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Abstract 

Preparedness planning for critical infrastructure networks requires evaluating the impact to 

the network when its components are disrupted. We extend the well-studied problem of 

component importance measures in single-commodity networks to multi-commodity 

networks by integrating a multi-commodity optimization model with a multi-criteria 

decision analysis tool to evaluate the impact of one-at-a-time component disruptions. We 

analyze commodity-specific impacts on network performance of a Swedish railway system 

application to rank critical links. 
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Chapter 1.0 Introduction 

Critical infrastructure systems such as telecommunications, energy, water, and 

transportation provide essential services to society. With the advancements in technology, 

these services are becoming increasingly interdependent and create cascading impacts 

across systems when disrupted [54]. Disruptions can be caused by natural disasters, 

accidents, worker strikes, terrorist attacks and can cascade across infrastructures, modes, 

and regions [45]. The impact of disruptions can be reflected in the cost of recovery and/or 

the cost of delays such as Hurricane Sandy which cost over $117 million in debris cleanup 

or the I-35 W bridge collapse over the Mississippi River which cost an estimated $400,000 

per day due to rerouting delays [41, 63]. There is an increasing interest in research and 

policy “to strengthen and maintain secure, functioning, and resilient critical infrastructure” 

[49] with multiple stakeholders and limited ability to adapt to rapidly changing risks [13]. In 

particular, the continuity of the transportation system is critical for the sustainment of 

other infrastructure systems and remains especially vulnerable to disruptions due to aging 

infrastructure [5, 45]. 

Transportation infrastructure is considered vital and fundamental to the United 

States’ economy for the flow of goods through complex multi-modal networks of over 

four million miles of highway, 138,500 miles of rail, 11,000 miles of waterway, and an 

integrated network of airports [62]. In 2013, the U.S. moved a daily average of 55 million 

tons of freight valued at more than $49 million with trucks carrying the majority of the 

weight and value of freight [62]. With 42% of major urban highways congested and costing 

annually over $101 billion in wasted time and fuel, railway networks have experienced a 

resurgence as an energy-efficient alternative with over $75 billion invested in capital to 

reinforce the infrastructure since 2009 [5]. Recent interest in increasing resilience of critical 
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infrastructure systems such as the rail network involves more than the current “patch and 

repair” mindset to maintenance and requires an understanding of the risks associated with 

disruptions and identifying vulnerabilities within a network [45]. With the renewed 

investment in rail networks, there is a need to increase the performance of the network for 

immediate gains in operational efficiency and to increase the infrastructure resilience for 

sustained long-term performance. 

1.1 Network Vulnerability 

In literature, there are many definitions for resilience and we define it here in two 

dimensions: vulnerability and recoverability as shown in Figure 1 adapted from Henry and 

Ramirez-Marquez [23]. Vulnerability describes the system’s ability to mitigate impacts of a 

disruption and recoverability describes the system’s ability to recover timely from a 

disrupted state [23, 24, 52]. In transportation, network vulnerability describes how 

disruptions reduce accessibility of network components which results in decreased system 

performance [7, 11]. A network is generally described as a set of nodes connected by a 

series of links. Network component vulnerability can be classified by either node 

vulnerability, the criticality of a node in system performance, or link vulnerability, reduction 

in system capability after selective link deletion [48]. We focus here on the vulnerability of a 

network defined by the magnitude of damage in system performance (i.e. change in 

commodity flow) when critical components, more specifically links, are disrupted [32]. 

Identifying critical links that have the largest impact on network performance will allow for 

a targeted resource allocation to the links that make the network most vulnerable to 

decreased system performance after a disruption. 
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Figure 1. System Performance, 𝜑(𝑡), over time adapted from Henry and Ramirez-Marquez [23]. 

 

There are three general approaches to evaluate network vulnerability: scenario-

specific assessment, strategy-specific assessment, and mathematical modeling [43]. 

Scenario-specific assessments evaluate the impact of a losing a specific network component 

and its impact on network performance and is useful when applying relatively complex 

analytical approaches per scenario (e.g. [27, 36, 55]). Strategy-specific assessments evaluate 

network performance under a hypothesized sequence or strategy of disruption such as 

random link removal and is beneficial when assessing different network configurations to 

identical attack strategies for a comparison of effectiveness (e.g. [16, 31, 33]). Finally, 

mathematical modeling seeks to identify scenarios that have the greatest impact on network 

performance through simulation and establishes bounds on infrastructure vulnerability of 

the system (e.g. [20, 28, 59]). This work will focus on scenario-specific disruptions to 

identify critical links in a network by evaluating network performance when one link at a 

time is removed from the network for every link in the network. 

When evaluating system performance, research generally classifies network 

component vulnerability measures as either graph theoretic measures known as structural 

vulnerability [31, 32] or flow-based measures known as functional vulnerability [51]. Graph 
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theoretic measures are physical characteristics of the network such as average shortest 

distance, average edge betweenness, closeness centrality, etc., and is a well-studied area of 

research [15, 30, 60, 61]. Alternatively, evaluating network vulnerability from a functional 

vulnerability approach is a relatively new area of research that describes network 

vulnerability with respect to network flow such as the N-Q network 

performance/efficiency measure, flow capacity rate, edge flow centrality, etc. [44, 47]. 

 Recent work on network vulnerability evaluates flow-based importance measures 

(IMs) by combining scenario-specific and strategy-specific disruption approaches to rank 

critical components of a network [6, 47]. When ranking critical components, IMs provide 

valuable information to decision makers such as identifying bottle necks or rerouting 

alternatives [12, 26]. Because each IM provides different information that can result in 

unique component rankings, there is a challenge for decision makers to use this 

information effectively. Hence, research in flow-based IMs has been expanded to integrate 

multiple-flow based measures with multi-criteria decision analysis tools such as TOPSIS or 

PROMEETHEE to provide a comprehensive ranking of critical components of a network 

based on multiple IMs [3, 4, 14]. However, to the authors’ knowledge, no research has 

been found that integrates multi-commodity flow networks with flow based component 

importance measures. 

1.2 Research Focus 

In transportation, multiple types of goods are moved throughout the network and 

represent multiple stakeholders attempting to satisfy commodity-specific demand through 

a capacitated network. The added complexity of a multi-commodity flow might identify 

network components that are more important to specific commodities rather than looking 

at a single-commodity flow alone. We seek to answer: What links or group of links of a 
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transportation network have the most impact on system performance from a multi-

commodity flow perspective? Considering a multi-commodity flow in transportation 

networks is appropriate because of the regionalization of commodities based on historical 

movement of goods through a network and the difference in value each commodity might 

have to the decision maker. This research addresses (i) measuring multi-commodity 

vulnerability from a flow-based network performance approach, and (ii) using this multi-

commodity vulnerability to rank critical links in a network that provides more holistic 

information than a single commodity flow approach.  

This work expands on previous research on network vulnerability and flow-based 

link importance measures and is applied to a multi-commodity network flow optimization 

model. Given a set supply and demand in a deterministic capacitated network, a multi-

commodity network is optimized to minimize total unmet demand. We evaluate network 

vulnerability by applying a one-link-at-a-time interdiction strategy and measure the drop in 

performance from a flow-based approach of each commodity moving through the network 

per scenario. This will result in system impacts per commodity of each link in the network 

that is then integrated with a multi-criteria decision analysis tool (TOPSIS) to consolidate 

multiple commodity-specific impacts into a single ranking that incorporates decision maker 

criteria and commodity-specific performance. This ranking of critical links would provide a 

different perspective of network vulnerability than analyzing total commodity movement 

alone. 

This paper is arranged as follows. Chapter 2 gives brief definitions and notations, 

an overview of the multi-commodity network flow optimization framework, the network 

vulnerability performance measures, and an introduction to the multi-criteria decision 

analysis approach, TOPSIS, applied in this paper. The chapter concludes with the 
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integrated framework of the multi-criteria decision analysis tool with the network 

vulnerability measures evaluated from the specific interdiction strategy applied to the multi-

commodity optimization model. In Chapter 3, an illustrative example is presented of the 

Swedish railway system provided from publicly available data in collaboration with Lund 

University, Sweden and includes an overview of the data manipulation and key 

assumptions. The analysis is presented in Chapter 4 of the research methodology discussed 

in Chapter 2 applied to the network presented in Chapter 3.  Chapter 5 provides 

concluding remarks and areas for future research. 



7 

Chapter 2.0 Research Methodology 

This chapter describes the methodology used to define the multi-commodity network flow 

model, interdiction strategy, decision analysis method, and concludes with the integrated 

framework approach proposed in this paper. 

2.1 Multi-Commodity Network Flow 

Multi-commodity network flow models are used to solve various types of problems in 

transportation, supply chain, disaster relief, communication etc. with algorithmic study 

dating back to the 1970’s. The model used in this paper is adapted from the equal-flow 

problem in which the flows through a given set of arcs are required to take equal values [9, 

19, 38]. The equal-flow problem is a subset of the traditional multi-commodity network flow 

problem that seeks to minimize cost while satisfying demand [1]. The classic minimum-cost 

multi-commodity flow optimization (MCMF) framework has been modified in this paper to relax 

the constraint that all demand must be met and to remove the cost criteria from the 

objective function in order to adapt the model to an interdiction process discussed later in 

this chapter. With the original MCMF model, the model would be considered infeasible if 

demand is not fully met, so the constraint has been relaxed and transformed to the 

objective function that replaces cost criteria. This reflects a shift in model objective from 

an assumption that demand is always met with a minimal cost objective to a model where 

the goal is to meet demand, ignoring cost. The main goal of the multi-commodity network 

flow model in this paper is reduced to demand feasibility that seeks to measure how well 

the model responds to link closures in effectively rerouting data [12]. 

We begin with a directed graph denoted by 𝐺 = (𝑉, 𝐸) where 𝑉 is a set of 𝑛 

vertices or nodes and 𝐸 ⊂ {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} is a set of 𝑚 directed links or arcs as 

shown in Figure 2. 
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Figure 2. Example of directed graph 𝐺 = (𝑉, 𝐸) with 𝑎𝑟𝑐(𝑖, 𝑗) linking node 𝑖 to node 𝑗. 

 

Let there be 𝐾 types of commodities, labeled by k = 1, … , 𝐾 and for each arc (𝑖, 𝑗), let the 

overall capacity per link be denoted by 𝑐𝑖𝑗 or 𝑐(𝑖, 𝑗) and the commodity-specific capacity 

per link be denoted by 𝑐𝑖𝑗
𝑘 =  𝑐𝑖𝑗

1 , … , 𝑐𝑖𝑗
𝐾 or 𝑐𝑘(𝑖, 𝑗). We assume that commodity 𝑘 is 

located at 𝑠𝑘 different nodes within 𝑺𝑘 indexed by 𝑠𝑘 =  𝑖1
𝑘, … , 𝑖𝑺𝑘

𝑘 , with amount of supply 

𝜆𝑖𝑛
𝑘  at node 𝑖𝑛

𝑘. The demand for commodity 𝑘 is represented by 𝑑𝑘 different nodes within 

𝑫𝑘 indexed by 𝑑𝑘 =  𝑗1
𝑘, … , 𝑗𝑫𝑘

𝑘 , with amount of demand 𝜇𝑗𝑛
𝑘  at node 𝑗𝑛

𝑘. A graphical 

representation of a two-commodity network with capacity, supply, and demand is shown 

below in Figure 3. From the figure, it can be seen that each node can be a sink for one type 

of commodity and a source for another, but not both a sink and source for the same 

commodity 𝑘. 

 
Figure 3. Two-commodity network example with each commodity shown separately (right, left) with 𝑠𝑘 

supply nodes and 𝑑𝑘 demand nodes each with 𝜆𝑖 supply amount and 𝜇𝑗 demand amount. Each link (𝑖, 𝑗) has 

link capacity, 𝑐𝑖𝑗 , and commodity-specific link capacity, 𝑐𝑖𝑗
𝑘 . 
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To simplify the model, “supersource” and “supersink” nodes are introduced to 

separate the multiple sources and sinks for each commodity from the network [1, 38]. This 

reduces the multiple origins 𝑺𝑘 and multiple destinations 𝑫𝑘 into single origin 𝑆𝑘 and 

single destination 𝐷𝑘 nodes for each commodity 𝑘. The new “supersource” 𝑆𝑘 and 

“supersink” 𝐷𝑘 are connected only to the nodes in 𝑺𝑘 and 𝑫𝑘 with the following capacity 

parameters: 

 𝑐(𝑆𝑘, 𝑖𝑛
𝑘) =  𝑐𝑘(𝑆𝑘, 𝑖𝑛

𝑘) =  𝜆𝑖𝑛
𝑘 , 𝑐(𝑖𝑛

𝑘, 𝑆𝑘) =  𝑐𝑘(𝑖𝑛
𝑘, 𝑆𝑘) =  0, ∀ 𝑖𝑛

𝑘 ∈ 𝑺𝑘 

𝑐(𝑗𝑛
𝑘, 𝐷𝑘) =  𝑐𝑘(𝑗𝑛

𝑘, 𝐷𝑘) =  𝜇𝑗𝑛
𝑘 , 𝑐(𝐷𝑘, 𝑗𝑛

𝑘) = 𝑐𝑘(𝐷𝑘, 𝑗𝑛
𝑘) =  0, ∀ 𝑗𝑛

𝑘 ∈ 𝑻𝑘 

( 1 ) 

( 2 ) 

 

From above, the first assignment in Eq. ( 1 ) sets the capacity parameters, 𝑐𝑖𝑗 and  𝑐𝑖𝑗
𝑘 ,  for 

each newly added link from the “supersource” nodes 𝑆𝑘 to each node 𝑖𝑛
𝑘 of 𝑺𝑘 equal to the 

supply, 𝜆𝑖𝑛
𝑘 . The second assignment in Eq. ( 1 ) ensures that there is no flow into node 𝑆𝑘 

and sets the capacity, 𝑐𝑖𝑗 and 𝑐𝑖𝑗
𝑘 , for each newly added link from each node in 𝑖𝑛

𝑘 of 𝑺𝑘 to 

zero. For Eq. ( 2 ), the reverse is applied to the “supersource” nodes 𝐷𝑘 to ensure no there 

is no flow exiting demand node 𝐷𝑘, and the capacity entering the demand node 𝐷𝑘 from 

𝑗𝑛
𝑘 of 𝑫𝑘 is equal to the demand amount, 𝜇𝑗𝑛

𝑘 . An example of the enlarged network 𝐺𝐸 =

(𝑉𝐸, 𝐸𝐸) is shown in Figure 4. 

 
Figure 4. Enlarged two-commodity network with “supersource” nodes 𝑆𝑘 and “supersink” nodes 𝐷𝑘added 

per commodity 𝑘 to the network and links (dashed) added for each node within 𝑺𝑘 and 𝑫𝑘 . 
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2.2 Optimization Model 

The following section describes the linear programming model modified from the classic 

MCMF problem discussed earlier in the section and breaks down the model components 

into the decision variables, objective, and constraints. 

2.2.1 Decision Variables and Objective 

Once the network has been enlarged, the multi-commodity optimization model can be 

formulated as a linear programming problem with the decision variable 𝑥𝑘(𝑖, 𝑗) as the flow 

of commodity 𝑘 from node 𝑖 to node 𝑗 of the enlarged network 𝐺𝐸. The objective is to 

minimize the sum of total unmet demand percentage per commodity 𝑘 as shown below in 

Eq. ( 3 ) : 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:, ∑
∑ 𝜇𝑗𝑛

𝑘
𝑫𝑘

𝑗𝑛
𝑘 − ∑ 𝑥𝑘(𝑗, 𝐷𝑘)𝑫𝑘

𝑗𝑛
𝑘

∑ 𝜇𝑗𝑛
𝑘

𝑫𝑘

𝑗𝑛
𝑘𝑘

 
( 3 ) 

 

To calculate the unmet demand percentage per commodity 𝑘, the demand amount, 𝜇𝑗𝑛
𝑘 , for 

all demand nodes 𝑗𝑛
𝑘 of 𝑫𝑘 is summed to give total demand for commodity 𝑘. This total is 

then subtracted from the total flow, 𝑥𝑘(𝑖, 𝑗), flowing from nodes 𝑗𝑛
𝑘 of 𝑫𝑘 into the 

demand “supersink” 𝐷𝑘 to give the unmet demand for commodity 𝑘. The percentage is 

then calculated from dividing the unmet demand by the total demand per commodity 𝑘. 

Finally, the unmet demand percentage calculated for each commodity 𝑘 is then summed 

across 𝑘 and minimized per the model objective. 

2.2.2 Model Constraints 

The last component of the model seeks to minimize the objective equation by 

modifying the decision variables and is subject to the following constraints: 
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𝑥𝑘(𝑖, 𝑗) ≤ 𝑐𝑘(𝑖, 𝑗), ∀ 𝑖, 𝑗, 𝑘 

∑ 𝑥𝑘(𝑖, 𝑗)

𝑘

≤  𝑐(𝑖, 𝑗), ∀  𝑖, 𝑗 

( 4 ) 

( 5 ) 

 
Shown above, Eqs. ( 4 )-( 5 ) shown above ensure that the commodity-specific link capacity 

and overall link capacity constraints are met. The constraint shown below in Eq. ( 6 ) is to 

balance the flow across the network and ensure that the flow into node 𝑖 equals the flow 

out of node 𝑖 for all nodes 𝑖 in 𝑉. The index selection, 𝑗: (𝑗, 𝑖), used below would select all 

links (𝑗, 𝑖) that flow into node 𝑖 to represent all inflow while 𝑗: (𝑖, 𝑗) represents the 

outflowing links (𝑖, 𝑗) and is applied for every 𝑘 commodity. 

 ∑ 𝑥𝑘(𝑗, 𝑖)

𝑗

𝑗:(𝑗,𝑖)

= ∑ 𝑥𝑘(𝑖, 𝑗)

𝑗

𝑗:(𝑖,𝑗)

, ∀ 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 
( 6 ) 

 
The next constraints shown below in Eqs. ( 7 )( 8 ) deal with all links leading to and from 

the “supersource” nodes 𝑆𝑘 and “supersink” nodes 𝐷𝑘. For all commodities 𝑘, all flow, 

𝑥𝑘(𝑖, 𝑗), out of 𝑆𝑘 nodes and all flow, 𝑥𝑘(𝑖, 𝑗), into 𝐷𝑘 nodes must be less than the supply 

amount 𝜆𝑖𝑛
𝑘  and demand amount 𝜇𝑗𝑛

𝑘 , respectively. Alternatively, all flow into supply nodes 

𝑆𝑘 and out of demand nodes 𝐷𝑘 must equal zero. 

 

∑ 𝑥𝑘(𝑗, 𝑖)

𝑗

𝑗:(𝑗,𝑖)

≤ 𝜆𝑖𝑛
𝑘  , ∑ 𝑥𝑘(𝑖, 𝑗)

𝑗

𝑗:(𝑖,𝑗)

= 0, 𝑖 = 𝑆𝑘, ∀ 𝑘 

∑ 𝑥𝑘(𝑖, 𝑗)

𝑖

𝑖:(𝑖,𝑗)

≤  𝜇𝑗𝑛
𝑘 , ∑ 𝑥𝑘(𝑗, 𝑖)

𝑖

𝑖:(𝑗,𝑖)

=  0, 𝑗 = 𝐷𝑘 , ∀ 𝑘 

( 7 ) 

 

( 8 ) 

 
Finally, the last key constraint made in the multi-commodity network flow optimization 

model is that 𝑥𝑘(𝑖, 𝑗) ≥ 0, and must be integer values only. By restricting the decision 

variables solution space to integer values only, the computation time to solve large 

networks is greatly reduced. In order to solve multi-commodity network flow models, 
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Gurobi optimization software has been used to efficiently solve integer multi-commodity 

flow problems with a built-in solver to detect the most efficient algorithm based on the 

problem structure [21]. In this instance, the dual simplex algorithm, for full details see [53], 

was detected to be the most efficient algorithm for this problem structure and was used to 

solve the given problem application which is discussed later in Chapter 3, for further details 

see Appendix A.2.  

2.3 Network Interdiction Approach 

In this section, two main components of the network interdiction approach used in this 

paper are defined: disruption scenarios and system performance metrics. 

2.3.1 Disruption Scenario 

Network interdiction is a common evaluation method for network vulnerability analysis of 

network-based critical infrastructure such as transportation or telecommunications. There 

are different approaches to network interdiction and they generally fall into three 

categories: scenario-specific, strategy specific, and mathematical modeling. We focus here 

on scenario-specific assessment of vulnerability which seeks to measure impacts of a 

specific set of disruption scenarios to identify the subset of disruption scenarios that result 

in the most damage to the network. The results of scenario-specific assessments depend 

greatly on the defined disruption scenarios and the selected system performance measures. 

Generally, disruption scenarios describe the set of network components impacted, the 

decreased functionality of the disrupted components, and the baseline operating conditions 

prior to disruption. Link disruption can be reflected as either completely obstructed, similar 

to a road closure, or only partially disrupted such as an accident blocking a single lane of 

the interstate. Once disruption scenarios are defined, impacts can be evaluated and 

compared between disruption scenarios. Decision makers concerned with network 
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vulnerability are usually interested in identifying network components that result in the 

most damage to network performance which makes scenarios-specific disruptions ideal for 

identifying critical network components [43]. 

In this paper, we define a disruptive scenario as the removal of a particular link 

between nodes 𝑖 and 𝑗 that leads to a decreased network accessibility and performance. 

Once a link is disrupted, the model has two options: reroute the flow of goods through the 

remaining capacity of the network or hold freight until the link is restored. Based on the 

model objectives discussed previously, the model will always seek to reroute instead of 

holding until the link is restored. When the disruption scenario is applied to a directed 

graph 𝐺𝐸 = (𝐸𝐸, 𝑉𝐸) of an enlarged multi-commodity network outlined earlier, a 

removed link (𝑖, 𝑗) would impact the flow for all 𝑘 commodities across 𝑥′(𝑖, 𝑗) and 𝑥′(𝑗, 𝑖) 

which would result in the following constraint being added to the previously defined model 

shown below in Eq. ( 9 ): 

 𝑥𝑖𝑗
′𝑘 = 𝑥𝑗𝑖

′𝑘 = 0, ∀ 𝑘 ∈ 𝐾 ( 9 ) 

 

Eq. ( 9 ) ensures no flow is allowed between node 𝑖 and node 𝑗 of the disrupted links, 

(𝑖, 𝑗). By defining each disruption scenario as a one-at-a-time link removal strategy, the 

most critical links can be identified from the set of all possible links in the network. This 

does not include the links added in the enlarged network 𝐺𝐸 = (𝐸𝐸, 𝑉𝐸), but the set of 

the original links in 𝐸.  

2.3.2 System Performance 

Once the disruption scenarios are defined, system performance metrics are selected to 

reflect network vulnerability. These component importance measures are calculated for 

each disruption scenario and are the basis for identifying critical links. This work builds 
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upon recent research by selecting network performance measures rather than graph 

theoretic measures and expands to a multi-commodity perspective [3, 47]. Two component 

importance measures, change in unmet demand percentage and link usage count > 90%, 

are selected and defined below in Eqs. ( 10 )( 11 ): 

 

∑ 𝜇𝑗𝑛
𝑘

𝑫𝑘

𝑗𝑛
𝑘 −  ∑ 𝑥𝑘(𝑗, 𝐷𝑘)𝑫𝑘

𝑗𝑛
𝑘

∑ 𝜇𝑗𝑛
𝑘

𝑫𝑘

𝑗𝑛
𝑘

, ∀ 𝑘 

∑
𝑥𝑘(𝑖, 𝑗)

𝑐𝑘(𝑖, 𝑗)
≥ 90% = 1,  𝑒𝑙𝑠𝑒 0

𝑉

(𝑖,𝑗)

 

( 10 ) 

( 11 ) 

 

Unmet demand percentage per commodity 𝑘 is the first component importance 

measure selected as shown above in Eq. ( 10 ) and reflects the network’s ability to reroute 

data once a link is disrupted as shown in the first equation above. This importance measure 

is represented as a percentage of total demand per commodity 𝑘, so that each commodity 

is treated equally, regardless of commodity volume in the network. The second importance 

measure, link usage count > 90%, is shown in Eq. ( 11 ) and indicates how likely a 

removed link is to create bottlenecks. For every link in the network, the link usage 

percentage is calculated by dividing the flow, 𝑥𝑘(𝑖, 𝑗), by the commodity-specific capacity, 

𝑐𝑘(𝑖, 𝑗). If the link usage is greater than 90%, it is considered a potential bottleneck for that 

specific commodity and is given a count of 1, otherwise 0. The link usage count is then 

calculated by counting all edges in the network with link usage greater than 90% for each 

commodity 𝑘. Each importance measure provides different information about the network 

and are both used in the vulnerability analysis. 

Applying the one-link-at-a-time removal strategy results in component importance 

measures for each link removed. In order to evaluate critical links, the component 

importance measurements from the interdiction process must be compared to the baseline 
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optimization flow system performance. This is to ensure that the impact from the link 

removal is fully captured and does not include baseline performance results. The two 

baseline component importance metrics, unmet demand percentage and link usage count, 

𝑢𝑘
𝑏 and 𝑙𝑘

𝑏 per commodity 𝑘 are subtracted from the interdiction impacts,  𝑢𝑘
′  and 𝑙𝑘

′  , to 

reflect net change ∆𝑢𝑘and ∆𝑙𝑘 for every link (𝑖, 𝑗) in 𝐸 disrupted as shown below in Eqs.   

( 12 )( 13 ): 

 
∆𝑢𝑘 = 𝑢𝑘

𝑏 − 𝑢𝑘
′  

∆𝑙𝑘 =  𝑙𝑘
𝑏 − 𝑙𝑘

′  

( 12 )  

( 13 ) 

 
The net change component importance measure for every edge removed provide 

commodity-specific impacts must then be aggregated in some way to provide a single 

critical link ranking. 

2.3.3 Decision Analysis 

In order to combine commodity-specific component importance measures in a weighted 

fashion to rank critical network components, we make use of TOPSIS, or the Technique of 

Order Preference Similarity to the Ideal Solution. Often decision makers are not necessarily 

interested in making the best choice among several alternatives, but avoiding the worst 

[22]. TOPSIS addresses this idea based on the philosophy of the compromise solution, 

providing a ranking of alternatives according to their (shortest) distance from the best 

alternative for a particular criterion and the farthest distance from the worst alternative for 

that criterion [25]. The simplicity of TOPSIS makes it an appealing decision analysis tool 

with a variety of applications in supply chain logistics, engineering and manufacturing 

systems, energy management, water resources management, and many others [3, 57]. 

Recent interest in critical network component ranking has incorporated TOPSIS with flow-

based network performance criteria, but has not yet been expanded to rank critical 
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components of multi-commodity flow networks and is part of the proposed approach of 

this paper to provide comprehensive rankings that incorporate multi-commodity impacts 

[4, 14]. 

Two important inputs for the TOPSIS model are the performance of alternatives 

and criteria weights. The performance of 𝑚 alternatives 𝑎 with respect to 𝑘 criterion 𝑏 are 

collected in a decision matrix 𝒀 =  (𝑦𝑎𝑏) where 𝑎 =  1, … , 𝑚 and 𝑏 =  1, … , 𝑘. In this 

specific problem, the units for all performance criteria correspond to the importance 

measure being considered which is either net unmet demand percentage 𝑏 for 𝑘 

commodities or net link usage count > 90% 𝑏 for 𝑘 commodities described earlier in Eqs. 

( 12 )-( 13 ). Each alternative, 𝑎, corresponds to each link evaluated in graph 𝐺. The 

corresponding weight 𝑤𝑏 per decision criteria 𝑘 are determined by the decision maker and 

will be used to determine commodity importance in this specific problem described in 

Chapter 4. The selection of criteria weights has a significant impact on the final solution 

and should be determined by the decision maker with domain experience [50]. 

The first step of the TOPSIS method is to normalize the different performance 

criteria in order to compare performance criterion of different units. There are several 

normalization techniques, but the distributive normalization is proven to be the most 

consistent and is applied as shown in Eq. ( 14 ) [10]. 

 𝑟𝑎𝑏 = 
𝑦𝑎𝑏

√∑ 𝑦𝑎𝑏
2𝑚

𝑎=1

𝑓𝑜𝑟 𝑎 = 1, … , 𝑚 𝑎𝑛𝑑 𝑏 = 1, … , 𝑘. ( 14 ) 

 
Once the performance data is normalized, the weights are taken into account by 

multiplying the normalized scores 𝑟𝑎𝑏 by their corresponding weights 𝑤𝑏 as shown below 

in Eq. ( 15 ). 
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 𝑣𝑎𝑏 = 𝑤𝑏𝑟𝑎𝑏 ( 15 ) 

 

The weighted scores, 𝑣𝑎𝑏 will be used to compare each element to the ideal and anti-ideal 

criteria for each industry as shown in Eqs. ( 16 )-( 17 ). The ideal solution describes the 

most beneficial outcome while the anti-ideal solutions describes the most disadvantageous 

outcome. The ideal solution corresponds to 𝑣𝑏
+ = min𝑎(𝑣𝑎𝑏) because criterion 𝑏 is to be 

minimized and 𝑣𝑏
− = max𝑎(𝑣𝑎𝑏) corresponds to the anti-ideal solution for all alternatives 

for each criterion. 

 
𝐴+ = (𝑣1

+, … , 𝑣𝑘
+) 

𝐴− = (𝑣1
−, … , 𝑣𝑘

−) 
( 16 ) 

( 17 ) 

 

Once the ideal, 𝐴+, and anti-ideal solutions, 𝐴−, are determined for each performance 

criterion, the Euclidean distance from the ideal and anti-ideal solution is calculated for each 

element as shown in Eqs. ( 18 )( 19 ). 

 

𝑑𝑎
+ = √∑(𝑣𝑏

+ − 𝑣𝑎𝑏)2

𝑏

,   𝑎 =  1, … , 𝑚 

𝑑𝑎
− = √∑(𝑣𝑏

− − 𝑣𝑎𝑏)2

𝑏

,   𝑎 =  1, … , 𝑚 

( 18 ) 

( 19 ) 

 
Finally, the relative closeness coefficient is calculated and is shown in Eq. ( 20 ). The 

closeness coefficient is always between 0 and 1 with scores closer to 1 being closer to the 

positive ideal solution and scores closer to 0 being closer to the negative ideal solution. The 

Matlab function used to calculate the proposed steps in Eqs. (14 -20) is provided in 

Appendix A.3 

 𝐶𝑎 = 
𝑑𝑎

−

𝑑𝑎
+ − 𝑑𝑎

−
 ( 20 ) 
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2.4 Integrated Framework 

The integrated framework is shown below in Figure 5 and combines the previously 

discussed methods into a three step process to evaluate critical component importance of 

multi-commodity networks. First, the baseline optimization model is optimized and the 

baseline system performance is evaluated. Second, links are removed one-at-a-time for each 

edge in the network and the system performance is evaluated per commodity 𝑘 based on 

the component importance measures defined as unmet demand percentage and link usage 

count. Once the system impacts are evaluated for every disruption scenario, they are 

compared against the baseline performance to calculate net change per importance 

measure which corresponds to performance criteria for alternative edge (𝑖, 𝑗). These 

performance criteria are then used as a data input for the decision analysis. Step 3 provides 

a single ranking of critical components in the network that incorporates the multi-

commodity impacts from Step 2 along with decision maker criteria for the weights. 

 
Figure 5. Proposed approach to assessing critical component importance with multi-commodity impacts on 
network vulnerability. 
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Chapter 3.0 Network Application 

In this section, the proposed application, the Swedish Railway System, is introduced and 

briefly described. The Swedish Railway data used for this project, also referred to as 

SwRail, was provided in collaboration with Dr. Jonas Johansson of Lund University, 

Sweden. The freight transported throughout the Swedish Railway System was collected for 

the year 2012 from numerous publicly available data sources [29]. In order to apply the 

methodology discussed in Chapter 2, the data provided was modified to create the graph 

𝐺 = (𝑉, 𝐸) discussed in Chapter 2.1 and will be described in further detail later in this 

chapter. 

3.1 Swedish Railway Network 

The Swedish Railway Network is a system of connected train stations, tracks, and 

equipment that is operated by both public and private train operators for both commercial 

freight and passenger transport located in the third largest county in the European Union. 

With over 13,000 km (over 8,000 miles) of track, the Sweden’s rail network is ranked 21st in 

the world in size and transported over 7 billion passengers and 65,000 metric tons of 

freight in 2015 [8, 46]. Sweden’s rail network is a vital mode of transportation for Sweden’s 

economy with over 30% of inland freight transported by rail in 2014 (most recently 

available data) [17]. The 20 different types of commodities transported in the network and 

the amount transported, in kTons, are shown on the next page in  

 

 

 

 

Table 1, sorted by volume: 
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Table 1. Total amount of commodity type, 𝑘, transported in kTons for year 2015 (NST 07 groupings), sorted 
by kTons [18]. 

Commodity Commodity Group Name 
Transported 

(kTons) 
% of 
Total 

Cumulative 
% of Total 

3 Ore 27,829 42.81%  42.81% 

19 Unidentifiable goods  9,218 14.18%  57.00% 

1 Agriculture, Forrest, Fishing  8,859 13.63%  70.62% 

6 Wood, Cork, Pulp, Paper  6,081  9.36%  79.98% 

10 Fabricated metal products  4,768  7.34%  87.32% 

14 Return materials and recycling  1,557  2.40%  89.71% 

7 Petroleum products  1,437  2.21%  91.92% 

8 Chemicals, rubber, plastics  1,290  1.98%  93.91% 

16 Equipment for transportation  1,002  1.54%  95.45% 

12 Transport equipment    927  1.43%  96.87% 

4 Food, Beverage, Tobacco    846  1.30%  98.18% 

9 Other non-metallic mineral    339  0.52%  98.70% 

18 Loader and grouped goods    264  0.41%  99.10% 

15 Post and packages    233  0.36%  99.46% 

2 Coal, Crude oil, Natural gas    196  0.30%  99.76% 

13 Furniture, Other manufactured     77  0.12%  99.88% 

11 Machinery and equipment     76  0.12% 100.00% 

5 Textile, leather      1  0.00% 100.00% 

17 Moving Goods, vehicles for repair      0  0.00% 100.00% 

20 Goods not in group of 1-19      0  0.00% 100.00% 

 
The top 5 commodities in the table above accounts for over 87% of the goods moved 

throughout the network. By far, commodity group 3, Ore, is the largest amount shipped 

which is expected since the Kiruna mine is the largest underground iron ore mine in the 

world located in the northern most part of Sweden [42]. Considering this, decision makers 

in Sweden might want to protect ore due to its importance to Sweden’s economy over 

other types of commodities.  
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Recently, Sweden’s rail traffic volume has increased by 5% from 2006 to 2010 in 

both goods and passengers which corresponds to a more rapid degradation of the rail 

infrastructure [2]. Similar to the United States, the government of Sweden is invested in 

maintaining current system accessibility and long term sustainability [56]. There is much 

research interest in the efficiency, capacity, utilization, and sustainability of the rail network 

and current research interests seek to develop a long-term maintenance strategy that has 

the largest impact with limited resources [2, 34, 35, 37, 39, 40]. An understanding of what 

links cause the most damage to the network performance with specific commodities in 

mind would lead to targeted maintenance strategy, more efficient utilization of resources, 

and improved resilience of the system long-term.  

3.2 SwRail Data 

The data provided for the Swedish Railway Network, otherwise referred to as SwRail, was 

obtained from publicly available data sources and was aggregated to protect any sensitive 

information. The key data inputs and their descriptions are shown below in Table 2. 

Table 2. Important data fields from the SwRail data used to generate the network graph 𝐺 = (𝑉, 𝐸). 

SwRail Data Field Name SwRail Data Field Description 

SwRail.ICM 

InterConnectionMatrix (ICM) with size equal to 
number of nodes. 1=link exists between nodes 
and 0=no link exists between nodes. Mirrored: 
link(i,j) = link(j,i) = 1. 

SwRail.x, SwRail.y 
Coordinates (x,y) for the nodes. Used for plotting 
the station locations on a map. Distance between 
stations not used in scope of project. 

SwRail.Routes 
Structure that contains the data for all unique 1,091 
discrete routes with a unique origin-destination 
path. 

Routes.NodeRoute 
List of nodes on path for unique route that is 
direction sensitive of the stations the train passed 
on its scheduled origin/departure route. 

Routes.kTon 
The amount (in kTon) and type of commodity 
transported on specific route. (~estimated) 

Routes.NbrTrainsPerYear 
Total number of trains per year (2012) that took 
this unique route. Based on collected train 
schedule data (commercial freight trains only). 
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From the previous table, the structural characteristics of the network were obtained 

from the SwRail.ICM table which lists all of the nodes, 𝑉, in the network in an adjacency 

matrix that defines all of the links, 𝐸, in the network. The SwRail.ICM table defines the 

structure of the graph 𝐺 = (𝑉, 𝐸) and contains 1,363 stations connected by 1,439 

bidirectional links. To apply the methodology described in Chapter 2, there are two main 

components missing from the network: capacity and supply/demand parameters. In order 

not to disclose sensitive information, the freight movement was aggregated to the level of 

“cargo routes” and is not given for any specific train operator or specific train cargo. 

Therefore, these parameters must be estimated from the provided data by applying 

assumptions to the network data.  

The SwRail data field used to estimate the missing network parameters, 

SwRail.Routes, describes the movement of cargo through the structural network graph 

𝐺 = (𝑉, 𝐸). The Routes data is defined by an origin and destination pair with a specific 

network route, Routes.NodeRoute from Table 2, that lists the stations passed throughout 

its journey. For example, one unique train route could be described with an origin at node 

153 that passes two intermediate nodes, 152 and 151, on the path to its final destination at 

node 77. In addition, train schedule data was used to derive the number of trains that 

traveled a specific route for the year of 2012 (Routes.NbrTrainsPerYear) which could 

indicate the rate of freight movement with popular routes receiving higher volume than 

others. Referring to the previous example, 1,527 trains, approximately 4 trains per day, 

operated the specified path from station 153 to station 77 according to the provided  

SwRail.Routes data which can be assumed to carry more freight than a route that only 

schedules one train per week. The actual cargo amount data was collected from a separate 
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source voluntarily provided by train operators and was aggregated to the total amount and 

type of freight moved in 2012 and what routes their freight was transported on. This data is 

modified by applying key assumptions to estimate the missing parameters needed for the 

analysis. The next section gives an overview of the modification to the SwRail data 

provided and outlines the key assumptions used to generate the SwRail network. 

3.3 SwRail Modification 

Due to the level of aggregation of the provided data, assumptions must be applied to the 

SwRail data to estimate capacity and supply/demand parameters for the network. Each of 

these parameters are discussed separately in this section and the Matlab code that applies 

all of the assumptions discussed can be found in Appendix A.1 which generates the multi-

commodity network used in the analysis in Chapter 4.  

3.3.1 Supply and Demand 

The two components used to define the supply and demand parameters are the node 

locations for both supply and demand as well as the amount, measured in kTons (1000 

metric tons), for each commodity. To derive these, source and sink locations must be 

selected among the available nodes in the network and freight must be distributed from the 

total amount of each type of commodity. In order to solve this network flow model, a 

node can’t be both a sink and a source location for a commodity which might not reflect 

real-world operating conditions. The steps used to select source and sink locations are 

described below: 

1. Loop through every route of unique origin-destination paths (1,091 total). 
2. Sample source and sink nodes proportionate to the length of the path (sample a lot 

of source/sink nodes on very long paths and only a small number on paths with 
few stations visited). This does not assume how many stops a train makes on a 
schedule, just possible origin and destinations a train could pick up and deliver 
freight to. 

o Only sample nodes from routes where an operator could have carried that 
particular commodity. 
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3. Remove duplicate source/sink assignments. If a node has been sampled as both a 
source and a sink, an alternate method is used to determine assignment (see 
Appendix A.1). 

4. Distribute kTon to each route if there are source/sink nodes located on that route. 
Once a node is selected as a source or sink, it is a source or sink for all routes it 
belongs to. 

o kTon amount proportionate to the number of trains scheduled on route. 
5. Distribute freight from route to individual source/sink nodes (random). 
6. Repeat for every commodity type results in unique source/sink nodes selected for 

each commodity type. 
 
The steps briefly described above results in a sample of sources and sinks that are located 

on paths that operators could have shipped that commodity over in the last year. The 

freight amount distributed to the source and sink locations is proportionate to the trains 

scheduled over routes which supports the assumption that a node that is part of several 

routes probably receives more freight than a node with only one scheduled infrequently. 

The actual source/sink locations may be different in reality, but are a realistic interpretation 

of the provided dataset. In the next section, a brief overview is given of the assumptions 

used to estimate capacity parameters. 

3.3.2 Capacity 

We define capacity here as the maximum amount of flow allowed, measured in kTons 

(1,000 metric tons), across each link in the network. This is further broken down to a 

general link capacity shared among commodities, 𝑐𝑖𝑗, and a commodity-specific capacity, 

𝑐𝑖𝑗
𝑘 , which restricts the amount of flow of commodity 𝑘 across each link in the network. 

Some key assumptions are applied to the SwRail data to estimate these parameters. First, 

we assume the number of trains per year reflects the capacity of the network in that no 

additional trains can be scheduled. This constrains the number of trains that flow across 

each link and is derived directly from the SwRail.Routes data. However, due to the level of 

aggregation of the data, there is no indication of how much freight was transported per 
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train, maximum amount of each commodity that would fit on a train, or other information 

that would allow a conversion of trains per link to kTons per link. When determining the 

maximum amount, in kTons, of a particular commodity allowed per train, the density of 

freight could vary by commodity which restricts the total amount that would fit on a train. 

For example, furniture is significantly less dense than a heavy metal like steel and would be 

expected to have a much smaller capacity, 𝑐𝑖𝑗
𝑘 , than steel since you can transport more 

kTons per train of steel than of a less dense freight like furniture. Other factors that could 

limit the amount of a particular commodity could be consignment size in that some 

commodities might only be ordered in small frequent batches while others might be 

ordered infrequently in very large quantities.  

The second assumption made to estimate commodity-specific link capacity was to 

calculate the average amount of kTon per train by dividing the total amount of kTon 

shipped in 2012 by the number of trains that commodity could have been shipped on. This 

average was calculated from the SwRail.Routes data and was used to estimate commodity-

specific capacity, 𝑐𝑖𝑗
𝑘 , per link by multiplying the average by number of trains per link. The 

overall link capacity, 𝑐𝑖𝑗, was assumed to be the maximum of the calculated commodity-

specific link capacities. Since the commodity-specific link capacities are calculated from an 

average, it is assumed that the commodity-specific link capacities might not be a true limit 

per train, but some other constraint like consignment sizes (the size of the order 

determined from the buyer). Therefore, the overall link capacity reflects the assumption 

that commodities are competing for a shared resource that can’t be satisfied for all 

commodities.  

Applying the previously mentioned assumptions results in a capacitated network 

based on existing freight movement in the network. Inherently, this creates a network that 
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when fully optimized, might not have enough slack in the calculated capacity to allow for 

rerouting. To account for this, adjustment factors were applied to both parameters to 

ensure both the feasibility of meeting the demand and to allow enough slack for rerouting 

of disrupted freight.  

The goal of calculating the capacity parameters for the modified SwRail network 

was to derive them from the provided historical data. Some key assumptions were applied 

to estimate parameters that are able to fully satisfy baseline total demand for all 

commodities with a limited amount of excess capacity for rerouting. The final modified 

SwRail network graph is presented in the next section and is analyzed in Chapter 4 with the 

methodology described in Chapter 2.  

3.4 SwRail Network Graph 

The final SwRail network graph is generated from modifying the provided data on the 

Swedish Railway Network, using assumptions discussed in the previous sections. The final 

network graph 𝐺 = (𝑉, 𝐸) is summarized on the next page in Table 3. The first two 

columns label and describe the 20 different commodity types transported in the network 

and columns 3 and 4 present the total amount in kTons (column 3) and percentage of total 

freight (column 4) moved in 2012 derived directly from the SwRail data. The last five 

columns describe the parameters that were estimated and include the number of sinks and 

sources, the average sink and source size, and average overall link capacity. This data is 

presented to demonstrate the large number of sources and sinks selected per commodity 𝑘 

with the exception of commodity 2. In addition, the size of the sink or source is 

proportionate to the demand of that commodity and the average link capacity is 

significantly larger than the average size of any sink or source.   
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Table 3. Network summary of modified SwRail network by commodity group, 𝑘. 
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A visual of the distribution of sources and sinks are shown below in Figure 6 for 

commodity 1 and 2. The sources are shown in blue and the sinks are shown in red with the 

circle size proportionate to the amount of supply and demand for that commodity overlaid 

on a map of the actual network. As you can see from the figure, commodity 2 source and 

sink locations are restricted to the northern region of Sweden and there are some portions 

of the network that do not have a sink or source located on them for that commodity. All 

commodities’ source and sink locations, except 15 and 17 for which there is no demand, 

are shown in Figure 7 and Figure 8 to give a visualization of the size and complexity of the 

generated SwRail network that is analyzed in Chapter 4. 

 
Figure 6.Commodity 1 (left) and Commodity 2 (right) of source (blue) and sink (red) locations for the 
modified SwRail network 
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Figure 7. Commodities 1-9 Sink/Source locations of the modified SwRail network. 

  



30 

 
Figure 8. Commodities 10-20 (except 15 and 17 since no demand present) of the modified SwRail Network. 
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Chapter 4.0 Analysis 

In this section, the methodology framework described in Chapter 2 is applied to the 

generated Swedish Railway Network in Chapter 3 and is organized in three steps 

referenced previously in Figure 5: baseline optimization, interdiction strategy, and finally, 

decision analysis.  

4.1 SwRail Baseline Optimization 

The network generated in Chapter 3 was optimized from the modified MCMF model 

discussed in Chapter 2 and the objective was to minimize the summation of total unmet 

demand percentage by commodity. The performance of the baseline optimization model 

was defined by the system performance measures selected in the methodology, unmet 

demand % and link usage. 

The results of the demand feasibility model are shown in Table 4 in regards to 

unmet demand percentage. From the table, the first two columns list the commodity 

groups while column 3 and 4 outlines the total demand in the network. The results of the 

optimization model are shown in the last four columns in different perspectives. The total 

flow in kTon that was able to satisfy demand is shown in column 5, which leaves demand 

unsatisfied in column 6. The last two columns give perspective of how much demand is 

met per commodity by percentage, and the relative unmet demand across commodities. 

For example, commodity 1, Agriculture, Forrest, and Fishing, resulted in less than 1% of 

its total commodity demand unmet, but accounted for 35.9% of the total unmet demand. 

Overall, over 99% of the total demand was met and at least 98% of total demand was met 

for any commodity.  
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Table 4. Unmet demand percentage results of baseline optimization, by commodity group. 

 
 

The second performance measure, link usage > 90%, is presented in Table 5 and is 

includes two summary tables of link usage from two different perspectives. In the top 

table, the counts of links are grouped by link usage % (column 1) and commodity groups 

(row 1). For example, commodity 1 had 40 links with link usage % greater than 90% which 

is 1.4% of the 2,877 total links in the network. An alternate perspective is shown in the 

bottle table and presents the link usage count as a percentage of links with flow greater 

than zero. If you ignore edges without flow of commodity 1, then there are only 959 edges 

with flow greater than zero and 4.2% of those edges have link usage greater than 90%. This 

accounts for the regionalization of commodities as some might utilize more links than 

others.  

Commodity Commodity Group Name
Demand 

(kTon)

Demand

%

Flow

(kTon)

Unmet 

Demand

(kTon)

Unmet Demand

% of Commodity

Commodity 

% of Total

1 Agriculture, Forrest, Fishing 8,463 13.3% 8,393 69.5 0.822% 35.9%

2 Coal, Crude oil, Natural gas 279 0.4% 279 0.0 0.000% 0.0%

3 Ore 29,426 46.4% 29,426 0.0 0.000% 0.0%

4 Food, Beverage, Tobacco 249 0.4% 248 1.2 0.490% 0.6%

5 Textile, leather 0 0.0% 0 0.0 1.255% 0.0%

6 Wood, Cork, Pulp, Paper 4,701 7.4% 4,692 8.9 0.190% 4.6%

7 Petroleum products 1,409 2.2% 1,409 0.0 0.000% 0.0%

8 Chemicals, rubber, plastics 1,257 2.0% 1,257 0.0 0.000% 0.0%

9 Other non-metallic mineral 448 0.7% 446 1.8 0.407% 0.9%

10 Fabricated metal products 4,017 6.3% 3,948 68.7 1.710% 35.5%

11 Machinery and equipment 94 0.1% 94 0.0 0.000% 0.0%

12 Transport equipment 894 1.4% 894 0.0 0.000% 0.0%

13 Furniture, Other manufactured 59 0.1% 58 0.5 0.804% 0.2%

14 Return materials and recycling 1,124 1.8% 1,124 0.4 0.032% 0.2%

15 Post and packages 0 0.0% 0 0.0 0.000% 0.0%

16 Equipment for transportation 1,187 1.9% 1,182 4.9 0.415% 2.5%

16 Equipment for transportation 0 0.0% 0 0.0 0.000% 0.0%

18 Loader and grouped goods 39 0.1% 39 0.2 0.495% 0.1%

19 Unidentifiable goods 9,738 15.4% 9,701 37.3 0.383% 19.3%

20 Goods not in group of 1-19 18 0.0% 18 0.1 0.297% 0.0%

T Total 63,401 100.0% 63,208 193 0.305% 100.0%
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Table 5. Link Usage results from baseline optimization shown in count from total links (top) and percentage 
of links with flow greater than 0.  
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To visualize the baseline optimization results, the flow of commodities through the 

network is plotted on the Swedish Railway Network map as shown for commodity 1 in 

Figure 9 with a side by side comparison to the sink/source locations presented in the 

previous chapter. Bright red lines represent a bidirectional flow, while a slightly darker red 

line corresponds to a flow that only flows in one direction. The thickness of the line 

represents the size of the relative flow and a grey line received no flow at all for that 

commodity. From the figure it can be observed that most of the flow for commodity 1 is 

concentrated in the southern region near the concentration of large sinks and sources, but 

most of the flow in the northern parts of the country appear to only flow in one direction. 

When compared to commodity 2, as shown on the next page in Figure 10, all of the flow is 

concentrated in the northern region. 

All 20 commodity groups’ baseline network flow (except for 15 and 17) is plotted 

in subplots shown in  

Figure 11 and Figure 12. From the graphs, there are different regions of the map 

that receive more flow for that particular commodity and some of the western corridors 

appear to not be used at all. With the exception of commodity 2 which is concentrated in 

the northern region, flow moves through the entire network and most two-way flow occurs 

in the central and southern region and varies by commodity. Now that the baseline 

optimization model system parameters have been established, the interdiction strategy is 

applied (step 2 from Figure 5) to measure system performance when one link at a time is 

removed from the network.  
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Figure 9. Side by side comparison of sink/source location (left) to baseline network flow (right) of 
commodity 1. 
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Figure 10. Side by side comparison of sink/source location (left) to baseline network flow (right) of 
commodity 2 
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Figure 11. Commodity groups 1-9 of baseline network flow shown in red. 
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Figure 12. Commodity groups 10-20 (except 15, 17) of baseline network flow. 
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4.2 SwRail Interdiction 

The results of the one-at-a-time link removal strategy are presented here according to the 

system performance metrics discussed in Chapter 2. The interdiction results summary for 

unmet demand percentage by commodity is shown below in Table 6 in columns 4 – 7. 

Column 4 and 5 represents the maximum and minimum amount of demand that is 

disrupted out of all edges removed. Recall in from Chapter 2, that the system performance 

measures are the net change from the baseline performance metrics. The last two columns 

track what percentage of links results in a change from the base. For example, commodity 

1 had a maximum demand disruption of 2.23% and only 11.47% of links removed resulted 

in a change from the baseline optimization performance for unmet demand percentage for 

commodity 1. In general, less than 20% of the links removed impacted the unmet demand 

percentage by commodity which indicates successful rerouting of freight in most cases. 

Table 6. Net unmet demand percentage results from interdiction strategy. 

 

Commodity Commodity Group Name
Baseline Met 

Demand

Max Unmet 

Demand % 

Disrupted

Min Unmet 

Demand % 

Disrupted

% of 

Links 

Change

% of 

Links No 

Change

1 Agriculture, Forrest, Fishing 99.18% 2.23% 0.00% 11.47% 88.53%

2 Coal, Crude oil, Natural gas 100.00% 31.88% 0.00% 4.10% 95.90%

3 Ore 100.00% 5.82% 0.00% 13.91% 86.09%

4 Food, Beverage, Tobacco 99.51% 3.06% 0.00% 9.25% 90.75%

5 Textile, leather 98.74% 1.96% 0.00% 9.53% 90.47%

6 Wood, Cork, Pulp, Paper 99.81% 2.82% 0.00% 9.74% 90.26%

7 Petroleum products 100.00% 3.07% 0.00% 14.81% 85.19%

8 Chemicals, rubber, plastics 100.00% 5.73% 0.00% 12.38% 87.62%

9 Other non-metallic mineral 99.59% 8.26% 0.00% 9.87% 90.13%

10 Fabricated metal products 98.29% 6.26% 0.00% 10.08% 89.92%

11 Machinery and equipment 100.00% 2.97% 0.00% 14.60% 85.40%

12 Transport equipment 100.00% 3.47% 0.00% 18.98% 81.02%

13 Furniture, Other manufactured 99.20% 2.37% 0.00% 8.62% 91.38%

14 Return materials and recycling 99.97% 16.89% 0.00% 14.05% 85.95%

15 Post and packages 0.00% 0.00% 0.00% 0.00% 0.00%

16 Equipment for transportation 99.59% 1.33% 0.00% 11.54% 88.46%

17 Moving Goods, vehicles for repair 0.00% 0.00% 0.00% 0.00% 0.00%

18 Loader and grouped goods 99.50% 3.59% 0.00% 9.32% 90.68%

19 Unidentifiable goods 99.62% 2.81% 0.00% 13.21% 86.79%

20 Goods not in group of 1-19 99.70% 3.67% 0.00% 10.71% 89.29%

T Total 99.69% 2.79% 0.00% 28.72% 71.28%
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On the following page, in Table 7, interdiction results are presented for the second 

component importance metric, link usage count > 90%. Columns 1-4 carry over previous 

commodity information and baseline performance metrics for reference and columns 5 

and 6 represent the maximum and minimum met change observed when compared to the 

baseline. The last three columns give a sense of what percentage of increased the link usage 

count, decreased it, or observed the same level. For example, commodity 1 saw a 

maximum increase of 29 additional links with usage greater than 90% and at one point 

decreased the link usage by 19 links. Most of the links removed from the graph saw an net 

change in the link usage % with most links removed from the network causing an increase 

in the count of links with usage greater than 90%. This supports the previous results from 

Table 6 that data was successfully rerouted when an edge was disrupted. 

To visualize the distribution of interdiction results, subplots in Figure 13 and 

Figure 14 are generated for all commodities except 15 and 17. In Figure 13, only unmet 

demand results greater than 0 are plotted in the histogram for visibility. For all 

commodities, as shown in Table 6, most of the links disrupted, did not change the unmet 

demand percentage per commodity. In addition, the x-axis is not standardized for all plots 

for visibility purposes. As shown, commodity 2 and 14 had the most extreme demand 

perturbation and only a small number of edges caused the perturbation. Moving on to 

Figure 14, all links are included in the histogram and the distribution varies by commodity. 

Some commodities are centered with a high frequency of 0 links changed, while others are 

either skewed or completed shifted off-center. For example, commodity 8 and 20 both 

have a high number of edges that show no net change, but have a shifted distribution to 

the right. Alternatively, Commodity 2 had the highest percentage of improved link usage 

capacity for disrupted edges and commodity 8 almost always increased.  
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Table 7. Interdiction results for net change in link usage count > 90% by commodity group. 
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Figure 13. Histogram of all 20 commodity groups (except 15 and 17) of unmet demand % change > 0. 
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Figure 14. Histogram of 20 commodity groups (except 15 and 17) of net change in link usage capacity count. 
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The last figure shown here, Figure 15, compares the system performance metrics 

with each other to investigate if there is a correlation. Each subplot shown per commodity 

plots link usage counts versus non-zero values of unmet demand percentage to determine 

if an increase in unmet demand is associated with an increase or decrease with link usage. 

From the figure, you can see a large concentration of points near where unmet demand 

percentage is close to zero for all commodities. For each commodity subplot, the Pearson 

correlation coefficient and associated p-value are shown on the graph, with the least-

squares line plotted in grey if the Pearson coefficient results in an insignificant p-value > 

0.5 and highlighted in red if significant, p-value<0.5. The Pearson coefficient value is 

between -1 and 1 to indicate the level of linear correlation between the two variables, link 

usage count and unmet demand percentage, with values equal to 0 indicates no correlation. 

Interestingly enough, four commodities have significant Pearson correlation coefficients 

that can be both positive and negative even though the relatively low Pearson coefficient 

values does not indicate a linear relationship. A possible explanation for the negative 

correlation between unmet demand percentage and link usage count could be that there are 

no rerouting alternatives due to the lack of redundancy in the network, not lack of excess 

capacity, hence, the unmet demand percentage increases and the link usage decreases. This 

would also explain the positive correlation results in that unmet demand percentage and 

link usage count both increase because of lack of excess capacity. The interdiction strategy 

of one-link-at-a-time removal process had different impacts to certain commodities, but all 

commodities were affected. The two system performance measures were impacted very 

different from the interdiction process and indicate rerouting of freight occurred often 

when a link was disrupted. The next section will present the decision analysis findings and 

provide final rankings of critical links.  
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Figure 15. Link Usage Count > 90% vs. Unmet Demand %, non-zero values of unmet percentage. Pearson’s 
coefficient and p-value are shown as well as a least-square lines plotted for each commodity. 
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4.3 SwRail Decision Analysis 

Step 3 of the proposed methodology from Chapter 2 is to apply a multi-criteria 

decision analysis tool, TOPSIS, to aggregate the commodity-specific component 

importance measures discussed in the previous sections. Commodity weightings are 

required from the decision maker in order to apply the TOPSIS methodology. These 

weightings should prioritize what commodities the decision maker is invested in protecting. 

Early in Chapter 3, the total amount of freight moving through the network by commodity 

group was shown in  

 

 

 

 

Table 1 and it was suggested that decision makers might want to prioritize the 

largest commodity group shipped, commodity 3: Ore. However, if we consider the value of 

the commodities to Sweden’s economy instead of just volume, we would have commodity 

weightings similar to the following obtained from Sweden GDP data shown in Table 8 

[58]. Column 3 was derived from Sweden’s economic value for the first 14 commodity 

groups that are shipped in the Swedish Railway Network. From the table, the bottom six 

commodities darkened in grey had no equivalent economic value from the collected data 

and were given a weight of 0 for that commodity group and are not considered in the 

analysis. Two of the six excluded commodity groups 15 and 17, had no associated demand 

in the applied network example and commodity group 19 is classified as Unidentifiable 

goods. Even though Unidentifiable Goods makes up over 15% of the given demand for 

the applied network, it makes sense to exclude it because of the difficulty of prioritizing 
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unknown freight as a decision maker. The remaining three commodity groups that are 

being excluded from the analysis (groups 16, 18, and 20) make up only 2% of the total 

demand of the network.  

 

Table 8. Commodity weights for TOPSIS analysis derived from commodity value to GDP economy. 

Group Commodity Group 
Total Use 

(SEK 100K) 
SIOT 

Weights % 
Equal 

Weights 

1 Agriculture, Forrest, Fishing 130,329  4.8%  7.1% 

2 Coal, Crude oil, Natural gas  91,241  3.3%  7.1% 

3 Ore  91,241  3.3%  7.1% 

4 Food, Beverage, Tobacco 222,790  8.2%  7.1% 

5 Textile, leather  58,167  2.1%  7.1% 

6 Wood, Cork, Pulp, Paper 237,093  8.7%  7.1% 

7 Petroleum products 190,674  7.0%  7.1% 

8 Chemicals, rubber, plastics 316,821 11.6%  7.1% 

9 Other non-metallic mineral  47,472  1.7%  7.1% 

10 Fabricated metal products 180,394  6.6%  7.1% 

11 Machinery and equipment 718,996 26.3%  7.1% 

12 Transport equipment 308,902 11.3%  7.1% 

13 Furniture, Other manufactured  81,663  3.0%  7.1% 

14 Return materials and recycling  57,265  2.1%  7.1% 

15 Post and packages N/A  0.0%  0.0% 

16 Equipment for transportation N/A  0.0%  0.0% 

17 Moving Goods, vehicles for repair N/A  0.0%  0.0% 

18 Loader and grouped goods N/A  0.0%  0.0% 

19 Unidentifiable goods N/A  0.0%  0.0% 

20 Goods not in group of 1-19 N/A  0.0%  0.0% 

 

There are three different weight combinations that are examined in this section and 

two different importance measures incorporated into the analysis: unmet demand 

percentage and count of link usage greater than 90%. Columns 2 and 3 from the table 

above make up the first two sets of rankings, SIOT value and equal weight value, that are 

used with each importance measure to provide a ranking of critical components. The last 

analysis weights only examine the top five commodities (highlighted in light grey) and are 
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used to give a ranking that incorporates both importance measures each given equal 

importance. This results in five TOPSIS rankings that are compared and discussed below. 

4.3.1 Rankings Without TOPSIS 

In this section we summarize the ranking of critical components of the Swedish Railway 

Network when analyzing total flow of goods, regardless of commodity type. This is done 

by ranking the total unmet demand performance results for total goods moved through the 

network and by ranking link usage > 90% for overall link capacity rather than commodity-

specific capacity. The rankings are shown below in Table 9, columns 2 and 4. Interestingly, 

columns 3 and 5 list the rank the respective edge holds in the other ranking and you can 

see that neither ranking shares edges in the top 20 or even in the top 100. Possible reasons 

for this could be the potential correlation that unmet demand percentage might have with 

total link usage count in that a high unmet demand percentage might correspond to 

improve link usage performance since less flow moves through the network.  

Table 9. Rankings of critical links without TOPSIS. 

Rank 
Total Unmet 
Demand % 

Rank of Edge in 
Link Usage 

Total Link 
Usage Count 

Rank of Edge in 
Unmet Demand 

1 (18,17) 359 (130,105) 91 

2 (518,458) 1335 (890,889) 414 

3 (578,518) 702 (151,77) 26 

4 (57,56) 359 (1158,1134) 414 

5 (153,152) 151 (896,895) 414 

6 (56,55) 359 (1138,1137) 414 

7 (152,151) 1335 (1136,1135) 414 

8 (68,67) 702 (897,896) 414 

9 (58,57) 702 (885,884) 414 

10 (74,67) 702 (1139,1138) 414 

11 (54,53) 702 (1144,1143) 414 

12 (55,54) 359 (1135,1134) 414 

13 (71,70) 359 (1137,1136) 414 

14 (70,69) 359 (1065,1064) 414 

15 (75,50) 359 (1033,1032) 414 

16 (51,50) 359 (1025,1024) 414 
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17 (53,52) 46 (1026,1025) 414 

18 (52,51) 359 (889,888) 414 

19 (1289,1288) 151 (873,872) 414 

20 (69,68) 702 (357,356) 414 

In order to visualize the spread of the rankings provided in Table 9, the spread of 

both rankings are shown in Table 10 and Table 11 below: 

Table 10. Spread of total net unmet demand % network performance results for all edges in network. 

Total Unmet Demand % Count of Rank 

0-0.001 1235 

0.001-0.002 63 

0.002-0.003 55 

0.003-0.004 26 

0.004-0.005 14 

0.005-0.006 11 

0.006-0.007 5 

0.007-0.008 7 

0.008-0.009 2 

0.009-0.01 1 

0.01-0.011 2 

0.011-0.012 4 

0.012-0.013 1 

0.013-0.014 3 

0.014-0.015 2 

0.015-0.016 1 

0.016-0.017 1 

0.017-0.018 1 

0.019-0.02 3 

0.027-0.028 1 

 

The spread of unmet demand performance is consistent with the interdiction results 

discussed in the previous section in that only a small percentage of edges had a significant 

effect on the network performance. In contrast, the spread of the link usage results is much 

more even spread with a large percentage of links impacting the link usage count 

performance. Also different from the unmet demand performance data was the small 
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percentage of edges that caused an improvement in the link usage performance in that 

removed edges actually resulted in less bottlenecks in the network. 

Table 11. Spread of net link usage > 90% count for overall link capacity, for all edges in network. 

Link Usage Count, All 
Commodities 

Count of 
Rank 

-1 104 

0 633 

1 343 

2 208 

3 74 

4 10 

5 5 

6 5 

7 11 

8 4 

9 13 

10 9 

11 10 

12 4 

13 3 

14 2 

 

4.3.2 TOPSIS Results 

In this section we present the final component rankings from TOPSIS based on different 

combinations of imported commodity weights and selected performance criteria. The first 

importance measure selected, unmet demand percentage, is analyzed with two different 

weights, SIOT (importance to Sweden economy) and equal weights. The results are shown 

in Table 12 with columns 2 and 3 listing the top 20 ranked edges and columns 3 and 4 

listing the respective ranking each edge takes in the other ranking. For example edge 

(1288,1287) is ranked first according to SIOT weights and is second with equal weights. 

There are several common edges between the two rankings, but no real agreement except 

for edge (1288,1287) which is considered very important by both ranking structures. 
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Table 12. TOPSIS results for unmet demand percentage. 

 

The second performance metric, count of link usage > 90%, was also analyzed with two 

different sets of weights. The results are shown below in Table 13 and are presented in the 

same structure as the previous rankings. As with unmet demand percentage, there is a 

general disagreement between the rankings even though common edges exit between the 

top 20. There are no common edges between the rankings using unmet demand percentage 

and the rankings used by link usage regardless of the weights chosen.  

TOPSIS

Rank
TOPSIS

SIOT Weights

TOPSIS

Equal Weights

Rank of SIOT in 

Equal Weights

Rank of Equal 

Weights in SIOT

1 (1288,1287) (1250,1249) 2 54

2 (1287,1286) (1288,1287) 12 1

3 (1115,946) (71,70) 37 50

4 (1286,1285) (1362,1273) 20 145

5 (880,870) (1274,1250) 6 83

6 (525,524) (1249,1247) 9 64

7 (526,525) (880,870) 10 5

8 (81,80) (1247,1246) 73 20

9 (82,81) (1289,1288) 102 23

10 (79,78) (525,524) 57 6

11 (80,79) (152,151) 59 44

12 (1270,1269) (578,518) 47 33

13 (150,149) (70,69) 42 135

14 (83,82) (526,525) 89 7

15 (950,949) (69,68) 82 207

16 (84,83) (876,875) 110 119

17 (585,579) (1287,1286) 24 2

18 (951,950) (153,152) 106 43

19 (952,951) (72,71) 108 65

20 (1247,1246) (21,20) 8 67

Unmet Demand Percentage
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Table 13. TOPSIS results for Link Usage > 90%. 

 

The last TOPSIS ranking examined is a combination of both importance measures. By 

taking the top 5 industry weights from Table 8 and applying them to both component 

importance measures, you have a weighting structure that assigns have of the weights on 

the unmet demand performance and half of the priority on link usage and only focusing on 

the top five commodities used in Sweden. The results of the discussed TOPSIS weighting 

scheme is shown below in Table 14. Very interestingly, the ranking from the combined 

importance measures almost exactly matches the top 8 ranking for the TOPSIS results for 

unmet demand percentage using SIOT weightings as shown in column 3. Column 5, the 

rankings for Link Usage with SIOT weightings, also had an impact since the very last link 

(82,81) is ranked 9th in unmet demand percentage, but 1275th in link usage which drove the 

TOPSIS

Rank
TOPSIS

SIOT Weights

TOPSIS

Equal Weights

Rank of SIOT in 

Equal Weights

Rank of Equal 

Weights in SIOT

1 (300,299) (889,888) 8 16

2 (999,871) (1139,1138) 3 18

3 (124,123) (999,871) 24 2

4 (897,896) (389,388) 14 38

5 (898,872) (888,887) 15 128

6 (499,498) (1008,1007) 75 63

7 (509,508) (756,743) 156 8

8 (756,743) (300,299) 7 1

9 (873,872) (298,297) 46 94

10 (335,334) (942,941) 194 158

11 (86,85) (1143,1142) 314 52

12 (832,831) (390,389) 100 257

13 (956,955) (295,294) 91 116

14 (385,384) (897,896) 330 4

15 (1014,884) (898,872) 80 5

16 (889,888) (1144,1143) 1 108

17 (330,329) (766,765) 40 174

18 (1139,1138) (890,889) 2 569

19 (159,158) (913,912) 414 100

20 (496,458) (1141,1140) 59 35

Link Usage > 90%
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rank down. Another example is edge (300, 299) which was not considered important from 

an unmet demand percentage perspective, but was ranked in the top 10 from a link usage 

perspective. 

Table 14. TOPSIS results for combined importance measures and the respective rank of other TOPSIS 
results. 

 

The spread of the rankings for each of the five TOPSIS rankings is provided in Appendix 

A.4. How sparsely grouped the data varies mostly with the importance metric shown 

similar to the spread of the groupings in Table 10 and Table 11 discussed in the previous 

section in that the unmet demand percentage criteria have only a small amount of links that 

cause and impact compared to the link usage rankings which are more evenly spread. The 

next section will conclude the analysis with a visualization of the locations of the top 

ranked components on the Swedish Railway Network. 

TOPSIS

Rank
Combined 

SIOT Top 5

Rank in SIOT 

Unmet Demand

Rank in Eq 

Unmet Demand

Rank in SIOT 

Link Usage

Rank in Eq Link 

Usage

1 (1288,1287) 1 2 536 535

2 (1287,1286) 2 12 1221 733

3 (1115,946) 3 37 136 325

4 (1286,1285) 4 20 254 557

5 (525,524) 6 9 332 136

6 (81,80) 8 73 72 773

7 (880,870) 5 6 1076 541

8 (526,525) 7 10 1213 688

9 (83,82) 14 89 50 220

10 (84,83) 16 110 164 481

11 (86,85) 41 148 11 314

12 (90,89) 24 142 248 1168

13 (950,949) 15 82 298 574

14 (79,78) 10 57 452 1166

15 (1243,1242) 21 41 236 343

16 (956,955) 48 163 13 91

17 (952,951) 19 108 256 107

18 (300,299) 403 403 1 8

19 (80,79) 11 59 1115 1434

20 (82,81) 9 102 1275 714

Combined Importance Measures
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4.3.3 TOPSIS Visualization 

In order to visualize where the critical components are located on the Swedish Railway 

Network according to the different TOPSIS rankings, the TOPSIS rankings are plotted on 

a map of the Swedish Railway Network for each of the rankings discussed previously in 

this chapter. The links are colored according to the closeness to the highest ranked link and 

distance from the lowest ranked link with lighter colored links having higher ranking than 

darker red links. The plotted networks are overlaid on a dark grey background to improve 

visibility of light colored links. The first two networks, shown in Figure 16 and Figure 17, 

are a visualization of the overall network performance without TOPSIS described earlier in 

section 4.3.1. Examining the unmet demand percentage performance graph, a large number 

of links are deemed important along one particular corridor which could correspond to 

commodity 2, Coal, Crude oil, Natural gas, that is located exclusively there. By reviewing 

the impacts from the interdiction process, commodity 2 demand had the largest maximum 

demand disrupted from column 4 in Table 6 which easily explains this ranking’s emphasis 

on the northern most region of the network. When considering overall link usage capacity, 

a different perspective emerges where entire paths connecting long corridors are 

emphasized here as rerouting alternatives. Additionally, dead end branches of the network 

appear to be especially vulnerable to bottlenecks when cut off from the rest of the 

network. 

The next two graphs presented map the TOPSIS results for the unmet demand 

performance criteria with two different weights, SIOT weights and Equal weights. Unlike 

the previous graphs, the edges are colored according to their distance to the ideal and anti-

ideal solution from Eq. ( 20 ) with ideal scores closer to 1. 
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Figure 16. Total unmet demand percentage performance for SwRail Network. 

 
Figure 17. Total overall link usage performance (left) for SwRail network. 
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The graphs are stacked as shown on the next page in Figure 18 and Figure 19, with critical 

links located in similar sections of the graph even with different weighting structure of the 

commodity weights. One key difference between the TOPSIS results with SIOT weights is 

the indifference of most of the northern part of the network which deviates from the 

rankings when considering only overall total unmet demand. This is surely due to the SIOT 

weights emphasizing other commodities over commodity 2 which was the main focus of 

the overall unmet demand performance results. Also of note, the range of TOPSIS scores 

for the unmet demand percentage performance with equal weights have a very small range 

of possible values with very little space between the highest ranked links to the lower 

ranked links. This suggests that the equal weights diluted the performance metrics.  

The next importance metric, link usage, is shown on the following page in Figure 

20 and Figure 21 with both having much lighter colored edges due to the wider spread of 

and higher TOPSIS scores achieved. When examining both graphs, it is interesting to note 

that entire branches are highlighted up the mid-point where the link suddenly drops. This is 

possibly due to rerouting decisions since flow across a branch is completely disrupted when 

the mid-point of the path is removed. Finally, Figure 22, maps the TOPSIS scores for the 

combined importance metrics with the top 5 SIOT commodities which looks very similar 

to TOPSIS results for the unmet demand percentage which is expected.  

Overall, the performance metric selected and commodity weights had an impact on 

the TOPSIS scores and location critical links in the SwRail network. 
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Figure 18. TOPSIS scores mapped on SwRail network for unmet demand percentage and SIOT weights. 

 
Figure 19. TOPSIS scores mapped on SwRail network for unmet demand percentage and equal weights. 
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Figure 20. TOPSIS scores mapped on SwRail network for link usage > 90% with SIOT weights. 

 
Figure 21. TOPSIS scores mapped on SwRail network for link usage > 90% with equal weights.  
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Figure 22. TOPSIS results mapped on SwRail network for combined importance measures with the top 5 
SIOT commodities. 
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5.0 Conclusion 

The goal of this thesis was to analyze network vulnerability of multi-commodity networks 

from a flow-based approach to identify critical links in the network. This would allow 

decision makers with limited resources to allocate resources to critical links in the network 

that would cause the most damage to the network performance criteria considered most 

important. This work builds on the well-studied flow-based network vulnerability analysis, 

but had little previous research on multi-commodity network vulnerability. To measure 

network vulnerability, a proposed three stage approach built a baseline modified MCMF 

optimization model to measure demand feasibility before applying an interdiction strategy 

to measure system performance when links were disrupted then finally applying a decision 

analysis tool, TOPSIS, to rank critical links from a multi-commodity perspective. As 

described in the previous chapter, applying different component importance measure and 

commodity weights resulted in different rankings than by analyzing total network 

performance alone.  

There are several areas for future work and include investigating the impact 

different optimization models impact ranking strategies. In addition, identifying critical 

paths over critical links could provide additional information to the decision maker and is 

another research avenue to explore. 
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 Appendix A.1 SwRail Network Generation 

This section includes all code generated in MATLAB® R2015b used to modify the SwRail 

data provided to generate source/sink supply/demand nodes as well as capacity limits for 

the edges in the network. 

A.1.1 Create Source/Sinks 

%Master's Thesis - Mackenzie Whitman 

%Goal: Distribute source sink nodes based on orig/destination information 

%from SwRail Route data. Source/Sink per commodity can be any node on path 

%of orig/dest per route. 

 

clear; 

load('SwRailwayData_20141012.mat'); 

Routes = SwRail.Routes; 

 

%create structure with correct field names, node, station, pos_0, pos_1 

Nodes = struct(); 

Nodes.station = SwRail.Stn_Name_Short; 

Nodes.node = (1:size(Nodes.station)).'; 

Nodes.pos_0 = SwRail.y; 

Nodes.pos_1 = SwRail.x; 

Nodes.nodeCount = length(Nodes.node); 

Nodes.commodityCount = size(SwRail.CargoTypeShort,2) - 1; 

 

%structures to hold the source/sink samples from route paths 

Nodes.source = struct(); 

Nodes.sink = struct(); 

 

%loop through each route (1091 total), pull sample from nodes on path 

for i = 1:size(Routes,2) 

    if size(Routes(i).NodeRoute,2) == 1 

        continue 

    end 

    for k = 1:Nodes.commodityCount 

        %create source/sink sample based on nodes on path 

        node_sample = Routes(i).NodeRoute; 

        fieldName = sprintf('c_%d',k); 

        Nodes.source(i).(fieldName) = []; 

        Nodes.sink(i).(fieldName) = []; 

 

        %Check if commodity k possible from route history, otherwise skip k 

        if Routes(i).kTon(k) > 0 

            %50% chance commodity k is selected to be sink/souce for route 

            selected = rand; 

            if selected > 0.5; selected = 1; else selected = 0; end; 
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            if selected == 1 

                %if k selected, determine sample size for source/sink 

                %sample size: random uniform distribution(1 : 0.5(pathNodes)) 

                %Use floor to ensure size source + size sink > node_sample 

                lowerR = 1; 

                upperR = int64(floor(0.5*(size(node_sample,2)))); 

 

                %if upperR <= 1, set sample size = 1; 

                if upperR <= 1 

                    source_size = 1; 

                    sink_size = 1; 

                else 

                    source_size = randi([lowerR upperR]); 

                    sink_size = randi([lowerR upperR]); 

                end 

 

                %sample without replacement source/sink nodes 

                Nodes.source(i).(fieldName) = datasample(node_sample, ... 

                    source_size, 'Replace', false); 

                %remove sampled node from options for source, :( complicated 

                tf = ismember(node_sample, Nodes.source(i).(fieldName)); 

                loc = find(~tf); 

                node_sample = node_sample(loc); 

                Nodes.sink(i).(fieldName) = datasample(node_sample, ... 

                    sink_size, 'Replace', false); 

            end 

        end 

    end 

end 

 

A.1.2 Remove duplicate source/sink node assignments 

%node can only be a source or sink per commodity 

%loop through all source/sink assignments, find duplicates 

%if duplicate, select source/sink with largest number of trains per year 

 

%keep track of nmbr trains per year per commodity, per node, sink/source 

Nodes.trainSink = zeros(Nodes.nodeCount,Nodes.commodityCount); 

Nodes.trainSource = zeros(Nodes.nodeCount,Nodes.commodityCount); 

 

%loop through all paths 

for i = 1:size(Routes,2) 

    %loop through all commodities 

    for k = 1:Nodes.commodityCount 

        nmbTrains = Routes(i).NbrTrainsPerYear; 

        fieldName = sprintf('c_%d',k); 

        sourceNodes = Nodes.source(i).(fieldName); 

        sinkNodes = Nodes.sink(i).(fieldName); 
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        %check if sources on path i selected for commodity k 

        if ~isempty(sourceNodes) 

            for j = 1:size(sourceNodes,2) 

                Nodes.trainSource(sourceNodes(j),k) = Nodes.trainSource(j,k) + 

nmbTrains; 

            end 

        end 

        %check if sinks on path i selected for commodity k 

        if ~isempty(sinkNodes) 

            for j = 1:size(sinkNodes,2) 

                Nodes.trainSink(sinkNodes(j),k) = Nodes.trainSink(j,k) + 

nmbTrains; 

            end 

        end 

    end 

end 

 

%Max(number of trains) for sink or source. Remove node from sink/source so, 

%that node is only a sink or source, but not both 

removeSource = []; 

removeSink = []; 

 

%Modification 06/14/2016 - Limit % of source/sink nodes to 25% (~340 nodes) 

%count number of nodes that are either source/sink 

numberSinks = sum(Nodes.trainSink > 0, 1); 

numberSources = sum(Nodes.trainSource > 0, 1); 

sourceList = []; 

sinkList = []; 

 

%loop through all nodes 

for i = 1:Nodes.nodeCount 

    for k = 1:Nodes.commodityCount 

        source = Nodes.trainSource(i,k); 

        sink = Nodes.trainSink(i,k); 

        if source > 0 

            sourceList(end + 1, :) = [i, k]; 

        end 

        if sink > 0 

           sinkList(end + 1, :) = [i, k]; 

        end 

        %if node is both source/sink, select one with max number of trains 

        if and(source > 0, sink > 0) 

            if source < sink 

                %remove node from sink for all paths 

                removeSource(end + 1,:) = [i,k]; 

                numberSources(k) = numberSources(k) - 1; 

                iRemove = ~ismember(sourceList, [i,k], 'rows'); 

                sourceList = sourceList(iRemove,:); 

            elseif source > sink 

                %remove node from source for all paths 

                removeSink(end + 1,:) = [i,k]; 

                numberSinks(k) = numberSinks(k) - 1; 

                iRemove = ~ismember(sinkList, [i,k], 'rows'); 

                sinkList = sinkList(iRemove,:); 
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            else 

                %remove both 

                removeSource(end + 1,:) = [i,k]; 

                removeSink(end + 1,:) = [i,k]; 

 

                numberSources(k) = numberSources(k) - 1; 

                numberSinks(k) = numberSinks(k) - 1; 

                iRemove = ~ismember(sourceList, [i,k], 'rows'); 

                sourceList = sourceList(iRemove,:); 

 

                iRemove = ~ismember(sinkList, [i,k], 'rows'); 

                sinkList = sinkList(iRemove,:); 

            end 

        end 

    end 

end 

 

%define random number of sinks/sources allowed (no more than 30%) 

sourceRange = zeros(Nodes.commodityCount, 1); 

sinkRange = zeros(Nodes.commodityCount, 1); 

 

for k = 1:Nodes.commodityCount 

    if numberSources(k) > floor(0.3*Nodes.nodeCount) 

        lowerR = floor(0.15*Nodes.nodeCount); 

        upperR = floor(0.25*Nodes.nodeCount); 

        sourceRange(k) = randi([lowerR upperR]); 

    else 

        sourceRange(k) = numberSources(k); 

    end 

 

    if numberSinks(k) > floor(0.3*Nodes.nodeCount) 

        lowerR = floor(0.15*Nodes.nodeCount); 

        upperR = floor(0.25*Nodes.nodeCount); 

        sinkRange(k) = randi([lowerR upperR]); 

    else 

        sinkRange(k) = numberSinks(k); 

    end 

 

end 

 

%if number of source/sinks > 30%, randomly select more for removal 

for k = 1:Nodes.commodityCount 

    while numberSources(k) > sourceRange(k) 

        %until size is > 30%, sample one at a time from source/sinkList and 

        %add to remove Source/Sink list 

        kSourceList = sourceList(sourceList(:,2) == k, 1); 

        rNode = datasample(kSourceList, 1); 

        removeSource(end + 1, :) = [rNode k]; 

        iRemove = ~ismember(sourceList, [rNode,k], 'rows'); 

        sourceList = sourceList(iRemove, :); 

        numberSources(k) = numberSources(k) - 1; 

    end 
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    while numberSinks(k) > sinkRange(k) 

        %until size is > 30%, sample one at a time from source/sinkList and 

        %add to remove Source/Sink list 

        kSinkList = sinkList(sinkList(:,2) == k, 1); 

        rNode = datasample(kSinkList, 1); 

        removeSink(end + 1, :) = [rNode k]; 

        iRemove = ~ismember(sinkList, [rNode,k], 'rows'); 

        sinkList = sinkList(iRemove, :); 

        numberSinks(k) = numberSinks(k) - 1; 

    end 

end 

 

%if node in list, remove from all instances of source nodes per k 

for i = 1:size(Nodes.source,2) 

    for k = 1:Nodes.commodityCount 

        fieldName = sprintf('c_%d',k); 

        %check if field empty 

        if isempty(Nodes.source(i).(fieldName)) 

            continue 

        end 

        source_k = Nodes.source(i).(fieldName).'; 

        source_k(:,end + 1) = k; 

        tf = ismember(source_k, removeSource,'rows'); 

        loc = find(~tf).'; 

        Nodes.source(i).(fieldName) = Nodes.source(i).(fieldName)(loc); 

    end 

end 

 

%repeat for sink nodes per k 

for i = 1:size(Nodes.sink,2) 

    for k = 1:Nodes.commodityCount 

        fieldName = sprintf('c_%d',k); 

        %check if field empty 

        if isempty(Nodes.sink(i).(fieldName)) 

            continue 

        end 

        sink_k = Nodes.sink(i).(fieldName).'; 

        sink_k(:,end + 1) = k; 

        tf = ismember(sink_k, removeSink,'rows'); 

        loc = find(~tf).'; 

        Nodes.sink(i).(fieldName) = Nodes.sink(i).(fieldName)(loc); 

    end 

end 

 

A.1.3 Calculate kTon/train per commodity 

%Need to know total kTon per commodity in network, and total number of 

%trains that a commodity could be on. Used to calculate kTon/train per 

%commodity to distribute kTon to source/sink nodes. 

 

%calculate total kTon in network by commodity k 
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%sum by all k commodities all kTon for every path. 

Nodes.kTonTotal = zeros(Nodes.commodityCount,1); 

 

for i = 1:size(Routes,2) 

       %loop through every path and add commodity to kTonTotal 

       route_kTon = Routes(i).kTon(1:Nodes.commodityCount); 

       Nodes.kTonTotal = Nodes.kTonTotal + route_kTon; 

end 

 

%determine if node is source/sink node by commodity k 

%double checking previous work on ensuring node is not both 

%creating list of source nodes and sink nodes by commodity 

nodeSinkStatus = zeros(Nodes.nodeCount, Nodes.commodityCount); 

nodeSourceStatus = zeros(Nodes.nodeCount, Nodes.commodityCount); 

 

for i = 1:size(Routes,2) 

    for k = 1:Nodes.commodityCount 

        fieldName = sprintf('c_%d',k); 

        sourceNodes = Nodes.source(i).(fieldName); 

        sinkNodes = Nodes.sink(i).(fieldName); 

 

        %check if sources on path i selected for commodity k 

        if ~isempty(sourceNodes) 

            nodeSourceStatus(sourceNodes,k) = 1; 

        end 

        %check if sinks on path i selected for commodity k 

        if ~isempty(sinkNodes) 

            nodeSinkStatus(sinkNodes,k) = 1; 

        end 

    end 

end 

 

%check sum, to ensure no dual source/sink assignments 

checkNodeStatus = nodeSinkStatus + nodeSourceStatus; 

badNodes = all(checkNodeStatus > 1); %it works, I am a genius! 

Nodes.trainsTotal = zeros(Nodes.commodityCount,1); 

 

%Calc number of trains passing through source/sink by commodity per path 

for i = 1:size(Routes,2) 

    for k = 1:Nodes.commodityCount 

        fieldName = sprintf('c_%d',k); 

        sourceNodes = Nodes.source(i).(fieldName); 

        sinkNodes = Nodes.sink(i).(fieldName); 

 

        if and(isempty(sourceNodes), isempty(sinkNodes)) 

            continue 

 

        %if both not empty, add number of trains per year to total count 

        elseif and(~isempty(sourceNodes), ~isempty(sinkNodes)) 

            Nodes.trainsTotal(k) = Nodes.trainsTotal(k) + 

Routes(i).NbrTrainsPerYear; 

            continue 

        end 
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        % modification 06/15/2014 if empty, remove 

        if xor(isempty(sourceNodes), isempty(sinkNodes)) 

            %if missing source, select from nodes on path not sinks 

            if isempty(sourceNodes) 

                Nodes.sink(i).(fieldName) = []; 

            elseif isempty(sinkNodes) 

                Nodes.source(i).(fieldName) = []; 

            end 

        end 

    end 

end 

 

A.1.4 Distribute kTon per path per commodity 

%Convert kTon to kg (1E+6) No Rounding yet! 

Nodes.kgTotal = Nodes.kTonTotal * 1E+6; 

 

%calculate kg/train per commodity, still no rounding yet. 

Nodes.kgPerTrain = Nodes.kgTotal./Nodes.trainsTotal; 

 

%calculate kg Total after distributing to see rounding errors 

Nodes.kgTotalRounded = zeros(Nodes.commodityCount,1); 

 

%if source/sink on path, assign kTon: kg/train * number of trains(per path) 

for i = 1:size(Routes,2) 

    Nodes.source(i).kg = zeros(Nodes.commodityCount,1); 

    Nodes.sink(i).kg = zeros(Nodes.commodityCount,1); 

    for k = 1:Nodes.commodityCount 

        fieldName = sprintf('c_%d',k); 

        sourceNodes = Nodes.source(i).(fieldName); 

        sinkNodes = Nodes.sink(i).(fieldName); 

 

        %if they are both empty, no commodity is distributed 

        if and(isempty(sourceNodes), isempty(sinkNodes)) 

            continue 

        %otherwise, distribute by number of trains per year (Routes data) 

        %Round up to the nearest kg (error ~ 2 lbs per rounding). 

        %keep track of distributed kg to see rounding erros at the end. 

        else 

            Nodes.source(i).kg(k) = ceil(Nodes.kgPerTrain(k) * 

Routes(i).NbrTrainsPerYear); 

            Nodes.sink(i).kg(k) = ceil(Nodes.kgPerTrain(k) * 

Routes(i).NbrTrainsPerYear); 

            Nodes.kgTotalRounded(k) = Nodes.kgTotalRounded(k) + 

Nodes.source(i).kg(k); 

        end 

    end 

end 
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A.1.5 Distribute kg to source/sink nodes 

%Now, distribute kg to source/sink nodes on path. End up 

%with source/sink node total for network, instead of per path. 

%store inflow for sink/source per commodity k, Sink < 0, Source > 0 

Nodes.inflow = zeros(Nodes.nodeCount, Nodes.commodityCount); 

 

%for every path, every commodity k, distribute sink/source kg 

for i = 1:size(Routes,2) 

    for k = 1:Nodes.commodityCount 

        fieldName = sprintf('c_%d',k); 

        sourceNodes = Nodes.source(i).(fieldName); 

        sinkNodes = Nodes.sink(i).(fieldName); 

        %if sink/source for commodity k, distribute, else, continue 

        if and(isempty(sourceNodes), isempty(sinkNodes)) 

            continue 

        %two for loops (sink, source) to randomly assign kg (uniform) 

        %sum(supply) === sum(demand), integer values, no switching 

        else 

            %source first, kgDistribute is the same for both sink/source 

            kgDistribute = Nodes.source(i).kg(k); 

            sumSource = 0; 

 

            lsran = int64(kgDistribute/size(sourceNodes,2) * 0.50); 

            usran = int64(kgDistribute/size(sourceNodes,2) * 1.25); 

 

            %loop through each node in source, assign kg (random uniform) 

            for j = 1:size(sourceNodes,2) 

                %if not last element, random sampling 

                if j < size(sourceNodes,2) 

                    kgIntS = randi([lsran, usran]); 

                    sumSource = sumSource + kgIntS; 

 

                    %check if amount exceeds kgDistributed, adjust if need 

                    if sumSource > kgDistribute 

                        OldsumSource = sumSource - kgIntS; 

                        kgIntS = kgIntS - (sumSource - kgDistribute); 

                        sumSource = OldsumSource + kgIntS; 

                    end 

                    Nodes.inflow(sourceNodes(j),k) = 

Nodes.inflow(sourceNodes(j),k) + ... 

                        kgIntS; 

                %if last element, balance so sumSource === kgDistribute 

                else 

                    if sumSource < kgDistribute 

                        kgIntS = kgDistribute - sumSource; 

                        Nodes.inflow(sourceNodes(j),k) = 

Nodes.inflow(sourceNodes(j),k) + ... 

                            kgIntS; 

                    end 

                end 
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            end 

 

            %repeat previous for sink nodes, except change to negatvie 

            kgDistribute = -Nodes.sink(i).kg(k); 

            sumSink = 0; 

 

            usran = int64(kgDistribute/size(sinkNodes,2) * 0.50); 

            lsran = int64(kgDistribute/size(sinkNodes,2) * 1.25); 

 

            %loop through each node in source, assign kg (random uniform) 

            for j = 1:size(sinkNodes,2) 

                %if not last element, random sampling 

                if j < size(sinkNodes,2) 

                    kgIntS = randi([lsran, usran]); 

                    sumSink = sumSink + kgIntS; 

 

                    %check if amount exceeds kgDistributed, adjust if need 

                    %check the signs, because all values should be negative 

                    if sumSink < kgDistribute 

                        OldsumSink = sumSink - kgIntS; 

                        kgIntS = kgIntS - (sumSink - kgDistribute); 

                        sumSink = OldsumSink + kgIntS; 

                    end 

                    Nodes.inflow(sinkNodes(j),k) = Nodes.inflow(sinkNodes(j),k) + 

kgIntS; 

                %if last element, balance so sumSource === kgDistribute 

                else 

                    if sumSink > kgDistribute 

                        kgIntS = kgDistribute - sumSink; 

                        Nodes.inflow(sinkNodes(j),k) = 

Nodes.inflow(sinkNodes(j),k) + kgIntS; 

                    end 

                end 

            end 

        end 

    end 

end 

 

A.1.6 Calculate trains per link in network 

%use Nodes.kgPerTrain (not rounded, before distribution) to calculate capacity per 

train (kg) 

Edges = struct(); 

kgPerTrain = Nodes.kgPerTrain; 

Edges.trainCapacity = kgPerTrain; 

 

%train capacity for total is max of train capacity of commodities 

Edges.trainCapacity(end + 1) = max(kgPerTrain)*1.25; 

 

%create Edges data structureUse 

ICM = SwRail.ICM; 

Edges.arc_ij = []; 
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Edges.commodityCount = Nodes.commodityCount; 

 

for i = 1:size(ICM,1) 

   for j = 1:size(ICM,2) 

       %if edge exists, add to edges 

       if ICM(i,j) == 1 

           Edges.arc_ij(end + 1, :) = [i, j]; 

       end 

   end 

end 

 

%calculate number of trains per link, by Routes data (if train on path) 

%will be bidirectional, meaning arc(i,j) and arc(j,i) will have individual 

%capacities. 

Edges.trainsPerArc = struct(); 

 

%will need trains per arc for every commodity 

for k = 1:Edges.commodityCount + 1 

    fieldName = sprintf('c_%d',k); 

    Edges.trainsPerArc.(fieldName) = zeros(Nodes.nodeCount, Nodes.nodeCount); 

end 

 

%for each route, pull the nodes on route, record arc data, number of trains 

%if commodity found on path 

for i = 1:size(Routes,2) 

    NodeRoute = Routes(i).NodeRoute; 

    kTonPerRoute = Routes(i).kTon; 

 

    %commodity found T/F boolean (for field 21 (total link capacity) 

    foundCommodity = false; 

 

    %loop through every every node on path per route up to end - 1 

    for j = 1:size(NodeRoute,2) 

 

        %record number of trains per commodity (if commodity on route) 

        for k = 1 : Edges.commodityCount 

            fieldName = sprintf('c_%d',k); 

 

            %if you are not on the last element, record arc information 

            if j + 1 < size(NodeRoute,2) 

                Edges.trainsPerArc.(fieldName)(NodeRoute(j), NodeRoute(j + 1)) = 

... 

                    Edges.trainsPerArc.(fieldName)(NodeRoute(j), NodeRoute(j + 1)) 

+ ... 

                    Routes(i).NbrTrainsPerYear; 

 

                Edges.trainsPerArc.(fieldName)(NodeRoute(j + 1), NodeRoute(j)) = 

... 

                    Edges.trainsPerArc.(fieldName)(NodeRoute(j + 1), NodeRoute(j)) 

+ ... 

                    Routes(i).NbrTrainsPerYear; 

                foundCommodity = true; 

            end 

        end 



76 

 

        %fill for total commodity data 

        if j + 1 < size(NodeRoute,2) 

            if foundCommodity == true 

                fieldName = sprintf('c_%d',21); 

                Edges.trainsPerArc.(fieldName)(NodeRoute(j), NodeRoute(j + 1)) = 

... 

                    Edges.trainsPerArc.(fieldName)(NodeRoute(j), NodeRoute(j + 1)) 

+ ... 

                    Routes(i).NbrTrainsPerYear; 

 

                Edges.trainsPerArc.(fieldName)(NodeRoute(j + 1), NodeRoute(j)) = 

... 

                    Edges.trainsPerArc.(fieldName)(NodeRoute(j + 1), NodeRoute(j)) 

+ ... 

                    Routes(i).NbrTrainsPerYear; 

            end 

        end 

    end 

end 

 

A.1.7 Calculate capacity per link in network 

Edges.arcCapacity = struct(); 

 

for i = 1:size(Edges.arc_ij,1) 

    arc_ij = Edges.arc_ij(i,:); 

    Edges.arcCapacity(i).arc_ij = Edges.arc_ij(i,:); 

    Edges.arcCapacity(i).trainsPerArc = zeros(Edges.commodityCount + 1, 1); 

    Edges.arcCapacity(i).kg = zeros(Edges.commodityCount + 1, 1); 

end 

 

%loop through trains per arc, covert format 

for i = 1:size(Edges.arc_ij, 1) 

    for k = 1:Edges.commodityCount + 1 

        fieldName = sprintf('c_%d',k); 

        trainsPerArc = Edges.trainsPerArc.(fieldName); 

        tArc = trainsPerArc(Edges.arc_ij(i,1), Edges.arc_ij(i,2)); 

 

        %record trains per arc per commodity information 

        Edges.arcCapacity(i).trainsPerArc(k) = tArc; 

    end 

end 

 

% Capacity equals kTon/train * trains/arc 

for i = 1:size(Edges.arcCapacity, 2) 

   tracksArc = Edges.arcCapacity(i).nmbrTracks; 

 

   %fill in trains per arc data, calculate kg per arc per commodity k 

   for k = 1:Edges.commodityCount + 1 

           Edges.trainCapacity(k) * 1.5); 

       if isnan(Edges.arcCapacity(i).kg(k)) 
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          Edges.arcCapacity(i).kg(k) = 0; 

       end 

   end 

end 

 

A.1.8 Export SwRail Data 

%export inflow, position, and station name from Nodes 

NodesE = struct(); 

 

NodesE.pos_0 = Nodes.pos_0; 

NodesE.pos_1 = Nodes.pos_1; 

NodesE.node = [1:Nodes.nodeCount].'; 

NodesE.station = Nodes.station; 

 

for k = 1:Nodes.commodityCount 

    fieldName = sprintf('inflow_%d',k); 

    NodesE.(fieldName) = Nodes.inflow(:,k); 

end 

 

struct2csv(NodesE, 'SwRailMatlabNodesExport.csv'); 

 

%export arc i,j, and capacity from Edges 

EdgesE = struct(); 

 

EdgesE.arc_i = Edges.arc_ij(:,1); 

EdgesE.arc_j = Edges.arc_ij(:,2); 

 

for i = 1:size(Edges.arcCapacity, 2) 

 

    for k = 1:Edges.commodityCount + 1 

        fieldName = sprintf('capacity_%d',k); 

        EdgesE.(fieldName)(i) = Edges.arcCapacity(i).kg(k); 

 

    end 

 

end 

 

for k = 1:Edges.commodityCount + 1 

    fieldName = sprintf('capacity_%d',k); 

    EdgesE.(fieldName) = EdgesE.(fieldName).'; 

end 

 

struct2csv(EdgesE, 'SwRailMatlabEdgesExport.csv'); 
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Appendix A.2 Network Model 

1. def optMCNF(G):   
2.        
3.     ##Model the data   
4.     #copy the node data   
5.     nodes_h = deepcopy(nx.get_node_attributes(G, 'inflow'))   
6.     nodes = deepcopy(G.nodes())   
7.        
8.     #Number of commodities, extracted from lenght of 'inflow' list -   
9.     #IMPORTANT for future code always ensure it matches intended number of   
10.     #COMMODITIES   
11.     N = 0   
12.        
13.     #for each node, have a list of N commodities length attached to give[][]   
14.     #index feature for i nodes and h commodities   
15.     for i in nodes_h.iterkeys():   
16.         count = 0   
17.         j = nodes_h[i]   
18.         for k in xrange(len(j)):   
19.             nodes_h[i][k]=k   
20.            
21.         if N == 0:   
22.             N = len(j)   
23.        
24.     #for each arc i,j add index h for N commodities as third index of tuple   
25.     #list = N * number arcs in length   
26.     larcs = G.edges()   
27.     arcs_h = []   
28.     arcs = tuplelist(G.edges())   
29.     for i in xrange(len(larcs)):   
30.         for k in xrange(N):   
31.             ik = list(larcs[i])   
32.             ik.extend([k])   
33.             arcs_h.append(tuple(ik))   
34.        
35.        
36.     arcs_h = tuplelist(arcs_h)   
37.        
38.        
39.     #supply and demand dictionairies   
40.     supply = {}   
41.     demand = {}   
42.        
43.     #remove super source/sink nodes from nodelist   
44.     inflow = nx.get_node_attributes(G, 'inflow')   
45.        
46.     #loop through attribute data   
47.     for i,j in inflow.iteritems():   
48.         for k in xrange(len(j)):   
49.             if j[k] > 0:   
50.                 supply[(i, k)] = j[k]   
51.                 nodes_h.pop(i)   
52.                 break   
53.             if j[k] < 0:   
54.                 demand[(i, k)] = -j[k]   
55.                 nodes_h.pop(i)   
56.                 break   
57.    
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58.     #determine capacity   
59.        
60.     #seperate capacity for arc specific and link capacity   
61.     capacity_h = {}   
62.     capacity_arc = {}   
63.        
64.        
65.     #k index for commodities   
66.     c = nx.get_edge_attributes(G, 'capacity')   
67.        
68.     #extract capacity from networkx graph   
69.     for i, j in c.iteritems():   
70.         for k in xrange(len(j)):   
71.             if k < N:   
72.                 x = tuple([k],)   
73.                 capacity_h[i + x] = j[k]   
74.             else:   
75.                 capacity_arc[i] = j[k]   
76.                    
77.                    
78.     # Create optimization model   
79.     m = Model('netflow')   
80.        
81.     # Create decision variables, flow of commodity k across arc ij   
82.     flow = {}   
83.        
84.     for i,j,k in arcs_h:   
85.         flow[i,j,k] = m.addVar(name ='flow_%s_%s_%s' % (i, j, k))   
86.            
87.        
88.     m.update()   
89.        
90.        
91.     # Arc capacity constraints, flow >= 0   
92.     # seperate for loops for commodity specific capacity and arc capacity   
93.     for i,j,k in arcs_h:   
94.         #flow of commodity h across arc ij <= capacity of commodity h of   
95.         #arcij   
96.         m.addConstr(flow[i,j,k] <= capacity_h[i,j,k],   
97.                     'cap_%s_%s_%s' % (i, j, k))   
98.            
99.         #all flow across arc ij of commodity h is >= 0   
100.         m.addConstr(flow[i,j,k] >= 0)   
101.            
102.     for i,j in arcs:   
103.         #flow of all commodities across arc ij <= capacity of arc ij   
104.         m.addConstr(quicksum(flow[i,j,k] for i,j,k in arcs_h.select(i,j,'*'))  
105.                     <= capacity_arc[i,j], 'arccap_%s_%s' % (i,j))   
106.            
107.            
108.     # Flow conservation constraints   
109.     #loop over every commdodity flowing through every node h   
110.     for j, h in nodes_h.iteritems():   
111.         for k in h:   
112.             #flow in = flow out of node for every node and k within node   
113.             m.addConstr(   
114.                 quicksum(flow[i,j,k] for i,j,k in arcs_h.select('*',j,k)) ==   
115.                 quicksum(flow[j,i,k] for j,i,k in arcs_h.select(j,'*',k)),   
116.                 'node_%s_%s' % (j, k))   
117.        
118.     #flow of commodity k out of node j in supply <= supply of commodity k at   
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119.     #node j,   
120.     for j, k in supply:   
121.         m.addConstr(   
122.             quicksum(flow[j,i,k] for j,i,k in arcs_h.select(j,'*',k)) <=   
123.             supply[j,k],    
124.             'supply_%s_%s' % (j, k))   
125.         #flow into supply node j = 0   
126.         m.addConstr(   
127.             quicksum(flow[i,j,k] for i,j,k in arcs_h.select('*', j,k)) == 0)   
128.        
129.        
130.     #flow of commodity k into node j in demand <= demand of commodity k at   
131.     #node j,   
132.     for j,k in demand:   
133.         m.addConstr(   
134.             quicksum(flow[i,j,k] for i,j,k in arcs_h.select('*',j,k)) <=   
135.             demand[j,k],   
136.             'demand_%s_%s' % (j,k))   
137.         #flow out of demand node j = 0   
138.         m.addConstr(   
139.             quicksum(flow[j,i,k] for j,i,k in arcs_h.select(j,'*',k)) == 0)   
140.            
141.     m.update()   
142.    
143.     #set the objective, minimize unmet demand   
144.     unmetDemand = LinExpr()   
145.        
146.     for j,k in demand:   
147.         #select all arcs flowing into demand node j   
148.         flow_demand = arcs_h.select('*', j, k)   
149.         for x, y, z in flow_demand:   
150.             unmetDemand.addTerms(-1/demand[j,k], flow[x,y,z])   
151.         unmetDemand.addConstant(1)   
152.            
153.     m.setObjective(unmetDemand, GRB.MINIMIZE)   
154.        
155.     m.update()   
156.        
157.     m.optimize()   
158.        
159.     flow_solution = m.getAttr('x', flow)   
160.        
161.     return flow_solution   



81 

Appendix A.3 TOPSIS 

function C_ideal = TOPSIS(X, w) 

 

 

%Step 1(a) of TOPSIS: calculate sum(x^2(i,j))^1/2 for each column 

step_1a = sum(X.^2,1).^(0.5); 

 

%calculate rij 

for i = 1:size(X, 2) 

    if step_1a(i) == 0 

        step_1b(:,i) = 0; 

    else 

        step_1b(:,i) = X(:,i)/step_1a(i); 

    end 

end 

 

%step 2: multiply each column by weight to get vij 

for i = 1:size(X, 2) 

   step_2(:,i) = step_1b(:,i)*w(i); 

 

end 

 

%step 3: determine ideal and anti-ideal solution 

for i = 1:size(X, 2) 

    step_3a(i) = max(step_2(:,i)); 

    step_3b(i) = min(step_2(:,i)); 

end 

 

%step 4: determine seperation from ideal, Euclidean distance 

for i = 1:size(X, 2) 

    step_4a(:,i) = (step_3a(i) - step_2(:,i)).^2; 

    step_4b(:,i) = (step_3b(i) - step_2(:,i)).^2; 

end 

 

%sum across industry to complete step 4 

S_ideal = sum(step_4a, 2); 

S_anti = sum(step_4b, 2); 

 

%calculate relative closeness to the ideal solution 

for i = 1:length(S_ideal) 

   C_ideal(i) = S_anti(i)/(S_ideal(i) + S_anti(i)); 

end 

 

 

end 
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Appendix A.4 TOPSIS Ranking Spread 

Appendix A.4.1. TOPSIS rank spread of unmet demand percentage performance with SIOT weightings. 

TOPSIS Unmet Demand 
SIOT 

Count of Rank 
SIOT Weights 

0-0.04 1382 

0.04-0.08 27 

0.08-0.12 17 

0.12-0.16 5 

0.2-0.24 3 

0.28-0.32 1 

0.32-0.36 1 

0.56-0.6 1 

0.64-0.68 1 

 

Appendix A.4.2. TOPSIS rank spread of unmet demand percentage performance with equal weightings. 

TOPSIS Unmet 
Demand Equal Weights 

Count of 
Rank Equal 

Weights 

0-0.01 1310 

0.01-0.02 46 

0.02-0.03 27 

0.03-0.04 11 

0.04-0.05 14 

0.05-0.06 4 

0.06-0.07 6 

0.07-0.08 2 

0.08-0.09 1 

0.09-0.1 2 

0.1-0.11 1 

0.11-0.12 2 

0.12-0.13 3 

0.13-0.14 4 

0.14-0.15 1 

0.16-0.17 1 

0.17-0.18 1 

0.18-0.19 1 

0.21-0.22 1 
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Appendix A.4.3. TOPSIS rank spread of link usage > 90% performance with SIOT weights. 

TOPSIS Link Usage SIOT 
Count of Rank 
SIOT Weights 

0.05-0.1 16 

0.1-0.15 53 

0.15-0.2 110 

0.2-0.25 115 

0.25-0.3 146 

0.3-0.35 423 

0.35-0.4 128 

0.4-0.45 94 

0.45-0.5 90 

0.5-0.55 61 

0.55-0.6 72 

0.6-0.65 48 

0.65-0.7 40 

0.7-0.75 21 

0.75-0.8 11 

0.8-0.85 3 

0.85-0.9 4 

0.9-0.95 3 

 

Appendix A.4.4. TOPSIS rank spread of link usage > 90% performance with equal weights. 

TOPSIS Link Usage Eqal 
Weights 

Count of Rank 
Equal Weights 

0.15-0.25 46 

0.25-0.35 730 

0.35-0.45 461 

0.45-0.55 161 

0.55-0.65 36 

0.65-0.75 4 
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Appendix A.4.5. TOPSIS ranking with combined importance metrics performance with top 5 SIOT 
weights. 

TOPSIS Combined, 
SIOT Top 5 

Count 
of Rank 

0-0.1 1375 

0.1-0.2 52 

0.2-0.3 7 

0.3-0.4 1 

0.4-0.5 1 

0.5-0.6 1 

0.6-0.7 1 

 


