INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the original
submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1.

The sign or “target’”’ for pages apparently lacking from the document
photographed is “‘Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you complete continuity.

. When an image on the film is obliterated with a large round black mark, it

is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the adjacent frame.

.When a map, drawing or chart, etc., was part of the material being

photographed the photographer followed a definite method in
“sectioning” the material. It is customary to begin photoing at the upper
left hand corner of a large 'sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is
continued again — beginning below the first row and continuing on until
complete.

. The majority of users indicate that the textual content is of greatest value,

however, a somewhat higher quality reproduction could be made from
“photographs” if essential to the understanding of the dissertation. Silver
prints of ““photographs” may be ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

.PLEASE NOTE: Some pages may have indistinct print. Filmed as

received.

Xerox University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106



7847909

PATTEN, PAUL RAYMOND
IMAGES OF ABSOLUTE NEIGHBORHOOD RETRACTS AND
GENERALIZED ABSOLUTE NEIGHBORHOOD RETRACTS |
UNDER REFINABLE MAPS, i

THE UNIVERSITY OF OKLAHOMA, PH.D,y 1978

Universt
Microfilms
300N ZEEB ROAD, ANN ARBOQR, Mt 43106



THE UNIVERSITY OF OKLAROMA

GRADUATE COLLEGE

IMAGES OF ABSOLUTE NEIGHBCRHOOCD ZETRACTS AND GENERALIZED

ABSOLUTE NEIGHBORHCOD RETRACTS UNDER EEFINABLE MAPS

A DISSERTATION
SUBMITTED TO TEE GRADUATE FACULTY
for +h

in partial fulfillment of the requirements for the

DOCTCR OF PHILCSOPEY

BY

PAUL RAYMOND PATTEN



IMAGES OF ABSOLUTE NEIGHBORHOCD RETRACTS AND GENERALIZED

ABSOLUTE NEIGHBORHOOD RETRACTS UNDER REFINABLE MAPS

APPROVED BY

A PR SR  E L R

ooty ride

ﬁk,/\ 1% b‘"‘f\?

gy £ Tinn
7 7

DISSERTATION COMMITTEE



ACKNOWLEDGMENTS

I wish to express my appreciation to Professor Leonard Rubin
for his direction and continuing availability to help which made this
dissertation possible. I would also like to express appreciation to
the members of my Committee and to the Mathematics Department at The
University of Oklahoma for the support, encouragement, and training
which I have received from them.

To my wife Rebekah belongs recognition for aer endurance and
support of me through the years of graduate study. Also I must
acknowledge her help with typing the preliminary copies of this
dissertation.

My sincere thanks goes to Trish Abolins whose accurate typing

has made this final copy possible.

pe

i1



TABLE OF CONTENTS

ACKNOWLEDGMENTS . o & 4 v ¢ ¢« 4 o ¢ =« « o & & o o iii
LIST OF DIAGRAMS AND FIGURES. . « « « v & « « o & v

INTRODUCTION. . & v v ¢ v & & ¢ & o o o o &« & « o Vi

Chapter
I. REFINABLE MAPS. . & v v v ¢ v ¢ o v v v o . 1
II. SPACES SATISFYING THE LONCAR-MARDESTC
TEMMA. & v v v v v v e e e e e e e .. .o2h
III. THE IMAGE OF A 1-DIMENSIONAL ANR UNDER

AREFINABIE MAP. . . . « « « « « « « . . 5L
IV. THEE METRIC IMAGE OF A COMPACT ANR UNDER

AREFINABLE MAP. . . . & « « « « + . « . 64
V. MORE ABOUT g-ANR'S. . « v + « ¢« « « . . . . 68

BIBLIOGRAPHY. & 4 ¢ + « & o o « & « o « o « « « « 89



LIST OF DIAGEAMS AND FIGURES

Figure I.23.1 .
Figure 1.23.2 .,
Figure II.28.1
Figure II.29.1
Figure III.T.1
Disgram V.1 .

Figure V.21.1 .

1]

Figure V.22.1 .

v

Page

A £

68



INTRODUCTION

In his Ph.D. thesis of October 1929, Karol Borsuk defined and
studied retracts of metric spaces [Bk 1]. This work led to the study
of absolute retracts. (An absolute retract is a retract of any metric
space in which it is embedded as a closed subset.) It also led to the
study of absolute neighborhood retracts. (That is a space which is a
retract only of some neighborhood of any metric space in which it is
embedded as a closed subset.)

Among the properties that an absolute neighborhcod retract
(ANR) has are (a) an ANR is locally connected, (b) two maps from =2
metric space into an ANR which are sufficiently close are hcmotopic,
and (¢) a map from a closed subset of a metric space into an ANR can be
extended to some neighborhood of the closed subset. Beceause of (b) znd
(c) the ANR's have nice homotopy and extension properties. [Bk kj; Hul

While it is clear that the homecmorphic image of an ANR must be
an ANR it is also clear that the continuous image of an ANR is not

necessarily an ANR. The last part of this statement follows since by

vi



+the Hahn-Mazurkiewicz theorem [Wi, p.T76] every Peano continuum is the
continuous image of the unit interval, and there exist Peano continua
which are not ANR's. Because of these facts one can ask what kind of
conditions must a map satisfy in order to guarantee that the image of
an ANR be an ANR.

For finite dimensional compact metric spaces if the point in-
verses of a continuous map of a compact ANR onto a finite dimensional
metric space are all AR's then the image is an ANR [Bk L4, p.131]. A
generalization of this result involving the use of CE maps or Vietoris
maps (maps so that the inverse image of a point has the shape of a
point) has been recently given by Kozlowski [Ko, p.:8]. Both of these
results require that image must te a finite dimensional compactum.

Another approach to this problem is to use the uniform limits
of e-maps, called refinable maps, which were introduced by Ford and
Rogers [Fo and Rg]. Since the image of 2 finite dimensional space under
a refinagble map must have the same finite dimension there is not the d4i-
mension raising problem with refinable maps that CE maps may have.

Among the results which give certain cases in which the image of
a compact ANR is an ANR are the following:

The image of a compact l1-dimensional ANR under a refinable map
is an ANR.

The image of a 2-sphere under a refinable mzp is a 2-sphere;
moreover, the refinable map is a2 near homecmorphism {Fo and Rg, Theorem

L, p.8].

o s
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The image of a compact orientable 2-manifold without boundary

under a refinable mep is a homeomorphic 2-manifold.

The general question posed by Ford and Rogers as to whether or not the
image of an ANR under a refinable map is also an ANR is unknown even in
the finite dimensional case.

The connection between an affirmative answer to the Ford and
Rogers question and CE images of ANR's is apparent using the following
results from [Fo and Rg] which will be generalized to a more general
class of spaces to be called quasi-ANR's (q-ANR's):

If r is a refinable map from the ANR (g-ANR) X onto Y and
e > 0 , then there exist maps 81 from X onto Y and g, frem Y
onto X such that

(i) d(rgg,id Y) < e and

(ii) d(glg2,id Y) < ¢ eand d(gegl,id X) < ¢ . [Fo and Rg,

Corollary 3.3, p.6].

If in addition to the hyvothesis given above both X and Y
are ANR's then r 1is a fine homotopy equivalence [Ch, p.91]l.

Thus, by a result due to Haver r is a CE map [Ha, Ch, p. 91].

The first results (i) and (ii) cited in the previous paragrzaph
follow from a result ty Lonlar and Marsde¥ié [Lo and Ma, Lemma 1, pp.
41-k2}. 1In Chapter II we will show that the Lon¥ar and Marde¥ié result
holds for a larger class of spaces than the ANR's. In fact, among the

locally connected spaces the quasi-ANR's are exactly the spaces fcr

which the Lonfar and Marde3ié result hclds. Henca, guasi-ANR's are



spaces for which the results Ford and Rogers state in the case of an
ANR must hold. A nice result in this setting is that the image of a
quasi-ANR under a refinsgble map must be a quasi-ANR.

In the last chapter (V) we will find the position of quasi-
ANR's relative to other generalizations of ANR such as the approxi-
mative ANR's due to Noguchi and the approximative ANR's due to Clapp.
One of the main differences is the requirement of surjectivity of the
approximative retractions in the case of the quasi-ANR's.

In this dissertation all spaces are assumed to be compact
metric spaces unless otherwise indicated. All maps are continuous
functions. A homeomorphism is one to one, onto, and both it and its
inverse are continuous. An embedding is a map which is a homeomorphism
to its image.

As =2 matter of notation if S is a set in some metric space
X, by NE(S) we will mean the set of points in X +whose distance

Fad

from S 1is less than . If S = {X} we 2buse the notation and

m

write NS(X) .



IMAGES OF ABSOLUTE NEIGHBORHCOD RETRACTS AND GENERALIZED

ABSOLUTE NEIGHBCREOOD RETRACTS UNDER REFINABLE MAPS
CHAPTER I
REFINABLE MAPS

I.1 Definition. A map f from a space X cnto a space Y

is said to be an e-map for a given positive reazl numter ¢ if for each
v in Y, diam £ (y) < e . [Al, 0.103; Ma and Se, p.1Lk6]

I.2 Definition. A map r from a space X onto a space Y
is said to be refinable if for every ¢ > O there is an e-map f ¢-
near r (that is, d(£,r) = sup{d(f(x),r(x)) | x velongs to X} < e ).
[Fo and Rz] Such 2 map £ 1is called an e-refinement.

The following results will be quoted from Ford and Rogers with-
out prooct.

I.3 Theorem. If r is a refingble map from X onto Y and

H is =z subcontinuum of Y , then there is a continuwm € in X such

that r(C) = H and C contains r-l(int(H)) , where int{H) denotes



the topological interior of H . [Fo and Rg, Theorem 1, p.2]

I.4 Definition. The map r from X onto Y is weakly
confluent if and only if for each subcontinuum H of Y some
component of i) is mapred onto H by r . [Lel

I.3.1 Corollery. Every refinable map from X onto Y 1is
weakly confluent. [Fo and Rg, Corollary 1.1, p.2]

I.3.2 Corollary. If r 1is a refinable map from X onto ¥
end Y is connected imKleinen at p , then r_l(p) is connected;
hence, i¥ Y is locally connected then r is monotone. [Fo and BRg,
Corollary 1.2, p.3]

I.3.3 Corollary. If r 1is a refinable map from X onto Y ,
then X 1is decomposzble if and only if Y is deccmposaeble. [Fo and
Rg, Corollary 1.3, p.3]

Before stating Theorem 2 of [Fo and Rg] together with a slight

generalization, the following definitions are necessary.

I.5 Definition. A pecint =x of a2 space X 1is a local cut

point of X 1f and only if there is an open neighborhood U of x
which is separated by x (i.e., U - {z} is separated). By 2 theorem
in [Wh, p.f1l] the condition given in this definition is equivalent to
requiring that x be a local cut point of X provided there is an
open neighborhood U of X such that if V is any open neighborhood
of x contained in U then V - {x} is sevarated. The preceding
sentence yields the definition found in [Ma and Se, p.155].

I.6 Definition. A point x of a space X is a weak cut

voint of X if and only if there are distinct points h and k of X



different from x such that every continuum containing h and k
must also contain x .
I.7 Definition. A point x of a space X 1is a lccal weak
cut point of X if and only if there exist an open neighborhood U of
x and two distinct points h and k in U different from x such
that every continuum in U containing h and k must also contain x .
I.8 Theorem. Suppose r is a refinable map from X onto Y
and the point q separates Y . Then some point of r—l(q) is a weak
cut point of X . [Fo and Rg, Theorem 2, p.k4]
I.9 Theorem. Suppose r 1s a refinsble map from X onto Y

and y 1is a local cut point of Y . Then some point of r-l(y) is a

v

-

local weazk cut peint of X .

Proof: Since y 1is a lccal cut point of Y there is an open
neighborhood V of y such that V - {y} is separated. Let
-l(V) . Also let V- {y}=HUXK where H zandi K are nonempiy
mutually disjoint open sets. Let h belong to r—l(H) and k beliong
to r(K) .

Since r 1is a refinable map there is a sequence of 1/i-maps
fi from X onto Y such that d(fi,r) < 1/i and {fgl(y)} con=-
verges in the Hausdorff metric to = nonempty closed subset of X .

1 -1
Since diam fo(y) ~0 as i - = , {fi—(y)}-+ {x} for some x in

L.
i
X .
Suppose M 1is a continuum in U such that h belongs to M
and k belongs to M . Since £.(x) -» r(x) and fi(x) -+ ¥ we have

"l/-

-1
r(x) =y ; hence, x does nct beiong to r (Z) U r {(K) . If x dces



o

not belong to M there is an 1 large enough sc that Ii(M) is a
subset cf V , fi(h) belongs to H , fi(k) belongs to K , and M
does not intersect f;l(y) . Now h belongs tc the intersection of

M and f;‘L(H) , end k belongs to the intersection of M and

f;l(K) . Since fi(M) is g subset of V anéd M does not intersect
f;.:l(y) , M is a subset of f;l(H) U f;l(K) . Thus, f;l(H) and

f;l(K) separate M which is impossible since M is connected. One
must conclude that x belongs to M , which shows that x mnust be a2
local wezk cut point of X .

The next lemma is a standard result concerning weak cut points.

T.10 Lemme. If a spaece X 1is locally connected and x is a
weak cut point of X then x is 2 cut pecint of X .

Prcef: Since x 1is a weezk cut point ¢f X there are distinct
points h and k different frem x so that any continuum which ccn-
tains Both h and k must also contain x . If =x is not a cut point
then X = {x} is connected. Since X is locally ccnnected and compact

)seens

there 1s a simple chain of compact connected sets Cl(Ul),Cl(U2
Cl(Un) such that x does not belong te any Cl(Ui) , each U, 1is
open and nonempty, and h belongs to Ul while k Dbelongs to Un
Thus the union of the Cl(Ui) is g continuwm from h to k missing

X which is impcssible. It must be concluded, therefore, that x is a
cut point.

I.11 Lemma. If x is a locel weak cut point of X and X

is a locally ccanected space, then x 1is a lccal cut point of X .



Proof: Since x 1s a locel weak cut point of X and X 1is
locally connected there is a closed neighborhood V of x which is
locally connected, and such that x 1is a weak cut point of V . By
Lemma I,10, x 1is a cut point of V . Thus, according to Definition
I.5, x 1is a local cut point of X .

To show that in the preceding theorems (Theorems I.8 and I.11)
it is not necessarily true that every point in the inverse image of a
cut point under a refinable map is a weak cut point or a local weak cut
point consider the following example.

I.12 Example. In the plane E2 for n=1,2,... , let Rn
be the closed segment with endpoint at the origin inclined at an angle
of rr/2n , having length 2/2n . Let X = the union of the Rn and

Y = the union of the R where n is greater than or equal to 2

b

the origin and r{Rn = the

Define r from X onto I by r(Rl)

identity cn Rn for n > 1 . Using the sequence of maps fn defined

by allowing fn (origin) = origin , for 1< i< n allowing
fani = the identity on Ri s, allowing fanl to be a linear map of

R, onto Rn , and for 1 > n allowing fanﬁ to be a linear map

}_.l

of Ri onto Ri+l s it can be seen that r is the uniform limit cf

the fn 's and that each fn is a homeomorphism. Hence, r is a

near homeomorphism; thus, r is a refinable map.

fte

Now r-l (origin) = R, . The free endpoint (0,1) of R, 1is

clearly not either a weak cut point or even a local weak cut point of

X while the crigin is a cut point of Y .



I.13 Definition. A locally connected space X is said to be

locally cyclic provided that for every x in X and neighborhood U

of x there is an open set V which is a subset of U containing x
and such that V - {x} is connected {Ma and Se]. It is clear that a
locally connected locally cyclic space contains no local cut pointsy
hence, by Lemma I.11l such a space contains no local wezk cut points.
Conversely a locally connected space which contains no local cut points
is a locally cyclic space.

The following two corollaries are closely related. The first
corollary, I.13.1, appears in [Fo and Rg, p.4]. The second corcllary
is an enalogous version of the first corollary in the case of locally
cyclic spaces. The proof given here is an adaptation of the proof of
Corollary I.13.1 as it appears in Ford and Rcgers.

I.13.1 Corollarxry. If r is a refinable map from X onto Y ,
and X 1is locally connected and has no cut point (thus by [Wh, ».79]
X 1is cyclicly connected), then if y belongs to ¥ , X - r-l(y) is
connected, Hence, Y has no cut point.

Proof: See Ford and Rogers [Fo and Rg, p.4t]. Since r is a
closed map, Y 1is locally connected; hence, by the result in [¥h,
p.79], Y is cyclicly connected.

I.13.2 Corollary. If X is a locally connected locally
cyelic space, then Y , the image of X under a refinable map r , is
also a locally connected locally cyclic space.

Procof: We first note that since r is a closed map, hence an

identificetion, Y is locally connected.



Suppose a point y in Y were a2 local cut point. By Theorem

l(v) would be a local weak cut point. By Lemma

v

I.9 some point of r
I.11 such a point would be a local cut point of X which is impossible
since X 1is locally cyeclic.

Thus, we must conclude that Y can have no local cut points.
From the remark following Definition I.13 we may conclude that Y is
locally cyclic.

Next we will show that refinable maps preserve finite dimension
in the sense that if there is a refinable map between two compact (or
locally compact separable) metric spaces and cne of the spaces has a
finite (inductive) dimension [Hz and Wa] then the other space has the
same dimension. Notice that this is different from the case of a CE
map where it is in general unknown if such maps cen raise dimension.

I.14% Lemma. Let X ©be a compact metric space, and suppose
dim Y=n where n is finite. I{ r 1is a refinable map from X
onto Y , then dim X< dim ¥ =n .

Proof: The following characterization of dimension will te
used. Suppose X 1is a compact metric space. Then dim X =n if
and only if for every positive real number ¢ there is an g-map of X
into a polytope of dimension less than or equal to n (Alexandroff's
theorem on approximation to compact metric spaces by vpolytopes [Hz znd
Wa, p.721).

We are given dim Y =n and r : ¥ >~ Y ( -+ means onto) is
a refinable map. Lzt & > 0 be given. Then there is amep f : X Y

such that for 211 y in Y , diem f-l(y) < g/3 and



a(f,r) = swfalf(x),r(x)) | x is in X} < &/3 . Since f 1is contin-
uous and X 1is both compact and Hausdorff, the collection
{f-l(y) ! vy belongs to Y} is an upper semicontinuous decomposition
of X [Ho and Yg, p.132]; hence, there is a finite open cover a of
Y such that for each A in a there is a ¥ in Y with
Fha e ()

- Since dim Y = n , there is an a-map g : Y - X where K is
a polytope of dimension less than or equal to n . We claim that
gf : X +KX 1is an e-map; hence, since € may be chosen arbitrarily
small dimX = n .

To prove the claim let k belong to K . Then g‘l(k) is a
subset of scme set A. belonging to a , since g 1is an c-map.

Hence, there is a y in Y such that f-l(g—l(k)) is contained in
N8/3(fnl(y)) . Since diam f“l(y) < €/3, diam f-l(g-l(k)) <z .

I.15 Lemma. Let X ©be a compact finite dimensicnal metric
space with dim X =n , and let ¥ be a metric space. If r is a
refinable map frecm X onto ¥ then dim Y = dm X =n .

Proof: This proof will use the covering characterization of
dimension [Hz and Wa, p.66]. That is, a compact metric space has di-
mension less than or equal to n provided every open cover has an open
cover refining the original cover such that at most n + 1 elements of
the refinement can have nonempty intersection. In this case the refine-
ment is said to have order n .

Let a bYbe an open cover of Y . Since Y is the continucus

image of a compactum, Y must be compact; thus. there is an & > 0



such that if diam S < 2¢ and S 1is a subset of Y , then for some
%
A in a , S 1is containedin A . Let a ©be a finite open cover of
# #
Y with mesh a = sup{diem A | A belongs to a } < &/3 . Then

-1, ¥ . . . <
r (¢ ) 1is an open cover of the n-dimensional space X . Hence, there

Py

- *
is a refinement B of r l(a } such that the order of 8 is less than

or equal to n . Since X is compact there is 2 & > 0 such that if
T 1is a subset of X whose diameter is less than & then T 1is con-
tained in some member of B .

Since r : X > Y 1is a refinable map there is a S-map

£+ X>>Y, g/3~near r . Consider the cover vy = {u, = union{f-l(y) |

f—l(y) C B} | B belongs to £} . Notice that vy is a cover since each

~

x in X belongs to I—l(y) for some y in Y , and since

a4

diam £ () < & implies the existence of same B in B which. contains

-1

b

(y) . The cover y is an open cover since each B in B8 is open
[Ho and Yg, Theorem 3-32, p.133].

Each Uy is saturated; thus, {f(UB) | B belongs to B} is
an open cover of Y . Tt is now claimed that {f(U;) | B belongs to 8}
refines a . This claim follows since diam f(UB) S e < 2 . To verify
this last formula let Uy and u, each belong to Ué . Then the fol-
lowing inequalities hold: d(f(ul),f(u2)) = d(f(ul),r(ul)) +
d(r(ul),r(u2)) + d(r(ug),f(uz)) < & . Notice that d(r(ul),r(ug)) < ¢/3

gince esach of u:L and u, belongs to B , and B 1is in B which

. -1, #
refines r (a ) .

Next it will be shown that the order of {f(UB) | B belcngs to

is less than or equal to n . Suppose the intersection of



f(Ué ),...,f(UB ) , vhere the B, in B are distinct, is nonempty.
1 k -

Let y Dbelong to the intersection. Then f-l(y) is a subset of each

B
i

the Bi is nonempty. Since the order of B 1is at most n it must be

f-l(f(Ué )) = Uy (each U is saturated). Thus, the intersection of
i i i

that k=< n + 1 . Hence, the order of {f(UB) | B belongs to B8} is
at most n .

Since a is an arbitrary open cover of Y , we conclude that
dimY¥<=n=3dm X .

Putting Lemmas I.14 and I.15 together one obtains the following
theorem:

I.16 Theorem. If there is a refinable map between compact
metric spaces and one of the spaces has a finite dimension then both
spaces have the same finite dimensicn.

It should be noted at this.point, that the refinability of a
map is not dependent on the choice of metrie. In fact, in general
topological spaces one may define a map r from X onto Y +o be
refinable provided that for every open cover a of X and every open
cover 2 of Y there is amap T from X onto Y such that 7 is
B-near r (i.e., for every % in X there is a B in § which
contains both f(x) and r(x) ), and f 1is an a-map (i.e., for
every ¥ in Y there is an A in a such that f—l(y) is contained
in A ). It is clear that in the case of compact metric spaces this
definition is equivalent to Definition I.2 using any pair of consistent

metrics.



As a corollary of this result, a generalization to locally com-
pact metric spaces can be cbtained. If each of X and Y is a locally
compact metric space, a map r of X onto Y will be said to te

proper refinable if and only if (a) r-l(c) is compact for each compact

subset C of Y , and (b) for every open cover a of X and every open
cover B of Y there is an a-map f : X »> Y (-near r . We then have
the following:

I.16.1 Corollary. Let each of X and Y be a nonempty locally
compact separable metric space. Then if one of the spaces has a finite
dimension and r 1is a proper refinable map from X onto Y , both X
and Y have the same dimension.

Proof: Let X* = XU {~»} and Y* =Y U {»} be the one point
compactifications of X and Y , respectively. Since each of X and
Y is second countable each of K* and Y* is 2 compact metric space
[Du, p.2b7].

* # % * #
Let r : X Y Ybe definedby r [X=r and r (») = o .

* % *

t is claimed that = is a refinable map from X onto ¥ . Let «

. . *
be an open cover of X so that in X , @ has a mesh less than a given
e >0 . By Theorem 4.1 of [Ch, p.2] there is an open cover vy of ¥
so that any pair of maps of X into Y +y-near each other are either
both proper or both not proper. Let B be an open cover of T which
. . #
refines y and in Y has a mesh less than ¢ .
By the refinability of r <there is an g-map f : X - Y
# % %

B-near r . BSince r 1is proper £ 1is proper. Hence £ : X =Y
#

defined by f |[{ =7 and f (=) = = is a2 map. By the way a and B



# #
have been chosen, it is clear that f 1is an e-map e-near r (at

@ f* and r* agree). Hence r* is a refinable map.

Suppose one of X or Y 1is finite dimensional, If dim X =n
(or d@m Y =n ) then dim X = n (or dim v = n ) since the dimension
of a nonempty separable metric space cannot be raised by adjunction of
one point [Hu and Wa, p.32]. By Theorem I.16, dim Y = n (or
dimx*=n). Again since dimYSdimY* (or dimXSdimX*),and
the dimension cannot be raised by the adjunction of a single point,
GmY=n (or dmX=n).

In the next section we will show that if either of two spaces
has a finite number of components and there is a refinable map between
the spaces then the refinable map induces a bijection between the
components of the two spaces. Moreover, we can show that in this case
the restriction of a refinable map to a component is still refinable.
In general it is not known when the restriction of a refinable map to
a proper subspace will still be refinable [Fo and Rg, pp.4-5].

Before proving these statements we will adept the following no-
tation and definition. If X is a space by k(¥) we will mean the
set of 211 compcnents of X .

I.17 Tefinition. A map f from a space X onto a space Y

will be said to be component preserving vrovided the function ¢

defined by o(K) = £(K) , where XK is a component of X , is a bijec-
tion of k(X) to k(Y) .
I.18 Lemma. Amap f from a space X onto a space Y is com-

o

ponent preserving if and only if for each component H of Y , £ ~(H)

12



is a component of X .
I.19 Lemma. If r frem X cnto Y 1s a refinable map be-
tween compact metric spaces and Y 1is connected then X is connected.
Proof: Suppose X is not connected. Let X =U U V where
U is open, V 1is open, U ﬁ V=@, U7¢@ and VF @ . Then esch
of U .and V 1is closed; hence, each of U and V 1is compact. Let

e = d(U,V) = inf{d(u,v) | u belongs to U and v belongs to V} .

€ is a positive real number since UN V=0 and both U and V are
closed., Let f from X onto Y be an e-map e-near r . Consider
£(U) and £(V) . Each of £(U) and £(V) 1is closed and
o(U) U £(V) =Y,

We now claim that f_lf(U) = U and f-lf(V) =V . Suppose ¥y

-

isin £(U) . Then £ (y) NUF @ . Since diam f‘l(y) < a(u,v) ,

f-l(y) NV=2¢. Thus f_l(y) is a subset of U . Hence, f*l(f(U)) =U.

Similarly it follows that £ 1(£(V)) =V . Since U and V do not
intersect f(U) and £(V) do not intersect. Thus, £(U) and =£(V)
form a separation of Y which is impossible.

A corollary of the proof of the preceding lemma is that if P
is a class of connected metric spaces and X is P-like (can be mapped,
for every & > 0 , onto some member of P by an e-map) then X is
connected.

I.20 Lemma. Let r from X onto ¥ Dbe a refinable map be-
tween compact metric spaces. Suppose 2 subset H of Y is both open
—l(-

. . -1,
and closed. Then r|r (H} is a refinable map from r (H) onto H .



Proof: Let € >0 be given. Let K=Y -H . Since H is
both open and closed, Y - H is both open and closed. Let 7 = d(H,K) .
Then 7T > 0 since H and K do not intersect. BSince r is refinable
there is amap § from X onto Y so that f is a min{e,n}-refine-
ment of r .

It is claimed that f maps r-l(H) onto H . For if x
belongs to r-l(H) then since d(f(x),r(x)) < d(H,K) , £(x) belongs
to H . Hence, f(r_l(H)) is contained in H . To show that
f(r_l(H)) =H, let y belong to H . Since f is onto Y there is
an x in X such that £(x) =y . Clearly r(x) belongs to H ;
thus, x belongs to rnl(H) ( d(r,?) < a(H,K) ).
o

Since flr-l(H) is an g-map e-near rlr (H) and £ > 0 is

arbitary, flr-l(H) is the required map needed to show that r|r
is refinable.

I.21 Lemma. If r from a space X onto a space Y is a
map and X has at most a finite number of components, then Y has at
most a finite number of components.

Proof: This lemmz follows from the fact that any map preserves
connectedness and the fact that r 1is surjective.

.22 Theorem. If r <from a space X onto a space Y is a
refinable map and Y has at most a finite number of components, then r
is component preserving.

Prcoof: According to Lemma 1.18 it is sufficient to show thet

-
if H 1is a component of Y +then = (H) is a component of X .

I_.J
e



Suppose H 1is a component of Y . Then H 1is both open and
closed. By Lemma I.20, rlr‘l(H) is a refinable map of r-l(H) onto
H . According to Lemma I.19, r-l(H) is connected. It is now claimed
that r_l(H) is a component of X . This fact follows since if K 1is
a connected set in X which contains r “(H) then r(K) is a connected
set in Y which contains H . In this case H = r(K) since H is a
component of Y ; thus, K = r—l(H) .

I.22.1 Corollary. If r is a refinable mep from a compact
metric space X onto a metric space Y , and X has at mest a finite 77
number of components then r 1is compcnent preserving.

Proof: Apply Lemma I.21 and Theorem I.22.

I.22.2 Corollary. Suppose r 1is a refinable map from a com-
pact metric space X onto a metric space Y , and X has at most a
finite number of components. Then for any component X of X , riK
is a refinable map.

Proof: According to Corollary I1.22.1, r is component pre-
serving. Hence, r(K) is a component of Y and K = r-l(r(K)) .

Thus, r(K) 1is both open and closed; therefore, by Lemma I.20, rIK
is a refingble map.

1.22.3 Corollzry. Suppose r from a compact metric space X
onto a metric space Y is a refinable map. If k(X) is countably
infinite then k(Y) is countably infinite.

Proof: Clearly r(k(X)) is a2 countable cover of ¥ by con-
nected sets. Since each set in r(k(X)) 1is ccntained in some component

of Y , k(Y) is at most countable. If k(Y) were finite Thecrem



1.22 would imply that r is component preserving; hence, k(X) would
be finite.

On the other hand, given that r is a refinsble map from a
space X onto a space Y and k(Y) is countably infinite, it is not
necessarily true that r is component preserving or even that k(X)
is countably infinite as the next example shows.

I.23 Example. Let X be the various stages of the middle
thirds construction of the Cantor set together with the Cantor set as
depicted in Figure I.23.1. Let Y be a sequence of vertical segments
whose diameters go to O tcgether with the origin as depicted in
Figure I.23.1. Using the notation in Figure I1.23.1 define r from X

onto Y so that r takes Ja onto Ia o linearly, and so
TREELN TRREEN

that r (Cantor set) is the origin.
It is claimed that r is a refinable map. For z natural number

n let T be defined sc¢ that if k < n then fn J =

n ayeedy
r(dJ ;s for 811 k , T {d....Aa=T|9n...q 3 1f k210 and
l ajee- nl O * 0 0 x 0
n
_2 a; # 0 then £ Aa g =T HJ , where HJ is
i=1 1 n 8_+e08 a ...
1 n 1 n
the horizontal projection onto Ja s 3 if k>n and
1" %,
n
-§ a, = 0 1let fn map AO-°-02 to Dk by first projecting onto
i=1 k
JO-~-02 , then follow this by a linear map onto Dk 3 finally let
id
£ (0,0) = (0,0) . For the definition of A _ see Figure I.23.2.
FeS 1--odk
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In ¥ the sets Di are the intervals Ia where

ll' +n
k+n
2 a, #0 and k=21.
. i
i=1
Notice that since fn differs from r only at points (s,t)
with s < 1/2%, a(g,r) < /2" + 1/3% . Since diem A <

qeeedy
1/3F + 1/2% 21/ + 1/2% for k= n end £ has singleton point
inverses for k< n , it follows that diam f;l(y) =1/3% + 172" <
n-1 . n-1 e .
1/2 . Thus fn is a 1/2 refinement of r which shows that
r must be a refinable map. It is clear that X has uncountably
many components while Y has countably many components.
An easy consequence of Theorem I1.22 and Corollaries T.22.1 and
I.22.2 is that if X 1is a compact metric space, r 1is a refinable map

h

from X onto a metric space Y , znd either X or Y is leocally con-
nected, then r is a component preserving map, and the restriction of
r +to any compornent of X is a refinzble map. This fact is important
in the sequel where the spaces to be studied will be locally connected.
With this property the proofs of facts concerning these spaces can be
reduced to the case where the spaces are connected.

This chapter will be concluded with some properties of products,
finite compositions, and cones of refinable maps.

I.24 Theorem. For each natural number i , let each of X,
and Yi be a compact metric space. Suppese that for sach natural
number 1 the map r, frem Xi cnto Y. 1s a refinable map. Then

r = Hri which maps the compact metric space TiIX, onto ITI¥Y, is a
i

i

refinable map.

19



Proof: Let di represent the metric on each of Xi and Yi s
and let 4 = Zdi/2i represent the metric on each cf the product spaces
HXi and HYi .

Let ¢ >0 be given. For each 1 , let fi be an g/2-refine-
ment of r:_L . Then Hfi = f satisfies the following properties:

(a) a(f,r) <e .
() Iz £((x;)) = (y;) = £((2;)) then
a((x;),(z,)) s e/2 .

Prcof of (a): d4(f,r) = Zdi(fi,ri)/Ei s s/(2-2i) = e/2<

M

Proof of (b): If If.(x.) = (y.) =0f.(z.) then each of x. and 7y,
i1 i i1 i i

-1 \ . . ~
£ £ - 3 .
belongs to £ (yi) . Since £, 1is an g/2-map, ai(xi,zi) < e/2

Thus, a((x.),(z,)) = 2d,(x, ,z,)/2% = e/(22) = ¢/2 .
i i 17171

Property (b) shows that f is an tc-map while property (a)
shows that f is e~near r . Since ¢ > 0 1is arbitrary, r is a
refinable map.

I.2h.1 Coroliary. Finite products of refinable maps on
preducts of metric compacta are rerinable.

Proof: Let Xi and Yi be single points except for finitely
many i and apply Theorem I.2Lk,

1.25 Theorem. The finite composition of refinable maps is
refinable.

Proof: Let r from the compact metric space X onto the
metric space Y be a refinsble map, and let s from Y onto th
metric space Z be a refinable map. Then the claim of the thecrem is

that sr frem X onto Z is a refinsble map.

20



Let & >0 be given. Then there is a & > 0 such that for

vy, end y, in Y, d(yl,yg) < & implies d(s(yl),s(yz)) < /3.

Let £ from X onto Y be a min{6/3,e/3}-refinement of r .

For each y in Y there is a Yy > 0 such that f_l(NY (y))
¥y

is a subset of Ns/3(f-l(y)) , since {f-l(y) | v belongs to Y} is
an upper semicontinuous decomposition of X .

Since Y 1is compact there are points yl,yg,...,yn in ¥ such

that {N( )/Q(yi)} covers Y . Let vy = mln(yyi)/2 . Let g from

v
Yi

Y onto Z be a min{5/3,e/3}-refinement of s
Cleariy gf maps X onto Z . Now the following inequalities
hold: d(gf(x),sr(x)) = dlgf(x),sf(x)) + d(sf(x),sr(x)) < &/3 + &/3

since 4d{#f(x),r(x)) < 8/3 <8 and

()

is e¢/3-near s . Thus gf is

[W]

g=near sr . Also it is claimed that for each z in s

diam(gf)—l(z) < € . To verify this assume that gf(xl) =z = gf(xg)

for x;, and x, in X . Then since g is a y-map d(f(xl),f(xz)) <t .
Now there is a y, such that d(f(xl),yi) < Ty /2 ; hence,
i

(¢ o) P
a(£(xy) v, ) < alflx),8(x ) + dle(x,),y,) < Y, /24y < v, + Tous

i i
d(xl,f—l(yi)) < /3 and d(xz,f-l(yi)) < g/3 . Since

. —l . ’ .
diam f (yi) <¢/3 (£ is an ¢/3-map), d(xl’XQ) < dalx,,f 1(yi)) +
. -1 - A1 - . -
diam f (yi) + Q(Xz,l J'(yi)) < £ . Hence, diam(gf) 1(z) < & for all
Zz in Z . Thus gf 1is an e-refinement of sr . Since ¢ > 0 is

arbitrary, sr is a refinsgble map.



The next theorem will show that the cone of a refinable map
between compact metric spaces is a refinable map between the cones of
the spaces. In order to prove this fact we will first prove the result
for the geometric cone of each of the spaces embedded in the Hilbert
cube @ = HIi ( Ii = [-1,1] for each i ). To do this we will adopt
the following notational conventions. If X 1s a compact metric space
then X may be embedded in Q2 by an embedding hX where Q2 =

I Ii . Let G(X,hY) be the subset of Q which is the union of 21l
iz2 ‘

segments from the origin to points of the form (1,hX(x)) where x
belongs to X .

There is a homeomorphism Py from the cone of X , C(X) , to
G(X,hX) which is given by sending the point <x,t> in C{X) +to
(1 - £,(1 - t)hx(x)) . In this case, %+ Dbelongs to I = [0,1] and
<x,t> 1is the equivalence class of (x,t) where all the points with
t = 1 have been identified.

I.26 Theorem. Let each of X and Y be a compact metric
space. If r from X onto Y is a refinable map then C(r) from

¢(X) to cC(Y) is surjective and is also a refinable map.

Proof: C(r) is surjective since r x id I from X x I to

Y x I 1is surjective, i.e., <y,t> = <r(x),t> for some x in X
because r 1is onto Y .
Since each of X and Y 1is a compact metric svace there are
embeddings h,, of X into @ and h of Y into @, . Let o
X 2 Y 2 X

and Oy be the homeomorphisms between the ccnes and ceometric cones

n
n



of X and Y . OSince homeomorphisms are obviously refinable maps and
since r 1is 2 refinable map, s = thhgl from hX(X) onto hY(Y) is
a refinable map according to Theorem I.25.

We now claim that G(s) from G(X,hX) onto G(Y,h,i) defined
by taking (u,uhx(x)) to (u,ushx(x)) is a refinsble map. Note that
shX(x) = hY(r(x)) assuring the fact that G(s) is onto.

let ¢ >0 be given. Let £ from hX(X) onto hY(Y) be an
g-refinement of s . Define G(f) from G(X’hX) onto G(Y,hY) by
sending (u,uhX(x)) e (u,uth(X)) . Now
a(a(£)(u,uny(x)),G(s) (u,uhy(x))) = d((w,ufh (x)),(u,ush,(x))) =
ud(fhx(x),shx(x)) s d(th(x),shX(x)) <¢ . Thus G(f) is e-near G(s) .
Further if G(f)(ul,ulhx(xl)) = G(f)(uz,u2hx(x2)) then
(ul,ulf(hx(xl))) = (ug,u2¢(hx(x2))) . Hence u =, . Irf Uy £ 0
then f(hx(xl)) = f(hX(xz)) so that d(hX(xl),hX(xg)) < & since £ is
an e-map. In that case d(ul,ulhx(xl)),(ul,u h(x.)) =

27X 72

uld(hx(xl)’hX(XZ)) <we<e. If u =0 then (ul’uth(xl)) =

origin = (u2,u2hX(x2)) . In either case the distance is less than ¢
Hence, G(f) is an e-map. This proves the claim.
¥ow C(r) = (p;lG(s)@K . Since C(r) 1is the ccmposition of

refinable maps, C(r) is a refinable map according to Theorem I.25.



CHAPTER II

rd

SPACES SATISFYING THE LONEAR—MARDEéIC LEMMA

In the third section of their paper on refinable maps, Ford and
Rogers [Fo and Rg] prove a number of interesting results concerning the
image of an ANR under a refinable map. These results are based on the
following lemma which appears in a paper by Londar and Marde¥ié.

Lonlar-MardeSié Lemma. Let X be a metric continuum, let A

P~

be an ANR, and let £ be amap of X onto A . Then for every posi-
tive real number &5 there is a positive real number ¢ such that if
g 1is an e-map from X onto a metric space Y , then there is a map
h from Y onto & such that d(kg,f) < 6 [Lo and Ma, Lemma 1, pp.bl-
L27],

This lemma was first proved for the case when A is a poly-
hedron {Ma and Se]. As will be shown later, A can be replaced by a
member of an even larger class of spaces. For the vresent any compact

metric space which can replace A in the gbove lemma will be called a



connected Lon¥ar-Marde3fic space (connected L-M space).

In general by a LonZar-MardeSié space wlll be meant a compact

metric space A such that if f 1s a component preserving map from a
compact metric space X onto A , then for every & > 0 there is an
e >0 such that if g is an e-map of X onto a metric space Y ,
then there is amap h from Y onto A such that d(hg,f) <& .

We will now prove some properties of L-M spaces and show how the
Ford and Rogers' results [Fo and Rg, Chapter 3] still hold when the do-
main of a refinable map is an L-M space.

I1.1 Theorem. Every L-M space is locally connected.

Proof: ILet A Dbe an L-M space and f be the identity map from
A onto itself. Let &§ =1 . Since A 1is an L-M space there is an
e >0 such that If g from A onto a metric space Y 1is an e-map

then there IiIs a map h

H,

rom Y onto A such that d(kg,id A) < 1 .

Since A 1s a compact metric space there is a finite polyhedron
¥ and an e-map g from A onto N [Hz and Wa, p.T72-73]. Thus, there
is amap h from N onto A . Since N 1is locally connected and h
is 2n identification { A is compact), n(N) = A is locally connected
[Du, p.125].

Since every finite polyhedrcn is an ANR, and since 1 in the
above prooi can be replaced by an arbitrary § > 0 the following

corollary holds.

I.1.1 Corollary. If A 1is an L-M space then for every § > 0

~

there exist an ANR N and maps g from A onto ¥, h fram O

onto A such that d(hg,id 4) < 6 .



IT.2 Lemma. Every component of an L-M space is an L-M space.

Proof: Let A Dbe an L-M space, and let H De a component of
A . Since A 1is locally connected and compact, ‘H is both open and
closed. Hence, A - H is closed; therefore, it is compact. Since
A-H and H do not intersect, and both-are compact,
n=d4d(d,A - H) >0 .

Let 6 >0 be given and let f be a map of a continuum X
onto H . Let X* be the disJoint unicn of X with A~ H . Let f*
from X* ontc A Dbe the map which when restricted to H is f and
the identity otherwise.

Clearly f* is component preserving. Since A is an L-M space
there is an e > 0 such that if g* is an g-map from X* onto 2

* # #
metric space Y , then there is an h from Y onto A with

® % %
d(h g ,£ ) <min{6m} . Let g be an e-map from X onto a metric
) *
space Y . By letting each of X and Y Ybe the disjoint union of
%
the respective space with A - 4 , and by letting g be the map which
% #

is g on X &and the identity on A - H , there is amap h from Y

. % % % * .
onto A with d(h g ,f ) < min{6,m} . Let h=h |Y . If x is in
X +then d(hg(x),f(x)) < min{6,m} . Since f(x) dis in H and
d(rg(x),f(x)) < a(H,A - H) , hg{x) belongs to H .

All that remains is tc show that h is onto H . Let y Dbelong

* % %
to E . Then for some x in X ,hg (x) =y . Since
# % % *
a(f (x),h g (x)) <m . £ (x) bvelongs to H . Now x does not belong
*

to A-H sinceon A-H, f is the identity map. Thus, x belongs

*
to X . Since g (x) = g(x) , s=(x) belongs to Y . Thus, g(x) is an

Ny
[0)Y



*
element of Y which is mepped to ¥y by h =h |Y . Thus, it may be

concluded that H 1is a connected L-M space.

IT.3 Lemma. Let X be a compact metric space with at most a
Pinite number of components. Then there is a positive real number n
such that any m-map from X onto a metric space Y 1Is component pre-
serving.

Proof: Let X De as in the hypothesis of the statement of the
lemma. Let 7 = min{a(X,L) | K# L , X and L beleng to k(X)} .

Suppose f 1is an m-map from X onto a metric space Y . By
Lemma I.18 it suffices to show f—l(H) is a component of X whenever
H is a component of Y . Since f 1is onto Y there is an x in X
such that f(x) belongs to H . Hence, there is a component K of X
containing x ; then, £(K) is a subset of i .

Now it is claimed that £ Tf£(X) = K . Suppose 1(x) = £(k) for

[}

some X in X and k in K . Since f 1is an m-map
d(x,k) <mn = d(X,L) where L is any other component of X . Eence, x
must belong to the component K .

Since f is a clcsed map f(X) is closed. Since X = f—lf(K)
is open, and f is an identification, f£(X) is also open. Thus £(X)
is a nonempty open and closed set contained in the component H 3 hence,
f(K) = H. From these facts it follows that K = f‘l(H) . Thus, ac-—
cording to Lemma I.18, £ is component preserving.

Before stating the next theorem, the following notation from [Fe

and Rg] will be stated. If £ is amap from X onto Y and e > O 5



then L(f,e) = sup{c | if H is a subset of X and diam H< ¢ , then
diam f(H) < ¢} . Since X is assumed to be compact, f is uniformly
continuous; hence, L(f,e) >0 [Fo and Rg, p».5].

II.b Theorem. Suppose r is a refinable map from a space X
onto a space Y , either X or Y has a finite number of components,
Nn>0 and & >0 . Then there is a positive real number & such that
if £ is a S-map from X onto an L-M space A , then there exist an
M-map g from X onto Y ¢-near r and an g-map h from Y onto A
such that d(f,hz) <& [Fo and Rg, Theorem 3, p.5].

Proof: Since either X or Y has a finite number of compo-
nents, by Corollary I1.22.1 or by Theorem I.22, r 1is a component pre-~

serving map. Furthermore, by Corollary I.22.2, er where K is a

=y

camponent of X is a refinable map. Since k(X) is finite,
v = min{d(¥,L) | E and L are distinct compcrents of X} is a posi-
tive real number.

Lccording to Lemma II.3, by choosing & smaller than v one
can assure that a 8-map £ from X onto an L-M space A is component
preserving. Hence, the theorem need te proved only for each component
of X . For this reason it is assumed that X is connected.

Suppose r 1is a refinable map from X onto Y, X is con-
nected, m >0 and € >0 . Let & = L(r,e/k) = L(r,s) . Suppose f
frcm X onto A 1is a2 S-map where A is an L-M space.

It is now claimed that there is a ¢, > 0 such that i

d(g,f) < ¢ where g is a map of ¥ onto A , then g is a2 S-map.

2

. . . -3, N -
Since A is compact sup{diam f (a) | a2 belongs to A} < & . Let

n
(@ ¢)



8 be given by the formula: &7 = 8§ - sup{diam f-l(a) ] a belongs to A} .
Now since the collection {f—l(a) | = belongs to A} is an upper semi-

continucus decomposition of X there is an ¢’ > 0 such that if aq

and 2, belong to A , and if d(al,az) < &’ , then for some =a in

a.) union f-l(az) is contained in N (f-l(a)) . Hence,

-1

§°/3

-1
if x, belongs to f “(al) and if x,. belongs to f (a then

2) ?

1 2
d(xl,xz) < §%/3 + diam f_l(a) + §8”/3 for some a in A . Let
c, = min{e’/2,e} . If g from X onto A is a mep which is c -near

f , then g will be a §-map. For if g(xl) = g(xz) , then for

),f(xz)) < &’ 3 hence,

i=1,2, d(g(xi),f(xi)) < €’/2 3 so that d(f(xl

d(xl,x ) < & .

2

Since A 1is an L-M space there is a ¢y > C such that if g

is any c,-map from X onto Y then there is amapr h from Y onto A
such that d(f,hg) < cq -
Since r 1is a refinable msp there is a min{n,cz}—map g from

X onto Y efb-near r . Hence, there is amap h from Y onto A

so that d(f,hg) < c; . Thus hg is a 6-map. Since c, S

m™

d(f,hg) < e . Also g is clearly an 7-map e-near r .
To complete the proof it is necessary to show that kR 1is an
e-map. Suppose h(yl) = h(yz) where each of y, and y, belongs to

Y . Then y, = g(x1) for some x, in X , end y, = g(xg) for some

1

%, in X . Since hg(x.) = hg(x.) , and since hg is a S-map,

1 2

1,x2) < & = L{r,e/t) . Thus, d(r(xl),r(xz)) < ¢/b . Since

dlg,r) < /L , it follows that d(g(xl),g(xz)) s dlg,r) + d(r(xl),r(xg))

o+

d(r,g) < 3e/b < ¢ . Therefore, h is an e-map from Y ontc 4 .
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Theorem II.k4 is precisely the theorem that Ford and Rogers use
to prove the following results which will now be stated for L-M spaces.

IT.h.1 Corollary. If X is an L-M space and r is a refin-
able map from X onto Y , them X is Y-like and Y is X-like [Fo
and Rg, Corollary 3.2, p.6].

II.L.2 Corollery. If X is an L-M space, r is a refinable
map from X onto a metric space Y and e > 0 , then there exist e-

maps from X onto Y and &5 from Y onto X such that:

&1
(1) d(r,gl) < &
(11) dlrgy,id ¥) < ¢
(iii) d(glgz,id Y) < ¢ and d(gggl,id X) < e
[Fo and Rz, Corollary 3.3, p.6].
Note: If d(gigj,id) < &/2 then g rust be an g-map. Thus,
the conclusion that g and g, are c-maps follows from part (iii)
using e/2 .
These results can be pictured using "e-commuting" diagrams.
Censider the following diagram where each of the spaces is compact-
metric.

T .

X —Y

s 4

Z
ITI.5 Definition. For ¢ > 0 the ebove diagram will be said to

g-commute if d(f,hg) < ¢ . This will be symbolized by:
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Thus, Theorem II.4 states that if either X or Y has a
finite number of components, and if r 1is a refinable map of X onto

Y, i.e., X —I sy s, then for ¢ > 0 +there is a § > 0 such that

ref,
if £ 1is a 6-map ontc an L-M space A there is amap g close to r

and a map h so that the following c-commuting diagram holds:

g

X =Y

| }{'

A .
By choosing g close enough to r the following diagram is valid:

=2

Corollary II.L.2 gives the existence of the following diagrams:

x 24X -1 c 22E
.
A €
r g2 . gl gz . and .
Y Y

These diagrams are of interest for several reasons. Among these

reasons is that if for two compacta like X =and Y above, for every

L)
o]



¢ > 0 there exist maps gl and g2 such that the last two diagrams
g=commute, then X will be Y-like and Y will be X-like. This ob-
servation leads to the following definition.

II.6 Definition. Suppose each of X and Y is a compact

metric space. X will be said to ve (strongly) quasi-homeomorphic to

Y provided that for every positive real number & there exist maps g
from X onto Y and h from Y onto X such that the following

diagrams e-commute:

X id X x Y id 'Y y

IT.7 Definiticn. Let each of X and Y be a compact metric
space. A sequence of ordered pairs of maps (gi,hi) such that for each
i, g, maps X onte Y and hi maps Y cnto X will be called a

(strong) aquasi-homeomorphism provided there is a null sequence of posi-

tive real numbers &5 such that g; and hi ei—commute with
id X id ¥ i.e. h,,id 7 €. (8. 51 .
d and id ¥ , i.e., d(gl ;014 ) < ; end d(hlgl,ld X) < N
TI1.8 Definition. Let = be a collection of compact metric
spaces. A compact metric space is said to be quasi-% if and only if for
every € > 0O there is a member of X and there are maps which c-~com-

mute with the identity on the space and con the member of E . It is

He
0

further required that the maps be surjective. Thus, a space X

guasi-Z 1f for every € > 0 there exist a2 C in & , amap g from
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X onto C ,and amap h from C onto X such that d(hg,id X) < e,

It is clear that if a space is quasi-E then it is E-like. The
converse, however, is not true as the next example illustrates.

II.9 Example. 'Let X be the graph of ¥y = sin(i/x) ,
0 < x £ 2r , together with the limiting are {0} x [-1,1] . Let = be
the class consisting of the interval [0,2n] . It is clear that X is
m-like. For given & > 0 simply project the part of y = sin(1l/x)
where X = X, and x, satisfies 0 < x, < ¢ and 1/x8 is of the form
2mn + /2 for some integer n , onto {0} x [-1,1] ; then follow this
by a linear map onto [O,xs] so that (0,-1) goes to 0 and (0,1)
goes to X, - On the rest of X oproject X onto the X-axis. Since

X 1is not locally connected, X cannot be the image of [0,2n] . Hence

3

X 1is not quasi-Z.

II1.10 Lemma. A sequence of ordered pairs of maps (g.,hi) is
a quasi-homeomorphism of X onto Y if and only if g; maps X onto
Y hi maps Y onto X , and for every € > 0O there is an io such
that for 211 i = i d(gihi,id ¥) < ¢ 2nd d(higi,id X)<e .

Proof: Suppose the sequence of ordered pairs (gi,h{) form a

quasi-homeomorphism of X onto Y . Let e > 0 be given. Let ¢

.7
-

be the associated null sequence. ESince 1lim e, = 0 there is an io
such that ¢, <¢e¢ and if iz i then €. <e., . If iz i +then
i o i i
o} e}
according to the definition of a2 quasi-homecmorchisn d(higi,id X) <

e. <e and d(g.h.,idY¥)<e. <6 .
i i1 i



For the proof of the converse let (gi,hi) be a sequence of
ordered pairs of maps which satisfies the ccnditions given in the state-
ment of the lemma. Form the required null sequence by letting
g; = max{d(higi,id X),d(gihi,id Y),l/2i} .

IT.11 Lemma. Suppose the sequence of ordered pairs of maps
(hi,gi) is a guasi-homeomorphism of 2 compact metric space X onto a
metric space Y . If 1lim hi exists and is amap h from X into Y
then h 1is onto and for every positive real number ¢ there is =z

natural number i = such that for izi_, d(hi,h) <€ ,

o}

d(hgi,id Y)<e , d(higi,id Y)<e, d(gih:,id X) <e , each of h

[0

and g, is an e-map, and n is a refinzble map.

.
kS

Proof: It is well-=known that if the map h ig the limit of

surjective maps h{ then h must ve surjective.

It will now be shown that h is a2 refinable map. Let £ > 0

be given. According to Lemma II.10 there is a natural number i, such

-
e

that for all natural numbers 1z i, , d(gihi,id X) < e/2 and
d(higi,id Y) < ¢/2 . Hence each of h, and g; is an e-map. Since
h is the limit of the hi it is clear that h 1is a refinable map.
Since 1lim hi = h there is also an i2 such thet for iz i2
d(hi,h) < e/2 . Let io = max{il,iz} . If iz io then the following
inequalities hold: d(hgi,id Y) s d(hgi,h g,) +d(h,g,,id ¥) < e . This
shows that the lemma holds.
If in the above lemmz, lim gi exists and is 2 map £ then the

following situation cccurs. Given ¢ > C there is 2 8§ > QO such that

if each of x and X

1 ) ) < & then

belongs to X and d(xj,xg

3k



d(h(xl),h(xe)) < e . Now for & there is an i such that

d(gi,lim g; = g) < 6 and d(hgi,id Y) < e . Thus, d(hg,id Y) =
d(hg,hgi) + d(hg, ,id Y) < 2 . Since € > 0 is arbitrary hg = id ¥ .
A symmetric argument shows that gh = id X . Thus, h i1s a2 homeo-
morphism. Thus, the following corollary holds.

IT.11.1 Corollary. If the sequence of ordered pairs of maps
(hi,gi) is a quasi-homeomorphism from a compact metric space X onto
2 metric space Y , and further if l1lim hi = h exists and is a map and
limgi = g exists and is a map, then h : X =+Y and g : ¥ - X are
inverse homecmorphisms.

I7.12 Definition. Let X be the class of compact absolute
neighborhood retracts. Any space which is quasi-® will be called a
aquasi-ANR (or ¢-ANR).

IT.13 Lemma. Every connected quasi-ANR is an L-M space.

Proof: Let A ©be a connected quasi-ANR. Let f be a map from
a metric continuum X onto A . Let & > 0 bve given. Then since A
is a connected quasi-ANR there are a compact connected ANR L , a map g
from A onto L , and amap h from L onto A such that
d(hg,id A) < /2 .

By the Lon&ar-Marde¥ié lemma (Lo and Ma, Lemma 1, p.4k1-42], L
is an L-M space. Now gf 1is amap of X onto L . Since L is com-
pact there is an 71 > 0 such that if d(ﬂl,ﬂz) <mn in L then

a(n(2

1),h(i’?)) < e/2 . Since L is an L-M space there is a § > 0 such

that if Hl is g S-map from X onto a metric svace Y then there is

2 map H2 from Y onto L such that d(Hzﬁl,gf) <1 « In this case

()
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it follows that d(h Hgﬂl,hgf) < e/2 . Since d(hgf,f) < e/2 it
follows that d(h H2°Hl,f) <& . Since hIl, maps ¥ onto A these
facts show that A is an L-M space.

IT.1h Lemma. If every component of a compact metric space
with at most a finite number of components is an I-M space then the
given space is an L-M space. (This is the converse of Lemma II.2.)

Proof: Let A Dbe a compact metric space with at most a
finite number of components so that each component is an L-M space.
Let f be a component preserving mep from a compact metric space X
onto A . Let & >0 be given. Further, let 71 = min{a(X,L) |
K#L and each of K and L belongs to k(X)} .

Since each component of A4 is an L-M space, and since f 1is

component preserving, for every X in k(X) there is an > 0 such

°x

~

that given an g, -map g of X onto a metric space H , there is a map

h from H onto f©(X) such that d(hg,f|K) <& . Let e be the

minimum of m and the ¢ If g 1s an g-map of X onto a metric

X °

space Y , then g is an m-map and g|K is an & ~maD.

According to Lemma II.3, g will be component preserving.

Since glK is an €,~map, for each component K there is a map hK

from g(X) ocnto f£(K) such that d(thlzc,flK)< 8 . Define h from
Y onto A Dby hlg(K) = hK .

A and d(hg,f) < & . Thus, A is an L-M space.

Then clearly h 1is amap from Y onto

II.15 Lemma. Each component of a quasi-ANR is a quasi-ANR.
Proof: Since a quasi-ANR must be the continuous imege of a

compact ANR it is clear that a guasi-ANR is locally connected. Since
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it will also be compact, a quasi-ANR will have at most a finite number
such

By Lemma II1.3 there is anm > 0

of components.
Let X be a quasi-ANR.

that any m-map from X onto a metric space Y will be component pre-
serving. Let € > 0 be given. 3By the definition of a quasi-ANR there
exist an ADNR A , amap g from X onto A, and amap h from A
such that d(hg,id X) < min{e,/2} . It is clear that g 1is
Also, hg 1s an m-map;

hg(K) = K for all X

onto X
an n-map; hence, it is component preserving.

is component preserving; furthermore,

hence, hg
in k(X) .
If X 1is a component of X <+hen the following e-commuting
diagram is valid:
id K .
K ———K
S n
g(K)
Since g(XK) is a component of an ANR, g(K) is an ANR. Since ¢ is
arbitrary K mnust be 2 quasi-AlR.
Let X Dbve a compact metric space. X is an

TI.16 Theorem.

L-M space if and only if X 1is a quasi-ANR.
Precof: Suppose X is an L-M space. According to Corollary
X satisfies the conditions for being a gquasi-ANR.
is a quasi-ANR. Then X is

On the other hand suvppose X

IT.1.1,
locally connected, and by Lemma IT.15 each of its compcnents is a



connected quasi-ANR. By Lemma IT.13 each component of X 1is an L-M
space. Since X 1is compact and locally connected, X has at most a
finite number of components. Hence, by Lemma IT.14, X is an IL-M
space.

We now have the following corollaries.

I1.16.1 Corollary. Every component cf a compact metric space
with at most a finite number of components is a g-ANR if and only if
the entire space is a g-ANR.

I1I.16.2 Corollary. Suppese r is a refinable map from X
onto Y , either X or Y has at most a finite number of components,
M >0and e& > 0 ; then there is a positive real number & such that
if £ is a 6-map from X ontc & g-ANR A , then there exist an n-
map g from X onto Y e-near r and an ege-map h from Y onto A
such that d(f,hg) < ¢ [Fo and Rg, ».5].

II1.16.3 Corellary. If X 1is a g=ANR, and r 1is a refinable
map from X onto Y +then X is Y-like and ¥ is X-like [Fo and Rg,
p.61.

II.16.4 Corollery. If X is a quasi-ANR and r is a
refinable map from X onto Y , then there is a (strong) quasi-homeo-
morphism of X to Y by a seqguence of ordered pairs (gi’hi) where
limg, = . (Compare this with Corollary 3.3 of [Fo and Rg, p.6].)

II1.16.5 Corollary. A map r from a g-ANR X onto a space Y
is refinable if and cnly if, for every positive real number e , there

is amap f from X onto itself such that rf 1is an e-map e-near r .
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This is & form of Bing's shrinking criterion for refinable maps [Fo
and Rg, 0.T7].

Proof: The condition, for each & > 0 there is a map f from
X onto itself such that rf is an e-refinement of r , clearly implies
that r 1is a refinable map.

On the other hand suppose r from X onto Y is a refinable
map. t is now claimed that there is an e¢/2-map h from X onto Y
g/2-near r , and a positive real number & < ¢ such that if k frem
Y onto itself is a S-map them kh is an ¢/2-map.

Let h from X onto Y be an ¢/6-map ¢/6-near r . Since the

-1

collection {n (y) | y belongs to Y} is an upper semicontinuocus de-

b

X +there is a positive real number & < /6 such that

_1(

composition o
if for y; and y, in Y, d(yl,y2) < 8 , then each of h yl) and
y2) is contained in N8/6(h-l(y)) for same y in Y . Now if

kK from Y onto itself is a &-map then diam h_lk-l(y) < ¢/2 for all
vy in Y. For if kh(x)) = kh(xz) then d(h(xl),h(xz)) < 6 . Thus,

for some y in Y each of x, end x, belongs to NE/6(h-l(y)) ;
hence, d(xl,xz) s d(xl,h-l(y)) + diam h_l(y) + d(h-l(y),xg) < e/2 .
According to Corollary II.16.4 and Lemma II.11 there is a &§/2-
mep g from Y onto X such that dal(rg,id Y) < 8/2 . It follows
that rg is a &6-map from Y onto itself. Hence, rgh from X onto

Y is an e¢/2-map. Aliso d(r,rgh) = d(r,h) + d(h,rsh) < /2 + ¢/2 = ¢ .

et £ =gh . Then { maps X onto itself and rf is an e-map e-



II.iT Theorem. A compact metric space which is quasi-homeo-
morphic to a gquasi-ANR is a quasi-ANR.

Proof: Let X be a compact metric space. Let the sequence of
ordered pairs of maps (gi,hi) be a quasi-homeomorphism of X +to a
quasi-ANR A . Let ¢ > 0 be given.

There is a natural number 1 such that for the maps g, from
X onto A and h; from A onto X, d(higi,id X) < e¢/2 . Since
hi is uniformly continuous there is 2 &6 > 0 such that whenever the
elements 2; and  a, belong to A and d(al,aQ) < & then
d(hi(al)’hi(az)) < £/2 . Since A 1is a quasi-ANR there are a compact
ANR A.5 and maps f from A onto A and k from A5 onto A

5
such that d(kf,id 4) < & .

Consider the mag "gi from X onto AB and the map hik from
As omto X. d(hikfgi,id X) = d(hikfgi,higi) + d(higi,id X) . Since
d(kf,id A) < § , d(hikfgi,higi) < &/2 . Hence, d(h;kfg ,1d X) <
e/2 + e/2 =¢ . Bince ¢ >0 may be chosen arbitrarily, X is a
quasi-AlR.

IT.17.1 Corollary. The image of a g-~ANR under a refinable map
is a g-ANR.

Proof: According to Coroilary II,16.4 a refinable map whose
domain is a quasi-ANR induces a quasi-homecmcrphism onto its image. It
is clear that there is a gquasi-homecmorphism of the image of the refin-

able map onto its domain which is a g-ANR. Hence, by Theorem II.1T,

the image is a g-ANR.

he



II.17.2 Corollary. The image of an ANR under a refinable map
is a q-ANR.

Proof: Every ANR is clearly a g-ANR.

I71.18 Definition. Let & be the class of compact absolute
retracts. A quasi-X space is called a quasi-AR (q-AR).

IT.19 Definition. A compact metric space X is called quasi-

contractible provided for every positive real number & , there is =2

-

homotopy Ft , where 0=t =1, from X onto X such that F

constant map, Fl is surjective, and d(Fl,id X) < ¢ .

IT.18.1 Corollary. The image of a g-AR or AR under a refin-

is a
0

able map is a gq-AR., This is & corollary of the proof of Theorem II.1T

Where A5 is an AR.

IT.19.1 Corollary. A quasi-contractible ANR is an AR.

Proof: Let X be a quasi-contractible ANR. It will be shown
that X 1is contractible. Since X is an ANR there is a positive real
number § such that if £ from Y into X 1is a map S—near the map

g from Y into X then f is homotopic to g [Hu, Theorem 1.1,

p.111]. Since X is quasi-contractible there is a homotovy F, from
v

X into X such that FO is a constant map, and d(F1,id X) <6 .

Since d(Fl,id X)<8, F

1 is homotopic to id X . Thus, id X is
homotopic to 2 constant map in X . Therefore, X 1is contractible.

Since every contractible ANR is an AR it follows that X 1is
an AR.

IT.19.2 Corollary. Every g-AR is quasi-contractible.
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Proof: Let X be a quasi-AR. Let e > 0 be given. Since X
is a g-AR thers are an AR A , 2 map f from X onto A , and amap g
from A onto X such that d(gf,id X) < ¢ .

Since A 1is an AR there 1s a homotopy H, from A into A

t

such that HO is a constant map, say Ho(a) = ao for all a in A ,

and such that H1 =1id A . Let Ft = gHtf . Ft is a homotopy from X
into X . F, =gf so that F is onto X and d(Fl,id X)<e .
Fo(x) = gHof(x) = g(ao) for all x in X ; thus, F, is a constant
map. Since & > 0 is arbitrary we have shown that X is quasi-
contractible.

Corollary 1II.18.1 together with Ccrollary II.19.1 implies the
following result.

IT.19.2 Coreollaxy. If the image of a quasi-AR under a refin-
able map is an ANR then the image is an AR.

Tor the next result we wiil use the following definitions from
[Hu, pp.110 and 1328].

IT.20 Definiticn. For a positive real number ¢ a homotopy
Ht into 2 space X 1is called an e-homotopy provided that for every

element a in the domain of Ht , diam H({a} x I) < ¢ .

IT.21 Definition. A space X 1is called an e-dominating space

of Y oprovided that there are maps f from X into ¥ and g from
Y zinto X such that gf 1is e-homotopic toc 1d Y . X is e-

homotopically equivalent to Y provided that there exist maps f and

g as abcve such that gf is e-~-homotopic to id ¥ and fg is e~

homeotopic to 1id X .



IT1.21.1 Corollary. Let X be a quasi-ANR, and let r from
X onto a metric space Y Te a refinable map. Then for every posi-
tive real number e ,

(1) if X is an ANR, Y e-dominates X ,
(2) if Y 4is ANR, X e~dominates Y ,
(3) if each of X and Y is an ANR, X is &=~
homotopically equivalent to Y .
Hote: The first and third results can be found in [Fo and Rg, Corol-
lary 3.4, p.Tl.

Proof: Let X , ¥ and r ©be as in the statement of the
corollary. It follows from Corollary II.16.4 and Lemma II.11 that
given & > 0 there exist maps h from X onto ¥ and g from Y
onto X such that d(h,r) <8 , dl(rg,id ¥) <8 , d&(hg,id ¥) < &
and d{gh,id X) < 6 .

Let € >0 be given. Suppose (1) X is an ANR. Then there
is a & > 0 such that S-near maps from X into itself are :z-homotopic.
Let h and g be the maps of the above paragraph corresponding to & .
Then gh is e-~homotopic to id X ; hences Y eg-dominates X .

Suppose (2) Y is an ANR. Then there is 2 & > 0 such that
d-near maps of Y into itself are S-homotopic. Choose h and g as
above for this & . Then d(hg,id Y) < & ; hence, hg and id Y are
e-homotopic.

Suppose (3) each of X and Y is an ANR. 3By choosing 8 as
the smaller of the & 's in the prcofs of (1) and (2) we can guarantee

that both hg 1s homotopic to i1d ¥ and gh is homotopic to id X

=
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by e-hcmotopies. Hence, X and Y are homotopically equivalent.

A result related to part (3) of the preceding corollary is that
a refinable map between ANR's is a CE map.

I1.22.1 Definition. A metric space Z will be said to have
the shape of a point provided that for every map h of 2Z into an ANR
A, h 1s null-homotopic in A .

IT.22.2 Definition. A map f from a space X into a space
Y is a CE map if and only if for each y in £(X) , £ (y) has the
shape of a point (Ko, p.8].

The method of proof to show that a refinable map between com—
pact ANR's must vpe CE is to skhow first that a refinable mzp between
ANR's is a fine homotcpy ecuivalence, and then arply a result due to
Haver [Ha] which states that a map between AliR's is CE if and only if
it is a fine homotcpy equivaience. The following definition of fine
homotopy equivalence is an adaptation to the case of ccmpacta of the
definiticn which appears in [Ch, £.91].

II.23 Definition. A msp f from a compactum X onto a ccm-

pactum Y is a fine homctopy equivalence if and only if for each posi-

tive real nurber € there is 2 homotcpy Ft from X 1into X such

that th is an e-homotopy in Y , FO = id X , and F1 = g for

-

scme map g frem Y iInto X .

II.24 Theorem. (Eaver) If a map between compact ANR's is a

t

fine homotopy equivalence then it is CE.

Proof: Suppcse f from a compact ANR X onto an AR Y is

z fine homotopy egquivalence. Let Yo be an element of Y . It is

Ll



necessary to show that f_l(yc) has the shape of a point.

Let h be a2 map from f_l(yo) into some ANR A . Since A
is also an ANE (absolute neighborhood extensor), there are a neighbor-
hood U of f-l(yc) in X and amap ¢ frem U inte A vwhich
extends h . Since {f-l(y) ] ¥ belongs to Y}' is an upper semi-

continucus decompcsition of X , there is a positive real number ¢

such that f-l(Ns(yo)) is contained in U .

Since f 1is a fine homctopy equivalence there are a map g
from Y intc X and a hcmotopy Ft such thst FO = id X , Fl =gf ,
and th is an e-homctopy. It may be observed that since fF, 1is an

e-homotopy, d(th(x),fFo(x)) < & ; hence, F(f-l(yo) x [0,1]) is a

subset of f-¢(N8(yo)) which is contained in U , the domain of ¢ .

A null hometeopy fcr h may be obtained by letting G, = ¢F,_ f_l(yo)
© [
. P _ 1, . _ . L a1, _
It is clear that GO = wFO 7 (JO) = n , and that Gl = pFlII (v ) =

wgf[f-l(yc) which is the ccnstant map whose value is mg(yo) . Thus,
f 1is a CE map.

IT.25 Theorem. A refinasble map between compact metric ANR's
is a CE map.

Prcof: Let r frem X onto Y be 2 refineble map between
compact ANR's. Let & > 0 be given. It will be shcwa that there is =z
map g from Y ontce X such that gr is homotopic to the identity on
X Dby e homotopy Ft of X 1into itself so that rFt is a 2s—h§mét0py,
i.e., r 1is a fire homeotopy equivalence.

Since Y 1is assumed to be an ANR, there is z positive number

< ¢/3 so that any twc maps from a space inte Y ¢,-near
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each other are e¢/3-hcmotopic. Let &8 > O be a uniform continuity

number for and r . Since X is assumed to be an ANR there is

1

a positive real number 61 with 61 < 8 so that any two maps from a

space into X 5l-near each other are S-homctopic.
By Lemma II.1l and Corollary II.16.4 there are maps h from

X onto ¥ and g from Y onto X such that d(h,r) < €, >

d(hg,id Y) < el » d(gh,id X) < & and d(rg,id Y¥) < ¢

1’ 1°
Thus, h is hcmotopic to r by an &/3-homotopy Ft s
0=st=1, from X into Y such that FO = r and Fl =h ., Also

since d(gh,id X) < 5, , there is a S-hamotopy Ht , 1lst=2, from

X intc itself such that Hl = gh znd He =id X .

Now for 0=t =1 let H =gF_. At T =1, gl“_I = gh = ;1
v (% L -

as defined in the preceding paragraph. Thus, Ht where 0=t =2 is

2 homotopy of X into itself. It is also true that HO = gr eand

H2 = id X . Furthermore, rH, 1is a 2e-homotepy. For if each of s
[%

and t 1is ir the closed intervel frem 0 to 2 1t is necessary to

ccnsider the fcllowing cases:

(a) 1=t=2 and 1s=ss=2;
(b) C=t=1 and 1s=ss=2;
(¢) 1=+t=2 and 0=s=13;or
(d) 0=+t=1 and 0=s=1.

In case (a) Hu ig a d~homotopy for 1= us=2 . Thus,
d(rH‘(x),rHS(x)) < & since & was a uniform continuity number for
[

¢ and r .



In cese (b), E, = gFt so that rH_ = rgF . Now

t t
d(rHt,rHs) = d(rHt,rgh) + d(rgh,rHs) . Since d(gh = Hl,Hs) <6,
d(rgh,rHs) << e/3 . Now, d(rHt,rgh) = d(rgFt,rgh) s
d(rgFt,Ft) + d(Ft’Fl) + d(Fl,rgFl = rgh) < el * e/3 + e, =& . Hence,

d(rHt,an) < 2¢ .
In case (c), the roles of s and t are reversed so that the
same argument as in (b) holds.
= s
In case (d), d(rHt,rHS) d(rgFt,rng) < d(rgFt,Ft) +
+e/3+e, 2¢€ .

1 1

Thus, in any case, d(rHt,rHs) < 2¢ . Hence, rHt is g 2e-

7 7
d(rt,Fs) + d(Fs,rg‘s) < g

homotopy. Therefore, r is a fine homctopy equivalence. According to
Theorem II.24k, r is a CE map.

Another aprlication of the results cf this chapter is tnat the
image of a compact orientable 2-manifold withcut toundary is a homeco-
morphic 2-manifcld. To give this application the following theorem
[Ma and Se, Thecrem L4, p.161] will be used.

IT.26 Theorem. Let M %be a compact connected orientable 2-
manifold without boundary, and let X be z locally cyclic continuun
which is M-like. Then X 1is homeomorphic to M .

I1.27 Theorem. If M 1is a compact cennected orientable 2-
manifold without boundery and if r from M onteo a2 metric space Y
is a refinable map, then Y Is hcmecmorrhic to M .

Proof: 8Since M is an ANR, hence & ¢-ANR, and r from M
ontc Y 1is refinable, for every positive real number ¢ there zre

maps f from M onto ¥ and g frce ¥ ontc M such that



d(gf,id M) < /2 and d(fg,id ¥) < €/2 (recall M 1is quasi-homeo-
merphic to Y ). Since M is a 2-manifold M is loecally cyclic;
hence, by Corollary I.13.2, Y is locally cyclic. Since g is an
g-map from ¥ onto M and € > 0O has been chosen arbitrarily, Y
is M-like. Applying Theorem II.26 it follows that Y is homeomorphic
to M.

A stronger result has recently been given by J. Segal [Sel.
He has shown that r is a refinable map of a closed (compact) 2-mani-
fold onto a metric space Y if and only if it is a near homeomorpnism.
Thus, the imege of any compact 2-manifold without boundary under a
refinable map is homeomorphic to the 2-manifold.

This chapter will be concluded with some examples of quasi-
AlR's. It is clear that every compact AIR must be a quasi-ANR; however,
as the next examples show the converse is not true.

IT.28 ZExemple. (Hawaiisn earring) Let HY be the one-dimen-
sional space of circles C, which have a diameter of 1/2i (1=

0,1,... ) with each circle C, ( i = 1,2,... ) tangent internally to

-
-
-~

CO at the same point © . Let A, e the union of the Cj for

0= j=1i +together with the radius Ri of Ci with length 1/2

vassing through the point © (see Figure II.28.1).

-

For each nonnegestive integer 1 let fi be the map from H

onto A4 defined as follows. On the union of the sets Ck wnere Xk

Fal

is a nonnegative integer less than or equal to i , let £ be the

identity map when k 1is less than i , and let fi be the projection



of Ck onto Ri otherwise. Notice that Ci+l will be mapped onto

R. by fi .
Now for each nonnegative integer 1 1let gi be the map from
Ai onto H defined as follows. On the union of the Ck where k

is a nonnegative integer less then or equal to 1 , let gi be the

identity. For i +1,i + 2,... vwhere k 1is any nonnegative integer,

ai is the center of Ci and the distance from ai+k to ai+k+l is
1/2i+k+l let g. map the closed segment between a and a

: i i+k - i+k+1
onte C,. ., SO that gi(ai+k) =0 for k =0,1,...

It is clear that d(figi’id Ai) < 1/2i+l , and that
a(g, £, ,14) < diem C, = 1/28*1 | Since each 4. is an ANR it follows
that E 1is a quasi-ANR.,

I7.29 Example. (The Cantor baseball diamond) In Figure

IT.29.1 start with an equilateral triangle

1
vertex on top. Let a5 be the point on albl so that the distance
from bl is 1/3 the distance from a, to B, . Let as be the
analogous point on albo . Let b2 be the point on blbO so that

b1a2b2 forms an equilateral triangle. Continue this construction in
the obvious wey.

A set Cl is obtained in the limit so that the endpoints bi
form a Cantor set. The set Ci will be that part of the construction
which lies on or in the interior region of the equilateral triangle

Ti in the above construction which contains ai and bi as two of

its vertices.



For each nonnegative integer i , let Ai be the finite stage

of the above construction which is the union of the T 3 where
2°+k

1 i end O=ks29 -1,

lIA
Cu
IIA

Define the mep fi from C, onto Ai in the following manner.

1
On T, where J < 2 , let £, be the identity. On C .  where
J + otk
0sks2t-1 , let fi be the projection from the barycenter of
T 3 onto T 5 . Notice that on the polygon T N the projection
27 +k 27+k 27+k

from the barycenter is the identity map; hence, fi is continuous.
Now define the map gi from Ai onto Ci in the following

manner. Outside the 1/3l+l neighborhood of the union of the T .

21+k
where 0= k = ot _ 1 s, let gi be the identity. It is easy to see
that C 5 where 0= k = 2t ~ 1 is locally connected since there

2 +k

are arbitrarily small neighborhoods which are either a polygonal arc

or a Cj each of which is connected.

-

Since C i is locally connectecd there is a map
2 +k

gi,k from

T, onto C 5 . BSince C i is also arcwise connected there is
2 +k 2 +k 2 +k
an arc from g, ,(v) to v where v is a vertex of T , which is
i,k ot s

i+

not bl or bo . Let w be a boundary point of the 1/3% 1 neigh-

borhood of T . nearest v . Then the segment wv can be mapped so
27+k

that v maps to g k(v) , the midpoint maps to v and w maps to
b

w . Let gi . oe g;  @as defined before together with the map of
9= e

50



3 1(; £i
the segment wv . Then on CL(Y i+1(T 3 )) define g to be
1/3 27 +k

c -
&k
It is clear that d(figi(x),x) can be no larger than the
diameter of a T , plus 1/3l+l
27 +k

1/3l+12/3l . Since each A, is an ANR these facts show that C

. Thus d(gifi(x),x)l/fii +

1

a quasi~ANR. It is clear that Cl is not an ANR since it is not

locally contractible at bo .

51
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CHAPTER III
THE IMAGE OF A 1-DIMENSIONAL ANR UNDER A REFINABLE MAP

In this chapter it will be shown that the metric image of a
l-dimensional ANR under a refinable map must be & l-dimensional ANR.
Because of the fact that a refinable map restricted to each component
of a locally connected compact metric space is a refinable map (Corol-
lary I.22.2), it is necessary only to consider connected ANR's. A 1-
dimensional connected compact ANR is called an ANR-curve. Thus, it will
first be shown that the image of an ANR-curve under a refinable map is
an ANR-curve. To accomplish the proof of this result two facts will be
used. The first fact is that the AllR-curves coincide with the local
dendrites [Bk 4, p.138]. The second fact is that a space is a local
dendrite if and only if it is a locally connected continuum containing
at most a finite number of l-spheres [Ku, p.228]. (This fact is the
reason that the spaces Ai of Examples II.28 and II.29 must be ANR's.)

It will then be shcwn that if a locally connected continuum contains at

5L



most a finite number of l-spheres then its image under a refinable map
(in fact under a monotone map) contains at most a finite number of 1-

spheres. These facts will yield the desired result.

III.1 Definition. By a local dendrite is meant a continuum X
so that given any point x in X and any positive real number ¢
there is a locally connected continuum P , and a posiéive real number
8 such that Nﬁ(x) CPc Ns(x) and P contains no l-sphere (i.e.,

P is a dendrite).

III.2 Definition. If Z 1is a metric space containing at most

a finite number of l-spheres then s(Z) will represent the number of

distinct l-spheres in 2 .

I1I.3 Definition. A continuum X 1is hereditarily locally

connected if and only if every subcontinuum of X 1s locally connected
(Wh, 0.89].

IIT.4 Definition. A continuum X 1is a regular curve provided

that for each x in X and for each open neighborhood U of x there
is an open neighborhood V of x contained in U such that the
topological boundary of V 1is finite [Wh, p.96].

ITI.5 ZLemma. If X 1s a coupact l-dimensionsl ANR, then X
contains at most a finite number of l-spheres.

Froof: Let H represent any homology theory over Z. which

2

satisfies the Eilenberg-Steenrod axioms. By Theorem 7.3 in [Hu, p.1b1],

Hn(X) is unique up to isomorphism. Since X 1is a compact l-dimension-

21l ANR, (X) is either trivial or finitely generated [Hu, Corollaries

i

7.2 and 7.6, pp.lhi-145],

\JI
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It is now claimed that the l-spheres in X induce nonhcmologous
l-cycles. Here we will use the homolegy found in [Wi], which is deter-
mined by the geometric nerves of open covers. MNotice that, since
dim X = 1 , for every open cover a of X there is a refinement 8

of a such that order 8 =1 (i.e., if V v and V are distinct

172 3

elements of B then their common intersection is empty). Thus, for any
such cover B the nerve contains no 2-simplexes. By a theorem in [Wi,
Theorem 7.5, p.130], Hl(X) is determined by the gecmetric nerves of

open covers of order 1 . In this case X, (nerve of B) = Z, (nerve

of B8) .

Let Cl and 02 be distinect l-spheres in X . Since Cl and

02 are distinet there is a cover [ with order 8 = 1 such that at

least three elements of f intersect each circle, and so that there is

a Bl in 8 such that B, N Cl # ¢ whiie 31 misses all the ele-

ments of £ that intersect 02 . Similarly there is a 52 in B so

that 32 n 02 # @ and B, misses all the elements of 8 that inter-

2

sect C, . It is clear that 2z, = {8 in B8 | BN Cy # §} and

5 {8 in B | BN 02 # @} are l-cycles. It is also clear that

A

2, # Z, 3 hence, by Wi, Theorem 7.5, p.130], C, and C, Induce

distinct l~-spheres which are not homologous.

Therefore, each l-sphere corresponds ©o z distinet element of

o /- . . o n .
nl(i} . Hence, since nl(X) has at most 2  elements where n is the
. v s ' n .
number of generators, X has at most 2 l-spheres.
II17.6 Lemma. If X is a l-dimensional Peano continuum contain-

ing at most a finite number of l-spneres then X 1is a regular curve.



Hence, X is hereditarily locally connected. (In fact, X is a local
dendrite.)

Proof: Since X contains only a finite number of l-spheres,
say 81.8,55-4458 (if X contains no l-spheres then it is already a
dendrite), ke = min{diam Si I i=1,2,...,n} (if X is a dendrite,
let Le =1 ) is positive. It will now be shown that X is a local
dendrite. Let 6 > 0 be given. Let m = min{e,8} . Then since X
is a Peano continuum, for each x in X there is a Peano continuum
P and there is a positive real number vy so that NY(x) is contained
in P and P is contained in Nn(x) [Wi, Theorem 3.7, pp.79-80].

Since P 1is a subset of Ns(x) s P contains no l-spheres;
hence, P 1is z dendrite. 3By a result in [Wh, p.99], P 1is a regular
curve. Since P 1Is a regular curve, ty the same result in Whybura, X
is hereditarily locally connected.

III.6.1 Corollary. If X is a l1-dimensional ccmpact loczally
connected metric space with at most a finite number of l-spheres, then
every subcontinuum of X is a Peano continuum.

Proof: Notice that X has a finite number of components, and
each compcnent is locally connected. Thus, each component is a l-dimen-
sional Peano continuwum containing at most a finite number of l-stheres.

I1I1.6.2 Corollary. Every continuum contained in a l-dimension-
al ANR is a Peano continuum.

Proof: Observe that in this case, by Lemma IIT.5, a l-dimen-
sional compact ANR is a compact 1-dimensional locally connected metric

space containing at mcst a finite number of l-spheres.



ITI.7T Lemma. Let X be a l-dimensional Peano continuum con-
taining at mecst a finite number cof l-spheres. Let r from X onto a
metric space Y be a monotone map. Then Y 1is a Peano continuum con-

taining at most a finite number of l-spheres, and, in fact,

A

s(Y) = s(X) .
Proof: It will be shown that each l-sphere in Y 1is the image

of a l-sphere in X . Thus, s(Y) = s(X) will easily follow.

let S be a l-sphere contained in Y . Consider ri(s)
Since r is monotone r-l(S) is a subcontinuum of X . By Lemma
III.6, r-l(S) is locally connected.

Let v and Yo be distinct points in 3 . Let Al

represent one of the arcs in S8 from Y1 to Vo and let A2

o

represent the other sarc in & <from yl to v2 where {y1,y2} is

e . . . o _ _
the intersection of Al and A2 . Let Al = Al {yl,yg} , and let

o)
A” = - . i I
A, A2 {yl,yg} Since each A

and r 1is monotone r_l(Ai) is a continuum; hence, r-l(Ai) is

(i=1,o0r 2 ) is a continuum

.
b i

locally connected (recall that X is hereditarily locally ccnnected).

. - =1,.0 . -
For each i where 1 =1 ,0r 2, r (A{) 1s a connected subset

cpen in r_l(Ai) ; hence, r_l(Az) is a Peano space. Since r-l(AS)

1s a Peano space, the set of arcwise accessible boundary points is

. - A ~1,,0
dense in the boundary of r (Ai)
p.106]. ILet 24 r ~(A°) represent the boundary of r_l(Az) in

- -1 — -
r l(Ai) . Since r ‘(Az) is not ali of r l(S) ,and r (8) is con-

in r—l(Ai) (Wi, Theorem 3.11,

nected, the boundary c¢f «r in r (Ai) is nonenmpty. Also

} since 3Ba r ~(A°) 1is contained in the wnion

84 L2 = fv <
r(Bd r (Ai)) = {‘71""2 5



of r-l(y ) and r-l(yg) , and since both the intersection of r-l(y )

H

1
with Bd r-l(Ag) and the intersection of r‘l(yé) wvith Bd r
-1

(

1
A%9)
1

)

are nonempty. (For example, if r Az) does not intersect r_l(y

1

- -1 -
then r l(yl) and the union of r "(A;) with r l(yz) would be a
PSR | . :
separation of r (Ai) .) Thus, there are points t;; and t,, in
-1, .0 X . -1, ,0
Bd r (Al) , and there are points t,, and t,, in Bd r (AE) so
that r(tll) =¥y s r(t,) = v, » r(tgl) =y, and r(t22) =Y, »
and so that there are ares C. in Cl r‘l(Ai) and C, in C1 r—l(Ao)
1 2 2
. . - =1,.0 .
such that the intersection of Ci with Bd r (Ai) is {til,tiz} .

. -1 . . .
Since each r (yi) is a Peano continuum there is an arc Bi connect-

ing tli to t2i .

It is now claimed that Ci U Bi is an arc for each i =1 ,
or 2 . It is further claimed that the intersection of Cl UB, with

C, UB. 1is the set {%

5 5 If these facts z2re valid it follows

01210} -

that (C, U Bl) U (02 U Bz) is a l-sphere whose image under r is S .

For these claims notice that the intersection of Bi with C

J

is the singleton {tji} (see Figure ITI.T7.1). Also B, does not inter-

-1 -1 -
sect B2 since r ‘(yl) does not intersect r “(ya) . Since r l(Ai)

: =1,,0 + 3 2 i +
does not intersect r (Ae) R Cl - {tll,ule} does not intersect

2l’t22} . Hence, the intersection of Cl with C2 equals

pr} Ity =ty end £, F %y, {8} 1T %, =%y, and

tiq # t2l s {th,t21} if B =ty and ty, = t22 , or @ other-

wise. 1In any case the intersecticn of Cl with C2 is contained in

C2 - {t

{t Ft

tlQ’tEl} . TFrom the way Cl . 02 s Bl and 32 are defined the

N
\O



intersection of C, end Bi is the set {tii} . Thus, C, UB

e
=

is an arc. Now the following set equation holds:

(cl U Bl) n (02 U 32)

[}

(c1 N 02) U (Bl N 02) U (B2 N cl) U (Bl N B2)

(€N Cy) U fey b U s} = {ty,%,,)

By virtue of the claims (cl U Bl) U (02 U 32) is a l-sphere.

It is clear that r(Cl) = Al and that r(Cg) = A2 since

. . . ) _
r(C, - {t’“’tig}) is contained in A; , r(til) ¥y oo r(t

1 P y2 H

12)
and r(Ci) is connected. Thus, it follows that r((cl U BT) U
(C2 U B2)) =S . Thus, S is the image of a l-sphere.

IIT.8 ilemma. If X is an ANR-curve znd r fram X onto a

metric space Y is a refinablie mep, then Y is an ANE-curve.

Proof: 3By Lemma III.5, X can contain at most a finite

number of distinet l-spheres. Since X i1s a compact connected ANR;

X 1is locally connected; hence, X is a l-dimensional Peano continuum
which contains at most & finite number of distinct l-spheres. Since

r 1s a refinable map, according to Corollary I.16.1, Y is l1-dimen-
sional. Since r 1is a closed map it is an identification; hence, Y
is locally connected [Du, p.125]. Since Y is locally connected and

r is a refinable map, r is monotone [Fo and Rg, Corollary 1.2, p.3].
Applying Lemmaz III.T, Y contains at most a finite number of l-spheres;
thus, by Lemma III.€, Y is a local dendrite. Thus, given any positive
real number ¢ there are a dendrite D contained in Ne(y) and a

positive real number & so that Nﬁ(y) is containeé in D . Since
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D is an AR [Bk 4, 13.5, p.138], Né(y) is an ANR neighborhood of ¥y .
Hence, Y is locally an ANR which implies that Y is an ANR [Hu,
pp.97-981.

ITIT.9 Theorem. The metric image of a l-dimensional compact
ANR under a refinable mep is a l-dimensional ANR.

Proof: Let X be a l-dimensional compact ANR, and let r
from X onto a metric space Y De a refinable map. Since X 1is an
ANR it is locally connected; hence, X has a finite number of components

1’ i

I.22.2. Since each Ci is both open and closed it is a connected com-

C C2""’Cn . Now r. = r[Ci is also a refinable map by Corcllary

pact l-dimensional ANR (i.e., an ANR-curve). By Lemma III.8 each riCi
is an ANR-curve. Since ¥ = U{r,C. | i =1,2,...,n} , Y must de an
AWR.

ITT.9.1 Coroclliary. If X 1is a compact 1-dimensional ANR and
r frcm X onto a metric space Y 1is a refinable map, thenm r is s
CE map.

Proof: By Theorem III.9, Y 1is an ANR. According to Theorem
I1.25, r 1is a CE map.

IIT.10 Lemma., Let S be a l-sphere in 2 compact l-dimensional
ANR X . Then S 1is not contractible in X .

Proof: According to {Hz and Wa, Theorem VII 3', p.151],
Hl(id S) : Hl(S) - Hl(X) is an injection (here the reals modulo 1 is
the coefficient group). If 8 1is contractible in X +then Hl(id s)=2¢

where O is the homomorphism which sends elements of E_(S) to the 0

in HT(X) . But H1(S) = Rl (the reals modulo 1 ) since S is s



1-sphere. It is clear that 0 : R = Hl(X) is not an injection;
hence, S 1s not contractible in X .

ITI.10.1 Corollary. If r 1is a refinable map from a compact
l-dimensional ANR X , then for no ¥y in Y does r-l(y) contain a
l1-sphere.

Proof: Since according to Corollary III.S.1l, r is a CE map,
r-l(y) is contractible in X for every y in Y . If r_l(y) con=-

tained a l-sphere, that l-sphere would be contractible in X . By

Lemma IIT.10 this is impossible.
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CHAPTER IV

THE METRIC IMAGE OF A COMPACT ANR UNDER A REFINABLE MAP

According to Theorem II.25 if the image of a compact ANR under

a refinable map is an ANR then the map must be a CE map. For this

reason determining when a refinable map preserves ANR structure is

important. In this chapter the equivalence of the following questions

will be

anéd r

nust be

and r

must be

established.

IV.1 Question. Is it true that whenever ¥ is a ccmpact ANR
is a refinable map from X onto a metric space Y , then Y
an ANR [Fo and Rg, ».T]?

IV.2 Question. Is it true that whenever X is a compact AR
from X onto A metric space Y 1is a refinable map, then Y
an AR?

IV.3 Question. Is the image of the Hilbert cube under a refin-

able map always an ANR?
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The following implications are clear since the Hilbert cube Q
is 2 compact AR. An affirmative answer to Question IV.2 implies an
affirmative answer to Question IV.3, and an affirmative answer to
Question IV.1l implies an affirmative answer to Question IV.3. The fol-
lowing result due to Edwards will be used to prove that an affirmative
answer to Question IV.3 implies an affirmative answer to Question IV.2.

IV.h Theorem. (Edwards) X dis an ANR if and only if X x Q
is a Q-manifold (i.e., locally X x @ looks like @ x[0,1) )

[Ch, Theorem L4k.1, p.106].

Iv.5 Lemma. If r from a compact AR X onto a metric space
Y 1is a refinable map, and Y is an ANR, then Y is an AR.

Proof: It is clear that X 1is a g-AR. The result follows
directly from Corollary II.19.3.

IV.6 Lemma. If X 1is a nonempty compact ANR then C(X) is

an AR.
Proof: Since X is a compact ANR, X x [0,1] is also a com=
pact ANR [Hu, p.97]. Let Xo pe an element of X . Define ¢ from

X x {1} to {xo} by oo(x,1) = X - Since XX [0,1] Uw {xo}
identifies X x {1} to a point it is homeomorphic to C(X) . By
applying a theorem of Borsuk [Bk 4, Theorem 9.1, p.116] with

Xy = Xx {1} , X =ZXx [0,1] =znd X, = {x } it follows that

X x [0,1] U@ {xo} is en ANR. Hence, C(X) is an ANR. It is clear
that C(X) contracts to the cone point; thus, C(X) must be an AR.

IV.7 Lemma. An affirmative answer to Question IV.2 impliies an

affirmative answer to Question IV.1.
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Proof: Let X be a compact ANR, and let r be a refinable
map from X onto a metric space Y . Then by Lemma IV.6, C(X) is
an AR. If the image of a compact AR under a refinzble msp must be an
AR then the image of C(X) under a refinable map must be an AR. By
Theorem I.26, C(r) is a refinable map of C(X) onto C(Y) . Hence,
C(Y) is an AR. Since Y x {0} contained in C(Y) is a neighborhood
retract of C(Y) , Y is an ANR.

IV.8 Lemma. An affirmative answer to Question IV.3 implies an
affirmative answer to Question IV.2.

Proof: Let X be a compact AR, and let r from X onto a
metric space Y be a refinable map. Suppose the metric image of the
Hilbert cube 2 under any refinable msp is an ANR.

Now since each of X and @ is a compact AR, X x Q@ 1is a
compact AR. By Corollary I.2L.1, rx id Q from X x @ onto ¥ x Q
is a refinable map. By Edwards' result, Theorem IV.4, X x Q is a
compact Q-manifold; thus, X x @ is homeomorphic to Q@ ([Ch, Theorem
22.1, p.36]. Hence, assuming there is an affirmative answer to Ques-
tion IV.3, Y x Q 1is ANR., Again by Edwards' result ¥ x @ x Q is a
Q-manifold. It is clear that Y x @ is homecmorphic to Y X Q X Q ;
hence, ¥ x @ is a Q-manifold; thus, Y is an AR. Thus, Question IV.2
has an affirmative answer if Question IV.3 does.

IV.9 Theorem. An affirmative answer to any of the Questions
IV.1, IV.2 or IV.3 is equivalent to an affirmative answer to zny cf the

Questions IV.1, IV.2 or IV.3.



Proof: It is clear that a yes answer to Question IV.1l implies
a yes answer to Question IV.3. By Lemma IV.8 an affirmative answer to
Question IV.3 implies an affirmative answer to Question IV.2. Finally,
by Lemma IV.T an affirmative answer to Question IV.2 implies an affirma-
tive answer to Question‘IV.l. Hence the three gquestions are equivalent.

Notice that Question IV.3 is useful in that it reduces the
question about images of ANR's under refinable maps to examining refin-
able maps from Q onto a g-AR. The fact that according to Corollary
IT.16.4 a refinable map with an AR such as Q as domain induces a
quasi-homecmorphism leads to the following question.

IV.10 Question. Is it true that any compact metric space

which is quasi-homeomorphic to @Q must be an AR?
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CHAPTER V
MORE ABOUT g-ANR'S

This chapter has two aims. The first aim is to obtain a
characterization of quasi-ANR which is analogous to the embedding
characterization of an ANR. The second aim is to locate g-ANR's and
a-AR's among other generalized ANR's. In fact, the following implica-
tion diagram inserts the generalized ANR's discussed here into the

diagrams that appear in [Bo, p.91] and [Fi, p.2].

1 :
AR —— Uniform g-AR 2. a-AR TN SAAR -L—-* AAR

5 6 (!
ANR 9 ANR —2s SAANR 15 AMNR_
Bl 13l 161

10 12 14

Uniforn g-ANR ———» q-ANR <~ SAANR, ——— AANR,

Diagram V.1
The right side of this diagram can be comrleted using the

diagram due to Finbow [Fi, p.2].
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V.1l Theorem. A compact metric space X 1is a g-ANR if and
only if for every positive real number e there is a positive real
number & such that if f is a 8-map from X onto a metric space
Y , then there is amap g from Y onto X such that d(gf,id X) < ¢ .

Proof: First assume that X is a g-ANR. Then according to
Theorem II.16, X is an L-M space. Since id X is a component
preserving map, and X 1is a L-M space, given ¢ > 0 , there is a
8 >0 such that if f is a 6-map from X onto a metric space Y ,
then there is amap g from Y onto X such that d(gf,id X)<e .

Now assume that for every e > 0 there is a & > 0 such that
if f is a S-map from X onto a metric space Y , then there is a
map g from Y onto X such that d(gf,id X) < e . Since X is a
compact metric space, for every & > O there exist a finite polytope
K and a S-map f from X onto K . Thus, given & > 0 , by letting
5 be the & corresponding to e as above, and by letting f be the
map and K be the polytope as in the preceding sentence, it follows
that there is amap g from K onto X such that d(gf,id X) < ¢ .
Since K 1s a finite polytope, K is an ANR. Hence, X is a g-ANR.

V.2 Theorem. Suppose X 1is a compact metric space such that
for every positive real number ¢ there are a q-ANR Y , amap f from
X onto Y ,andamap g from Y onto X such that d(gf,id X) < e .
Then X 1is a g-ANR.

Proof: Let & >0 bve given. Let Y be a q-ANR, and let £

from X onto Y and g from Y ontc X Dbe maps such that

d(gf,id X) < ¢/2 . Since g is uniformly continuous there is a
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positive real number & such that if for yl and y2 in Y ,
d(yl,yz) < § then d(g(yl),g(yg)) < e/2 . Now since Y is a q-ANR
there exist an ANR A , amap h from A onto Y , and amap k
from Y onto A such that d(hk,id ¥) < 6 . Thus, the following
inequalities hold: d(ghkf,id X) = d(ghkf,gf) + d(gf,id X) < ¢ .
Since gh maps A onto X , and kf maps X onto A , X nust be
a q-ANR.

V.3 Definition. A compact metric space X 1s an gpproxima-

tive zbsolute neighborhood retract in the sense of Clapp [Cl, p.118]

(AANRC) if and only if whenever X is embedded by an embedding i
into a metric space Y , then given e > 0 +there are =z neighborhood
U of i(X) in Y and amap r from U into i(X) so that
i(ri,i) < ¢ .

V.4 Definition. A compact metric space X is an approxima-

tive absolute neighborhood retract in the sense of Noguchi [No, 0.20]

(A.ANRN) if and only if whenever X 1is embedded by an embedding i into

a metric space Y , then there is a neighborhood U of i(X) in Y

such that for every positive real number ¢ there is amap r from U

into i(X) such that d(ri,i) < e . -
V.5 Definiticn. A compact metric space X 1is an approxima-

tive absolute retract (AAR) if and only if whenever X 1is embedded by

an embedding i into a metric space Y , then for every e > 0 there
is amap r from Y into i(X) such that d(ri,i) [ci, p.118], [Fo,

2.2G].
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We now give the following analogs of the preceding definitionms.
While these definitions are not given in previous work concerning ap-
proximative neighborhood retracts, they provide an alternate charac-
terization of g-AlR's which yields results concerning the position
of g-ANR's among AANR's,

V.6 Definition. A compact metric space X is a sur.jective

approximative absolute neighborhood retract in the sense of Clapp

(SAANRC) if and only if it satisfies Definition V.3 with the added
requirement that for each map r in the definition =(i(X)) = i(X) .
V.7 Definition. A compact metric space X is a surjective

approximative azbsolute neighborhood retract in the sense of Noguchi

(SAANRN) if and only if it satisfies Definition V.L with the added
requirement that for each map r in the definition r(i(X)) = i(X) .
V.8 Definition. A compact metric space X is a surjective

approximative zbsolute retract (SAAR) if and only if it satisfies

Definition V.5 with the added reguirement that for each map r in the
definition r(i(X)) = i(X) .

In the following it will be shown that a space is a ¢-ANR if
and only if it is a SAANRC . This result will give the following nice
characterization of a guasi-ANR: A compact metric space is a quasi-
ANR if end only if whenever X 1s embedded by a map i into a metric
space Y , then for every € > 0 there exist a neighborhood U of
i(X) in Y and amap r from U into i(X) such that d(ri,i) < ¢

and ri(X) = i(X) .
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V.9 Theorem. ZEvery g-ANR is a SAANRC; hence, every g-ANR is
an AANRC.

Proof: Let X ©be a g-ANR. Let the map i from X into a
metric space Y be an embedding. Let € > 0 be given. Since i is
uniformly continuous ( X 1is assumed to be compact) there is a2 & > 0
such that for x, and x, in X, d(xl,xz) < & , then
d(i(xl),i(XQ)) <& . Since X is a q-ANR there are an ANR A , a map
f from X onto A , and amap g from A onto X such that
d(gf,id X) < & .

Comsider fi™% : i(X) > A . Since A is an ANR, A is an
ANE [Hu, p.84t]. Thus, there is a neighborhood U of i(X) and there
is an extension ¢ : U -+ A of fi_l .

Let r = igp . Notice that igp maps U onto i(X) and

igo(i(X)) = igfi‘li(x) = igf(X) = i(X) . Since d(gf,id X) < 5 ,

d(igoi,i) = d(igfi‘li,i) < ¢

d(igf,i) < ¢ ; hence, d(ri,i)
These factéhéhow that X satisfies Definition V.6; hence, X
is a SAANRC.

V.9.1 Corollary. Every g-AR is a SAAR; hence, every g-AR is

o

an AAR.
Proof: In the proof of Theorem V.9 the ANR A may be replaced
by an AR A . Since every AR is an absolute extensor the map ¢ will

be an extension to 211 of Y .
V.10 Lemma. Suppose X is a SAANRC. Then given a positive
real number ¢ there is a positive real number & such that if £

from X onto a metric space Y is a §-map then there is a map g
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from Y into X such that d(gf,id X) < ¢ [No, Lemma 4.2, p.21;
Ei, p.92].

Proof: Since X is compact it may be assumed that X is
contained in the Hilbert cube Q . Let ¢ > 0O be given. Then since
X is an SAANRC there exist a neighborhood U of ¥ in @ and a map
r from U onto X such that »(X) =X and d(r|X,id X) < e/bk .
Since Q is a metric space, hence normal, there is a neighborhood V
of X so that CL(V) is contained in U . Since r is uniformly
continuous on C1(V) +there is a y > 0 such that for the elements
v, and v, in cu(v) , if d(vl,ve) <y , then d(r(vl),r(v2)) <e/b .
Since Q 1is locally ccnvex, for each x iIn X there is a convex
neighborhood Vx of x contained in V whose diameter is less than
Y . Since X 1is compact there is 2 X > 0 such that A < ¥y zand
if for some subset A of X , diam A< A , then A is contained in
VX for scme x in X .

Let a be a finite open A-cover of X (i.e., if A belongs
to @& then diam A< N\ ). Let B8 be a finite open cover of X which

star refines a . By the comments in [Hz and Wa, Section E(4), p.73]

there is a guasi-barycentric B-map h from X onto a finite poly-

-
4

hedron P . This means that h (open star of a vertex of P ) is
contained in scme element of B .

Yow define amap k from P into CL(V) in the following
manner. ‘Let D be a vertex of P . Taen choose k(p) to be an
element of h_l(p) . Now extend k linearly to the simplexes of the

polyhedron P . To see that k(P) is contained in CL(V} , notice that

-1
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if pypy...P, 1is a simplex of P then for each i, k(pi) is
contained in hT (open star of 1 ) which is contained in B,
where Bi is some element of B . Let p belong to the interior
of pyPy...p, - Then h-l(p) is contained in h T (open star of
P; ), which in turn is contained in B, for each i . Thus, for each
i, k(pi) belongs to the star of a point in hfl(p) taken in B .
Hence, since B star refines a +there is an A in a such that
each of k(po),k(pl),...,k(pn) belongs to A . Thus, since diam A < \
there is an x in X such that the convex hull of k(po),k(pl),...,
k(Pn) is contained in Vx where Vx is a convex neighborhood of x
contained in V . Since k is linear on DgPq- P, » k(popl...pn)
is contained in V .

It is now claimed that for each x in X , d(rkh(x),x) < e/2 .

There are two cases to be considered. Either h(x) is in the interior

Y

of some simplex D,p;...D, (n=z1)of P, or hi(x) is a vertex of

P . If the latter case occurs then kh(x) belongs to h-lh(x) which
is contained in some Bi in B . Thus, d(kh(x),x)< X<+ . In the
former case, h(x) belongs to the open star Zi of the vertex 1

for each 1 . Since h 1is a quasi-barycentric P-map for each 1 there
is a B, in B which contains hfl(Zi) . Since k(pi) belongs to
h_l(pi) which is contained in h-l(Za) , which in turn is contained in
B; > k(popl...pn) is in the star of x in f . Thus, for some y in
X both x and kh(x) belong to Vy . EHence, in this case

d(kn(x),x) < ¥ alsc. BSince in either case d(kh(x),x) < vy it is ap-

parent that d(rkh(x),x) < e/l < e/2 .
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Since [PI is a compact metric space, there is an n > 0
such that if for two points p, and D, in 2| , d(pyspy) <7
then d(rk(pl),rk(p2)) < g/2 . 8Since P is also an ANR, by the
Lon¥ar-MardeZié lemma [Lo and Ma, p.41-42] there is 2 & > 0 such
that if £ is a S-map from X onto a metric space Y then there
is amap NI from Y onto |P| such that a(lif,h) <m . In this
case d(rk Mf(x),rkh(x)) < ¢/2 for all x in X . Hence,
d(rk T£(x),x) < ¢ . To show that the conclusion of this lemma has
been satisfied let g=rkIl .

In the following proofs let I = 1[0,1/i] represent the
version of the Hilbert cube contained in Hilbert space with the in-
herited metric d . The following result [Lo and Ma, Lemma 5, p.k2]
will ve stated without proof.

V.11 Lemma. Let X be a nondegenerate continuum contained
in I°° and let 1 > 0 Ye given., Then there is amap h from X
into I with the following properties:

(i) h(X) contains Nn(X) , and
(ii) da(h(x),x) £ 31 for all x in X .

V.12 Lemma. Suppose X is a nondegenerate connected SAANRC.
Then given a positive real number e there is a positive real number
5 such that if £ 1is a S-mep from X onto a metric space Y ,
then there is amep g from Y onto X such that d(gf,id X) < ¢ .

Proof: t may be assumed that X 1is contained in I°° since X

is compact. Since X 1is a SAANR, given a positive real number ¢
A\

w0
there is a neighbcrhood U of X in I and there is amap r from
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c1(U) onto X such that r(X) =X and d(r|X,id X) < /8 . Since
r is uniformly continuous on C1(U) there is a positive real number
n such that Un < ¢/8 , and such that if for elements uy and u, in
ci(u) , d(ul,ue) < ln , then d(r(ul),r(ug)) < ¢/8 . Since X is com~
pact 7 can be chosen so that 7 < % diam X and Nhn(X) is contained
in U . Let =a belong to th(X) . Then for some x in X ,
d(x,a) < Un ; hence, the following inequalities are valid:
d(r(a),a) = d(r(a),r(x)) + d(r(x),x) + d(x,a) < /8 + /8 + ¢/8 < /2 .
Therefore, d(r(a),a) < e/2 for all a in Nhn(x) . By Lemma V.10
there is a positive real number ¥ such that if £ from X onto a
metric space Y 1is a y-map then there is a map gq from Y into X
such that d(glf,id X) <m . This implies that X is contained in
Nn(glf(x)) and glf(X) is nondegenerate. Since g, T is a mazp and X
is connected, by Lemma V.1ll, there is 2 map h from glf(X) into 1
such that h(glf(x)) contains Nn(glf(X)) , and such that for all x
in X, d(hglf(x),gl:“(x)) = 3n . Since d(glf,id X)<n,
d(hglf(x),x) <l for 211 x in X . Thus, d(rhglf(x),r(x)) < g/2
for 211 x in X and d(r(a),a) < e/2 implies d(rhglf(x),x) < e for
all x in X . Since hglf(X) contains Nn(glf(X)) , hglf(X) con-
tains X ; thus, rhglf(x) =X . Let g= rhg, . Then g is a mep
from Y onto X which satisfies d(gf,id X) < ¢ .

V.12.1 Corollary. Every connected SAANRC is a q-ANR.

Proof: According tc Lemms V.12 a nondegenerate connected SAANRC

satisfies the conditions given in Theorem V.1 for being a g-ANR. If the

space 1s a point it is obviously an AR; hence, it is a g-ANR.
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By noticing that Lemma V.10 and V.12 depend only on the ability
to embed a compact metric space X in the Hilbert cube so that for every
psoitive real number & +there exist z neighborhood U of X in the
Hilbert cube and amap r from U onto X such that r(X) =X and
d(r|X,id X) < ¢ , the following corollaries hold.

V.12.2 Corollary. Suppose X is a continuum in the Hilbert
cube I . Suppose that for every positive real number ¢ there are a
neighborhood U and amap r from U onto X such that r(X) =X
and d(r|X,id X) < e . Then X is a qg-ANR.

Proof: Use the proof of Lemma V.12 together with Corollary
V.12.1,

V.12.3 Corollary. Let X be a SAANRC. Then every component
of X is a g-ANR.

Proof: Assume X 1is contained in T . Let C ©te a2 component
of X and e >0 be given. Since X 1is compact, C is compact;
hence, there is a positive real number 6 < & such that Ns(C) inter-
sects no other component of X (see Lemma V.13). Since X is a
SAANRC there exist a neighborhood U of X in I and a map r from
U onto X such that r(X) = X and d(r|¥,id X) < 5 .

~

C. Let ¢ belong to C

It is now claimed that r(C)

Since r(X) = X there is an x in X such that r(x) = ¢ . Since
d(x,r({x) = ¢) <& , x belongs to NG(C) . Since Na(C) NX=c, it
follows that x belcngs to C . It is also clear that since

d(e,r(c)) <6 and c belongs to X , r(ec) belongs tc C . Hence,

r(C) =C .

-
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Since d(rlC,id C) < & and the intersection U' of U with
N5(C) is = neighborhood of C in I, C satisfies the hypothesis of
Corollary V.12.2, and it follows that C is a g-AUNR.

V.13 Lemma. Every SAANR, is locally connected and compact;

C

hence, every SAANR A has at most a finite number of components.

C

Proof: Let X be a SAANRC. Then X is compact by definition.
Thus, it may be assumed that X is contained in the Hilbert cube Q .

Since X 1is a SAANRC there exist a neighbocrhood U and a map
r from U onto X such that r(X) = X and d(r|X,id X) <1 . By
a result in [Wi, Theorem 3.7, pp.79-80] there is a locally connected
neighborhood (closed) K of X contained in U . r|K is an identi-
fication and r(X) = X ; hence, X is locally connected [Du, p.125].

By applying Lemma V.13, Corollary V.12.3, Corollary II.16.1,
and Theorem V.9 the following theorem can be proved.

V.14 Theorem. A compact metric space is a g-ANR if and only if
it is g SAANRC.

In view of this theorem and Corollary V.9.1l one might ask if
every SAAR is a q-AR. A partizl result in this direction is the follow-
ing theorem.

V.15 Theorem. ZIEvery AR-1like SAAR is a g-4AR.

Proof: Let X be an AR-like SAAR. It is clear that X is s
SAANRN; hence, it is a SAANRC. According to Theorem V.14, X is a g-
ANR. Since X 1is a q-ANR, according to Theorem V.1, given a positive

real number ¢ there is a positive real number & such that if £

from X onto a metric space Y is a S-map then there is a map g from
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Y onto X such that d(gf,id X) < € . Since X is AR-like there
are an AR A and a2 §-map f from X onto A . Hence there is a map
g from A onto X such that d(gf,id X) <e . Thus, X 1is a g-AR.

The following lemma generalizes Borsuk's Homotopy Extension
Theorem [Bk L4, Theorem 8.1, p.94].

V.16 Lemma. Let A be a closed subset of a metric space
Y , and let X be a g-ANR. Suppose that F from 4 x [0,1] to
X 1s continuous, and that Fo has a continuous extension f from Y
into X . Then for every positive real number ¢ there is a map H
from Y x {0,1] into X such that for (y,t) in A x [0,1] U ¥ x {0} ,
a(H(y,t) ,F'(y,t)) < ¢ where

Fly,t) if (y,t) is in A x [0,1] [ci, p.128]

F'(y,t) =
(y) i £ =0 .

I

Furthermore, if Fl(A) X then H_(A) =X .

Proof: Given F and f as in the hypothesis of this lemma
define F' from A x [0,1] U Y x {0} into X as indicated in the
statement of the lemma.

Since X 1is compact it may be assumed to be contained in the
Hilbert cube Q . Let & > 0 be given. Since X is a g-ANR, by
Theorem V.1lh it is a SAANRC; hence, there are an open neighborhood U
of X in Q zand amap r from U onto X such that r(X) =X and
d(r‘X,id X) < e . Since U is an ANR, there is amap G from
v x [0,1] into U such that G(y,t) = F'(y,t) if (y.,t) belongs to

Ax [0,1]U Y x {0} [Bk L4, Theorem 8.1, p.9L4].



Let H from Y x [0,1] into X be defined by B, =G, .

I (y,t) belongs to A x [0,1] UY x {0} then H(y,t) = rG(y,t) =
rF'(y,t) . Thus, d4(H(y,t),F'(y,t)) < e since d(rF'(y,t),F'(y,t)) < ¢ .
1 F,(4) =X then X contains H,(4) = rG (A) = rFi(A) which contains
r(X) = X . In this case, therefore, Hl(A) =X .

V.17 Theorem. A quasi-cortractible g-ANR is a SAAR [Cl, p.128].

Proof: Let X be a guasi-contractible g-ANR. Suppose 1 from
X into a metric space Y 1is an embedding. Since X 1is assumed to be
compact i(X) is closed. i(X) is a SAANRC by Theorem V.1k.

It is now claimed that i(X) is quasi-contractible. Let ¢ > 0

be given. Since i 1is uniformly ccntinuous there is a &6 > 0 such

that if for x, and x, in X, d(xj,x

1 5 ) < & , then d(i(xl)’i(XZ)) <€ .

2

-

Since X 1is quasi-contractible there is amap F from X x [0,1] into X

such that for some a in X , FO(X) ={a} , F.(X}) =X, and

1
a(F ,1d X) < 6 . Thus, the mep F from i(X) x [0,1] into i(X)
defined by #(i(x),t) = iF(x,t) satisfies z?-omx)) = {i(a)} ,

Fl(l(X)) = 1F1(X) = i(X) , and d(.t*:L
a(F,,id X) < & . Thus, i(X) dis quasi-contractible.

i,i) = d(iFl,i) < & since

Let & >0 be given. Since i(X) is quasi~contractible there
is amap F from i(X) x [0,1] into i(X) such that for some a in
X, Fo(i(x)) = i(a) , Fl(i(X)) = i(X) and d(Fli,i) < ef/2 . Now Ty
has an extension f +to all of Y by defining f(y) = i(a) for all ¥
in Y . According to Lerma V.16 there is amap H from Y x [0,1]

into i(X) such that Hl(i(X)) = i(X) and d4a(E(y,t),FP'(y,t)) < e/2 ,

F' as in V.1€. Let r = Hl . Then r maps Y onto i(X) where
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ri(X) = i(X) =and the following inequalities hold: d(ri,i) =
d(Hli,F'li = Fli) + d(Fli,i) < ef2+e/2=¢ ., Thus, X satisfies the
requirements for Definition V.8. Hence, X is a SAAR.

An immediate corollary of this result and Theorem V.15 is the
following.

V.16.1 Corollary. An AR-like quasi-contractible g-ANR is a
g-AR.

V.17 Definition. A compact metric space X is a uniform g-ANR

(uniform q-AR) if and only if there exists an ANR (AR) A such that

for every positive real number & there aremaps f from X onto A
and g from A onto X such that d(gf,id X) < ¢ .

V.18 Theorem. A space which is quasi-homeomcrphic to a2 uniform
g-ANR is a uniform g-ANR.

Prcof: Let (fi,gi) be a quasi-homeomorphism of a ccmpact metric
space X onto a uniform q-ANR Y . Let A be an ANR such that Defini-
tion V.17 is satisfied for the space Y . Let & > 0 be given. Then
there are maps fi from X ontc Y and g, from Y onto X such
that d(gifi,id X) < e/2 . Since g; is uniformly continuous there is
a positive real number & such that if for yl and y2 in Y ,
d(yl,yg) < 5 , then d(gi(yl),gi(yg)) < &/2 . Since Y is a uniform
g-ANR there exist maps f from Y onto A and g from A onto Y
such that d(gf,id Y) < & . Hence, d(gigf,giid Y) < ¢/2 . Thus,
d(gigffi,id X) = d(gigffi,gifi) + d(gifi,id X) < € . Therefore, X is

a uniform g-ANR.



V.18.1 Corollary. A space which is quasi-homeomorphic to a
uniform g-AR is a uniform g-AR.

Prcof: The ANR A in the preceding proof may be replaced by
an AR.

Because of Theorem V.18 and Corollary II.16.L the following
corollaries are valid.

v.18.2 Corollary. The metric image of a uniform g-ANR (uniform
q-AR) under a refinesble map is a uniform g-ANR (uniform g-£R).

V.18.3 Corollary. The metric image of an ANR (AR) under a-
refinable map is a uniform q-ANR (uniform g-AR).

V.19 Lemma. If each of X and Y is a q-ANR (uniform g-ANR)
then X x Y is a g-ANR (uniform q-ANR).

Proof: Let e >0 be given. Then since X is a g-ANR there
exist an ANR A& (if X 4is a uniform g-ANR A does not depend on the
choice of ¢ ), amap f from X onto A , and amap g from A cnto
X such that d(gf,id X) < e/2 . Similarly, for Y there exist an ANR
B,amap h from Y onto B , and a map k from Y onto B such
that d(kh,id ¥) < e/2 .

Since A x B is an ANR [Hu, p.97)], £ X h is amap from X x Y
onte AXB,and gxk is amap from A X B onto X x ¥ which satisfy
d((g x k)(f x h),id X x id ¥ = id X x Y) = d(gf,id X) + d(kh,id ¥) < ¢ ,
X xY is a g~ANR {(a uniform g-ANR if *he choice of each of A and B
does nct devend on ¢ ).

7.19.1 Corollary. If each of X and Y is a g-AR (uniform g-AR)

then X x Y is a g-2AR (uniform g-AR).



Proof: The ANR's A and B in the preceding proof may be re-
placed by AR's.

V.20 Lemma. If X is a g-ANR (uniform q-ANR) then C(X) is a
a-AR (uniform q-AR).

Proof: For each positive real number ¢ there exist an ANR A ,
amap £ from X onto A, and amap g from A onto X such that
d(gf,id X) < € . It is clear that d(C(g)c(f),c(id X) =iac(X)) <e .
The cone over A 1is a contractible ANR; hence, C(A) is an AR. From
these facts the lemma follows.

V.21 Example. Let H be the Hawaiian earring (Example II.28).
By Lemma V.20, C(H) is a g-AR. It is claimed that C(H) is not an
AR. If C(H) were an AR then since H x {0} is a neighborhood retract
of C(H) . H would be an ANR [Hu, p.97], which is not the case since H
is not locally contractitle.

H 1is also an example of a SAANRC which is nct a SAANRN. Con-
sider H &as embedded in the plane E2 as in Example II.28. Suppose H
is a SAANRN. Then there is a neighborhcod U of H in E2 such that
for every positive resl nurber € there is amap r from U onto H
which satisfies r(H) = H and d(rH,id H) < ¢ . At the point 0O there
is a positive real number & such that Na(e) is contained in U and
85(6) = {y in B | d(y,0) = 8} is not tangent to any of the circles
Cj . It is clear that there is a least i such that Ci is contained
in NS(O) . It is also clear that H' = U{cj | §2i} is a Hawaiian
earring contained in Nﬁ(@) . Let H* e the intersection of H with

%
Cl(Ns(@)) . Now H is the unicn ¢t H' with the union of the finite



collection of arcs Ij = Cj n NG(G) where J < i (see Figure V.21.1).

* #
Define the map f from H intc H to be the mar which first sends

H' onto Ci keeping Ci fixed while also sending Ij to @ for

J < 1 , then follows this by rotating Ci by # . It is clear that ¢

*
has no fixed points; furthermore, since H is compact and the function

*
from H to the positive real numbers which sends x to d(f(x),x) ,

*
( d(f(x),x) >0 for all x in H since f has no fixed points) is

*
continucus, inf{d(f(x),x) | x belongs to H } exists and is attained

at some point x Eence, ¥y = d(f(xo),xo) >0 . Let

0 "
£ < min{l/21+1,y/3} be a positive real nuwber such that N5+e(9) con-

tains H' , and for j < i , Cl(N6+8(®)) does nct contain C, , and

J
the diameter of each ccmpcnent of the set Cj N Cl(N5+8(e) - NG(G)) is

less than y/3 . Define the map s on Cl(N6+s(e)) intersected with
H by letting s be the identity on . , and by letting s map

‘ #
(Cj n Cl(N6+€(@))) - H %o the nearest point of Cj

*
j < i (notice that Cj n(#HE - Va(e)) contains exactly two points).

Since H 1is assumed to be a SAANRN there is amap r from U

A (H* - Na(e)) for

onto H such that rH = H and d(r]H,id H) < ¢ . In particular,
r(C1(¥g(8))) is conteined in the intersection of Cl(N6+8(@)) with
¥ . Thus, sr[Cl(NS(G)) is well-defined and sr(Cl(Na(O)) is con-
tained in H* . Thus, fsr from 01(N5(e)) into H* is a well-
defined map. Since Cl(NG(e)) is a 2-cell it has the fixed point
property. Eence, there is a point x in Cl(Ns(G)) such that

%
fsr(z) = x . It is clear that x belongs tc H 3 in fact, by the way

f has been defired x must belcong to C, - Now

8l



d(sr(x),x) £ d(sr(x),r(x)) + d(r(x),x) < ¥/3 + € < 2v/3 ; however, by
the way ¥ has been defined d(x = fsr(x),sr(x)) 2 v . This yields a
contradiction; hence, E cannct be a SAANRN.

V.22 Example. Let X = U{{1/n} x [0,1] | n is a positive
integer} U {0} x [0,1] U [0,1] x {0} . It is clear that X is not
locally connected; hence, X is not a SAANRC. It is now claimed that
X is en AAR. For each n define r = from {0,121 x [0,1] into X
by letting r = be the projection of [0,1/n] x [0,1] onto
{1/n} x [0,1] , and by letting r, bea retraction of [1/m,1] x [0,1]
onto U{{1/k} x [0,1] | 1=k = n} U [1/n,1] x {0} . It is clear that
d(rn X,id X) < 1/a . Let i be an embedding of X into a metric space

Y. Let &€ >0 be given. Since i is uniformly ccontinuous there is an

n such that if for x, and %, in X, d(xl,xg) < 1/n , then
d(i(xl),i(xg)) <e. it isa map from i(X) into the AR [0,1] x
[0,1] . Thus, there is an extension ¢ of i~ from Y into
[0,1]2 . Consider the mep r = ir ¢ . Since d(rnmi(x),x) < 1l/n ,

d(irn@i,i) < € . Hence, X satisfies the conditicns for an AAR given
in Definition V.5 [No, 2.8, p.20].

Example V.22 shows that arrows 4, 15, and 1Y% in Diagram V.1
cannot be reversed. Example V.21 shows that arrow 13, arrow 1 followe=d
by arrow 2, and arrow 8 fcllowed by arrow 10 in Diagram V.1l cannot be
reversed. Theorem V.14 verifies the double arrow 12. The reversibility
of arrows 1, 2, 8, 10 is left unanswered by the results and examples
given so far. If, for example, arrow 8 (or arrow 1) is reversible then

by Corcllary V.18.3, the metric image of an ANR under a refinabie map

85



would be an ANR. Thus, while the gerneral problem of whether the metriec
image of an ANR is an ANR has not yet been solved, further study of
examples of g-ANR's and the prcperties of q-ANR's may help produce

either a counter-example or & proof.

e



Figure V.21.1
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