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SEPARABLE CO(X)-ALGEBRAS
INTRODUCTION

Let X be a compact Hausdorff space and C(X) the
C-algebra of all complex-valued continuous functions on
X. It is known that the category of faithful separable
C(X)-algebras that are finitely generated projective C(X)-
modules and the category of finite-fibered covering spaces
of X are contravariantly equivalent [C, Theorem 2 and M1,
Corollary 12]. Let X be a locally compact Hausdorff space
and CO(X) the C-algebra of all complex-valued continuous
functions on X vanishing at infinity. Our study here is
to explore the relation between the separable CO(X)-algebra
extensions and the locally compact Hausdorff finite-fibered
covering spaces of X. Childs proved that if X is a com-
pact Hausdorff space and S is a finitely generated projec-
tive separable C(X)-algebra, then for each maximal ideal
M of C(X) there is an h not in M such that Sh = (C(X)h)n,
a product as rings of n copies of C(X)h [C, p. 32]. The
converse is also true. The above motivates our definition

for separable CO(X)-algebras without identity.
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Let k be a locally compact Hausdorff space and S a
commutative C-algebra without identity. We call S a CO(X)-
algebra if there is a €-algebra homomorphism 6: 'Co(i) + S,
and call S a CO(X)-algebra extension if 6 is injective.

Let S be a CO(X)-aigebra extension. If f € CO(X), we let
Z(f) denote the zero set of f and f = 6(f). S is called a
separable CO(X)-algebra if (i) for each regular maximal
id=al N of CO(X) there is an f in CO(X) but not in N and

a positive integer n such that X - Z(f) € F, a compact sub-
set of X, and S; = (CO(X)f)n [see Chapter II], a product

as rings of n copies of CO(X)f, and (ii) no regular maximal
ideal of S contains all f, where f satisfies (i). We prove
that if Y is a locally compact Hausdorff finite-fibered cov-
ering space of X, then CO(Y) is a separable CO(X)—algebra
extension, and conversely, if S is a separable Co(X)-
algebra extension, then the structure space Rm S of S is a
locally compact Hausdorff finite-fibered covering space of
X. The set of all locally compact Hausdorff finite-fibered
covering spaces of X together with the proper maps [B2, p.
97] between two covering spaces which commute with cover-
ing projections, and the set of all separable CO(X)—algebra
extensions together with the €-algebra homomorphisms between
separable CO(X)-algebra extensions which commute with Co(X)-
algebra homomorphisms form two categories, and the map

Y » CO(Y) is a full and faithful functor. We also give an~
example to show in general the functor is not a contravar-

iant equivalence. However, if we restrict the latter



category to all C*-Banach algebras that are separable CO(X)-
algebra extensions,'then the functor Y -~ CO(Y) is a contra-

variant equivalence.



CHAPTER I

COMMUTATIVE C-ALGEBRAS WITHOUT IDENTITY
AND STRUCTURE SPACES

The principal result in this chapter is that the
structure space of a nonradical commutative C-algebra with-
out identity is a locally compact space, and is a locally
compact Hausdorff space if the C-algebra is the ring of
all complex-valued ccentinuous functions on a locally com-
pact Hausdorff space vanishing at infinity. We begin by
reviewing some definitions related to the commutative C-
algebras without identity.

Throughout this chapter R denotes a commutative
C-algebra without identity. Let R = € x R = {(k,r)|k € €,
r € R}. Then R forms a commutative C-algebra with identity
e = (1,0) if the addition and scalar multiplication are
defined componentwise and the multiplication is defined by
(k,r)(p,s) = (kp, ks + pr + rs). It is clear that R can
be identified with the maximal ideal (O,R) of R, and R/R
is isomorphic to €. We call a C-algebra ideal I a regular
ideal if there exists an element u in R such that ur - r
€ I for all r € R, or equivalently the quotient ring R/I
is a commutative C-algebra with identity u = u + I. Cail

4



a regular ideal a regular maximal ideal if it is a maximal

ideal, or equivalently the quotient ring is a field. The
intersection of all regular maximal ideals is the radical.

R is called a semi-simple C-algebra if the radical is 0,

a nonradical C-algebra if R has at least one regular maxi-

mal ideal and a radical €-algebra if R has no regular maxi-
mal ideal. Since R has no identity, it may be a radical

€C-algebra [M2, p. 28]. Henceforth, we shall assume all

C-algebras to be nonradical.

Lemma 1.1: If J is a C-algebra ideal of R containing a
regular ideal I, then J itself is a regular ideal.
Proof: If u is the identity mod I, then clearly u is the

identity mod J.

Lemma 1.2: 'Every regular ideal of R is contained in a
regular maximal ideal.

Proof: Let I be a regular ideal of R. By definition R/I
is a commutative C-algebra with identity, hence contains a
maximal ideal M/I, where M is an ideal of R containing I.
It is clear that M is a maximal ideal. By Lemma 1.1 M is

also a regular ideal.

Lemma 1.3: I is a regular ideal of R if and only if there
exists an ideal I of R such that I ¢ R and INnR=1. More-
over, I is regular maximal if and only if I is maximal.
Proof: Suppose that I is a regular ideal of R. Then there

exists an element u in R such that ur - r € I for all T in



R. Let I = {(k,r)|ku + T € I}. Clearly, I is an ideal of
R containing I. Since (1,-u) is in I but not in R, I Z R.
If (k,r) € INR, then k = 0 and r € I. Thus I N Kk C I.
On the other hand, both 1 and R contain I, so I C I nR.
Hence I = I N R. Now we assume further that I is a regular
maximal ideal of R. Clearly, the map a: R - R/I defined
by e(k,r) = (ku + r) + I is a surjective C-algebra homomor-
phism with kernel I. Thus ﬁ/i = R/I. Since I is regular
maximal, R/I is a field. Therefore, ﬁ/i is a field. It
follows that I is a maximal ideal of R.

Conversely, since I ¢ R, there exists an element
s in I but not in R. R is a maximal ideal of R and s & R.
Thus the ideal generated by R and s is the whole ring R.
It follows that there exists an element m in R such that
e = sm + u for some u in R. For any r in R, we have
ur - 1 = (e - sm)r - T =¢er - SMr - ¥ = T - SAY - T =

~

=smr € Rn I =1, Thus I is a regular ideal of R. Now
suppose that I is a maximal ideal of R. Clearly, the map

g: R/I ~» ﬁ/i defined by sending r + I onto r + I is a well-
defined, injective C-algebra homomorphism. The image of

R/I under 8 is an ideal of ﬁ/i and ﬁ/i is a field. Thus

B is either 0 or surjective. But we know that g is injec-
tive, so B8 must be a surjective map. Thus g is a C-algebra

isomorphism, and hence R/I is a field. By definition I is

a regular maximal ideal of R.

Let Rm R denote the set of all regular maximal

idcals of R and mﬁ - {R} the set of all maximal ideals of



R not equal to R. We have:

Lemma 1.4: There is a bijection between Rm R énd mR - {R}.
Proof: Define a map a: mR - {R} > Rm R by «a(M) = Mn R.
By Lemma 1.3 « is well-defined and surjective. We need
only to show that o« is injective. Let P, Q € mR - {R} and
P # Q. Since no two of P, Q, R are equal, R# P n Q. It
follows that there exists y € P - Q, z E.Q - P and x € R
with x ¢ P ﬁVQ. Since P, Q and R are ideals, xy € P n R
and xz € Q N R. We claim that either xy # Q N R or xz ¢
PNnR, If xy€ QN R and xz € PN R, then xy € Q and xz

€ P, P and Q are prime ideals, so x € P and x € Q. Thus,
x €PN Q; a contradiction. Hence PN R # QN R, i.e., a

is injective.

For each r in R, let F_ = {N € Rm R|r € N}. Then
Rm R can be made into a topological space by taking the
family of all F.as a base for the closed sets. The space

is called the structure space and the topology is called

the hull-kernel topology. Endow mR with the hull-kernel

topology. We have the following theorem.

Theorem 1.5: Regarding mR - {R} as a subspace of mﬁ, it 1is

homeomorphic to Rm R.

Proof: By Lemma 1.4 there is a bijection a: mR - {R} » Rm R
that sends M onto M N R. We need only to show that o is a
continuous open map. Let r € R and Fr = {N € Rm R|r € N}.

Then a-l(Fr) = (M € mR - {R}|r € M} which is a basic closed



set 1in mR - {R}. Thus o is continuous. Let r € R and

Uf = {Me€ mﬁ - {R}[f ¢ M}. Then Uf is a basic open set in
mﬁ - {R}. We show that u(Uf) is open in Rm R as follows:
Let N € a(Uf) and M € Ui such that «(M) = M n R = N. Since
M € Uz, then r ¢ M. Since M # R and both R and M are prime
ideals of ﬁ, there exists an element a in R buf not in M
such that ar € R and ar ¢ M. Let r = ar and V_ = {N' € Rm R|
r ¢ N'}., Sincer = ar ¢ MNn R = N, N is in the basic open
set V.. Let N' € V_and M' € mR - {R} such that M' n R

= N'. Then since aT = r ¢ N' = M' N R, we have Tt € M'.
Thus M' € Uz, and hence N' = M' n R € a(Uf). Therefore,

N € Vr - a(U}) which implies that “(Ui) is open, and hence

¢ is an open map.

Corollary 1.6: Rm R is a locally compact space.

Proof: Since R is a commutative C-algebra with identity,
the structure space mR is a compact T; space [GJ, p. 111].
Now mR - {R} is open in mﬁ. Thus mR - {R}, hence Rm R, is

a locally compact space.

If R is the C-algebra of all complex-valued contin-
uous functions on a locally compact Hausdorff space vanish-
ing at infinity, then we know the exact form of the regular
maximal ideals of R and the structure space is a locally

compact Hausdorff space. We first define the following

notations.
X = a locally compact Hausdorff space.
X = the one point compactification of X.



CO(X) = the C-algebra of all complex-valued contin-
uous functions on X vanishing at infinity, that is, f € Co(X)
if and only if f is continuous on X and for each € > 0 there
exists a compact subset KE of X such that |[£(x)]| < ¢ for all
x € X - Ke'

C(X)

the C-algebra of all complex-valued continuous
functions on X.

T .

CO(X) = the C-algebra obtained by adjoining the com-

plex identity to CO(X).

Z(f) = {x € X (or X)|£(x) = 0, £€ C_(X) (orC(X))}.
2(I) = {Z(£)|f € I}.
Lemma 1.7: E;TE) is isomorphic to C(i).

Proof: CO(X) is isomorphic to C(i) under the map (k,f) -

k + £.

Lemma 1.8: The family Z(CO(X)) = {Z(f)|f € Co(X)} is a base
for the closed sets of X.

Proof: Let F be a closed set in X and x ¢ X. Then F U {«}
is a closed set in X and x € F U {«}. Since X is completely
regular, there exists a continuous function g: X - € such
that g(x) = 1 and g(F YV {«}) = 0. Let f = g]x. Then

f e CO(X), F C Z(f) and x ¢ Z(f). Thus Z(CO(X)) is a base

for the closed sets of X.

Lemma 1.9: For each x € X the set NX = {f € CO(X)|f(x) = 0}
is a regular maximal ideal of CO(X).

Proof: For each x € X, define a map a: CO(X) - € by
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o(f) = £(x). It is clear that o is a C-algebra epimorphism

I

with kernel Nx' Thus CO(X)/Nx € and hence Nx is a regular

maximal ideal of XO(X).
The next lemma is the converse of Lemma 1.9.

Lemma 1.10: If N is a regular maximal ideal of CO(X), then

there exists x € X such that N = Nx'
Proof: By Lemma 1.4 there exists a maximal ideal M # C_(X)
in C(i) such that M n CO(X) = N. Since i is a compact Haus-
dorff space, M = Mx for some x € X [GJ, p. 56]. Since

M # Co(X), X # . Thus x € X, But then N =M N CO(X)

=M, 0 Co(X) = (£eC (N)]f(x) =0} =N

x*
Lemma 1.10, together with Lemma 1.9, gives us the

following theorem.

Theorem 1.11: The set of regular maximal ideals of CO(X)

is precisely the set of all N, = (f & CO(X)If(x) = 0}, for

x € X. The ideals N, are distinct for distinct x. For each
X, CO(X)/NX = C

Proof: We need only to show the second assertion. It follows

immediately from the fact that X is completely regular.
Now we prove the main result in this chapter.

Theorem 1.12: The structure space Rm CO(X) of CO(X) is

homeomorphic to X, and hence Rm CO(X) is a locally compact

Hausdorff space.
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Proof: By Theorem 1.11, the map «: X > Rm CO(X) defined
by o(x) = Nx is well-defined and bijective. Since «(Z(f))
= {lef € N,} and {Z(f)|f € CO(X)}, {lef € N} are bases
for the closed sets of X and Rm CO(X) respectively, then «a
is a continuous closed map. Hence, it is a homeomorphism

from X onto Rm CO(X).

- e —
Corollary 1.13: mC(X) and Rm CO(X), the one point compacti-

fication of Rm Co(X), are homeomorphic.



CHAPTER II

LOCALIZATION OF COMMUTATIVE C-ALGEBRAS

WITHOUT IDENTITY

Throughout this chapter R denotes a commutative
C-algebra without identity and S5 denotes a-multiplicative
closed set in R in the sense that 0 ¢ S and st € S whenever
s €S and t € S.

Let Rg = {(r,s)|r € R, s € S}. Define a relation
~ on RS by (rl,sl) ~ (rz,sz) if and only if there exists

r,Ss

s € S such that s(rls2 - T, 1) = 0.

Lemma 2.1: ~ is an equivalence relation on Rg.
Proof: Clearly, ~ is reflexive and symmetric. Let (rl,sl)

~ (rz,sz) and (rz,sz) ~ CTS’SS)' There exist t, s els such

that t(rls2 - rzsl) = 0 and s(r253 - r3sz) = 0. Thus
trys, - trzs1 =0 (1)
and ST,Sg - STgs, = 0 (2)

Since 553(1) + tsZ(Z) = 0, we have (tssz)(rls3 - rzsl) = 0.
Since tss, € S, (rl,sl) ~ (r3,53). Thus ~ is transitive and

hence ~ is an equivalence relation on Rg-

Our notation fcr the equivalence class of (r,s) will
be r/s. We can make the equivalence classes of RS into a

12
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C-algebra by defining rl/s1 * T,s, = (rls2 + rzsl)/slsz,
k(rl/sl) = krl/s1 and (rl/sl)(rz/sz) = rlrz/slsz, where

Ty and r, in R, $1 and S, in S and k in €. Straightforward
computations show that the above operations are well-defined
and show the following lemmas. We use RS to denote the set

of equivalence classes.

Lemma 2.2: RS is a commutative €-algebra with identity s/s
for any s € S and the map r -+ rs/s is a C-algebra homomor-

phism from R into Rq.

Lemma 2.3: The set S' = S U {e} is a multiplicative closed
set in R (i is the C-algebra obtained by adjoining the com-

plex identity to R and e is the identity of ﬁ) and ﬁS' = RS.

If r is a non-nilpotent element in R, i.e., " # 0
for n > 1, then the set S = {r"|n > 1} is clearly a multi-
plicative closed set in R. For convenience we denote Rg
by Rr'

We need the following lemmas to establish a corres-

pondence between the prime ideals of Rg and the prime ideals

of R disjoint from S.

Lemma 2.4: If P is a prime ideal of R disjoint from S,
then Pg = {g/s|lg € P, s € S} is a prime ideal of Rg.
Proof: Clearly, Pg is an ideal of Rg. Llet g/s, h/t € Rg
and g/s-h/t € Po.  Then gh/st = k/u for some k € P. It
follows that there exists s' € S such that s'(ugh - stk)

= 0. Thus s'ugh = s'stk € P since k € P, Since s'u ¢ P,
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gh € P, P is a prime ideal, so either g € P or h € P. Thus

g/s € Pg or h/t € P Hence, Pg is prime.

Sl

Lemma 2.5: If~J is a prime ideal of R then the set I

S,
= {x|xs/s € J} is a prime ideal of R disjoint from S and

I = J.

S
Proof: (1) I is an ideal of R. Let x and y be in I.
Then xs/s and ys/s are in J. J is an ideal, so (x + y)s/s

= xs/s + ys/s € J. Thus x + y € I. Let t € R and x € I.

Then ts/s € RS and xs/s € J. Thus txs/s = txsz/s2

ts/s+*xs/s € J and hence tx € I

(2) I is prime. If xy € T then xs/s-ys/s Xyss/ss
= xys/s € J. J is prime, so either xs/s € J or ys/s € J.
Thus either x € 1 or y € I. Hence I is prime.

(3) SniI=¢. If s€ SN I then ss/s € J. Thus
s/s = sss/sss = ss/s-s/ss € J. Hence J = RS, a contradic-
tion. Therefore, SN I =94¢.

(4) Ig=J. Let x/s € IS where x € 1. Then xs/s
€ J and hence x/s:ss/s = xs/s € J. Since ss/s ¢ J and J
is prime, x/s € J. Thus Ig € J. On the other hand, let
j = x/s € J. Then xs/s = x/s-ss/s € J. Thus x € 1 and

x/s € 1 Hence J C I So I, = J.

S’ S* S

Lemma 2.6: If P and Q are two distinct prime ideals of R
disjoint from S, then PS and Qs are two distinct prime ideals
in RS‘

Proof: Since P # Q. there exists x € P with x ¢ Q. Then

x/s € PS for s € S. 1If x/s € QS’ then x/s = g/t for some
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g € Q. It follows that there exists s' € S such that
s'(tx - sg) = 0. Thus s'"tx = s'sg € Q. Q is a prime ideal
and s't € Q, so x € Q, a contradiction. Thus, x/s ¢ QS and

hence PS # QS'

We summarize Lemma 2.4, Lemma 2.5 and Lemma 2.6 as

follows.

Theorem 2.7: There is an order preserving bijection between

the set of all prime ideals of Rg and the set of all prime

ideals of R disjoint from S.

Corollary 2.8: There is a bijection between the set of all

maximal ideals of Rg and the set of all maximal prime ideals
of R disjoint from S.
Proof: The map o« defined by sending maximal prime ideals

P of R disjoint from S onto PS is the desired bijection.

Corollary 2.8 plays a very important role in Chapter



CHAPTER III
FINITE-FIBERED COVERING SPACES

Let X and Y be two locally compact Hausdorff spaces.
In this chapter we give the algebraic necessary conditions
for Y to be a finite-fibered covering space of X. First

recall:

Definition 3.1: Let p be a continuous function from a topo-

logical space Y onto a space X. If each x € X has an open
neighborhood Uy such that p-l(UX) is a finite disjoint union

of open sets U, each of which is homecomorphic to UX under

the map plU, then p is called a covering projection with

finite fibers, X is called the base space, and Y is a finite-

fibered covering space of X.

Throughout this chapter X denotes the base space,
Y a finite-fibered covering space of X and p a covering

projection from Y onto X.

Lemma 3.2: p 1s an open map.

Proof: [S, p. 63].
Lemma 3.3: Y is a lausdorff space if X is.

16
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Proof: Let y and z be two distinct points in Y. It is clear
that y and z can be separated by open sets in Y if p(y)

# p(z). Now suppose that p(y) = p(z2) = x. There exists

n
an open neighborhood Ux of x such that p-l(Ux) = igl Ui
where Ui is open in Y, Ui N Uj = ¢ for i # j and Ui = Ux
under the map pIU . Since y € p'l(Ux), y € U; for some i.

i
Similarly, z € Uj for some j. Since y # z and Ui =U, vy

and z cannot be in the same Ui' Ui N Uj = ¢ implies that

Y is Hausdorff.

If we assume further that X and Y both are locally

compact Hausdorff spaces, then p has additional properties.

Lemma 3.4: p is a closed map.

Proof: Let F be a closed set in Y and x € X - p(F). Then

there exists an open neighborhood Uy of x such that
-1 . n N 3 .
P (UX) = Y% Ui’ where Ui are open, Ui N Uj = ¢ for i # j
= -1 = . e 0
and U; = U under p|Ui. Let p ~(x) (Y1, ¥y > Yol
and y; € Ui' Then, for each Yi» there exists an open neigh-

borhood Uy of Y such that Uy N F = ¢ since Y is regular.
i i

For each i, let V., = U N U.. Then V., is open, y. € V.,
i Vi i i i i
V. nF =9 and v, n Vj = ¢ for i # j. By Lemma 3.2, p(vi)
n
is open in X and x € p(Vi) for all i. Thus x € in p(Vi)
=V and V is open. Clearly, V C U_ and hence p_l(V)

i _ _ n n _
=ptwy nprwy = ety Ny U =LY TR U,

For each i = 1, 2, +++,n, if w € p-](V) N Ui’ then w € Ui
and p(w) € p(V,;) C Ux' Since Ui is homeomorphic to Ux’

w € V.. Thus p-l(v) MU, ¢V, for all i. Hence
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o P e | ¥ :
p (V) = i¥1 p (V) n Ui) < Y Yy We claim that V N p(F)

=¢. Let z € Vn p(F). Since z € p(F), there exists y € F
such that p(y) = z. Since z € V, y € p~1(z) - p-l(V) and

n n
hence y € igl Vi' Thus igl Vi NF # ¢, a contradiction.

So VN p(F) = ¢ which implies that X - p(F) is open. Thus

p(F) is closed.

Lemma 3.5: p is a proper map.
Proof: Let y € Y. By definition of p, p'l(y) is finite
and hence it is compact. p is a closed. Thus p is a proper

map [B2, Theorem 1, p. 101].

We need the next lemma not only for proving Theoren

3.7, but also for later usec.

Lemma 3.6: Let A and B be two locally compact Hausdorff
spaces. Suppose q: A - B is a proper map. Then q induces
a €C-algebra homomorphism gq* from CO(B) into CO(A).

Proof: Define q*: CO(B) > CO(A) by q*(f) = foq. We show
that g* is well-defined. Let f € CO(B) and ¢ > 0. Then
there exists a compact subset K of B such that |[f(b)| < ¢
for b € B - K. Since q is a proper map, q'l(K) is a com-
pact subset of A [B2, Proposition 7, p. 104]. Let a € A

- q—l(K). Then q(a) ¢ X and hence [foq(a)| = |f(q(a))] < €.
Therefore fop is in CO(Y). Clearly, q* is a C-algebra homo-

morphism

Theorem 3.7: The covering projection p induces a C-algebra

monomofphism p* from CO(X) into CO(Y).'
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Proof: Because of Lemma 3.5 and Lemma 3.6 we need only to
show the map p*: CC(X) > CO(Y) defined by p*(f) = fop is
injective. Suppose fep = 0. Since p is surjective, for
each x € X there exists y € Y such that p(y) = x. Thus

f(x) = £(p(y)) = fop(y)

0. p* is injective.

If £ € CO(X), we let f* denote the image of f under
p*. Note that if f is not the zero map, then f is a non-
nilpotent element in CO(X) and f* is a non-nilpotent element
in CO(Y) since p* is injective. Thus CO(X)f and CQ(Y)f*
[Chapter II] are two commutative €-algebras with identity.
The following theorem gives the algebraic necessary condi-
tions for a locally compact Hausdorff space to be a finite-

fibered covering space of a locally compact Hausdorff space.

Theorem 3.8: Let X and Y be two locally compact Hausdorff

spaces. If Y is a finitc-fibered covering space of X, then
(i) for each regular maximal ideal N of CO(X) there is an.
fe CO(X) - N and a positive integer n such that X - Z(f)

C F, a compact subset of X, and Co(Y)f* = (CO(X)f)n, a product
as rings of n copies of CO(X)f, and (ii) no regular maximal
ideal of CO(Y) contains all f*, where f satisfies (i).
Proof: (i) Let N be a regular maximal ideal of CO(X). By
Lemma 1.10, there exists x € X such that N = N,- Since Y
is a finite-fibered covering space of X, there exists an
open neighborhood U, of x such that p_l(UX) = izl U; where
U; are open, U, N Uj = ¢ for i # j and U, = U  under p[Ui.

Since X is locally compact, there exists a compact subset
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F of X such that x € int(F) € F C Ux' Since X is also com-

pletely regular,'there exists a f € CO(X) such that x € W
1
(

X - Z(f) € int(F) CF S U.. Then £ ¢ N_and p
n
=YW where W, are open, W, C U, W, n Wj = ¢ for i # j

and Wi = W under pIU . Furthermore, let W be the closure
1

W)

of W in X, Wi the closure of Wi in Y, bdry W the boundary
of W and bdry Wi the boundary of Wi' Then we have p-l(W)

n
i1

_ n
and p T (bdry W) = ,u; (bdry W), (bdry W) 0 (bdry W) =6

W, W, N Wj = ¢ for 1 # j and W, = W under pIUi

for i # j and bdry W, = bdry W under the map p[U . Let
i

f., 1=1, 2, +«-+, n, be such that

1
f*(y) if y € Wi
£.(y) = _ -
0 it yeY - W,

Then clearly, fi € CO(Y) for each 1. Let e, = fi/f*. Then

e; € CO(Y)f*.

Claim 1: eiej =0 for 1 # j.

If y ¢ Wi, then f.(y) = 0. If y ¢ Wj, then fj(y) = 0.
Since Wy N Wy = ¢, X - Wy UX - §; =Y. Thus £5(£;£)(y)
= 0 for all y € Y. Hence fi/f*-fj/f* =0, i.e., eiej = 0.
Claim 2: € t e, ek e, = ft*/£%, '

n
If y € ,¥; W,, then y is in one and only one Wi. Thus

FX(£XE) + £5f, + «oo + £5£ - £5£%) (y)
= () ) - £ (y)E* ()
= P2 (y)(£F () E*(y) - £*(y)f*(y)) = O.

If y ¢ i§1 W., then £%(y) = £(p(y)) = 0 since p(y) & W.

Thus for any y € Y, EX(ERE)] + L%E, + «ov 4 £xf - fxf*) = 0.
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Hence, e + e, +n--- + e, = 0. By Claim 1 and Claim 2 we
have Co(Y)f% = ifl CO(Y)f* e -

Claim 3: CO(X)f = Co(Y)f*'ei for each 1i.

Define a map a: CO(X)f > Co(Y)f*'ei by a(h/fn) = h*/f*n-ei.
a is well-defined. For if h/f" = k/fm, then there exists

£9 such that fi(hf" - kf") = 0. Thus £x(naes™le, -

k#£5™ 1) = 0 and hence hF/£x%.£ /£% = kt/£x0.£ /5,
Clearly, o is a C-algebra homomorphism. o« is injective.

For if h*/f*n-ei = h*/f*n-fi/f* = 0, then there exists £xT
such that f*rh*fi = 0. Let x € W. Then there exists

y € Wi such that p(y) = x. Thus fr+1(x)h(x) = fI(x)h(x) f(x)
= £ PODREENEEK)) = TG () () = 0. If x ¢ F,
then f(x) = 0. Thus £7°1h(x) = 0 for all x € X. Thercfore,

h/f" = 0. We show next that « is also surjective: Let

%1,
g/f* ey

li

% s NS NP LN+l , .
g/f £/t gfi/f € CO(\)f* e;. Then

g(y)£% (y) if y €W,
gf;(y) =

ifyGY-Wi

Since Wi = W, there exists a function h € CO(X) such that

h*|g = gf;ly. = gf*|; . We claim that o (h/ £ = g/f*n-ei,
i.e. h?’i/f*r”l%ei = f/fin-ei; for if yey - Wi’ then fi(y)
= 0. Thus

£r(£xM hag - f*n+2gfi)(y) = 0.

If y € ﬁi, then h*(y) = gfi(y) = gf*(y). Thus

f*n+2

crpxtly e -
£*(£%7 Thef, gf;) (y)

= f=2(y) (" gly) - £ 3e)) = 0.
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Hence f*(f*n+1h*fi - f*n+2gfi)(y) = 0 for all y, i.e.
h*/f*nﬂ-ei = g/f*n-ei. Therefore, o« is surjective. By

. - n
Claim 3 we have CO(Y)f* = (CO(X)f) .
(i1) Let M be a regular maximal ideal of Co(Y). Then, by
Lemma 1.10, there exists y € Y such that M = My‘ Since

ES = = ¢ = 3 -

My 0 p*(C (X)) = Ny(yy = {8 € Co(X) [g(P(¥)) = 0} is a reg
ular maximal ideal of CO(X), there exists f & Np(y) satis-
fying (i). Since f ¢ Np(y)’ then f* & My N p(CO(X)). But

f* € p(Co(X)). Hence f£* ¢ My'



CHAPTER IV
SEPARABLE CO(X)-ALGEBRAS

Let S be a commutative C-algebra without identity.
Recall that S is a CO(X)—algebra if there exists a €-algebra
homomorphism 6: CO(X) +~ S, S is a CO(X)-algebra extension
if 6 is injective and for simplicity we regard Co(X) as a
C-subalgebra of S. S is a separable CO(X)-algebra extension
if S is a CO(X)—algebra extension and satisfies: (i) for
each regular maximal ideal N of CO(X) there exists f € CO(X)
- N and a positive integer n such that X - Z(f) ¢ F, a com-
pact subset of X, and Sf = (CO(X)f)n, a product as rings
of n copies of CO(X)f, and (ii) no regular maximal ideal
of S contains all f where f satisfies (i). Theorem 3.8
proves that if Y and X are two locally compact Hausdorff
spaces and Y is a finite-fibered covering of X, then CO(Y)
is a separable CO(X) extension. In this chapter we first
deal with the converse question: Is Y a finite-fibered
covering space of X if CO(Y) is a separable CO(X)-algebra
extension? We prove that the answer is positive by showing
a strong version of this question: If S is a separable
CO(X)-algebra extension, then the structure space Rm S of

S is a finite-fibered covering space of X. Since

23
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Rm CO(Y) = Y (Theorem 1.12), the converse of Theorem 3.8

follows immediately.

Throughout the following lemmas S denotes a separ-

able CO(X)—algebra extension.

Lemma 4.1: If M is a regular maximal ideal of S, then
Mf1C0(X) = N is a regular maximal ideal of CO(X).

Proof: Let 8: CO(X) -~ S be the injective C-algebra homo-
morphism. Clearly, the map 6: 6;??3 = C(i) > é defined

by 6(k,f) = (k, 8(f)) is an injective C-algebra homomorphism

and we have the following commutative diagram:

|

M is a regular maximal ideal, so by Lemma 1.4, there exists

8

CO(X) _—
C(i) ____li.__+

a maximal ideal M # S of S such that Mn S = M. Clearly,

M N C(X) is a prime ideal of C(X). Suppose M n C(X) ¢ c, (X).
Then M N C(i) contains all continuous functions in C(X)
vanishing at a neighborhood of infinity [GJ, p. 62]. Since
MO CEX)nsScMn C,(X) © ¥ NS =M, Mcontains all con-
tinuous functions in C(X) vanishing at a neighborhood of
infinity, in particular all f satisfying (i), a contradiction.
Hence M n C(X) ¢ Co(X). By Lemma 1.3, i n C(X) n c, (X

=M N Co(X) is a regular ideal of C_(X). But N = M n C_(X)
=Mn0Ssn C (X) = Mn C,(X), so N is a regular ideal and

hence is contained in a regular maximal ideal N' of CO(X).
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Since S 1s a separable CO(X)—algebra, there exists f € CO(X)
- N' such that Sg = (C,(X))". Since £¢N', £ ¢ N=M

nC (X). Thus £ ¢ M. By Corollary 2.8, M, is a maximal
ideal of CO(X)f. Since Sf is integral over CO(X)f, Mf

N CO(X)f is a maximal ideal of CO(X)f. But M. N CO(X)f

= M n CO(X))f = Nf. Thus Nf is a maximal ideal of CO(X)f.

By Corollary 2.8, N is a maximal prime ideal of CO(X) dis-

\Y

joint from {fnln 1}. But NS N', £ ¢ N' and N' is a prime
ideal of CO(X). Thus, by the maximality of N, N = N',

Hence M N CO(X) =N is a fegular maximal ideal.

We would like to know whether or not the regular
maximal ideals of CO(X) are contractions of the regular
maximal ideals of S. The following lemma answers this

question.

Lemma 4.2: If N is a regular maximal ideal of CO(X), then
there exists a regular maximal ideal M of S such that
N=MDN CO(X).

Proof: By assumption, there exists f € CO(X) - N such that
X - Z(f) € F, a compact subset of X and Sg = (CO(X)f)n.

By Corollary 2.8, N, is a maximal ideal of CO(X)f. By Corol-
lary 2.8 together with the fact that Sf is integral over
CO(X)f, we have a maximal prime ideal M' of S disjoint from
{(£7|N > 1} such that M} n C_(X)¢ = Ne. But ML n C_(X)g

= (M' n CO(X))f = Ng. Thus M' N CO(X) = N (Theorem 2.7).

We now show that M' is a regular ideal. Since M' is a prime

ideal disjoint from {fnln > 1}, M' is an ideal of S disjoint
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from {f%|n > 1}. Thus there exists a maximal prime ideal
M of S such that M' € M and M n {f%|n > 1} = §. If MC S,
then M n C(X) € S n C(X) = C (X). Mn C(X) is a prime ideal
of C(X), so £ € M n C(X) [GJ, p. 62], a contradiction.
Thus M ¢ S. By Lemma 1.3, MNS isa regular prime ideal
of S. Since M' C M N S, £ ¢ MNnSand M' is a maximal‘prime
ideél diéjoint from {f%|n > 1}, M' = M N S and hence M' is

a regular ideal of S. By Lemma 1.2, M' is contained in a

regular maximal ideal M of S. Thus N M' n CO(X) cM
N CO(X) is an ideal of CO(X) and N is a maximal ideal of
CoX), N=MNC (X) or MNC (X)) =C (X). IfMnC (X)

= COCX), then CO(X) C M, a contradiction. Thus N =M N CO(X).

The next lemma shows that the only maximal ideals of
S which contract to regular maximal ideals of CO(X) are

the regular maximal ideals of S. We need it for later use.

Lemma 4.3: Let f € CO(X) satisfy (i) and M be a maximal
prime ideal of S disjoint from {fnln > 1}. Then M N CO(X)

is a regular maximal ideal of CO(X) if and only if M is a
regular maximal ideal of S.

Proof: The sufficient condition follows from Lemma 4.1.

We prove the necessary condition. Since M is a prime ideal
of S disjoint from {fn]n > 1}, M is an ideal of S disjoint
from {fnln = 1}. There exists a maximal prime ideal P of

S containing M with £1 ¢ P for all n > 1. S is a commutative

ring with identity, so P is contained in a maximal ideal

of S. If PcS, then PnC(X) € SncX) = C,(X). Clearly,
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P N C(X) is a prime ideal of C(X), so £ € P n C(X) [GJ,
p. 62], a contradicticn. Hence, P C ﬁ, ﬁ maximal ideal
of S not equal to S. We next show that P is actually equal

-~

to M. If P E_ﬁ, then f® € M and hence P n § S MNS. Since
P NS is a prime ideal of S disjoint from {f"|n > 1} and
MCPNS,M=PnsS¢ MAS. Thus M N c,(X) g (M N S)

0 C (X) since £ € M n C_(X) and £" ¢ MnsS)n C,(X). If
M NnS) n C,(X) = C_(X), then C_(X) €M n S which is a reg-
ular maximal ideal of S (Lemma 1.3), a contradiction. Hence
(ﬁ ns)yn Co(X) is a proper ideal of CO(X) containing M

N CO(X). But that contradicts the assumption that M n CO(X)
is a regular maximal ideal of CO(X). Thus P = ﬁ, i.e., P

is a regular maximal ideal of S not equal to S. Now since
MCPand f'¢ P, MCPNSand £7¢ PN S, By the maxi-
mality of M and the fact that P N S is a regular maximal

ideal of S, we conclude that M = P n S and hence M is a

regular maximal ideal of S.

Lemma 4.4: There is a continuous open map from the struc-
ture space Rm S onto X.

Proof: By Theorem 1.12, X is homeomorphic to Rm CO(X).
Hence it is sufficient to show there is a continuous open
map from Rm S onto Rm CO(X). By Lemma 4.1 and Lemma 4.2,
the map p: Rm S > Rm CO(X) defined by p(M) = M n CO(X) is
well-defined and surjective. We first show that p is con-
tinuous. Let a € CO(X) and F, = {NeRnm Co(X)|a e N}, a

1

basic closed set. Then p “(¥,)) = (M € Rm S|a € M} is a

a
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basic closéd set of Rm S. Hence, p is continuous. Let
x € S and U_ = {M € Rm S|x ¢ M} be a basic open set of Rm S.
We show that p(Ux) is open in Rm CO(X). Let N € p(Ux) and
M € U, such that Mn C_(X) = N. Since S is a separable
CO(X)-algebra extension, there exists f € CO(X) - N such
that S = (C_(X))". Since £ ¢ N = C_(X) N M and M is a
regular maximal ideal of S, M is a maximal prime ideal of
S disjoint from {fn]n = 1}. By Corollary 2.8, Mf is a maxi-
mal idgal of Sf. Since Mf N CO(X)f = (M N CO(X))f = Nf and
where Nf is on the i'th component. Since x€ S - M, x/f
t t t t
= (r,/f LI rz/ftz, cee, ri/f l’f.. rn/f N e S¢ - Mg where
T, € CO(X), ti positive integer, i =1, 2, +--, n. Thus
ts At
r;/f % € N; and hence r; ¢ N. Let V = {N' € Rm C, (X)|fr,
¢ N'}. Since V is open in Rm CO(X), we complete the proof
if we can show N e V C p(Ux). Clearly, N € V. Let N' € V,
Then fri & N'. Since N' is an ideal of CO(X), f ¢ N' and
Ty ¢ N'. By Corollary 2.8, f ¢ N' implies Ng is a maximal
n
ideal of CO(X)f. Since Sf = i§1 Co(X)f, I = CO(X)f B oo
® N% @ s & CO(X)f, where N% is the i'th component, is a
maximal ideal of Sg and I N CO(X)f = Nf. By Corollary 2.8,

there exists a unique maximal prime ideal Q of S disjoint

from {f'|n>1} such that Qz = I. Thus N} = I n C,(X) ¢
= Qg N CO(X)f = (Qn CO(X))f. By Theorem 2.7, N' = Q n CO(X).
By Lemma 4.3, Q is a regular maximal ideal of S. Because
Ty # N' implies ri/fti & N%, x/f ¢ Qf. Thus x ¢ Q and hence
Q € Ux' Therefore, p(Q) = Q N COCX) = N' € p(Ux). Hence
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NevV E_p(Ux).

Let No € Rm CO(X) and £ € CO(X) - N0 be such that
S¢ = (CO(X)f)n. Let Vg = (N € Rm C_(X)|£ ¢ N} and A, = (M
€ Rm S|f & M, Mg = C(X)g® «+- @ N ® --- @ C_(X)g, Ng on

the i'th component}, i = 1,2,+--,n.

-1 ’ n
Lemma 4.5: p “(Vg) = 1Y

Proof: Let M € p '(V,). Then p(M) = M n C (X) = N € Vg

A-l
1

and hence £ ¢ N =M n CO(X). Thus Mf is a maximal ideal of
n

Sg- Since Sp = (C (X)) = @ C Mg, Mp = C (X ® oo

&I D v & CO(X)f, where 1 is a maximal ideal of CO(X)f

and is on the i'th component. Since I =M. N C (X)) =
f o f

-1
and hencs M e A;j. Thus p "(Vg) € i¥Y1

if M e Y1 Ai’ then M € Ai for some i. Hence f ¢ M and

Ai' On the other hand,

Mf = CO(XJf @G oo @ Nf ® o0 @ CO(X)f for some N € Vf.
But Mg N CO(X)f = (M n CO(X))f = Ng. Hence, by Theorenm
2.7, M C (X) =N € V.. Thus M€ p (V) and hence

n

A..

n
-1
Y1 Ay < P(Vg). Therefore, p (Vg) = ;Y1 A

Lemma 4.6: (i) Each Ai is open in Rm S.

(i1) Ay M Ay = 3 for i # j.
(iii) plA. is a homeomorphism from A; onto V..
1
Proof: (i) Let M € Ai' Then Mg = CO(X)f ® +or &N @ =
® C,(X); where N € V.. Let (0,0,---,£/£,0,-++,0) = a/£".
Since £/f ¢ N, a/f" ¢ Mc. Thus a ¢ M. Let U = (M' € Rm S

| fa ¢ M'}. Then M € U and U is open. We complete the
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proof by showing that U C Ai. Let M' € U. Then fa ¢ M'

and hence f € M' and a € M' since M' is an ideal. £ is a
maximal ideal of Sf since £ ¢ M'., Thus Mg = CO(X)f D oo
@I & «++ @ CO(X)f where I is a maximal ideal of CO(X)f

and is on the j'th component. By Corollary 2.8, there exists
a maximal prime ideal J of C,(X) disjoint from {fnln > 1}
such that Jf = I. Since (M' n CO(X))f = M% N CO(X)f =1

= Jf, M' N CO(X) = J. By Lemma 4.1, M' n Co(x), hence J,

is a regular maximal ideal of CO(X) and £ ¢ J. Thus J € Vf.
Also a ¢ M' implies a/ft = (0,0,-++,f/f,+++,0) ¢ ML = C (X)¢
® +er ® Jf ® .0 & CO(X)f. Thus Jf must be on the i'th
component and hence M' € Ai' Therefore M € U C Ai'

(ii) Trivial.

(iii) Clearly, pIA. is a continuous bijection from Ai onto
Vf. We need only té show that pIAi is open. It follows from
the fact that p is an open map (Lemma 4.4) and A; is an

open set of Rm S.

We summarize Lemma 4.4, Lemma 4.5 and Lemma 4.6 as

follows:

Theorem 4.7: If S is a separable CO(X)—algebra extension,
then the structure space Rm S of S is a finite-fibered cov-

ering space of X.

Note that, since the composition of two proper maps
is a again a proper map {B2, p. 99] and the composition of

two €-algebra homomorphisms is a €-algebra homomorphism,
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the set of all locally compact Hausdorff finite-fibered
covering spaces of a fixed locally compact space X together
with the proper maps between two covering spaces which com-
mute with covering projections, and the set of all separable
CO(X)-algebra extensions together with the C-algebra homo-
morphisms between two separable CO(X)-algebra extensions
which commute with CO(X)—algebra homomorphisms form two
categories. We prove that, in the second half of this chap-
ter, the map Y ~» CO(Y) is a full and faithful functor and
an example is given to show that the functor in general is
not a contravariant equivalence.

Let G denote the category of locally compact Haus-
dorff finite-fibered covering spaces of a fixed locally com-
pact Hausdorff space X, and let # denote the category of

separable CO(X)-algebra extensions.

Theorem 4.8: The map ¢: G -~ H defined by ¢ (Y) = CO(Y) and

$(q) = q* is a full and faithful contravariant functor.
Proof: We first show that ¢ is a functor. (i) Let Y be
an object in ¢. Then, by Theorem 3.8 ¢(Y) = CO(Y) is an

object in #. Let
q

Y——17Z

Pl\x/ P2

be a commutative diagram in G, where q is a proper map and‘
Py» P, are covering projections. Then, by Lemma 3.6, ¢(q)

= q*: CO(X) -> CO(Y) is a C-algebra homomorphism and
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a*p3(£) = (£29,)(a) = £(p,°q) = f£op; = p}(£) for all f €

CO(X). Hence the diagram
*
CO(Z)——S——+CO(Y)

\\\\ //' .
P} P

¢, (X)
commutes. Therefore, ¢(q) = q* is a morphism of G.

(ii) Since (lY)*(g) = gol,, = g for all g € CO(Y), ¢ (1

y y)

= % = 111 ]

(IY) 1¢(Y)‘ (iii) Let Y, Z and W be in ¥ and
q: Y ~Z, r: Z - W be two proper maps. Since for each
g

€ C,(Y) we have (roq)*(g) = go(req) = (ger)(q) = q*(gor)

q*(r*(g)) = (q*°r*)(g), then (rq)* = q*r*. Therefore,
$(rq) = ¢(q)e¢(r). By (i), (ii) and (iii) ¢ is a functor.
Next we show that ¢ is faithful. Let q: Y + Z and q': Y
> Z be two proper maps. If q # q', then there exists a

y € Y such that q(y) # q'(y). Since Z is completely regu-
lar, there exists a continuous function h € CO(Z) such that
h(q(y)) # h(q'(Y)). Thus heq # heq' and hence q* # q'*.

Finally, we show ¢ is full. Let

5]
C, (2)——C_(Y)
P3 134
C,(X)

be a commutative diagram, where ¢ is a €-algebra homomor-
phism and p{ and p§ are the C-algebra homomorphisms induced
by the covering projections Pyl Y » X and Pyt Z » X re-

spectively. Let My be a regular maximal ideal of Co(Y).
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Then e'l(My) is an ideal of C_(Z) and the map & CO(X)/e'l(My)
> C,(Y)/M, defined by h + e'l(My) > e(h) + M_ is an injec-

tive C-algebra homomorphism. Since CO(Y)/My =€, 8 is also
surjective and hence 8 is a C-algebra isomorphism. Thus
CO(Z)/G_I(My) = C and hence e'l(My) is a regular maximal

ideal. Define a map a: Rin CO(Y) - Rm CO(Z) by a(My)

= e-l(My). a is well-defined.

Claim 1: « is a proper map. The continuity of a« follows

from the fact that a-l({N € Rm CO(Z)Ih € N}) = {M € Rm CO(Y)I

6 (h) € M}. Note that we have the following diagram:

Rm C_(Y)—=—Rm C_(Z)

A

Rm CO(X)

Since Py and p, are proper maps, it is sufficient to show
that the above diagram commutes, i.e., pzoa(My) = pl(My)

for all My € Rm CO(Y) [B2, p. 99]. Since

[«)

£ep (M)« fop (y) =
< (fep,)(y)

> g - &
0 (since ® P35 pl)
* 6(fop,) €M
- -1
fopz € 6 (My)
-1
« f € 9 M
Py (6 “(M)))
fe M
Pz(o‘(l )’))

¢

Then P} = Pjp°c. Hence o 1is a proper map.

Claim 2: ¢(a) = 6. Let h € CO(Z) and y € Y. Then
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(6 () () (y) = (hee)(y) = h(e(y)) = h(e-l(My)) = h + e.1(1"1),)

= o6(h) + My = 8(h)(y). Thus ¢(a)(h) = 6(h) and hence ¢ (a)

= 9. By claim 1 and claim 2 ¢ is full.

Next, we give an example to show that ¢ is not a
contravariant equivalence. Let X = [-1,1), y = [-2,0) U

(0,2} and p: Y » X be defined by

y + 1 if y € [-2,0)

ply) = {
-y + 1 if y € (0,2]

Then X and Y both are locally compact Hausdorff spaces and
Y is a covering space of X with finite fibers. If g € CO(Y)
we let g, = g|[_2’0) and g, = gI(O,Z]' Let S = {g € CO(Y)I
there exists B, -2 < B < 0, such that gl(y) = gz(-y) for

y € (8,0)}. Then clearly S is a C-algebra (commutative)
without identity, S C CO(Y) and the map p*: CO(X) + S de-
fined by p*(f) = fep is an injective homomorphism. Hence

S is a CO(X)-algebra extension. Let X = [-1,1] and Y =
[-2,2] be the one point compactifications of X and Y re-
spectively, g; = g|[72’0], g, = gl[O,Z] for g € C(%) and

S = {g € C(Y)|there exists 8, -2 < g < 0, such that gl(y)

= gz(-y) for y € (8,0}}. Then é is a commutative €-algebra
with identity, S - C(?) and S is isomorphic to é, the C-
algebra obtained by adjoining the complex identity to S
under the map g +» (g(0), g - g(0)). We identify S with S.
Our first goal is to show that the structure space Rm S of
S is homeomorphic to Y, and we prove it by showing that the

structure space Rm S is homeomorphic to Y. We begin with
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the following claims.

(4.9) Every ideal of S is fixed [GJ, p. 54].
Proof: Let I be an ideal of S. Then Z(I) = (Z(f)|f € I}
is a family of closed sets. Let fl, fz, e, £ € I,
n 2 n n
n

Clearly, .0, Z(f;) = Z(Zi=1 lfil ) If 0, I(f;) = #, then

n 2
S is closed under the complex conjugation, i.e. if f € S,
|2

) = § and hence 22=1 ]fi|2 is a unit in S.

then the complex conjugate f € S. Since Z?=l EN

= J® _ £.f. and I is an ideal of S, e ]2
i

i=1 ;% € I. Thus

the identity is in I and hence I = S, a contradiction.

n N
Thus igl Z(fi) # #. Since Y is compact and Z(I) has the
finite intersection property, NZ(I) # #, i.e. I is a fixed

ideal.

>

(4.10) N is a maximal ideal of S if and only if there

{g € élg(y) = 0}. Fur-

exists a y € Y such that N = Ny

thermore, Ny S if and only if y = 0 and Ny are distinct

for distinct y.

Proof: Let N be a maximal ideal of 5. By (4.5) nZ(N) # @.
Let y € nZ(N). Then N C Ny g S. Since N is maximal, N = Ny'
Conversely, if N = Ny for some y € Y, then the map y: S

+ C defined by y(g) = g(y) is clearly a C-algebra homomor-
phism with kernel Ny' Note that y is also surjective.

Hence Ny is a regular maximal ideal of 5. Now for the sec-
ond assertion, if y = 0, clearly Ny = S. Suppose y # 0.

Let 6§ = %Iyl > 0. Since Y is perfectly normal, there exists

age€ C(?) such that Z(g) = [-6,8]. Hence g € é and g € S,
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g ¢ Ny' Thus S # Ny. Finally, if Y1 # Y # 0. Let
§ = % min{lyll,lyzl} > 0. By the perfect normality of 9,
there exists a g € C(?) such that Z(g) = [-6,8] V {yl}.

Hence € S € N and N . Thus N N .
g ) 8 Y1 g ¢ Y, v, # v,

(4.11) m é is homeomorphic to Y and hence Rm S is homeo-
morphic to Y.

Proof: The map a: Y » m S defined by «(y) = N, is a bi-
jection (4.10). Since a(Z(£f)) = {Nylf € Ny} and Z(f) and
.{Nylf € Ny} are -bases for the closed sets of Y and m S re-
spectively, then o« is a homeomorphism. Now, by Theorem 1.5,
Rm S is homeomorphic to m S - {S}. But m S - {S} is homeo-

morphic to ? - {a(S)} =Y - {0} =Y. Thus Rm S is homeomor-

phic to Y.

Our second goal is to show that S is a separable

CO(X)—algebra extension.

(4.12) S is a separable CO(X)-algebra>extension.

Proof: (i) Let NX be a regular maximal ideal of CO(X),
° .
§ = 3 min{l - Xgs Xg * 1} and N(x,68) = (x

Since X is perfectly normal, we can choose a function f:

- 8§, X_ + &8).

(o] o)

X > € such that f(x) = 0 if and only if x € X - N(xo,a).

Clearly, phl(N(xo,d)) U, Y U, where U,, U, are open in

1 12 72

Y and U1 < [-2,0), u, ¢ (0,2]. Define hi: Y > € by

fp(y))  ify €U,
hi()')

’
0 otherwise

i =1,2. Then clearly, hi € S, 1 =1,2. Hence hi/f € Sf,
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i=1,2. Since if y € Ui’ i=1,2, then

£p()) (E(K)Ih (y) + £(p(¥I)h,(y) - £((¥IE(p(¥)))
fp(y)) E(PHIR; (¥) - £(p(¥)))

£t ECREIEEG)) - £ )IE(RK)))
=0

and if y ¢ U;, then p(y) # N(x_,s) and hence £(p(y)) = 0.
Thus (fop) ((£ep)h; + (fep)h, - (fop)(fep)) = 0. Hence
hl/f + hz/f = £/£f. Since if y € Ul’ then hz(y) = 0; if

y €U then hl(y) =0 and if y ¢ U1 U Uz, then f£(p(y))

2’
0, so f(p(y))(hl(y)hz(y)) = 0 for all y. Hence hl/f-
hz/f = 0. Therefore, Sf = vahl/f [ S{hz/f. Next, we show

that CO(X)f is isomorphic to Sf-hi/f. Define a map «:
CO(X)f - Sf'hi/f by a(r/fn) = r/fn~hi/f. o 1is well-defined.
For if r/f" = s/fm, then there exists f9 such that

(3™ - sf™) = 0. Thus £3(r£™ th, - s£™1h) = 0 and
hence r/fn-hi/f = s/fm°hi/f' o is clearly a C-algebra
homomorphism. o« is injective. For if r/fn-hi/f = 0 then
there exists t > 0 such that ftrhi = 0. IfxeX- N(xo,s)
then f(x) = 0. 1If x € N(xo,é) then there exists y € Ui

such that p(y) = x. Thus

£Y ()1 (x) £(x)

£S5y TIE(PK))
£5(p ()T (P(¥))h; (¥)
(£°rh;) (¥) = 0

P )T (x)

]

and hence ft+1(x)r(x) = 0 for all x € X. Thus r/fn = 0.

a is also surjective; let s/fn-hi/f € Sf.hi/f. Define a
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map r: X - € by

s(ly ) HENEE if x € N(x_,8)
r(x) = 1
0 otherwise
Then clearly r € CO(X). If y € Ui then p(y) = x € N(xo,s).
Thus

EONE DTN O) - 2 EG))sGIh ()

]

£x) E" T E(x) - P (x)s () £(x))

£ E s EE) - £ 2 s(E))
= 0.

If y ¢ U.1 then hi(y) = 0. Hence

£ ETT EONTEOING) - KIS (IR ) = 0
for all y € Y.

Thus a(r/fn+1) = r/fn-hi/f and hence o is surjective.

(ii1) Let M be a regular maximal ideal of S. Then by (4.10)

there exists y € Y such that M = My' Since My N CO(X)

= N is a regular maximal ideal of CO(X), there exists

p(y)

f & Np(y) satisfying (i). Since £ ¢ N f ¢ M. There-

p(y)’
fore, S is a separable CO(X)-algebra extension.

Next we show that S and CO(Y) are not isomorphic
as C-algebras. First note that CO(Y) is a semi-simple
Banach algebra with respect to the sup norm, i.e. Ifl
= sug f(y), and S is not a Banach algebra with respect to

the sup norm since the sequence {fn}, where
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y if 0 <y<2
_ . 1
fn(y) = {-y if - TSy <0
2 . 1
y + = if -2 <y < - =

is a Cauchy sequency in S converging to no element in S.
Also note that S separates Y and for each y € Y there exists
f € S such that f(y) # 0. Hence, by Weierstrass' theoren,

S is dense in CO(Y).

(4.12) S and CO(Y) are not isomorphic as C-algebras.
Proof: Suppose there exists a C-algebra isomorphism ¢:
C,(Y) ~ S. Define ﬂ5ﬂ¢ = ﬂ¢-l(s)ﬂ for s € S. Then clearly
S is a Banach algebra with respect to the norm Isl . By

¢
[N, Theorem 1, p. 210], tsl < Kﬂsﬂ¢ for all s € S, where
K is a constant. Clearly, the map #: S - S defined by
s L(s*s)l
1571 (sye 2 (s)

Thus S is a C*-algebra. By [S, Theo-

s% = ¢(¢_1(s)) is an involution and us*su¢

= 1o s®) e (s)n = 1T o (TG0 L)
2
.

rem 1.2.4, p. 5], ﬂsﬂqb < Isl for all s € S. Hence lIsl and

Ilsll¢ are equivalent. Therefore, S is a Banach algebra with

respect to the sup norm, which is a contradiction.

i}

=16 1(s)1? = 1st

Now we are ready to show:

(4.13) The functor defined in Theorem 4.8 is not a contra-
variant equivalence.

Proof: Suppose the functor is a contravariant equivalence.
Then there exists a finite-fibered covering space Z of X

such that CO(Z) = §, By Theorem 1.12 Z is homeomorphic
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to Rm CO(Z) = Rm S, By (4.11) Y is homeomorphic to Rm S.
Thus Z is homeomorphic to Y. Hence S = CO(Z) is isomorphic
to CO(Y) which contradicts (4.12). Thus S does not come
from a covering space, i.e;, the functor is not a contra-

variant equivalence.
We end this chapter by noting that:

Theorem 4.14: The category of locally compact Hausdorff

finite-fibered covering spaces of a fixed locally compact
Hausdorff space X and the category of C*-algebras that are
separable CO(X)-algebra extensions are contravariantly
equivalent.

Proof: We need only to show that any C*-algebra S that is
a separable CO(X)-algebra extension comes from a finite-
fibered covering space of X, i.e. there exists a finite-
fibered covering space Z of X such that CO(Z) is isomorphic
to S. Since S is a separable extension of CO(X), by
Theorem 4.7, Z = Rm S is a finite-fibered covering space
of X. Since S is also a C#%-algebra, by [M2, p. 56],

Co(Z) = Co(Rm S) is isomorphic to S.
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