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CHAPTER I 

HISTORICAL 

Acylphosphonates 

Since 1964, when the literature on aroylphosphonates was reviewed 

65 
by Taylor; , a number .. of'.<pa'pers on thii.s family have appeared .. 

0 
11 

c---Pco R)2 

The first section of this review is designed to cover the literature 

published from 1964 to 1971, although a few earlier papers, not in

cluded by Taylor, will be cited. 

The Michaelis-Arbuzov rearrangement is still the most important 

method of preparing arqylphosphonates. It was employed by Burger and 

20 Wagner to synthesize diethyl benzoylphosphonate and a number of 

other dialkyl phosphonates. Boiling points, densities, refractive in

dexes, viscosities, and solubilities in water are tabulated for most 

compounds. Cade 21 prepared and reported properties of several acyl

phosphonic esters, among which was dibutyl benzoylphos~µonate (f). 

1 



(]) 

Kamai and Kukhtin44 published the synthesis of both diethyl and 

dimethyl benzoylphosphonate via the reaction of a trialkyl phosphite 

and benzoic anhydride. 44b 

+ 

2 

The last product (in brackets) was found only in the case where R=c2H5 . 

Diethyl benzoylphosphonate (I) has also been obtained 54 by the follow-

ing reaction. 

c6H5C(O)P(O)(OC2H5) 2 

(!) 

+ 

+ 

The proof of structure of the products rests on boiling points, refrac

tive indexes, and viscosity measurements. 

49 Divinyl benzoylphosphonate Q) was produced by the following 

reaction. 
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0 

c6H5~cl + c4H90P(O)(OCH=cH2 )2 

Q) 

this general route. It is interesting to note that there was no 

reported loss of the vinyl group in either case. However, little proof 

of structure was offered. 

6-9 In a series of papers from this Laboratory the synthesis and 

physical and spectral properties were reported for several acylphos

phonates. In 1956 Van Wazer69 and co-workers tabulated a number of 

31P chemical shifts of organophosphorus compounds. Among the compounds 

was diethyl benzoylphosphonate (!), which had a chemical shift of 

2(±1) Hz relative to 85% orthophosphoric acid. Cornell and Birum23 

patented a process for the separation of close-boiling hydrocarbons 

using an extractive distillation technique. The extracting agent was 

a dialkyl(G1~10) aroylphosphonate or dialkyl alkylphosphonate. 

The ultraviolet spectra of a number of dialkyl aroylphosphonates 

were described by Terauchi and Sakurai67 (Table I). They considered 

the strong absorption band (258-295 mµ) to result from a TI-TI* transi

tion; the much weaker band (373-385 mµ) was attributed to a n-TI"k 

transition involving the carbonyl group. It is postulated that inter

action of the TI bond of the carbonyl group with the phosphorus i 

orbitals is responsible for a red shift (bathochromic) in the TI-TI* 

transition relative to that of the correspondingly substituted 

benzaldehydes. The same rationalization is employed to account for 

the increase in the extinction coefficients for the aroylphosphonates 

as compared to the benzaldehyde analogs. The authors also noted a 



.4 

correlation of wav~lengths of the most intense n-m"c bands with the 

Hammett a constants. 

R 

H 

H 

H 

TABLE I 

ULTRAVIOLET SPECTRAL DATA FOR AROYLPHOSPHONATES 

R' 

C2H5 

.i-C3H7 

.!!-C4H9 

-Jc 
TI-TI 

ty .max, mµ. 
(loge: ) 

max 

258 (4.05) 

258 (4.11) 

259 (4.11) 

Transition 

-Jc 
n-TI 

y tnax, mµ. 
(loge: ) max 

379 (1.92) 

379 ,(1. 9i) 

380 (2.01) 

Studies on reactions of aroylphosphonates make up a significant 

portion of the recent literature on aroylphosphonates. In 1967 

Pudovik53a and co-workers discovered the following reaction. 

co 
X-C6H4C(O)P(O)(OR) 2 + (R'0) 3P 2 X-C 6H4C(OR')[OP(O)(OR') 2 ]P(O)(OR) 2 



X R R' X R R' 

H C2H5 C2H5 .e_-Br E,·C4H9 C2H5 

H E_-C3H7 E_·C3H7 o-Cl C2H5 C2H5 

H E_-C4H9 E_-C4H9 o-Cl E_-C3H7 C2H5 

.e,-Br C2H5 C2H5 o-Cl E_-C4H9 C2H5 -

.e,-Br !}_-C3H7 C2H5 

The structures of the products were based on identification of 

(C2H5o) 3P(O) and c2H50Na-c2H50H, which were formed upon prolonged 

ing of diethyl benzoylphosphonate (2). The Russian authors also -
studied53h,S3c the reaction of phosphorus, ethyiphosphonic and 

thiophosphorus acid esters with dialkyl aroylphosphosphonates. 

X = .e_-Br, £-Cl 

9P(O)(OC2H5) 2 

x-c6:a41H 
P(O)(OC2H5) 2 

CH ONa ?P(O)(OC2H5)2 
(R0) 2P(S)H + X-C6H4C(O)P(O)(OC2H5) 2 -2 --5--- X-c6:a4cH 

t(s) (OR) 2 

X 

.e_-Br 

o-Cl 

R' 

rco)(OC2H5)2 
R-C 6H4COH 

J (O)C2H5 (OR') 

5 

heat-



R R' 

.e_-Br C2H5 

.e_-Br ,!!;-C4H9 

o-Cl C2H5 

.e_-OCH3 C2H5 

.e_-OCH3 ,!!;-C3H7 

Takamizawa has studied the reaction of pyrimidine 

. . 64a 64b 64c 64d . derivatives ' ' ' with acylphosphonates; interestingly phos-

phorus was not introduced into the final product. 

R' = CH3 or c6H5 

1. N(C 2H5) 3 

2. (R0) 2P(O)C(O)R' 

in DMF 

R = c~3 , c2H5 , ,!!;-C3H7 , ,!!;-C4H9 

6 
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The same reactions occurred when an alkyl phenyl acy!pllosphi,nate or 

methyl phenyl benzoylphosphinate was used but the mechanism is obscure. 

The reactions of dimethyl benzoylphosphonate with a series of 

nucleophiles has been described by Shahak and Peretz51b. These 

reactions fall into two groups: a) those in which dimethyl phosphite 

is lost and b) those in which a substituted ~-hydroxy benzoylphospho

nate is formed. Ultraviolet spectra and rates of cleavage by nucleo-

5lc philes has also recently been reported. 

Photochemical studies on dialkyl aroylphosphonates have been 

. d b . J T h' d S k .66a,66b . carr1e out y two groups 1n apan. erauc 1 an a ura1 irra-

diated diethyl benzoylphosphonate (1_) with light of wavelength greater 

than 3200 A (in cyclohexane) and produced the trimer, a substituted 

trioxane (~). 

Ax 
hv -~ 0 

Ar.;,/c (O)P(O) (OR)2--c=6H __ 6 ___ Ar~ 0 ~Ar 

Ar= c6H5 

Rl=P(O)(OCH) 
2 5 2 

R' R' 

4 

However, irradiation of diisopropyl or di-~-butyl benzoylphosphonate 

under the same conditions gave a substituted pinacol. 
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R = H 

The structures of the products were confirmed by IR, elemental analyses 

and molecular weight determination. The reaction was considered to 

proceed via ketyl radicals. The initially formed lowest excited trip

let state of the carbonyl group (of the aroylphosphonates) apparently 

abstracted hydrogen from solvent. 

Ogata and TomiokaSla showed that irradiation of dialkyl a-oxophos

phonates containing tertiary y-hydrogen atoms gave unusual rearrange

ment products. 

0 0 

R-~-i (OCHR 'R") 
2 

I hl) 
benzene 

g R'? y 

R-~-6-P(OH)(OCHR'R") + other products 
I 
R" 

The reaction was believed to proceed via the insertion of a three

carbon fragment into the C-P bond. 

Specher and Nativ63 examined the reaction of diethyl aroyl

phosphonates with perbenzoic acid. 



9 

Pa.th 
I c6H5C(O)OOC(O)C6H5 + 

HP(O)(oc 2H5)2 

:II lP·a· th 

Apparently the reaction followed path II almost exclusively to yield 

diethyl benzoylphosphate. Product analysis and labeling studies support 

the proposed mechanism. 

4 Methylene was shown to insert into the C-P bond of diethyl benzoyl-

phosphonate (2) when t;his .. :1t:tsated,W1A::h- d4a·zom~th.ane for.·three.days -.... ' ,.. " 

2 

Independent synthe~is and Raman spectra confirmed the structure of the 

product. 

Polarographic reduction of dialkyl aroylphosphonates has been 

investigated by two groups. Savicheva and co-workers56 reported data 

on several dialkyl benzoyl~, £-methylbenzoyl-, and £-chlorobenzoyl

phosphonates. They concluded that the phosphono group c~used the re-

duction to occur at more positive potentials than for the nonphos-. 

phorylated carbon analogs. This fact was attributed to the negative 

effect of the phosphoryl group. 10 Results from this Laboratory on 

reduction of the following dialkyl aroylphosphonates 



R 

H 

.E,-C 1 

R' 

C2H5 

C2H5 

C2H5 

C2H5 

R-C6H4C(O)P(O)(OR') 2 

R R' 

£_-0CH3 C2H5 

.E,-CH3 C2H5 

.E,-OCH3 CH3 

prd~ided an approximate p value (+ 4. 7) indicating that electron

withdrawing substituents facilitated the reductions. The experiments 

were performed in specially designed cells which permitted gathering 

10 

of reproducible coulometric data and sufficient conversion of reactants 

so that product analyses by GLC was also reproducible. 

NMR Techniques for the Study of Intramolecular Rate Processes 

In this section no attempt will be made to review all of the 

papers dealing with Dynamic Nuclear Magnetic Resonance (DNMR) analysis 

published since the critical reviews of Binsch12 (1968) and Kessler47 

(1970). Instead, a few of the more instructive papers will be discussed 

and an effort will be made to elucidate the technique, sources of 

error and error ana}y.sis methods. 

Unfortunately, there has been little published in the area of 

DNMR analysis of organo,phosphorus compounds. 28 Quite recently , a few 

papers have appeared which deal with inversion barriers of cyclic 

phosphines, but the data are not easily extrapolated for diagnostic 

purposes to phosphorus esters. 

Three recent papers have been chosen to illustrate techniques 

currently being used in DNMR studies. A very elegant analysis 26 of 
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the spectrum of form.amide appeared in early 1970 which demonstrates 

clearly the use of isotope (15N) substitution to simplify the inter

pretation. The barrier to internal rotation in amides is of great 

biological importance. In most cases NMR techniques provide the only 

simple method available for evaluation of this rotational barrier, 

since the energy factor is too large to be within the range of micro

wave spectroscopy and too small to permit application of equilibration 

techniques. 

The NMR analysis of the proton signals is complicated by quadrupole 

broadening by the 14N signal. Two methods are available to circumvent 

the difficulty: 14 (1) irradiation of the N nucleus; and (2) isotope 

substitution by 15N. Neither technique is completely problem-free. 

Irradiation requires special equipment which increases the complexity 

of the experiment and the cost. Use of isotopically substituted 

material increases the cost of the experiment and, in this case, the 

complexity of the resulting spectra. This increase in complexity of 

the spectra makes the analysis more difficult, but it can sometimes 

enhance the accuracy of the resulting thermodynamic data since more 

lines must be sitil~ated.· 

26 Drakenberg and Forgen used a density matrix technique based on 

the equations of Kaplan45 and Alexander2 to compute the line shapes 

for analysis of the formamide spectra. An accurate knowledge of the 

coupling constants (J), chemical shifts (o), and the transverse relax

ation time (T2 ) is required for this method. Transverse relaxation 

time (T2 ) is determined by taking the reciprocal of the line width at 

half height (W~) of some line of a proton in the spectrum generated 

from a proton not participating _in the exchange and then multiplying 
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by pi (n). The "best" set of coupling constants and chemical shifts 

may be obtained by treating the data with a spectral fitting program 

such as IAOCN .3~6b or NMRIT 416b (in the formamide study it was 

necessary to obtain the chemical shifts and coupling constants as a 

function of temperature; thus spectra were calculated for every tempera

ture). The authors visually fitted the observed spectra to the calcu

lated line shapes, a technique which is quite common in this type of 

investigation. 

From the process of fitting the theoretical spectra to the observed 

spectra the rate constant k (some authors prefer to use T~ which is 

defined as the mean lifetime of the species and is equal to 1/k) may be 

determined. Once k is obtained, the activation energy (E) for the 
a 

rotation can be determined from the Arrhenius 11a• 22 equation (I). 

k = A exp(-E /RT) 
a 

where A - Frequency factor 
R = Gas constant 
T = Temperature 

(I) 

Thermodynamic parameters can be determined from the Eyringllb, 22 equa

tion of transition state theory. 

where >t = Transmission coefficent 
k" = Boltzmann constant 
~ = Planck's constant 

!),G* Free energy of activation 
_T = Temperature 
R = Gas constant 

Dahlquist24 developed an interesting technique for treating 

special systems in which the equilibrium constant changes with tempera

ture and the independent estimates of its magnitude are difficult or 



impossible to obtain. Aplinger and co-workers5 have applied this 

method to determine the barrier to rotation in N-methylpyrrole-.2-

carbaldehyde. 

13 

The line shape of an NMR signal is a function of the rate constant 

(k), the population of each of the sites (P), the coupling constants 

(J), the chemical shift (5), and the transverse relaxation time (T2) as 

indicated. Proble$s sometimes arise from the fact that there are often 

several combinations of these parameters which can give rise to similar 

line shapes. In particular, Dahlquist24 has given several examples of 

different combinations of populations and rate constants that resulted 

in the same general spectra. Obviously, this situation made difficult 

or impossible an analysis of the data in terms of the thermodynamic 

parameters. To save the situation, Dahlquist has postulated that the 

shape of the signal can be characterized by some function of the rate 

constant and the population which is given the following form. 

F(l/k,P) = P/y 
max 

In this equation Pis the populaDion (P = 1 for the coalesced signal 

and P = P elsewhere). y is the maximum height of the coalesced max 

signal and in the slow exchange 1,;i.mit is equal to the height of the 

peak with population P. However, the function FC!/k,P) could be de

fined in terms of other spectral parameters (cf. reference 5), 

By use of this function, three-dimensional surfaces arising from 

a series of curves are obtained by plotting ln K (ln K = ln (1-P)/P) 

(where K is an equilibrium constant) versus ln k versus F(l/k,P), 

From these plots, the thermodynamic parameters JI$y be evaluated by 

constructing a series of curves through points with the same F(l/k,P) 
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values. The curve which corresponds to the coalescence temperature is 

chosen and a series of tangents to this curve are drawn. From the 

intersection points of these tangent lines and the other curves (which 

represent other values of F(l/k,P), values of ln Kand ln k are esti

mated. The values of ln k are plotted against the reciprocals of the 

temperature. The set which yielded the best straight line was assumed 

to be the "best" experimental values for ln k. The activation energy 

is evaluated from the slope of this line. 24 

This method, while showing promise in dealing with difficult cases 

involving temperature-dependent equilibrium constants, has a major 

drawback. The amount of computer time required to construct the three

dimensional surfaces is quite large, even for simple systems. 

The final work on NMR line shape analysis illustrates the use of 

digital data in the evaluation of exchanged broadened NMR. spectra. In 

f 1 d J k d k 39 . . d . f a care u stu y, ac man an co-war ers investigate a series o 

substituted N,N-dimethylbenzamides [x-c6H4C(O)N(CH3) 2] in various 

solvents and hydrogen ion concentrations. The spectra were manually 

digitized by reading points from the NMR curve at 0.25 to 0.50 Hz; ; 

thirty to sixty points were taken for each trace. Values of an upfield 

and downfield sweep were then averaged tp give the po(nts used in the 

analysis. The line shape analysis was carried out using the equation 

of Gutowsky, McCall, and S1ichter12 . Three parameters are required: 

T, the lifetime for a rotational state (equal to 1/k); ~~, the chemical 

shift difference between the two methyl resonances in the low tempera

ture limit; and T2 , the transverse relaxation time. 

The program performed the following operations consecutively with

out any interim manipulations. The parameters mentioned above were 
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used tp calculate the theoretical line shape. The program then auto~ 

matically compared these points to the digital data from the experi

mental spectrum. In addition, a nonlinear regression analysis was per

formed via iteration to give the best fit first by adjusting T and, if 

necessary, adjusting Mand T2 . Statistical evaluation of the signifi

cance of calculating the values of T2 by iteration revealed that in 

all cases, except around the coalescence temperature, T2 was too 

strongly correlated to T to be evaluated in this manner. 

It is interesting to note that deviations from Lorentzian line 

shape was a major problem in obtaining a "perfect" fit between calcu

lated and experimental spectra. However, most of the deviation was in 

the "wings" of the absorption. A better fit could be obtained by 

using only points on the calculated spectra which had an intensity 

greater than five per cent of the maximum. 

Sources Qf Error 

In this section errors which result from instrumental sources will 

be discussed. These errors have plagued Dynamic Nuclear Magnetic 

Resonance studied from the beginning and are responsible, at least in 

part, for the wide variation in the thermodynamic values reported for 

compounds which have been studied by several different workers. 13 

Line broadening due to field inhomogenity or saturation is a 

problem frequently encountered when the temperature within the probe is 

changed. Careful tuning of the instrument at each temperature using 

an internal standard such as H2ccl2 or (CH3 ) 4si ', (TMS) is usually 

sufficient to minimize this problem. However, even tuning at each 

temperature does not give any indication of instrumental drift during 
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the time necessary to record the spectra. The magnitude of this drift 

may be obtained by checking the internal standard after each trace and 

retuning if necessary. 

Temperature within the sample must be controlled and monitored 

accurately. Control of the temperature is generally obtained by a 

variable-temperature accessory available for most spectrometers. In 

the case of the Varian A-60, the temperature can be regulated to ,:t1 . l. 0 

' 0 
degrees over a range of -120 to +: .. 20Q;C. Monitoring the temperature is 

usually accomplished by insertion of a capillary tube containing 

CH30H or HOCH2cH20H (depending on the temperature range) and measuring 

the shift between the OH proton and the CH protons. The temperature can 

then be interpolated from the plots of chemical shift vs temperature 

68 provided by Varian or calculated from equations provided by Van Geet. 

Errors introduced through failure to control the temperature . 

accurately are difficult to eliminate completely; however, methods to 

minimize this error have been discussed by several workers. Calibra

tion of the standards (usually CH30H or HOCH2CH20H) using a thermo

couple over the range of temperatures to be studied permits a more 

accurate knowledge of the temperatures. Since there is a temperature 

gradient around the glass insert of the probe, a minimum amount of 

sample should be used to reduce the effects of nonuniform sample 

temperature. A steady flow of carrier gas is also essential for main

taining a constant temperature (the use of two regulators in series 

will help to even the flow). 

The following section will deal with errors introduced during the 

process of analyzing NMR data. Prqpably one of the most difficult 

parameters to determine accurately for the exchanging protons is the 
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transverse relaxation time (T2). There are two principal methods used 

to determine T2 , other than the use of pulsed NMR.. 26b One method is to 

measure the line width of an exchanging species in the limit of both 

fast and slow exchange and them plot these values versus the tempera

ture. The transverse relaxation (T2) can now be read from the straight 

line between the two points. However, this requires that T2 be a linear 

function of temperature. Another method to obtain an effective value 

for T2 is by measuring the linewidth of some non-exchanging line in the 

spectrum, usually a line from an internal standard, such as TMS (however 

the use of an external standard has been r~ported by Arlinger and co-

Sb workers ) . 

The magnitude of the errors arisi'!:l.g·in.the_ti);etmo~ynamic values 

introduced by an inaccurate knowledge of T2 has been discussed by 

26b Drakenberg and co-worke.rs :. . . It was estimated to be on the order of 

* +0.2 kcal/mole in both E and 6H. 
a 

The chemical shifts and coupling constants (static parameters) of 

the exchanging species are also rather difficult to obtain. Unfortu-

1 h 1 b d . d ' h 1 h l' · 13 h nate y t ey can on y e etermine int es ow exc ange imit were 

instrument stability is often a factor in determining the accuracy of 

these par~meters. In addition, from this data (taken in the slow ex

change limit) nothing is known about the temperature dependence of the 

chemical shifts. To some extent a correction for temperature variation 

in these parameters may be made by recording the spectrum at several 

temperatures in the slow exchange limit and plotting the chemical 

shift versus temperature. Extrapolation to higher temperatures is now 

possible; however the assumption that the temperature dependence of the 

chemical shift is linear is inherent in this method. 
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26b Drakenberg and co-workers have attempted to analyze the magni-

tude of this error in their study of N,N-dimethyltrichloroacetamide. 

They estimate that an error of+ 0.2 Hz causes an error of+ 0.3 

kcal/mole in E 
a 

* and mi. 



CHAPTER II 

RESULTS AND DISCUSSION 

A number of new diisopropyl aroylphosphonates have been synthesized 

by standard techniques and characterized by NMR, IR, mass spectral and 

elemental analyses. An interesting temperature-dependent peak-doubling 

' phenomena· had been observed ·.in the NMR spectra of these compounds and 

an attempt has been made to explain this observation in terms of··proton 

nqnequivalence and.intra.molecular rotational processes. 

The Michaelis-Arbuzov reaction provides a useful route to an 

interesting series of dii.sopropyl aroylphosphonates, several of .which 

have not been reported previously. The structures of these aroyl

phosphonates are supported by IR (Table 11, Plates I-IX), NMR (Table II~ 

R 
?i R 0 0 

11 T 

0 
C"C'I 0 c"R 

+ P[OCH (CH ) ] -··7 ~ \~CHJ:2 3 2 3 . 
1, Fi ., 

R R R CH(CH3)z 
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TABLE II 

IR SPECTRAL DATA FOR DIISOPROPYL AROYLPHOSPHONATES 

C=O (cD( 1) -1 p ..... o (cm ) 
Compound Aryl Group IR-SA IR-7 IR-SA IR-7 

.5 C6H5 1658 1657 1255 1255 

.6 £-CH3c6H4 1658 1652 1253 1255 -
7 .e_-CH3c6H4 1656 1655 1258 1255 

.8 2,6-(CH3)2c6H3 1677 1677 1254 1256 

9 £-CH3oc6H4 1658 1260 

10 .e_CH3oc6H4 1658 1246 

11 2,6,-(CH3o)2c6H3 1666 1250 -
12 £-ClC6H4 1677 1262 -
13 .e_-ClC6H4 1658 1256 -



TABLE III 

NMR. DATA FOR DIISOPROPYL AROYLPHOSPHONATES 

Compound R R' R" PLATE CHEMICAL SHIFTS (Hz)/(ppm) 

R R' R" a,a 1 b ,b I 

5 H H H --- --- --- 278m 78d 
~ 

(4. 63) (1. 30) 

6 H CH3 H --- 144s --- 276m 76d 
(2.40) (4,. 60) (1. 27) 

7 H H CH3 --- --- 42s 275m 77d 
(0. 70) (4. 58) (1. 28) 

8 CH3 CH3 H 134s 134s --- 280m 75qt - (2.33) (2.33) (4.67) (1.28) 

< 

9 H OCH3 H --- 225s --- 2.72m 75d 
(3. 7 5) (4. 53) (1. 25) 

N 
t-' 



Table III (Continued) 

Compound R R' R" PLATE 

R 

10 H H OCH3 ----
11 OCH3 OCH3 H 226s ·- (3. 77) 

12 H Cl H ---

13 H H Cl ----

CHEMICAL SHIFTS (He)/(ppm) 

R' R" a,a' 

--- 228s 282m 
(3. 80) (4. 70) 

226s --- 280m 
(3. 77) (4.67) 

--- --- 282m 
(4. 70) 

--- --- 283m 
(4. 72) 

b ,b I 

80d 
(1. 33) 

75qt 
(1. 25) 

82d 
(1. 37) 

.79d 
(1.32) 

N 
N 
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Compound R R' R II 

5 H H H 

6 H CH3 H 

7 H H CH3 

8 CH3 CH3 H 

9 H OCH3 H 

10 H H OCH3 --
11 OCH3 OCH3 H -
12 H Cl. H -
13 H H Cl -

Plates XIX-XXVII), mass spectral data (Table IV, Plates X-XVIII) and 

elemental analyses (Table V). These esters exhibit unusual and previ

ously unreported (for these types of compounds) peak doubling in the 

methyl signals of the isopro2yl function (isopropyl-methyl groups) of 

the NMR spectra. 

Most of the esters studied were yellow or light yellow-green oils 

except 13 which was a low-~elting solid. The phosphoryl group seemingly - . 

acts as the chromophoric functio~ because the benzaldehyde analogs are 

colorless. However, both compounds! and 22:.;are nearly colorless, 

which apparently results from loss of conjugation between the Ar and 

C=O groups . 

The nature of the NMR spectra of these aroylphosphonates was found 

to be dependent upon the substituents Rand R'. The spectra of the 

para-substituted compounds 7, 10, and 13 were similar to that of - -
compound2_ (Plate XXXVI) where R=R'=H. Compounds 5, 7, 10, 12 and 

-... ...._ ..._...... ~' 

13 exhibited four unresolved peaks (Figure 1) at room temperature for -



TABLE IV 

MASS SPECTRAL DATA 

Diisopropyl benzoylphosphonate (~ 

M/e 
270 
186 
165 
106 
105 

% RI 
3.59 
6.03 
0.50 
7.69 

100.00 

M/e % RI 
77 19.10 
65 9.23 

43 12.95 

Diisopro~yl 2-methylbenzoylphosphonate (6) 

M/e 
284 
120 
119 

91 

% lU 
0.34 
9.30 

100.00 
19.58 

-
M/e % RI 
65 7.32 
43 11.69 
41 5.63 

Diisopropyl 4-methylbenzoylphosphonate. (].) 

M/e 
284 
120 
119 

91 

% RI 
4. 77 
9.63 

100.00 
19.07 

M/e % RI 
43 13.74 
41 6 .54 . 
39 4.21 

Diisopropyl 2,6-dimethyll;>enzoylpbosphonate· (8) 

M/e % RI M/e % RI 
298 2.78 79 5.90 
134 10.00 77 6.53 
133 100.00 43 7.08 
105 17 .36 

24 



TABLE IV (Continued) 

Diisopropyl 2-methoxybenzoylphosphonate (9) 

M/e 
300 
136 
135 
124 

% RI 
2.35 
9.08 

100.00 
22.20 

M/e 
119 

77 
43 

% RI 
18.95 
15.03 
14.05 

'Diisopropyl 4-methoxybenzoylphosphonate (10) 

M/e 
300 
152 
136 
135 

% RI 
4.56 
5.00 
9.19 

100.00 

M/e 
107 

77 
43 

% RI 
4.41 
4.84 
7.28 

Diisopropyl 2,6-dimethoxybenzoylphosphonate (11) 

M/e 
330 
166 
151 
150 

% RI 
2.06 

55.00 
100.00 

46.8.8 

M/e 
107 

77 
43 

% RI 
45.00 
24.38 
47.50 

Diisopropyl 2-chlorobenzoylphosphonate (12) 

M/e 
304 
141 
139 
111 

% RI 
1.38 

33.44 
100.00 
13.13 

M/e 
43 
41 
39 

% RI 
22.19 
26.25 
22.81 

25 



TABLE IV (Continued) 

Diisopropyl 4-chlorobenzoylphosphonate (13) 

M/e 
304 
165 
141 
140 

% RI 
3.75 
0.67 

12.26 
2.93 

M/e 
139 
111 

75 
43 

% RI 
100.00 

6.76 
8.96 

22.22 

26 



Compound Formula 

5 Cl3Hl904P -
6 Cl4H2104P 

7 Cl4H2104P -
8 Cl5H2404P 

9 Cl4H2105P 

10 Cl4H2105P 

11 Cl5H2306P 

12 C13Hl8Cl04P 

13 c13H18c104P 

TABLE V 

ELEMENTAL ANALYSIS,· YIELDS AND PHYSICAL PROPERTIES 
OF DIISOPROPYL AROYLPHOSPHONATES 

% Calculated % Found 

C H. p C H p. 

11.48 11.21 

59.15 7.39 10.91 59.08 7.38 10.76 

59.15 7.39 10.91 58.91 7.46 10.86 

60.40 7. 71 10.40 60.56 7.84 10.46 

56.02 6.99 10.31 56.30 7.08 10.17 

54.57 6 .96 9.38 54.66 7.07 9.20 

51.24 5.95 10.16 51.29 5.92 10.01 

51.24 5.95 10.16 51.40 5.95 10.04 

a. This is a known compound; see reference 66a. 

Boiling Point 0 c/mm. % Yield 

100-103/.075a 57.5 

107-110/0.01 54.2 

110-112/0.075 73.1 

93-94/0.05 66.8 

131-133/0.2 72.1 

Decompose be 71.1 

Decompose b 64.2 

114-116.5/0.075 66.1 

117-118.5/0.075 62.1 

b. Analytical sample prepared by a short path distillation technique using an apparatus similar to a 
Bantam-Ware short/path distillation unit (No. K-284500). 

c. This is a known compound; see reference 65. 
N 
-..J 
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the isopropyl-methyl protons. The four lines are two sets of doublets 

(first and third peaks and second and fourth peaks are doublets, 

respectively), the doubling being a result of coupling of the iso

propyl-methyl groups to the methine proton (J~.O Hz for all cases). 

In contrast, compounds&_ and 2_ gave one sharp doublet for the isopropyl

methyl protons due to splitting by the methine proton (Figure 2). 

Both~ and l!. gave quartets (Figure 3) in which there were two sets of 

lines; each set had a J value of about 6 Hz (methine splitting). In 

all cases the methine proton resonance was a complex multiplet (center

ed at 6 4.67) which showed little or no detectable temperature depen

dence. 

Figure 1. Simulated Spectrum of 5 at Room Temperature 



Figure 2. 

Simulated Spectrum of§__ at Room Temperature 

Figure 3. 

Simulated S_pectrum of ~ at Room Temperature 
N 

'° 
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To determine the origin of the peak doubling, a variable-tempera

ture NMR study was undertaken. Spectra were generally recorded over a 

0 . 0 
range of -50 to +H90 C (except where noted). Within this temperature 

span, the greate&t chanle was noted for all compounds except 6 which -
displayed a major change from 100-1S0°c. The isopropyl-methyl region 

(6 1.3) of the spectra was found to be temperature-dependent for all of 

the compounds excep~ 8 and 11. The spectra of both of the latter 

esters exhibited no change in the quartets over a range of -50° to 

+1S0°c. In all other cases, except 12, the trend observed included a -
quartet, the resolution of which was improved as the temperature was 

lowered. The exact temperature (Table VI) at which the doublet Sy>·lits 

into a quartet was difficult to determine accurately owing to the fact 

that not much line broadening or change in the peak shape was observed 

during the onset of the phenomenon. 

Doubling of the magnetic resonance of geminal protons or of methyl 

protons in an isopropyl group adjacent to an asymmetric1 center is 

11 d t d 33,34,42,46,S0,57 we ocumen e . Several explanations for this 

phenomen have been advanced, including partial bond hybridization, 31 

h . d I d . 2] ' 36 d h. . 1 • 1 f in ~re rotation an stereoc emica nonequiva ence o 

40 70 protons. ' Of these, partial bond hybridization has been criticized 

by Waugh and Cotton~?O There is also the possibility that a tempera-

ture-dependent chemical shift is responsible for our observed peak 

dpubling. Of the four considerations, the temperature-dependent 

chemical shifts may be ruled out by examining a plot (Figure 4) of the 

peak separation versus temperature (Note the peak separations are 

obtained from measurements of chemical shift difference between the 

two sets of exchanging protons--su9h as on the -two isoprop.yl groups). 
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TABLE VI 

COALESCENCE TEMPERATURES FOR DIISOPROPYL AROYLPHOSPHONATES 

. _·compound Coalescence Temperature (OK) 

5 314 - (Neat) 305 (CS 2) 

6 257 
a (Neat) ·-

7 331 - (Neat) 
b 

300 (CS 2) 

8 None observed -
9 267 (CS 2) 

10 299 (CS 2) -
11 None observed 

12 321 (c 2c14 ) 302 (CS2) -
13 317 (c2c14 ) 315 (cs 2) -

a) See Plate XXXVII 

b) See Plate XXXII 
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Figure 4. Plot of Peak Separation vs Temperature 
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The non-linearity suggests some type of complex dynamic process as the 

cause of the nonequivalence rather than a temperature-dependent chemical 

shift. If 7 were in a rigid conformation, a linear relationship be--
30a 48 tween peak separation and temperature might be expected ' as, for 

example, is observed in a rigid system, such as camphor (in the case of 

camphor a linear change in the chemical shift is noted). Likewise in a 

30b mobile system (N, N-dimethylformamide) one sees a simple rota-

tional process that shows a linear relationship within a temperature 

range (excluding the high and low temperature limits which, of course, 

are non-linear). There is, however, a slight linear temperature de

pendence of the chemical shift observed (Figure 5). This was noted 

while attempting to·fit the experimental and theoretical spectra for 

compound 7 and was on the or9er of 0.6 to 0.7 Hz over the temperature -
range. This is much· less than the total change observed in the peak 

separation (3,0 Hz). Due to the known similarity of the shielding 

characteristics of the benzene ring and the carbony124 group, a large 

chemical shift difference between the two conformations would not be 

40b expected. 

The possibility that a dynamic process is indeed taking place is 

supported by the fact that when the ratio of the peak heights to the 

valley (for 7) between them is plotted (Figure 6) the resulting curve is -
non-linear. This result is also noted in the case of N,N-dimethyltri

fluoroacetamide.72 

Differentiating between the two other possible causes for the 

spectra is a more difficult tas.k. A complete analysis of the data does, 

in fact, indicate that the observed peak doubling is a function of both 

hindered rotation and stereochemical nonequivalence of protons. 
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. 58 59 ·There are three generally recognized ' requirements which are 

necessary before nonequivalence can be observed in the NMR spectrum of 

a compound: (1) "there must not be any molecular motions which corre

spond to a symmetry operation for the protons which are completed with

in a time that is short compared to the NMR signal width," (2) "there 

must be a field gradient between the protons," and (3) "there must not 

be any rapid internal molecular motions that produce an approximation 

of symmetry that is good enough to prevent the observation of non

equivalence." By applying the above conditions to the observed peak 

doubling, the following considerations can be examined: (1) there -~ 

exists a configuration (or configurations) in which there is no 

symmetry element present; (2) there exists some molecular motion (or 

motions) which, when rapid enough, simulates a symmetry operation; (3) 

there exists a field gradient between the configurations whic~ is 

large enough for nonequivalence to be observed; (4) the field gradient 

is large enough for compounds~'.!.!. and 2. (only at elevated tempera

tures) that the nonequivalence is observable even in the presence of 

rapid molecular motions which destroy the nonequivalence in all of 

the other compounds, 

There are four bonds ~'~'£and £ 1 ) about which rotation may be 

hindered sufficently to cause nonequivalence of the protons in the 

ester group. Of these bonds, the nature of the rotation about bonds 

of type~ is probably the most well documented. Unlike what was 

originally thought, the ring was found to rotate slowly about the 

Ar-C=O bond by Anet and Ahamad3 in para substituted benzaldehydes. 

However, one may assume that the ring is in conjugation with the 
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carbonyl carbon much of the time since conjugation energy would favor 

this configuration at room temperature. The nature of the substituent 

in the ortho position greatly affects the rate of rotation as noted 

by Siddall and Garner60 in certain substituted benzamides. They 

61 report the barrier to rotation about the Ar-c=o bond in 14 to be -
about 20 kcal/mole while the barrier60 in the mono ortho substituted 

benzamides is much lower. 61 The authors postulate that the ring is 

bent out of the plane of the carbonyl group while the lone electron 

pair on nitrogen remains in conjugation with the carbonyl function 

14 ·-



In the diisopropyl aroylphosphonates of our study there is no 

intuitively obvious gain in electronic stabilization by placing the 

phosphoryl group in any particular configuration with respect to the 

carbonyl group. This is in contrast to the situation in the amide 

system. It is reasonable to assume that while s1ow rotation occurs 

37 

about the Ar-C bond, the most highly populated conformers must be those 

in which th~ ring is in conjugation with the carbonyl group, except in 

compounds~ and g. In these two cases, the most highly populated 

conformers are those in which the ring is out of the plane of the 

carbonyl function. Sµpport for this statement is found in the ultra-

violet data for8 (287 mµ, log emax 3.15) andg (272 mµ., log emax 3.44). 

A decrease in the magnitude of emax suggests that conjugation of the 

phenyl ring and the carbonyl group is greatly reduced as compared to 

that in 5 (260 mµ, loge 4.06) or _6 (262 mµ, loge 4.03). This 
- max max 

situation apparently results from sterlc factors. 

The rotational propensities of the remaining bonds (£,£,and £ 1 ) 

are not so easily analyzed. The nature of the rotation about the 

P-OR (£and£') bonds has been dlscussed by several 

th 17,32,33,42,57a,57b,59,71 Th 'd db h au ors. e evi ence presente y t ese 

workers is conflicting and does little to clarify the problem. Jardine 

and co-workers42 favor the existence of two conformations with respect 

to one ester group (shown below), with free rotation beginning at 

1 d (+150°) In contrast S;ddall and Prohaska57a,S 7b e evate temperatures C . ~ 

postulated that there is free rotation about the P-OR bond with the 



Up 

"up" configuration favored. 

0 
i 

/P---R 
R ~ 

0 
I 
R 

Down 

32 Frankel and co-workers computed the 

38 

barrier to rotation (from temperature-dependent coupling constants) to 

be approximately 850 cal/mole for 15 but failed to comment on a pre--
ferred conformation. 

0 ? H II 
I /C 
C 

N02--<2>--o-P---o--- H 

tH3 

31 The P spectra (Plates XXVIII and XXIX) of§_ and L indicate that 

the ester groups are equivalent at room temperature. If the methine 

protons were nonequivalent (as would be expected if rotation about the 

P-OR bond was rapid, exclud~ng accidental equivalence), a doublet or 

set of doublets would be observed rather than the observed triplet 

(Plate XXIX). By far the bulk of the data points to free rotation 

about the P-OR bonds but there is little evidence in the literature 

to prove the existence of a preferred conformation in any system con

taining P-OR groups. 



There are several possibilities for conformations in the 

diisopropyl aroylphosphonates herein reported, some of which may be 

ruled out on the basis of steric arguments. Note that all of the 

conformations shown below are interconvertible by rotation about the 

P-OR bonds (£ and £ 1 ). 

A B 

0 0 

D 

39 



Bothner-By and Trautwine conclude from a study of trineopentyl 

phosphate that the favored conformation about the C-OP bond is a 

40 

17 
staggered ethane-like structur·e (shown below). If this rationale is 

P(O) roR) 
~ ·2 

H H 

applied to the aroyl~hosphonates, siveral staggered conformations can 

be envisioned. Some of these conformer:s. have, 'the: isop:ropyl-methylg·:i::~ups 

in close proximity when the arrangement about the P-OC bonds is like 

those in! or B. Models suggest that the steric crowding in A must 

limit the contribution of this conformer greatly. It must also be 

pointed out that both configurations~ and! place the orbitals of the 

non-bonding electrons on oxygen. in an arrangemen.t adjacent to each 

other. This situation, from the standpoint of electronic repulsion, 

is likely to be unfavorable. In conformations£ and E_, the interactions 

between the isopropyl-methyl groups and the interactions between the 

non-bonding pairs of electrons are minimized. Hence it is not unreason

able that the staggered conformations£ and E_ are probably the favored 

conformations, although_one cannot conclude unequivocally that these 

are locked conformations and that interconversion between C and D does 

not occur ra~her easily. 

There has been some speculation6 ' 8 ' 67a, 67b concerning the configu

ration around the P-C bond (~) based on an unusually large shift 
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(10-15 cm-1) of the c=o stretching frequency toward longer wavelengths 

in the dialkyl aroylphosphonates when compared to the benzaldehyde 

analogs. The shift was tentatively attributed to some type of inter

action between the phosphoryl oxygen non-bonding orbitals and the 

carbonyl carbon p orbital (shown below). A similar shift (5 cm- 1), 

R 

38a although not as large, is also reported for the acylphosphines when 

compared with the amide analogs. The absence of the phosphoryl oxygen 

in this system indicates that the shift is probably attributable to 

2p1i-3d1i type interactions (the dipole moment data of Ishmaeva38b 

indicates that there is a conjugative interaction between the benzoyl 

and thi ;phosphoryl group in X-c6H4c (O)P(O) (OC2H5) 2 , where X = .e,-Cl, 

~-Cl, ~-Br and .e,-N02). 

In an effort to evaluate the possibility of such an interaction 

between the P1i orbital of the carbonyl carbon and the P~O group in the 

acylphosphonates of this study, an Extended Hueckel calculation using 

a program developed by Hoffmann37 was carried out. This program 

approximates the off-diagonal Hamiltonian matrix elements by 



H .. = S .. • (H .• + H .. ), where H •• and H .. are the valence-state 
1J 1J 11 · JJ 11 JJ 

ionization potentials and S .. is evaluated by a recurrence technique 
1J 
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developed by Ruedenberg and co-workers, 55 All of the empirical para-

. 19 37 meters were taken from those used in previous work ' on other 

phosphorus-containing systems. 

The model chosen to represent the system was restricted to 24 

orbitals by core space limitations in the computer memory. The ester 

groups bonded to the phosphorus atom were replaced by hydrogen atoms 

as was the phenyl ring. No attempt was made to optimize bond angles 

0 
1.2 ... ~c~200 i.ao 
120--\ -----------------------

/1.07 
H 

0 
11.46 

)]-09.5° p ...... ,c-1.42 

~ 
... 

... H 
1.42 

H 

or bond lengths shown. All angles and bond lengths were taken from 

19 37 X-ray data published on other phosphorus compounds. ' The 

calculations were performed both with and without consideration of the 

~ orbitals on phosphorus and the results are shown in Table VII. 



Angle in Degrees 

0.0 

45.0 

90.0 

180.0 

TABLE VII 

EXTENDED HUECKEL DATA 

ET (without -5!_ orbitals) 

-501.30 

-501.24 

-501.20 

-501.26 

-501.30 

43 

ET (with -5!_ orbitals) 

-508.25 

-508.21 

-508,28 

-508.24 

-508.20 

It must be recognized that' steric interactions are not considered 

important in this calculation because of the small size of the hydrogen 

substituents compared to the actual substituents. Therefore any 

difference in the energy of a conformation compared to the other con

formations must be almost entirely electronic in origin. As can be 

seen from the Pl~C of. the :'total,enex·gy versus 'diq~dra,tr,ngl~~ ¢,it;h-&.,;.,' 

conformation with¢• 90 degrees does not appear to be favored 

energetically for the computation in which .5!_ orbitals were~ included 

(Figure 7). However, when .5!_ orbitals are included; ···th¢. ·Crcmtonn~.tion ~'.t. . ' ,, 

¢ • 90 appears to be favored by a few hundredths of an e.v. (Figure 8). 

Perhaps of equal importance are the values of the overlap integrals 

for the 2pz (2prr) orbital on carbon and the 2p orbitals on the phos

phoryl oxygen (Table VIII). These values are not large enough to 

bring about any significant interaction between the two atoms, a fact 
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0 

which might have been anticipated from the calculated distance (2.66 A) 

between them. 

Angle in Degrees 

0.0 

45.0 

90.0 

135.0 

180.0 

TABLE VIII 

OVERLAP INTEGRAL VALUES 

2£ -2.E. z z 21?.z -2:2x 

0.0070 0.0000 

0.0005 -0.0152 

-0. 0060 -0.0215 

0.0005 -0.1520 

0.0070 0.0000 

2£ -2.e, z y 

0.0000 

0.0065 

0.0000 

-0.0065 

0.0000 

Again it must be emphasized that th~se calculations do not preclude a 

favored conformation arising from steric factors due to internal non

bonded interactions. 

Another piece of evidence bearing on this point arose while trying 

to explain the unusual NMR spectrum observed at high temperature for 6. 

A temperature study using a laser Raman spectrometer showed that there 

was a significant and reproducible shift of 3 cm-l to higher frequency 

0 for the c=o groµp around 150 c. This shift was not noted in compound 

I_ at that temperature. The shift is believed to be due to a breaking 

of conjugation between the aryl ring and the carbonyl group in 6. If 
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-1 6 8 
the 10-15 cm shift for vC=O in simple aroylphosphonates ' (compared 

to the corresponding benzaldehyde analogs) was caused by interaction of 

the carbonyl carbon with the phosphoryl oxygen, this interaction would 

be destroyed by free rotation about the C-P bond (£) at this tempera¥· 

ture. lf the shift was due to the 2£n-3in interactions, little change 

would be expected even with free l;"otation about the C-P bond, if one 

accepts the argument that there is little angular dependence for inter

action with i orbitals. 41 Unfortunately, the p~o bond was inactive or 

very weak in the Raman spectrum and no conclusions could be made con

cel;"ning the influence of the C=O on the P~O absorption, 

There is, however, other data which can only be reasonably ex-

plained by a favored conformation about the P-C bond (£) with a OPCO 

dihedral angle (¢) of approximately 90 degrees. The experimental 

dipole moments of 5 (2.53 D) and 6 (2.69 D) taken in carbon tetrachlo~ - -
ride at 25° Care somewhat lower than the previously reported6 values 

for dimethyl benzoylphosphonate (2.93 D), dimethyl 

4-methoxybenzoylphosphonate (3.20 D) and dimethyl 

4-chlorobenzoylphosphonate (2,64 D). The difference in the experimental 

moment of. 5 and that of the dimethyl benzoylphosphonate could be the 

result of the larger size of the isopropyl group (as compared to the 

methyl group in the ester functions) which could impose a slight con

formational change on the system, Calculations indicate that the 

magnitude of the moments of.5 and 6 is lower than expected for a - .,._ 

conformation where the dihedral angle (¢) between the carbonyl oxygen 

atom and the phosphoryl oxygen is 0,0 and higher than for a dihedral 

angle of 180 degrees. 
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the 10-15 cm-l shift for vc=o in simple aroylphosphonates6 ' 8 (compared 

to the corresponding benzaldehyde analogs) was caused by interaction of 

the carbonyl carbon with the phosphoryl oxygen, this interaction would 

be destroyed by free rotation about the C-P bond(£) at this temperature 

If the shift was due to the 2~n-3~TI interactions, little change would 

be e~pe.c:µ:,e.d ~ven .:w:tth .. free rotation about the C-P bond, if one accepts 

the argument that there is little angular dependence for interaction 

with d orbitals. 41 Unfortunately, the P.-.0 bond was inactive or very 

weak in the Raman spectrum and no conclusions could be made concerning 

. the influence of the c=o on the P-.0 absorption. 

There is, however, other data which can only be reasonably ex

plained by a favored conformation about the P-C bond (£) with a OPCO 

dihedral angle (¢) of approximately 90 degrees. The experimental 

dipole moment&· of· 5 (2. 53 D.) and 6 (2 ,69 D) taken in carbon tetrachlo-- -. 
ride at 25° Care somewhat lower than the previously reported6 values 

for dimethyl benzoy.lphosphonate (2.93 D), dimethyl 

4-methoxybenzoylphosphonate (3.20 D) and dimethyl 

4-chlorobenzoylphosphonate (2.64 D). The difference in the experimental 

moment of 5 and that of the dimethyl benzoylphosphonate could be the -
result of the larger size of the isopropyl group (as compared to the 

methyl group in the ester functions) which could impose a slight 

change on the system. Calculations indicate that the magnitude of 

the moments of 5 and 6 is lower than expected for a conformation.where -
the dihedral angle (¢) between the carbonyl oxygen atom and the 

phosphoryl oxygen is 0.0 and higher than for a dihedral angle of 180 

degrees. 
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OR OR 

Empirical dipole moments were calculated using a computer program 

based on equations of Smyth. 62 The coordinates of all of the atoms 

were first calculated using a computer program obtained from the 

Quantum Chemistry Program Exchange. 25 The bond moments were then summed 

to produce the molecular dipole moment (see Table X, see Experi-

mental for a detailed description of the calculation). Moments were 

calculated for four different models (below) in each case varying the 

OPCO dihedral angles (¢) of 0.0, 45.0, 90.0, 135.0 and 180.0 degrees. 

The models were set up to explore both the dihedral angles (¢) and 

the different orientations of the ester groups with respect to the 

phosphoryl oxygen atom. 
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• 
0 

H 

0/ ...::1CH /C,_ 3 
'CH 3 

Model I Model II 

Model III Model IV (Free rotation) 

Upon examination of the calculated data (Table IX and Table X) for 

models I through III, it becomes apparent that there are difterent 

combinations of¢ and ester group conformations which give values 

which are within 0.5 D of the measured values for .2.· What is immedi

ately obvious is that the molecular dipole moment does not depend so 

much on the configuration o'f the ester groups as it does on the 

dihedral angle (¢), as evidenced by the free rotation model (IV). In 

the free rotation model, there is no weighting of any of the configura

tions of the ester groups. The obvious conclusion is that the experi

mental data is best matched in those cases where the dihedral angle is 

approximately 90 degrees. Although it is difficult to draw any definite 

conclusions tram this data because of the mobility of the system, it 
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can be surmised that the preferred dihedral angle may be about 90 

degrees. An examination of Coµrtauld models also indicates that there 

is a great deal of interactio;n between the substituent at the ortho 

position and the oxygens on the phosphorus atom. This interaction 

appears to be large enough to hinder rotation about the C-P bond (£), 

TABLE IX 

CALCULATED DIPOLE MOMENTS (DEB YE UNITS) 

Dihedral Angle (¢) Model I Mddel II Model III Model IV a 

0.0 3.56 5.15 6.78 5.08 

45.0 3.37 4,47 6.31 4. 70 

90.0 2.88 3.15 5.02 3.64 

135.0 2.29 1.50 3.24 2.09 

180.0 1. 99 1.19 2.10 0.82 

a. Free rotation model 

Assuming that hindered rotation is probable and that there is a 

preferred conformation about the C-P bond (£), it is necessary to 

examine the observed nonequivalence in terms of the three requirements 

for nonequivalence discussed previously. The stereochemical nonequiva

lence of the isopropyl-methyl protons when adjacent to an asymm.etric 1 

center has been well established by several workers. 33 , 34 ,42 ,46 , 50 , 57 



Modela 

•¢ 

0.0 

45.0 

90.0 

135.0 

180.0 

TABLE 1t . 

CALCULATED DIPOLE MOMENTS (DEBYE UNITS) 
FOR DIISOPROPYL BENZOYLPHOSPHONATE 

0 

·.. .~ 

"b c6H5+-C (0) c6H5->C (0) C H .... C (0) 
6 5 

I II III .I II III IV 

-3.56 5.15 6.78 3.14 4.56 6.10 5.08 

3.37 4.47 6.31 3.0 4.03 5.74 4.70 

.Z.88 -3.15 5.02 2.61 3.02 4.76 3.64 

2.29 1.50 3.24 2.16 1. 92 3.51 2.09 

1. 99 1.19 2.10 1. 95 1. 77 2.83 0.82 

a. ¢ is the OPCO dihedral angle. 
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c6H5+-C (O) 

IV 

4.48 

4.18 

3.35 

2.23 

1.55 

b. Arr0W indicates the direction of the assumed bond moment (0.4 D). 
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Also known is the tendency for 
1
these protons to be nonequivalent in 

systems where there is no formal center of asymmetry but where there is 

a pseudo center of asymmetry "from the viewpoint of the isopropyl

methyl protons." It is not necessary for this pseudo center of asymme;.; 

try to be iunnediately adjacent to the isopropyl group. The same effect 

is still possible when there is an intervening oxygen. This situation 

has also been observed in diisopropylphenylphosphine but~ in 

0 

isopropyldiphenylphosphine. 50 The necessity of having an anisotropic 

group, such as the phenyl ring, for nonequivalence to be observable, 

has been suggested by Siddall and Prohaska, 57a Jardine and co-workers42 

questioned this requirement but neglected to indicate that in their 

study a true center of asymmetry was present and one of the substitu

ents contained a benzene ring. In the diisopropyl aroylphosphonates 

under consideration, the phenyl ring is present and the conformation of 

this ring with respect to the carbonyl group appears to play an 

important role in determining the nature of the observed spectra for 

the various aroylphosphonates, as evidenced by the spectra of! 
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(Plate XXII) and 11 (Plate XXV) when compared with the spectra of 5 - -
(Plate XIX) or 6 (Plate XX). -

As has been previously mentioned, UV data suggests that in com

pounds 8 and 11 the extent of conjugation between the aryl ring and the - -
carbonyl group is not as great as in the other esters. This implies 

that there is a highly populated configuration in which the ring is 

bent out of the plane of the carbonyl g·roup as shown below. 

R 

In this case the isopropyl groups fall directly within the shielding 

cone of the aryl ring, but it may not be true that the sets of 

isopropyl-methyl protons will be affected equally. The presence of a 

field gradient (provided by the aryl ring) and the inherent stereo

chemical nonequivalence of isopropyl-methyl protons could serve to 

explain the quartet observed for compounds 8 and 11 at all temperatures . .... -
52 As pointed out by Pople in situations such as shown, the methyl 

groups in the isopropyl function may never be equivalent (although 

accidental equivalence may be possible) no matter what the rate of 
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rotation. It should be noted that it is often difficult to predict 

nonequivalence on topological grounds but once observed the non

equivalence may be explained on this basis. 

A similar explanation will serve to account for the unusual be-

havior of compounds£_ (Plate XXXIV) and Jl. (Plate XXXVIII). The NMR 

spectra of these esters exhibit an inverse temperature dependence. The 

doublet which is present at room temperature splits into a quartet as 

the temperature is raised. The larger number of peaks present in the 

100 MHz spectrum off (Plate XXXIV) at 150° C (as compared to i 

Plate XXXV) may be due to several configurations which contribute 

significantly to the total spectrum. The nature of the temperature 

dependence indicates that above a certain temperature the population 

of the configuration in which the ring is out of the plane of the 

carbonyl group must be quite large and so produce .the same effect that 

is seen in the spectra of~ (Plate XXII) and .!l (Plate XXV) . 
.. 

The difference in the temperature above which this phenomenon is 
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observed can be explained by the difference.in the inductive effect of 

a methyl group as compared to a chloro group coupled with the difference 

in the steric requirements between the two groups. In compound. 6 the -
electron-donating ability of the methyl group may make the configuration 

in which the ring is in conjugation with the carbonyl group much more 

favorable than it is in compound 11· In the chloro compound 1l, the 

electron-withdrawing property of the chlorine atom may destabilize this 

configuration. Consequently, the conformations in which the ring is 

out of conjugation with the carbonyl could be more highly populated in 

~µe ortho chloro compound than in the ortho methyl compound .2.: 

Courtauld models suggest that in 6 the conformation with the methyl -
substituent on the phenyl ring near the phosphoryl function 6a is ·-

0 CH3 
0 

H II O \ II 
c~f c~ /. 

P---o R P---o R 

CH3 ~Oft H \OR 

6a 6b 
r../ ,..., 

sterically unfavorable. However, NMR analysis implies that there is 

possibly a significant contribution made by the conformet -2!.· Neither 

the ring methyl (Plate XXXIII) nor the 31P absorption lines are sharp 

31 ,, 
(Plate XXVIII), The broad triplet observed for the P signal 
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(produced by coupling to the methine protons) appears to be two triplets 

of almost equal intensity. The broadening of the resonance lines of 

31 the P spectra cannot be due to nonequivalent methine protons. If this 

were the case, the peaks would appear as two sets of doublets, not two 

sets of triplets. The above argument may also be used to explain the 

broadening of the ring methyl resonance. 31 Thus, the P data suggests 

that there are two almost equally favored conformations. (~ and. ft) of 

the methyl group on the ringwith respect to the phosphorus atom. 

Having determined the configuration about the Ar-c=o bond (!), 

having showed that stereochemical nbnequivalence of the isopropyl

methyl groups is possible in these compounds, and having explained the 

rotational properties of the ester groups in terms of previous work, 

we should now examine the C-P bond (E_) in terms of its rotational 

properties. A dihedral angle between the carbonyl oxygen and the 

phosphoryl oxygen, as mentioned previously, of about 90 degrees seems 

best to explain the dipole moments. T.o rotate the phosphoryl group 

180 degrees to achieve an interchange of the ester groups requires 

that at least one of the oxygens on the phosphorus eclipse the ortho 

0 

0 -o)-
0 

0 
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substituent on the ring. 

If the field gradient is not too great, i.e. the ring is not bent 

out of conjugation with the carbonyl (so that the shielding of the 

isopropyl-methyl protons by Ar is greatly altered) this type of rota

tion, if sufficiently rapid, could simulate a symmetry operation close

ly enough to cause equivalence. On the assumption that this situation 

occurs, the above mechanism was used as a model for calculation of the 

theoretical NMR line shapes using DNMR214 and DNMR315 . Since neither 

program is set up to treat a system with fourteen protons the individual 

methyl groups were treated as a single spin. This is a reasonable 

assumption in view of the fact that the methyl groups are not coupled 

to each other, nor are they coupled to the phosphorus atom, and there is 

little or no temperature dependence in the absorptions of the methine 

protons. Therefore little information is to be gained by including 

them in the analysis. The theoretical line shapes are seen to fit 

the experimental curves quite well (Table IX, Plates XXXI and XXX). 

Even though a good fit was obtained, when an Arrhenius plot 

(ln k vs 1/T, Figure 9) of the data (Table XI) was constructed, an 

activation energy of approximately 5 kcal/mole was obtained. With such 

a low value of E one would n©t expect the observed phenomena to 
a 

"le 
occur around room temperature. The value calculated for 6S (-50 

cal/deg mole) from the Eyring equation is also unreasonable for a 

f h . h s* · d b 12 process o tis type were 6 is expecte to e near zero. 

Since this simple mechanism fails to give defensible values for 

the thermodynamic parameters, a more complex process is likely responsi

ble for the experimental observations. Critical examination of the 

system reveals that a combination of rotations is conceivable about 
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Figure 9. Plot of Ln k versus 1000/Temperature 



Rate Constant 

(k) 

0.750 

1.275 

1.625 

3.49 

TABLE XI 

PARAMETERS USED TO FIT CALCULATED TO EXPERIMENTAL SPECTRA WITH DNMR.3 

Temperature 

(o K) 

250.2 

263.6 

273.2 

308.16 

T2 

0.424 

0.531 

0.548 

0.795 

Chemical Shifts (Isopropyl-Methyl Protons) in Hz 

1 2 3 4 

79.45 79.45 81.58 81.93 

79.45 79.45 81.48 81.83 

79.45 79.45 81.33 81.73 

76.0 76.0 78.17 78.47 

O'\ 
0 
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I 

III IV 

... 

the C-P bond ~) and the two P-OC (£ and .£') bonds as shown. It should 

be noted that conformers I and IV are magnetically equivalent as are 

II and III. In order to demonstrate that· the experimental line shapes 

mil.ht be reproduced theoretically using this model, a calculation was 

undertaken using the same assumptions regarding the methyl groups as 

were used in the previous calculation. In this instance, however, no 

rigorous attempt was made to match the experimental lines exactly, be

cause in most of the cases only one coalescence point was noted. 



Therefore no unique determination of the separate rate constants is 

possible. Several combinations of the rate constants and populations 

were found to give curves which match the general shapes of the 

experimental spectra. It must be pointed out that there is also no 

obvious way to determine experimentally the populations of I, II, III 

or IV and they can only be treated as experimental parameters. 

Unfortunately no unique set of thermodynamic information can be 

extracted from the present data. However, it can be concluded from 
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the information available that rotation about the P-C bond is hindered 

and the effect of this rotational process on the general NMR line shape 

is perturbed by rotation about the P-OR bonds causing erroneous calcu

lated values for AE ... and b,S'lc. It may also be deduced that rotation a 

about the P-OR bond is probably not greatly hindered. However, the 

dipole moment data strongly suggests a preferred conformation about the 

P-C bond with the OPCP dihedral angle <'£,.approximately 90 degrees. The 

unusual temperature dependence of the isopropyl-methyl region of the 

NMR spectra has been explained in terms of stereochemical nonequivalence 

of the isopropyl-methyl groups and molecular motions which can simulate 

a synunetry operation. 

Suggestions For Further Work 

The diisopropyl aroylphosphonate system provides several ways in 

which the problem of determining rotational barriers may be approached. 

In our study we utilized only one of them extensively, Proton Magnetic 

Resonance. The other possibilities include variable temperature NMR 

studies over a range of temperatures, variable temperature studies 

employing UV and IR and selective deuteration or 13c enrichment 



coupled with variable temperature studies of 1H, 31P and13c. The 

methods of approach and expected results will be discussed below. 
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Nuclear Magnetic Resonance studies with temperature variation using 

nuclei other than 1H are not common. To ex~mine the usefulness of this 

type of study, it is necessary to consider the magnetic environments 

in which the various nuclei reside and how a change in temperature 

might affect this environment. Looking first at the phosphorus atom, 

it can easily be seen that it is coupled only tb the methine proton on 

the isopropyl group. The magnitude of this coupling is known to be a 

function of the POCH dihedral angle·. 17 Since the methine proton signal 

is a complex multiplet, observing the change in POCH coupling constant 

can most easily be accomplished by observing the 31P resonance. When 

the 1H resonance of the isopropyl-m.ethyl protons is observed down to 

-l00°c, only one coalescence point is detected for most of the 

aroylphosphonates studied. If the coalescence point observed is for 

slowing of rotation about the C-P bond, then the only simple way to 

obtain information about the rotation of the P-OC bond is to observe 

the change in the POCH coupling constant as the temperature is lowered. 

It is well known40b that 13c chemical shifts are quite sensitive 

to the type of bonding of the particular carbon nucleus. If this is 

true, using 13c=o (introduced by the following method) a variafrle 

temperature NMR study could be instructive. Changes in the chemical 

shift of 13c might provide some insight into the nature of the rota

tional processes occurring at both the c 6H5-C(O). bond and the C-P 

bond. 
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©r~Br 

©r~Br + 

0 ©f~-Cl + 

Dipole moment measurements have been used for a number of years 

in conformational analysis but there has not been much.work.done using 

a variable-temperature dipole moment apparatus. One would expect that 

a great deal of information concerning the rotation about the C-P bond 

would be accessible. As mentioned previously, dipole moment calcula

tions indicate that the relative position of the phosphQryl oxygen and 



carbonyl oxygen is the primary determinant of the dipole moment of 

the·molecule. 

65 

Since the UV spectra of aroylphosphonates show an interesting 

shift when compared to those of the benzaldehyde analogs, it might be 

possible to ascertain whether or not the shift was due to interaction 

of the phosphoryl group with the carbonyl carbon atom by observing 

the change in the spectra as a function of temperature. One would 

expect that if there was a great deal of interaction between the P~o 

and the c=o there would be a shift to shorter wave lengths for u c=o 
as the temperature was raised (increasing the rate of rotation of the 

.!?. bond). 

A variable-temperature IR study might provide some further infor

mation but the data would be somewhat more difficult to interpret. If 

IR was used rather than Raman, as in this study, observation of both. 

the P~o and the c=o stretching band would be permitted. At room 

temperature there is no appreciable shift in the P~o stretch and any 

variation of this absorption band with temperature could help to deter

mine the extent of the C-P rotation. 

Selective deuteration has been used in other variable-temperature 

d . 18 · l"f h stu Les to sLmp Ly t e spectrum. In our work, the unsymmetrically 

deuterated isopropyl group coupled with a variable-temperature study 

could help to unravel the exact nature of the observed nonequivalence 

of the isopropyl-methyl groups. The preparation of the compounds 

couldbe carried out as follows. 
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One technique which might be used to freeze the rotation about 

the P-OC bond is to prepare the ester with a dial to produce a cyclic 

compound of the type shown below. By freezing the rotation one may be 

able to ascertain.whether or not non~quivalence is due to rotation 

about the C-P bond. 
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Of the above methods of attack, some require special equipment, 

some of which .. is only just now becoming available (i.e. variable

temperature dipole moment and high-temperature UV equipment); others 

require only the application of well known experimental techniques to 

the aroylphosphonate system. I feel that the suggestion with the 

most potential for determining the exact nature of the system is the 

use of variable-temperature NMR with nuclei other than 1H. There has 

been little done in this area and yet the potential for simplifying 

the analysis is great. 
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CHAPTER III 

EXPERIMENTAL l- 7 

Preparation of Diisopropyl Benzoylphosphonate ~). Triisopropyl 

phosphite (15.28 g., 0.074 mole; Mobil Chemical Company) was added 

dropwise to benzoyl chloride (10.0 g., 0.074 mole; Eastman reagent 

grade) without solvent. The resulting mixture was stirred at room 

temperature (under anhydrous N2) for 12 hr. after which time excess 

1The PMR spectra were recorded on a Varian Model A-60, Analytical 
NMR s~ectrometer31quipped with a V-4-341/V-6057 variable-temperature 
access;ory. The P spectra were obtained on a Varian XL-100 spectro
meter .'i Tetramethylsilane (TMS) was used as a low-temperature internal 
refereice standard and tetramethylurea was used as a high-temperature 
intern 1 reference standard~ 

2 he temperature was monitored using CH OH (low temperature) or 
HOCH2ciI2oH (high temperature) as external re~erences. Shift differences 
were converted into temperature readings.by interpolation of the plots 
of chemical shift vs. temperature provided by Varian Associates. 

3The infrared spectra were obtained on a Beckman IR-5A recording 
. spectrometer (or, where noted on a Beckman IR-7 recording spectrometer) 
as films on sodium chloride cells for liquid samples or in potassium 
bromide pellets for solids. 

4The ultraviolet spectra were recorded on a ~odel 14 Cary record
ing spectrophotometer. 

5The microanalyses were performed by Galbraith Laboratories, 
Knoxville, Tennessee. 

6The mass spectra were obtained on a LKB-9000 prototype, magnetic 
sector, GLC-mass spectrometer, Biochemistry Department, Oklahoma State 
University. 

7The 100 MHz spectra were recorded on a Varian ltA-100 NMR spectro
meter, at Continental Oil Company, Ponca City, Oklahoma. 
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starting materials were removed by distillation. The crude mixture was 

then distilled in a short-path distilling apparatus and the fraction 

boiling at 105-110?0.15 llllll. was refractionated using a vacuum-jacketed 

distillation column (15 cm.). Pure 5 (b.p. 91-92°/0.02 llllll.) [11.5 g., - . 

57.5%] was obtained as a yellow-green, viscous liquid and sealed8 in 

vacuum. 

Anal. Calcd. for c13H19o4P: P, 11.48. 

Found: P, 11.21. 

Pr~paration of Diisopropyl 2-Methylbenzoylphosphonate (6). 

Triisopropyl phosphite (20.0 g., 0.13 mole) and 2-methylbenzoyl chloride 

(27.1 g., 0.13 mole; Aldrich Chemical Company) were combined and the 

mixture was treated as for 2_, except that the reaction time was only 

4 hr. The ester 6 was obtained, a yellow-green, viscous liquid (b.p. 

107-ll0?0.01 llllll.; 24.1 g. (54.2%). 

Anal. Calcd. for c14H21o4P: C, 59.15; H, 7.39; P, 10.91. 

Found: C, 59.08; H, 7.38; P, 10.76. 

Preparation of Diisopropyl 2,6-Dimethylbenzoylphosphonate (,!!). 

Triisopropyl phosphite (4.40 g., 0.021 mole) was added slowly to 

2,6-dimethylbenzoyl chloride (3.56 g., 0.021 mole)[all acid chlorides 

were prepared from commercially available acid and S0Cl2 by standard 

techniques, Columbia Chemical Company (acid source)] and the mixture 

0 was stirred for 13 hr. at 60 C. (under anhydrous N2). Distillation 

as for 5 gave 8 (4.2 g., 66.8%) as a clear, brown-tinted oil (b.p. - -
0 

93-9470.05 llllll.). 

8 All samples were sealed in glass ampoules to prevent exposure to 
air or moisture. 



Anal. Calcd. for c15H23o4P: C, 60.40; H, 7.71; P, 10.40. 
/.,.~ 

Found: C, 60.56; H, 7.84; P, 10.46. 

Preparation of Diisopropyl 2-Methoxybenzoylphosphonate (2_). 

Triisopropyl phosphite (25.6 g., 0.125 mole) and 2-methoxybenzoyl 

chloride (20.0 g., 0.125 mole) were combined by the same procedure as 

used for .2.. to yield 2_ (26.9, 72.1%) as a yellow-green oil (b.p. 131-

1320 /0. 2 mm-~), 

Anal. Calcd. for c14H21o5P: C, 56.02; H, 6.98; P, 10.31. 

Found: C, 56.30; H, 7.08; P, 10.17. 

Preparation of Diisopropyl 4-Methoxybenzoylphosphonate (lQ). 
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Triisopropyl phosphite (24.4 g., 0.1175 mole) and 4-methoxybenzoyl 

chloride (20.0 g., 0.1175 mole) were combined, and the crude product 

was obtained by stripping excess starting materials in a short-path 

still. Attempts to fractionate the liquid resulted in decomposition, 

so partial purification was accomplished by shaking a HCC13 solution 

of 10 with a saturated sodium bicarbonate solution. After drying 

(Mgso4), a chloroform solution of lQ. was obtained as a viscous, yellow 

liquid (25 g., 71.1%). 6 65 This is a known co111:~11nd. ' 
. ,.~ 

Preparation of Diisopropyl 2,6-Dimethoxybenzoylphosphonate UJ.). 

Triisopropyl phosphite (5.2 g., 0.025 mole) and 2,6-dimethoxybenzoyl 

chloride [(4.0 g., 0.02 mole; Koppers Chemical Company (acid supplier)] 

were combined as before and starting materials were removed by short

path distillation. Attempts to distill under normal high vacuum condi

tions led to decomposition, thus a Bantam-wave short-path distillation 

apparatus (K-284500) was employed (evaporation point 70° C/0.01 mm.). 

The ester (4.22 g., 64.2%) was obtained as a yellow-tinted, viscous 

oil. 



Anal. Calcd. for c15H23o6P: C, 54.57; H, 6.96; P, 9.83. 

Found: C, 54.66; H, 7.07; P, 9.20. 

Preparation of Diisopropyl 2-Chlorobenzoylphosphonate (12). 

Reaction of triisopropyl phosphite (23.6 g., 0.0114 mole) and 

2-chlorobenzoyl chloride (15.3 g., 0.0114 mole) and distillation as 

usual produced .!1:_ (20.2 g., 66.1%) as a yellow-green, viscous liquid 

Anal. Calcd. for c 13H18c104P: C, 51.24; H, 5.95; P, 10.16. 

Found: C, 51.29; H, 5.92; P, 10.01. 

Preparation of Diisopropyl 4-Chlorobenzoylphosphonate (13). 
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Triisopropyl phosphite (24.0 g., 0.15 mole) and 4-chlorobenzoyl chloride 

(20.0 g., 0.15 mole; Aldrich Chemical Company) were combined as before 

to yield 22.1 g. (62.1%) of a pale-green, waxy solid 11.. (b.p. 117.0-

118.50/0.075 mm;). 

Anal. Calcd. for c13H18c104P: C, 51.24; H, 5.95; P, 10.16. 

Found: C, 51.40; H, 5.95; P, 10.04. 

Method For Calculating Dipole Moments. To calculate the dipole 

moments of the esters under consideration, a simple program was written 

to compute the molecular moment from the Cartesian coordinates and the 

empirical bond moments. The Cartesian coordinates were first calculated 

25 by a subprogram obtained from the Quantum Chemical Program Exchange. 

The program then yielded the moments along each of the principal 

coordinate axes. The component of the moment along each axis was cal

culated and the resultant moment was obtained from the square root of 

the sum of the squares of each of the component moments. 

= (m 2 + m 2 + m 2)~ 
µ X y Z 



A simple example is shown below with a sample output from the 

program. 

Note in this calculation the C-H moments are assumed to cancel 
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out and are not taken into account and the ring is taken as a composite 

moment. 

Bond Lengths Bond Angles Bond Dipolea,b 

Atoms Atoms Atoms 

0 

120.0° 1-2 1.80 A 1-2-3 1-+2 0.8 

1.20· 
0 

2-3 A 2-+3 2.3 

0 

120.0° ·0.4c 2-5 1.57 A 1-2-5 5-+2 

1-4 1.46 
0 

A 2-1-4 101.5 ° 1-+4 3.5 

1-6 1.63 
0 

A 2-1-6 101.5 ° 1-+6 1.2 

6-8 1.43 
0 

A 1-6-8 113. o0 8-+6 1.1.2 

0 0 
1-7 1.63 A 2-1-7 101.5 1-+7 1.20 

0 0 
7-9 1.43 A 1-7-9 113.0 9-+7 1.12 

Bond moments taken from 24 a. are Smyth. 

b. Arrows indicate the direction of the dipole. 

Bond moment taken from Exner and Jehlicka. 29 c. 
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The calculation is based on the following equations. 

C=O 

[ (x .. 2 2 2 ] \. r = X) + (y - y ) + (z - z ) . 
. C 0 C 0 C C 

X = [(xc o) / r][2.3] 
X 

y = [ (y C yo) / r][2.3] 

z = [ (z z ) / r][2.3] 
C 0 

After this process has been performed for each atom pair of importance, 

the following procedure is uqed to produce the molecular moment. 

2 2 2 k 
µ. ld =[(r;x) +(r:y) +(r;z)]2 

ca c . 

To produee the .effect '6£ ·free· rotation aoout a given. oond the 

following method is used. 

In the free rotation case all of the resultant moments cancel 

except the component of the moment along the axis of rotation. This 

component is added to th~ bond moment of the axis of rotation and the 

molecular moment is computed using this value. 

z 

C 

-· -· - -fl=C----1-Q+/_";_l __ x 

z 

-- - - - l"i·1=-----18'--1-----x 
' "' 
'\: 

C 



sin 67° = .z I 1.12 sin 67° = z I 1.12 

z = [sin 67°][1.12] z = [sin 67°][1.12] 

cos 67° = X / 1.12 cos 67° = X / 1.12 

X = [cos 67°][1.12] X = [cos 6f] [1.12] 

As can be easily seen, the z components are equal in magnitude 

but opposite in direction and therefore they cancel each other. The 

same argument holds for they components. 
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