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Abstract 

The central US, especially Oklahoma, has become a seismically active region 

since 2009. Knowing the current stress state of the crust in Oklahoma is essential for 

understanding this activity increase. My thesis focuses on stress analysis with two main 

objectives. First, using a stress inversion method to reconstruct the state of stress from 

focal-mechanisms of 562 events for the 2010 to 2015 period. The other objective is the 

calculation of the stress change on subsurface faults under the stress state derived from 

the first part.  

The stress inversion method (Reches, 1987) allows calculations for stress state, 

discrimination between ‘real’ and ‘auxiliary’ planes of the focal-solution, and 

determination of the best-fit, effective friction coefficient. The determined friction 

coefficient is , and the stress state indicated a strike-slip faulting regime with 

partial transition to normal faulting. The direction of the minimum horizontal 

compression, hmin, is 350°-360° for the entire Oklahoma region. I then evaluated the 

Coulomb stress on the faults with the focal-mechanism solutions by application of the 

in-situ stress in the Coulomb dislocation program (Toda et al., 2011). It was found that 

faults trending NE-SW increased their tendency for right-lateral slip, and faults trending 

NW-SE increased tendency for left-lateral slip. Most faults do not have reverse slip, 

whereas some faults have normal slip tendency. The stress change calculations are in 

good agreement with the stress inversion results.
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Chapter 1: Introduction 

Overview  

The increased seismic activity in central US since 2009, and especially in 

Oklahoma-Kansas, was in contrast to the view of a stable tectonic region in the central 

part of the American plate.  As a result of this activity, the seismic hazard in Oklahoma 

rose dramatically to become the region with the highest hazard forecast for 2016 in 

central and eastern US (Fig. 1A) (Peterson et al., 2016). This seismicity also raised 

questions about its source and mechanism, and the current general view attributes the 

activity rise to injection of wastewater (Ellsworth, 2013; Keranen, et al., 2013; Holland, 

2013; Walsh III and Zoback, 2015). 

The present analysis focuses on the crustal stresses associated with Oklahoma 

earthquakes by using focal-mechanisms from the 2010-2015 period. This analysis has 

two main objectives: (1) Determination of the current, in-situ stress state and the 

temporal stress changes in Oklahoma; and (2) Determination of the likelihood of fault 

activation by evaluating the stress change on known, subsurface faults. I used the stress-

inversion method of Reches (1987, 1990) for the first objective, and the dislocation 

stress software (Coulomb by Toda et al., 2005, 2011) for the second objective. It is 

anticipated that the combination of these methods will lead to a better evaluation of 

Oklahoma earthquake activity. 
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Fig. 1A: One-year earthquake hazard forecast for the central and eastern US from 

induced and natural earthquakes (Peterson et al., 2016). The warmer the color, the 

higher seismic intensity. Fig. 1B Earthquakes in Oklahoma from 1975 to 

December 2014, magnitude > 2.5 (McNamara, et al., 2015). 

Oklahoma Geological Setting 

Oklahoma is commonly divided into five major uplifts and six major basins 

(Fig. 2) (Johnson, 2008). The main uplifts are: Nemaha uplift in north central OK, 

which may extend hundreds of kilometers northward, Ozark uplift in northeastern 

Oklahoma, Wichita-Arbuckle uplift, which is part of the Southern Oklahoma 

Aulacogen, and the thrusted-folded complex of Ouachita uplift in the southeast. The 

north-trending fault system of the Nemaha uplift separates the very deep (> 10 km) 

Anadarko basin from the Cherokee platform (Northcutt and Campbell, 1998). The main 

mountain belts in Oklahoma are the Ouachita, Arbuckle, and Wichita systems,  located 

in southern Oklahoma (Johnson, 2008). These belts include dense networks of faults, 

folds and uplifts that developed primarily during the Pennsylvanian, and exposed 

Precambrian-Cambrian igneous rocks and thick sequences of Paleozoic sedimentary 

sequences. 

A. B. 



3 

 

Fig. 2. Oklahoma geological provinces (Johnson, 2008). 

Oklahoma Earthquakes 

The New Madrid earthquakes (M = 7.6-8.0) in 1811and 1812 are the largest and 

earliest historical earthquakes in the central US, close enough to be felt in Oklahoma 

(Luza, 2008). The earliest earthquake epicenter documented in Oklahoma was in 

October 22, 1882; the location was poor but MM VIII intensity near Fort Gibson, Indian 

Territory (Stover et al, 1983). The earliest documented locatable earthquake occurred 

near Jefferson in Grant County on December 2, 1897 (Storver et al., 1983). Until the 

recent activity, the 1952 M=5.5 El-Reno earthquake was the largest known Oklahoma 

earthquake. It was felt in an area of 140,000 square miles, and produced MM VII-IX 

intensity effects near the epicenter (Luza, 2008). 

Prior to 1976, most Oklahoma earthquakes occurred in Canadian County (Luza, 

2008). The majority of them were located in the vicinity of El Reno, where a series of 

earthquakes occurred since 1908. Other main areas of seismicity are in Love, Carter and 

Jefferson counties, with the first reported earthquake in these counties during 1974 
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(Luza, 2008). The Arkoma basin, in southeast Oklahoma, is another area of active 

seismicity (Luza, 2008). 

Oklahoma, considered a tectonically stable area away from a tectonic boundary, 

faced a rise of seismic activity starting in 2009 (Fig. 1B). This activity included several 

large earthquakes, e.g., Prague 2011 M=5.6 event (Keranen, et al., 2013). The increase 

of both seismicity and magnitude in Oklahoma indicates that the annual rate of 

earthquakes of magnitude M ≥ 3 exceed the equivalent in California since 2014 

(McGarr, et al., 2015).  

The increase in recorded seismic activity of Oklahoma is due, partly, to 

improvement in seismic detection, but the increase of M >3.0 earthquakes in real. The 

lower magnitude events exist, but are not detectable at this time. The Oklahoma 

Geological Survey placed new seismometers and added new seismic monitoring 

stations. Thanks to the increasing number of stations, more earthquakes, including small 

magnitude earthquakes (M<3) were detected. Typically, Oklahoma earthquakes have 

magnitude ranging from 1.8 – 2.5, with shallow focal depths less than 4.5 km (Luza, 

2008). In 2009 and 2010, the NSF EarthScope U.S. Array program developed seismic 

monitoring stations at 70-km spacing across Oklahoma (USArray website). Fig. 1B 

shows the cumulative numbers of earthquake events in Oklahoma, starting from 1975 to 

December 2014. The Prague earthquake, with magnitude 5.6 in November 2011, has 

been pointed out in the plot (McNamara, et al., 2015). 
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Chapter 2: Methods and Data of Present Study 

Stress-Inversion Analysis 

General 

Stress-inversion is a numeric method to determine the state of stress that can 

cause slip along a group of faults (Angelier, 1984). Bott (1959) made the widely 

accepted assumption that slip along a fault occurs parallel to the direction of maximum 

resolved shear stress, and essentially all stress-inversion methods are based on this 

assumption. 

Angelier (1984) utilized the direction and slip sense on individual faults to 

calculate the reduced stress tensor with the orientations of the stress axes. This method 

allows the use of data on new faults created by tectonic loading and/or reactivated old 

discontinuities by a new stress field. This work also demonstrated the use of earthquake 

focal-mechanisms and analysis of heterogeneous data sets to distinguish successive 

fault events (Angelier, 1984). 

Gephart and Forsyth (1984) assumed that a uniform stress state in a source 

region controlled the orientations and slip directions of earthquake focal-mechanisms, 

and they used this assumption to determine a best fit for the principal stress axes. They 

also allowed the failure to occur on preexisting zones of weakness of any orientation. 

Their method finds the solution that requires the smallest total rotation of all the fault 

planes that is needed to match the difference between the observed and predicted slip 

directions (Gephart and Forsyth, 1984). 

Michael (1984) used slickenside data of the stress field to find the single 

uniform stress tensor that is most likely to cause faulting events. He assumed that the 
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magnitude of the tangential traction on the various fault planes was similar at the time 

of rupture (Michael, 1984). The direction of the maximum tangential traction on the 

plane tends to be parallel to the slip direction. 

The above models of Angelier, Gephart and Michael, can be used for field 

observations and focal mechanisms for stress inversion. These models use the average 

difference between the calculated shear stress direction and the actual slip axis on faults 

as estimators of the solution accuracy. 

The Present Stress-Inversion Method 

Assumptions 

I used a stress-inversion program called “Stress” that was developed by Reches 

(1987, 1990). It is available as part of the SoftStructure package 

(http://earthquakes.ou.edu/reches/soft.html). This method is based on three 

assumptions: 

1. Slip along a fault occurs parallel to the direction of the maximum resolved shear 

stress on this fault (similar to Bott, 1959). 

2. The stress state that maintains the slip obeys the Coulomb-Anderson Failure 

Criteria: 

|τ| ≥ C + 𝜇 𝜎𝑛, 

where C is the fault cohesion, and μ is its friction coefficient, τ and σ_n are the shear 

and normal stresses. This assumption of Coulomb friction law is unique to this method. 

3. The slip events along the group of faults occurred under relatively uniform 

conditions:  

a. The faults were activated under the same stress state. 

b. The friction of the faults may be represented by the mean value of the group. 
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Advantages 

The Stress program calculates a stress tensor that can cause slip frictional faults, 

whereas previous inversion methods implicitly assumed that the faults are friction-less 

(Reches, 1987). The slip misfit criterion was used by Angelier (1984), Gephart and 

Forsyth (1984), and Michael (1984) without considering friction coefficient, and Reches 

(1987) showed that such stress-inversion implies that μ = 0. Reches (1987) also 

demonstrated that the calculated stress solutions vary with different friction coefficients.  

The solution quality is evaluated with two misfit angles (Angelier, 1984; 

Reches, 1987). The first is ‘slip misfit’ (SM) angle, which is the average difference 

between the calculated axis of maximum shear stress for each fault, and the actual 

(measured) slip axis on the same fault. The second is the ‘principal axes misfit’ (PAM), 

which is the average difference between the calculated principal axes directions for 

whole fault set and the ideal, principal axes directions for each fault. The principal axes 

misfit criteria allows to distinguish between the two nodal planes of an earthquake focal 

solution (Reches, 1990), and to estimate the mean friction coefficient. 

Focal-Mechanism Solution of Earthquakes  

The present stress-inversion analysis was conducted on 562 focal-mechanism 

solutions of Oklahoma earthquakes. These focal-mechanism solutions (FMS), for the 

period January 14, 2010 to February 14, 2015, were determined by Dr. Austin Holland, 

Oklahoma Geological Survey, who kindly provided his results for the present analysis. 

This dataset has 562 FMS including information of earthquakes origin time, location, 

magnitude, epicenter depth, strike, dip, rake, P-trend, P-plunge, T-trend and T-plunge.  
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Focal-mechanism solution refers to fault plane and the slip direction during an 

earthquake (Shearer, 1999). These solutions are determined from data of multiple 

seismic stations to derive the fault planes that are associated with the earthquake 

(Sipkin, 1982, 1986, 1994). The focal-mechanisms display a “beach ball”, of two 

equivalent planes with their corresponding slip axes (Fig. 3). The “beach ball” is the 

stereographic projection of these two planes, one is considered the fault plane and the 

second the auxiliary plane that is perpendicular to the fault plane (Fig. 3). It is not 

possible to distinguish between the two for small earthquakes. Both fault plane and 

axillary plane are considered as the ‘nodal planes’. The shaded area is the section of 

compression, and the bright area is the extension section. Traditionally, focal-

mechanisms are computed by finding the best-fit direction of the up-or-down motion of 

the first arrival of P-wave (Shearer, 1999). 

 

Fig. 3. Schematic illustration of focal sphere view from side and beach ball view 

from above (USGS, 1996). P: P-axis, the “Pressure” axis or compressional axis. T: 

T-axis, the “Tension” axis.  

Fig. 4 shows three examples of focal-mechanisms. The left diagram indicates a 

strike-slip fault; the middle is a normal fault, and the third one represents a thrust fault 

or a reverse fault. In this “double couple” configuration, the auxiliary plane does not 
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have a geological meaning, but for small earthquakes without surface rupture or 

additional information, the focal-mechanisms is insufficient to indicate the actual fault 

plane. Later, the present stress-inversion provides a tool to solve this double-couple 

difficulty. 

 

Fig. 4. Focal-mechanism “beach ball” diagrams. Example of strike-slip, normal 

and reverse fault (Cronin, 2010). 

Dislocation Stress Calculations: Coulomb3.3 Software 

I used the Coulomb3.3 software (Toda et al., 2005, 2011) to calculate stress 

change on prospective faults in Oklahoma. Coulomb3.3 calculates the static stresses, 

strains, and displacement generated by slip on faults or expansion dikes. The slipping 

faults are simulated as rectangular, planar dislocations embedded in a linear, elastic 

half-space. The slip along a dislocation changes the stress-field in the space around it 

(Toda, et al., 2011), and modifies the stress state on other faults that did not slip.  

The program calculated the changes of the stress components on receiver faults 

in an elastic half space. These components are related to the Coulomb failure criterion, 

which is the widely used criterion for fault slip (Byerlee, 1978).  

The original Coulomb law of failure is: 

 = C +n, 

where is shear stress, is friction coefficient, C is cohesion, and n is the 

normal stress. Assuming that C = 0 for preexisting faults, 
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 = n, 

which is Byerlee’s Law (Byerlee, 1978). It indicates that the critical shear stress 

that can cause the slip of preexisting faults is equal to the coefficient of friction on the 

fault times the normal stress on the fault plane.   

The component in Coulomb program calculations are defined by the changes, , 

due to the slipping fault. Rearranging Byerlee’s Law, we get, 

∆𝐶𝐹𝐹 =  ∆𝜎𝑓 = ∆𝜏𝑠 + 𝜇′∆𝜎𝑛, 

where CFF is the ‘Coulomb Failure Function’ that equals ∆𝜎𝑓 , the stress 

change on the potential, receiver fault by slip along source fault(s), ∆𝜏𝑠 is shear stress 

change, and ∆𝜎𝑛 is normal stress change. 𝜇′ here is the effective friction coefficient of a 

fault. A receiver fault may fail if CFF increases due to slip on the source fault(s). A 

stress shadow for one receiver may be a stress trigger zone for another receiver fault.  

The program can calculate stress changes of four types of receiver faults: (1) 

“specified” receiver faults, meaning all faults that have a uniform receiver fault 

geometry, (2) faults optimally oriented for failure, (3) receiver faults that are built in the 

input file, and (4) focal-mechanism files, in which there are always two nodal planes. 

The optimal orientations are a function of the regional or tectonic stress and the source 

faults. The friction coefficient is a requirement of receiver faults during calculations. 

Coulomb3.3 provides diverse calculations options like stress in cross-section and at 

different calculation depth (Toda, et al., 2011). 

  With Coulomb3.3, I calculated the stress change on faults in Oklahoma under 

calculated current stress state. This program is available at 

http://usgsprojects.org/coulomb/ 

 

 

http://usgsprojects.org/coulomb/
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Data Analysis of Oklahoma Faults and Earthquakes 

Oklahoma Faults  

The Oklahoma faults dataset includes the digital map of faults in Oklahoma that 

was compiled by the Oklahoma Geological Survey (Darold and Holland, 2015). This set 

includes the coordinates of starting and ending points of segments of surface and 

subsurface faults. It was extracted from Oklahoma geologic maps and subsurface data. 

Fig. 5 shows the Oklahoma fault segment traces plots with 23,665 km of cumulative 

length. In my thesis, I will use the locations and orientations of the fault segment traces, 

and compare them with my focal-mechanism data. 

 

Fig. 5. Oklahoma fault segment trace map (after Darold and Holland, 2015). 
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Chapter 3 Stress-Inversion Analysis 

Time History of the Recent Oklahoma Earthquakes 

In the first step of the analysis, I clustered the FMS data into four time groups. 

Fig. 6 displays the frequency of the FMS (number of events per 10-day intervals) in the 

database (01/14/2010 to 02/14/2015). For stress evolution calculations, I divided the 

solutions into four time groups (Fig. 6, Table. 1). Group “OK-1” has relatively low 

FMS frequency, less than 5 per ten days. The earthquake spike of OK-2 with nearly 35 

per ten days is associated with the many aftershocks of the Prague M5.6 2011 

earthquake. OK-3 follows the OK-2 spike with frequency similar to OK-1 group. The 

last group, OK-4, has a high and variable frequency, ranging 5-25. It should be noted 

that Fig. 6 reflects only the time frequency the 562 available FMS and is does not 

necessarily indicate the time frequency of the seismic activity. I will use these time 

groups to determine stress evolution. The locations of the four group events (Fig. 7) 

indicates a likely migration trend of the earthquakes from south-southeast to north-

northwest. The A, B, and C zones in Fig. 7 are the same fault map zone division in later 

discussion (Fig. 14). Note that nearly all FMS are in zone B. 

Table. 1: Four seismicity groups division.  

Subgroup# Start—End  Date Total Days Numbers of Events 

OK-1 01/14/2010—10/28/2011  652 103 

OK-2 10/28/2011—02/07/2012 102 51 

OK-3 02/07/2012—07/01/2013 510 39 

OK-4 07/01/2013—02/14/2015 593 369 
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Fig. 6. Time frequency of the focal-mechanism dataset. This dataset is divided into 

four groups based on their events frequency. OK-1 low frequency; OK-2 spike for 

aftershocks of the Prague 2011 earthquake; OK-3 low frequency; OK-4 variable 

frequency. 

 

Fig. 7. Oklahoma FMS location plot, groups are same as the clustered group in 

Fig. 6. Each dot representing one earthquake event from the FMS dataset. 
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Different color stands for different groups. Ok1: blue, Ok2: red, Ok3: green, Ok4: 

purple. Red dashed line separate the Ok4 into two subgroups, and the stress state 

of the subgroups Ok4a and Ok4b will be discussed in section Stress State Fig. 12.  

A, B, and C are fault map divisions based on Oklahoma structural geology map, 

and will be discussed in Figs. 14, 15. Oklahoma county boundary are after 

Oklahoma Geological Survey, 2016, County data. 

Stress-Inversion Calculations 

Friction Analysis 

Every FMS is a ‘double-couple’ with one plane of the ‘real’ fault and the second 

is the auxiliary plane. The first step in the stress-inversion with the Stress program was 

to select the more likely ‘real’ fault by using the ‘principal angle misfit’ (PAM) 

(Reches, 1990). This procedure also indicates the most suitable friction coefficient for 

the analyzed faults (Reches et al., 1992). 

Running the Stress program requires input for a friction coefficient range and 

step, mean cohesion of the fault, pore pressure, and input file. The program calculates 

the results of the entire fault set including: stress tensor; principal stress and ;  

stress ratio; friction deviation; misfit angles (mean angle between observed and 

calculated slip axis and mean angle between general and ideal principal stress axes). 

These results are calculated for one friction coefficient, and the program progresses to 

next friction coefficient. By going through different friction coefficients, the calculated 

misfit angles can be used to evaluate the best-fit friction coefficient. 

I processed the four groups for the complete range of friction coefficients with 

two different criterions. Slip misfit and Principal Axes Misfit (PAM) versus friction 
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coefficient are plotted in Fig. 8 and Fig. 9, respectively. PAM varies non-monotonically 

with friction coefficient, whereas Slip Misfit (SM) always increases with higher friction 

coefficient, thus the lowest SM is always at  =0 (Fig. 8). Fig. 9 shows that PAM 

decreases from  = 0.01 to  = 0.2, and increases for  > 0.2. Thus, I used  = 0.2 for 

all groups in the following stress inversion. 

Fig. 8. Slip misfit value versus friction coefficient for the four groups (legend). 

 

Fig. 9. Principal axes misfit versus friction coefficient for the four groups (legend). 

The lowest PAM is for =0.2. 
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Based on the second assumption of Reches (1987) stress inversion method 

discussed earlier, 

|τ| ≥ C + 𝜇 𝜎𝑛, 

I also test on the principal axes misfit change with respect to cohesion when 

friction coefficient is fixed. I chose a typical rock friction coefficient of 0.6 for 

this analysis. The result is plotted in Fig. 10 for the four different groups. The cohesion 

values are percentage of vertical stress, so the full range of cohesion here is 0-1. 

Between 0 to 0.2, the step of cohesion (C) is 0.01, which is 1% of the vertical stress.  

Fig. 10 shows that for C < 0.1 (10% of vertical stress), all four groups display a 

stable PAM, and for C > 0.1, the PAM starts to rise. This result suggests that for the 

stress inversion of the current dataset, cohesion of less than10% of vertical stress results 

in the best fit. 

Fig. 10. Principal axes misfit versus cohesion for the four groups (legend), 0.6. 

In the Stress program, at selected friction coefficients, options for further 

examinations include: examine each fault results, display misfit angles and deletion of 

faults, automatic deletion of focal-mechanisms, and saving the calculated stress tensor 
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for use in other programs. I chose to separately examine each fault’s results. Then each 

focal-mechanism event is evaluated in pairs starting with fault#1 and fault#2. I 

compared PAM and SM for the two nodal planes of each event in FMS, and selected 

the plane with smaller value of PAM as the ‘real’ fault plane that slips; the other one 

will be deleted. After selecting the whole input file, the selected faults were saved for 

the inversion. 

Stress State 

Stress State by Groups 

The Stress program calculates the best-fit stress tensor for slip along all faults in 

the group for the given friction coefficient. The stress tensor results include the 

orientations of principal stress axes and magnitude of the principal stresses, relative to 

the vertical stress. The confidence range of the axes orientations is calculated by the 

‘bootstrap method’ after Michael (1987), in which 500 iterative solutions are 

determined for the same fault set.  

The orientations of the principal stresses of the four groups (crosses in Fig. 11) 

are plotted with the confidence range as a ‘cloud’ of iterative solutions (open small 

circles in Fig. 11). Mean axes with radius of confidence are listed in Table. 2 for the 

four groups separately and the 562 events. Table. 3 has information of principal stress 

magnitudes for all groups. Stresses are given by the units of the vertical stress, 

overburden load, and are normalized by its magnitude. Negative value means 

compressive. And the vertical stress here is -100. 
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Fig. 11. Orientations of the calculated principal stress axes, σ_1, σ_2, and σ_3 are 

marked as red, green and blue circles, respectively. Mean axes are in crosses, and 

the 500 iterative solutions are in small circles of the corresponding color. 

 

 

 

 



19 

Table. 2: Mean axes (plunge/trend ±range of confidence) of the three principal 

stresses for each group and whole dataset shown in Fig. 11, 12 and 13. 

Group#  Criterion 𝝈𝟏  𝝈𝟐 𝝈𝟑 

Ok1 0.2 PAM 14°/79° ± 19° 74°/241° ± 19° 4°/348° ± 4° 

Ok2 0.2 PAM 36°/85° ± 76° 53°/268° ± 76° 2°/177° ± 8° 

Ok3 0.2 PAM 15°/90° ± 18° 74°/287° ± 18° 4°/181° ± 9° 

Ok4 0.2 PAM 67°/82° ± 18° 22°/263° ± 18° 0°/173° ± 1° 

Ok4a 0.2 PAM 56°/79° ± 53° 33°/263° ± 53° 1°/172° ± 3° 

Ok4b 0.2 PAM 26°/84° ± 44° 63°/263° ± 44° 0°/354° ± 1° 

All 0.2 PAM 38°/90° ± 29° 51°/262° ± 29° 0°/352° ± 2° 

All 0.01 SM 3°/82° ± 4° 86°/282° ± 4° 1°/172° ± 2° 

 

Table. 3. Magnitude of principal stresses for each group (values are relative to 

vertical stress, which is  -100). 

Group#  
Selection 

Criterion 

Number 

of 

Events 

Average Misfit Angle 
Magnitude of  

Stresses 

PAM SM    

Ok1 0.2 PAM 103 30.57 30.82 -109 -100 -70 

Ok2 0.2 PAM 51 17.16 17.31 -101 -100 -67 

Ok3 0.2 PAM 39 28.22 25.22 -112 -99 -72 

Ok4 0.2 PAM 369 26.57 22.12 -100 -98 -63 

Ok4a 0.2 PAM 119 25.46 21.27 -100 -97 -63 

Ok4b 0.2 PAM 250 25.89 24.63 -100 -99 -64 

All 0.2 PAM 562 26.30 24.28 -102 -99 -65 

All 0.01 SM 562 25.14 22.33 -104 -100 -67 
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Group Ok4 

Observing Fig. 7, the locations of FMS, I found that Ok4 could be subdivided 

into to Ok4a and Ok4b. The red dashed line in Fig. 7 crudely represents the Nemaha 

fault, which is a regional structure that separates these subgroups.  Ok4a is those events 

occurred on the west of Nemaha fault, and the Ok4b is to the east of the Nemaha fault. 

Stress inversion of these two groups are processed and plotted in Fig. 12 below. The 

mean axes and magnitude of three principal stress are in Table. 2 and Table. 3. 

 

Fig. 12. Orientations of the calculated principal stress axes, σ_1, σ_2, and σ_3 of 

Ok4a and Ok4b, respectively. Mean axes are in crosses, and the 500 iterative 

solutions are in small circles of the corresponding color. 

The stress state of Ok4a and Ok4b in Fig. 12 indicates that: 

a. Both Ok4a and Ok4b show an oblique strike-slip fault system. 

b. The western area of Nemaha fault (Ok4a) has stronger component of normal 

slip. 

a. Ok4a b. Ok4b 
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c. The eastern regime of Nemaha fault (Ok4b) has smaller component of normal 

slip. 

Nemaha fault separated the two groups Ok4a and Ok4b naturally. The stress state in 

two sides of Nemaha fault are slightly different. This may related to geology of Nemaha 

fault. 

Entire dataset 

Fig. 13 a, b shows the result of the stress-inversion for the whole dataset under 

SM and PAM correspondingly. The inversion results entire group of 562 FMS were 

calculated with  = 0 for the SM (Fig. 13a) and  = 0.2 for PAM (Fig. 13b). These 

solutions reveal a wide spread pattern of 𝜎 and 𝜎2, and a very focused 𝜎3for both cases, 

and the SM solution (Fig. 13a) is for pure strike-slip conditions, whereas the PAM 

solution (Fig. 13b) indicates a transition of strike-slip and normal faulting conditions. 

 

Fig. 13. Stress-inversion 500 solution of random selection for all 562 focal-

mechanisms picked with: a. lower SM under = 0.01; b. lower PAM under = 0.2. 

 

a. Okall-SM b. Okall-

PAM 
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Summary: Stress State Description 

In general, all the inversion solutions display a consistant pattern for the five year 

period of observation (Fig. 6), and the large area of earthquakes (Fig. 7). The calculated 

stress state can be summerized by the following features:  

a. The Principal Axes Misfit (PAM) results suggest a best-fit friction coefficient for 

the whole dataset is 0.2. 

b. Consitant directions throughout all groups with values of 0°/352° ±2°: narrow 

range of confidence, and 352° - 180° = 172°, which indicates that in all four 

groups are nearly the same. 

Switching between normal faulting (Ok3) and strike-slip faulting (Ok2), or 

mixed normal faulting and strike-slip faulting (Ok1 and Ok4). 

Relations between Oklahoma Faults and Recent Earthquakes 

Oklahoma Fault Systems 

In this section, I compare the in-situ stresses calculated from the FMS (Fig. 13) 

to the fault pattern of Oklahoma as compiled by Darold and Holland (2015) (Fig. 5 and 

text). For sake of comparison, the fault map was divided into three zones based on 

different geological provinces in Oklahoma and the earthquake distribution. Zone A 

includes Wichita frontal fault zones, Wichita uplift, Hollis basin, Waurika-Muenster 

uplift, Marietta basin, Ardmore basin and Arbuckle mountains (Northcutt and 

Campbell, 1995). Zone B contains Arbuckle uplift, Anadarko basin and Cherokee 

Platform (Northcutt and Campbell, 1995). Zone C has the region of Ozark Uplift, 

Arkoma basin and Ouachita mountain uplift (Northcutt and Campbell, 1995). The 
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23,665 km of cumulative fault segments (above) were divided into the A, B, and C 

zones (Fig. 14) and their strike orientations are plotted in Fig. 15. 

 

Fig. 14. Fault map in Oklahoma. Solid, blue line separate Oklahoma into three 

tectonic zones as discussed in the text. Strike distribution of the fault segments in 

zones A, B, and C is plotted via rose diagrams in Fig. 15. 

Table. 4. Total length and orientations of faults in Zone A, B, and C. 

Tectonic zones Numbers of fault 

segments 

cumulative length 

(km) 

Dominant 

trends 

A 10,087 9443.2 120° 

B 4,033 4926.9 20°, 92°, 156° 

C 12,193 9295.6 65° 
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Fig. 15. Fault strikes in Oklahoma according to zones A, B and C, left column area 

weighted, and right column are non-area weighted.  The rose diagrams are plotted 

with sector angle of 8º and they are scaled by their length and azimuth; plotted 

with GeOrient. 

Zone-B 

Zone-A 

Zone-C 
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Comparison of Oklahoma Faults Trends and the Focal-Mechanisms 

All focal-mechanism events occurred in zone B. The optimum fault strike 

selected based on principal axes misfit angle has a rose diagram as Fig. 16 showed, 8-

degree sector and length-weighted plot. 

Fig. 16 a, b, c. Comparison of fault strike rose diagram plot of all focal-

mechanisms with the historical fault traces in the three zones overlaid. All fault 

orientations plot in area weighted, length-azimuth rose diagram, sector size is 8°. In 

location map Fig. 7, nearly all FMS are located in Zone B. However, Fig. 16 shows that 

the FMS strikes share some similarities with fault orientations in Zone A instead of 

Zone B.  

 

Fig. 16. Fault strike rose diagram of FMS overlaid by different fault zones (length 

related, area weighted, 8-degree sector): a. FMS and Zone A, b. FMS and Zone B, 

c. FMS and Zone C. FMS plotted here includes total dataset, and is selected under 

0.2 based on principal axes misfit angle. 

a. FMS + Zone A b. FMS + Zone B c. FMS + Zone C 
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Chapter 4 Stress Analysis: Slip Potential on Oklahoma Faults 

Coulomb Model Setting Up 

Assumptions and Fault Conversion 

The Oklahoma earthquakes are further investigated with Coulomb3.3 software 

(see methods), and I focus on stress changes on known faults in Oklahoma by the stress 

state calculated above with the stress-inversion (Fig. 13).  

In the first step, I adopted the FMS that was used for the stress-inversion to fit 

the Coulomb program. The focal mechanisms includes the following information: 

Strike, α, Dip, θ, Latitude and longitude of the epicenter, x, y, Earthquake Magnitude, 

M, Depth of the epicenter, D. These values are also required for Coulomb3.3 input file. 

Plus, Coulomb3.3 requires rupture length, fault segment starting point (X-start, Y-start), 

fault segment finish point (X-end, Y-end), fault plane top depth h-top, and fault plane 

bottom depth h-bottom. For the fault sizes, I used the empirical equation from Wells 

and Coppersmith (1994), that correlates fault rupture area to earthquake magnitude, 

𝑀 =  4.07 +  0.98 ∗ 𝑙𝑜𝑔(𝑅𝐴) ⋯ ⋯ ⋯ 1 

where M is the earthquake moment magnitude, RA is the rupture area (Fig. 17). 
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Fig. 17: (a) Regression of rupture area on magnitude (M). Regression line shown 

for all-slip-type relationships. Short dashed line indicates 95% confidence interval. 

(b) Regression lines for strike-slip, reverse, and normal-slip relationships (Wells 

and Coppersmith, 1994). 

Thus, each focal-mechanism event is converted to a fault plane in Coulomb. A 

schematic illustration of the fault length calculation is shown in Fig. 18. Yellow star 

stands for the hypocenter, and the blue arrow indicates the fault plane strike direction. 

This figure is a fault plane view and the rupture length is represented by “L”. 

 

Fig. 18: Schematic illustration of assumed fault plane rupture area and rupture 

length calculations. 

Equation #1 is used to calculate the rupture area, A, and by assuming that the 

faults have a square rupture area, the rupture length L is  

L = √𝐴
2

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 2 

In the cross-section view, the fault plane is at the hypocenter depth D (Fig. 19). 

The Coulomb3.3 requires fault to have at least 1° dip, which means for horizontal fault 

the dip is needed to be set 1° for calculation convenience.  

 



28 

 

Fig. 19. Schematic illustration of fault top depth and fault bottom depth 

calculations. 

For fault top and bottom depth calculations, h-top is the fault top depth, and h-

bottom is the fault bottom depth. θ is the dip angle. Thus,  

ℎ𝑡𝑜𝑝 = 𝐷 − (
𝐿

2
) sin 𝜃 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 3 

ℎ𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐷 + (
𝐿

2
) sin 𝜃 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 4 

Now for the map view fault starting and fault ending points, (𝑿𝑺𝒕𝒂𝒓𝒕,  𝒀𝒔𝒕𝒂𝒓𝒕)  

and (𝑿𝒆𝒏𝒅,  𝒀𝒆𝒏𝒅)  correspondingly, the schematics and equations are as follows. Notice 

that the strike is with respect to the north, the start point and ending point are on the 

fault top. 

Fig. 20: Illustration of fault top depth and fault bottom depth calculations. 
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For Coulomb input file format convenience, the starting point and ending point 

are calculated as equations 5, 6, 7, 8. 

(𝑿𝑺𝒕𝒂𝒓𝒕,  𝒀𝒔𝒕𝒂𝒓𝒕): 

𝑿𝑺𝒕𝒂𝒓𝒕 = 𝑿 − (
𝑳

𝟐
𝒔𝒊𝒏𝜶 −

𝑳

𝟐
𝒄𝒐𝒔𝜽𝒄𝒐𝒔𝜶) ⋯ 5 

𝒀𝒔𝒕𝒂𝒓𝒕 = 𝐘 − (
𝑳

𝟐
𝒄𝒐𝒔𝜽𝒔𝒊𝒏𝜶 +

𝑳

𝟐
𝒄𝒐𝒔𝜶) ⋯ 6 

(𝑿𝒆𝒏𝒅,  𝒀𝒆𝒏𝒅) :  

𝑿𝒆𝒏𝒅 = 𝑿 + (
𝑳

𝟐
𝒄𝒐𝒔𝜽𝒄𝒐𝒔𝜶 +

𝑳

𝟐
𝒔𝒊𝒏𝜶) ⋯ 7  

𝐘𝒆𝒏𝒅 = 𝐘 − (
𝑳

𝟐
𝒄𝒐𝒔𝜽𝒔𝒊𝒏𝜶 −

𝑳

𝟐
𝒄𝒐𝒔𝜶) ⋯ 8 

With the above calculations, I created a full receiver faults input file for the 

focal-mechanisms data set (Fig. 21). 

Fig. 21. A 3D view of the model setting up. The green rhombus represents the 

ground surface; the blue rhombus is the underground fault surfaces calculated 

based on earthquake magnitude. Hypocenter and epicenter are marked as stars. 
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The Stress Field of Oklahoma 

The above stress-inversion of FMS in Oklahoma revealed relatively uniform 

stress state in both time and space (Fig. 11, 13). An efficient way to generate a uniform 

stress field in Coulomb program is to define a source fault, which is a virtual, large fault 

that generates a uniform stress state in the area of interest. The rake of the source strike-

slip fault plane follows Coulomb’s convention, schematics is shown in Fig. 22 (Toda, et 

al., 2011). Rake is the angle measured in the plane of the fault between the reference 

strike (right-hand rule) and the slip vector (Cronin, 2010). In order to generate 

maximum shortening direction of 80° from north clockwise, the source strike-slip fault 

has a right-lateral motion, thus the rake of which is 180°. 

 

Fig. 22. Convention for resolving stress and for focal-mechanisms (Toda, et al., 

2011). 

Fig. 23 shows the schematic illustration of source strike-slip fault and the σ_1 

directions generated by the source. The source strike-slip fault with a right-lateral 

motion in the strike of 125° in a purple line. Blue arrows show the maximum 

compressional stress direction. The strike of the testing point is perpendicular to the 

maximum shortening direction and it is marked in green line. 
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Fig. 23. Schematic illustration of the source strike-slip fault and the maximum 

compression direction. 

After many trial-and-error attempts for a uniform stress field, I selected a source 

fault that strikes 125°, it is 10,000 km long and 5,000 km deep with net right-lateral 

strike-slip displacement of 100 m. This strike-slip fault generates a uniform stress field 

in Oklahoma with HMAX axis in azimuth 80°. The stress changes due to this source 

fault were calculated at a point in the area of the FMS (Fig. 24), for seven receiver 

faults (Table 5). The source fault is plotted at the SW part of the map. 

Table. 5. Testing point stress change with different orientations 

Testing Point Location Receiver Slip (degree) Stress Change (bars) 

X (km) Y (km) Z (km) Strike Slip Rake Shear Normal Coulomb 

100 0 5 0 90 180 1.078 -3.324 0.414 

100 0 5 45 90 180 3.278 1.033 3.484 

100 0 5 90 90 180 -1.078 3.232 -0.432 

100 0 5 135 90 180 -3.278 -1.124 -3.503 

100 0 5 160 90 180 -1.281 -3.250 -1.931 

100 0 5 170 90 180 -0.108 -3.495 -0.807 

100 0 5 180 90 180 1.078 -3.324 0.414 



32 

The map in coordinates are altered by Coulomb3.3, and the latitude and 

longitude of the point (0,0) in the map is (35.5 N, 98W). With the change of difference 

source strike-slip fault strikes, the testing point responses with different stress changes. 

The source strike-slip fault that gives a maximum shortening direction of 80°from north 

clockwise are determined, and its strike is 125° from north, clockwise. 

 

Fig. 24. Testing point location plot in study area at Coulomb3.3 software. The 

source strike-slip fault is on the bottom left and the testing point is marked in blue 

circle. 

Result of Coulomb3.3 Calculations 

Coulomb Stress Change, CFF  

I derived above a uniform stress state from the stress-inversion (section ‘The 

stress field in Oklahoma’), and found an effective way to apply this uniform stress on 

the region of earthquakes in Oklahoma (Fig. 23). Now, I use these results to calculate 

the change of Coulomb Failure Function, CFF, on the 562 faults for which focal-
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mechanism was determined. These faults are regarded as receiver faults, and I 

calculated CFF for three options: right-lateral slip, reverse slip and normal faulting. 

The first calculations is CFF for right-lateral slip (Fig. 25) and zoomed-in view 

for the Prague earthquake area (Fig. 26). The color bar here, from cold color to warm 

color, indicates the negative to positive stress change on individual faults. The warmer 

the color bars, the higher possibility of right-lateral slip, and vice versa. In Fig. 26, of 

Prague area, the faults that strike NE-SW have increasing possibility for right-lateral 

slip, showing an orange warm color. Whereas the faults that have NW-SE strikes have 

high possibility for left-lateral slip, showing with blue toned color. The detailed output 

results are saved as ‘element conditions.csv’ which will be used later. 

 

Fig. 25. Coulomb stress change for right-lateral slip on receiver faults. The color 

bar here, from cold color to warm color, indicates the negative to positive stress 

change on individual faults. The warmer the color bars, the higher possibility of 

right-lateral slip, and vice versa. Red box is the zoomed in location of Fig. 26. 
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Fig. 26. Zoomed-in view of Coulomb stress change for right-lateral slip at Prague. 

The second case includes CFF calculations for reverse slip (Fig.  27) with 

zoomed-in view of the Prague area (Fig. 28). 

 

Fig. 27. Coulomb stress change for reverse slip on receiver faults. 
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In Fig. 28, the faults that strike NE-SW slightly negative to zero CFF, meaning 

the stress field strike-slip will slightly suppress to reverse slip. Noticeably, the faults 

that strike NW-SE have positive stress change on reverse slip, appearing in yellow 

color.  

 

Fig. 28. Zoomed-in view of Coulomb stress change for reverse slip at Prague. 

The third part of CFF calculations is the normal stress change on faults. Fig. 29 

and 30 are the output map. In the zoomed-in map of Fig. 30, the large NE-SW fault in 

Prague area has positive CFF, representing that this fault has an increased possibility 

of clamping under the stress from source strike-slip fault. On the opposite, the NW-SE 

fault is blue toned, meaning the stress field suppresses this fault to clamp.  
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Fig. 29. Normal stress change on receiver faults. 

 

Fig. 30. Zoomed-in view of normal stress change on the faults at Prague area. 
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Synthesis of Coulomb 3.3 Calculations 

The output file ‘element condition.csv’ provides the info on the change of 

Coulomb failure function that was presented in Figs. 25-30 above. From this file, I 

plotted frequency histograms (Fig. 31) of CFF for the three cases: right-lateral slip, 

reverse slip, and normal slip.  

 

Fig. 31. Coulomb stress change on faults results: a. Histogram of Coulomb stress 

change on faults of right-lateral slip. b. Histogram of Coulomb stress change of 

reverse slip on faults. c. Normal stress change on faults histogram. Red circles in 

Fig. 31a are the peaks of Coulomb stress change on right-lateral slip, and peak of 

normal stress change in Fig. 31c. 
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Fig. 31a (right-lateral) displays two peaks that correspond to the two portions in 

the rose diagram of FMS results in Fig. 16. The NE-SW faults have an increasing 

possibility for right-lateral slip, and they are shown as the right peak in Fig. 31a. The 

NW-SE faults are more likely to have left-lateral slip, which are shown as the left peak 

of Fig. 31a. Fig. 31b (reverse slip) displays one around zero that indicates little 

tendency of reverse slip. Fig. 31c (normal slip) also shows one peak, but it is wider, 

CFF = -4 to CFF = 5, indicating favorable conditions for normal faulting on some of 

the faults. This pattern corresponds to the stress-inversion results (Fig. 11) that some 

faults have normal motions. 

The Red circles marked in Fig. 31 a left peak, right peak and Fig. 31c are those 

faults that have increasing tendency of left-lateral slip, right-lateral slip and unclamping. 

The locations of these events are plotted in Fig. 32 a, b, c with faults strike rose 

diagrams.  

 

Fig. 32a. Locations of the faults that have increasing possibility of right-lateral slip. 

Rose diagram of these faults strikes are plotted. Fault locations are marked in blue 

open circles. 
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Fig. 32b. Locations of the faults that have increasing possibility of left-lateral slip. 

Rose diagram of these faults strikes are plotted. Fault locations are marked in 

orange open circles. 

 

Fig. 32c. Locations of the faults that have increasing possibility of unclamping. 

Rose diagram of these faults strikes are plotted. Fault locations are marked in 

green open circles. 

Fig. 32 a, b, c indicated that the faults that have increasing possibility of right-

lateral slip, left-lateral slip, and unclamping are widely spread, without clear regional 
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clustering. The rose diagrams of these faults indicate that the faults that have NE-SW 

have more likely to have right-lateral slip. Faults that have strike 115°, 145° tend to 

have left-lateral slip, and faults that have 55° and 110° are more likely to unclamp. 

These results are also shown by zoomed-in area of Prague in Figs. 26, 28, 30. 



41 

Summary and Conclusions 

The present analysis focuses on the in-situ stress field in Oklahoma. It is based 

on stress-inversion (Reches, 1987) of focal-mechanism solutions (FMS) from January 

2010 to February 2015. The stress-inversion program, Stress, allows the best fit friction 

coefficient to be calculated, and to separate between the ‘real’ and ‘auxiliary’ planes in 

the double-couple of a focal solution.  

The present stress-inversion calculations for Oklahoma FMS indicate: 

1. The effective friction coefficient for this dataset is  = 0.2 (Fig. 9). It should 

noted that pore-pressure cannot be independently determined in the stress 

program, and thus, the low friction coefficient may indicate elevated pore-

pressure.  

2. Most of FMS indicate oblique strike-slip faults and normal components, with two 

dominant strike directions: NE-SW (40°—220°) and NW-SE (128°—308°) (Fig. 

16). 

3. The calculated in-situ stresses appears stable over the observation period (five 

years) and for the entire area of activity (~ 200 x 200 km) (Figs. 6, 7, 11). 

4. The maximum horizontal extension is strongly bounded to hmin = 350°-360°; 

most solutions indicate strike-slip relations of HMAX > vertical; fewer solution 

indicate transition between strike-slip and normal faulting, namely HMAX ~ 

vertical (Figs. 11, 12). 

5. To apply the in-situ stress results to Oklahoma fault system, the fault map was 

divided into three zones based on the tectonic style (Fig. 13). The recent 

earthquakes, in general, and the earthquakes with FMS, in particular, are almost 
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exclusively in Zone B, which is in the north-center part of Oklahoma (Fig. 7). 

However, the trends of the FMS faults display good agreement with the trends of 

faults in Zone A, partly in Zone C, and poor agreement with fault trends of zone 

B (Fig. 16b). Many of the faults in Zones A and C are basement controlled, and 

thus it appears that the earthquakes occurred along reactivated basement faults 

(Fig. 16 a, c). 

In a reverse process of the stress-inversion, I used the Coulomb3.3 program for 

forward calculations of the stress conditions on Oklahoma faults. A very long, right-

lateral strike-slip fault was used to generate a uniform stress field in Oklahoma (Figs. 

23, 24), and all FMS faults were converted to receiver faults with sizes according to the 

seismic magnitude (Fig. 17). The program calculates the Coulomb stress change 

parameter, CFF, that indicates the likelihood for slip along the focal-mechanism fault 

due to the regional stress. The calculations show: 

1. An increase of CFF (tendency to slip increase) for right-lateral slip along faults 

that trend NE-SW, and for left-lateral slip along faults that trend NW-SE (Figs. 

25, 26). 

2. Majority of faults are not likely to have reverse slip, whereas many of them are 

likely to slip as normal faults (Figs. 27, 28, 29, 30).  

3. These results are consistent with the stress-inversion results, as expected. 
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