a t i s t i c a l  p ro p e rt ies  o f  the p a tte rn  c lasses.

I X



Dichotom izatîon

The a c t  o f  d iv id in g  in to  classes o r  groups.

D iscr im in a n t Functions

S ca le r  and s in g le -v a lu e d  functions  o f  p a tte rn  vectors  X th a t  d e f in e  
decis ion  boundaries which separate  p a t te rn  classes on the basis o f  
observed vec to rs .

D is jo in t

Classes A or B having no common elements -  they a re  n o n - in te rs e c t in g .  

F r ic a t iv e s

Sounds ch arac te r ized  by f r i c t i o n a l  passage o f  the expired voice or  
v o ice less  breath against a narrowing a t  some p o in t in the vocal t r a c t ;  
such as, f ,  u , th ,  s, z ,  sh, zh and h.

G lo t ta l

P e r ta in in g  to  the g l o t t i s .

G lo t t is

The vocal apparatus o f  the la ryn x , consis ting  o f  the tru e  vocal cords 
( p l ic a  vocal is )  and the opening between them (rima g l o t t i d i s ) .

Hyperplane

(See Decision Surface)

Inverse F i l t e r

A f i l t e r  th a t  is defined by the equation



A (z) = z“ ' (a^  = 1)

w ith  M ^  2K + 1, where K is  the number o f  formants f o r  a speech wave. 
A (z ) is an a i l - z e r o  f i l t e r .

Nasal

Sounds th a t  a re  u tte re d  through the nose w ith  the mouth passage occluded 
(as m, n, n g ) ; a ls o ,  sounds u t te re d  w ith  the mouth open, the s o f t  p a la te  
lowered and the nose passage producing a resonance.

Phoneme

A member o f  the  se t o f  the sm alles t u n its  o f  speech th a t  serve to  d is ­
t in g u ish  one u tte ra n c e  from another in a language o r  d i a le c t .

Phonological

R e la t ing  to  the science o f  speech sounds (e s p e c ia l ly  the theory  o f  sound 
changes in a language).

Plosives

Utterances produced by the e x p e l l in g  o f breath a f t e r  the c lo s ing  o f  the  
oral passages in the production o f  a stop consonant, as a f t e r  the b in 
bat.

Recursive F i I t e r

(See A utoregressive  F i l t e r )

Segmentation

The form ation o f  several u n its  o f  a speech sample fo r  purposes o f  ana­
ly s is  o f  the speech wave or speech re c o g n it io n .

Separable

Classes o f  pa tte rn s  th a t  a re  capable o f  being d isasso c ia ted .



S t a t i s t i c a l

This  is  in re fe ren ce  to  a lgorithm s th a t  a re  e q u iva len t  to Baye's d e c i ­
sion functions

d i (X )  = p (“ i / X )

These are  d is t in g u ish e d  from the d e te rm in is t ic  case in th a t_o n ly  the  
pa tte rn s  o f  c lass  w. a re  considered in the  es t im a tio n  o f  p ( X / ^ i ) .  No 
lea rn in g  takes p lace s ince p a tte rn s  o f  o th e r  classes do not in fluence  
the  es t im a tio n  process.

Template

A p a tte rn  th a t  is  c h a r a c t e r is t ic  (having a l l  o f  the important a t t r ib u t e s )  
o f  the  p a tte rn s  belonging to  a given c la s s .  The tem plate is used fo r  
p a tte rn  matching. No t r a in in g  is re q u ire d . .

T ra in in g

The process o f  determ in ing dec is ion  functions  through a s e r ie s  o f  ad­
justm ents. A r b i t r a r y  decis ion  functions a re  i n i t i a l l y  assumed, and 
through a sequence o f  i t e r a t i v e  steps, these dec is ion  fu nc tions  are  
made to  approach optimum or s a t is fa c to r y  forms.

Vocal T ra c t

An acco u stica l tube which is  non-uniform in c ro s s -s e c t io n a l areas -  
term inated by the l ip s  a t  one end and by the vocal cord c o n s t r ic t io n  a t  
the o ther  end. I t  is approxim ately  17 cm long in the a d u lt  male and is 
deformed by movement o f  the a r t ic u la to rs * ,  th a t  i s ,  the l i p s ,  jaw , tongue 
and velum. The c ro s s -s e c t io n a l  area o f  the forward p o rt io n  o f  the t r a c t  
can be v ar ied  from zero  to  approxim ate ly  20 cm .

Voiced

U ttered  w ith  vocal cord v ib r a t io n .

Bayes' C la s s i f i e r M
w.A c l a s s i f i e r  which minimizes to t a l  expected loss , r . ( x )  L . . p( i /X ) .

; :1  'J
T hat is ,a  p a t te rn  X may belong to  any o f  M classes and the expected loss

X I  I



incurred in assigning observation  X to  c lass  is given by r ^ ( x ) .
The Bayes' c l a s s i f i e r  assigns a p a t te rn  )C to  the c lass  w ith  the lowest 
value o f  r .

X Î H



CHAPTER I 

INTRODUCTION

Cerebral palsy is  "a p e rs is t in g  q u a l i t a t iv e  d iso rd er appearing be­

fo re  the age o f  three  years, due to  a nonprogressive damage to  the b r a in ."  

[6 ]  I t  has many forms w ith  vary ing  degrees o f  s e v e r ity  o f  e f f e c t  on mo­

to r  a c t i v i t y .  The p a tte rns  o f  p a ra ly s is  are  p a ra p le g ic ,  d ip le g ic ,  and 

pseudobulbar.

Damage to  the nervous system is o ften  recognized a t  b i r t h  or soon 

th e r e a f te r  by some abnorm ality  o f  b rea th in g , sucking and swallowing, co­

lo r  o f  mucous membrane, or responsiveness.

A p a r t ic u la r  form is Congenital Choreoathetosis (Double A th eto sis )  

wherein every v o lu n ta ry  act is marred by intense in vo lu n tary  movements, 

leav ing  the p a t ie n t  nearly  h e lp le s s . The tongue may extrude from the 

mouth w ith  u n s ig h tly  d ro o l in g ,  and the face is contorted in a never end­

ing s e r ie s  o f  grimaces. Speech is s lu rred  or in a r t ic u la t e  and punctuated  

by grunts and unpleasant th ro a t  sounds. The hands are  engaged in con­

s ta n t  w r i th in g ,  and a l l  attempts to  use the limbs re s u lts  in a slow, 

spreading spasm of the e n t i r e  limb or a l l  o f  the musculature. P a t ie n ts  

are  many times erroneously c la s s i f ie d  as m e n ta lly  d e fe c t iv e  because o f  

the motor and speech impairment. No doubt, in some instances th is  is



c o r r e c t ,  but others r e ta in  in t e l le c t u a l  fu n c tio n  and can be educated.

The less severly  a f fe c te d  p a t ie n ts  o ften  make successful occupational  

adjustments.

C o rre c t ive  operations and therapy w i l l  o f te n  have s ig n i f ic a n t  

e f f e c t  towards overcoming the handicaps o f  the cereb ra l  pa ls ie d  to  the  

e x te n t  th a t  once the communications gap is  b r id g ed , in a cerebra l palsy  

cen ter  fo r  ins tan ce , students o fte n  demonstrate more than adequate cog­

n i t i v e  s k i l l s ;  however, communications remains f o r  many o f  them a s ig ­

n i f i c a n t  soc ia l  and learn ing  b a r r ie r  once they venture  o u ts ide  the w a lls  

o f a r e h a b i l i t a t io n  c e n te r .  Of course, the l i m i t  to  which the s e v e r ity  

o f  a f f l i c t i o n  can be corrected  or am eliorated  w i l l  vary from in d iv id u a l  

to  in d iv id u a l ;  so t h a t ,  a student who might have b a re ly  made i n t e l l i g i b l e  

utterances as a p re -teen  could progress to  the p o in t  o f  normal speech 

w h ile  remaining confined to  a wheel c h a ir .  Another student might never 

overcome the speech handicap.

Approximately s ix  out o f  every one-thousand newly born and f i f t e e n  

out o f  every one-thousand people in th is  country a re  a f f l i c t e d  w ith  some 

form o f  cerebra l p a lsy . There are approxim ately nine-thousand v ic tim s in 

the s ta te  o f  Oklahoma. S ix ty  to  s ix t y - f i v e  percent o f  those diagnosed as 

cerebra l palsy v ic t im s  are  m enta lly  re tarded [ 2 5 ] .  The remaining t h i r t y  

to  t h i r t y - f i v e  percent o f  the v ic tim s  may have severe physical handicaps 

and t h e i r  speech in general is  d i f f i c u l t  to  understand, but once a l i s ­

tener has learned to  c o r r e c t ly  decipher t h e i r  u t te ra n c e s ,  he is ab le  to  

c arry  on a conversation . ,

Using the microprocessor, i t  is expected th a t  a machine can be de­

signed th a t  w i l l  recognize and d isp lay  the speech o f  the voice handi­



capped. Although s u i ta b le  techniques have been in ex is ten ce  fo r  a number 

o f  y ea rs , the idea o f  a machine f o r  th is  purpose would have had l i t t l e  

a t t r a c t io n  because o f  the  expense involved and the s iz e  and th e re fo re  

l im ite d  a c c e s s ib i l i t y  o f  the machine. I t  is a ls o  important to  p o in t  out  

th a t  such a machine would have very  l i t t l e  i f  any u t i l i t y  fo r  people  

w ith  normal speech.

There is a s iz a b le  l i t e r a t u r e  covering speecri re c o g n it io n ,  voice  

re c o g n it io n ,  speech s yn th es is ,  vocoders, e tc .  The d i g i t a l  computer has 

allowed research in these areas to  grow by leaps and bounds as a conse­

quence o f  i t s  speed and memory c a p a b i l i t i e s .  Present techniques in 

speech an a ly s is  and synthesis  w i l l  be markedly enhanced by machine im­

provements a lo ne. There a re  instances in which machines have been de­

signed and programmed to  accept l im ite d  verba l in s t ru c t io n s .  In f a c t ,  

p a tte rn  reco g n it io n  techniques e x is t  not on ly  fo r  spoken but f o r  o p t ic a l  

in p u t ,  but there  has been no published research on abnormal speech rec­

o g n it io n .  E x is t in g  techniques a re  almost un ifo rm ly  l im ite d  because they  

lack general a p p l ic a t io n .  For example, in speech re c o g n it io n ,  th e re  is 

no technique a t  the  time o f  th is  w r i t in g  th a t  m aintains a high lev e l  o f  

accuracy as the number o f  speakers increases. There are  o th e r  techniques  

th a t  w i l l  m ainta in  a reasonably h ig h , n in e ty -tw o  to  n in e t y - f i v e  p e rce n t ,  

recogn it ion  accuracy f o r  a r e la t i v e l y  large  number o f  male speakers us­

ing a l im ite d  vocabulary . Women and c h i ld re n  w ith  t h e i r  norm ally  h igher  

fundamental vo ice  frequencies  cause a s ig n i f ic a n t  increase in reco g n it io n  

e r r o r  when they are  added to  a predominantly a d u lt  male speaker popula­

t io n  [ 7 ] .

The performance requirements f o r  a speech machine fo r  the voice



handicapped are  less s t r in g e n t  than would be the  requirements fo r  a 

machine intended f o r  general a p p l ic a t io n ;  th e re fo re ,  the prospect o f  u l ­

t im a te  success is encouraging. The o b je c t  o f  th is  e f f o r t  is to  in v e s t i ­

gate  and develop a speech t r a i n e r / l e a r n e r  th a t  w i l l  a l lo w  cereb ra l palsy  

v ic t im s  to  s e l f - a d ju s t  t h e i r  speech so th a t  t h e i r  speech is compatible  

w ith  machine re c o g n it io n .  Simply s ta te d ,  the machine would learn  pre­

d ic t iv e  c o e f f ic ie n ts  o f  the  speech waveforms from the t r a in e e  w h ile  the  

t r a in e e  learns to  e x e rc is e  g re a te r  muscle c o n tro l .  There is no in te n t  o f  

s ig n i f ic a n t  speech r e h a b i l i t a t i o n .  To the ex te n t th a t  r e h a b i l i t a t io n  

does occur, i t  would be considered p ure ly  a bonus o f  the  t r a in in g  pro­

cess.

The machine would not be a f fe c te d  by the q u a l i t y  o f  speech (u n l ik e  

p eo p le );  however, not having perceptual s k i l l s ,  the machine w i l l  r e ly  

com pletely on the speaker to  provide i t  w ith  Input th a t  would s t a t i s ­

t i c a l l y  match what is contained in memory. Also the machine's vocabu­

la ry  would la rg e ly  depend on the  user, w ith  new words being added as 

progress is made.

Users o f  the machine, speech th e r a p is ts ,  teachers and parents would 

have to understand th a t  u l t im a te  p ro f ic ie n c y  w ith  the machine would re ­

s u l t  on ly  a f t e r  long and tedious work. in many respects , working w ith  

the machine would not s ig n i f i c a n t l y  d i f f e r  from working w ith  any o th er  

r e h a b i l i t a t i v e  therapy . The u l t im a te  b e n e f i t  would re s u l t  when the c e r ­

ebra l palsy v ic t im  ventures out in to  the world w ith  a device  th a t  would 

make communications w ith  the  ou ts id e  world a l i t t l e  e a s ie r .



Design Considerations and Background Inform ation

V ocabulary . I t  w i l l  be necessary to  develop a vocabulary having a t ­

t r ib u te s  such as maximal s p ec tra l  s e p a r a b i l i t y  and broad language u t i l i t y  

in order to  have high machine reco g n it io n  r e l i a b i l i t y .  The f i r s t  a t t r i b ­

ute  would re q u ire  th a t  such fe a tu re s  as frequency and amplitude p a tte rns  

o f  words be d is t in q u is h a b le .  Although the speech wave o f a given word 

may not be e x a c t ly  reproducib le  w i th  repeated en u n c ia t io n s , a c o r r e la t io n  

o f  the speech waves fo r  the  u tterances  must be shown to  e x is t .  Th is  same­

ness o r  c o r r e la t io n  must be unique fo r  a given word, but d is t i n c t  fo r

d i f f e r e n t  words. Learning a lgorithm s re q u ire  th a t  p a tte rn s  be separable  

in order fo r  weight vec to r  convergence to  occur.

Secondly, the words must be u s e fu l .  The t r a in e r / l e a r n e r  w i l l  not 

n e ce s sa r i ly  have a vocabulary th a t  would be adaptable to  gram m atically  • 

and s y n t a c t ic a l ly  c o rre c t  phrases and sentences. Users must be ab le  to  

make themselves understood.

To i l l u s t r a t e  the above, consider the word l i s t  th a t  is used by be­

ginning students a t  the Cerebral Palsy Center in Norman, Oklahoma. The 

l i s t  is happy, e a t ,  hungry, d r in k ,  t h i r s t y ,  p o t ty ,  bed, s leep , sad, h o t,  

go, p la y ,  T.V., s to p , c o ld ,  home, Daddy, Mama, b ro th e r ,  s i s t e r ,  1 love you, 

l e t t e r ,  candy, c lo th e s ,  and coat. Cold and coat when spoken by one o f  

these c h i ld re n  might sound a l i k e ,  say as ' ' 'K o " .  One needs not look a t  a 

speech spectrograph or speech wave In order to  know th a t  th is  would be

unacceptable to  the machine. Although more advanced c h i ld re n  and ad u lts

might have considerably  la rg e r  vo cab u la r ies ,  the i n i t i a l  vocabulary o f  

the t r a in e r / l e a r n e r  must be such th a t  users w i l l  have the same kind o f  

u t i l i t y  th a t  th is  beginning l i s t  has.



Consideration must be given to  the sounds (s y l la b le s ,  words, and 

phonemes) th a t  are more e a s i ly  u tte re d  by the handicapped. These sounds 

cannot be uniquely determined fo r  a broad category o f  people. The t r a i n ­

ing process would determine words fo r  each in d iv id u a l  th a t  should be mod­

i f i e d  or d e le te d .  For example, i f  the " th "  o f  t h i r s t y  could not be e a s i ly  

spoken, the machine could e a s i ly  be programmed to  recognize " i r s t y "  and 

d is p la y  t h i r s t y .  In some instances, to t a l  sound s u b s t i tu t io n s  might be 

made; so th a t  co ld , fo r  example, might be assigned "Ka" fo r  machine rec­

og n it io n  as co ld . These considera tions  apply p r im a r i ly  to  the i n i t i a l  

vocabulary used in the e a r ly  stages o f  t r a in in g .  U l t im a te ly  each user  

would design h is  own vocabulary.

Real-Time Feature E x tra c t io n  Techniques. A means o f  generating  

patte rns  from spoken words in rea l time w ith  a minimal amount o f  com­

p u te r  memory is a major techn ica l task . There a re  numerous techniques  

th a t  have been h ig h ly  successful in is o la te d  word re c o g n it io n .  On a 

la rg e  computer, these techniques might be used in d is c r im in a te ly .  How­

e ve r ,  microprocessors are not e a s i ly  adaptab le  to  performing some tasks 

p r im a r i ly  because of memory s iz e  and sm alle r  sets o f  in s tru c t io n s  codes. 

Yet they are  very a t t r a c t i v e  from both cost and s iz e  s tandpoin ts .

The o b je c t  in th is  p ro je c t  is to  simply match p a t te rn s ,  the technique  

used to  c h a ra c te r iz e  in form ation  fo r  p a tte rn  reco g n it io n  need not be 

e la b o ra te .  To summarize from Schafer and Rabiner [ 2 8 ] ;  The main de­

c is io n s  to be made in the design o f  word reco g n it io n  systems are  1 ) .  How 

to  normalize fo r  v a r ia t io n s  in speech; 2 ) .  What is the param etric  rep re ­

s en ta t io n ; 3 ) .  How does the system adapt to a new speaker or new vocabu­

la r y ;  k ) . How does one measure the s im i l a r i t y  o f  two u tte ran ces ; and 5 ) .



How to  speed up matching. These items are  defined  and e labora ted  upon in 

the  fo l lo w in g  chapters .

Handicapped speech d i f f e r s  from what might be c a l le d  normal speech. 

The a n a ly t ic a l  or l i n g u is t i c  d i f fe r e n c e  is not considered in th is  paper. 

Handicapped speech can be understood by people w ith  some e f f o r t ,  and w ith  

some a d d it io n a l  e f f o r t  machines can be designed which w i l l  l ik e w is e  rec ­

ognize handicapped speech.



CHAPTER TWO

BACKGROUND AND RECENT DEVELOPMENTS

“ N ature , as we o fte n  say, makes nothing in v a in ,  and man 
is  the o n ly  animal whom she endowed w ith  the g i f t  o f  speech. 
And whereas mere vo ice  is but an in d ic a t io n  o f  p leasure or  
p a in ,  and is th e re fo re  found in o th e r  an im als , the power o f  
speech is  intended to  set fo r t h  the expedient and inexpedi­
e n t ,  and th e re fo re  the ju s t  and the u n ju s t .  And i t  is a 
c h a r a c te r is t ic  o f  man th a t  he alone has any sense o f  good 
and e v i l ,  o f  j u s t  and u n ju s t ,  and the l i k e ,  and the associa­
t io n  o f  l i v in g  beings who have th is  sense makes a fam ily  
and a s ta te " .

A r i s t o t l e ,  P o l i t i c s .

Communication, p a r t i c u l a r l y  over d is ta n c e s ,  has been a techn ica l  

preoccupation o f  man over the ages. "The a n c ien t Greeks are  known to  

have used i n t r i c a t e  systems o f  s ig n a l f i r e s  which they placed a t  

ju d ic io u s ly  se lec ted  mountains to  re la y  messages between c i t i e s . "  [9]  

Quoting fu r th e r  from Flanagan, " H is to ry  records o th e r  e f f o r t s  to  over­

come the disadvantages o f  a co u s tic  transm iss ion . In the s ix th  century  

B .C .,  Cyrus the Great o f  Pers ia  is  supposed to  have es tab lished  l in es  

o f s ignal towers on high h i l l t o p s ,  ra d ia t in g  in several d i re c t io n s  

from his c a p i t a l .  On these vantage po in ts  he s ta t io n ed  lea th er- lu n g ed  

men who shouted messages a long, one to  the  o th e r .  J u l iu s  Caesar re p o r t ­

ed ly  used s im i la r  vo ice  towers in G au l."  Our progress has been substan­

t i a l ,  and technology promises th a t  th is  progress w i l l  continue.



One o f  the a p p l ic a t io n s  in speech research is  the design o f  a compu­

t e r  and accompanying so ftw are  th a t  w i l l  accomplish mechanical t r a n s la ­

t io n  from one or several languages to  a given language. Taube s ta te s  

t h a t ,  " i t  is t a c i t l y  assumed th a t  a one-to -one  correspondence e x is ts  

between the language o f  the  o r ig in a l  te x t  and th a t  o f  the  t r a n s la t io n .

I f  th is  assumption is c o r re c t  then i t  is p oss ib le  to  envisage a pure ly  

mechanical process— in the broad sense— which i f  app lied  to  the input 

te x t  w i l l  r e s u l t  in an output t r a n s la t io n ,  and which i f  reap p lied  to  the  

t r a n s la t io n  w i l l  reproduce the  o r ig in a l  input te s t"  [ 3 1 ] .  I t  is c le a r  

th a t  in general th is  one -to -one  correspondence does not e x i s t .  Mech­

a n ica l t ra n s la t io n  is fu r t h e r  complicated by the polysemy o f  words and 

contextual con s id era tio n s .

"No pure ly  automatic procedure is  a v a i la b le  or is in view th a t  

would enable p re s e n tly  e x is t in g  (n o n - lea rn in g )  computers to  resolve  

the polysemy o f  the word 'pen' in such sentences as ' th e  pen is in the 

b o x , ' and ' th e  box is in the p e n , '  w i th in  the  same contexts  th a t  would 

enable a human reader (o r  t r a n s la to r )  to  reso lve  i t  immediately and 

u n e rr in g ly  [31 ]

Taube notes th a t  as o f  I 9 6 I the expend itu re  o f  research in mech­

a n ica l t r a n s la t io n ,  e xc lu s iv e  o f  machine co sts , was approxim ately  

$3 ,000 ,000  per y ea r .  This amount would have been s u f f i c i e n t  to  h i re  

300  f u l l - t i m e  t ra n s la to rs  a t  $10,000 per y ea r ,  o r to  t r a i n  300 t ra n s ­

la to rs  a t  a $10,000 t r a in in g  cost per t r a n s la t o r .  Over the  years  

th is  would produce a reasonably la rg e  body o f  competent t r a n s la t o r s — 

e s p e c ia l ly  i f  i t  is added to  the present annual expenditure  fo r  t r a i n ­

ing in languages. Furthermore t r a in in g  in languages may remove the



need fo r  t r a n s la t io n .

The above represents  a research e f f o r t  invo lv ing  speech th a t  

is  a t  best on the o u ts k i r t s  o f  man's a b i l i t y  to  solve using the com­

p u te r .  However, o th e r  o b je c t iv e s ,  some o f  which are  even broader in  

scope and b e n e f i t ,  f a i l  w e ll  w i th in  the  realm o f  reasonable and pro­

du c tive  research e f f o r t s .  The remaining overview is based on W h ite 's  

paper [ 35 ] .

Is o la te d  word reco g n it io n  has been shown to  be r e a l i z a b le .  Some 

examples o f  systems c u r r e n t ly  in use fo l lo w :

1. Data e n try  by q u a l i t y  contro l inspectors (O w e n s - I l l in o is

Corp. uses i t  fo r  inspection  o f  T .V . fa c e p la te s ;  Ford 

Motor Company fo r  assembly l in e  inspection o f  cars ;  Con­

t in e n ta l  Can fo r  inspecting  p u l l  r ing can l id s ;  Tecumseh 

products f o r  compressor inspection ; Union Carbide fo r  

m anipu la ting  nuc lear products a t  Oakridge, Tenn.; a semi­

conductor manufacturer uses I t  w ith  microscopes, inspect­

ing microscopic components);

2. Control o f  m a te r ia ls  handling equipment (United A i r l in e s

f o r  baggage handling ; Kresge fo r  contro l o f  package

routing  system);

3. Special purpose computer programming (a manufacturer uses 

iso la te d  word reco g n it io n  to  program automatic machine 

t o o l s ) ; and

4. E d it in g  o f  f in a n c ia l  in form ation  (EMI, L t d . ,  England uses 

i t  to  c o l le c t  numerical data from a v a r ie ty  o f sources

to  prepare monthly f in a n c ia l  statements) [ 3 5 ] .
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The o th er  extreme, th a t  i s ,  r e a l - t im e ,  continuous speech recog­

n i t io n  systems accepting u n re s t r ic te d  vocabu laries  w ith  unknown 

speakers are  not as e a s i iy  re a l iz e d  w ith  today 's  technology and know­

ledge. Continuous speech recogn it io n /u n d ers tan d in g  systems l im ite d  

in  vocabulary s iz e  and number o f  speakers and re q u ir in g  c a r e f u l ly  pro­

nounced speech on a p a r t ic u la r  to p ic  a re  w ith in  the realm o f  possi­

b i l i t y .  The Advanced Research P ro jec ts  Agency o f  the U.S. Depart­

ment o f  Defense (ARPA) is sponsoring a $15 m i l l io n  f iv e - y e a r  speech 

understanding p ro je c t  to  accomplish th is  in te rm ed ia te  problem o f  

recognit ion /unders tand ing  w ith  a l im ite d  vocabulary. The research  

has been performed a t  B o lt ,  Beranek and Newman; Carnegie-Mel Ion Univ­

e r s i t y ;  L incoln Laboratory o f  MIT; S tanford Research I n s t i t u t e ;  Sys­

tems Development Corp.; Haskins L a b o ra to r ies ; Speech Communications 

Research Laboratory; Sperry-Rand; and the U n iv e rs i ty  o f  C a l i f o r n ia  a t  

Berkeley. The goal o f  the ARPA speech understanding p ro je c t  is to  

achieve continuous speech understanding fo r  a one-thousand word vocab­

u la ry  fo r  a s p e c i f ic  task (e .g ,  making a i r l i n e  re s erva tio n s ) fo r  a 

small number o f  speakers in near r e a l - t im e  on a "b ig "  computer ( e . g . ,  

PDP-iO).

Technical Considerations 

E x p l ic i t ly  or im p l ic i t ly ,  spectral analysis is involved in speech 

recognition. This may be in terms o f encoding o f  speech using auto­

corre la t ions  of the amplitude va r ia t io n s  of speech, in terms o f  l in e a r  

p red ic tive  coding, zero crossing s t a t is t ic s ,  spectral ana lys is , per se, 

or other an a ly t ica l techniques.

1 1



The i n i t i a l  param etric  rep resen ta tio n  o f  speech may conta in  r e ­

dundant or i r r e le v a n t  in form ation th a t  can be s a fe ly  removed w ithout  

re q u ir in g  reco g n it io n  o f  any speech sounds— th is  is data  compression.

Data compression reduces the computational load for a l l  subsequent 

processing. Formant tracking is the most common approach to speech 

data compression. "Formant tracking is the monitoring o f  time evolu­

t ion  o f the major peaks o f the power spectrum o f speech. The formants 

are produced by the resonances of the vocal c a v i ty ."  [35] Speech spec- 

trography has shown that the patterns of formants is the dominant fea ­

ture  of speech spectrograms.

L inear p re d ic t iv e  coding has made formant track in g  a f a v o r i t e  

technique among speech researchers . Fast F o u rie r  transform s, as a 

counter example, requ ires  considerab ly  more computational power. A lso,  

ze ro -c ro ss in g  techniques are  less e f f i c i e n t  in general because o f  the 

g re a t  v a r ie t y  in the speech wave.

Formant trac k in g  is o f te n  used fo r  word re c o g n it io n .  However, the  

reco g n it io n  o f  subpatterns in speech may be more promising fo r  c o n t in ­

uous speech re co g n it io n . When subpatterns can be recognized, only the  

name o f  the subpattern need be saved, and the d e ta i le d  data  rep resen t­

ing the subpattern can be d iscarded,

The s im i l a r i t y  between the machine's word prototypes and an un­

known word can be measured using c o r re la t io n  fu n c t io n s , f i l t e r  fu n c t io n s ,  

•and geometric d is tan ce  fu n c tio n s . Geometric fu n c t io n s , as a case in 

p o in t ,  operate  in N-dimensional spaces defined by N parameters o f  para­

m e tr ic  rep resen ta t io n s  o f  speech, and are  t y p i f i e d  by Euclidean, Cheby- 

shev, and Hamming d is tan ce  fu n c t io n s . For example, the s im i l a r i t y
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between two steady s ta te  sounds can be defined  to  be in v ers e ly  pro­

p o r t io n a l  to  the Euclidean d is tan ce  between the sounds, where the 

coord inates  o f  each sound a re  defined  to be i t s  average pass band 

energ ies  in a bandpass f i l t e r  bank.

The approach to  word re c o g n it io n  o f  e x h a u s t iv e ly  matching a l l  p ro to ­

types is i n e f f i c i e n t  and can perhaps be improved by using subword pro­

to types. In considering  a more e f f i c i e n t  scheme a look a t  phoneme 

reco g n it io n  is a p p ro p r ia te .  Spoken words can be represented as s tr in g s  

o f phonemes, a basic sound u n i t  o f  speech. In spoken English about 

38 phonemes (16 vowels and 22 consonants) a re  t y p i c a l l y  used. The two 

basic  advantages in phonemic reco g n it io n  are  th a t  phonemes make pos­

s ib le  (1) s e le c t iv e  re c a l l  o f  word prototypes and (2 ) reduction o f  

memory requirements to  s to re  word prototypes (data  compression). S e l ­

e c t iv e  re c a l l  reduces the number o f  prototypes th a t  need to  be processed, 

and data compression reduces memory requirements.

Recall o f  Word P ro to typ es . In the word re c o g n it io n  schemes des­

cribed  above, templates a re  s e r i a l l y  processed u n t i l  the c o rre c t  tem­

p la te  is found. T h e o r e t ic a l ly ,  a much more e f f i c i e n t  process would be 

to  f in d  some s o r t  o f  key th a t  could a l t e r  the o rd er in which templates  

are processed so th a t  the c o rre c t  tem plate would more l i k e l y  be pro­

cessed e a r l  1er.

Phonemes might provide such a key. The idea is to  recognize pho­

nemes f i r s t  and use them to  form words which then cause l i k e l y  word tem­

p la tes  to be processed. This is a "hypothesize and te s t"  paradigm. A 

rough c la s s i f i c a t io n  dec is io n  is made on the basis o f  phonemic s p e l l in g  

and th is  rough c la s s i f ic a t io n  is v e r i f i e d  by re s o r t in g  to  template
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matching. The computational expense o f  recognizing phonemes is  small 

r e la t i v e  to  th a t  requ ired  fo r  word re co g n it io n  because th e re  a re  many 

more words than phonemes, and phonemes are  sm alle r  than words. I f  

phoneme reco g n it io n  were p e r fe c t ,  then th e re  would be no need to  match 

word prototypes a t  a l l ;  p ro p e r ly  sp e lled  English words could be re ­

t r ie v e d  d i r e c t l y  from memory using a d ic t io n a ry  indexed w ith  phonem- 

i c a l l y  spe lled  words— or E ng lish  could be learned phonem ica lly . How­

eve r ,  phonemic s tr in g s  a re  o f te n  f u l l  o f  e r r o r s ,  so I t  is necessary to  

be ab le  to  re so r t  to tem plate matching to  v e r i f y  t e n t a t iv e  s p e l l in g s .

Consider how phonemic encoding achieves data compression. The gen­

e ra l  p r in c ip le  is th a t  data compression re s u lts  from s to r in g  the names 

o f  phonemes themselves. The o r ig in a l  data presumably could represent  

many more phonemes than need to  be d is t in g u ish e d  by having d i f f e r e n t  

names. More s p e c i f i c a l l y ,  i f  a g iven phoneme is a common element in 

a group o f  p a t te rn s ,  then data compression is achieved by s to r in g  the  

d e ta i le d  in form ation  about th a t  phoneme only  once and then rep la c in g  

the phoneme by i t s  name wherever e ls e  i t  occurs. The name o f  the pho­

neme can then be used to f in d  the d e ta i le d  in form ation  about the pho­

neme whenever necessary.

The f i e l d  o f  p a t te rn  re co g n it io n  has many mechanisms fo r  genera­

t in g  fea tures  and transform ing t h e i r  re p res e n ta t io n . Whatever the  

s tra te g y  fo r  genera ting  in te rm ed ia te  fe a tu re s ,  the fu nc tions  o f  a fe a ­

tu re  must be to  remove redundancy and i r r e le v a n t  in form ation  from 

speech. This makes the u l t im a te  c la s s i f ic a t io n  decis ions e a s ie r  since  

the inform ation th a t  must be analyzed presumably has less n o is e .
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Recent Advances

Some recent advances in speech recogni t ion  are [3^ ] -

1. Linear p re d ic t ive  coding (LPC) fo r  data compression and 

spectra l  smoothing (A ta i ,  Markel, Mar loul,  i takura)

2. Vocal t r a c t  area funct ion and vocal t r a c t  length from 

LPC model o f  vocal t ra c t  (Wakita)

3. Linear p re d ic t i ve  residual as a speech sound s im i l a r ­

i t y  measure fo r  steady-sta te  sounds ( i takura )

4. Dynamic programming fo r  time al ignment o f unknown and 

reference utterances ( Sai t o  et a l . , i takura ,  White and 

Neely)

5. Cepstral  and Cosh distance funct ions fo r  speech 

sound s i m i l a r i t y  measurements (Markal and Gray)

6. Markov models fo r  represent ing the time evo lu t ion  of

speech understender ' s s ta te  of knowledge (Baker)

7. Dimensional i ty  reduct ion fo r  speech data by p r in c ip a l  

component analysis shows that parametr ic representat ions 

o ther  than formant frequencies and bandwidths are j u s t

as adequate fo r  the representat ion o f  speech data (Pols,

et a l . )

8. P itch t rack ing  by center c l ip p in g ,  i n f i n i t e  peak c l ip p in g ,  

and au toco r re la t ion  analys is  (Dubnowski e t a l . )

9- Convex h u l ls  in speech energy p r o f i l e s  fo r  s y l la b le  seg­

mentation (Mermelstein); and 

10. Beginning and ending o f  utterance detect ion  by ampli tude, 

zero crossing, and back- tracking (Rabiner and Sambur)
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L in ear p r e d ic t iv e  coding (LPC), a form o f  Wiener f i l t e r i n g ,  is 

a very  important development in autom atic  speech re c o g n it io n .  I ts  

primary use is to  represent speech in a h ig h ly  compressed form and to  

produce sp ec tra l  smoothing th a t  c le a r ly  re ve a ls  formants. The power 

o f LPC does not l i e  in the accuracy o f  i t s  rep res e n ta t io n  o f  speech 

or speech spectra  but in th a t  i t  is  a com puta tiona lly  e f f i c i e n t  means 

o f  g e t t in g  formant peaks and in th a t  i t  produces a compact representa ­

t io n  o f speech.

L inear p r e d ic t iv e  coding im p l ic i t l y  imposes a model o f  a nonbran­

ching acoustic  tube on speech. Wakita [33 ] d erives  the Important r e s u l t  

th a t  both the c ro ss -s e c t io n a l area and the length o f  the vocal tube can 

be simply c a lc u la te d  along w ith  the LPC c o e f f ic ie n t s .  By norm aliz ing  

a random speaker's  vocal t r a c t  shape and length to  some standard value ,  

a major step forward Is achieved toward Independence from the need to  

r e t r a in  recogn it ion  systems fo r  new speakers.

The l in e a r  p r e d ic t iv e  res idua l (LPR) is the e r r o r  th a t  remains 

when a l in e a r  p r e d ic t iv e  f i l t e r  Is app lied  to a time ser ies  represen­

ta t io n  o f  speech. This is a ls o  known as "matched f i l t e r i n g "  In p a tte rn  

re co g n it io n . I taku ra  [12] g ives a com puta tiona lly  e f f i c i e n t  formula  

fo r  c a lc u la t in g  the log r a t i o  o f  two l in e a r  p r e d ic t iv e  re s id u a ls .  He 

proceeds to show exp er im en ta lly  th a t  such a r a t io  gives an e x c e l le n t  

speech sound s im i l a r i t y  measure when the unknown res idua l Is used In 

the denominator and d i f f e r e n t  tem plate sounds are  used In the numerator. 

The Itaku ra  s im i l a r i t y  fun c tio n  makes I t  possib le  to  achieve s i g n i f i ­

cant computation economies In Implementation o f  word re co g n it io n  by 

making i t  possib le  to  perform a l l  preprocessing and s im i l a r i t y
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measurements r e la t i v e l y  simply in the time domain.

Dynamic programming is a well-known technique in operat ions re­

search which, l i k e  LPC, has only recent ly  made an impact on speech rec­

ogn i t ion .  I t  is an extremely useful technique fo r  achieving nonl inear 

time adjustment (warping) to  a l ign  m u l t ip le  s y l l a b i c  utterances. A l ­

though the technique had been used p r io r  to 1970 in Japan, Russia, and 

France, the speech community in the U.S. d id  not s t a r t  using i t  u n t i l  

1974 when i takura introduced i t  along w ith  the l in e a r  p re d ic t i ve  res­

idual during his stay a t  Bel l  Labs. The power of dynamic programming was 

revealed more f o r c e f u l l y  when White and Neely showed th a t ,  on the one 

m u l t i s y l l a b i c  vocabulary they tested, a 20 - fo ld  reduct ion in e r ro r  was 

obtained with  dynamic programming compared to the best l in e a r  time 

alignment s t ra teg ies  known to them.

The CEPSTRAL and COSH distance funct ions were proposed and tested 

as time domain s i m i l a r i t y  measures fo r  speech sounds by Markel and 

Gray [ 10, 15]. Thei r  proper t ies  make them s l i g h t l y  p re fe r rab le  to the 

i takura LPR measure.

Dimensional i ty reduct ion with  p r in c ip a l  components analysis is 

a standard technique in pattern recogn i t ion .  I t  is e s s e n t ia l ly  the 

same as the Kurhunen Loeve technique (K.S. Fu) . Pols [ 26 ] was able to  

use p r inc ipa l  components analysis to i d e n t i f y  Dutch vowel sounds as 

accurately as could be done by hand analys is  o f  formant frequencies 

and bandwidths. This demonstrated that e n t i r e l y  automatic techniques are 

capable o f  performing as wel l  at  i d e n t i f y in g  vowels as laborious hand 

analys is .  Dimensional i ty reduct ion with  p r in c ip a l  components analysis  

can a c tu a l l y  improve recogni t ion as wel l  as reduce data
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ra tes  fo r  representing  speech.

P itch  tra c k in g  by center c l ip p in g ,  i n f i n i t e  peak c l ip p in g ,  and 

a u to c o r re la t io n  a n a ly s is  is important fo r  i t s  accuracy and s im p l ic i t y .  

The accuracy o f  th is  approach is  reported to  be as good as the CEPSTRAL

approach— meaning th a t  i t  is as good as the best known. Peak and cen ter  

c l ip p in g  produce a speech wave w ith  o n ly  th ree  s ta te s ;  - 1 ,  0 , 1. This  

reduces a u to c o r re la t io n  an a ly s is  to  a d d i t io n  and s u b tra c t io n ,  and i t  

brings about a dram atic  reduction in the computational burden asso c ia ­

ted w ith  p i tc h  tra c k in g  [ 8] .

S y l la b le  segmentation w ith  convex h u l ls  is  a novel approach to  an 

important problem. Almost every speech researcher t r i e s  h is  hand on 

s y l la b le  or phoneme segmentation a t  one time or a n o th er ,  Paul Mermel- 

s te in  [19] has proposed a simple a lg o r ith m  th a t  w i l l  work on any c o n t in ­

uous approxim ate ly  convex fu nc tion  and w i l l  f in d  the  important d ips and 

v a l le y s .  He a p p l ie s  h is  "convex h u l l"  s tra te g y  to  speech energy pro­

f i l e s  and does a good job  o f  segmenting s y l la b le s  in speech. I t  would 

be m isleading to  suggest th a t  the  use o f  convex h u l ls  solves the seg­

mentation problem in genera l.  The most r e l i a b le  way to  segment speech 

is to  recognize i t s  c o n s t i tu e n t  sounds, and even th is  approach has 

e r r o r s .  The va lue  o f  convex h u l ls  is t h e i r  s im p l ic i t y  and the fa c t  

th a t  good s y l la b le  segmentation is obtained most o f  the tim e.

D etecting  the beginnings and endings o f  u tte ran ces  is an o ld  prob­

lem th a t  must be faced by every speech re c o g n it io n  system b u i ld e r .  The 

s o lu t io n  presented by Rabiner and Sambur [27 ] is one o f  the s im p ler  and

more accura te  ones in the l i t e r a t u r e .
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Fundamental Problems

The fundamental problems o f  speech re co g n it io n  are  e x c i t in g  be­

cause they are  general, and t h e i r  so lu tio n s  w i l l  have an impact upon a l l  

aspects o f  machine p e rcep tion . The fundamental problems a r is e  from the 

fa c t  th a t  the in form ation  needed to  id e n t i f y  a speech sound is o ften  

not spread over a la rge  time in te r v a l ;  th a t  !s ,  i t  is o fte n  a func tion  

o f co n te x t .  This  phenomenon is ex ten s ive ; i t  occurs f re q u e n t ly  in a l l  

types o f  speech sounds: in phonemes, in s y l la b le s ,  in words and even

in sentences. This is an example o f  a fundamental problem in a r t i f i c ­

ia l  in te l l ig e n c e  in which local am biguity  is inherent in the data and 

can be removed only  w ith  in form ation  from global sources. Speech re ­

search is c o n tr ib u t in g  to the s o lu t io n  o f  th is  general problem. White  

[ 3 5 ] i l l u s t r a t e s  the nature  o f  loca l am biguity  and methods fo r  dea ling  

w ith  i t  through the  example o f  phonemes.

I f  the approxim ately  38 phonemes o f  general American English could 

be recognized a c c u ra te ly ,  then i t  would be r e l a t i v e l y  easy to  recog­

n ize  an u n lim ited  vocabulary o f  English words. Unknown speech would 

f i r s t  be converted to  s tr in g s  o f  phonemes which would be converted to  

standard orthography by looking up words in a d ic t io n a r y  based on pho­

neme s p e l l in g .  This approach has considerab le  appeal.

Phoneme reco g n it io n  has been attempted w ith  and w ithout feedback  

from the context surrounding the phoneme. Those attempts which have 

used only  local in form ation  have f a i l e d  except fo r  h ig h ly  a r t i f i c i a l  

speech. The in form ation  needed to  id e n t i f y  a phoneme is o ften  not pre ­

sent in the phoneme i t s e l f .  For example, i f  vowels a re  preceded by
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the consonants "1" o r  " r " ,  the vowels a re  changed so much th a t  they  

a re  q u ite  o f te n  m is c la s s i f ie d  I f  taken out o f  co n te x t .  Phonemes are  

s tro n g ly  a f fe c te d  by neighboring phonemes because o f  the physical In e r ­

t i a  o f  the tongue and o ther a r t i c u la t o r s .  This In e r t ia  Is exacerbated  

In people w ith  motor problems. E v id e n t ly  speech Is composed o f  a ser­

ies o f  sound ta rg e ts  th a t  speakers u su a lly  f a l l  to  reach but w ith  no 

loss o f  I n t e l l i g i b i l i t y  because l is te n e rs  can p ro p erly  In te r p r e t  the  

gestures toward the sound ta rg e ts  by using contextual In form ation .

Attempts to  circumvent the loca l phonemic ambiguity problem lead 

to  the development o f  phonological ru les  governing th e ,e f fe c ts  o f  

phonemes on neighboring phonemes. Phonological ru les  represent a type  

o f  s y n ta c t ic  ru le  fo r  phonemes ( Ins tead  o f  words) t e l l i n g  what sequences 

o f  phonemes a re  le g a l .  Phonological ru les  a re  u su a lly  Intended to  

cope w ith  commonly occurlng c o a r t ic u la t io n  phenomena. I t  does not ap­

pear to  be p ra c t ic a l  to  design phonological ru les  to  deal w ith  e r r a t i c  

personal speaking Idosyncracles and mumblings. There are  nonetheless  

very real sources o f  acoustic  am biguity  w ith  which people have no tro u ­

b le  coping. So, we look fu r t h e r  than phonological ru les  In our search 

fo r  a s o lu t io n  to the " lo c a l  acoustic  ambiguity" problem.

Attempts to  avoid the loca l acoustic  ambiguity Inherent In phoneme 

use leads to  the use o f  la rg e r  u n its  such as s y l la b le s  or words. The 

use o f  la rg e r  u n its  Is d ic ta te d  by the fa c t  th a t  la rg e r  u n its  tend to  

have sm aller amounts o f  In te rn a l  am biguity . S y l la b le s  are  more robust 

than phonemes, and words a re  more robust than s y l la b le s ,  A s ig n i f ic a n t  

source o f  experimental evidence demonstrating th a t  la rg e r  models pro­

mote accuracy comes from the fa c t  th a t  the most accurate  speech
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reco g n it io n  systems known today use u tte ran ce  prototypes ra th e r  than  

sm alle r  u n i ts .  For instance, White and Neely [3 6 ]  were ab le  to  achieve  

99.6% c o rre c t  reco g n it io n  fo r  a 91 word vocabulary using u tte ra n c e  mod­

e ls  ( te m p la te s ) .  This is s ig n i f i c a n t l y  b e t te r  than any system based on 

a sm aller u n i t .  However, such high re co g n it io n  scores apply only to  

iso la te d  u tteran ce  reco g n it io n  where a l l  acoustic  in form ation  necessary  

to  id e n t i f y  a word is present in the word i t s e l f .  Continuous speech 

o fte n  contains words th a t  are  a c o u s t ic a l ly  ambiguous, which people rec­

ognize e a s i ly  w ith  contextual in form ation  but which machines using 

only word templates would f a i l  to recognize , So, the u l t im a te  so lu t io n  

is not to  be found w ith  the use o f  u t te ra n c e -s iz e d  u n i ts .

I t  is becoming in c re a s in g ly  c le a r  th a t  th e re  Is no s in g le  speech 

u n i t ,  nor is there  a s in g le  set o f  ru les  th a t  s a t i s f a c t o r i l y  avoids  

a l l  commonly occurlng acoustic  a b e rra t io n s  in speech. The s o lu t io n  to  

the problem seems to be approachable on ly  a s y m p to t ic a l ly  through the  

use o f  ever increasing numbers o f  la rg e  u n its ,  models, ru les  and other  

sources o f  knowledge. A s ig n i f ic a n t  challenge  to a r t i f i c i a l  in te l l ig e n c e  

is the need to combine large  numbers o f  models and ru le s .

Model is used to mean the same th ing  as "source o f  knowledge". The 

problem is how to use models d i f f e r i n g  in r e l i a b i l i t y  and computation  

expense to  optim ize  e f f i c ie n c y .  Because large  models are  t y p ic a l l y  more 

expensive to  s tore  and use, i t  is W h ite 's  [35 ] opinion th a t  la rg e r  un its  

should be used in a "feedback" mode and would become involved only  by 

the p a r t ia l  recogn it ion  o f sm aller  u n i ts .  This is based on the extremely  

important idea th a t  the reco g n it io n  o f  com putationally  cheap sound un its  

can e l im in a te  the need to recognize some com puta tiona lly  expensive sound
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u n i ts .

A s o lu t io n  to  the fundamental problem o f  loca l acoustic  am biguity  

is  to  have models o f  speech sounds a t  a l l  lev e ls  (phoneme, s y l la b le ,  

word, phrase) and a s tra te g y  a llo w in g  lower models to  c a l l  on h igher  

models to  reso lve  local am big u it ies  and a s tra te g y  a llo w in g  the h igher  

models to  c a l l  on lower models to  request fu r t h e r  a n a ly s is .  The h igher  

lev e l models are  needed fo r  conservation  o f  computational resources  

(both memory and computation).

Note th a t  h igher leve l models may be embodied in ru les  as w ell  as 

tem plates. For instance, phonological ru les  and language syntax per­

form the fu n c tio n  o f  removing loca l am biguity  by re ference  to  a la rg e r  

context .  A p a r t i c u la r l y  in te re s t in g  set o f  ru les  is th a t  governing the  

a p p lic a t io n  o f  "check morphemes"— s u f f ix e s ,  p r e f ix e s ,  or a r t i c l e s — added 

to  words or inserted  in phrases which re q u ire  agreement in person, gen­

d er, and temporal re fe rence  between words.

Examples th a t  i l l u s t r a t e  the above ideas fo l lo w .  To s t a r t ,  l e t  

us consider a d e ta i le d  example o f  problems encountered in a ttem pting  to  

use models fo r  words o n ly .  In th is  example, no models are allowed fo r  

phonemes or s y l la b le s  or o th e r  subword u n i ts .  Word prototypes are en­

coded w ith  represen ta tions  derived from signal processing techniques.

According to  W hite, the best s ig n a l-p ro cess in g  speech compression 

techniques known today re q u ire  approxim ately  1000 b i ts  per second to  

produce m arg in a lly  i n t e l l i g i b l e  speech. Given the ty p ic a l  computational 

requirements to  match prototypes and unknowns, i t  is possib le  to show 

th a t  general purpose computers a re  two orders o f  magnitude too slow to  

match an unknown u tterance  aga ins t several thousand u tte rance  prototypes
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In rea l t im e. The memory-to-processor bandwidth Is too small and the  

processor speed I t s e l f  Is I n s u f f i c ie n t .  I t  Is a lso  t ru e  th a t  th e re  Is 

not enough storage In most random access memories to  s to re  templates  

fo r  several thousand words I f  the templates are  stored In the o r ig in a l  

param etric  rep resen ta tio n  o f  the s ig nal processor. T h u s , I f  word tem­

p la te s  are  to be encoded In terms o f  s ig n a l-p ro c e ss in g  re p re s e n ta t io n ,  

they must be stored on d isks and used s p a r in g ly .  In o ther words, the

use o f  word prototypes may produce high accuracy, but encoding the

prototypes In the re p res e n ta tio n  produced by the s ig nal processor  

requ ires  so much storage and processor power th a t  th is  approach must 

be l im ite d  to  Is o la te d  word reco g n it io n  fo r  small vocabularies  and to

machines w ith  s ig n i f ic a n t  computational power.

There a re  two general ways to  reduce the d is p a r i t y  between data  

processing needs and a b i l i t i e s .  One way Is to  r e ly  on fa s te r  hardware. 

The o ther way Is to  use a r t i f i c i a l  In t e l l ig e n c e /p a t t e r n  reco g n it io n  

techniques to  o p tim ize  performance o f  e x is t in g  hardware. A r t i f i c i a l  

In t e l l ig e n c e /p a t t e r n  reco g n it io n  techniques can be used In conjunction  

w ith  a number o f  "source.j o f  knowledge" (" in te rm e d ia te  models" or  

fe a tu re s " )  so th a t  com putationa lly  Inexpensive knowledge co n tro ls  the  

a p p l ic a t io n  o f  more expensive knowledge.

Improving System Performance 

White [ 35 ] asserts  th a t  u l t im a te  Improvements in speech reco g n it io n  

w i l l  not re s u l t  from more accurate  Id e n t i f i c a t io n  o f  short speech sounds, 

but th a t  the major gains w i l l  come from being ab le  to resolve local 

acoustic  am biguity  w ith  In form ation  a r is in g  from la rg e r  speech segments.
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The important problems seem to  be how to  represent and use sources o f  

knowledge a r is in g  from g loba l environments.

There a re  a t  le a s t  fo u r  ca teg o r ies  o f  mechanisms fo r  reducing  

the  d is p a r i t y  between da ta  r a te  processing needs and a b i l i t i e s :

(1) specia l purpose hardware, (2 ) improved speech data compression 

techniques, (3 ) robust speech re p res e n ta t io n  through n o rm a liza tio n  

techniques, and (4) d ic t io n a r y  compression and d ire c te d  search through 

the use o f  h ie ra rch y  o f  speech subunits . In th is  l a t t e r  category , in ­

form ation from la rg e r  speech in te r v a ls  Is  allowed to  a f f e c t  the re so lu ­

t io n  o f  loca l a c o u s t ic  am biguity  in speech subun its . In g iv in g  e s t i ­

mates o f  performance improvement. White used the  performance o f  an iso ­

la ted  u tte ran ce  system using u tte ran c e  prototypes and an exhaustive  

search o f  the d ic t io n a r y  o f  prototypes as a standard o f  comparison.

Special Purpose Hardware. An order o f  magnitude increase in data  

ra te  processing a b i l i t y  can be expected from new computer a r c h i te c tu re  

by in c orporat ing  h igher memory-to-processor bandwidths and spec ia l pur­

pose processors. A l t e r n a t iv e  approaches inc lude the  use o f  p a r a l le l  

processing, custom L S I, and /o r o p t ic a l  computers.

Speech Encoding and Data Compression. Speech compression is not 

l i k e l y  to  reduce data ra te s  by more than a fa c to r  o f  fo u r .  According 

to  W hite , the in fo rm ation  th e o r e t ic  minimum mean number o f  b i ts  required  

to  tran sm it speech in fo rm a tio n , inc lud ing  the speaker 's  emotional 

s t a t e ,  i d e n t i f y ,  and semantic c o n te x t ,  is probably between 100 and 200 

b i t s  per second. So speech compression is a lread y  w i th in  an order o f  

magnitude o f  i t s  th e o r e t ic a l  l i m i t .

Improved R epresentation  Through N orm aliza tion  Techniques. Whatever
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p ro to ty p ic a l  speech u n its  are  used, the rep res e n ta t io n  fo r  them can be 

made less v a r ia b le  by no rm aliza tio n  techniques. The use o f  these tech­

niques means e s s e n t ia l ly  th a t  fewer templates or specia l ru les  are  need­

ed to  represent a speech sound f a i t h f u l l y .  This  means th a t  less pro­

cessing needs to  be done to match any unknown to  a p ro to ty p ic a l  sound. 

These techniques include n o rm a liza tio n  by (1) v e lo c i t y ,  (2) am plitude,  

(3) t im e, (4) speaker s p ec tra ,  (5) dynamic range, and (6) noise sub­

t r a c t io n .

1) V e lo c i ty  n o rm aliza tio n  is the shortening o f  steady s ta te  spectra  

segments to  remove a r t i f i c i a l  v a r ia t io n s  in sound d u ra tio n  due to  v a r ­

ia t io n s  in speaking ra te .  ( " V e lo c i ty "  re fe rs  to  the time ra te  o f  

change o f  the s p e c t r a ) .

2) Amplitude no rm aliza tio n  is the removal o f  speech amplitude as a 

parameter in speech sound s im i l a r i t y  measurement. This ensures th a t  

a sound th a t  va r ie s  in energy but not in i t s  sp ec tra l composition is 

s t i l l  in te rp re te d  as the same sound,

3) Time n o rm a liza tio n  is the s tre tc h in g  or shrin k ing  o f the length o f  

time elapsed between given speech segments. The goal is to  a l ig n  the 

time o f  occurance o f  unknown speech events r e la t i v e  to  re ference speech 

events to  see how w e ll  they match. Dynamic programming is an e x c e l le n t  

way o f  achiev ing  t h is .

4) Speaker spectra n orm aliza tion  is the transform ation  o f  the power 

spectra l d en s ity  func tion  in order to  remove the e f fe c ts  o f  d i f f e r in g  

vocai t r a c t  length . This is required only  fo r  systems th a t  attempt
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to  recognize speech from d i f f e r e n t  speakers w ithout r e t r a in in g .  I t  can 

be achieved by using the LPC model as shown by Wakita [32 ] o r by using 

bandpass f i l t e r e d  data as shown by Pols e t  a l .

5) Dynamic range n o rm a liza tio n  is the d eterm ination  o f  the energy v a r ­

ia t io n s  o f  the speech in order to  a d ju s t thresholds to  a llo w  energy to  

be used in segmentation and segment la b e l in g .

6) Noise s u b tra c t io n  n o rm a liza tio n  is  the d eterm ination  o f  the energy 

o f  ambient noise and the s u b trac t io n  o f  th a t  energy from the input 

signal so th a t  only  the speech s ignal is  l e f t .

Improved D ic t io n a ry  Compression and Search S t r a te g ie s . Dramatic  

increases in data processing c a p a b i l i t i e s  can be expected from using 

a h ie ra rch y  o f  speech sound subunits to  promote d ic t io n a ry  compression 

and "d ire c te d  search" d ic t io n a ry  r e t r ie v a l  s t r a te g ie s .  Two orders o f  

magnitude improvement can be expected fo r  a vocabulary o f  1000 words 

or more when the base line  system uses exhaustive search. The basic  idea 

o f  d ire c te d  search is th a t  the id e n t i f i c a t io n  o f  com putationa lly  cheap 

sound u n its  makes the more expensive u n its  e a s ie r  to f in d  in a d ic t io n ­

a ry .  Com putationally  more expensive sound u n its  are  those th a t  requ ire  

more b i t s  to  s to re  and more processing to  match. White c a l ls  these ' 

" la rg e r  u n i ts " .  When the c o rre c t  la rg e r  u n its  are  re c a l le d  from memory, 

the q u a l i t y  o f  the match between the la rg e r  u n its  and the unknown 

speech w i l l  reveal which o f  the re t r ie v e d  u n its  is c o rre c t .

For ins tance , the p a r t i a l l y  c o rrec t  s p e l l in g  o f  a word u n it  in 

terms o f  phonemic subunits might make i t  possib le  to  f in d  the word in a 

d ic t io n a ry  w ithout an exhaustive  search. An imperfect match d ic t io n a ry  

r e t r ie v a l  method could be achieved by changing the s p e l l in g  o f  the word

26



u n t i l  i t  h i t s  an e n try  in the d ic t io n a r y .  Control o f  s p e l l in g  changes 

could come from phonological ru le s ,  secondary s p e l l in g s  produced by 

acoustic  a n a ly s is ,  o r  re ference  to  more general sound c lasses .

By using a h ie ra rch y  o f  sound u n i ts ,  the e f f e c t i v e  reduction  in 

reco g n it io n  time can be expected to  be approxim ate ly  a log fu n c tio n  o f  

vocabulary s izes  ra th e r  th a t a l in e a r  fu n c t io n .  Thus, t h e . r e la t i v e  

savings w i l l  be la rg e r  fo r  la rg e r  vo cabu la r ies .

H ie rarch a l o rg a n iza t io n  provides contextual co n s tra in ts  by v i r t u e  

o f  the fa c t  th a t  every subunit has the context provided fay the la rg e r  

un its  above i t  in the h ie ra rc h y .  This contextual in form ation  can contro l  

the o pera t io n  o f  p a tte rn  c la s s i f i e r s  to  achieve s ig n i f ic a n t  improvements 

in  c l a s s i f i e r  e f f i c ie n c y .  P roperly  a p p lied  contextua l in form ation  may 

be the  most promising method to  increase the  apparent computational pow­

e r  o f  p a tte rn  recognizing machines.

F in a l ly ,  h ie r a r c h ic a l ly  organized speech subunits and "d ire c te d  

search" a re  techniques that perm it u t i l i z a t i o n  o f  contextual informa­

t io n  to  co n tro l processing. These techniques are  general and provide  

an example o f  techniques developed fo r  speech reco g n it io n  th a t  apply to  

a g rea t many problems in p a tte rn  re co g n it io n .
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CHAPTER THREE

PATTERN RECOGNITION 

(An Overview)

Even w ith  normal speech, th a t  is speech not a f fe c te d  by motor 

problems, the v a r ia t io n s  in u tterances  a re  s ig n i f i c a n t .  The human brain  

is capable o f  determ in ing the most l i k e l y  u tteran ce  on the basis o f  the 

acoustic  wave, the  con text o f  the  speech, the f a c ia l  expression and body 

gestures . A l l  o f  these s ig n a ls  are  present to  some ex ten t in the com­

munication o f  the cerebra l pa lsy  v ic t im ,  but they are g ross ly  m o d if ied ,  

thus making the reco g n it io n  process more d i f f i c u l t  fo r  humans.

Accepting the experience o f  o thers  as a guide [ 2 ] , [ 1 4 ] ,  tw elve  to  

s ix te e n  l in e a r  p re d ic to r  c o e f f ic ie n ts  per speech segment a re  optimum fo r  

formant a n a ly s is  around 10 KHz, Assuming in the worst case th a t  th is  

number o f  c o e f f ic ie n t s  might be necessary fo r  p a t te rn  re c o g n it io n ,  i t  may 

be d e s ira b le  to  f in d  a means o f  reducing the d im en s io n a l ity  o f  the pat­

te rn  vectors  by e x t ra c t in g  as much meaningful in form ation  as possib le  

from the p a tte rn  vectors  in order  to  op tim ize  the p a tte rn  recogn it ion  

process. This  " fe a tu re  s e le c t io n "  process would make " le a rn in g "  a com­

p u ta t io n a l ly  slower process. P re l im in a ry  in v e s t ig a t io n s  in d ic a te  th a t  

considerab ly  fewer p re d ic to r  c o e f f ic ie n ts  a re  re q u ire d , and fe a tu re  

s e le c t io n  w i l l  not be used i n i t i a l l y .
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P atte rn  reco g n it io n  can be subdivided in to  th ree  major ca teg o ries :  

d e te r m in is t ic ,  s t a t i s t i c a l  and s y n t a c t ic a l .  S y n ta c t ic a l  w i l l  not be 

used here. D e te rm in is t ic  and s t a t i s t i c a l  req u ire  th a t  d is c r im in an t or  

decis ion  functions  be determined th a t  w i l l  a l lo w  the d ichotom ization  o f  

p a tte rn  c lasses . Let . . . ,  w ^ b e  designated as the m possib le

p a tte rn  classes to  be recognized, and l e t

X  =

m

be the fe a tu re  measurement vec tor  where x . represents the i—  fe a tu re  

measurement. Then, the d is c r im in a n t fu n c tio n  D .(x )  associated w ith  

p a tte rn  class w . , i = 1, . . . ,  m, is such th a t  i f  the input p a tte rn  

represented by the fe a tu re  vec to r  x is in c lass u)., denoted as x e w . , 

then the value D . ( ^  must be the  la rg e s t .  That i s ,  fo r  a l l  x e w . ,

D .(x )  > D j ( x ) ,  i ,  j  = 1, . . . ,  m, i j (3 -1 )

Thus, in the N dimensional fe a tu re  space 0^ , the boundary or p a r t i t i o n ,  

c a l le d  the decis ion  boundary, between regions associated w ith  classes  

Ü). and u j , re s p e c t iv e ly ,  is expressed by the equation
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D .(x )  -  D j(x )  = 0 (3 -2 )

D e te rm in is t ic  P a tte rn  Recognition

D e te rm in is t ic  p a tte rn  c la s s i f i e r s  are  those whose decis ion func­

t io n s  a re  generated from t r a in in g  p a tte rn s  by means o f  i t e r a t i v e  " le a r n ­

ing" a lg o rith m s. Once a type o f  dec is ion  fu n c tio n  has been s p e c i f ie d ,  

the  problem becomes the determ ination  o f  the c o e f f ic ie n t s .  D eterm in is ­

t i c  a lgorithm s are  capable o f  " le a rn in g "  the s o lu t io n  c o e f f ic ie n ts  from 

the  t r a in in g  sets  whenever these t r a in in g  p a tte rn  sets are  separable by 

the  s p e c if ie d  decis ion  fu n c tio n s . D e te rm in is t ic  a lgorithm s are  d e ve l­

oped w ith o u t making any assumption concerning the s t a t i s t i c a l  p ro p e rt ies  

o f  the p a tte rn  c lasses . On the o th e r  hand, s t a t i s t i c a l  a lgorithm s  

a ttem pt to  approximate p ( w . / x ) , the c o n d it io n a l density  fu n c tio n  o f  

c lass  w . , which can then be used as Bayes [ 1 0 ] , [ 2 3 ] , [ 3 2 ]  decis ion  func­

t io n s .

The Perceptron Approach. The basic  perceptron or l in e a r  e r r o r  

c o rre c t io n  model is an implementation o f  a l in e a r  decis ion  fu n c t io n .

The response o f  the machine is p ro p o rt io n a l to  the  weighted sum o f  the  

a s s o c ia t iv e  a rray  fe a tu re s ;  th a t  i s ,  i f  we l e t  x . denote the i^^ fea ­

tu re  and w. the corresponding weight fo r  th a t  f e a tu r e ,  the response 

is  given by

n+1
—  (  ? )  —

D = 2 w ,x .  = w* X,
i= l I I where w(I)

w.

w.

w
n+1.

(3-3)

For the two c lass case, i f  D > 0 ,  the p a tte rn  belongs to  the class , i f
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D < 0 ,  î t  belongs to

For m u lt ic la s s  problems, where M is  the number o f  c lasses , respon­

ses D j ,  Dg . . . ,  a re  observed, and the p a tte rn  Is assigned to  c lass

0) . ,  i f  D. > Dj fo r  a l l  j  ^ i .

The perception a lg orithm  is  s ta ted  as fo l lo w s : [2 2 ]

1) From the t r a in in g  p a tte rn  set and w ith  an a r b i t r a r i l y  se lec ted  set 

o f weight v ec to rs ,  c a lc u la te  D . (x )  = w^*^» x fo r  i = 1, . . . ,  M, where 

w^'^ is the weight vec to r  fo r  c lass  w ..

2) I f  a p a tte rn  x belonging to  category is presented to the machine

w ith  the re s u l t  th a t  some decis ion  fu n c t io n ,  say the ( i  j )  is

la rg e r  than the i * ^ \  the weight vectors fo r  the i^^ and decis ion

functions  are  then m odified by the  a d d it io n  and su b trac t io n  re s p e c t iv e ly

o f  the p a tte rn  vector x . Let the  i^^ and weight vectors  p r io r  to

m o d if ic a t io n  be denoted by w^’  ̂ and w^^  ̂ re s p e c t iv e ly .  The adjusted  

weight vectors w^'^ and w^^^ , where the prime ind ica tes  an adjusted

v e c to r ,  are then

(3 -4 )

= w 'j) _ (3-5)

A l l  o ther  weight vectors remain unchanged.

The c o e f f ic ie n t  £  is the c o rre c t io n  increment and can be any o f  the f o l ­

lowing:

a) a p o s i t iv e  constant so th a t  the d is tance  moved by a d iscr im ­

inant fu n c tio n  toward a p a r t ic u la r  dec is ion  surface  is always 

the same.

b) a f r a c t io n  so chosen th a t  the d is tan ce  moved toward a d e c i -
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sîon  surface  is some f ix e d  f r a c t io n  o f  the o r ig in a l  d is tan ce  o f  the  

weight vec to r  from the d ec is ion  su rface ; th a t  is

c = ^  , X = 0 ,  i o r  2 (3 -6 )

In th is  ins tance , the i n i t i a l  weight vectors  a re  non-zero.

For X = 0 , the  weight p o in t  is  not moved.

For X = 1, the  w eight p o in t  is moved to  the  p a t te rn  dec is ion

su rface .

For X = 2 , the  weight po in t is re f le c te d  across the p a tte rn  d e c i ­

sion surface  to  a p o in t  an equal d is tan ce  on the o th er  s id e .

Piecewise L inear C la s s i f i e r s . [2 3 ]  This is  an extension o f  the  

perceptron c l a s s i f i e r .  A piecewise l in e a r  c l a s s i f i e r  consists  o f  R 

banks o f  su b s id ia ry  d is c r im in a to rs  w ith  each bank corresponding to  one 

o f  the p a tte rn  c lasses . That is ,  in the  perceptron approach, one d is ­

c r im in a to r  is used to  a d ju s t  weight vectors  fo r  a l l  c lasses ; whereas, 

in  th is  instance, several d is c r im in a to rs  fo r  groups o f  classes perform  

the adjustments. The term "s u b s id ia ry "  is used because the bank o f  d is ­

c r im in a to rs  can be thought o f  as one large  d is c r im in a to r .  A p a tte rn  

class  is presented to  the machine and the values o f  a l l  o f  the s u b s id i­

a ry  d iscr im inants  a re  c a lc u la te d .  The p a tte rn  is then placed in the  

class  corresponding to  the bank conta in ing  the h ighest valued su b s id ia ry  

d is c r im in a n t .

The weight vectors  are  c a lc u la te d  and determined in the same 

manner as in the perceptron approach. The d i f fe r e n c e  in t r a in in g  has 

to  do w ith  the c re a t io n  o f  subclasses. In th is  research, p a irs  o f
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classes were used to  determ ine the  su b s id ia ry  d is c r im in a n t  fu n c t io n s .  

Larger subdivis ions re q u ire  more computation time f o r  p a t te rn  matching  

w ith o u t the b e n e f i t  o f  lower reco g n it io n  e r r o r .

The P o te n t ia l  Function Approach. I f  sample p a t te rn  po in ts  are  

l ikened  to  p o te n t ia l  energy sources, the p o te n t ia l  a t  any o f  these  

poin ts  a t t a in s  a peak va lue  and then decreases a t  any p o in t  away from 

the sample p a tte rn  p o in t Xj .̂ Using th is  analogy, we may v is u a l iz e  the  

presence o f  e q u ip o te n t ia l  contours which a re  described by a p o te n t ia l  

fu n c tio n  K (x ,x ^ ) .  For p a t te rn s  in p a tte rn  c lass  w . , we may imagine 

th a t  the c lu s te r  o f  sample p a tte rn s  forms a "p la te a u "  w ith  the sample 

points  located a t  peaks o f  a group o f  h i l l s .  The p la teaus o f  the  

various classes a re  separated by v a l le y s  in which the  p o te n t ia l  is  said  

to  drop to  ze ro .  The p o te n t ia l  functions  dichotomize the p a tte rn  hyper­

space and can, th e re fo re ,  be considered dec is ion  fu n c t io n s .

The p o te n t ia l  fo r  any sample p a tte rn  p o in t can be c h ara c te r ize d  

by the expression
  "  ? _

K (x ,x . )  = 2 X. * . ( x ) * . ( x . )  (3 -7 )
K k=i ' ' ' K

where $ . ( x ) ,  i = 1, . . . ,  m, a re  orthonormal fu n c tio n s  over the regl on

o f  d e f in i t io n  o f  the p a t te rn s .  The X . ,  i = 1, . . . ,  a re  real numbers 

d i f f e r e n t  from zero  and chosen in such a way th a t  the  p o te n t ia l  func­

t io n  K (x ,x^) is  bounded fo r  Xj ê w^UwgU . . .U u ^ .

P o te n t ia l  functions  are  computed successively  as pa tte rn s  are  

presented. The cum ulative  p o te n t ia ls  a t  the k^^ i t e r a t i v e  step are
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determined by the aggregate o f  in d iv id u a l p o te n t ia l  fu n c t io n s . This  

cum ulative  p o t e n t ia l ,  which w i l l  be denoted k , ( x ) ,  where i is the number 

o f  i t e r a t io n s ,  is determined in such a way th a t  i f  the t r a in in g  p a tte rn  

^'jl+1 in c o r re c t ly  c la s s i f i e d ,  the cum ulative p o te n t ia l  is  m o d if ied .

I f  the p a t te rn  is  c la s s i f ie d  c o r r e c t ly ,  the cum ulative p o te n t ia l  is 

unchanged a t  t h is  s tep . To c l a r i f y ,  the cum ulative p o te n t ia l  is simply  

the  ad justed  p o te n t ia l  a f t e r  several i t e r a t io n s .

Orthonormal and Orthogonal Functions. For m u l t iv a r ia te  fu n c t io n s ,  

the  o rth o n o rm a lity  c o n d it io n  in  vec to r  form is expressed as

__ u (^ (() .  (x)(j) (x )d x  = 5. (3 -8 )
X

where fo r  n v a r ia b le s ,  the w eighting  fu n c tio n  is u(>0 = u ( x j ,x ^  . . ,  x^)

= c |).(X j,X2, . . . ,  x ^ ) . denotes the m u l t ip le  in te g r a l ,
X

1 i f  i = j

, and { (3 -9 )

X j=a  X2=a x^=a \o  i f  i ^ j

However, the  fu nc tions  a re  used in t h e i r  orthogonal form because 

the  orthonormal form is num erica lly  more complex. I t  should be noted 

th a t  th e o r e t ic a l  developments o f  p o te n t ia l  functions re q u ire  th a t  the  

orthonormal form be used.

A complete system o f  orthogonal functions o f  n v a r ia b le s ,  X j . . . x ^  

may be constructed as fo l lo w s : Groups o f  n functions  from the o n e -var­

ia b le  set a re  m u l t ip l ie d  to g e th e r  a f t e r  proper s u b s t i tu t io n  o f  the v a r ­

iab les  X j .x ^ ,  . . . ,  x^. I f  the o r ig in a l  functions  are  orthogonal in 

the in te rv a l  a_<x£b, the re s u l t in g  n -v a r ia b le  functions (}) ,̂ . . .  a re

orthogonal over the hypercube a<Xj£b, j  = 1, 2 , . . . ,  n. For example.
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the functions o f  a m u l t iv a r ia te  se t w ith  n = 4 ,  a re  formed as fo l lo w s;

=

=

=

( X g ) # ; ( x ^ ) 0 | ( x j ) 0 , ( x ^ )  

(x^)0^(x2)0^(xj)02(x|j)

( x , ) 0 , ( x 2 ) 0 2 ( x j ) 0 j (x ^ )  

( x , ) 0 , ( x 2 ) 0 2 (x ^ )0 2 (x^) 

(x ^ )0 2 (x 2 )0 ^ (x ^ )0 ^ (x ^ )

(3- 10)

The Legendre, Laguerre and Hermite Polynomials c o n s t i tu te  three  

sets o f  polynomials w e l l -s u i te d  to  p a tte rn  re c o g n it io n .  They are  easy 

to  generate and they s a t is f y  the W eierstrass  approximation theorem, 

which s ta te s  th a t  any fu n c tio n  which is continuous in a closed in te rv a l  

a<x£b can be un iform ly  approximated w ith in  any prescribed to le rance  

over th a t  in te rv a l  by some polynomial.

The orthogonal Legendre polynomial functions may be re c u rs iv e ly  

generated by the equation

(k  + l )P ^ + | (x )  -  (2k + l )x P ^ (x )  + kP^_ |(x ) = 0 ,  k > 1 (3 -11 )

where P^(x) = 1 and P^(x) = x . These functions are orthogonal w ith in  

the in te rv a l  - l £ X £ l ,  and they are  orthogonal w ith  respect to the w eight­

ing func tion  u(x) = 1.

The Laguerre polynomials may be generated using the recursion re ­

la t io n
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L^^^(x) -  (2k+1-x )L ^(x ) + = O.k > 1 (3 -1 2 )

where L^fx) = 1 and L^(x) = 1 -x .  These polynomials are  orthogonal in 

the in te r v a l  0 £ x  < “  w ith  respect to  the w eighting  func tion  u(x) = e * .

The Hermite Polynomial functions  are  generated by the recursion re ­

la t io n

H k+ l(x ) -  2xH^(x ) + 2kH ^_,(x ) = 0 ,  k 1. (3 -1 3 )

where H^(x) = I and (x) = 2x. These functions  are  orthogonal w ith
-  2

respect to  u (x ) = e on the in te r v a l  -  » < x < “ , hence the range o f  

v ar ia b les  is o f  no concern w ith  these polynom ials .

The a lg orithm  fo r  the p o te n t ia l  fu n c tio n  case is as fo llo w s:

At the beginning o f  t r a in in g ,  the i n i t i a l  cum ulative p o te n t ia ls  

ko^^^ (> 0 , k g ^ ^ ^ (x ) , . . .k Q ^ ^ ^ (x )  a re  assumed to  be zero . The superscrip ts  

in d ic a te  the class membership. Suppose th a t  a t  the (k + l ) s t  i t e r a t i v e  

step a sample p a tte rn  x^^^ belonging to  c lass  w. is presented, i f

fo r  a l l  J ii i (3 -14)

the p o te n t ia ls  are not changed, th a t  is ,

‘^kll = K ^ ( i ) ( x ) i ;  i = 1 ,2  M (3 -15 )

However, i f  x , e  w. and fo r  some i  k+1 I

Kk'')(Xk+,l 1 Kk'*'(*k+|)

then the  fo l lo w in g  co rrec tio n s  are  made
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*(1)
\ + l (33) = K / ' ) ( 3 3 ) + K ( x , X k + , ) (3-17)

M )
^ k + l (33) = K%/*)(3 K(x,X| _̂i_̂ )

. ( J )
\ + l (33) = K k ( j ) ( x ) , 1 j  = 1 , . . . ,L ,  . . . ,  M, j  3̂ i ,  j  1.

The decis ion  functions  are  the p o te n t ia l  functions  and a re  denoted as

S t a t i s t i c a l  P a t te rn  Recognition

"By means o f  s t a t i s t i c a l  cons idera tions  i t  is possib le  to  d e r iv e  a 

c la s s i f ic a t io n  ru le  which is optim al in the sense t h a t ,  on an average  

basis , i t s  use y ie ld s  the lowest p r o b a b i l i t y  o f  committing c l a s s i f i c a ­

t io n  e r r o r . "[10] The Bayes c la s s i f i c a t io n  r u le ,

— p(w.)p(*^w.)
D. (30 = p ( i / x )   ---------------------— , 1 = l , . . . , m  (3 “ l8 )

p(x )

sets the  standard o f  optimum c la s s i f i c a t io n  performance and th is  is the  

basis o f  s t a t i s t i c a l  fo rm ula tions  f o r  p a t te rn  c la s s i f i c a t io n  a lg o r ith m s .

In equation ( 3 - 1 8 ) ,  p ( ^ i / x )  is the condit ional density function of

class w I .  P(w .) is the a p r io r i  p ro b a b i l i ty  of  class w . , p ( * /w ; )  is

the p roba b i l i ty  density function o f  x when x belongs to w. and p(3T) is

the p roba b i l i ty  density function of  3c.

Regression Functions. S to c h as tic  approximation methods a re  em­

ployed to  f in d  the roots o f  a regress ion  fu n c t io n ,  i f  the regression  

func tion  represents the d e r iv a t iv e  o f  a p ro p erly  formulated c r i t e r i o n  

fu n c t io n ,  f in d in g  the root o f  the d e r iv a t iv e  fu n c tio n  y ie ld s  the  min­

imum o f  the  c r i t e r io n  fu n c t io n .
A  A

Let g(w) be a fun ctio n  o f  w having a s in g le  root w so th a t  g(w) = 0.
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Assume th a t  g(w) is  negative  fo r  a l l  values o f  w less than w and pos i­

t i v e  fo r  a l l  values o f  w g re a te r  than w. Most fu nc tions  not s a t is fy in g  

th is  co n d it io n  can be made to  do so by m u lt ip ly in g  by -1 .

Consider th a t  instead o f  g(w) we are  ab le  on ly  to  observe noisy  

values o f  g (w ) ,  denoted h (w ). The e r ro r  between the tru e  values and 

the  noisy observation  a t  any po in t w is  given by g(w) -  h (w ). I t  is  

assumed th a t  h(w) is  unbiased, th a t  is

E { h (w )} = g (w ) , ( 3 - 19)

and th a t  the var ian ce  o f  the observation h(w) from g(w) should be f i n i t e  

fo r  a l l  values o f  w; th a t  is ,

o^(w) = E { [g (w ) -  h (w )]^ }  ( 3 - 20 )
2

I t  is  assumed th a t  a (w) < L fo r  a l l  w, where L is a f i n i t e ,  p o s i t iv e  

constant. This l a t t e r  assumption precludes observations so f a r  from 

the tru e  value  o f  g(w) th a t  the root seeking procedure would never be

ab le  to  recover, in o th e r  words, the noisy observations should be

reasonably w e ll  behaved.

With the above assumption, the Robins-Monro a lg o rith m  [ 2 3 ] , [  10] 

can be used to  seek the root w, o f  the fu n c tio n  g (w ).  I f  w ( l )  repre­

sents the I n i t i a l ,  a r b i t r a r y  estim ate  o f  w, and w(k) the e s t im a te  a t  

the kth I t e r a t i v e  s te p ,  the Robblns-Monro a lg o r ith m  updates the estim ate  

according to  the r e la t io n

w (k + l)  = w(k) -  Oj ĥ [ w ( k ) l  (3 -21 )

where k is the in te r a t io n  count and Is a member o f  a sequence o f  

p o s i t iv e  numbers s a t is fy in g  the conditions
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l im  = 0
k -»• 00

Z a  =  »  
k = 1  *

(3- 22)

Z  m < 0 0  

k = 1  ^

An example Is the harmonic se r ie s  

= {1 /K }  = { l , i , 1 / 3 , . . . }

The Robbins-Monro (R-M) a lg o r ith m  makes c o rrec t io n s  on the e s t i ­

mates which are  p ro p o rt io n a l to  the previous observations h [ w ( k ) ] .  

Large o verco rrect io n s  are  avoided by assuming th a t  g(w) is bounded by 

a s t r a ig h t  l in e  on e i t h e r  s id e  o f  the ro o t.  The bounding function  th a t  

is  used is given by

[g (w )I < A| w -  w]+B < «  (3 -23 )

where A is  the slope o f the l in e s  and + B a re  the values o f  g(w) ju s t

to  the r ig h t  and l e f t  o f  w re s p e c t iv e ly .  From the f ig u r e  below, i t  is 

ev iden t th a t  as long as the root l i e s  in some f i n i t e  in te r v a l ,  the ex­

istence o f  an A and B which w i l l  s a t is f y  expression (3 -23 ) can always

be assumed. slope = A
ig (w )  , h(w)

root w

Bounding l in e  
A | w  -  w| + B •-B'

Figure 3-1
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With the  conditions o f  ( 3 - 1 9 ) ,  ( 3 - 2 0 ) ,  (3 -2 2 )  and (3 -2 3 ) being  

s a t i s f i e d ,  the R-M a lg orithm  converges to  w in the mean-square sense, 

th a t  i s .

Vim {E |w (k ) -  w )^ |}  = 0 (3-2^»)

Expression (3 -24 ) says th a t  as the number o f  i te r a t io n s  approaches in ­

f i n i t y ,  the variance  o f  the es t im ate  w(k) from the root w w i l l  approach 

zero .

The decreasing s ig n if ic a n c e  o f  the  c o rre c t io n  fa c to rs  w ith  

increasing k, the number o f  i t e r a t io n ^  has the e f f e c t  o f  decreasing  

the  magnitude o f  the adjustment w ith  successive i t e r a t io n s .  Since any 

sequence s a t is fy in g  Equation (3 -22 ) must decrease w ith  increasing

k, the R-M a lg orithm  is g e n e ra l ly  slow to converge. To a c c e le ra te  con­

vergence, should be kept constant during steps in which h [w (k ) ]  has 

the same s ig n . This procedure is based on the fa c t  th a t  changes in the  

sign o f  h [w (k )]  tend to  occur more o ften  in the v ic i n i t y  o f  the root w. 

For points  f a r  away from the root la rge  co rrec tio n s  are  d e s ired . The 

c o rrec t io n s  should be sm alle r  as the root is  approached.

For the m ultidimensional case, we have th a t  the weight vec to r  w 

Is w = ( w^. w^, . . . )  , where w. a re  a s s o c ia t iv e  weights fo r  fe a ­

tures Xg and w^^j corresponds to an appended 1. I t  is desired to  f in d  

the root o f  a regression function  g(v^ from the noisy observations  

h (w ). With w ( l )  representing the i n i t i a l  ( a r b i t r a r y )  estim ate  o f  the  

root w, and w(k) the estim ate  a t  the kth i t e r a t i v e  s tep , the m u l t id i ­

mensional R-M a lgorithm  updates the es tim ate  according to

w (k + l)  = w(k) -  a^h[w (k )]  (3 -2 5 )
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where is  the same as described e a r l i e r .  S a t is fy in g  the same con­

d i t i o n s  as f o r  the two dimensionai  case,  the mult idimension R-M a l ­

gorithm converges in the mean-square sense; t h a t  i s ,  i f  the noisy ob­

servat ions  are  unbiased, t h e i r  v a r i a t i o n  from g(w) is f i n i t e ,  and i f  

the regression fu nc t ion  is bounded, then we have,  as was the case f o r  

equation ( 3 - 2 4 ) ,

l im E { [ |w(k)  -  w | | 2 }  = 0 (3 -26 )

k  - f  w

and Prob{I 11im w(k) -  w | | ^ }  = 1, where 

k  -)• 00

| |w (k )  -  w I I^ is  the magnitude squared o f  the vec tor  [ w (k ) - w ] .

Stochast ic  Approximation fo r  Decision Function E s t im a t io n . The 

d e n s i t ie s  p ( ^ i / x )  a re  to be estimated f o r  implementation o f  the Bayes' 

decision  functions D . (x )  = p(^ i / x ) , i = 1, . . . ,  M. The approach taken  

by Tou and Gonzalez [31]  is to  expand the decis ion  functions over a set

o f  known functions  according to  the r e la t i o n
K+1

D . ( )0  = pioi . /x)  Z Z w . , 0 . ( x )  = w . * 0 (x )  
' ' j = i  ‘ J J '

(3 -2 7 )

where

0(>O = [ 0 | ( > ^ ,  0 2 ( x ) , . . . , 0 ^ ( ^ , l ] .  

A vector  x *  can be defined such tha t

X* =

L 1

(3- 28)

Tou and Gonzales use several  mathemat ical ly  expedient manipulat ions to  

obta in  a more useful form o f  equation ( 3 - 2 7 ) .  The argument th a t
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fo l lows is the most acceptab le .  One o f  the most commonly used types 

of  genera l ized  decis ion  func t ion  is tha t  in which the functions { 0 . ( x ) }  

are  o f  a polynomial  form. In the s im plest  case these func t ions  are

l i n e a r ;  t h a t  i s ,  i f  x = (x ^ ,x ^ ...........x ^ ) ' ,  then 0 .(3^  = x . , w i th  K = n.

Under t h is  c ond i t ion  we obta in  

P(üj . / )0  = w ! '  X

where w, = ( w , , , * . , ..........' •

The only  in fo rmation  th a t  is a v a i l a b l e  during t r a i n i n g  is the class  

membership o f  each p a t te rn  v ec to r .  For each c la s s ,  l e t  us d e f in e  a ran­

dom c l a s s i f i c a t i o n  v a r i a b l e ,  r . ( x ) ,  w i th  the fo l lo w in g  p roper ty .

r . (3 -30 )
0 , o therwise

any d i s t i n c t  values can be used. One and zero are a r b i t r a r y .

Since we d e s i re  knowledge o f  p ( ^ i / x )  only fo r  c l a s s i f i c a t i o n  pur­

poses, l e t  us i n t e r p r e t  r . ( x )  as being a noisy observation  o f  p ( ^ i / x ) ,  

th a t  is ,

r . ( x )  = p(oü./x) + n ( 3 - 3 1 )

where n is a noise f a c t o r  which is assumed to have zero expected va lue ,  

so th a t  E { r . ( x } }  = E { p ( ^ i / x } } .  The idea is to seek an approximation  

to p t '^ i /x )  o f  the form w . ' * x  by observing values o f  r . ( x ) .  Consider  

the c r i t e r i o n  func t ion  J (w . ,X )  = E { | r . ( x )  -  w . ' ( x ) ] } .  The minimum 

o f  the func t ion  is zero ,  and i t  occurs when w l (x )  = r . ( x ) . In o ther  

words, the minimum occurs when the p a t te rn  x is c l a s s i f i e d  c o r rec t ly .  

This fo l lows from the f a c t  th a t  r . ( x )  is a known c l a s s i f i c a t i o n  v a r ia b le
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during t r a i n i n g .  There fo re ,  i f  WtX = r . ( x )  f o r  a l l  pa t te rns  o f  the 

t r a i n i n g  set, w. is capable o f  c la s s i f y i n g  a l l  o f  these pa t te rns  c o r r e c t l y .

Since i t  is assumed th a t  E { r .  ( x ) }  = E{p( '^ i /x  } ,  J(w. ,X) can a lso  

be expressed as J(w. ,3^ = E{ |p ( '^ i / )^  -  w. (x)  |}. This equat ion s ta tes  th a t  

f ind ing  the minimum o f  J (w . ,30  corresponds to  f in d in g  an average app­

roximat ion to  p ( w . / x ) .  In o th e r  words, the approximation is such th a t  

the expected value o f  the absolute  d i f f e r e n c e  between the func t ion  

p (m . /x )  and i t s  approximation is zero .

We are  in te re s te d  in f in d in g  the minimum o f  a fu nc t ion  J (w ,x)  which 

is the expected value  o f  some o ther  funct ion  f(w,>0 , th a t  i s ,

J (w ,x )  = E { f ( w , x ) }  and (3“ 32)

3J(w,x)  _ p 9 f (w .x )
8w “ 9w

The root o f  —  can now be successively  est imated by invoking the
9w

R-M a lg or i thm  with

h [w (k ) ]  =
9w

(3 -34)

w = w(k)

Using w .(K+l) = w(k) -  o ^ h [w (k ) ] ,  we obta in  the general  a lg o r i th m .

w (k+ l )  = w(k) -  -
w = w(k)

where w ( l )  is a r b i t r a r i l y  chosen.

I t  is worth emphasizing th a t  the s t a t i s t i c a l  a lg or i thm  w i l l  con­

verge to  the approximation regardless o f  whether or  not the classes  

are  s t r i c t l y  separable or not.  The p r ic e  is the ra te  w i th  which the 

s t a t i s t i c a l  a lgor ithm achieves convergence.
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Increment-Correction A lgor i thm . Let the c r i t e r i o n  funct ion  be 

given as

J ( w . , x )  = E { | r . ( x )  -  w ' * x ] }  (3 -36 )

where

r
1 i f  X  E

va; = )
0 Otherwise

. (x) =

The minimum o f  J (w . ,30  w i th  respect to w. is achieved when the patterns  

are  c l a s s i f i e d  c o r r e c t l y .

The p a r t i a l  o f  J w i th  respect to  w. is

= E { - x  sgn [ r . (3^ -  w . ' * x ] }  (3 -37)

where sgn (arg)  = 1 o r  -1  depending on whether or not the argument is 

g re a t e r  than zero .

L e t t in g  h(w. )  = - x  sgn [ r . ( x )  -  w!*x ]  and s u b s t i tu t in g  in to  the  

general a lgor i thm  o f  ( 3- 3 5 ) y ie ld s

w . ( k + l )  = v7.(k) + cij^(x(k) sgn { r . [ x ( k ) l  -  w. ' ( k ) * x ( k ) } ( 3 - 38 )

w. (1) is a r b i t r a r i l y  chosen and k is the i t e r a t i o n  number. Using the

d e f i n i t i o n  o f  sgn, ( 3- 38 ) may be w r i t t e n  as

w . (k )  + o ^ x (k ) ,  i f  w . ( k ) x ( k )  < r . [ x ( k ) ]

w . ( k + 1) =
w . (k )  -  o^x(k)  , i f  w . ( k ) x ( k )  ^  r . [ x ( k ) ]

(3 -39 )

This  a lg or i thm  makes an adjustment on the weight  vector  a t  every step.  

This  is in c on tras t  w i th  the perceptron a lg o r i th m ,  where a correc t ion  

Is made only when a p a t te rn  is m is c la s s i f l e d .

The i t e r a t i v e  procedure o f  (3 -38) o r  (3 -39 )  is said to  have
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converged to  an e r r o r - f r e e  so lu t ion  when a l l  t r a i n i n g  patterns  o f

Ü3. , i = 1 , . . . , M ,  have been c o r r e c t l y  c l a s s i f i e d .  In the s t r i c t e s t  sense

t h i s  means t h a t  w . ' * x  = r .  (>0 , i . e . ,  w:x =  1 i f  x s w. and w. ' *jc = 0

otherw ise .  In terms o f  c orrec t  r e co g n i t io n ,  i t  is s u f f i c i e n t  to  requ ire

t h a t  f o r  a l l  pa t te rns  o f  class w . , D. (> 0  > (3^ f o r  a l l  j  ^ i

where

D (x) = w . ' x  and (x) = w jx .  (3 -40 )

When the classes under considera t ion  are  not s t r i c t l y  separable w i th  

the s p e c i f ie d  decis ion func t ions ,  we are  assured tha t  in the l i m i t  the  

s o lu t io n  w i l l  converge to the a b so lu te -va lu e  approximation o f  P (w V x)  , 

as ind ica ted  by the c r i t e r i o n  fu nc t ion  o f  ( 3 - 3 6 ) .  Since the Bayes de­

c is io n  functions,  are  i d e n t i c a l l y  equal to  these p r o b a b i l i t y  densi ty  

funct ions  we are  th e re fo re  guaranteed an a b so lu te -va lu e  approximation to  

the Bayes c l a s s i f i e r .

The Method o f  P o te n t ia l  Functions . Observed data  can belong to  

e i t h e r  class w. or w^, but cannot belong to  both.  In view o f  th is  as­

sumption,  p a r t i t i o n  boundaries can be generated to  ca tegor ize  the pat­

te rn  c lasses.  The major problem o f  p a t te rn  c l a s s i f i c a t i o n  l i e s  in the  

generation o f  p a r t i t i o n  boundaries on the basis o f  the  observed sample 

pa t te rns  known to  belong to  a c e r t a in  c la s s .  I t  might be tha t  sample 

pat te rns  taken from d i f f e r e n t  p a t te rn  classes do not form d i s j o i n t  sets .  

Consequently,  no p a r t i t i o n  boundaries can be generated to completely  

separate the p a t te rn  c lasses.  For each p a t te rn  c la s s ,  only a p ro b a b i l ­

i t y  can be determined f o r  assignment to  c lass  w. or  class w . . The 

problem o f  p r o b a b i l i s t i c  c l a s s i f i c a t i o n  l i e s  in t r a i n i n g  the machine to  

determine c o r r e c t l y  the p r o b a b i l i t y  th a t  new pa t te rns  belong to  a par -
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t i c u l a r  p a t te rn  class on the basis o f  in d iv id u a l  observations during  

the t r a i n i n g  process when the assoc ia t ion  o f  the sample p a t te rn  and 

the corresponding classes is given a p r i o r i .

With s to ch as t ic  p a t te rn s ,  the c l a s s i f i c a t i o n  of  new patterns  is 

based on the set  o f  co n d i t io n a l  p r o b a b i l i t i e s  P ( ^ i / ) ^  , i = 1 , 2 , . . . , M ,  

which are  in e f f e c t  the recogni t ion  func t ions .  I f  P ( ^ i / x )  > P ( ^ j / x )  

f o r  a l l  j  ^ i , the new p a t te rn  x is assigned to  c lass  w . . The recog­

n i t i o n  func t ion  can be estimated i t e r a t i v e l y  from the t r a i n i n g  sample 

pat te rn  by a p p l ic a t io n  o f  the p o te n t ia l  function method. Let the rec­

ogn i t ion  function  P(^^ /x)  be approximated by f |^(3^. The function  

f|^(x) is def ined as fo l lows

0 , i f  - “ > <  fj^G^ <  0

f|^(x) , i f  0 < f j ^ Q  £  1 (3 -41)

0 , i f  1 <  f | ^ ( ^  <  “

where
- _  m
f . ( x )  = E c , ( k ) 0 . ( x )  (3 -42 )

K j = l  J J

In th is  expansion,  the funct ions  0 j  (x) are  g iven ,  and are unknown

c o e f f i c i e n t s  determined during t r a i n i n g .  The p o t e n t ia l  funct ion  assoc­

iated w i th  any pa t te rn  point is g iven ,  as in the d e t e r m in i s t i c  case,

by m _
K(x,x.  ) = E X, 0 ( x ) 0 , ( x , )  (3 -43 )

K j = l  J J J K

The recurs ive  a lg or ithm f o r  the determinat ion  o f  the approximation  

function  f|^()^ may be s ta ted  as fo l lo w s .  S ta r t in g  w i th  f^ ( )^  = 0 ,  when 

a sample pa t te rn  x^ is presented to  the machine, the p o t e n t i a l  function  

associated w i th  any p a t te rn  point Xj  ̂ is K(x,x^% and th ree  s i t u a t io n s  may
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a n s e :
  A  A

1) I f  e ü)̂  and f^ (x^ )  > 0 ,  o r  x^ i  and fo(î<^) < 0 ,  then

f ^ ( x )  = f ^ f x ) .  In o ther  words i f  the machine makes a c o r r e c t  c l a s s i f i c a ­

t io n  f o r  p a t te rn  x,  f ^ ( x )  remains unchanged. Note th a t  th is  is a mathemat­

ica l  expedient— the s i t u a t i o n  cannot occur.

2) I f  e oj. and fg (x^ )  < 0 ,  then f j ( x )  = fo ( x )  + a^k(>r,x, )

3) I f  x^ i  0). and f^ fx^ )  > 0 ,  then f ^ ( x )  = f ^ ( x )  -  K ( X | X j ) .

A f t e r  the p resenta t ion  o f  a l l  sample p a t te rns  to the machine,  the

p o t e n t ia l  func t ion  assoc iated w i th  Xj^^  ̂ is K ( x , x ^ ^ j ) .  I f  Xj^^  ̂ e w. and

^ k ^ \ + l ^   ̂ \ + l  ^ “ i ^ k ^ \ + l ^  < 0 , then

, (3 -44 )

I f  G Ü). and < 0 ,  then

^k+1 ^ k ^  “ k+1 K (X '% k + l ) '
(3 -4 5 )

I f  i  w. and fj^ ( \ + ] )  > 0 , then

(3 -4 6 )

The c o e f f i c i e n t  a|^, k = 1 , 2 , . . . ,  form a sequence o f  p o s i t i v e  

numbers s a t i s f y i n g  the condi t ions

y  = 0 (3 -4 7 )

Z a = <» (3 -48 )
k=l K
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1̂ ^̂  V  < »  (3 -49)

The harmonic s er ies  s a t i s f i e s  these c o n d i t io n s .

Tou and Gonzalez s t a t e  t h a t  f o r  the range from zero to  one,  the  

func t ion  f ^ f * )  converges to  the recogn i t ion  p ( '^ i /x )  w i th  increasing k.
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CHAPTER FOUR 

LINEAR PREDICTIVE CODING OF SPEECH

A major concern in speech recogni t ion  is the parametric representa ­

t io n  o f  the speech. Linear  p r e d i c t i v e  coding has been h igh ly  success­

fu l  in various speech a na lys is  and recogni t ion  p ro je c ts .  Market 's  a lgo­

r i thm is s t ra ig h t fo rw ard  and f a s t ,  so th a t  l i n e a r  p r e d ic t i v e  coding as 

formulated by Market [14]  is the basis fo r  the parametric  representa t ion  

used in th is  p r o je c t .

Ata l  and Hanauer [2 ]  s t a t e  t h a t  the vocal  t r a c t  can be represented  

as a d is c r e te  t im e -v ary in g  l in e a r  f i l t e r .  I f  i t  is assumed th a t  the  

v a r i a t i o n s  w i th  time o f  the vocal t r a c t  can be approximated w i th  su f ­

f i c i e n t  accuracy by a succession o f  s ta t io n a r y  shapes, i t  then would be 

possible  to d e f in e  a t r a n s f e r  funct ion  in the complex z-domain fo r  the 

vocal t r a c t .

Nonnasal voiced sounds have no zeros and are  th e re fo re  adequately  

represented by an a l l  pole recurs ive  f i l t e r .  Unvoiced and nasal sounds 

usual ly  include anti -resonances (zeros)  as wel l  as the resonances 

(p o le s ) .  The zeros l i e  w i th in  the u n i t  c i r c l e  in the z -p lane ;  hence 

each fa c t o r  in the numerator o f  the t r a n s fe r  funct ion  can be approxima­

ted by m u l t ip le  poles in the denominator.  Ata l  and Hanauer f u r t h e r  note  

tha t  zeros in most cases c o n t r ib u te  only to  the spectra l  balance and 

th a t  an a l l  pole model o f  the vocal t r a c t  can approximate the a f f e c t  o f
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o f  anti -resonances on the speech wave In the frequency range o f  i n t e r e s t  

to  any desired degree o f  accuracy.

The combined c o n t r ib u t io n  o f  the g l o t t a l  f lo w ,  the vocal t r a c t  move­

ment and r a d ia t io n  are  represented by a s in g le  recurs ive  f i l t e r  as 

shown below.

6n

I a. s
k=l k n-k

Time-Varying  
Linear  P red ic to r

Sn

The output o f  the l i n e a r  f i l t e r  a t  the n^^ sampling in s tan t  is 
P

where the p re d ic to r  c o e f f i c i e n t s  â  ̂ account fo r  the f i l t e r i n g  ac t ion  o f  

the vocal t r a c t ,  the r a d ia t io n  and the g l o t t a l  f lo w ,  and 6  ̂ represents  

the n^^ sample o f  the vocal-cord e x c i t a t i o n  (a p u ls e ) .  Equation (4 -1 )  

says th a t  the value o f  the speech wave a t  the n^^ ins tan t  is determined 

by the past p samples o f  the speech.

The t r a n s f e r  func t ion  o f  the l i n e a r  f i l t e r  is 

1T(z )

( 1 -  % a ^ z - k )
k=l K

(4 -2 )

For s t a b i l i t y ,  there  are p poles o f  T (z )  which are  real  or occur in 

conjugate p a i rs .

The number o f  c o e f f i c i e n t s  p required to  represent any speech seg­

ment adequately is determined by the number o f  resonances and
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antî - reasonances o f  the vocal t r a c t  in the frequency range o f  i n t e r e s t ,  

the nature  o f  the g l o t t a l  volume f low fu n c t io n ,  and the r a d ia t i o n .

For analysis,  A ta l  and Hanauer suggest twelve c o e f f i c i e n t s  a t  a sam­

p l ing  ra te  o f  10 KHz. The p r e d ic to r  c o e f f i c i e n t s  aj^, toge ther  w i th  the  

p i tc h  pe r io d ,  the rms value o f  the speech sample, and a b inary  parameter  

to  ind ica te  whether the speech is voiced or  unvoiced provide an e xce l ­

len t  approximation o f  the speech wave over a t ime in te r v a l  dur ing which 

the vocal t r a c t  shape is assumed to  be constant .  The vocal t r a c t  shape 

is not constant during speech production,  so Ata l  and Hanauer ad just  

these parameters every f i v e  to ten m i l l is ec o n d s .

H i s t o r i c a l  Development. [14]  Speech ana lys is  using the maximum 

l i k e l ih o o d  e st im at ion  method was developed by S. S a l to  and L. I ta k u ra  in 

1966 . In 1 9 6 8 , B.S. Atal  and M. R. Schroeder published a method f o r  

l i n e a r  p re d ic t io n  o f  the speech wave. In 1975, J. D. Markel observed 

t h a t  both o f  the basic ana lys is  equat ions,  independently developed, were 

d er iva b le  as special  cases o f  R. Prony's method o r i g i n a l l y  formulated  

in 1795 and extended to a lea s t  square formula t ion  as e a r l y  as 1924 [ 1 3 ] .  

From the ana lys is  equat ions,  moderate b i t - r a t e  speech transmission  

systems have been developed. Marke l 's  paper [ 1 7 ]  shows t h a t  the basic  

analys is  approach is transformable in to  a formant e x t r a c t io n  a lg or i thm  

and, moreover demonstrated th a t  high q u a l i t y  formant t r a j e c t o r y  estima­

t io n  is possible  even fo r  the more d i f f i c u l t  problem of c lo s e ly  spaced 

formants and fa s t  t r a n s i t i o n s .  Markel developed an a lgor i thm  th a t  is 

l i n e a r ,  f a s t  and accurate .  Because o f  the speed and accuracy o f  Mar­

kel 's a lg or i thm ,  i t  is extremely a t t r a c t i v e  f o r  the task o f  phoneme, 

word, phrase or  sentence coding.
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An A u to c o r re la t io n  Method o f  L inear  P red ic t ion  

In 1973» Markel  and Gray published an a r t i c l e  conta in ing  a recur ­

s ive  s o lu t io n  f o r  the p r e d ic to r  c o e f f i c i e n t s  [ 1 4 ] .  Given a set  o f  N 

data po ints  {x^}  not a l l  equal to  zero ,  where = 0 f o r  n < 0 or  n > N-1,

the c o r r e l a t i o n  sequence f o r  these data w i l l  be denoted by { r ^ }  where

N - l - | k |

I
n=0

To est im ate  the d is c r e t e  spectrum o f  t h e i r  a u to c o r r e la t io n  sequence,  

an autoregression f i l t e r  is defined w i th  a t r a n s f e r  funct ion  given by 

d e f i n i t i o n  as

" ( z )  = ÂTET (4 -4 )

where a is a gain term,

M , A ,
A (z )  = 1 + I  a z = % a z , a = 1 (4 -5 )

£=1 ^ £=0  °

M is the number o f  c o e f f i c i e n t s ,  and a^ are  the p re d ic to r  c o e f f i c i e n t s .  

The autoregression f i l t e r  has a u n i t  sample response th a t  s a t i s f i e s  the  

equation

m
4 k ' “ \ o =  I  V k - «  (4 -S )

£=1
where 5^^ is the Kroneker d e l t a .

Assuming s t a b i l i t y  o f  the f i l t e r ,  i t s  a u t o c o r r e la t io n  sequence can 

be expressed as

CO CO

^£ " n "  ^k-£*^k-v "  kl_=^k^k + |£ -  v| (4 -7 )

Assuming c a u s a l i t y  o f  the f i l t e r  (hj  ̂ = 0 f o r  k < O^the lower l i m i t  in

each o f  the sums can be replaced by a f i n i t e  term ra ther  than minus
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i n f i n i t y .

I f  equation (4 -6 )  is r e w r i t t e n  as 
m

'  j ,  \ " k - r  "o  '  ' ('"®>

m u i t i p i i e d  by h, and summed over a l l  values o f  k, the r e s u l t  k-v
m

oh _ = y a . p .  is obta ined.  Since the f i l t e r  is causai ,  h = 0-V & & - V  ’  - V

f o r  V > 0. From equation (4 -6 )  i t  is seen th a t  h^ = o.  Thus, equation

(4 -6 )  can be r e w r i t t e n  as 
m
I  a p _ = 0 , fo r  V > 0 (4 -9 a )

1=0 *  *  V
m 2

• I  a p = a , f o r  V = 0  (4 -9b)
1=0 ^ *

Since there  are  M + 1 parameters in the autoregression f i l t e r ,  a  ̂

through a^ and o, a set  o f  M + 1 requirements must be met.  In p a r t i c u ­

l a r ,  i t  is required th a t  the f i r s t  M + 1 values o f  the f i l t e r  au tocorre ­

l a t i o n  values match the f i r s t  M + 1 data  a u t o c o r r e la t io n  values; tha t  

i s ,

’’k ^ Pk'

This requirement along w i th  equations (4 -9a )  and (4-9b) y ie ld s  
m

I 3 ;^  _ = 0, V = 1 , 2 , . . . , M  (4 - lO a)
1=0 ^  ^

and

m
I  a r  = o (4 - lOb)

1=0 ^  ^

Equations (4 - lOa)  and (4 - lOb) are  i d e n t i c a l  to  those obtained in the  

formulat ion o f  the inverse f i l t e r  and i t s  e q u iv a len t  problems. Equa­

t ions  (4rlOb) gives  an expression fo r  a gain term to be used in
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approximating the spectrum o f  the o r i g i n a l  e r r o r .

The c o e f f i c i e n t s  a^,  a^,  . . . , a^ can be obtained by e i t h e r  

solv ing the set  o f  M simultaneous a u to c o r re la t io n  equations indicated  

by equation ( 4 - 10a) or  by minimizing the quadrat ic  form 

m m
a.  r .  a . w i th  <

o"  \ l o  i o  “  '
(4 -11)

3 0
Since g ~  = 0 gives p re c is e ly  (4 - lOa)

u

Introducing matr ix  n o ta t io n ,  equations (4 -10) and (4 -11) are  

re w r i t t e n  re sp e c t ive ly  as

and

R A = B 
m

where

m

I ,m- 1

m- 2

**m *"m-l ^m- 2  ' ""o

/  = [  1 , a^,  a^,  . . . , a ^ ]  , and

T r  2
B = La  , 0 , 0 , . . . , O j

( 4 - 12a)

(4-12b)

(4 -13)

( 4 - 1 4a) 

( 4 - l4 b )
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Markel and Gray observed th a t  the quadra t ic  forms Q and Q, expressed 

in equations ( 4 - i l )  and (4 -12 )  along w i th  the p o s i t i v e  d e f i n i t e  property  

o f  the covariance or  a u to c o r re la t io n  m a t r ix ,  R", suggested the i n t r o ­

duction o f  an inner product d e f i n i t i o n  such th a t  Q can be a norm square 

o f  a vector  in th a t  space. This approach lead to a compact d e r iv a t io n  

o f  the recurs ive  so lu t ion  to equation ( 4 - l O a ) .

The Inner Product Formulat ion . Let polynomials F ( z ) ,  F ^ ( z ) ,

G C z ) ,  and U(z)  be defined by the summations

FCz) = I  f u z - k ,
k = - o o

F * ( z )  = Ï  f ^ * z ^ ,  ( 4 - 1 5a)
k=-o

and

G(z) = I  g .z
k=-oo

-k
U(z)  = 'I u . z - k  (4-15b)

Where

+  1 *
F (z)  = F(—) ,  fo r  f|  ̂ real  and fj^ is the complex conjugate o f  fj^.

I f  RCz ) is the Z -t ransform o f  the c o r r e la t io n  sequence { r^ ^ ,  then 

by a p p l ic a t io n  of  the Z-t ransform invers ion i n t e g r a l ,  we have that

""k ~ '‘ - k
1

2irj R (z )z  'd z . (4 -16)

where r  is a simple closed contour which e n c i rc le s  the o r ig in  o f  the 

Z-p lane .  I f  the u n i t  c i r c l e  is chosen as the contour,  then.

*̂ k 2tt

IT

■TT (4-17)
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where j  = Now, i f  the inner product is  defined as

< F ( z ) ,  G(z )>  = ^

1
Ztt

R (z )F*Cz)G Cz)z" ’ dz

RCe-i V*(.e-'^GCe-j®)de,

( 4 - l 8 a )

(4-18b)

then i t  is c le a r  th a t  the a u t o c o r r e la t io n  sequence r . c a n  be w r i t t e n  as

(4 -19 )

Thus, the inner product formula t ion  al lows the a u to c o r r e la t io n  equation  

( 4 - 10a) to be re w r i t t e n  as

m
I  a .  <z z *̂ > = 0,  k = 1, 2,  . . . ,  M 

1=0 '

(4 -20a)

or  from l i n e a r i t y  and the assumption o f  real  c o e f f i c i e n t s  { a . }  ,

m

= 0,  k = 1, 2 ,  M, (4-20b)

or by a p p l ic a t io n  o f  equation (4 -5 )

< A ( z ) , z = 0, K =  1, 2,  M (4-20c)

Hence, A(z)  is orthogonal to z ^ f o r  K = 1, 2 ,  M.

Markel and Gray show th a t  equations (4 -18 )  a re  a v a l id  inner  

product d e f i n i t i o n  by showing th a t

1) Conjugate symmetry holds,  th a t  is 

< F ( z ) ,  G(z)>  = < G ( z ) ,  F ( z ) > *

2) L i n e a r i t y  holds,  th a t  is
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< c F ( z ) ,  aG(z) + bU(z)> =

ac* < F ( z ) ,  G(z)>  + b c * < F (z ) ,  U(z)>

where a ,  b,  and c are  complex constants,  and

3 ) the inner product has a p o s i t i v e  norm, th a t  is 

< F ( z ) ,  F (z )>  >0,  f o r  F(z )  ^ 0 

Other useful  p ro p e r t ies  are th a t

<z " " f ( z ) ,  z “" g ( z ) > = < F ( z ) ,  G(z)> (4 -21)

and

< F ( z ) ,  G(z) > = < 1, F+(z)  G(z)> (4 -22 )

Equations (4 -18 ) a re  expressed as transform domain r e la t io n s h ip s .  They 

can a lso  be expressed in the d is c r e t e  sample domain as

< F ( z ) ,  G(z) > = < l  f^z I z  9 &
| =̂-co £ss-oo

00 00

= I I 'Ak=-oo Z=-co

00 00

"J -oo J-oo (4 -23)

The quadra t ic  Q given in equation (4 -11) can be e q u iv a le n t ly  w r i t t e n  in 

inner product no ta t ion  as

Q = < A ( z ) , A (,z) > (4 -24 )

and the gain term given in equation (4 - lOb) as
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o f = < A ( z ) ,  1 > (4 -2 5 )

I t  fo l lows a lso  th a t  Q can now be expressed as the norm square

11 A(z)  11^ = < A ( z ) ,  A (z )>  = Q. (4 -26 )

o f  the vec tor  A(z )  in the inner product space.

The Recursive Solut ion

To r e c u rs iv e ly  solve f o r  the vector  a ( z ) ,  s t a r t  w i th  an inverse

f i l t e r  o f  degree M and proceed to  an inverse f i l t e r  o f  degree M + 1

w ith  a f i n a l  r e s u l t  A(z)  = A ( z ) . Let A (z)  represent the inversem m

f i l t e r  o f  degree M

‘ J .  (4 -27 )k=0

where a„ = 1 fo r  a l l  M. I n i t i a l l y  i t  is assumed th a t  a l l  c o e f f i c i e n t s  mo

amk r e a l ,  i t  w i l l  be l a t e r  shown th a t  th is  assumption is j u s t i f i e d .

By applying equations ( 4 - 2 1 ) ,  (4 -22 )  and (4 -16 ) to  the o r th o g o n a l i ty

property  ( 4 - 2 0 ) ,  i t  is poss ib le  to ob ta in  a polynomial  B^(z) o f  degree

m + 1 in terms o f  the polynomial  A^(z) o f  degree m th a t  is a lso

■* 1
orthogonal to powers o f  z

Thus,

= 0 , & = 1 , 2  m

Def in ing  an index -k  = -m-1 + Z and a polynomial
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B^(z) = z  . (4 -29 )

a new o r th o g o n a l i ty  r e la t io n s h ip

<z"^,  B^^z)> = 0 , k = 1 , 2 , . . . ,  m (4 -30)

is obta ined.  From equations (4 -27) and (4 -29)

m
I

k=0

or

m+1
' m k )  = j ,  ^ ( 4 - 3 " ' )

" h e r e  “  ®m, m + l- k  m+1 =  *m o =  P ° 'Y -

nomials A^(z) o f  degree m and B^(z) o f  degree m+1 have been defined.

Each is orthogonal to the powers o f  z from z  ̂ to z Now, i f  A ^ ^ j ( z ) ,  

a polynomial o f  degree m+1 , can be found such th a t :  ( 1) the c o e f f i c i e n t s

o f  z  ̂ a re  equal to 1 , and (2 ) A^^^(z) is orthogonal to the powers o f
B 1 —• 1 )

Z from z to z , then the recurs ive  procedure w i l l  have been solved.

Any l i n e a r  combination o f  A^(z) and B^(z) w i l l  be a polynomial

o f  degree m+1 since B^(z) is o f  degree m+1. Any l i n e a r  combination o f

A (z)  and B (z)  w i l l  be orthogonal to the powers o f  z from z ' to z ^ m m

as a consequence of equations (4 -28) and ( 4 - 3 0 ) .  Since the c o e f f i c i e n t  

o f  z°  is u n i ty  In A^(z) and zero in B ^ ( z ) , the l i n e a r  combination

( ' )  '  4 j z )  + k ^ B J z )  (4 -32)

where k^ is some, as o f  y e t ,  unspeci f ied constant,  de f ines a polynomial  

A ^ l  (z)  o f  degree m+1 s a t is fy in g  the f i r s t  requirement.  To s a t i s f y  the
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second requirement,  I t  is on ly  necessary to  choose k so th a t  A . , (z )
m m+1

is orthogonal to z t h e r e f o r e ,  d e f in in g

B^(z)> (4 -33)

and

3 = < z - (m +1 ) ,  A^^z)> (4 -34)
m

the inner product < ^ , A ^ ^ ( z ) >  = 0

immediately re su l ts  in

k„ = -  a / 3  . (4 -35)m m m

By applying  equation ( 4 - 2 3 ) ,  I t  can be r e a d i l y  noted th a t  i f  A^(z)  has

only  real  c o e f f i c i e n t s ,  then a and g w i l l  be r e a l .  There fore ,  k and’ m m  m

f i n a l l y  the c o e f f i c i e n t s  o f  A^^^(z) w i l l  be r e a l .

Since from equation ( 4 - 2 7 ) ,  A^ = 1 is the s t a r t i n g  p o in t ,  the

assumption o f  real  c o e f f i c i e n t s  in the d e r iv a t io n  was j u s t i f i e d .  I n i t i a l  

condit ions in the recursion are  obtained from equations (4 -33) and (4 -34)  

as

= <z \  Bg(z)>  = <z ^ , z ' > =  r^ (4-36a)

= <z \  Ag(z)>  = <z \  z°>  = r^ (4-3éb)

and

®oo =  ̂ (4-36c)
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The recu rs ive  s o lu t io n  o f  the a u t o r r e la t i o n  equations is com­

p l e t e l y  s p e c i f ie d  a t  th is  po in t  in terms o f  the above i n i t i a l  condi t ions

and the parameters a , 3 , and k . At step m, knowing k , equationm m  m m

(4 -3 2 )  is used to determine A . , ( 2 ) in terms o f  A (2 ) and B ( z ) . Com-m+1 m m

p u t a t i o n a l l y ,  from equations (4 -27 )  and (4-31b)

^m+1,2

= '  - '  = "

*^m^m,m+l-Jl , 2 = l , 2 , . . . , m  (4 -37 )

\  k^ , S, = m+1

Based upon the inner product fo rm u la t io n ,  i t  is poss ib le  to obta in  

several  d i f f e r e n t  computational  expressions f o r  the parameters and 

3^ in terms o f  the f i l t e r  parameters a^^, k = 0 , 1 , . . . ,  m a t  recursion m.

F i r s t ,  by apply ing equations ( 4 - 2 9 ) ,  equat ion (4 -3 3 )  can be equi­

v a l e n t l y  w r i t t e n  as

c. =  ( i )  >m m'z

= < A ^ ( z ) , 1 > (4 -38a)

By applying equation ( 4 - 2 3 ) ,  the computational form is e q u iva len t  to  

m

“m '■ii —u

By applying the o r th o g o n a l i t y  r e la t io n s h ip  equation ( 4 - 2 0 a ) , can 

a lso  be w r i t t e n  as

“ n, =  ^
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in a d d i t io n ,  by applying  equations ( 4 - 2 1 ) ,  (4 -22 )  and ( 4 - 2 9 ) ,

A(i), A(i) >

\  ^ (4 -38d)

Computationa l ly,  from equation ( 4 - 2 3 ) ,  equations (4 -38c) or  (4 -38d) are  

equ iva len t  to

m m

“  jI q J q ®mi ^ i - k  ^mk (4 -38e)

The c o e f f i c i e n t s  a can a lso  be c a lc u la te d  r e c u r s iv e ly .  Fromm

equation (4 -38a)  and equat ion ( 4 - 3 2 ) ,

V i ■%" 'Vl "

<A (z )  + k B ( z ) , 1> -  <A ( z ) ,  1 > m mm m

k^<B^(z) ,  1 > (4 - 3 8 f )

But from equation (4 -29) and equation ( 4 - 2 2 ) ,

= k^ <z , A^(z)  >,and hence w i th  equation ( 4 - 3 4 ) ,

the computational  form is

V l  = “ m + V m '  (4-38g)

or  by applying ( 4 - 3 5 ) ,
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V i " “m C'V W-38h)

By applying  equation (4 -19 )  and equation (4 -21 ) to the d e f i n i t i o n  

equat ion ( 4 - 3 4 ) ,  is obtained as 

m

Vl-il (4-39:)

By app ly ing the o r th o g o n a l i ty  r e la t io n s h ip  ( 4 - 2 0 a ) , 6^ can a lso  be 

w r i t t e n  as

M a rk e l 's  Algori thm

The re curs ive  so lu t io n  t h a t  gives the p re d ic to r  c o e f f i c i e n t s  can

be described in a lg o r i th m ic  terms as fo l low s:  The q u a n t i t i e s  r , r ,
o I ,

r^ a re  g iven.  At the complet ion o f  steps m, the q u a n t i t i e s  a^^

a a , a , B have been c a lc u la t e d .  To obta in  step m+1, k isml mm m m m

obtained from equation ( 4 - 3 5 ) ,  the c o e f f i c i e n t s  { a ^ ^  k} are  obtained

from equation ( 4 - 3 7 ) ,  and are  obtained from equations (4 -38)

and ( 4 - 3 9 ) .  As i n i t i a l  values f o r  m = 0 ,  a = l , a  = r and g = r , .oo o o o I

This procedure is c a r r ie d  out u n t i l  step M is obtained y ie ld in g  the  

inverse f i 1 t e r
m

A(z)  = 1 + % a^z where â  ̂ = a^^,  f o r  k = 0 ,  1, . . . ,  M.

The gain term a is by inspection o f  equation (4 -24) and ( 4 - 3 8 a ) ,

a = (4-4o)
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Equation (4 -38b)  gives a physical  i n t e r p r e t a t io n  o f  the term,

which is: is p re c is e ly  the leas t  squares e r r o r  or  energy output from

the inverse f i l t e r .  Also a is equal to Q. , the value  o f  the quadrat ic
m m

from equation (4 -11) which Is normalized a t  step m. Thus, i f  { r  } is
m

a normalized a u to c o r re la t io n  sequence, where r = 1 , a w i l l  s a t i s f y  the
o m

r e la t io n s h ip  0 <  ̂ < . . . <  = i (s ince  each a d d i t io n a l  stage

must decrease the squared e r r o r  below th a t  o f  the previous s tag e ) .

I I '18mI is bounded by the squared e r r o r  a^. The recurs ive  gain term 

has the Important physical i n t e r p r e t a t io n  th a t  i f  11  ̂|< 1, the poly­

nomial A ^^ j (z )  corresponds to a s ta b le  f i l t e r  and i f  11̂  | > 1 , A ^ ^ ( z )  

corresponds to  an unstable f i l t e r .  Thus, by use o f  the recursion  

procedure f o r  solv ing equation ( 4 - l O a ) ,  i t  is possib le  to t e s t  fo r  

s t a b i l i t y  a t  any step M wi thout a c t u a l l y  having to apply a polynomial  

ro o t -so lv in g  program to see i f  any roots l i e  outs ide  the u n i t  c i r c l e .

I f  the polynomial  A^(z) is unstable a t  stage m, a l l  f u r t h e r  recursions  

remain unstable .

Markel a lso  determined th a t  M is not a strong function  o f  the 

p a r t i c u l a r  speech sound. However, i t  is a strong funct ion  o f  the 

system sampling ra te .  For 6< Fg<l8 KHz, the equation M = F  ̂ + y 

where Y = 4 or  5 and Fg is truncated to a ones or  tens decimal  

place ,  has been found g e n era l ly  s u f f i c i e n t  fo r  the a n a ly s is .  The 

physical  in t e r p r e t a t io n  o f  th is  re s u l t  is simply th a t  independent o f  

the sampling r a t e ,  roughly one.complex pole p a i r  is required to span 

every 700 Hz.
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Lumped L inear  Pred ic t ion

Having presented the above fo rm ula t ion ,  a rad ica l  departure  is 

made from i ts  normal a p p l ic a t io n .  Without g re a t  e f f o r t ,  normal speech 

can be produced w i th  few v a r i a t i o n s ;  th a t  i s ,  the speech wave f o r  a 

given ut terance is r e l a t i v e l y  unchanged from one time to  another .  As 

a worse case,  cerebra l  palsy v ic t im s  can produce speech th a t  is under­

standable to a l i s t e n e r  a f t e r  a " t r a i n i n g "  per iod ,  but t h e i r  speech 

wave would conta in a g rea t  v a r ia t io n s  f o r  a repeated u t te ra n c e .  This is 

a function o f  the lack o f  motor contro l  tha t  can a f f e c t  the g l o t t i s  

and the a r t i c u l a t o r s  as severe ly  as the l imbs. Note th a t  physical  or  

emotional  stress has a compounding e f f e c t  on t h e i r  motor contro l  and 

exacerbates speech product ion.

I t  was as a consequence o f  the above cons idera t ions ,  th a t  prototype  

template matching was considered the leas t  appropr ia te  approach fo r  pa t ­

t e rn  recogni t ion  o f  abnormal speech. Even though l i n e a r  p r e d i c t i v e  

coding gives what amounts to  a spectra l  representa t ion  o f  speech, the  

spectra l  d i f fe re n ce s  in abnormal speech might be so grea t  as to make 

template matching f u t i l e .  The p a t te rn  recogni t ion  approaches described 

in Chapter three appeared more s u i t a b le  fo r  the kinds o f  spectra l  v a r ­

ia t ions  th a t  were expected.

The d i f f i c u l t y  w i th  the standard a p p l ic a t io n  o f  LPC w i th  respect  

to p a t te rn  recogni t ion  stems from the fa c t  th a t  the s ize  o f  the t r a in in g  

sets is r e la te d  ( in  a non l inear  fashion) to the length o f  the pa t te rn  

vectors .  Tou suggests th a t  the s ize  o f  the t r a i n i n g  sets per class  

( the  number o f  vectors)  should be ten times la rg e r  than the pa t te rn
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vector  length (number o f  elements per v e c t o r ) .  I f  we sample a t  10 Kz 

and solve  f o r  12 p r e d ic t o r  c o e f f i c i e n t s  f o r  50 segments (2 0 0  samples 

in length) o f  an u t te ra n c e ,  a t o t a l  o f  600  c o e f f i c i e n t s  would be re ­

qui red f o r  t h a t  u t te ra n c e .  We could expect th a t  as many as 4000 

t r a i n i n g  vectors per c lass  f o r  p a t te rn  re cogn i t ion  would be needed.

I f  th is  were the case,  the s o lu t io n  to the problem would c l e a r l y  not  

be p r a c t i c a l .

As mentioned e a r l i e r ,  a f t e r  the wave has been d i g i t i z e d ,  o f ten  

pre-emphasized and m u l t i p l i e d  by a Hamming window, segments o f  the  

speech are scanned one a t  a t ime e i t h e r  continuous ly  or  in an over­

lapping manner. These segments are  w i t h in  the range o f  100 to  300 

samples. A very accurate  re p rese n ta t io n  o f  the speech wave Is ob ta ina ­

b le  from t h is  procedure.

The approach taken here is to  lump a l l  spec tra l  in formation  

o f  an u t terance  by so lv ing  fo r  one set o f  p re d ic to r  c o e f f i c i e n t s .  That  

I s ,  Instead o f  solv ing f o r  a set  o f  p r e d ic to r  c o e f f i c i e n t s  f o r  speech 

wave segments, a set  o f  c o e f f i c i e n t s  fo r  the e n t i r e  speech wave is ob­

ta ined wi thout segmentation.  I t  is not possib le  to recover spec tra l  

Information from the inverse f i l t e r  by doing t h i s .  However, one might 

expect th a t  enough in formation about an u t te ranc e  is contained in these 

lumped c o e f f i c i e n t s  so th a t  coding o f  the u t terance  f o r  machine recog­

n i t i o n  could be accomplished. The major question is whether the u t t e r ­

ance is uniquely coded: and i f  i t  is not,  how large  a vocabulary o f

words can be coded in t h i s  manner to make t h is  technique v i a b l e .  The 

j u s t i f i c a t i o n  f o r  t h is  approach has been g iven.  The e f f i c a c y  o f  the  

approach can be found through exper imentat ion .
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CHAPTER 5 

EXPERIMENTAL RESULTS 

Experiments

The primary o b je c t iv e  o f  the required experiments was to  determine  

which learn ing  a lg or i thm  would perform best f o r  p a t te rn  recogn i t ion  using 

the lumped l i n e a r  p r e d i c t i v e  c o e f f i c i e n t s  described in Chapter 4. Best 

performance was measured by the  r a t e  o f  convergence o f  the a lg o r i th m  and 

the subsequent recogni t ion  e r r o r  obtained using a given a lg o r i th m .  Rec­

o g n i t ion  e r r o r  is the number (percentage) o f  words tha t  were not recog­

nized during p a t te rn  re c o g n i t io n .  In c o r re c t  c l a s s i f i c a t i o n  o f  words 

did not occur.

The experiments were performed as fo l lo w s .  Iso la ted  words were 

recorded on analog tape and then d i g i t i z e d  a t  approximately  6000 Hz over  

a two-second i n t e r v a l .  A t r i g g e r  s ignal  was used to i n i t i a t e  analog  

to  d i g i t a l  conversion on one t ra c k  o f  the tape and speakers were required  

to  say a word immediately a f t e r  a t r i g g e r  s ig n a l ,  thereby assur ing th a t  

the  e n t i r e  u t te rance  was sampled.

Based on p lo ts  of  the speech wave (see Figure 5 -1 )  f o r  var ious  

words an attempt to  i s o la te  the most s i g n i f i c a n t  parts  o f  the word was 

done as fo l lo w s .  The beginning po in t  was determined by searching f o r  a 

d i f f e r e n c e  between ten consecutive samples th a t  was g re a te r  than a
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preset th resho ld . The threshold  was decided upon a f t e r  looking a t  sam­

ples whose d i f fe re n c e s  were less than a preset th resho ld . This procedure 

does not take in to  account the fo l lo w in g  kinds o f  problems (2 6 ) .

1. Weak f r i c a t iv e s  ( / f  th ,  h / )  a t  the beginning or  

end o f  an u tte ra n c e .

2. Weak p lo s iv e  bursts ( / p ,  t , k / ) .

3. F ina l nasals .

4 . Voiced f r i c a t iv e s  a t  the ends o f  words which 

became devoiced.

5. T r a i l in g  o f f  o f  c e r ta in  voiced sounds; such as 

the f in a l  / ! /  becomes unvoiced sometimes in words 

l i k e  " th re e "  ( / t h - r - i - / )  or "b in a ry"  ( / b - a I - n - e - r - i / ) .

The end p o in t d e te c t io n  procedure described above was not expected to  

is o la te  a l l  o f  the acoustic  or s p ec tra l  in form ation  contained in an 

u tte ran ce , but i t  was intended to and did is o la te  the portions o f  the 

utterances th a t  would be adequate fo r  these experiments. Again, by 

observing samples o f  the d a ta ,  i t  was determined th a t  out o f  the approx­

im ately twelve thousand samples per word th a t  approxim ately nine thou­

sand contained the u tte ran ces . The technique employed here iso la te d  

between 50% and 100% o f  these nine thousand samples.

The recordings were made in a closed but not sound-proofed room. 

Ambient noise came p r im a r i ly  from c e n tra l  a i r  co n d it io n in g .

F i f te e n  enunciations o f  ten words were used. Ten o f  these were 

fo r  t r a in in g .  The o th er  f i v e  were fo r  p a tte rn  recogn it ion  per se.

E ight p re d ic t iv e  c o e f f ic ie n ts  were c a lc u la te d .  This number o f
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c o e f f ic ie n ts  was chosen a r b i t r a r i l y .

In a d d it io n  to  the above, i t  should be mentioned th a t  no normal­

iz a t io n  o f  the speech waves (see Chapter 2) was done. However, amplitude  

n o rm a liza tio n  was done on each se t o f  p re d ic t iv e  c o e f f ic ie n t s .  The sets  

o f  c o e f f ic ie n ts  were d iv ided  by the la rg e s t  in magnitude o f  the c o e f f i ­

c ie n ts  in each set as an attem pt to  a c c e le ra te  the ra te  o f  convergence 

during t r a in in g .  The r e la t i v e  values o f  the c o e f f ic ie n ts  w ith  respect  

to  each o th er  in a given set were unchanged, but s ig n i f ic a n t  magnitude 

d if fe re n ce s  between sets o f  c o e f f ic ie n ts  fo r  a given word were removed.

The experiments were performed tw ic e . The f i r s t ,  w ith  normal 

speech, was used to  debug the  various programs. The second, was a twenty- 

f iv e  year old female a f f l i c t e d  w ith  cerebra l pa lsy .  Her speech was sim­

i l a r  to th a t  o f  a person under the in f lu e n ce  o f  a s ed a tive  o r  another  

kind o f depressant drug. Although her speech was somewhat s lu r re d ,  i t  

was i n t e l l i g i b l e .  The re s u lts  given below are  w ith  th is  s u b je c t 's  speech.

Words were se lec ted  from the t r a in in g  l i s t  o f  words and phrases 

used by the Cerebral Palsy Center in Norman, Oklahoma. The words are  as 

f o 11ows:

hungry

sleep

eat

th i  rs ty

happy

bed

play

go
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T.V.

stop

Results

See Chapters 3 and 4 and the  appendices fo r  exp la n a tio n s  and exam­

ples o f  the various  techn iques , f low charts  and examples th a t  a re  a p p l i ­

cable  to  the  items below.

L in ear  E rro r  C o rrect io n  (LEG). This program was executed w ith o u t  

p a tte rn  d e le t io n  (see below). Convergence to  s o lu t io n  w eight vectors  

using th is  a lg o r ith m  was not achieved fo r  any o f  several vocabulary s izes  

and d i f f e r e n t  word groups. I n i t i a l  weight vectors  th a t  were used inc lud­

ed 1) ze ro -w e ig h t v e c to rs ,  2) the  average o f  the t r a in in g  vectors  fo r  

each c la s s ,  and 3) se lec ted  w e ig h t-v ec to rs  from each c la s s .

I t  is  important to  note th a t  by a llo w in g  s u f f i c i e n t  time conver­

gence using th is  approach might have u l t im a te ly  been achieved; f o r ,  as 

w i l l  be seen l a t e r ,  j u s t  two classes could re q u ire  over 5000 i te r a t io n s  

before  convergence was ach ieved . For m u lt ic la s s  t r a in in g  s e ts ,  i t e r a ­

t io n s  o f  t h is  s iz e  are  fo r  a l l  p r a c t ic a l  purposes useless.

LEG w ith  P a tte rn  D e le t io n . This approach g r e a t ly  acce le ra ted  

the  ra te  o f  convergence to  s o lu t io n  weight vectors  fo r  the m u lt ic la s s  

case. In th is  experim ent, p a t te rn s  th a t  s a t is f y  d is c r im in a n t  functions  

were de le ted  from the t r a in in g  classes during execution o f  the program.

R e c a ll in g  from Chapter 3 ,  the co nd ition  to  be s a t is f ie d  was th a t

f o r  a given p a tte rn  x belonging to  c lass w . ,

D . ( 3̂  > D j (x )

fo r  a l l  i ,  j  = 1, 2 ,  . . . ,  M, where i ^ j .  I f  a given p a t te rn  s a t is f i e s

th is  c o n d it io n ,  then th e re  is no reason to  keep i t  in the t r a in in g  p a t-
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tern  c la s s ,  and the to t a l  number o f  t r a in in g  p a tte rn s  would be reduced 

as convergence proceeds. The g re a t  improvement in the ra te  o f  conver­

gence was unexpected. Convergence was achieved in tw e n ty - fo u r  i t e r a t io n s  

fo r  the words "go", " e a t " ,  "bed", "happy", "s le e p " ,  and " t h i r s t y " .  The 

recogn it ion  e r ro r  was 50%. The words th a t  were not recognized were " e a t" ,  

"bed", and "s le e p " .  This  reco g n it io n  e r ro r  is  considered to  r e s u l t  p r i ­

m a r i ly  from the s iz e  o f  the t r a in in g  c lasses.

Piecewise L inear E r ro r  C orrection  (PWL). This approach proved to  

be more successfu l.  The p a t te rn  d e le t io n  technique was not a p p lie d  in 

th is  program, but s im i la r  b e n e f i ts  are expected when i t  is a p p l ie d .  

Solu tion  weight vectors  were sought fo r  a l l  d i s t i n c t  p a irs  o f  words in 

the vocabulary. Convergence was obtained fo r  every word grouping, but 

w ith  g re a t  d i f fe re n c e s  in the ra te  o f  convergence fo r  d i f f e r e n t  pa irs  o f  

words. For instance, "ho t"  and "go" converged in only  n ine i t e r a t io n s ;  

whereas, "hot"  and " e a t"  required  745 i te r a t io n s  fo r  convergence. As 

many as 5,000 plus i t e r a t io n s  were required fo r  some o f  the p a irs .

The reco g n it io n  e r r o r  var ied  w ith  the vocabulary s iz e .  For e ig h t  

words, "s le e p " ,  " e a t " ,  " t h i r s t y " ,  "happy", "bed", " p la y " ,  "go" and 

"hungry", the reco g n it io n  e r ro r  was 12%. " T h irs ty "  was not recognized.  

When " T .V ."  and "stop" were added to  th is  l i s t ,  the e r r o r  increased to  

as much as 37%. F a i lu re  occurred w ith  " t h i r s t y "  and "p la y "  In one in ­

stance and w ith  " t h i r s t y " ,  "p lay"  and "stop" in another t e s t .  The recog­

n i t io n  e r r o r  changed w ith  d i f f e r e n t  enunciations o f  the same word; fo r  

Instance, a d i f f e r e n t  enunc ia tion  o f  "happy" increased the e r r o r  fo r  a 

ten word vocabulary to  40%.
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Frac t io n a l E rro r  C orrection  (FEC). This approach gave re s u lts  

th a t  were s im i la r  to  those above when app lied  w ith  PWL. When FEC was 

app lied  to  LEG, convergence was achieved, but the magnitudes o f  the
ho

weight vectors  were extrem ely  la rg e  (on the  order o f  10 ) .  Numbers o f

th is  magnitude when ap p lied  to  d is c r im in a n t functions renders the func­

t io n s  meaningless.

The P o te n t ia l  Function Approach. P o te n t ia l  functions formed from 

Legendre polynomials and conta in ing  nine terms have the form

M
K ( x ,x . )  = 1 + Z x .x .  . ,

K I Kl

The X .  are c o e f f ic ie n ts  th a t  are determined as t r a in in g  proceeds. T h e ir

i n i t i a l  values are  a r b i t r a r y .  The x . a re  fea tu res  o f  the t r a in in g  p a t -
ki

te rn s . Adjustments to  the cumulative p o te n t ia l  functions  are  made

according to  the same ru les  th a t  apply to  the perceptron a lg o r ith m . So

f o r  nine terms, there  is no b e n e f i t  in terms o f  ra te  o f  convergence or

recogn it ion  e r ro r  to  be derived from th is  approach.

Using a d d it io n a l  terms in the polynomials obtained by applying

the techniques described in Chapter 3 , can only decrease the ra te  o f

convergence. This is because the terms would look l i k e  x .x ,  .x .x ,  . and
1 k l  J  k j

x ? x ^ .,  where i , J = 1, . . . ,  m, i ^ j  and n represents some power d e te r ­

mined from the recurs ion  r e la t io n  th a t  generates the Legendre polynomials, 

These a d d it io n a l  terms cannot increase the ra te  o f  convergence because 

the p re d ic t iv e  c o e f f ic ie n ts  are  between zero and one, so terms s im i la r  

in magnitude to  the o r ig in a l  nine terms o f  the LEG approach would be 

added to the fu n c t io n s . At b e s t ,  the ra te  o f  convergence o f  the LEG 

approach would be e q u a l le d ,  but i t  would not be increased by using
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p o te n t ia l  fu n c t io n s .

Increment C orrection  ( S t a t i s t i c a l ) . A program was w r i t te n  and 

executed, but th is  approach is considered unnecessary fo r  th is  problem 

fo r  the fo l lo w in g  reasons: adjustments in th is  and a l l  s t a t i s t i c a l

approaches considered In th is  study are  based s o le ly  on a p r io r i  know­

ledge o f  the class membership o f  the  t r a in in g  p a tte rn s .  No d is c r im in a t ­

ing cond itions  are  invoked in o rd er to  determine whether an adjustment 

should be made and a l l  weight vectors  a re  continuously  adjusted u n t i l  

convergence is achieved. Since the on ly  co n d it io n  fo r  convergence is 

th a t  = W|^()<), convergence is  assured as a consequence o f  the

f a c t  th a t  « 1̂ approaches zero as k, the  number o f  i t e r a t io n s ,  gets very  

la rge  (see Chapter 3 ) .
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CHAPTER 6 

DISCUSSIONS

The E ffec t ive n e ss  o f  Coding Words 

Using Lumped L inear P re d ic t iv e  C o e f f ic ie n ts

Lumping the p r e d ic t iv e  c o e f f ic ie n ts  so th a t  one set o f  e ig h t  or  

more c o e f f ic ie n ts  could code an e n t i r e  word represents a new approach. 

Word production can be represented as a s er ies  o f  events in time and 

those even ts , using lumped l in e a r  p re d ic t io n ,  a re  considered, in aggre­

g a te ,  unique fo r  s p e c t r a l ly  d i f f e r e n t  words. This approach was chosen 

p a r t ly  because i t  is com puta tiona lly  a t t r a c t i v e  and b e t te r  s u ited  fo r  

a p p l ic a t io n  in various lea rn in g  a lg o rith m s; th a t  i s ,  the choice o f  

e ig h t  or more c o e f f ic ie n ts  fo r  the coding o f  words o f fe r s  considerab le  

computational advantages over several hundred c o e f f ic ie n t s .

Coding o f  even a l im ite d  number o f  words using th is  approach, 

increases the l ik e l ih o o d  o f  developing a usefu l machine fo r  abnormal 

word reco g n it io n  in the near fu tu re .  Cerebral palsy v ic t im s  o fte n  use 

a word board th a t  contains useful words and phrases. The numbers zero  

through nine and the a lphabet are  a ls o  on th is  board. The user points  

to  the a p p ro p r ia te  l e t t e r  to  sp e ll  a word or to  words and /or phrases to  

form a sentence. This is done when t ry in g  to  communicate w ith  someone 

who does not recognize cerebra l palsy speech and when using new words.
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This p o in tin g  process is ted io u s , slow and f r u s t r a t in g  to  both the user

and to the In te r  locato r Using the  lumped l in e a r  p r e d ic t iv e  approach

o f  th is  study, these words can be coded fo r machine re c o g n it io n .

Some o f the words found on these word boards are  the fo l lo w in g :

Nouns Verbs Places-Things P repositions

daddy go school in

mommy come home o f

s is t e r eat bed behind

brother d r in k book through

you car beside

i t typewri t e r between

I hot on

me cold over

under

below

up

down

Comparisons o f  Various Learning Algorithms

Piecewise L in ear E rro r C o rre c t io n . Although the best re s u lts  

(7 out o f  8 words c o r re c t ly  recognized) were obtained using th is  a lgo­

r ithm , i t  is not the p re fe rre d  learn ing  a lg o r ith m . This is because 

separate weight vectors  are  generated fo r  every d is t in c t  p a ir  o f  words; 

th a t  is ,  fo r  ten words, th e re  would be f o r t y - f i v e  weight vectors  as 

opposed to ju s t  ten using l in e a r  e r ro r  c o rre c t io n .  C le a r ly ,  the memory
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s iz e  and time fo r  p a t te rn  reco g n it io n  would be considerab le  using th is  

approach.

L inear E rro r  C o r re c t io n . With the d e le t io n  o f  p a tte rn s  as t r a i n ­

ing proceeds, th is  a lg o r ith m  converges a t  an acceptab le  r a te .  The recog­

n i t io n  e r ro r  was h igh , but th is  can be g r e a t ly  Improved by Increasing  

the number o f  p a t te rn s .

I t  should be noted th a t  the e r ro rs  using LEG and PWL v ar ie d  w ith  

the te s t  words. This Is a fu r t h e r  in d ic a t io n  th a t  too few t r a in in g  p a t ­

te rns  were used. Indeed, I f  the  recommendation o f  Tou and Gonzalez 

concerning the s iz e  o f  the t r a in in g  c lasses w ith  respect to  the number 

o f  elements In the t r a in in g  p a tte rn s  had been fo l lo w ed , then e ig h ty  

t r a in in g  p a tte rns  per word would have been used fo r  the e ig h t  p r e d ic t iv e  

c o e f f ic ie n t s .  Based on the re s u lts  o f  these experim ents. I t  Is f e l t  

th a t  the reco g n it io n  e r r o r  can be g r e a t ly  decreased w ith o u t re s o r t in g  to  

t r a in in g  classes th a t  a re  q u ite  th is  la rg e .

F ra c t io n a l E rro r  C orrection  and P o te n t ia l  Functions . These 

algorithm s a re  considered In a p p ro p r ia te  fo r  th is  study fo r  the reasons 

given In Chapter 5.

S t a t i s t i c a l  A lg o rith m s . These o f f e r  no rea l advantage fo r  word 

re c o g n it io n .  These a lgorithm s are  slow to  converge because adjustments  

on weight vectors are  made a t  every step during t r a in in g .  Furthermore,  

once convergence Is achieved, reco g n it io n  e rro rs  can be expected to  be 

higher than w ith  d e te rm in is t ic  a lgorithm s because as the number o f  

I t e r a t io n s  Increases, (see Chapter 3) w i l l  become so small th a t  

Incremental adjustments on the weight vectors  w i l l  be n e g l ig ib le .  As 

a consequence, the fa c t  th a t  d e te rm in is t ic  a lgorithm s converge to

77



s o lu t io n  weight vectors  makes them more s u i ta b le  fo r  word re c o g n it io n .

I t  is on ly  when d e te r m in is t ic  a lgorithm s f a i l  to  converge th a t  s t a t i s t i ­

cal a lgorithm s should be used fo r  p a tte rn  reco g n it io n  problems.

End-Point D etection

Extension o f  th is  study to  a la rg e r  vocabulary w i l l  re q u ire  b e t te r  

end-po in t d e te c t io n  so th a t  a l l  s ig n i f ic a n t  p a rts  o f  the u tte ran ce  are  

is o la te d .  The technique th a t  was employed in the experiments o f  Chapter 

5 was adequate fo r  a small and predetermined vocabulary , however, the 

extension o f  th is  study to  vocabu laries  whose words w i l l  not be subjected  

to  human s c ru t in y  o f  the speech wave would re q u ire  a more powerful a lg o ­

r ithm .

Rabiner and Sambur (26) reported the re s u lts  o f  t h e i r  end-point  

d e te c t io n  a lg o r ith m  in February, 1975. This a lg o r ith m  is based on two 

measures o f  the speech s ig n a l ,  zero  ( l e v e l )  crossing ra te  and energy.  

Rabiner and Sambur reported th a t  the a lg o r ith m  is capable o f  performing  

c o r r e c t ly  in any reasonable acoustic  environment In which the s ig n a l - t o -  

noise r a t i o  is on the order o f  30 dB or h ig h e r .

An important assumption is th a t  during the  f i r s t  ICO ms o f  the  

recording (a lso  sampling) i n t e r v a l ,  th e re  is  no speech p resen t. Thus, 

during th is  in t e r v a l ,  the s t a t i s t i c s  o f  the  background noise a re  meas­

ured. These measurements inc lude the  average and standard d e v ia t io n  

o f the zero crossing ra te  and the average energy. The zero ( le v e l )  

crossing ra te  o f the  speech is defined  as the number o f  zero  ( l e v e l )  

crossings per 10 ms in t e r v a l .  The energy, E(.n), is defined as the sum 

o f  the magnitudes o f  10 ms ( f o r  a 10 KHz sampling ra te )  o f  speech
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centered on the measurement in t e r v a l ;  th a t  Is ,

50
E(n) = I  |s (n  + i ) | ,

5 =-50

where s(n) are  the speech samples. The choice o f  a 10 ms window fo r  

computing the energy and the use o f  a magnitude fu n c tio n  ra th e r  than a 

squared magnitude fu n c tio n  were d ic ta te d  by the d e s ire  to  perform the  

computations in in te g e r  a r i th m e t ic  and, thus, to  increase computation 

speech.

Using these d e f in i t io n s ,  background and s ig nal measurements are  

made th a t  a l lo w  fo r  very  accurate  is o la t io n  o f  the u tte ra n c e  using 

Rabiner and Sambur's a lg o r ith m . See appendix B fo r  f lo w c h arts .

Other Considerations

The purpose o f  n o rm a liza t io n  is to  make re p e t i t io n s  o f  the same 

word more uniform . As discussed in Chapter 2 , th e re  are  various nor­

m a liz a t io n  techniques. The one th a t  is most re a d i ly  a p p l ic a b le  is am­

p l i tu d e  n o rm a liza t io n ,  fo r  i t  can be accomplished by searching fo r  the  

la rg e s t  (magnitude) sample and d iv id in g  the speech samples by i t .  I t  

should be mentioned th a t  th is  is not n e ce s s a r i ly  p re fe rre d  over am p li­

tude n o rm a liza tio n  o f  the p r e d ic t iv e  c o e f f ic ie n t s ,  because the l a t t e r  

is considerably  f a s t e r .  Other v a r ia t io n a l  e f fe c ts  can be o f f s e t  by the 

s iz e  o f  the t r a in in g  s e ts .

The 6 KHz sampling r a t e ,  which is considered low, was used be­

cause o f  l im i t a t io n s  o f  the equipment. G reater re s o lu t io n  o f  the speech 

wave by increasing the sampling ra te  is required  fo r  extending the vo­

cabulary  s iz e .
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F in a l l y ,  cerebra l palsy v ic t im s  o ften  move t h e i r  heads in an 

uncontro lled  fash ion; th e re fo re ,  an attached close speaking microphone 

would be required in order to  minimize s ignal leve l v a r ia t io n s  due to  

th is  movement.

P a tte rn  D e le t io n  During T ra in in g

During the e a r ly  stages o f  th is  research, i t  was thought th a t  the  

time required  fo r  convergence to s o lu t io n  weight vectors  using l in e a r  

e r ro r  c o rre c t io n  was excessive. There is no way to  p re d ic t  the  re q u ir ­

ed number o f  i te r a t io n s  fo r  convergence, and there  was always the pos­

s i b i l i t y  th a t  the pa tte rns  were not separab le . As was mentioned p re v i ­

ous ly , d i f f e r e n t  i n i t i a l  weight vectors  were used, but there  was no 

improvement in achieving  convergence. Close s c ru t in y  o f  the weight vec­

tors  showed th a t  a f t e r  a number o f  i te r a t io n s  ( th is  v a r ie d  w ith  c lass  

s izes  and d i f f e r e n t  groups o f  c lasses) th a t  the weight vectors  were f l u c ­

tu a t in g — apparently  around so lu t io n  weight vec to rs , indeed th is  f lu c t u ­

a t io n  was almost p e r io d ic  during some computer runs. I t  should be noted 

th a t  the te s t  fo r  convergence was done in in te g e r  a r i th m e t ic .  F u rth e r­

more, a l l  p a tte rn  classes converged to s o lu t io n  weight vectors  when the  

piece-w ise  l in e a r  e r ro r  c o rrec t io n  a lg o rith m  was a p p lie d . Although  

th is  does not imply th a t  as la rg e r  groups the classes would be seperab le ,  

success w ith  PWL and the f lu c tu a t io n  o f  the weight vectors  using LEG 

s tro n g ly  suggested th a t  the classes were seperab le. A lso , attempts a t  

p a tte rn  recogn it ion  using weight vectors  th a t  were not s o lu t io n  weight 

vectors always resu lted  in reco g n it io n  o f  some o f  the wrods. These 

l a t t e r  weight vectors were obtained by stopping t r a in in g  a f t e r  an
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a r b i t r a r i l y  se lected  number o f  i t e r a t io n s .

The cost and time o f  a llo w in g  t r a in in g  to  continue u n t i l  conver­

gence was achieved would have been p r o h ib i t iv e .  C le a r ly ,  5000 or more 

i t e r a t io n s  could not be p e rm it te d , and, i f  th e re  was to  ever be prac­

t i c a l  a p p l ic a t io n  o f  th is  research (meaning w ith  la rg e r  vocabu laries)  

th is  dilemma had to  be resolved. The s o lu t io n  was unexpectedly simple  

and e f f e c t i v e .  Various authors suggest removing p atterns  from the t r a i n ­

ing classes as these pa tte rn s  demonstrate th a t  d is c r im in an t conditions  

are  s a t is f i e d .  The t r a in in g  classes would be reduced in s iz e  and hence 

t r a in in g  would be a c c e le ra te d .  Indeed t r a in in g  is a cc e le ra te d ,  fo r  con­

vergence had never been achieved before  fo r  more than three words when 

LEG was a p p lie d . Now convergence fo r  s ix  classes was achieved in twenty- 

fo u r  i t e r a t io n s .

The reason fo r  applying these kinds o f  lea rn in g  a lgorithm s was th a t  

p ro to ty p ic a l  templates o f  words were not being used. For each word, 

there  are  s ig n i f ic a n t  v a r ia t io n s  between d i f f e r e n t  enunc ia tions . Now i t  

is to  be expected th a t  fo r  every word class th e re  w i l l  be come p atterns  

having g re a te r  spectra l s im i l a r i t y  to  each o ther  than to  the o th er  mem­

bers o f  the c la s s ,  and the codes o f  these words w i l l  bear g re a te r  s im i­

l a r i t y .  Hence, as t r a in in g  proceeds, some o f  the t r a in in g  p a tte rns  w i l l  

s a t is f y  d iscr im in an t c o n d it io n s .

Even w ith  a small vocabulary co n s is t in g  o f  on ly  ten t r a in in g  p a t­

terns per word, the number o f  c a lc u la t io n s  th a t  a re  performed during a 

number o f  i te ra t io n s  Is impressive. For every p a t te rn ,  the d is c r im in an t  

fu n c tio n  value must be c a lc u la te d  fo r  the p a r t ic u la r  p a tte rn  w ith  every  

weight v ec to r .  These functions are  then compared and weight vector
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adjustments are  made a cc o rd in g ly .  By d e le t in g  p a tte rn s ,  the to t a l  

number o f  computations is d ra m a t ic a l ly  reduced.

Indeed as the s o lu t io n  weight vectors  were approached, the num­

ber o f  c a lc u la t io n s  per i t e r a t io n  approached numbers l i k e  tw enty ,  

tw e lve , ten , e tc .  as opposed to  several hundred. So d e le t io n  o f  p a t­

terns  during t r a in in g  is a very  important procedure fo r  successful  

a p p l ic a t io n  o f  the a lgorithm s th a t  were discussed in th is  d is s e r ta t io n .
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CHAPTER 7 

CONCLUSION

Normal speech production , a se r ie s  o f  g l o t t a l  epochs w ith  a r t i c u ­

la to ry  shaping, is produced w ith  normal motor co n tro l and can be made in 

a h ig h ly  r e p e t i t i v e  fas h io n . Normal speech u su a lly  conforms to  a given  

d ia le c t  o f  a given language so th a t  i t  is  re a d i ly  understood. In con­

t r a s t ,  the motor co n tro l problems o f  cerebra l pa lsy  v ic t im s  a re  o fte n  

s u f f i c i e n t l y  severe to i n h ib i t  the movements o f  the g l o t t i s  and o f  the 

a r t i c u l a t o r s ,  but the a f f l i c t e d  persons can develop the  a b i l i t y  to  make 

utterances th a t  approximate those o f  normal speech through long and 

intense t r a in in g .  These approximations or attempts a t  speech produc­

t io n  are  o ften  so f a r  removed from r e a d i ly  recogn izab le  p a tte rn s  th a t  

communication represents a tremendous problem fo r  cereb ra l palsy v ic ­

tim s. The important co n s id era tio n  is th a t  these attem pts a t  speech 

production are  o fte n  con s is ten t enough to  a llo w  o thers  to learn  to  rec­

ognize the speech o f  the persons w ith  cerebra l p a lsy . In o th e r  words, 

i f  the a b i l i t y  to  make reasonable approximations o f  the  words in t h e i r  

vocabulary on a r e p e t i t i v e  basis did not e x i s t ,  then cereb ra l palsy  

v ic tim s  would not be ab le  to communicate v e r b a l ly .

The most important assumption th a t  was made in undertaking  th is  

study was th a t  i f  normal speech can be coded and recognized by machines.
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then the speech o f  the cerebra l palsy v ic tim s who are  capable o f  approx­

imating normal speech can a lso  be coded and recognized by machines i f  

t h e i r  u tterances a re  unique f o r  d i f f e r e n t  words.

Segmentation o f  the speech wave, although necessary fo r  spec tra l  

ana lys is  o f  speech, is  not com putationa lly  a t t r a c t i v e  fo r  machine recog­

n i t io n  o f  speech. Because o f  v a r ia t io n a l  considera tions  in abnormal 

speech and o f  the computation time required  fo r  convergence o f  learn ing  

a lg o r ith m s, the several g lo t t a l  events required fo r  speech production  

were lumped In to  one spec tra l event per word in th is  d is s e r ta t io n  by 

c a lc u la t in g  a small set o f  l in e a r  p r e d ic t iv e  c o e f f ic ie n ts  th a t  would 

code words fo r  machine re co g n it io n . This is lumped l in e a r  p re d ic t iv e  

coding o f  the speech wave. L im ita t io n s  in vocabulary s iz e  are  accepted 

because o f the gains made in memory u t i l i z a t i o n  and computational speed.

Ten words th a t  were spoken by a person w ith  a s l ig h t  voice handi­

cap were coded and recognized by a computer w ith  a s ig n i f ic a n t  degree 

o f  success; 50% to  89% recognized. The approaches o f  th is  study, lumped 

l in e a r  p re d ic t io n  o f  the speech wave used w ith  the perceptron a lg orithm  

or i t s  v a r ia t io n s ,  may be extended to  la rg e r  vocabularies  by using the  

techniques described in Chapter 6.

An IBM 3 7 0 , Model 158, computer was used fo r  th is  study, i f  a 

machine th a t  can be used by the vo ice  handicapped is to  be r e a l iz e d ,  

then the approaches used in th is  study should be a p p lied  to a micro­

processor. The r e a l iz a t io n s  o f  such a machine can be the goal o f  f u r ­

th e r  e f f o r t s .
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APPENDIX A

FLOWCHART AND PROGRAM FOR LUMPED 

LINEAR PREDICTION

Explanation o f  program v a r ia b le s  and parameters:

(See Chapter 4 fo r  equations and exp lanations)

1. The subroutine f o r  c a lc u la t in g  the a u to c o rre la t io n  numbers 

is s t ra ig h t fo rw a rd ;  th e re fo re  i t  is not shown on the f lo w ­

c h art .

2 . BETA = B

3 . ALPHA = a

<1. M ( M  +  I .  L l  =  3m +  I ,  a
5 . AA' ( M + l , L ) = a ^ ^ ^   ̂ = k(m) when L = m + 1

6. A ( l )  = a . ,  the c o e f f ic ie n ts  p re d ic to r

7 . NC is the maximum number o f  c o e f f ic ie n ts

8. M,L,and I are a r ra y  indices
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INPUT SPEECH

LOCATE
END

POINTS

/^CALCULATE \
AUTOCORRELA^
TON NUMBERS / 
V FOR EACH /  
\  WORD /

I NCR L•i

L = M

NITIALIZE M^ 
BETA (M) 
ALPHA (M)

YES

CALCULATE
K(M)

I NCR M

L = 1 and 

AA(M+I,L) = 1 M = NC
L>M+1

L<M+1
YES

L=1
L<M+1

FOR 1 = 1 , . . . , N 

A ( l )  = AA(l,M)CALCULATE 

AA(M+I,L)

CALCULATE 

AA'(M+1,L) STOP

CALCULATE

BETA(M) and 
ALPHA(M)

86



Program

fo r

Lumped L in ear P re d ic t io n
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/ / G O . F T O ü F O û l  0 0  D S N = L E A R N A , O I S P = O L D , V O L = S E R = 0 0 3 5 8 0 , L A B E L = ( 1 « , , I N ) •
/ /  U N I T = 2 4 0 0
/ / 6 0 . S Y S I N  0 0  *
c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c a
CTHE F I R S T  WORO I S  HAPPY C
C THE SECOND WCRO I S  EAT C
C THE T H I R O  WORD I S  HUNGRY C
C THE FOURTH WORD I S  OR I N K  C y
C THE F I F T H  WORD I S  T H I R S T Y  C
C THE S I X T H  WORD I S  SEDRSTY C
C THE S I X T H  WORD I S  BED C
C THE SEVENTH WORD I S  SLEEP C
C THE E I G H T H  WORD I S  SAD C
C THE N I N T H  WORD I S  HOT C
C THE TENTH WORD I S  GO C
C THE ELEVENTH WORD I S  PLAY
C THE TWELFTH WORD I S  T . V .  C
C THE T H I R T E E N T H  WORD I S  STOP C
C THE FQURTHEENTH WORD I S  COLD C
C THE F I F T E E N T H  WCRO I S  DADDY C
C THE S I X T E E N T H  WCRO I S  MCVMY C
C THE SEVENTEENTH WORD I S  BROTHER
C THE E I G H T E E N T H  WORD I S  S I S T E R  C
C THE N I N T E E N T H  WCRO I S  L E T T E R  C
C THE T W E N T I E T H  WORD I S  I  LOVE YOU
C * N*  I S  USED TO I N D I C A T E  THE NUMBER OF PARAMETERS
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

I N T EGER  I NDEX 1 , I N D E X 2 , 6 » H . X ( 9 0 0 0  J , T , U , F , S A V 1 . S A V 2 » 0 I F F  
INTEGER S A V 3 .  CNT 
REAL K ( 9 )
D I M E N S I O N  R ( 9 )  1 D E T A ( 9 ) .  A L P H A ( 9 ) ,  A A < 9 , 9 ) ,  A ( 8  ) . C A R D ( 2 0 )
S A V l  -  1 ; SAV2 = 9 0 0 0  
T = 1 
U =  I  

5 0  R E A D ( 8 , 2 0 ) C A R D
2 0  F O R M A T ( 2 0 A 4 )

R E A D ( 8 , 2 1 ) X
21 FORMAT( 1 8 1 4 )

GO TO 2 0 0 0  
SAV3  =  180  
CNT =  1

2 2  0 0  2 0 0  1 =  S A V 3 , 8 9 9 9  
J = I  + 1
D I F F  = X ( J )  -  X ( I )
D I F F  = l A B S ( D I F F )
S A V l  =  I
I F C D  I F F . G T  . 5 ) G C  TO 9 9 9  

2 0 0  C ON T I N U E  
9 9 9  CNT -  CNT f  1

I F ( C N T - 3 ) 2 3 , 2 4 , 2 4
2 3  S AV3  = S A V l  

GO TO 2 2
2 4  I  = S A V l

1 0 0 0  N = 1 
1 =  1 + 1  
J = I  + 1
D I F F  = X ( J ) -  X ( I )
D I F F  = l A B S ( D I F F )

1001 I F ( D I F F - 2 ) 1 0 0 2 . 1 0 0 2 . 1 0 0 0
1 0 0 2  N = N + 1 

1 =  1 +  1
J = I + 1 88
D I F F  = X ( J )  -  X ( I )
n T P P  = T A n e / r \ f c r r T \



1005  
1003

1006  
2000

31

1

I F ( N - 1 0 0 0 ; i 0 0 1 , 1 0 0 3 , 1 0 0 3  
SAV2 = I  
GO TO 2 0 0 0  
SAV2  =  9 0 0 0  
N =  1
R ( N )  =  0 . 0  
DO 3 1  M =  S A V l i S A V 2  
R ( N )  = ( X ( M )  *  X ( M J )  + R ( N )
C O M  I NUE 
N =  2
H =  S A V 2 - N - 1  
RCNJ = 0 . 0  
DO 2  M =  S A V l , H  
L  = M + N
R ( N )  -  ( X ( M ) * X ( D )  + R ( N )
N = N + 1 
I F ( N - 9 ) 1 . 1 . 4  
N = 1 
L  = 1 
I  = 1 
M = 1
A A ( l . l )  =  1 . 0  
B E T A C 1> =  R ( 2 )
A L P H A ! I )  =  R ( l )
K ( 1 J  = - ( 3 £ T A ( 1 ) / A L P h A ( I ) )
G = M + 1 
A A ( G . L )  = 1 . 0  
L = L  + 1
I N D E X 2  = M + 1 -  L  
I F ( L  -  G ) 7 , a , 9
A A ( G . L )  = A A ( M . L )  + ( K ( M) ^ A A ( M , 1 N D E X 2 ) )
GO TO 6 
A A ( G . L )
1 =  1 +
GO TO 6 
L  = 1 
M =  M +
I N D E X 2  = M + 1 
B E T A ( M )  =  0 . 0  
A L P H A ( M )  = 0 . 0
B E T A ( M )  = ( A A ( M , L ) « R ( I N D E X 2 ) ) + S E T A ( M )
A L P H A ( M )  = ( A A ( M , L ) * R ( L ) ) + A L P H A ( M )
L = L + 1
I N 0 E X 2  = M + 1 -  L 
I F ( L - M )  1 0 .  1 0 ,  1 1 
K ( M )  = - ( 3 E T A ( M ) / A L P h A ( M )3 
I F ( M  -  8 ) 1 2 , 1 2 , 1 4  
L  =  1 
GO TO 5
WR I T E ( 7 , I  5 )CAHD 
FORMAT( 2 0 A 4 )
DO 16  1 = 1 , 8  
A (  I )  = A A ( 8 , I  )
W R I T E ( 7 , 17 ) A (  I )
F O R M A T ! Ô F 0 . 2 )

c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C T H I S  COMPUTED TRANSFER I S  MADE NECESSARY 8Y THE D I F F E R E N C E  
C IN THE NUMBER OF R E P E T I T I O N S  OF EACH WORD
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

7 2  F = 11
7 3  I F ( U - F ) 1 8 , 1 9 , 1 9  

U=U+1 
GO TO 5 0  
U=1

6 =  K ( M )  
1

1
-  L

10

11
4 2
12

1 4 
15

16
17

18

19 89



100  STCP 
END
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APPENDIX B

FLOWCHARTS OF RABINER AND SAMBUR'S 

END-POINT LOCATION ALGORITHM

Explanation o f  program v a r ia b le s

1. A zero  crossing th resh o ld , IZCT, fo r  unvoiced speech is chosen 

as the minimum o f  a f ix e d  th resh o ld , IF (25 crossings per 10 

ms), and the sum o f  the mean zero  crossing ra te  during s i le n c e ,  

IZC, plus tw ice  the standard d e v ia t io n  o f  the zero crossing  

r a te  during s i le n c e ;  th a t  is ,

IZCT = M IN d F ,  IZ C  + 20|2c)

Peak energy, IMX, and s i le n c e  energy, IMN, a re  used to c a lc u la te  

the fo l lo w in g  :

2. I I  is a leve l th a t  is 3 percent o f  IMX, (ad justed  fo r  the s i ­

lence energy); th a t  is ,

11 = 0 .0 3 * ( IM X  -  IMN) + IMN

3. 12 is a leve l th a t  is se t to  four times the s i le n c e  energy;

th a t  is ,

12 = 4*IMN

4. ITL, the lower th resho ld , is the minimum o f  I I  and 12; th a t  i s ,

ITL = M I N d l ,  12)

5. ITU, the upper th resh o ld , is f i v e  times the lower threshold;

th a t  is .
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ITU = 5 * ITL

The a lg o r ith m  fo r  a f i r s t  approximation o f  the beginning p o in t  

lo c a t io n  is shown in F igure B-2. The a lg o r ith m  begins by searching  

from the beginning o f  the in te rv a l  u n t i l  ITL is exceeded. I f  the  

energy f a l l s  below ITL before  i t  r ise s  above ITU, a new beginning p o in t

is  obta ined by f in d in g  the f i r s t  p o in t  a t  which the energy exceeds ITL,

and then exceeds ITU before  f a l l i n g  below ITL; e v e n tu a l ly  such a be­

ginning p o in t  must e x is t .  The ending p o in t  is determined in a s im i la r  

manner and is shown in F igure B-3 . The beginning and ending p o in ts  are  

labeled  N1 and N2, re s p e c t iv e ly .

N1 and N2 a re  i n i t i a l  es t im a tes . The a lg o r ith m  proceeds to  exam­

ine the In te rv a l  from N1 and N l -2 5 ,  a 250-ms In te rv a l  preceeding  

the i n i t i a l  beginning p o in t ,  and counts the number o f  in te rv a ls  where 

the zero crossing r a te  exceeds the threshold  IZCT. I f  the number o f  

times the threshold  was exceeded was th ree  or more, the s ta r t in g  p o in t  

is  set back to  the f i r s t  p o in t  ( in  time) a t  which the threshold  was 

exceeded. O th erw ise ,th e  beginning p o in t  is kept a t  N l .  Rabiner and 

Sambur's r a t io n a le  behind th is  s t ra te g y  was th a t  fo r  a l l  cases o f  i n t e r ­

e s t ,  exceeding a t ig h t  threshold  o f  zero  ( l e v e l )  crossing ra te  is a 

strong in d ic a t io n  o f  unvoiced energy.

A s im i la r  search procedure is used on the ending p o in t o f  the u t ­

terance to determine i f  th e re  is unvoiced energy in the in te rv a l  from 

N2 to  N2 + 25.
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S (n l-S P E E C H

100 H i  -  HIGH-PASS 
4000 Hi  -  LOW-PASS 
10 kH l -  s a m p l in g  r a t e

. COMPUTE STATISTICS OF 
I ZERO CROSSING RATE. 

IZC.Wuc, DURING 
SILENCE

N) REMAINS 
UNCHANGED

NO NO

YESYES

N; REMAINS 
UNCHANGED

COMPUTE 
E N E R G Y -E M I

SET
THRESHOLD

IZCT

N ; CHANGED TO 
LAST INDEX FOR 

WHICH ZCR i  IZCT

N, CHANGED TO 
LAST INDEX FOR 

WHICH ZCR 2  IZCT

SEARCH FROM N ;
TO N j*2 5  FOR 

NUMBER OF POINTS. M ; 
AT 'WHICH 

ZCR a  IZCT

SEARCH FROM N, 
TO N, -  25 FOR 

NUMBER OF POINTS. M, 
AT V.'HICH 
ZCR a  IZCT

COMPUTE LOWER 
ENERGY 

THRESHOLD -  ITL, 
UPPER 

THRESHOLD -  ITU.

COMPUTE PEAK 
ENERGY -  IMX, 

SILENCE 
ENERGY -  IMN

SEARCH FORWARD 
FOR STARTING 

POINT. N , -  
BASED ON 

ENERGY THRESHOLDS

SEARCH BACKWARD 
■ FOR ENDING 

POINT. N ; -  
8ASED ON 

ENERGY THRESHOLDS

Figure B-1. Flowchart fo r  the Endpoint A lgorithm .
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VOJr

tn “ 1

YES
E(m) a  ITL

NO
YES

Ed) <  IT L

NO

YES
Ed) & ITL

NO
NO

I • m

YES

m “  m ♦ 1

1 ■ m

DONE

N , - l

F igure  B-2 . F lowchart For the  Beginning Po in t  
I n i t i a l  E stim ate  Based on Energy C o n s id era tio n s .



VO
vn

YES

YES
E(i) < IT L

NO

YES
Eli) < ITU

NO

YES

DONE

m •  I — 1

Figure  B-3 . F lowchart f o r  the  Ending P o in t I n i t i a l  Estim ate  
Based on Energy C o n s id era tio n s .



APPENDIX C 

FLOWCHART AND EXAMPLE PROGRAMS 

OF PATTERN RECOGNITION ALGORITHMS

The f low c har t  th a t  Is given on the next page is b a s i c a l l y  a p p l i ­

cable  to a l l  o f  the p a t te rn  recogn i t ion  techniques th a t  were discussed 

in Chapter 3- For the d e t e r m in is t i c  a lg or i thm s,  only  the subroutine  

has to be changed f o r  weight adjustments.  For the s t a t i s t i c a l  a lg o ­

r i thms, the adjustments o f  weight vectors  a re  made s o le ly  on the basis  

o f  a p r i o r i  knowledge o f  class membership and so no comparison o f  d i s ­

c r im inant  functions is needed in s t a t i s t i c a l  programs.

Explanation o f  program v a r ia b le s  and parameters:

(See Chapter 3 f o r  equations and exp lanat ions)

1. Y ( I , J , Z )  = I classes conta in ing  J pat terns  w i th  Z components 

in each p a t te rn .

2 .  W ( l ,Z )  = I weight vectors  corresponding to I classes w i th  Z 

components in each vector .

3 ‘ S ( l )  = I d is cr im inant  fu nc t ions .
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Y ( l , J , Z )  -  PREDICTOR COEFFICIENTS

DELETE

PATTERN

YES

YES

(R)>S(L)
YES REDETER-

YES
/  ADJUST \
'  WEIGHT \  
ECTORS W(R,Z; 
and W(L,Z) ! STOP

LL PATTERN 
s j  USED >

NCREMENT K

INITIALIZE
WEIGHT
VECTORS
W ( I ,Z )

SET ITERA­
TION COUNT

NORMALIZE

CALCULATE 
DISCRIMINANT 

FUNCTIONS 
S ( l )  FOR EACH 

PATTERN J

Figure C-1.  Flowchart  fo r  L inear  Error  Correct ! on
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Program 

fo r

Linear Error  

Correct ion
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3 * 1  =  I  0 0 0 3  OG 0 0 0 1  
gg 00 1 = V 6 6 5

000 1 01 09 
0 0 0 1  = V 
a O N I i N O D  86C 
3 n N l l N 0 D  s g *

C 9 ü v i / ( % * r * i ) A  = ( % * r * i ) A
8 * 3  =  > g g t  0 0  

( ( O N I * r * I ) A ) S e V  = EDWVl  E 9 t  
E 9 t * 2 6 C * 1 6 C ( G - % ) j I  

% + % = X
I X  =  G N l  i g t  

E S t * 1 6 E * 1 6 E ( 9 - I X ) d I  
X = ONI  

I  + I X  = I X  3917 
I  917 01  0 D(  l O H V T  1 9 « 3 0 H V 3 ) 3 1  

( (  T X * r * I  ) A ) SQV =  3 9 Ü V 3
( ( x * r * i ) A ) S 9 v  =  I DÜVH z e e

1 + X = I X  0 9 t
z = %

0 1 * 1  = r 8 6 9  0 0
3 * 1  =  I  9 6 9  0 0

N O T l V Z I l ü W ü O N  S 3 H S n d W 0 D D V  S I H l  3

D
0 * 1  = ( 6 * r * I ) A  0 06

0 1 * 1  = r  0 0 6  0 0
3 * 1  =  I  0 0 6  0 0

O'  I  0 1  N y S l l V d  D N I N I V N l  HDV3 N I  1 N 3 W 3 1 3  S 1 S V 3  3 H1  S1 3 S  S I H l  3
( 3 * 6 3 ) l V W a 0 d  3 

( 3 * I  =  I * ( 0 1 * l = r ‘ I 8 * T = 2 ‘ ( 2 * r * I ) A ) ) ) ( 3  * 9 ) 0 * 3 8
o ' o = ( n * x ) A v s  I

6 * i = n  I  0 0  
3 * I = X I  0 0  

I =  I N O  
Z = 3 

01  =  ( D T M O I S I  9 6 6 9  
0 1 * 1  =  r  9 6 6 9  0 0  

• S N O I I I O N D D  I N V N I W i a O S i a  A d S I l V S  3
I V H l  S N H B l l V d  9 N I 1 3 3 3 G  WOdd 1 3 0 5 3 8  I V H l  S 3 Z I S  S S V 3 3  9 N I A 8 V A  3

3 H 1  8 0 3  S N 8 3 1 1 V d  3 0  S 8 3 9 W n N  3 V I 1 I N I  3H1 1 3 5  9 6 6 9  H O O O d H l  5 8 3 1 S  3
9 8 3 1 5 1 * m * l N 3 * 3 * Z * r * I  * 5 * 9 d W 3 1 * 3 d W 3 1 * I d W 3 1 * A  N0WW03

S 3 S S V 3 3  3 0  838W0N 3 H 1  5 1 N 3 S 3 8 d 3 8  3 3

9 0 8 * 3 * 3 0 8 * 1 * I 0 8 V 1  1 * 3 8  
( 6 * O T * 0 3 ) W I O * ( 6 ‘ 0 3 ) « ‘ ( 5 *  0 3 ) W n S * 1 6 * 0 1  * 0 3 ) 0 * ( 6 * 0 3 ) 3 3 1 0 1  N O I SM3WI 0

( 0 3 ) 9 8 0 1 5 1  * ( 6 * 0 3 ) A * S 1  N 0 1 5 N 3 W 1 0  
{ 6 * 0 3 ) M I * ( 6 * 0 3 ) T A V S * ( 6 * 0 3 ) A * 5 * (  0 3 ) 5 * ( 6 * 0 1 * 0 3 ) A N 0 I 5 M 3 N I 0

0 3 * 1 N 3 * E X * 9 X * 3 X ' 3 * 9 I X * I I X * 3 I X  8 3 9 3 1 N 1  
3 * D * 9 d W 3 1 * 3 d W 3 1 * I d W 3 1 * 0 *  X * Z * n * l *  8  8 3 9 3 1 N I

A * * 1 3 * 3  8 3 9 3 1 N 1  
»N3 1  A9 O B I l d l l i n W  3

3 8 *  0 3 8 V 8 W D 3  3 8 *  I V H l  5 8 0  1 3 3 A  1 H 9 I 3 M  3H1 3 0  5 3 0 1 * A 8 3 9 3 1 N 1  3
3 H 1  1 * H 1  1 3 * 3  3 H 1  A0 G 3 H S I n O H l 1 5 1 0  3 8 *  S N 0 I 1 * 1 0 3 1 * 3  3 S 3 H 1  3

(3 3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  3 3 3 3  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

: * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  0 * 5  S I  OaOM H I X I S  3 H 1  3
, * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  X N i a O  51  080M H 1 3 I 3  3 H 1  3
, * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  8 3 3 1 5  S I  H 1 8 0 0 3  3 H 1  3
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  I V 3 S I  080% 0 8 I H 1  3 H 1  3
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  0 9  S I  080% 0 N 0 3 3 S  3 H 1  3
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  l O H  S I  08 0 % 1 S 8 I 3  3 H 1  3



w  & . W W  a# —  a V w

X I  =  Y ( I , J , Z )
I F ( X 1 ) 1 5 1 . 1 0 0 2 , 1 5 0  

C THESE STEPS THROUGH 2 0 0 0  ROUND OFF THE P A T T E R N  VECTORS 
1 5 1  X I  =  A B S ( Y ( I , J , Z ) ) * A  + 0 . 0 0 0 0 1  

T =  X I  * 1 0 0 . 0  + 1 . 0  
T =  T + 2  
X I  =  T / 1 0 0 . 0  
GO TO 1 0 0 1  

1 5 0  X I  =  Y ( 1 . J . Z ) * A  + 0 . 0 0 0 0 1  
T -  X I  * 1 0 0 . 0  + 1 . 0  
T =  T + 2 
X I  =  T / 1 0 0 . 0  
GO TO 1 0 0 3

1 0 0 1  X2 =  A B S l X I )
X I  =  A B S ( X l )
X3 = ( X I  -  X 2 ) * 1 0  
l U  =  X3 

1 0 3 0  I F ( I U - 5 ) 1 0 G 4 . 1 0 0 5 . 1 0 0 7
1 0 0 4  Y ( I . J . Z )  = - X 2 / A  

GO TO 2 0 0 0
1 0 0 5  X4 =  ( X 2 / A ) * 1 0 . 0  

XS =  X4
1X6 =  ( X 4 - X 5 ) * 1 0  

N = 1
C = 2 * N

1 0 0 8  I F ( C - I X 6 ) 1 0 0 6 . 1 0 0 7 . 1 0 0 6
1 0 0 6  N = N + 1

I F ( N - 4 ) 1 0 0 8 , 1 0  0 8 , l OOS
1 0 0 7  X9 =  X 2 / 1 0 . 0

X I  1 = X9
X 1 2  =  ( X 9 - X 1 1 ) * 1 0  + 1

1 0 1 6  X 1 2  = X 1 2  + 1
1 0 1 7  X 1 3  = X l l *  10 + X12

1 X 2 0  =  X13  -  X2
I F ( 1 X 2 0 - 2 ) 1 0 1 8 , 1 0 5 0 , 1 0 5 0  

1 0 5 0  X I 3 =  X 1 3  -  1
1 0 1 8  Y ( 1 , J . Z )  =  - X 1 3 / A  

GO TO 2 0 0 0
1 0 0 9  X8 =  X 2 / A  

Y ( I  , J . Z ) =  - X 8  
GO TO 2 0 0 0

1 0 0 2  Y ( I , J . Z ) =  Y ( I , J . Z )
GO TO 2 0 0 0

1 0 0 3  X2 =  X I
X3 = ( X I  -  X 2 ) * 1 0  
l U  = X3  

1 0 4 0  I F ( I Ü - 5 > 1 0 1 0 . 1  O i l . 1 0  14
1 0 1 0  Y ( I . J . Z )  =  X 2 / A  

GO TO 2 0 0 0
1011  X4  =  ( X 2 / A ) * 1 0 . 0  

X5  = X4
1X6 =  ( X 4 - X 5 ) * 1 0  

N = 1
C = 2 * N

1 0 1 2  I F ( C - I X 6 ) 1 0 1 3 , 1 0 1 4 . 1 0 1 3
1 0 1 3  N = N + 1 

I F ( N - 4 ) 1 0 1 2 , 1 0  1 2 , 1 0 1 5
1 0 1 4  X9 -  X 2 / 1 0 . 0

X I I  = X9
X I 2 = ( X 9 - X 1 1 ) * 1 0  + 1 

1021  X 1 2  = X 1 2  + 1
1 0 2 0  X 1 3  =  X l l *  10 + X12

1 X 2 0  = X13 -  X2 
I F ( 1 X 2 0 - 2 ) 1 0  7 0 , 1 0 6 0 . 1 0 6 0
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GO TO 2 0 0 0  
1 0 1 5  Y ( I , J . Z )  = X 2 / A  
2 0 0 0  CONTINUE

I F I A . E Q . 1 0 0 0 ) 0 0  TO 9 9 9  
DO 8 0 0 0  K = 1 «9 
DO 8 0 0 0  I  =  1 , E  

8 0 0 0  W ( I . K )  -  S A V ( I «K)
K — I

4 0 0  i = i ; j = i ; r = i ; z = i  
91 DO 7 0 0  R- =1 . E
7 0 0  S ( R J = 0 . 0

DO 6 R =  1 , E  
DO 6 Z = 1 . 9  

6  S ( R )  = S ( R )  + Y ( I , J , Z ) * W ( R , Z )  
I F d . E Q . D G C  TO 7 0 5  
GO TO 4 9 9  

7 0 5  R =  1 
L = 2 
CNT =  1 

7  1 F ( S ( R ) - S ( L ) ) 6 0 1 » 6 0 1 . 1 0
6 0 1  T E M P l = L  

TEMP2=R 
C A L L  A D J U S T

10 L  = L  + 1
I F ( L - E ) 7 , 7 , 11 

11 I F ( C N T . E Q -  D G Ü  TO 8 0 7  
J  = J + 1 
GO TO 8 0 0

8 0 7  C A L L  D E L E T E  
W R I T E < 6 , 1 0 4 ) 1 , J 
W R I T E ( 6 , 1 0 4 ) I S T C R J ( I )
I F (  I S T O R J ( I  ) . E Q .  1 ) G0  TO 41

8 0 8  I F { J - I S T O R J ( I > ) 9 1  , 9 1  , 4 1
4 9 9  I F ( I - E ) 1 5 , 5 0 0 , 5 0 0  
15 R =  i ;  L  = R + I

CNT =  1 
17  I F ( S ( R ) - S ( L ) ) 6 0 2 , 6 0 2 , 2 1

6 0 2  T E M P 1 = L  
TEMP2=R 
CALL  ADJUST

21 L = L + 1
I F ( L - E ) 1 7 , 1 7 , 2 2

22  L = 1
2 4  I F ( S ( R ) - S 1 L ) ) 6 0 3 , 6 0 3 , 2 7

6 0 3  TE M P 1 = L  
TEMP2=R 
C A L L  AD J U ST

2 7  L = L + 1
I F ( L - R ) 2 4 , 4 0 , 4 0  

4 0  I F  ( C N T . E Q ,  D G C  TO 8 0 9  
J  = J  + 1 
GO TO 8 1 0

8 0 9  C A L L  DEL ET E  
W R I T E ( 6 , 1 0 4 ) 1 , J 
W R I T £ ( 6 , 1 0 4 ) I S T C R J I I )
I F ( I S T O R J t I  ) . E Q .  1 ) G0  TO 41

8 1 0  I F ( J - I S T O R J ( I )  ) 9 1  , 9 1  , 4 1
5 0 0  l = i ; r = i  

CNT = 1
6 9 9  I F ( S ( R ) - S ( D )  7 0 3 , 7 0 3 , 7 0 1  
7 0 3  TEMP1=  L

TEMP2 =  R jQj
C A L L  ADJ UST

7 0 1  L  = L + 1



J = J  + 1
GO TO 8 1 2

81 1  C A L L  DEL ETE  
* R I T E ( 6 , 1 0 4 ) I . J  
W R I T E ( 6 . I 0 4 ) I S T O R J ( I  )
I F ( 1 S T 0 R J ( I J . E G . l ) G C  TO 4 l

8 1 2  I F ( J - I S T O R J < I ) ) 9 1 t 9 1 «41
41 1 = 1 + 1

I F ( I - E ) 4 2 . 4 2 . 6 0 0 1
4 2  J = 1

GO TO 91 
6 0 0 1  R = 1
5 0 0 0  DO 5 0 0 1  Z = 1 * 9  

I W ( R « Z )  =  W ( R « Z ) * 1 0 0 . 0  
I S A V ( R , Z )  =  S A V ( R , Z ) * 1 0 0 . 0

5 0 0 1  C O N T I N U E  
Z =  1

5 3  I F ( I W ( R , Z ) - I S A V ( R , Z ) > 6 1 0 , 6 0 . 6 1 0  
C THE STEPS BELCW ( 5 0 0 0  THRU 8 0 4 )  MARKED WI TH A C*  REPRESENT AN
C ATTEMPT TO FORCE CONVERGENCE TO A D I F F E RE NCE  BETWEEN WEIGHT VECTORS
C OF S U C C E S S I V E  I T E R A T I O N S  OF 0 . 0 5 .
C 6 0 4  I D I F F ( R , Z )  = I w ( R . 2 >  -  I S A V ( R , Z )
C 6 0 6  I F ( I D I F F ( R , Z ) - 5 ) 6 0 , 8 0 4 , 8 0 4  
C 8 0 4  I W ( R , Z )  =  I V . ( R , Z )  -  I D l F F ( R , Z ) / 2  
C W ( R , Z )  =  I W ( R , Z ) / 1 0 0 . 0

6 1 0  DO 6 0 5  R = l , e
DO 6 0 5  Z = 1 , 9
S A V { R , Z >  = W ( R , Z )

6 0 5  CON T I NU E
5 7  W R I T E ( 6 , 5 0 )  K
5 8  F O R M A T ! * O T H E  WEIGHT VECTORS FOR T H E ' , I X , ' N U M B E R ' , I X , 1 4 , I X .

+ • I T E R A T I O N  A R E : ' )
5 9  W R I T E ( 6 , 6 1  > ( R  , ( W ( R , Z  ) , Z = 1 , 9 ) , R = 1 , E >

61 FORMAT! I X , 1 3 , 9 E 1 2 . 3 )
W R I T E ! 6 , 1 0 2 J C N T

6 2  K = K + 1
7 2 0  I F ! K - 2 0 0 0 ) 4 0 0 , 4 0 0 , 1 0 0
6 0  Z = Z + 1  

I F ! Z - 9 ) 5 3 , 5 3 , 6 3
6 3  R =  R +  i ; z = i ; u  = R 

I F ( R - E > 5 0 0  0 , 5 0 0 0 ,  70
70  R = 1

W R I T E ( 6 , 1 0 8 )
1 0 8  F OR M A T ( ' 1 ' )

W ' R I T E ( 6  , 8 0 )  ! R ,  ! W ! R , Z )  , Z = 1  , 9 )  , R=1  , E )
101 w r t I T E ! 6 ,  1 0 2 ) K
1 0 2  F O R M A T ( I X , l A , I X , * I T E R A T I O N S  WERE REQUI RED FOR CONVERGENCE ' )

6 0  FORMAT!  I  X , * WORD'  , I X , 1 3 , I X , 9 E 1 2 . 3 )
GO TO 1 0 0

C THESE STEPS WERE USED TO CHECK FOR S A T I S F A C T I O N  FO THE ALGORI THM 
C WITHOUT ABSOLUTE CONVERGENCE BY CHECKI NG TO SEE WHETEER FOR R = l
C  G ! l )  WAS THE LARGEST D I S C R I M I N A N T  F U N C T I O N .  NOTE THATH THE INEEGER
C FORM OF THE WEIGHT VECTORS WAS USED.
C 7 0 0 0  DO 7 0 0 1  R = 1 , E  
C 7 0 0 1  S ! R )  = 0 . 0  
C DO 7 0 0 2  R =■ 1 ,  E
C DO 7 0 0 2  Z =  1 , 9
C W ( R , Z )  =  S A V K R . Z )
C 7 0 0 2  S ! R )  = S ( R )  + Y ! l , l , Z ) * W ( R , Z )
C R = 1 ; L = 2
C 7 0 0 3  I F ! 5 ! R ) - S ! L ) ) 7 0 0 4 , 7 0 0 4 , 7 0 0 6  
C7ÛÛ4 DO 7 0 0 5  R = 1 , E
C DO 7 0 0 5  2 = 1 , 9  102
C 7 0 0 5  W ( R , Z )  =  S A V U R . Z )



w v w w w  t »  —  W  T  X

C I F ( L - E ) 7 0 0 3 , 7 0 0 7 , 7 0 0 7
C 7 0 0 7  I F ( S ( R ) - S ( L ) ) 7 0 0 4 , 7 0 0 4 , 7 0  

1 0 4  F O R M A T * I X , 5 1 4 )
1 0 0  STCP 

ENO
S U BROU T I N E  ADJUST 
I NTEGER CNT
INTEGER Q , T E M P I , T E M P 2 , T E M P S ,  Z . E
D I M E N S I O N  Y ( 2 0 , 1 0 , 9 } , 0 ( 2 0 , 9 ) , W( 2 0 , 9 } , S ( 2 0 ) , 1 S T C R J ( 2 0 )  
COMMON Y , T E M P I , T E M P 2 , T E M P S  , S  ,  I  * J * Z , E , C N T , W, I S T C R J  
C =  I .
CNT =  CNT + I 
Q — 1

2 0 0  I F ( Q - T E M P l ) 2 0 6 , 2 0 2 , 2 0 6  
2 0 6  1 F I Q - T E M P 2 > 2 0 1 , 2 0 5 , 2 0 1  
20 1 0 = Q + 1

I F ( Q - E ) 2 0 0  , 2 0 0 , 2 1 0  
2 0 2  DO 2 1 1  Z = 1 , 9
2 1 1  W ( Q , Z )  = W ( Q , Z )  -  C * Y ( I , J , Z )

0  =  0 + 1
GO TO 2 0 0  

2 0 5  DO 2 1 2  Z = 1 , 9  .
2 1 2  W ( 0 , Z )  = W ( 0 , Z )  + C * Y ( I , J , Z )

0  =  0 + 1
GO TO 2 0 0  

2 1 0  RETURN 
END
SUBROUTI NE DELETE 

C T H I S  S U BROU T I NE  DELETES PATTERNS THAT S A T I S F Y  D I S C R I M I N A N T  
C C O N D I T I O N S

D I M E N S I O N  I S T 0 R J ( 2 0 ) ,  Y { 2 0  , 10 ,  9 ) ,  S ( 2 0  ) , Vil ( 2  0 ,  9  )
I NTEGER C N T ,  Z
COMMON Y , T E M P I , T E M P 2 , T EM P S , S , I , J , Z , E , C N T , W , I S T C R J  
CNT =  1
I F ( J . G E . I S T O R J ( I  ) )G0 TO S 9 9 9  
J 2  = I S T O R J d  ) -  1 
DO 4 0 0 0  J1 = J , J 2  
J 4  =  J1 + 1
DO 4 0 0 0  Z =  1 , 9

4 0 0 0  Y ( I , J 1 , Z )  =  Y ( I , J 4 , Z )
3 9 9 9  I F ( I S T O R J ( I ) . E Q . 1 ) G0  TO 4 0 0 1  

I S T O R J ( I )  = I S T O R J d )  -  1
4 0 0 1  RETURN 

END

10 3
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c  THE F I R S T  WORD I S  GO
C THE SECOND WORD I S  EAT
C THE T H I R D  WORD I S  BED
C THE FOURTH I S  HAPPY
C THE F I F T H  WORD I S  SL EEP
C THE S I X T H  WORD I S  T H I R S T Y
C TH E SEVENTH WORD I S  HUNGRY

I NTEGER B . C
REAL L A R C l . L A R G 2 . L A R G 3
D I M E N S I O N  Y ( 2 0 , 1 . S ) ,  W ( 2 0 , 9 ) ,  S ( 2 0 J  

C THE L E T T E R  C REPRESENTS THE NUMBER OF CL ASSES
C =  7
READ ( 5 ,  1 ) ( ( Y ( I , 1 , K ) , K =  1 , 9 ) , 1  =  1 , 0

1 F 0 R M A T ( F 9 . 2 )
R E A D ! 5 , 2 ) ( ( W ( I , K ) , K = 1 , 9 ) , I = 1 , C )

2 F O R M A T ! E 1 2 - 3 )
C N O R M A L I Z A T I O N

1 =  1
Ü — 1

44  9 K =  2
4 5 0 K1 =
3 9 7 L A R G l

K + 1
A S S ( Y ( I , J , K ) )

LA R G2  = A B S ( Y (  I , J , K D )
I F ( L A R G 2 . G T . L A R G l ) G C  TO 4 5 1

4 5 2  K1 =  K1 + 1 
I N D  = K
I F ( K I - 8 ) 3 9 7 , 3 9 7 , 4 5 3  

4 5 1  I ND  = K1 
K =  K + 1
l F ( K - 8 ) 3 9 7 , 3 9 7 , 4 5 3

4 5 3  L A R G3  =  A 3 S ( Y ( I , J , I  NO) )
DO 4 5 4  K = 2 , 8
Y ( I , J , K >  =  Y ( I , J , K ) / L A R G 3

4 5 4  CONTI NUE 
1 = 1  + 1
I F ( I . L E . C ) G O  TO 4 4 9

C
C C A L C U L A T I ON  OF THE D I S C R I M I N A N T  F U N C T I O N S '  VALUES FOR THE CASE 1=1 

1 =  1
DO 2 0  M = 1 ,C

2 0  S ( M )  =  0 . 0  
DO 4  M = 1 , C  
DO 4 N =  1 , 9

4 S ( M )  = S ( M )  + Y ( 1 , 1 , N ) * W ( M , N )
L  = 2

C PATTERN R E C O G N I T I O N  FOR THE CASE 1 = 1 .
5  1 F I S ( l ) - S ( L ) ) 6 , 6 , 7
6 W R I T E ( 6 , 9 0 ) L  

GC TO 9
7  L  = L  + 1

I F ( L - C ) 5 , 5 , e
8 W R I T E ( 6 , 9 1 )
9 1 = 1 + 1  

I F ( I - C ) 2 1 , 2 G 0 , 2 0 0
C C A L C U L A T I O N  OF THE D I S C R I M I N A N T  F U N C T I O N S '  VAL UES FOR THE CASES 
C I  GREATER THAN ONE

21 DC 1 0 M = 1 , C
10 S ( M )  = 0 . 0

DO 11 M = 1 ,C 
DO 11 N = 1 , 9

11 S ( M )  =  S ( M )  + Y ( I , 1 , N ) * W ( M , N )



w r w l i c K N  K t u u ü N l T I ü N  F O R  THE CASE I  GREATER THAN ONE.
1 2  I F ( S ( l ) - S ( L ) ) 1 3 . 1 3 . 1 4
1 3  W R I T E ( 6 . 9 2 ) I . L  

GO TO 9
14  L  = L + 1 

I F ( L - C ) 1 2 . 1 2 . 1 5
15  L  = 1
16  I F ( S ( 1 ) - S ( L ) 1 1 7 . 1 7 . 1 8
1 7  W R I T E ( 6 . 9 2 1 I . L  

GO TO 9
1 8  L  = L + 1 

8 = 1 - 1  
1 F ( L - B ) 1 6 . 1 6 . 1 9

19  V » R I T E ( 6 . 9 3 )  I  
GO TO 9

2 0 0  0 0  8 0  M =  l . C
8 0  S ( M )  =  0 . 0

DO 81 M = l . C  
0 0  81  N = 1 . 9

8 1  S ( M )  =  S ( M )  + Y ( I , 1 . N ) * W ( M . N )
L = 1 : I  =  C ; B = C - 1

2 9  I F ( S < I ) - S ( L ) 1 3 0 . 3 0 . 3 1
3 0  W R I T E ( 6 . 9 2 l l . L  

GO TO I C O
3 1  L  =  L + 1 

I F ( L - 0 1 2 9 . 2 9 . 3 9
3 9  W R 1 T E ( 6 . 9 3 1 I  

GC TO 1 0 0
9 0  F O R M A T ! « O T H E  ATTEMPT hAS FCR WORD NUMBER O N E . ' . l ;  

+ * T H E  F A I L U R E  ÛCCURED WITH VECTOR N U M B E R " . I X . 1 2 . '
91 F O R M A T ! ' O T H E  WORD SPOKEN WAS NUMBER 1 ' 1
9 2  F O R M A T ! ' O T H E  ATTEMPT WAS FCR WORD NUMBER " ,  I X . 1 2 .  

+ ' T H E  F A I L U R E  OCCURRED WI TH WEI GHT V E C T O R " , I X . 121
9 3  FORMAT!  "OTHE WORD SPOKEN WAS NUMBER » .  I X . 1 2 1  

1 0 0  STOP
END

SEXEC
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I  *  I  ; E l  = 2 
4 0 0  AY =  I  ;  J  =  1

91 0 0  7 0 0  R = 1 . 2
7 0 0  S< R)  = 0 .

DO 6 R =  1 , 2
DO 6  Z = 1 . 9

6  S I R )  = S ( R )  *  Y ( A Y . J . Z ) * W ( R . Z )
R = 1 ; L = 2 
I F ( S ( R ) - 3 ( L ) ) 6 0 1 . e O l . 1 1  

6 0 1  TEMPI  = L  ; TEMP2 = R 
C A L L  ADJ UST  

11 J  = J + 1
I F ( J - 1 0  > 9 1 . 9 1 . 4 1  

4 1  AY g E l  
J  = 1 

9 3  0 0  7 0 1  R =  1 . 2
701 S ( R )  = Q.

DO 7 0 2  R -  1 , 2
0 0  7 0 2  Z = 1 . 9

7 0 2  S I R )  =  S ( R )  + Y ( A Y , J . Z ) * W ( R , Z )
R -  2  ; L  =  1
I F { S ( R ) - S ( L ) ) 7 0 3 , 7 0 3 , 7 0 4

7 0 3  T E M P I  =  L  ; TEMP2 = R 
C A L L  ADJUST

7 0 4  J  = J + 1 
1 F ( J - 1 0 ) 9 3 , S 3 , 6 0 0 1

6 0 0 1  R -  1
5 0 0 0  DO 5 0 0 1  2 = 1 , 9  

I W I R . Z )  =  W ( R . Z ) * 1 0 0 .
1 S A V ( R , Z )  =  S A V ( R , 2 1 * 1 0 0 .

5 0 0 1  CON TI N UE 
Z =  1

5 3  I F  I I W { R , Z ) - I  S A V ( R , 2 1 ) 6 1 0 , 0 0 , 6 1 0  
6 1 0  DO 6 0 5  R = 1 , 2  

DO 6 0 5  Z = 1 , 9  
S A V ( R , Z )  = V v ( R , Z )

6 0 5  CONTI NUE
1 F ( K - 1 9 9 0 ) 6 2 , 6 2 . 5 7  

5 7  W R 1 T C ( 6 , 5 3 ) K
5 8  F O R M A T * ' O T H E  WEIGHT VECTORS FCR T H E ' , I X , ' N U M B E R ' , I X , 1 4 , I X ,  

+ * I T E R A T l O N  a r e : « )
W R I T E ( 6 , 6 l  ) l , ( W l  I , Z ) , Z = I , 9 )
W R I T E ( 6 , 6 1 ) E 1 , ( W ( E l  , 2 )  , 2  = 1 , 9 )

6 1  F O R M A T * I X , I 3 , 9 E 1 2 . 3 )
W R 1 T E ( 6 , 1 0 2 ) C N T

6 2  K =  K + 1 
1 F ( K - 2 0 0 0 ) 4 0 0 , 4 0 0 , 9 2

6 0  Z = Z + 1
I F C Z - 9 ) 5 3 , 5 3 , 6 3

1 0 8



6 3 R = R + i ; Z = l  
I F ( R - 2 ) 5 0 0 0 , 5 0 0 0 , 7 0  

7 0  WR J T E ( 6 , 8 0 n ,  ( W( I  , Z )  , Z = 1  , 9 1  
t o R l T E ( 6 , 6 0 ) E 1 , ( W ( E 1 , Z ) , Z = 1 , 9 )
W R I T E ( 6 , 1 0 2 ) K

1 0 2  F O R M A K I X , 1 4 , I X , • I T E R A T I O N S  WERE REQUI RED FOR CONVERGENCE* )  
8 0  F O R M A T ! I X , ' W O R D * , 1 X , 1 3 , I X , 9 E 1 2 , 3 )
9 2  E l  = £1  + 1

I F ( E i - F ) 4 0 1 , 4 0 1 , 3 0  
4 0 1  K -  1 ; CNT = 1 

GO TO 4 0 0  
3 0  I  =  I  + 1

I F d . E Q . F l G C  TC 100  
K =  I  ;  CNT =  1 
E l  =  I  + 1 
GO TO 4 0 0  

1 0 0  STOP 
END
SUBR OU TI NE  ADJUST 
I NTEGER C N T , A Y
I NTEGER Q , T E M P I , T E M P 2 , T E M P 3 , Z , E  
D I M E N S I O N  Y ( 2 0 , 1 0 , 9 ) , 0 ( 2 0 . 9 ) , * ( 2 0 , 9 ) , 5 ( 2 0 )
COMMON Y , T E M P I  , T E M P 2 , T E M P S , S , I , J , Z , E , C N T , W, AY 
CNT =  CNT + 1 
0  =  1

2 0 0  I F ( 0 - T E M P l  ) 2 0 6  , 4 9 9 9 , 2 0 6  
2 0 6  I F ( G - T E M P 2  ) 2 0 1  , 5 9 9 9 , 2 0 1
201  0 = 0 +  1 

I F ( G - 2 ) 2 0 0 , 2 0 0 , 2 1 0
4 9 9 9  DOTWY = 0 .

DO 5 0 0 0  Z =  1 , 9
OOTWY = OQTWY + Y ( A Y , J , Z ) * W ( Q , Z )

5 0 0 0  C ONTI NUE
DOTWY =  A 0 S ( D 0 T % Y ) * 2 .
DOTY Y = 0 .
DO 5 0 0 1  Z =  1 , 9
OOTYY = DOTYY + Y ( A Y , J , Z ) * Y ( A Y , J , Z )

500 1  CONT I NUE
C =  DOTWY/ DCTYY 

2 0 2  DO 2 1 1  Z = 1 , 9
2 1 1  W I O . Z )  = W ( Q , Z )  -  C * Y ( A Y , J , Z )

0  =  0 + 1  
GO TO 2 0 0

5 9 9 9  DOTWY = 0 .
DO 6 0 0 0  Z = 1 , 9
DOTWY = DUTWY + Y ( A Y , J , Z ) * W ( Q , Z )

6 0 0 0  CONT I NUE
DOTWY = A 8 S ( 0 0 T W Y ) * 2 .
DOTYY = 0 .

1 0 9



0 0  6 0 0 1  Z =  1 , 9
DOTYY =  DOTYY + Y ( A Y ♦ J f Z ) ♦ Y ( A Y . J . Z ) 

6 0 0 1  CON T I N U E
C =  DÜTWY/ OOTYY  

20  5  DO 2 1 2  Z =  1,  9
2 1 2  W ( 0 , Z )  =  * ( Q , Z )  + C * Y ( A Y , J , Z )

0 =  0 + 1  
GO TO 2 0 0  

2 1 0  RETURN  
END

n o
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I NTEGER E l  . C . C l . C N T . C N T l t Z . F t S A V  
INTEGER WO« M O I « S A V l t D l « S A V 2  
REAL  L A R G l . L A R G 2 « L A R G 3
D I M E N S I O N  WORD( 8 0 ) , Y ( 9 ) , W ( 2 0 , 3 8 , 9 ) . 5 ( 2 0 , 3 8 )  

C C REPRESENTS THE NUMBER OF WORDS 
C = 10
E l  =  C -  i ;  C l  =  2 * C  -  2 :  F =  E l  
R E A D ( 5 , 2 ) ( W O R D ( I ) , 1 = 1 , 4 0 )

2  F 0 f i M A T ( 4 A 4 )
3  F 0 R M A T ( E 1 2 . 3 )

W R I T E ( 6 , a O )
8 0  F Q R M A T ( I X , * THE I NPUT  L I S T  I S : * )

W R I T E ( 6 , 8 1  ) ( W O R D ( I ) , 1 = 1 , 4 0 )
W R I T E ( 6 , 6 0 0 )

6 0 0  F O R M A T ( I X , / / , 1 X , * T H E  OUTPUT I S : ' )
8 1  F O R M A T ( I X , 4 A 4 )

R EA D ( 5 , 3 ) (  ( W( I . J , Z )  , Z = 1 , 9 )  . J = 1 , 1 8 )
R E A D ( 5 , 3 ) ( ( W ( 2 , J , Z ) , Z = 1 , 9 ) , J = 1 , 1 6 )
R E A D ( 5 , 3 )  ( ( W( 3 , J , Z ) , 2 = 1 , 9 )  , J = l , 1 4 )
R E A D ( 5 , 3 ) { ( W ( 4 ,  J , Z ) , 2 = 1 , 9 )  , J = I , 1 2 )  
R E A D ( 5 , 3 ) (  ( W ( 5 , J , Z ) , Z = l , 9 )  , J = 1 . 1 0 )
R E A D ( 5 , 3 ) (  ( r t ( 6 , J , Z )  , 2 = 1 , 9 )  , J = 1 , 8 )
R E A D ( 5 , 3 ) (  ( W ( 7 ,  J , Z )  , 2 = 1 , 9 )  , J = 1 , 6 )
R E A D ( 5 , 3 ) (  ( W ( 8 , J , Z )  , 2 = 1 , 9 )  , J = 1 , 4 )
R E A D ( 5 . 3 ) (  ( W( 9 , J , Z ) , 2 = I , 9 )  ,  J = 1 , 2 )
K = 1 

1 I  = i ;  SAV =  1 
SAV2  = 1 
S A V l  = K
R E A D ( 5 , 7 0 , E N D = 1 0 0 ) ( Y ( Z ) , 2 = 1 , 9 )

C
C N O R M A L I Z A T I O N

4 4 9  K = 2
4 5 0  K1 =  K + 1
3 9 7  L A R G l  =  A B S ( Y ( K ) )

L A R 6 2  = A G S ( Y ( K 1 ) )
I F ( L A R G 2 , G T . L A R G l ) G Q  TO 4 5 1

4 5 2  K l  =  K1 + 1 
I N D  = K
I F ( K l - 8 ) 3 9 7 , 3 9 7 , 4 5 3

4 5 1  I N D  = K l  
K = K + 1
I F ( K - 8 ) 3 9 7 , 3 9 7 , 4 5 3

4 5 3  LARG3 = A B S ( Y ( I N D ) )
DO 4 5 4  K = 2 , 8
Y ( K )  = Y ( K ) / L A R G 3

4 5 4  CONTI NUE
C

K =  S A V l  
0 0  4 N = 1 ,C1 
S ( 1 , N )  = 0 .

4  CONTI NUE
0 0  9 N =  I , C 1  
DO 9 2 = 1 , 9
5 ( 1 . N)  = 5 ( 1 , N )  + Y ( 2 ) * W ( 1 , N , 2 )

9 CONTI NUE 
C N T 1 =  1 
KNT =  1 

1 5 0  1 = 1
N =  1 ; N1 =  2 ;  KNT = 1
D1 =  C l  -  2

5  I F ( S (  I , N ) - S ( I  , N1  ) ) 6  , 6 , 7 |  ^2
6 I F ( N 1 - D 1 ) 6 I , 4 0 0 , 4 0 0



SAV2 =  Ni  ; SAV =  ( N l / 2 )  + i ;  I  =  S A V ;  N =  i ;  N I  =  2 
I F ( I - l ) 1 0 , 1 0 . 6 3

6 3  L I M  = ( C - S A V ) * 2  
GO TO 11

10 L I M  =  2 * C - 2
11 I F ( K N T “ C l ) 1 2 , 1 2 . 2 0 0
12  I F ( C N T l - 2 ) 9 9 , 1 5 0 , 2 0 0  
9 9  L l M l  = L I M  -  1

I F ( I - L I M 1 ) 6 4 , 4 0 0 , 4 0 0
6 4  DO 13 N =  l . L I M  

S ( I , N )  =  0 .
13  C ONT I NUE

0 0  14  N = l . L I M  
DO 14 Z =  1 , 9
S ( I , N )  =  S ( I , N )  + Y ( Z 1 $ W ( I , N . Z )

1 4  CONTI NUE
C N T l  = C N T l  + 1 
N = 1 ; N I  =  2  
GO TO 5

C
C T H I S  S E C T I O N  FOR LAST 2 WORDS

4 0 0  S ( F , 1 )  = 0 .
S ( F , 2 )  =  0 .
WD = 4 * K
WOl = WD -  3
DO 4 0  1 Z = 1 , 9
S < F , 1 )  =  S ( F , 1 )  + Y ( 2 >  *  W ( F , 1 , Z )
S ( F , 2 )  =  S ( F , 2 )  + Y ( Z ) * W ( F , 2 , Z )

4 0 1  CONTI NUE
I FC S ( F ,  n - S ( F  , 2 )  ) 4 0 2 , 4  0 2 ,  4 0 3  

40  2 W R I T E ( 6 , 9 2 ) ( WORD( L ) , L = WD 1 , WD)
GO TC 6 0

40 3 W R I T E ( 6 , 9 1 ) ( W C R O ( L ) , L = W D 1 , W D )
GO TO 6 0

C
C T H I S  I N D I C A T E S  F A I L U R E  TO R E C G C M Z E  WCRD(K)

2 0 0  WD =  4 * K
WD1 = WD - 3
WRI TE ( 6  , 9 2  ) ( W 0 R D ( L 1 , L = W D 1  , WD)
GO TO 6 0

C
C T H I S  SEC T I ON  SETS I TO THE NUMBER CORRESPONDING TO THE
C D I S C R I M I N A N T  FU N C T I ON  WHOSE VALUE I S  THE LARGEST FOR THE KTH WORD.
C T H I S  I S  USED CNLY WHEN THE SAME VALUE OF SAV I S  ENCOUNTERED ON A
C CONSEC UTI VE  RUN.

3 0 0  SAV = ( N l / 2 )  + 1 
DO 3 0 1  N = S A V , C l  
S ( 1 , N )  =  0 .

30  1 CONT I NUE
D1 =  C l  -  2
I F ( N l - D 1 ) 6 5 , 4 0 C , 4  00

6 5  DO 3 0 2  N = S A V , C l  
DO 3 0 2  Z = 1 , 9
S ( l . N )  = S ( 1 , N )  + Y ( Z ) * W ( 1 , N , Z )

3 0 2  CONTI NUE
N = N1 + 1 ; N1 =  M  + 2 ;  1 =  1
C N T l  = 1 
GO TO 5

C
7  KNT = KNT + 1 

I F (  1 - 1 > 2 0 , 2 0 , 3 0  
3 0  L I M  = ( C - S A V ) » 2  

GO TO 21  
2 0  L I M  =  2 * C - 2  '^3



I F < K N T - C 1 ) 8 , 8 , 2 0 0  
a  I F ( N 1 - L I M ) 5 » 5 , 2 2  

2 2  WD -  4 * K
WDl  ■= WD -  3
W R I T E ( 6 , 9 1  ) ( W O R O ( L ) * L = W 0 1 ,  WD) 

6 0  K =  K + 1
I F ( K - C ) 1 , 1 , 1 0 0

91  F O R M A T ! I X , 4 A 4 )
9 2  F O R M A T ! I X , « E R R O R  W I T H « , I  X , 4 A 4 ) 
7 0  F 0 R M A T ! P g . 2 >

1 0 0  STOP 
END

1 1 4
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/ /  EXEC t A T F I V
I NTEGER E , R , Z , S 0 N , F , T , U , X , Q , X 1 2 . X I I , X I 3 . C . X 2 . X 5 » X 3  
D I M E N S I O N  Y ( 2 0 , 1 0 , 9 ) ,  0 ( 2 0 ) ,  W( 2 0 , 9 ) , I 3 T 0 R J ( 2 0 )
REAL I T E R
REAL L A R G l ,  L A R G 2 ,  LARG3  

C E REPRESENTS THE NUMBER OF CLASSES,  M R E PRESENT S THE NUMMBER OF 
C PATTERNS
C THE COUNTER,  I C N T ,  CONTROLS WHETHER A PATT ERN  SHOULD BE DELET ED ANC
C RESET EVERY T I M E  A PATTERN I S  DELETED SO THAT FCR EVERY PATTERN Th
C COUNT I S  STARTED AT I  AND I NCREMENTED TO A MAXIMUM OF ( E - l ) a
C I CNVHG I S  I NCREMENTED FOR ALL COMPARISONS ONLY I F  D I S C R I M I N A N T
C C O N D I T I O N S  ARE S A T I S F I E D .  AT THE END OF EACH I T E R A T I O N  ICNVRG I S
C COMPARED TO THE L I M I T  ( L I M )  WHICH I S  THE MAXIMUM NUMBER OBTAI NED
C I F  CONVERGENT C O N D I T I O N S  ARE S A T I S F I E D ,

COMMON Y . I S T O R J ,  I C N T ,  J , I  
E •= 3 ;  M = 10
R E A D ( b , I ) (  ( ( Y (  I , J , Z )  , 2 = 1 , 8 )  , J = I , M )  , 1  = 1 , E )

1 F 0 R M A T ( F 9 . 2 )
C STEPS THROUGH 2 SET THE LAST ELEMENT I N  Y ( I , J , Z )  TO 1 , 0  

0 0  2 I  = I , E
DO 2 J = I  ,M ;

2  Y ( I , J , 9 )  = I . O  I
C THE 4 0 0  S E R I E S  ACCOMPLISHES AMPLI TUDE N O R M A L I Z A T I O N .

DO 3 9 8  1 = I , E
D(] 3 9 8  J = 1 ,M

44 9 K '*= 2
4 5 0  K l  = K + 1
3 9 7  L A R G l  = A B S ( Y ( I  , J , K ) )

LARG2 = A B S ( Y (  I  , J  , K I  ) )
I F I L A R G 2 . G T . L A R G l ) G 0  TO 4 5  I

4 5 2  K l  =  K l  + I  
I N D  =  K
I F ( K I - 8  ) 3 9  7 , 3 9 7 , 4 5 3

451  I N D  = K l
K = K + I  1
I F ( K - 8 ) 5 9 7 , 3 9 7 , 4 5 3

4 5 3  LARG3 = AS 5 ( Y ( I . J , I  NO) )
DO 4 5 5  K = 2 , 8
Y ( I , J , K )  = Y ( I  , J , K ) / L A R G 3

4 5 5  CONTI NUE
3 9 8  CONTI NUE

C THE 1 0 0 0  S E R I E S  ROUNDS OFF THE PATTERNS ELEMENTS TO THE SECOND D E C I  
C PLACE

A = 1 0 0 0  
GO TO 1 0 0 0  

9 9 9  A = 100
1 0 0 0  0 0  2 0 0 0  I  =  I , E

DO 2 0 0 0  J = 1 , 1 0
DO 2 0 0 0  Z =  1 , 8  I

16



X I  = Y ( I . J . Z )  
lF(Xni51* 1002, 150 

151 X I  = A B S ( Y ( + 0.00001
T = X I  * 1 0 0 . 0  + 1 . 0  I
T = T + 2  
X I  =  T / I O O . O  
GO TO 1 0 0 1

150 X I  =  Y ( I , J , 2 ) * A  + 0 . 0 0 0 0 1  '
T =  X I  * 1 0 0 . 0  + 1 . 0  
T = T + 2  
X I  = T / 1 0 0 . 0  
GO TO 1 0 0 3

1 0 0 1  X2  = ABSCXl  )
X I  =  A B S ( X I )
X3  = ( X I  -  X 2 ) * 1 0  
l U  = X3

1 0 3 0  I F ( I U - 5 ) 1 0 C 4 , I  0 0 5 ,  1 0 0 7  
GO TO 2 0 0 0

1 0 0 4  Y(  I , J , Z  ) = - X 2 / A
1 0 0 5  X4  = ( X 2 / A ) * 1 0 . 0  

XS = X4
1X6  = ( X 4 - X 5 ) * 1 0  

N =  1
C = 2 * N

1 0 0 8  I F ( C - I X 6 ) 1 0 0 6 , 1 0 0 7 , 1 0 0 6
1 0 0 6  N = N + 1

I F ( N - 4 ) 1 0 0  8 , 1 0  0 8 , 1 0 0 9
1 0 0 7  X9 = X 2 / 1 0 . 0

X I I  =  X9
X 1 2  = ( X 9 - X l l ) * 1 0  + 1

1 0 1 6  X 1 2  = X1 2  + I
1 0 1 7  X1 3  = X I 1 *  10 + X 1 2

1 X 2 0  = X 1 3  -  X2
1 F ( 1 X 2 0 - 2 ) 1 0 1 8 , 1 0 5 0 , 1 0 5 0  

1050  X 1 3  =  X 1 3  -  1
1 0 1 8  Y ( I , J , Z )  = - X 1 3 / A  '

GO TO 2 0 0 0  ’
1 0 0 9  X8  = X 2 / A

Y ( I , J , 2 ) =  - X 8  
GO TO 2 0 0 0

1 0 0 2  Y ( I  , J , Z )  = Y ( I , J , Z )
GO TO 2 0 0 0

1 0 0 3  X 2  = X I
X3 = ( X I  -  X 2 ) * 1 0  
l U  = X3

1 0 4 0  I F ( 1 0 - 5 ) 1 0  1 0 , 1 0 1 1 , 1 0  14
1 0 1 0  Y ( 1 , J , Z )  = X 2 / A  

GO TO 2 0 0 0
1011 X4 = ( X 2 / A ) * 1 0 . 0
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1 2  0 0  1 3  R =  1 , E
13  OCR)  = 0 . 0

DO 14  K =  1 * 9  
DO 1 4  R = 1 , E

1 4 D ( R )  = D(R) + Y(I , J , K ) 4 W ( R , K )  
I F  ( I  . E Q . l  >GC TO 1 0 3
GO TO 2 0  

1 0 3  R =  I  ; L =  2
1 5  I F I O I R ) . G T . D ( L ) ) G C  TC 16  

GO TO 17
16 I C N T  = I C N T  + 1 

ICNVRG =  I C N V R G + 1
17 L = L + 1 

I F ( L . L E . E ) G O  TO 15  
F =  E - 1
I F ( I C N T . E Q . F ) G O  TO 18  
J  =  J 4 1 ; I C N T  -  0 
GO TO 1 9

1 8  CALL DELETE
19  I F ( I S T ü R J ( I ) . E Û . 1 )G0 TO 30  

I F t J . L E .  I S T C R J d  J )GC TO 12  
GO TO 3 0

2 0  I F ( I . G E . E ) G C  TO 31
r = i ; l = r + i

21 I F ( D ( R )  .GT . D ( L ) ) G C  TO 2 2  
GO TC 2 3

2 2  I CNT =- I CNT  + 2 
ICNVRG =  I CNVRG + 1

2 3  L = L + 1 
I F ( L . L E . E ) G C  TO 21 
L — 1

2 4  I F ( 0 ( R )  . G T . D ( L ) ) G C  TC 25  
GO TO 2 6

2 5  I CNT  = I C N T  + 1 
ICNVRG =  I CNVRG + 1

2 6  L =  L + 1 
I F ( L . L T . R ) G C  TC 24  
F =  E - 1
I F { i C M . £ Q , F ) G C  TC 2 7  
GO TO 2 8

2 7  CALL DELETE  
GO TO 2 9

2 8  J =  J + i ;  ICNT = 0
2 9  I F (  I S T O R J (  n . E Q . l  >G0 TO 30  

I F ( J . L E . 1 3 T C R J ( I ) )GG TO 12
3 0  I  = I  + 1 

I F ( 1 . G T . E ) G C  TC 3 7  
J = 1 ; I C N T  = 0
GO TO 12
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X 5  = X4  
1X6 =  ( X 4 - X 5 ) * 1 0  

N = i
C = 2 * N  «

1 0 1 2  I F ( C - 1 X 6 )  1 0 1 3 , 1 0 1 4 $  1 0 1 3  t-
1 0 1 3  N = N + 1 

I P ( N - 4 1 1 0 1 2 , 1 0 1 2 , 1 0 1 5
1 0 1 4  X9 =  X 2 / 1 0 . 0  

X I 1 =  X9
X 1 2  = ( X 9 - X 1 1  ) * 1 0  + I

1 0 2 1  X 1 2  =  X 12 + 1
1 0 2 0  X 1 3  =  X l l *  10  + X1 2

1 X 2 0  = X 1 3  -  X2  
I F ( 1 X 2 0 - 2 )  1 0 7 0 , I  0 6 0 .  1 0 6 0  

1 0 6 0  X1 3  =  X1 3  -  1 
1 0 7 0  Y ( I , J , 2 )  = X 1 3 / A  

GO TO 2 0 0 0
1 0 1 5  Y d  ,  J . Z  ) = X 2 / A  
2 0 0 0  C O M  INUE

I F < A . E Q . 1 0 0 0 ) G C  TO 9 9 9  
C STEPS THPOUGH 3 9 9 6  SET THE I N I T I A L  NUMBERS OF PATTERNS FOR THE
C V AR Y I NG L CLASS S I Z E S  THAT RESULT FROM D E L E T I N G  PATTERNS THAT
C S A T I S F Y  D I S C R I M U N A N T  C O N D I T I O N S .

DO 3 9 9 6  J -  1 , M  
3 9 9 6  I S T O R J ( J )  =  M 

C STEPS THROUGH ( 1 0 )  S T A T I S T I C A L L Y  DET ERMI NE CLASS WEIGHT VECTORS
I T E R  = 1 . 0  ; J = 1 ; I C N T  =  1 ; fLPHA =  1 , 0  
DO 3  K = 1 , 9  
DO 3  I  =  1 , E

3 W ( I . K )  =  0 . 0
4 I  = 1 ; J =  I 

J 5  DO 6  K = 1 ,  9
6  FCN = 1 . 0  -  W { I , K ) * Y ( I , J , K )

1 F ( F C N . G T . 0 . 0 ) GO TO 7 
SON = - 1  
GO TO 8

7 SON =  1 
a DO 9 K =  1 , 9
9 W I I . K )  = W ( I . K )  + A L P H A * S U N « Y ( I , J . K )

3 0 1  J =  J + 1
1 F ( J . L E ,  I S T C R J ( I ) ) G 0  TO 5 
1 = 1 + 1
I F ( I . L E . E ) G O  TO 10  
GO TO 11

10  J = 1 
GO TO 5

C STEPS THROUGH 3 6  COPARE D I S C R I M I N A N T  FUt : T I O N S  FOR AL PATTERNS TC <] 
C FCR CONVERGENCE

11 I  = i ;  I CNVRG =  0 Î  J =  1 ; I C N T  =  0

1 1 9



3 1  L  = 1 ; R = I
3 2  l F ( D ( i R )  . G T . O ( L ) ) G C  TO 3 3  

GO TO 3 4
3 3  I C N T  = I C NT  t l 

I CNVRG =  1 CNVRG + 1
3 4  L  = L t  1 

1 F C L , L T . E ) G 0  TO 3 3  
F =  É T 1
1 F ( I Ç N T , E Q . F ) G Û  TO 3 5  
j  = J t I  ; I C N T  =  0 
GO t 6  3 6

3 5  CALL D ELETE
3 6  I FC I S T 0 R J ( 1 ) , E Q , 1  )GG TO 3 0  

I F ( J . L E , I S T C R J ( I ) ) G 0  TO 12 
GO TO 3 0

STEPS THROUGH 3 8  CHECK FCR CONVERGENCE
3 7  L I M  = 0 ; I  = I  ; F =  E -  1 
4 2  31 = I S T Q R J d )
3 8  L I M  =  L I M  + F * J l  

1 =  1 +  1
I F ( I , L E . E ) G C  TO 42  
I F ( I C N V R G , G E . L I M J G O  TO 4 1  
I T E R  = I T E R  + 1 . 0  
ALPHA = 1 / I T E R  

I T E R  I S  OFF  BY ONE ( GREATER THAN I T  SHOULD B E)
I F C I T E R . L E  , 1 5 0 , 0 ) G O  TO 4 0

3 9  W R I T E ( 6 , 5 S ) I T E R  
t e R I T E ( 6 , 6 1  ) ( R ,  (W ( R . Z  ) . Z = l , 9 ) , R = 1 , E )
W R I T E ( 6 . 2 0 0 ) 1 CNVRG 
W R I T E ( 6 , 2 0 0 ) L I M

4 0  I F ( I T E R . L E . 2 0 0 0 . 0 )GC TC 4  
GO TO 1 0 0

41 WRITE(ô,aO)(R.(W(R,Z),2=l,9).R=l,E)
W R I T E ( 6 , 1 0 2 ) 1  TER 
W R I T E 1 6 , 2 0 0 ) ICNVRG  
W R I T E ( 6 , 2 0 0 ) L I M  
GO TO 1 0 0

5 3  F O R M A T ( "O T H E  WEIGHT VECTORS FOR THE • ,  i X , • NUMBER• , 1 X , F 6 . 1 , 1 X ,
+  • I T E R A T I O N  ARE : •  )

61 F O R M A T ( I X , 1 3 , 9 E 1 2 . 3 )
8 0  F O R M A T I 1 X , • W O R D ' , I X , 1 3 , I X , 9 E 1 2 . 3 )

1 0 2  F 0 R M A T ( 1 X . F 6 . 1 , ' I T E R A T I O N S  WERE R E Q U I R E D  FOR CONVERGENCE• )
2 0 0  FORMAT( I X , 1 5 )
100  STOP  

END
SUBROUTI NE DELETE

T H I S  SUBROUTI NE DELETES PATTERNS THAT S A T I S F Y  D I S C R I M I N A N T S  C O N D I I C r  
D I M E N S I O N  1 S T O R J ( 2 0 ) , Y ( 2 0 . 1 0 , 9 )
I NTEGER Z
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I
I

COMMON Y . I S T O R J ,  I C N T .  J *  I  I
I C N T  =  0
I F {  J . G E . I S T O R J d  ) ) G0  TO 3 9 9 9  |
J 2  =  I S T O R J ( I ) -  1 
0 0  4 0 0 0  J1 = J , J 2  
J 4  =  J1 + 1 
DO 4 0 0 0  2 = 1 , 9

4 0 0 0  Y d . J l . Z )  =  Y ( I , J 4 , 2 )
3 9 9 9  1 F ( I S T O R J < I  l . E Q . l > G C  TO 4 0 0 1  

I S T Q R J d )  =  I S T C R J d )  -  1
4 0 0 1  RETURN  

END
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