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PART ONE 

STRUCTURE AND BIOSYNTHESIS OF PYRIDINE ALKALOIDS 

FROM TRIPTERYGIUM WILFORDII HOOK 
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CHAPTER I 

INTRODUCTION 

During the past fifteen years several new pyridine alkaloids have 

been discovered; however, more emphasis has been placed on determining 

the biosynthetic route of the well known pyridine alkaloids such as 

ricinine and nicotine. 

A naturally occuring insecticidal material, which was non-toxic 

to warm blooded animals, was discovered in the early 1950 1 s. Studies 

conducted by the United States Department of Agriculture scientists 

showed this material to be a mixture of complex ester alkaloids 

containing a substituted pyridine moiety (1, 2). The insecticidal 

material is contained in Tripterygium wilfordii Hook, a plant known 

as the "Thunder God Vine" in its native Chinese habitat. Its toxic 

qualities come from the root alkaloids which have been used for 

centuries by Chinese gardeners to protect their crops against chewing 

insects. Upon alkaline saponification, the complex ester alkaloids 

yield one mole of a derivative(s) of nicotinic acid; either wilfordic 

acid or hydroxywilfordic acid, as one of the acidic subcomponents . 

The complete structure of these alkaloids is not yet known. Promising 

research work on elucidating the structure of these alkaloids was 

abandoned with the advent of organic insecticides in the 1940 1 s and 

early 1950 1 s. The purpose of this .study was to determine the structure 

of the pyridine moiety as well as the original ester alkaloids by using 

2 



modern techniques. 

Another object of this research project was to determine if 

nicotinic acid and nicotinamide adenine dinucleotide, obligatory 

members of the recently discovered pyridine nucleotide cycle (3, 4), 

could serve as precursors of the pyridine moiety of the Tripterygium 

wilfordii Hook alkaloids. Positive results from such a study would 

serve to confirm and extend the pyridine nucleotide cycle-pyridine 

alkaloid inter-relationships. 

3 



CHAPTER II 

LITERATURE REVIEW 

A. Isolation and Chemical Studies 

The early efforts made in the 1930 1 s to isolate insecticidal 

compounds from the roots of Tripterygium wilfordii Hook were generally 

unsuccessful. From extracts of the root bark Chou and Mei (5) isolated 

dulcitol and the insecticidally inert red pigment, tripterine, which 

Schechter and Haller (6) found to be identical with the red pigment 

celasterol isolated from Celastrus scandens, the common American 

bittersweet, Chou and ~wang (7) described the isolation of a toxic 

alkaloid fraction which they named"tripterygine" which was pre

cipitated by the usual alkaloid reagents and was assigned the formula 

C38H38011N. 

The isolation of wilfordine, an insecticidal ester alkaloid from 

the roots of T. wilfordii Hook was first reported in 1950 by Acree and 

Haller (8). They found wilfordine to be an ester alkaloid consisting 

of a polyhydroxy nucleus, esterified with 5 moles of acetic acid, 1 

mole of benzoic acid, and 1 mole of a nitrogen-containing dicarboxylic 

acid; however, they reported that the formula for the sum of the 

component parts of wilfordine, c43H49o18N did not agree with the 

molecular formular, c43H47o19N, calculated from the elemental analysis 

of the entire alkaloid, It was later shown that this discrepancy was 

due to the fact that wilfordi~e wa~ a mixture of several alkaloids (9) 

4 
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possessing similar structure. 

The detailed studies on the isolation and structure of the complex 

ester alkaloids from the root of T, wilfordii Hook have been ex

clusively reported from 1951 to 1953 by Morton Beroza. It was reported 

(10) that the first two similar alkaloids, designated wilforine and 

wilfordine, were isolated from the mixture by partition chromatography 

and proven pure by countercurrent distribution, The reported formulae 

of wilforine and wilfordine, calculated from elemental analysis, were 

c43H47o18N and c43H49o19N, respectively. The compounds were insecti

cidally active ester alkaloids which upon saponification yielded 1 

mole of benzoic acid, 5 moles of acetic, and 2 moles of non-steam 

-volatile acid per mole of compound. 

The isolation of two additional alkaloids, designated wilforgine 

and wilfortrine from the plant was reported by Beroza (11). The 

formulae of wilforgine and wilfortrine were calculated to be c41H47o19N 

and c41H47o20N, respectively, based on elemental analysis. Wilforgine 

and wilfortrine were ester alkaloids and appeared to be very similar 

to wilforine and wilfordine. Upon saponification they yielded 5 

equivalents of steam-volatile acids and 2 equivalents of non-steam 

-volatile acids per mole of alkaloid. 

A small quantity of one other alkaloid, designated wilforzine, 

has been reported (12) from the root of the plant. The formula for 

the sum of the components of wilforzine was in agreement with the 

molecular formula c41 tt47o17N calculated from elemental analysis of the 

intact alkaloid. Wilforzine therefore appeared to be identical with 

wilforine, except that it contained one less acetyl group. 

Beroza (13) studied in detail all the fragments resulting from 

the alkaline hydrolysis of the ester alkaloids wilforine, wilfordine, 
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wilforgine and wilfortrine and reported that the formula for the sum 

of the components of each alkaloid was in agreement with the molecular 

fo~ula calculated from the elemental analysis of each alkaloid 

(Table I). It was shown by elemental analysis, paper chromatography, 

and x-ray diffraction patterns that the four alkaloids possessed the 

same polyhydroxy nucleus, c 15H26o 10• This nucleus contained ten 

hydroxyl groups, but only eight of them were esterified in the intact 

alkaloid - five with acetic acid, one with either benzoic or with 

3-furoic acid, and two with a nitrogen-containing dicarboxylic acid. 

TABLE I 

COMPONENTS OF TRIPTERYGIUM WILFORD!! HOOK ALKALOIDS 

(Results after Saponification) (13) 

Alkaloid 
Sub 
-com
ponent Wilforine Wilforgine 

Poly- C15H16(0H)10 C15R16(0R)10 
hydroxy 
moiety + + 

5 acetic acids 5 acetic 

+ + 
benzoic acid 3-furoic 

+ + 

Acidic 
moieties 

~COOR 

~ u ;JcH2CHCRfOOH 
N I 

Sum of 
Sub-com-
ponents c43H49No18 
(-8 H20) 

CR3 

acids 

acid 

Wilfordine Wilfortrine 

C15H16(0H)10 C15R16(0R)10 

+ + 
5 acetic acids 5 acetic acids 

+ + 
benzoic acid 3-fur oic acid 

+ + 

~COOR 

~ l-l jJcH2CHCRORCOOH 
N I 

cH3 



Beroza (10) reported ~hat the alkaloids had almost identical 

ultraviolet absorption spectra in absolute ethanol and in dilute 

hydrochloric acid an,d that their infrared absorption spectra :tn carbon 

tetrachloride were also similar. Table II is a sunimary of reported 

alkaloids from the root of!· wilfordii Hook and their physical 

properties. 

TABLE 11 

ALKALOIDS OF TRIPTERYGIUM WILFORDII HOOK 

Alkaloid Molecular Mdtin§ [()(JD Reference weight point ( 0) 

Wilforine 867 170 +30 10 

Wilfordine 883 176 +12 10 

Wilforgine 857 211 +25 11 

Wilfortrine 873 238 +10 11 

Wilforzine 827 178 +6 12 

The most recent proposed structure of the two pyridine 

dicarboxylic acids, which were obtained after alkaline saponification 

of the alkaloids were those of Beroza (14). 

[I] 

Figure 1. 

[II] 

Structure of Wilfordic acid [I].and 
Hydroxywilfordic acid [II] 
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Nonane was obtained from wilfordic acid and hydroxywilfordic acid 

by hydrogenolytic gas chromatography. This result, coupled with a 

study of the nt.lclear magnetic resonance spectra of wilfordic acid and 

hydroxywilfordic acid, has lead to a proposed structure of these acids 

as 3-carboxy-~-methyl-2-pyridinebutyric acid and 3-carboxy-o<.-methyl, 

hydroxy-2-pyridinebutyric acid. 

The isolation of a similar alkaloids from the seed of Eunomus 

europaeus L. was reported by Pailer and Libiseller (15). By alkaline 

saponification of evonine, the main alkaloids of!• europaeus L., 

they isolated a dibasic acid, evoninic acid, which contained a 2, 

3-dimethylpropionie acid in place of the 2-methyl-butyric acid side 

chain of wilfordic acid. They also found the polyhydroxy nucleus of 

evonine had the same empirical formula c15H26o10 as that from,!. 

wilfordii. 

Molecular formulae of the intact alkaloids and the structure of 

the subcomponents, with the exception of the polyhydroxy moiety, have 

been proposed. But the exact structure of these alkaloids remain 

unknown. 

B. Biosynthesis of Pyridine Alkaloids in Plants 

The biosynthesis of pyridine compounds in higher plants is known 

to differ from that in animals (16). The metabolic conversion of the 

indole nucleus of tryptophan to nicotinic acid is well established in 

mammals, fowl, Neurospora crassa, Xanthomonos pruni, and Fusarium 

oJcysporum (17, 18). The observation in 1945 by Krehl .!!:. .!!• (19) 

that tryptophan maintained the growth of niacin deficient rats 

provided the data that caused a number of scientists to conduct 

research in this area. It is now known that the pathway from 

8 
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tryptophan goes through kynurenine, 3-hydroxykynurenine, 3-hydroxy

anthranilic acid, an unstable intermediate, quinolinic acid and then 

to nicotinic acid by way of the pyridine nucleotide cycle (20). 

Tryptophan is not a precursor of nicotinic acid or its derivatives in 

plants (21), Escherichia£.!!!, Mxcobacterium tuberculosis, Clostridium 

putylicum, and Seratia marcescens (22). The biosynthesis of the 

pyridine ring in living organisms has been reviewed by Leete (23), 

Spenser (24), Robinson (25), Mothes and Schuette (26) and Waller and 

Nowacki (18). 

Mortimer (27) in 1954 suggested that ricinine, trigonelline and 

the pyridine ring of nicotine was derived from tryptophan. R~wever, 

efforts to demonstrate a tryptophan-niacin relationship using isotopes 

in higher plants (21, 28, 29) and in certain bacteria (22) have not 

been succ.essful. Henderson reported that conversion of tryptophan to 

compounds containing the pyridine ring did not occur in tobacco and 

corn (21). Aronoff (29) reported that 3-hydroxyanthranilic acid was 

not a precursor of trigonelline in soybeans. Yanofsky (22) found 

that tryptophan~G-14c was not converted to nicotinic acid by!· coli 

or!· subtillus. 

An important experime11t describing the biosynthesis of pyridine 

compounds in!• £21..!. was carried out by Ortega and Brown (30, 31). 

They found that radioactive nicotinic acid was synthesized from carbon 

labelled succinic acid, glycerol and pyruvate. They also demonstrated 

that the carbonyl carbon of nicotinic acid might be come directly from 

one of the carbonyl carbons of succinate by showing incorporation of 

succinate-1,4-14c into nicotinic acid. Griffith et al. (32) studied --
14 14 the incorporation of propionate-2 .. C, glycerol-1,3- C and glycerol 

-2-140 and found that most of the .activities were in the pyridine ring 
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of nicotine. Waller and Henderson (33) studied the biosynthesis of 

ricinine with various 2~,3- and 4-carbon compounds and reported the 

following order of efficiency: succinate, propionate, .8-alanine,1 

acetate and glycerol. They also reported that all of the radioactivity 

14 in ricinine biosynthesized from succinate-2,3- C was in the pyridone 

ring. Howeve.r '" the radioactivity in the .ricinine formed fl'.om succinate 
14 'I 

-1,4- C was located both in pyridone ring and in cyano group. 

Yang and Waller (34) established by,.!.!!~ experiments wit~ young 

- 14 14 Ricinus communis L. plants using aspartate-4- C, succinate-1,4- C and 
14 . 14 14 

-2,3- C, glycerol-1,3- C and -2- C that carbons-2, 3 and 8 of ricin-

ine arise from a four-carbon dicarboxylic acid such as aspartate and 

that carbons 4, 5 and 6 arise from intact glycerol. They suggested that 

the condensation of a three-carbon unit with a four carbon dicarboxylic 

acid might be from_quinolinic acid which would then be decarboxylated to 

form nicotinic acid and ult~mately the pyridine alkaloids. !he incor-

14 14 poration of glycerol-1,3- C and glycerol-2- C into carbons-4, 5 and 6 

of ricinine and succinate-1,4-14c into carbons-2, 3 and 8 of ricinine in 

young castor bean plants was also demonstrated by Essery !1 .!l· (35) and 

Juby and Marion (36). It was ,also demonstrated that glycerol is incor

porated without randomization into carbons-4, 5 and 6 of the pyridine 

ring of nicotine by using a stepwise degradation method for the pyridine 

ring of nicotine (37). Yang.!!:, al. (37) showed that quinolinic acid was 

an efficient precursor of ricinine in intact castor bean plants. The 

conversion of quinolinic acid into nicotinic acid mononucleotide was 

shown in plants (3) and other organisms (38, 39). 

It is now well established (18) that the two main pathways for 

the formation of the pyridine nucleus in living systems involve either 



tryptophan as a precursor or a four-carbon compound such as aspartate 

and a three-carbon compound such as glyceraldehyde-3-phosphate as 

precursors and both give arise to a common intermediate, quinolinic 

acid which is a key intermediate for the synthesis of the compounds 

11 

in the pyridine nucleotide cycle and pyridine alkaloids derived from 

the cycle. The different pathways used to synthesize the pyridine 

nucleus are presented in Figure 2. Quinolinic acid was first isolated 

from mammalian sources by Henderson after feeding overloading doses of 

tryptophan. 'l'he enzyme quinolinate phosphoribosyl transferase, which 

catalizes the condensation between quinolinic acid with the loss of the 

~-carboxyl group as co2 and phosphoribosylpyrophosphate (PRPP), was 

partially purified from liver and bacteria (40, 41). Nicotinic acid 

mononucleotide reacts with ATP in the presence of nicotinate phospho

dbosyl transferase to give desamido-NAD. NAD is then formed by the 

catalytic activity of NAD synthetase in the presence of either ammonia 

or glutamine and ATPo Degradation of NAO by NAD glycohydrolase yields 

nicotinamide which can be re-used by deamidation to nicotinic acid by 

nicotinamidase, an enzyme which has been found in plants (42) and 

ma1mnals and certain bacteria (40, 43). The cycle is completed by the 

synthesis of nicotinic acid mononucleotide from nicotinic acid and 

PRPP by nic.otinic acid mononucleotide pyrophosphorylase. Ryrie and 

Scott (44) observed in leaves of barley seedlings that nicotinic acid 

was rapidly metabolized with the formation of NAD. They also presented 

evidence suggesting that NAD was formed from nicotinic acid mono

nucleotide and desamido-NAD. Gholson (4) has. summarized the evidence 

for the formation and degradation of the pyridine nucleotides in 

biological systems and has suggested the cycle exists in plants, 

animals and microorganisms. The control mechanism affecting the 
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metabolism of pyridine compounds in E • .££1!. has been recently reviewed 

(18, 26). 

Waller and his collaborators (3, 45) have established the relation

ship between the pyridine nucleotide cycle and the biosynthesis of 

nicotine and ricinine by showing that the pyridine moieties of nucleo

tides in the pyridine nucleotide cycle can be incorporated into nicotine 

and ricinine by the tobacco and castor bean plant respectively with an 

efficiency comparable to that of quinolinic acid, nicotinie acid and 

nicotinamide; compounds which had been established previously as being 

efficient precursors (10 - 30 %) of these alkaloids (45, 46). 

The formation of N-methylnicotinamide f,rom nicotinamide and 

N-methylnicotinic acid from nicotinic acid has been found in the caster 
I, 

bean plant and Nicotiana rustica L. (3, 45). Nicotinic acid can serve 

as a precursor of nudiflorine, N-methyl-5-cyano-2-pyridone (48), and 

ricinidine, N-methyl-3-cyano-2-pyridone (49). Sastry and Waller (50) 

recently identified a new pyridine alkaloid, N-methyl-5-carboxamide 

-2-pyridone which is a normal metabolit~ of nicotinic acid in mammals 

excreted in urine. They also established the bi.osynthesis of this 

1.• 1 · d f · · · · d 6 14c 7 14c d · · · d 7 14c a 1.<a 01. · rom n1.cot1.n1.c ac1 - - · , - . - an. n1cot1.nam1. e- - • 

Mizusaki ~ a!,. (51) recently reported that nicotinic acid-6-14c 

administered was incorporated into nine pyridine compounds during a 

three hour incubation in tobacco plants; two of these were identified 

as 6-hydroxy nicotinic acid and nicotinic acid-N-glucoside. The 

latter compound, which was the main product, was incorporated into 

nicotine with about the same efficiency as nicotinic acidi however, they 

suggested that the glucoside might not be involved in the direct route 

of rlicotine biosynthesis since the rate of the incorporation was 
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markedly reduced when unlabelled nicotinic acid was fed. 

It is now well established that the biosynthesis of pyridine 

compounds in higher plants is different from that in mammals and that 

some of the pyridine alkaloids are derived from the compounds in the 

pyridine nucleotide cycle. But the detailed biosynthetic steps for 

the formation of the pyridine alkaloids remain unknown. 

C. Tripterygium wilfordii Hook Plant and 

its Insecticidal Effects 

14 

The first introduction into this country, and the results of 

preliminary entomological tests of J~ipterygium wilfordii Hook, were 

reported in 1941 by Swingle (52). This plant, which belongs to the 

Celastraceae family, is~ perrenial twining vine and its growth manner 

is much like that of the native North American bittersweet, Celastrus 

scandens L, 

Tripterygium wilfordii Hook cialled lei kung teng, "Thunder God 

Vine", by the Chinese is cultivated rather widely in several Chinese 

provinces on the sou.th side of the Yangtze River, especially in 

Checkiang Province, to kill chewing insects (8). Cuttings of the plant 

were imported into this country in 1936 and planted in the Plant 

Introduction Garden, Department of Agriculture, Glenn Dale, Maryland. 

Swingle (52) tested the insecticidal effects of!· wilfordii Hook root 
I -

powder and reported in the early 1940 s that the material was very 

toxic to first instar larvae of the diamondback moth, Plutella 

maculipenni§ Curt, and the imported cabbage worm, Pierie rapae L., 

and caused relatively low mortalities and in some instances practically 

no effect on instar larvae of the southern armyworm, Prodenia eridania 

Cram, and al~o to the second and larger instar larvae of the melonworm, 



15 

Diaphania hyalinata L. Tattersfield et al.(53) confirmed the -- . 

insecticidal action of the rQot powder .,on the yoµ.ng larvae of the 
, .. 

diamo~dback moth. Further tests (54) showed that 1· wilfordii Hook 

root powder was effective against 8 species and was ineffective against 

10 species of insects to their larvae. 

The results against moth larvae were of sufficient interest to fa

cilitate a detailed entomological and chemical study of the plant ex

tract in the early 1950 's. · A study of the toxicities of four of the 

pure alkaloids to newly hatched larvae of the European corn borer was 

reported by Be:roza and Bot:,ter ( 2). · The inScects were fed corn leaves 

treated with a spray containing 60 ppm. of the pure alkaloid. The per

centage of larvae killed is shown in Table 111. 

TABLE III 

THE INSECTICIDAL EFFECTS OF THE ALKALOIDS FROM THE ROOT OF 
1• WILFORD!! HOOK ON T}lE EUROPEAN CORN BORER (2) 

Percentage killed 
Alkalo.id After 2 days After 3 days 

Wilforine 88 100 

Wilforgine 30 54 

Wilfordine 54 100 

Wilfortrine 48 73 

Wilforzine, which was isolated two years later, exhibited 

definite, but much less insecticidal action than wilforine against 
·, 'I 

larvae of the diamondbacli; moth .(12). In general, the smaller larvae 

were affected more than the larger ones, No symptoms of poisoning were 

observed when bait COt\taining 20 % of the root powder or 0,5 % of the 

crystalli~e alkaloid was fed to rats (2). 



CHAPTER Ill 

EXPERIMENTAL METHODS 

A. Materials and Chemicals Used 

1. Plants 

The cuttings of Tripter:zgium witfordii Hook were imported from 

Taiwan in October, 1967 and September, 1968, and planted in pots with 

a mixture of clay loam and vermiculite at the green house of the 

Horticulture Department, Oklahoma State University, Stillwater, 

Oklahoma. Plants were propagated by cuttings. Cultivat;ion was 

successful in the green house, however, attempts to cultivate!· 

wilfordii Hook outdoors were ~nsuccessful due to the high temperature 

and low humidity during sunnner months. Plants 2 years of age with 

similar appearance, fresh. weight of roots ranging from 15 grams to 

18 grams and that of leaves and stems ranging from 10 grams to 14 

grams, were used for biosynthesis experiments. 

A total 4 kilograms of dried root was imported in September, 

1967 and stored at room temperature. This material was used for 

alkaloids isolation for the structure studies. 

2. Radioactive Comp.ounds 

Nicotinic acid-6-14c was purchased from Nuclear Chicago Corp

oration and purified before use by preparative thin layer chromato-

16 
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graphy using butanol : acetic acid: water (80: 20: 20, v/v/v) and 

n-butanol saturated with 3 % ammonia solution. The purified nicotinic 

acid-6-14c had a constant specific activity of 20.6 mc/rrM.. 

DL-glutamic acid-2-14c was purchased from Tracerlab and purified 

by preparative thin layer chromatography using butanol acetic acid: 

water (80: 20: 20, v/v/v). The purified DL-glutamic acid-2-14c had 

a specific radioactivity of 3.7 pc/mg. 

Nicotinamide-carbonyl- 14c-adenine-dinucleotide (specific activity 

of 26.2 mc/rrM.) was purchased from Nuclear Chicago Corporation and used 

without further purification. 

3. Chemical Reagents 

Solvents-and chemical reagents were of analytical reagent grade 

unless otherwise noted. Solvents were redistilled using glassware. 

Non-radioactive nicotinic acid and other nucleotide used were 

purchased from Sigma Chemical, Biochemical Research Company or 

Nutritional Biochemicals Corporation. 

Dowex 1-X8 Cl- form, 200 - 400 mesh, was purchased from J. T& 

Baker Chemical Company and converted to the formate form by washing 

successively with several volumes of H2o, 1 N NaOH, H2o, 2 N HCl, H2o, 

8 N HCOOH, and then with deionized water until nel,ltral pH. 

Silicic acid (Bio-sil A, 100 - 200 mesh) was purchased from 

Bio-Rad Laboratories and purified by washing successively with 

methanol and ether. The washed material was activated by drying at 

115°c overnight. 



B. Isolation and Structure Identification 

1. Isolation and Purification 

In large-scale extractions the crude alkaloid fraction was 

isolated by a modification of Beroza•s method as described below: 

18 

Air-dried, finely grounded root powder was exhaustively extracted with 

ethylene dichloride using a soxhlet apparatus. The solvent was removed. 

0 under reduced pressure. at a temperature which did not exceed 40 c. The 

residue was dissolved in a minimum volume o.f ether and thoroughly mixed 

with an equal volume of 5 % hydrochloric acid. Upon removal of the 

ether under reduced pressure, the remaining yellowish water phase was 

filtered, This process of extraction of the tarry residue with ether 

and hydrochloric acid was repeated five times until a Dragendorff 

test of the extract spotted on a thin layer chromatography plate was 

negative. The acid extract was cooled to about 4°c and treated with 

concentrated ammonia to pH 9, the temperature of the solution being 

kept below 4° by keeping the flask in an ice-bath. Several hours later 

the precipitated crude alkaloid fraction was filtered, washed with 

cooled distilled water and dried. The yield of the crude alkaloid 

fraction was about 0.45 %, The dry crude alkaloid fraction was 

dissolved in hot methanol and was used for chromatography. A schemetic 

diagram of the isolation procedure is shown in Figure 3. 

Small-scale extraction from the fresh plant and purification 

procedure for the alkaloids will be described in the Biosynthesis 

Section. 

2, Saponification and Separation of Subcomponents 

Fifty mg of the alkaloid fraction isolated from thin layer 
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chromatography was hydrolyzed with 1 ml of 1 M potassium hydroxide in 
0 . 

diethylene glycol for 30 minutes at 125 as described by Beroza (13). 

The saponification mixture was fractionated by liquid-liquid extraction 

at various pH values for the separation of the acidic moieties and the 

polyhydroxy moiety. The saponification mixture was made alkaline with 

a few drops of 1 N sodium hydroxide and then continuously extracted 

with ether in an all glass apparatus for 24 hours to remove the 

diethylene glycol. ~he ether extract was discarded. The extracted 

water solution was carefully acidified with 3 N sulfuric acid to pH 2,8 

and continuously extracted with ether for at least 24 hours. If the 

pH of the water solution after the ether extraction differed from pH 

2,Sj then i-t was readjusted to this pH and again extracted for 24 hours. 

Extraction was completed when the ultraviolet absorption of the water 

solution could not be detected by spotting 0,01 ml on a thin layer 

chromatography plate and observing under UV light at 154 nm. The 

ether extract which contained all the acids resulting from saponifi

cation of the alkaloid was reduced in volume and stored for further 

studies. 

The water solution containing the polyhydroxy nucleus of the 

alkaloid was adjusted carefully with 1 N sodium hydroxide to pH 7.0 

and lyophilized to dryness. The dry residue was triturated with a 

glass rod and extracted repeatedly with hot absolute methanol. 'l'he 

filtered methanol extract was evaporated to dryness, weighed, re

dissolved in hot methanol, concentrated to a few ml and finally an 

equal volume of acetone was added. The compound crysta1lized slowly. 

After two more crystallizations a crystalline white compound was 

obtained. 
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3. Chemical Modification of Components 

Esterification of Acidic Compounds (55): The acidic compounds 

were converted to their methyl esters with diazomethane which was 

prepared by the following method: 

A solution of 12 grams of sodium hydroxide in 10 ml of water, 25 

ml of carbitol (diethylene glycol mono ethyl ether), and 100 ml of ·-
0 ether in a flask were cooled to O C, and then 3.5 grams of N,N 1 -di-

nitroso~N,N1-dimethyl tereaphthalamide(EXR-101) was added. Magnetic 

stirring was started and the reaction mixture was warmed slowly. The 

evolution of diazomethane became apparent at 15° to 20°c. In the 30° 

0 to 40 C range the diazomethane and ether were distilled and condensed 
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to yield a bright,yellow solution. By this method, and ether solution 

containing about one gram of diazomethane was obtained from 2.5 grams 

of EXR-101. 

Formation of Trimethylsilyl-derivative of Polyhydroxy Compound 

(56): Polyhydroxy component from the ester alkaloids was converted 

to trimethylsilyl derivatives as described below: Bis-(trimethylsilyl) 

acetamide (BSA. 0.1 ml) was adde.d to a vial containing the polyhydroxy 

compound (approximately one mg) which was then warmed to completely 

dissolve the ct1mpotmd and then trimethylchlorosilane (TMCS, 0. 2 ml) 

was added. The sealed reaction mixture was kept at 55°c for three 

hours and then excess reagent was removed by passing a stream of 

nitrogen over it. The residue was dissolved in acetone and analyzed 

by gas liquid chromatography-mass spectrometry using the solid 

injection technique. 

§.tl:2:iun~ DeJ1Y.!:lF06ena3:lon of ~oJyh:zdrox;x: .ComeouE.,_d, (57): The 

recrystallized polyhydroxy compound (30 mg) and Se metal (300 mg) were 



placed .in a dehydrogenation assembly consisting of a 10 ml round 

bottom flask fitted with an air condenser. The mixture was heated at 

250 - 27o0c in an electric fu:i:-nace under a nitrogen atmosphe3:e. The 

reaction mixture was cooled, extracted with ether, reduced in volume 

and then used for analysis. 

4. Instru~ental Analysis 
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Gas Liquid Chromatography (fil&): Gas liquid chroma·tographic 

analyses were performed.on a modified Barber-Colman Model 5000 gas 

chromatography equipped with a hydrogen flame ionization detector (80). 

The column packing used was 10 % SE-30 on Gas-chrom Q, 100 - 200 mesh, 

unless otherwise noted. The column, 7 feet x 1/8 inches, was cured 

and silanized before use. 

The following operational parameters were employed for the gas 

liquid chromatographic analysis of acidic components from ester 

alkaloids: the temperature of the column was either progrannned 2°/min. 

from 115 to 200°c or fixed at two different temperatures, 115°c and 

200°c, the injection port temperature was 21s:0 c, and the helium flow 

rate was 40 ml/min. 

!;9w and High Resolution Mass Spectrometry (~): Low resolution 

mass spectra were,obtained on a prototype of the LKB-9000 combination 

gas chromatograph-mass spectrometer which was constructed in the 

laboratory of Dr. Ragnar Ryhage, Karolinska Institutet, Stockholm, 

Sweden, and has been described by Waller (58). Mass spectra were 
t· 

obtained either using the direct inlet system or gas liquid column 

depending on compounds under following conditions unless otherwise 

specified: ionization voltage of 70 eV, 3.5 kV accelerating voltage, 

40 amp. trap current, 1.7 to 2.1 kV electron multiplier voltage source 
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temperature of 310°c, separator temperature from. 50 to 150°c, helium 

flow rate of 30 ml/min. A recording of the total ionization current 

obtained from the collector plate in the analyzer tube served as the 

ga~ chromatographic tracing. The vertical slash marks along the 

tracing indicate the points at which mass spectra were taken. Spectra 

were counted and the peaks height were measured manually. These data 

were introduced into the IBM 360/65 computer which was used to drive a 

Cal Comp Model 565 Plotter which plotted the mass spectra. 

Mass spectra of the four intact alkaloid reference samples were 

obtained with approximately 50 pg of compound using the direct inlet 

0 system. The direct inlet temperature was programmed at 5 /min. from 

5o0c to 150°c and the source pressure was 5 x 10·6 to 1 x 10·7 mm/Hg. 

Mass spectra of the methyl esters were taken by following injection of 

the sample into the gas liquid chromatography column. 

High resolution mass spectrometric (HRMS) analyses were conducted 

by K,. Biemann a·nd C. Hignite in the Mass Spectrometry Laboratory, 

Chemistry Department, Massachusetts Institute of Technology. The 

conditions for high resolution mass spectrometry were similar to those 

used for a low resolution mass spectrometry. 

Low and High Resolution Nuclear Magnetic Resonance Spectrometry: 

Low resolution nuclear magnetic resonance spectra were taken on a 

Varian A-60 spectrometer equipped with a C-1024 time averaging computer. 

The operational condition was as follows: filter band width 1-4, sweep 

time 250 seconds, sweep width 500 Hz, sweep offset 017 Hz, and spectrum 

amp. 1.0, solvent used was dimethylsulfoxide-06 and the internal 

standard was trimethylsilane. The polyhydroxy ~ompound was deuterated 

by introducing one drop of o2o into the nuclear magnetic resonance 

tube. The time averaging computer was used under following operational 



parameters: Offset value+ 2417, nuclear magnetic resonance trigger 

sweep width 550, sweep time 250 seconds, cou~ts from 18 to 140. 
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High resolution nuclear magnetic resonance spectra were obtained 

by P. F. Flanagan of the Continental Oil Company, Ponca City, Oklahoma. 

the operational parameter~ were as follows: frequency response and 

reference frequence attenuator 2 and 67 out respectively, sweep time 

500 - 1000, sweep width 500 and spectrum amp. 1000. Abbreviation used 

for nuclear magnetic resonance spectral data are: s, singlet; 

t, triplet; q, quartet; and m, multiplet. 

Ultraviolet and Infrared Spectrophotometry: Ultraviolet spectra 

were obtained either on a Bausch and Lomb Spectronic Model 505 

recording spectrometer or on a Beckman DB recording spectrophotometer. 

Infrared spectra were taken on a Perkin-Elmer 457 grating 

instrument with samples in dispersed potassium bromide pellets. 

Abbreviations used for infrared spectral data are: vs, very strong; 

s, strong; m, medium; w, week; vw, very week; sh, shoulder; v. br, 

very broad; and br, broad. 

Melting Point Measurement: Melting point was measured on a Kofler 

Hot Stage Micro Melting Point apparatus (Arthur H. Thomas Company). 

c. Biosynthesis 

1. Administration of Labelled Compounqs 

Labelled compounds were administered using a micro syringe, in the 

upper part of the soft stems and the desired amount of labelled com

pound was injected slowly. Uptake of 50 pl of solution was usually 

completed within fifteen t11-inutes. 



26 

2. Isolation of Metabolites 

•• 
In the small-scale extraction from the fresh plant, the crude 

alkaloid fraction and its metabolites were isolated as follows. Plants 

were divided into an upper part which consisted of stems and leaves, 

and into a lower part, the roots. The divided plant part was weighed, 

frozen with liquid nitrogen, homogenized wtth Virtis 11 23 11 omnimixer 

in 80 % methanol and filtered using a sintered glass funnel (medium 

porosity). This extraction procedure with methanol was repeated four 

times until the remaining material was free of soluble pigments. The 

solvent was removed from the pooled extracts by evaporation at 40°c 

under reduced pressure. The residue was dissolved in a minimum volume 

of chloroform or ether and mixed with an equal volume of distilled 

water. Upon removal of the organic solvent at room temperature under 
I 

reduced pressure, the remaining yellowish aqueous solution containing 

polar compounds of interest was filtered. This extraction procedure 

was repeated four times. The aqueous phase was reduced in volume and 

applied on an anion exchange column. The residue r~maining on the 

flask filter paper after water extraction was extracted with acetone 

and used for thin layer chromatography. A flow diagram of the 

isolation procedure used for the plant metabolites is shown in Figure 

5. 

3. Chromatography 

Anion Exchange Column Chromatography (44, 38, 60): A portion of 

the aqueous phase extract containing the polar metabolites of interest 

was placed on a Dowex 1-X8 formate column, 1.5 x 30 cm. 

Elution was conducted by the application of a formic acid con-



ORGANIC PHASE 
(alkaloids) 

J 
TLC 

PLANT 

80 % methanol 
extraction 

Filtration 

J 
FILTRATE 

t Evaporation 

RESIDUE l Dissolve in ether and 
extract with water 

1 
AQUEOUS PHASE 

(polar compounds) 

t 
DOWEX 1-X8 COLUMN 

CHROMATOGRAPHY 

l 
RESIDUE 

(discard) 

Figure 5. Isolation of Metabolites from Tripterygium 
wilfordii Hook after Administration of 
Labelled Precursors 

27 



28-

centration gradient initially with 150 ml of water in the mixing 

chamber, into which 150 ml of deionized water, 250 ml of Q.25 N formic 

acid, 250 ml of 2 N formic acid and 250 ml of 4 N formic acid were 

successively introduced. A fraction collector equipped with an ISCO 

UA-2 flow ultraviolet analyzer, 254 run, was adjusted at the rate of 

about 35 ml per hour. The pooled fractions of each tube, 10 ml, were 

used for the measurement of radioactivity and ultraviolet absorption at 

260 nm, 

Partition Column Chromatography: The acetone extract from the 

thin layer chromatography zone of interest was scraped from the plate, 

extracted and chrornatographed on a siU.cic acid column.. The immobile 

solvent, dilute hydrochloric acid, was equilibrated with the mobile 

solvent, ether, at the column temperature (10°C) by means of a steady 

flow of cooled tap water. The column was prepared and developed as 

described below. 

In a mortar 25 grams of silicic acid, and 14 ml of 0.6 % hydro

chloric acid was thoroughly mixed. The fine slurry prepared by stirring 

in ether in the mixture was added to the column which.was then tapped 

to settle the gel. The alkaloid fraction was dissolved in 30 ml of 

ether, added and washed into the gel with several small portions of 
I 

ether. The flow rate of the column was adjusted to 60 ml/hr. and 10 ml 

fractions of the effluent were collected. The column was never 

permitted to run dry and the solvent added was at the same temperature 

as the column. The absorbancy of each fraction was measured at 270 

and 255 nm as described by Beroze (10, 61). 

Thin Layer Chromatograehz: The acetone extract containing the 

alkaloids of interest, lipids, pigments and other compounds were applied 
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on preparative thin layer chromatography plates. The plates, 0.75 mm 

thick, were prepared from Silica Gel PF 254 + 366 (Merck Co.). The 

solvent system consists of acetone and hexane (8: 2, v/v). The 

alkaloids were detected on the chromatograms either by observing their 

fluorescence at 254 nm or by spraying Dragendorff reagent. The radio

activity on the chromatograms was located with a Nuclear Chicago 4J!.. 

Actigraph-III strip counter. For scanning thin layer chromatography 

plates the appropriate adaptor was used. The alkaloid zone on the thin 

layer chromatography plates was scraped off, put in small column and 

eluted with acetone and used for further studies. 

P,aper Chromatography: The fractions from the Dowex 1-X8 column 

containing radioactive products from the anion exchange column were 

combined and lyophilized to dryness. The residue was dissolved in 

distilled water and then spotted on Whatman No. 1 paper 1 inch strip 

with authentic compounds and descending chromatography was carried out 

with two different solvent systems: a) 1 M ammonium acetate: 95 % 
< 

ethanol (3 : 7, v/v) adjusted to pH 5.0 with HCl, b) isobutyric acid 

ammonia : water (66 : 1.7 : 33, v/v/v, pH 2.8). A Nuclear Chicago 

4 JC. chromatogram scane and the ultraviol,et lamp ( 254 nm) were employed 

to locate radioactive and quenching spots respectively. 

4. Measurement of Radioactivity 

The radioactivity of the. pooled 10 ml fractions collected from the 

anion exchange column was measured using 1 ml of aqueous solution from 

each test tube in 10 ml Bray's scintillation solution which was pre

pared with 4 grams of 2,5-diphenyloxazole (PPO), 0.2 grams of p-bis-2 

-(5-phenyloxazolyl~ benzene (POPOP), 60 grams of naphthalene, 20 ml of 

ethylene glycol, 100 ml of methanol and the p~oper volume of p-dioxane 
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for 1 liter of solution. Bray's solution could hold 2 ml of 4 N HCOOH 

without noticeable turbidity. 

The counting efficiency of 10 ml of Bray's solution with 1 ml of 

formic acid from Q.25 N to 2 N was 75 %. The effects of formic acid 

concentration on the efficiency of sci~tiU,:i.tion counting are shown 

in F'igure 6. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

A. Isolation and Purification of Alkaloids 

Two is<;>lation procedures were used for the preparation of the 

alkaloid fractions as described under "Experimental Method". Large and 

small scale isolation procedures were employed f.or structure and bio

synthesis studies respectively. Considerable difficulty was encountered 

in separating the alkaloid fraction from the plants since the plants do 

not contain a high amount of alkaloids. In the large scale preparation 

two modifications of Beroza•s method (10) were made to prevent the 

possibility of alkaline hydrolysis of the ester alkaloids which might 

have resulted in a net loss of alkaloid: a) the dried plant powder was 

extracted thoroughly with ethylene dichloride without previously 

moistening the material with 10 % ammonium hydroxide, and b) instead of 

using a methanol fractionation procedure, the crude alkaloid fraction 

was purified by thin layer chrornatography since the alkaloids are 

slightly soluble in methanol. It was found. that the NH40H moistening 

process was not necessary because the yield of crude alkaloid fraction 

without moistening of t4e plant material was 0.2 - 0.25 % of dried 

plant weight which was·comparable to Beroza 1s 0.2 % using the 

moistening treatment. The yield of the purified alkaloids from the 

crude alkaloid fraction was about 25 %; a value much higher than the 

previously reported one of 13 % (10). 

32 
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In an early biosynthesis e~periment, precipitation of the 

alkaloids from the aqueous extract at pH 9 was carried out since this 

procedure was followed in the large scale isolation procedure. It was 

observed that some alkaloids remained in the supernatant (about 10 %) 

and that some non-alkaloidal polar compounds coprecipitated with the 

. 0 
alkaloid fraction after standing 24 hours about 38 F. A thin layer 

chromatography.scan of the alkaline precipitated fraction is shown in 

Figure 7, and it is clearly evident that a substantial amount of the 

radioactivity did not move in the solvent system used for the alkaloids. 

This partial fractionation and contamination of the alkaloid fraction 

with polar compounds was undesirable so an improved procedure for 

isolating alkaloid that avoided the alkaline precipitation step 

following biosynthetic studies was developed. 

Attempts to separate four structurally related alkaloids from the 

alkaloid fraction by use of thin layer chromatography was unsuccessful 

mainly due to their high and similar molecular weight and small differ

ences in their functional groups. The thin layer chromatography Rf 

values of the four reference alkaloids1 and that of a prepared alkaloid 

fraction developed with various solvent systems are shown in Table IV~ 

Several relative polar solvent systems were examined; however, ex

tensive tailing was observed, therefore, they are not listed in Table 

IV• 

The alkaloid zone gave a positive brownish-yellow color upon 

spraying with Dragendorff 1 s reagent and quenched UV light at 254 nm. 

The alkaloid zone was scraped off the plate, extracted and crystallized 

as previously described and the crystallized mixture of alkaloids was 

1Four alkaloids were provided by Morton Beroza 



34 

subjected to mass spectrometric analysis using the direct probe. 

The results shown in the bottom of Figure 8 clearly show that the 

alkaloids zone on the thin layer chromatography plate is a mixture of 

four alkaloids. The figure shows the effect of a change in the probe 

temperature on the molecular ion peak height of the four ester 

alkaloids. Wilforgine and wilfortrine show maximum molecular ion peak 

height at 135°c and wilforine and wilfordine show ma~imum peak height 

0 above 135 c. Det7ction and identification of compound(s) from a mix-

ture of compounds in one peak by taking a series of spectra during the 

peak emerging period time was reported (58). 

B. Partition Chromatography of the Alkaloid Mixture 

The results obtained when the alkaloid mixture was subjected to 

partition chromatography on silicic acid using hydrochloric acid as an 

immobile solvent and ether as a mobile. solvent are shown in Figures 9 

and l.O. The concentration of hydrochloric acid in the immobile phase 

had a significant effect on the elution time of the constituents 

(compare Figures 9 and 10). The higher concentration of hydrochloric 

acid (Figure 9) caused a slower movement of the alkaloids with improved 

resolution. The general chromatographic pattern is similar to the 

result obtained by Beroza (61) who discussed in detail the conditions, 

advantages, limitations and sources of error of silicic acid column 

chromatography and the use of the absorbancy ratio for the detection 

of impurities in!· wilfordii Hook alkaloids, 

Each of the two main peaks showed a shoulder and was widely 

separated. The two main peaks had an absorbancy ratios of about 1.5 

and the two shoulders (tube no. 8-12 and 69-72) of each peak which had 

an absorbancy ratios of about 1.0 were pooled, rechromatographed on 
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TABLE IV 

THIN LAYER CHROMATOGRAPHY Rf VALUES OF 
THE ALKALOIDS FROM!• WILFORD!! HOOK 

Wilforine 

Wilforgine 

Wilfordine 

Wilfortrine 

Isolated alkaloid 
fraction 

I 

0.12 

0.16 

0.17 

0 .16 

0.09-0.2 

II 

Rf value 

0.26 

0.26 

Q.28 

0.2s 

o.23-0,26 

I - n-butanol: hexane (40: 60, v/v) 

III 

0.74 

0.72 

0.78 
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o. 77 

0,7-0,81 

II - n-butanol : hexane: chloroform (40 50 10, v/v/v) 
Ill - acetone: hexane (80: 20, v/v) 
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Partition Column Chromatography of T. wilfordii 
Hook Alkaloids using Absorbancy Ratios. 
Silicic ,acid column, 1.5 x 45 cm, was 
developed with 2 % HCl as an immobile solvent 
and ether as a mobile solvent. The flow rate 
of the column was adjusted 60 ml/hr. 
-· 

T-1 - WiUorine 
S-1 - Wilforgine 

T-2 - Wilfordine 
S-2 ~ Wilfortrine 
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thin layer chromatography, recrystallized from acetone and methanol and 

identified mass spectrometrically. · The two main peaks, T-1 and T~2, 

were identified as wilforine and wilfordine and the two shoulders, S-1 

and S-2 as wilforgine and wilfortrine respectively. 

c. Mass Spectrometric Studies on the Ester Alkaloids 

The mass spectra of wilforine, wilforgine, wilfordine and 

wilfortrine are shown in Fiiures 11 and 12 respectively. The molecular 

ions of the four ester alkaloids ~ere found to be identical with the 

reported molecular weights (13). The molecular formula of each 

compound was determined by high resolution mass spectrometry and it 

was found that the molecular formulae were in agreement with the 

reported molecular fol;'ll!.ulae obtained by Beroza based on elemental 

analysis .in .. 1953 as shown in Table V. T.he relative intensity of each 

ester alkaloid molecular ion in both the low and hi~ resolution mass 

spectra was significantly higher than expected for compounds of such 

high molecular weight (.!,•,i• glucose TMS derivatives) (56). There 

were discrepancies between the relative intensity values of the high 

and low resolution mass spectra because the conversion of optical 

densities recorded on the htgh resolution photographic plates into 

intensity values is not straightforward and may be subject to inherent 

error such as variation in the thickness and composition of the 

emulsion (62). 

It is understandable that the fragmentation pattern of the four 

ester alkaloids should be somewhat similar, since these alkaloids haye 

the same polyhyd;oxy moiety which is esterified with structurally 

related compounds. This is especially true in the high and low mass 

region. The relative intensity of the ten most intense peaks of each 
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alkaloid is shown in Table V. 

The fragmentation pattern of wilforine and wilforgine which contain 

wilfordic acid and that of wilfordine and wilfortrine which contain 

hydroxywilfordic acid are similar. The molecular ion of wilforine and 

wilforgine constitute one of the ten most intense peaks whereas that of 

wilfordine and wilfortr:i,ne do not, probably because of the presence of 

the additional hydroxy group. The base peaks of wilforine and wilfor

gine are '!!,I!. 178, o9H8No3 , and!!/!. 93, o6H7N, respectively. The ion, 

'!!,I!. 43, o2H3o, is the base peak :i,n both wilfordine and wilfortrine. 

The high resolution mass spectrometric data of the four ester 

alkaloidswith their relative intensities, formulae and accuracy in 

measurement are attached in Appendix.·. The common mode of fragmen-

tation of the,four ester alkaloids in the high mass region over '!!,I!. 

780, are the loss of the neutral fragments co~ CH3co, co2, COOCH3 and 

CH2COOCH3 which are sqmmarized in Table VI. The loss of a methyl group 

is another characteristic fragmentation of these alkaloids. Since 

each alkaloid has only one methyl group and the only subcomponents 

which contain a methyl group are the substituted pyridine moieties 

wilfordic acid and hydroxywilfordic acid, it may be concluded that the 

loss of the methyl group is from the side chain of these subcomponents. 

Therefore, it is possible to quickly identify each of these compounds 

by observing their respective molecular ion, the fragment ion produced 

by loss of the methyl group {M-CH3)+ ,.ind the ions [{M-Co)+, {M-COOGI-i)+, 

etc.] produced by the cleavage of their ester bonds. The loss of 

fragments resulting from cleavage of the ester.bonds are also supported 

by observed metastable peaks which are listed in Table VII along with 

the denoted transitions; however, the only metastables observed were 

in .the low mass range so that they indicate a different set of cleavage 
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reaction than those representing the loss of the functional groups in 

the high mass region. 

There are no interpretable intense peaks from !!f!:. 250 to "!!}.I!;. 700 

in both the low and high resolution mass spectra of the four ester 

alkaloids. The structure and fragmentation of the ions containing 

nitrogen and/or oxygen under m/e 250 will be discussed in the mass ..... .... . . 

spectra of individual acidic subcomponents since most of the peaks of 

that region are fragments derived from acidic subcomponents upon 

cleavage of the ester linkages. 

The fragment ions above m/e 100 containing only carbon and hydro-_.,.. 

gen are listed in Table VII1 together with their proposed structures. 

The origin 9f these ions is noteworthy since the only subcomponent 

which may contribute to these ions, especially those which contain more 

than 10 carbon atoms, is the polyhydroxy moiety, unless the pyridine 

moieties undergo extensive rearrangement, a phenomenon which is highly 

unlikely. If we assume that these ions containing more than 10 carbon 

atoms, such as c10H9 through c15H10 are derived from the polyhydroxy 

moiety, then it is possible that the carbon·skeleton of the polyhydroxy 

compound is a substituted tricyclohexane. 

The fragmentation of the intact alkaloids (see Figures 11 and 12 

for mass spectra) will not be discussed, because the proposed fragmen

tation of a compound without knowing its structure has little 

significance. 

D. Infrared Spectra of Ester Alkaloids 

The infrared spectra of wilforine, wilforgine, wilfordine and 

wilfortrine are shown in Figures 13 and 14 respectively. Infrared 

spectra of wilforine and wilfordine in CC14 and in nujol were reported 
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by Beroza (11) •. The infrared spectra of the four ester alkaloids using 

the KBr pellet are very similar except for a few peaks. A comparison 

of the infrared spectra of the four ester alkaloids with correlation 

of the most significant peaks to their infrared functional group 

frequencies is given in Table IX. A very broad peak from 2.7 to 3 

microns which indicated the presence of a hydroxyl group is present in 

the spectra of each_ of the four alkaloids. The strong absorption at 

5.75 and 7.3 microns indicated the presence of an ester bond(s} in the 

four compounds. A weak absorption peak at 6.07 microns which might 

indicate the presence of an aromatic $roup in the alkaloids was present 

in the infrared spectra of wilforine and wilfordine which contain 

benzoic acid as one of the acidic subcomponents. A sharp absorpti.on 

peak with medium intensity at 13.25 microns, which might represent a 

carbon~carbon double bond in the molecule, is present in the infrared 

spectra of wilforine and wilfortrine. An interesting peak in the 

infrared spectra of all four alkaloids is the moderately strong CH2 

"scissoring" absorption at 7.2 mi,crons indicating the presence of a 

cycloalkane structure. 

The infrared spectra of four ester alkaloids indicated that the 

four alkaloids are closely related structurally and that each had one 

or more hydroxyl groups and multiple ester linkages. 

E. Ma~s Spectra of the Acidic Subcomponents 

All the mass spectra·-of the acidic subcomponents were obtained 

using the gas chromatographic inlet system following esterification 

with diazomethane. Analyses were performed either by temperature 

programming or by isothermal using two different temperatures; the 

latter method required two times injection into the column; however, 
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TABLE V 

SUMMARY OF THE :MASS SPECTRA OF THE FOUR 
ESTER ALKALOIDS FROM T. WILFORDII HOOK --

To wilfordU Molo formula Molo ion (M)+l Ten most intense peaks 
alkaloid (10, ll) (Lee, 1971) (relative intensity in percent) 

+ 
Wilforine C43H49018N C43H49018N ° 43 93 105 106 132 134 161 178 

(95) (.53) (67) (57) (55) (67) (49) (100) 

Wilfergine C41H47019N 
. + 

43 93 132 134 150 160 161 178 C41H47019N ° 
(57) (.!.QQ) (15) (13) (13) (15) (22) (61) 

Wilfordine C43H49019N 
+ 28 43 77 95 105 106 134 150 C43H49019N ° 

(23) (100) (18) (85) (47) (38) (20) (74) 

Wilfortrine C41H47020N 
+ 28 43 44 95 106 134 149 150 C41H47020N ° 

(22) (.!Qg_) (15) (82) (27) (20) (15) (46) 

1 Molecular ion was d.etermined by high resolution mass spectrometry 
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M+ 

. Wilforine 867 

Wilforgine 857 

Wilfordine 883 

Wilfortrine 873 

:./ 

TABLE VI 

COMMON FRAGMENTATION MODES OF THE -FOUR ESTER ALKALOIDS 
FROM T. WILFORDII HOOK ( OVER MASS 780 REGION) 

+ (M .. CH3} (M - co)+ + (M - CH3-CO) (M - CO2)+ (M. COOCH3)+ 

852 a39·· 824 8.23 808 

842 829 814 813 798 

868 855 840 839 824 

858 845 · 830 829 814 

. + 
(M • CH2COOCH3) · 

794 

784 

810 

. 800 

.i:-
--.i 



TABLE VII 

METASTABLE PEAKS IN THE MASS SPECTRA OF WILFORINE, 
WlLFORGINE, WILFORDINE AND WILFORTRINE 

Apparent mass 
of meta.stable Transition Possible I II 

ion denoted natural product 

92.83 (150)+~ (118)+ + 32 o2 or CH30H + 

102.02 (176)+ ~ (134)+ + 42 CHfO 

104.90 (206)+ ~ (147)+ + 59 COOCH3 + 

109.22 (206)+~ (150)+ +_56 2co2 + + 

132.01 (134)+ ~ (133)+ + 1 H + 

143.82 (178)+ ~ (160)+ + 18 H2o + + 

153.81 c206)+~ c11a>+ + 2a co + + 

159.67 (194)+ ~ (176)+ + 1a HO 2 

178.09 (207)-,, (192) + 30 CH20H + + 

+ - Indicate presence of metastable ions 

I .. Wilforine II - Wilforgine 
Ill - Wi lf ordine tV - Wilfortri,ne 
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m/e --
103 

105 

115 

124 

128 

129 

141 

142 

156 

177 

182 

187 

189 

190 

TABLE VUI 

FRAGMENT IONS CONTAIN'J;NG CARBON AND HYDROGJi;N IN THE MASS 
.SPECTRA ·Qf TUE FOUR ALKALOIDS FR,OM T. WILFOROII HOOK 

. .. . .. -~ . .. . . 

CH 

(Q + 
. . oo· ~ ,~ .. .. I 

. ~ 

cx~t00.· ... ~ 
I +· 

~ . ' + . ' ·roCH2 
(0 

. :it ox + oco 
C14H14 ((X)+ 
C15H7 

I. ll Ill 

+ + + 

+ 

+ + 

+ + 

+ + + 

+ + + 

+ + 

+ + + 

+· 

+ 

+ 

+ 

+ 

49 

IV 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

I - Wilfodne II - Wilforgine lit .. Wilf ordine IV - Wilfortrine 
PosiUon of s:l,de ehain is·arpitra;i:-y. Detailed high J;"esolution 

mass spectrometric data are shown in Appendix ' . 
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nm 

2.75-3.0 

3.2-3.5 

5.75 

6.07 

1.0 

7.3 

7.65 

8.2 

8.7 

9.2 

13.25 

14,0 

TABLE lX 

COMPARISON OF INFRARED SPECTRA 
OF FOUR ESTER ALKALOIDS 

Wilfodne · Wilforgine Wilfordine Wilforttine 

m (v.br.) m (v.br.) m (v.br.) m (v.br.) 

w (br.) w (br.) w (br.) w (br.) 

vs vs vs VS 

w vw 

m m m m 

s s s s 

i;h s sh sh 

vs (br.) vs (br.) vs (br.) VS (v.br.) 

s s s s (br.) 

s s s s (br.) 

m m 

s m 

Abbreviation given in "Experimental Methods"• 
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the method made it possible to save time. The gas liquid .chromato• 

grams obtained from using the above two methods are shown in Appendix. 

A typical total ion current tracing of the methylated acidic 

components is presented in Figure 15. the total ion current tracing 

peaks corresponding to the molec~lar ion of dimethylwilfordate, 

dehydrated dimethylhydroxywilfordate, methylbenzoate, methylfuroate 

and methylacetate, the methylated derivatives of the reported acidic 

components of the este:i: alkaloids, will be discussed in order. 

The mass spectrum of component A-13 (refer to Figure 15, total ion 

current tracing, for designation of the components) is shown in Figure 

16. + It has a molecular io-n at M 251, which corresponds to the mole-

cular weight of the dimethyl ester of wilfordic.acid. The spectrum 

exhibited a characteristic fragmentation pattern of a pyridine compound 

with0<:-side chain (63). The proposed fragmentation of dimethyl 

+ wilfordic acid is shown in Figure 17. The molecular ion M 251, 

c13u17o4N, may lose a methoxy group, a common fragment lost from 

methyl esters (64, 65), to form the fragment ion a, '!!!:,I!. 220, 

c12H14o3N. The base peak b, !I!. 204, c11H10o3N, may be formed either 

from a, by loss of one hydrogen atom and a methyl group or directly 

from the molecular ion by the successive loss of the neutral fragments 

CH3 , H and OCH3• The base peak, b, might; arise from both of these 

pathways; however, the latter fragmentation path is more plausible, 

since the fragment ion at !I!. 204, b, is more intense than the ion at 

m/e 220, a. --
The base peak, b, ·£9;/!. 204, loses OCH3 and CHCO to form the ion c, 

~/!. 132, c8u6oN; further stepwise loss of CO and c2H2 can occur to 

form ions d, c7H6N, and e, c5H4N, respectively. The ion e, which is a 

common fragment formed from substituted pyridine compounds may be 
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formed either from the ion c, by loss of CO and c2u2 or from the ion f, 

by the loss of c3H3• 

The fragment ion a,'!!,/!, 220, c11a10o3N, may lose 28 mass units 

(CO) to yield ion g, c11u14o2N, which may again lose c2H4 and OCH3 to 

form ions h, '!!,/!, 164, c9H10o2N, and· c, '!!,/!, 132, c8n6oN, respectively. 

Another ion i, c9u10N, may be formed from molecular ion by the loss of 

COOCH3 from pyridine ring at 0-2 and mass unit 14, Hand cu3, from C-2 

side chain. 

Further successive loss of CH3 and c3u3 from ion i, c9n10N, yields 

the ions f, c8u7N, and e, c5u4N, respectively. The ions ml!. 132, 117 

and 104, which have a positive charge at C-3 of the pyridine ring might 

be plausible in terms of the view that in pyridine the electron density 

is relatively high at para but low at the ortho and meta-position. 

The mass spectrum of compound A-15 is shown in Figure 16. This 

spectrum does not show a peak. corresponding to the molecular ion of 

·+ dimethylhydroxywilfordate, M 267, however the ion h, ~/!, 249, 

+ c13H15o4N, which may be formed by the loss of water [M - 18(H2o)] 

from the molecular ion is present. The absence of the molecular ion 

due to elimination of water from higher alcohols is a common phenomenon 

and was extensively studied by McFadden et al. and McLafferty with --
deuterium labelled compounds (66, 67). In higher alcohols, dehydration 

1nay also occur as a result of thermal decomposition prior to electron 

impact; a finding confirmed by the observation that the intensity of 

+ the M - 18 is greatly reduced when the sample is inserted near the 

ion source (68). 

The mass spectra of A-15 and that of A-13 are similar in the 

region from m/e 160 to m/e 100 but different in the high and low 
-- "'!'II' - -

'!!,/!, regions. The difference in the fragmentation of dimethylhydroxy-
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wilfordate in the high '!:}.I!. region is most likely due to the tertiary 

hydroxyl group on the side chain at C-2. Once dimethylhydrox,YWilfordate 

lost the oxyge~ containing groups from the molecule, the fragmentation 

pattern of the remaining ion should be similar to that o,f dimethyl

wilfordate in the region of E~/!. 100 to 160. In the low !!!:l!. region, the 

contribution of oxygen containing fragments might make the mass spectrum 

of dimethylhydroxywilfordate different from that of dimethylwilfordate 

since it is a well known phenomenon that the positive charge on the 

oxygen has a substantial influence on the degradation of long chain 

alcohols (69). 

The proposed fragmentation of dimethylhydroxywilfordate is shown 

in Figure 18. The base peak a, 'f!!:.f!. 176, c10H10o2N, may be formed by 

the loss of a methoxyl group from the side chain at C-3 and HCOOCH3 

from the side chain at C-2. .The ion a, '!:}.I!. 176, successively loses the 

neutral fragments, CH3 and H, and then ca2co to from ions b, C9H6o2N 

and c, c8a8oN, respectively. The loss of carbon monoxide from ion b 

and two hydrogen atoms from ion c to form ion d, '!:}.I!. 132, which is 

structurally stable due to the conjugation of double bond with the 

aromatic pyridine ring. + The mol~cu.lar ion, M 267, may also lose 

CH3coo and a hydroxyl group from the C-2 side chain to form the fragment 

ion e, !,I!:., 191, c11H13o2N.; further successive loss of COOCH3 , CH3 and 

c3a3 can occur to .form ion f, ~/!. 117 and ion g, '!:}.I!. 78, c6H14N. The 

ion j, '!!,I!, 104, c7H6N, may also be formed by the successive loss of two 

COOCR3 fragments and a-eetylene from ion h, '!:!:,I!:. 249, c1i115o /+N" · 

The mass spectrum of component A-13 along with the mass spect~um 

of methylbenzoate are shown in Figure 19. The spectrum of component 

A-3 was identical to that of methylbenzoate. The m~ss spectral behavior 

of benzoic acid, methylbenzoat~ and many related compounds have been 
I 



56 

extensively studied (70, 71). Methylbenzoate undergoes facile 

0<-cleava~e and it was observed that the two abundant fragment ions in 

the mass spectra of methylbenzoate were due to the loss of the methoxyl 

and of the methylcarboxyl group. 

The mass spectra of component A-2 and 2-methylfuroate are shown 

in Figure 20. It was reported that one of the acidic subcomponents of 

wilforgine and wilfortrine was 3-furoic acid, however, 3-furoic acid 

was not available, so 2-furoic acid was methylated with diazomethane, 

and its methylated derivative was used for comparison with component 

A-2. Component A-2 had an identical gas liquid chromatographic 

retention time with 2-methylfuroate, 7 minutes at a column temperature 

of 115°c on the SE-30 column, and also the same molecular ion, M+ 126. 

However, the fragmentation pattern of component A-2 was so different 

from 2-methylfuroate and other related furan derivatives (63) that 

additional information will be necessary before the identity of A-2 can 

be postulated. FraSll!:ent ions 

(M - OCH3)+ which are present 

+ such as~/~ 67 (M - COOCH3) and~/~ 95 

in the mass spectrum of 2-methylfuroate 

would be expected; however, the intensity of both major ions in mass 

spectrum of A-2 are unusually low compared to the other peaks, m/e 45 

and~/_! 76. The possibility of an unusual rearrangement of 3-methyl

furoate by electron impact which could cause the fragmentation of 

3-methylfuroate to be quite different from that of the 2-methylfuroate 

cannot be excluded, but it is extremely unlikely. 

Acetate was confirmed as one of the acidic components of the ester 

alkaloids by observing the molecular ion of methyl acetate M+ 74, and 

t,he major fragmentation peaks, ~/~ 43, cu3o and:!!./~ 31, OCH3 • The mass 

spectra of methylacetate always contained ions from the solvent since 
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the retention time were similar; however, the presence of methylacetate 

was unequivocally established. 

F. Structural Identification on the Polyhydroxy Compound 

1. Nuclear Magnetic Resonance Spectrometer 

The recrystallized polyhydroxy compound from the pyridine ester 

alkaloid had a constant melting point of 197-198°c. The nuclear 

magnetic resonance (NMR) spectra of polyhydroxy compound and that of 

the deuterium exchanged compound are shown in Figure 21. The NMR 

spectrum of the polyhydroxy compound was somewhat simpler than expected 

based on the view that it was supposed to contain 26 hydrogen atoms. 

The strong absorption peak at 3.48 ppm which was broad and sharp at the 

lower and upper parts of the.peak respe~tively and which showed as a 

hump on the integration curve, indicated that the absorption was 

contributed by two or more different kinds of hydrogen atoms. To 

simplify the peak by elimination of exchangeable protons, the poly

hydroxy compound was deuterated simply by adding deuterium oxide in 

the sample holder. The nuclear magnetic resonance spectrum of the 

,deuterium exchanged polyhydroxy compound showed that the size of the 

peak at 3.48 ppm. was reduced and that a new peak at 3.68 ppm. 

contributed by a proton on HOD appeared as expected (a comparison of 

the two nuclear magnetic resonance spectra are summarized in Table X). 

These results agree with our assumpti.on that, the peak at 3.48 ppm. is 

due to the absorption by two kinds of hydrogen atoms, the first type 

being a proton on the oxygen of a hydroxyl group and the second type 

being a proton on a ~-hydroxy substituted methine carbon atom. The 

exchangeability explains why the hydroxyl peak of the polyhydroxy 
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ppm. 

3.86 

3.48 

2.10 

1. 76 

1.38 

0.95 

TABLE X 

COMPARISON OF THE ~UCLEAR MAGNETIC RESONANCE 
SPCETRA OF THE POLYHYDROXY COMPOUND 

1 Integration ratio 
Spin-spin coupling I 

s (B) 0 

s 21 

s 1 

D 1 

T 1 

D 2 

I - Polyhydroxy compound 
II - Deuterium exchanged polyhydroxy compound 

1Abbreviation given in the ''Experimental Methods". 
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II 

13 
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compound is a broad singlet; the proton is not on th.e oxygen atom long 

enough for hydrogen to see the proton on a ~-hydroxy substituted carbon 

and consequently there is not coupling (72). A polyhydroxy alcohol 

would hardly show separate absorption peaks-for each hydroxylic proton; 

in this case the rate of exchange in cycles per second is higher than 

the difference between the separate absorptions and as a result, the 

. a),'$orption peaks of the hydroxyl hydrogens broaden and then merge to 

form a singlet broad peak (73). The integration ratio shows that the 

peak at 3.86 ppm. represents 13 protons where the polyhydroxy compound 

has been reported to contain 10 hydroxyl groups. This discrepancy 

might be due to the impurity of water which may be present either in 

the polyhydroxy compound or in the o2o. Both nuclear magnetic 

resonance spectra indicate the presence of 5 protons (2.10, 1.76, 1.38 

and0.95 ppm.) on carbon atoms which are 'at least not substituted at 

the o<-posit:J,on by a hydroxyl group. 

2. Mass Spectrometric Study 

The recrystallized polyhydroxy compound was treated with bis 

-(trimethylsilyl)-acetamide (BSA) and trimethylchlorosilane for a 

dlylating reagent as described in "'Experimental Methods". The excess 

reagent in the reaction mixture was removed by passing a stream of 

nitrogen over it and. the residue was dissolved in acetone and 

immediately analyzed by gas liquid chromatography-mass spectrometry 

using the solid injection technique (56). 

Figure 23 is the total ion current tracing obtained from a gas 

chromatographic-mass spectrometric analysis of the reaction mixture on 
' . . . 

a 10 % SE-30 column. More than 10 peaks were observed and none of 
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these peaks contained a series of molecular ions1 which agreed with 

values that could be calculated by stepwise adding 72 mass units to the 

molecular weight of the polyhydroxy compound, 366. Moreover, it was 

noted that all the mass spec~ra obtained from the reaction mixture 

were those of trimethylsilyl (TMS) derivatives. An indication of the 

presence of silicon in the ions was studied by measurement of the 

relative height of the recorded isotope peak (M+1) and by observing 

fragmentation pattern. 

The ion at !!I!. 73 corresponding to the molecular weight of 

trimethylsilyl group was present in the 11 mass spectra obtained from 

the reaction mixture. The common silicon containing fragment ions of 

+ the trimethylsilyl derivatives such as !!I!. 43 (SiCH3 ), !!I!. 44 

(SiCH4t), "J!/!, 45 (SiOH+ or SiOH5+), "f!/!. 55 (SiC 2u5+), "f!/!. 73 [Si(CH3) 3tJ 
. + 

and·!!:/!. 75 [Si(CH3) 20H J were usually observed in the mass spectra of 

the trimethylsilyl polyhydroxy compound (74). 

The use of the trimethylsilyl derivatives for gas chromatographic 

-mass spectrometric analysis overcomes the main difficulty in the 

analysis of alcohols and sugars, namely the determination of the 

molecular weight (75), by giving them the required volatility. However, 

the fact that absence of the molecular ion and/or explainable calculated 

fragment or molecular ions, usually M-15 and M-73, in the mass spectra 

of the trimethylsilyl derivatives of the polyhydroxy compound in this 

study is not easily explainable. It might be related to the fact that 

the attempted addition of 10 trimethylsilyl grot1p to the polyhydroxy 

compound might be stereocheroically unfavored so that the remainip.g 

r 

1M+ = 366 + n(73-1) where n is a number of trimethylsilyl groups 
introduced in the molecule. 



hydroxyl group(s) might have a significant influence on the course of 

the reaction of the compound when sµbjected to electron impact. 

3. Field Desorption Mass S2ectrometer 

Recently a number of authors have reported studies on field 

desorption mass spectra of substances which are biologically 

significant (76); particularly polyhydroxy compounds such as mono

saccharides (77). In the field desorption mass spectrometer heating 

of the field anode wire by a current of several mA may increase the 

molecular ion intensity (Mor M+1) much more than the fragment ion 

intensity. 

Several attempts to measure the field desorption mass spectra of 
. 1 

the polyhydroxy compound were carried out by Dr. H. D. Beckey. 
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However, it was not possible for him to obtain either the parent or 

fragment peaks. Although there is presently no reasonable explanation 

for that results, it might be that the solubility of the sample is not 

high enough to yield absorption on the field desorption emitter (78). 

4. S~lenium Dehydrogenation 

Attempts to dehydrogenate the crystallized polyhydroxy compound 

with selenium were made as described. The ether extracts of the 

reaction mixture, which did not show UV absorption at 254 nm, were 

injected in the SE-30 column and no peaks were observed. These results 

might indicate that no aromatic compound was formed by selenium de

hydrogenation. 

11nsitut fur Physikalische Chemie der Universitat Bonn, 
Wegelerstrasse 12, 53 Bonn, Wes~ Germany. 
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Although no conclusive evidence was obtained to determine the 

stX"ucture of polyhydroxy compound, it is postulated that the skeleton 

of the compound might be tetradecahydroanthracene or tetradecahydro

phenanthracene (Figure 24). This postulation is based on the following 

preliminary evidences; a) fragment ions corresponding to the 

structural formulae of anthracene derivatives such as c14H9, c14H14 and 

c15u10 and those of naphthalene such as c10H8, c10H9, c11a9, c11H10 and 

c12a12 were found in the high resolution mass spectrometric data of 

ester alkaloids (refer to Table VIII), b) a moderately strong CH2 

11 scissoringH frequency was observed at 7.2 microns in the infrared 

spectra of all four ester alkaloids ind.icating the presence of a 

cycloa,lkane sti-ucture in the molecule, c) ;relative upfield proton 

absorptions ( 2 .10 - 1. 02 ppm.) of the nucleaX' magnetic resonance 

spectra.of polyhydroxy compound may account for the protons on the 

cyclic alkane sk.eleton, d) the presence of multiple hydro;x;yl groups 

in the molecule was proved by infrared spectt'a of the ester alkaloids 

and nuclear magneUc ,resonance spectra of the polyhydroxy compound, 

e) the possibility of some kind of tX'ipentose s.tructure :i,s excluded 

since among the 10 hydroxyl groups in the compound 8 are esterified 

in the intact alkaloid and 2 are free. 

G. Sununa:,;y and Suggestions for Further Study 

The purpose of the ~tudy described in this section was to isolate 

and identify the ester alkaloids and their subcomponents by the use of 

modern micro analytical instruments su.c;h as mass spectrometry, combi

nation gas chromatography~ma,ss spectrometry, field desorption mass 

spectrometry, nuclear magnetic resonance spect:t'ometry and infrared 

spectrometry. 
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The high and low resolution mass spectral data of the four ester 

alkaloids were presented. These data confirmed molecular weight and 

elemental formulae of the four ester alkaloids agreed with the values 

and elemental formulae reported by Beroza based on his elemental 

analysis in 1953. 
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Among the five acidic components of the ester alkaloids reported, 

the structures of four components have been identified mass spectro .. 

metricall~; wilfordic acid, hydro~ywilfordic acid, benzoic acid and 

acetic acid. The other reported acidic component, 3-furoic acid, was 

questionable since the frag!llentation of the components, A-2, which had 

identical retention time and molecular weight with 2-methylfuroic acid 

was quite different. 

For the identification of the :i:epo'X'ted 3.,.furoic acid as one of 

the acidic components of the ester alkaloids, it is desirable to 

isolate the compound by preparative gas chromatography and to study 

with carbon-skeleton chromatography (79). The interesting application 

of carbon-skeleton chromatography in the study of wilfordic acid and 

hydroxywilfordic acid has been repc;,rted (14). Chemical degradation 

and formation of derivatives of the compound may also give useful 

information. 

The structure of the polyhydroxy compound is proposed from the 

preliminary various instrumental analysis data. Much more evidence 

is needed to prove or reject the proposed structure. Determination of 

the complete structure of a polyhydroxy compound requires complementary 

analysis, the most important of whiq.h are graded chemical hydrolysis 

of etherified derivatives (80, 8,1), followed by isolation and identi

fication of the product formed. 



74 

H. Biosynthesis of T. wiUordii Hook Alkaloids -
1. Isolation and Identification of Nicotinic Acid and NAD Metastables 

When a portion of the .80 % methanol extract of the plant fed with 

14 · . 
nicotinic acid-6- C was subjected to thin layer chromatography and the 

plates were developed with a relatively non .. polar solvent system 

(acetone: hexane, 8: 2), two main radioactive zones; alkaloids zone 

(A-1 in Figure 25) and polar compounds (A-2 in Figure 25), were 

observed. More than 90 % of the isolated radioactivity was located at 

the polar compound zone. 

Radiochromatograms of the aqueous and organic phases from the 
·. 14 

different part of plants fed with either nicotinic acid-6- C ~r. 

14 . . 6 2 NAO-carbonyl- C are shown in Figures 2 and 7. In most cases .tJ:.!e 

aqueous phase and the organi~ phase contained more than 99 % of the 

radioactivity as polar compounds and alkaloids respectively. In case 

extraction with aqueous phase was not completed and polar compounds 

remained on the thin h.yer chromatography plate, the zone was scraped 

off, extracted with 80 % methanol an~ added to the appropri~te fraction. 

The polar compounds. were subjected to Powex 1-X8 formate anion 

exchange column chromatography as described. Figure· 28 shows the 

results of the metabolism of nicotinic acid-6-14c in the upper part 

(including leaves and stems) and the roots of!• wilfordii Hook res

pectively. ln Fig"Qre 28, more than 10 radioact;i,ve peaks were f,Q1Jri.q. 

T~e height and number of the peak ( 6 main peaks) .were smaller in. the 

radiochromatogram of root extracts. The chromatographic pattern of 

the NAD-carbonyt-14c metabolites from the upper part and the roots are 

given in Figure 29. In both chromatograms of these NAD metabolites, 

the number of peaks were reduced when compared to those of the.nicotinic 
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acid metabolites. Tubes representing each peak were pooled, lyophilized 

to dryness and identified by paper chro~tography with authent;i.c 

samples in two different solvent systems. 

Two well known solvent s'ystems (60) for paper chromatographic 

identification of the pyridine nucleotide were employed. The Rf 

value,s from desc;:end:1,ng paper chromatography of the nicotinic acid and 

NAD metabolites are given in Table XI. Based on. Rf values from paper 

chromatography, elution volume of anion exchange chromatography and 

ultraviolet absorption spectra, the following radioactive peaks, N-1, 

N-2, N-7, N-8, N-11 and N-13 w.ere tentatively identified as N-methyl

nicotinamide, nicotinamide, nicotinic acid, NAD, NaMN and desamido-NAD 

respectively. The possibility of contribution of compounds other th~n 
,V 

the one assigned to the rijdioactive peaks is not excluded. There are 

indeed some chromatographic evidences that peak N-1 contains more than 

one compound. The minor peaks remain unknown in this study.since the 

low concentrations and weak radioactivity indicat~d that they were not 

major metabolites. 

2. 14 14 Nicotinic Acid-6- C and NAD-carbonyl- C as Precursors 

Biosynthesis of the pyridine alkaloids, expecially ricinine (3), 
.' 

n.icc,tine (82) and anabasine (83, 84), in higher plants has been studied 

extensively by measuring the incorporation of various isotopically 

labelled precursors into the alkaloids and chemically degrading them 

to locate the position of labelled atoms.· However, no attempt has 

been made to elucidate the origin of pyridine moieties of the!· 

wilfordii Hook estex: alkaloids, wilfordic aci.d and hydroxywilfordic 

acid. The results of four day!· wilfordii Hook alkaloids biosynthesi~ 
. 14 . . . 14 

from the plants administered nicotinic acid-6- C and NAO-carbonyl- C 
•• I " 

l. 
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are shown in Tables XII and XIlI. The radioactivity of alkaloids in 

the roots was much higher than that in the leaves and stems when 

nicotinic acid-6-14c was the precursor, Both precursors were injected 

into the stems, The total percentage of the incorporation of nicotinic 

acid into the root alkaloids was about twice as high as that into the 

alkaloids from the top part of the plant. It is interesting to note 

that the difference in extent of total incorporation between nicotinic 

acid and NAD is due to their different efficiencies of incorporation 

into the root alkaloids but not in the alkaloids of the upper part of 

the plant, The radioactivity in the alkaloids of the leaves and stems 

was actually slightly higher when NAP was fed than when nicotinic 

acid was fed (1.8 % compared to 1.2 %); however, the radioactivity of 

the alkaloids in the roots was remarkably lower when NAD was admini

stered than whennicotinic acid was administered (3.2 % compared to 

0.5 %). The incorporation efficiencies of nicotinic acid and NAD into 

T, wilfordii Hook alkaloids are comparable if we assume that the 

differences in the radioactivity of the alkaloids in the roots of the 

plants fed nicotinic acid and NAP are due to other factors such as site 

of synthesis of the alkaloids (85), and translocation and/or uptake of 

the precursors. It has been proven that each compound which is a 

member of the pyridine nucleotide cycle can serve as a ricinine (3) or 

nicotine (32) precursors, each with an efficiency of the same order of 

magnitude. In the present study, it was shown that the pyridine moiety 

of NAD could be readily incorporated into the pyridine component of T. 

wilfordii Hook alkaloids with comparable efficiency as nicotinic acid 

by the leaves and stems of the plants but was less efficient as a 

precursor in the root. 
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Figure 25. Thin Layer Radiochromatogram of 80 Percent 
Methanol Extract from the Plant which was 
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Figure 26. Thin Layer Radiochromatograms of an Extract of the 
Plant Fed with Nicotinic acid-6-14c. . 
Duration of experiment was 4 days. Solvent 
sys~em used was acetone : hexane (8 : 2, v/v). 

A - Organic phase of an extract from the top 
B Aqueous pJ;,.ase of an extract from the top 
C - Organic phase of an extract from the roots 
D - Aqueous phase of an extract from the roots 
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Figure 27. Thin Layer Radiochromatograms of an Extract of 
the Plant Fed with NAD-c.arbony1-14c. 
Duration of experiment was 4 days. Solvent 
system used was acetone: hexane($: 2, v/v). 

A - Organic phase of an extract from the top 
B - Aqueous·· phase of an extract from the top 
G - Organic phase of an extract from· the roots 
D Aqueous phase of an extract from the roots 
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TABLE XI 

. Rf VALUES FROM DESCENDING PAPER CHROMATOGRAPHY 
OF THE METABOLITES OF NICOTINIC ACID AND NAO 

INT. WILFORDII HOOK -
Rf.value 

Compound Sol. I Sol. II 

N-1 ·(o-methyln;l.cotinamide) 0.81 0.88 

N-3 ( nicotinamide) 0.89 b.89 

N-7 (nicotinic acid) Q.75 0.76 

N-8 (NAD) 0.29 0.32 

N-11· (nicotinic acid O.JS 0.35 
mononucleot;i.de) 

N-13 (gesamido-NAO) 0.17 0.19 

N-2 Q.89 0.86 

N-6 0.46 0.38 

N-9 0.20 0.10 

N-14 0.2s o.os 

Solvent system I. 95 % ethanol : 1 M arru:nonium acetate 
(7 : 3, v/v, pH 5) 

Solvent system, II - isqbutyric acid: ammonia: water 
(66: 1.7 : 33, v/v/v, pH 3.8) 
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TABLE XU 

DISTRIBUTION OF RADIOACTIVITY INT. WILFORDII HOOK AFTER 
ADMINISTRATION.OF NICOTINIC ACID.6-1¢c 

Expo Noo Compound Roots Leaves & Stems Tetal 

dpm X 104 % dpm X 104 % dpm X 104 % 

Alkaloids . :~2.l2 3.5 .704 1.1 2.936 4.6 

I Polar compounds _ 2,.817 4.4 21.387 33.2 24.203 37 .• 5 

Total s.o49 7.8 22.091 34.3 27.139 42.1 

Alkaloids l.912 2.91 .825 lo28 2.738 4.25 

II Polar compounds 1.111 2.66 18.825 29.19 20.542 31.8i 

Total . 3.629. 5o6l. 19.650 30.47 2lo280 36.10 

Alkaloids 2.072 3.21 .. 764 1.19 2.837 4.40 

Average Polar eompo.unds 2.267 3.52 20.106 31.18 22.373 34.69 

Total 4.3390 6.73 20.870 32 .. 36 25.210 39.09 

Duration of ef£eriment was 4 days. The plants used were grown in the green house. 
Nicotinic acid-6 .. C (1.1 x 10-2 ,uM) with a total radioactivity of 64.487 x 104 dpm was 
administered. Percentage of incorporation was determined by dividing total radioactivity 
administered by the total amount recovered. 

(X) 
(.o, 
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TABLE XIII 

DISTRIBUTION OF RADIOACTIVITY IN I• W::U,,FORD!I HOOK AFTER 
. ADMINISTRATION OF NAD-CARBONYL~1 C 

Administered Isolated 
compound compound Roots Leaves & Stems Total 

dpm X 10 
4 

% dpm X 10 4 % dpm X 10 4 
% 

Alkaloids 0.242 o.s o. 777 1.4 1.019 2.3 

NAO-carbonyl Polar 1.486 3.4 16.686 37.6 18.172 41.0 · 14 
.. C compounds 

Total 1.728 3.9 17.463 39.4 19.191 43.3 

The plant~ used were grown in the freen house. Duration of the 
experiment was 4 days. NAO-carbonyl- 4c (10-2 µM) with a total 
radioactivity of 44.353 x 104 dpm was administered. Percentage of 
incorporation was determined by dividing total radioactivity admini .. 
stered by the total amount recovered. 
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3. DL-glutamic acid-2-14c as Precursor 

DL-glutamic acid was administered to young!· wilfordii Hook plants 

for evaluation as a possible precursor for the side chain of the 

pyridine ring. The plant extract was divided into aqueous phase and 

organic phase as described. Upon subjecting the organic phase to thin 

layer chromatography, the alkaloid zone (G-6 in Figure 30, A) together 

with 5 more peaks were observed which was different from the results 

obtained with nicotinic acid and NAD which have only one peak, which was 

alkaloids. After two preparative chromatographic purifications by thin 

layer chromatography, the alkaloid zone was assayed for radioactivity. 

No other zone on the thin layer chromatograms of organic phase and 

aqueous phase was studied. 

14 
The incorporation of radioactivity from glutamic acid-2- C into 

the alkaloids (Table XIV) was too low to justify an attempt to locate 

the label by degradation analysis; however, the extent of incorporation 

was about the same order of magnitude as that observed for ricinine 

(86), and nicotine (31). The incorporation percentage, 0.84, should 

be doubled if it is considered that the plants used only the L-form. 

It is most likely that glutamic acid can be incorporated into .the 

pyridine ring of the alkaloids via succinate which can be formed after 

glutamic acid enters into the citric acid cycle. 

4. Metabolism of Nicotinic acid-6-14c and NAD-carbonyl-14c in the Plant 

During the course of the study on the biosynthesis of the 

alkaloids produced by!· wilfordii Hook, 80 - 90 % of the isolated 

radioactivity remained in the aqueous phase after either extracting 

the alkaloids with organic solvent or as a result of the thin layer 
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chromatography using the relatively non-polar solvent system. To 

elucidate the relationship between the pyridine nucleotide cycle and 

biosynthesis of 1· wilfordii Hook alkaloids, a study of the polar 

compounds in aqueous phase was undertaken. 

As shown in Table XI/, the total radioactivity recovered from the 

plant fed with NAD was higher than that of the plant fed with nicotinic 

acid and the distribution of:radioactivity among the metabolites of 

above two precursors Wi:lS remarkably different from each otlier. The 

ratio of radioactivity present in the roots compared to that found 

in the upper part of the plant was higher when nicotinic acid was 

administered than when NAD (0.2 % compared to 0.1 %) was administered. 

This difference might reflect the difference between nicotinic acid 

and NAD with respect to uptake and/or translocation. Lan and Henderson 

(87) reported that the uptake of nicotinic acid and nicotinamide by 
I 

rat erythrocytes consisted of two proc;::esses, diffusion and conversion 

to nucleotides which did not readily diffuse from the cell. They 

14 '· 
studied the processes separately with the use of C-labelled sub-

strates and fluoride to prevent the formation of nucleotides and 

concluded that the two processes provided for a very rapid rem~val of 

these compounds, especially nicotinic acid, from the e,c:ternal medium. 

Two different views on the permeability c;if nucleotides in animal cells 

have been recently reported: Negishi et al. reported (88) that in 20 --
seconds 90 % of the radioact:i,vity in tbe blood after the injection of 

· 14 . · 14 NAD-carbonyl- C was found as nicotinamide-carbonyl- C which was 

reabsorbed and reutilized as a precursor of NAO in various mice 

tissues. In contrast .to these ·results, Everse ~ !l· (89) suggested 

the possibility that the NADH might enter the mice liver without 

cleavage. They reported a great increase in liver NAD+, when NADH was 
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administered in comparison with oxidized NAD+, Our finding, that total 

radioactivity present in the root was lower when NAD was injected than 

when nicotinic acid was injected, might be indicative of a lower uptake 

into the cells and/or a lower translocation rate of intact NAD compared 

to nicotinic acid. However, no definite conclusion could be drawn from 

those results, since involvement of the more complicated factors such 

as metabolic rate, the accumulation capability of different tissues and 

the polarization of compounds, not with respect to their structure, but 

with respect to their function, should be considered first, 

The distribution of radioactivity among metabolites of nicotinic 

acid varied greatly. The incorporation percentage of nicotinic acid 

into the non-nucleotide compounds, especially N-methylnicotinamide, was 

very much higher than in the nucleotides (16). The radioactivity 

distribution among nucleotides such as NAD, nicotinic acid mono

nucleotide and desamido-NAD was rather uniform ranging from 0.3 to 

O.L;8 % of the total administered radioactivity. More than 98 % of the 

administered nicotinic acid was metabolized in the plant aftei::· 4 days~ 

if we consider that at least a portion of the radioactivity was 

contributed by resynthesized nicotinic acid. 

+ The radioactivity distribution among,the nucleotides such as NAD ~ 

nicotinic acid mononucleotide and desamido-NAD+ was lower in the roots 

and much higher in the leaves and stems when NAD was fed than when 

nicotinic acid was fed, The fact that labelled NAD+ gave arise to 

higher radioactivity in nicotinic acid mononucleotide and desamido-NAD 

in the leaves and stems than did nicotinic acid permits the speculation 

that phosphoribosylpyrophosphate may be the. rate limiting compound in 

the eye.le. It i$ known that degradation of the pyridine nucleotides 

are the only biological source of nicotinamide and subsequently 
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Figure 30. Thin Layer Radiochromatograms of Organic (A) 
and Aqueous (B) Phase of the Plant Extract 
Fed with Glutamic acid-2-14c. Duration 
of experiment ·was 4 days and the solvent 
system used was acetone: hexane (8:2, v/v) 
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TABLE XIV 

DISTRIBUTION OF RADIOACTIVITY INT. WILFORD!! HOOK 
AFTER ADMINISTRATION Of DL-GLUTAMIC AC!n-2 .. 14c 

Administered Isolated 
compound compound Roots Leaves & Stems Total 

dpm X 10 
4 

% 
. . . 4 
dpm X 10 % 

. 4 
dpm X 10 

89 

% 

Alkaloids 0.265 Q.3 o.48 0.54 0, 745 0.84 

DL-glutamic Polar o.3575 o.4 18;.8325 21.2 19.19 21.6 

acid-2-14c Compounds 

Total 0.6225 0.7 19.313 21. 7 19.934 22.4 

Duration of experiment was L~ days. The plants used were grown 
in the green house. DL-glutarnic acid-2 .. 14c (8,1 x 10-3 pM) with a 
total radioactivity 88,94 x 104 dpm was administered. Percentage of 
incorporation was determined by dividing total radioactivity admini
stered by the total amount recovered. 



TABLE XV 

RADIOACTIVITY DISTRIBUTION AFTER ADMINISTBATION OF NICOTINIC ACID•6•14c 
AND NAD CARBONYL-14c INTO To WILFORDil HOOK PLANTS 

~~
. Admini-s -t- -· - ered 

Meta ite lant compound 
_eart Root 

14 b Nicotinic acid-6- ,, 'C 

ToE. Total 
dpm X 10] % 

Root 

NAD.carbonyl-i4c .·_ 

To,e - Total 
· dpm iiTol % 

N.demethyl nicotinamide 

Nicotinamide 

16.286 1560679 172.965 26 .• 82 12.889 36.993 49-.882 11.25 

Nicotinic acid 

NAO 

Nicotinic acid 
mononucleotide 

Desamido .. NAD . 

Alkall>ids 

Others• 

1 .. 682 

L,753 

0 .. 839 

0.593 

--4.396 6.078 Oo94 

8.739 10.492 1.63 

2.210 

1.330 

3.109 o.4s 

1.923 0 .. 30 

0.526 1.896 2.422 0.38 

20.732 7.648 28.371 4~40 

0.931 27.249 28.237 4.38 

o.1s9 

1 .. 219 

0.282 o.468 

57.425 57.763 
0.119 

o.os1 26.775 26.861 

0.186 19.245 19 .. 431 

2.426 7.765 10.200 

1.269 26.160 27.323 

o.u 

13.02 

6.06 

4.38 

2.29 

6.16 

Total 43.390 208.707 252.097 39009 17.291 174.639 191.928 43.27 

a. Unclassified polar compounds. b. Average ,f_ two experiments. 
Duration of the experiment was 4 days. The plants used were grown in. the green house. 

Nicotinic acido6.14c (lol x 10°2 µM) with a total radi~activity of 64.484 x 104 dpm, and 
- NAD.carbonylol4c (lod2 p.M) with a total radioactivity of 44.353 x 104 dpm was administered. 
Percentage of incorporation was determined by dividing the total radioactivity administered 
by the total amount recovered. '° 0 
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nicotinic acid which is the inunediate precurso+ for nicotinic a~id 

mononucleotide. Desamido•NAD is not formed from NAD. Therefore, the 

concentration of nucleotides in the pyridine nucleotide cycle might be 

governed by tJ;ie concentration of phosphoribosylpyrophosphate (PRPP) 

since it is required for _2! ~ and salvage synthesis of nicotinic 

acid mononucleotide. Furthermore the formation of N-methylnicotinamide 

might also be controlled by the concentration of PRPP. 

An alternate circuit loop of the main cycle (NAD -.:io NMN ~ nicotin~ 

amide) was found in yeast (90), and it was suggested that it occured 

in barley based on experiments by Ryrie et al. (44). This alternate 
' -·-

pathway may not operate in!• wilfordii Hook, since no detectable 

nicotinamide mononucleotide was present. A pyrophosphatase, which 

catalysed the formation of nicotinamide mononucleotide from NAD, has 

been demonstrated in plant tissue (42). 

It is well known that the biosynthesis of NAD+ from nicotinic 

acid via nicotinic acid mononucleotide and desamido-NAD+ occurs in the 

higher plants family such as Euphorbiaceae and Selanaceae, and certain 

bacteria (44, 91), The in vivo experiments reported here provide -~ 
evidence for the function of this pathway in still another family of 

the plants, Trizteryi:;iu:11 wilfordii Hook, Celastraceae. 

In summary, labelled nicotinic acid and nicotinamide. adenine 

dinucleotide were rapidly metabolized in !• wilfordii Hook with the 

formation of all the compounds in the pyridine nucleotide cycle, and 

the nicotinamide moiety of NAD can be readily incorporated into the 

alkaloids from.!· wilfordii Hook with efficiency of the same order of 

magnitude as nicotinic acids. The possible role of phosphoribosyl

pyrophosphate on the control of the. cycle was suggested. 



PART TWO 

METABOLISM OF,.RICININE IN 

RICINUS COMMUNIS L. 
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CHAPTER V 

INTRODUCTION 

Advances in our knowledge of the biosynthesis of the alkaloids 

have little counterpart with respect to their further metabolism. The 

alkaloids have generally been cc;msidered as a final product of nitrogen 

metabolism in the plants. The occurrence of the possible alkaloid 

catabolic processes in the plants which produce them has become of 

interest in the last decade when isotopically labelled alkaloids 

became available. 

The alkaloid selected for studying this metabolic process was 

ricinine, the major alkaloid produced by the castor bean plant, Ricinus 

communis L. Considerable information on its biosynthesis was available. 

Degradation of the -pyridone ring of ricinine to carbon dioxide by 

the castor bean plant had been demonstrated (92). Recently a rapid 

interconversion of exogenous ricinine and N-clemethyl ricinine in 

senescent and green castor bean plant leaves was reported (93). The 

two compounds, N-demethyl ricinine and co2, are the only compounds 

which have been identified as ricinine metabolic products. 

The experiments described herein were designed to identify the 

possible new ricinine metabolites and to provide further information 

on the translocation of ricinine within the plant and to study the 

possible role of demethylation and methylation reactions of these 

alkaloids in connection with translocation. 
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CHAPTER VI 

LITERATURE REVIEW 

A. Structure and Properties 

Ricinine, an ~-pyridone alkaloid produced by Ricinus cornmunis L. 

was first discovered in the castor bean seed in 1864 by Tuson (94). 

Boettcher (95) reported that the bulk of ricinine was located in 

mature castor seed with about 0.15 % in the seed coat and about 0.03 % 

in the kernel. Robinson (96) showed that measurable quantities of 

ricinine were in the roots. He also reported that the hypocotyls were 

higher in ricinine content than in the roots, with larger amounts being 

found in the top than in the bottom portion of the hypocotyls, 

Ricinine was shown to be present in all parts of the young castor bean 

plant, approximately 1 milligram per gram fresh weight; however, the 

content varies from one part of the plant to another depending on 

probably its physiological function (97). 

The first study on the structure of ricinine was published by 

Spaeth and Koeller (98). They were able to show the presence of a 
' , . r , ' •• ./ 

pyridine ring in the alkaloids. The structure of ricinine was proved 

to be N-methyl-4-methoxy-3-cyano-2-pyridone (99) and was confirmed by 

chemical synthesis from 4-chloroquinoline via the intermediate 

4-chloro-2~aminoquinoline-3-carboxylic acid and 2,4-dichloronicotin

anitrile by Spaeth and Koeller (100). Several researchers (101, 102) 

synthesized ricinine from different starting compounds and thus 

94 
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confirmed the structure. Schroeter et al. (103) synthesized ricinine --
from the aliphatic compound\cyanoacetyl chloride. This transformation 

was attributed to the intermediate formation of malanamoyl chloride 

and cyanoketene to give 2,4-dihydroxy-6-chloronicotinonitrile, II, 

which was then converted to 4-dihydroxynicotinonitrile, III, by 

removal of the halogen. III was converted to ricinine acid, IV, 

by methylating the nitrogen atom and IV was converted to ricinine V 

by methylating the hydroxyl group. The direct N- and 0-methylation 

of III was developed by Robinson and Hook (104). 
' . . 

Yang et al. (105) -.-
prepared ricinine-3,5-14c with a specific activity of 567.0pc/m mole 

from cyanoacetyl chloride-2-14c by following the scheme presented in 

Figure 31. 

Ricinine is a neutral and optically inactive compound (106). It 

melts at 201.5°c (corrected) and sublimes at 170 - 180°/760 mm. It is 

slightly soluble in water, chloroform, alcohol and pyridine and 

insoluble in ether. Ricinine does ~ot react with the usual alkaloidal 

reagents such as Dragendorff 1 s, but it gives positive color tests. to 

the Weidol reaction, Fehling•s soiutioQ., ferric complex and formation 
! • ' . 

of an isonitrile which can be detected when treated with 2 N NaOH 

Ricinine forms chloride and mercuric chloride salts, and give 

three bromide derivatives which can be characterized by their different 

melting points (106). Ricinine undergoes hydrogenation in the presence 

of platinum as catalyst and yields a pyridine in the presence of zinc 

dust. The oscillopolarography, ultraviolet and infrared spectroscopy 

of ricinine have been reported (108, 109). 

Skursky!!.!!.• (93) have recently reported ultraviolet 
! 
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absorption maximum in water at 307 and 255 mm o~ 10 times recrystal

lized ric:lnine with molar extinction coefficients s. 77 x 103 aud,. 
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· 3 ·-1 -1 4.29 x 10 liters M cm , respectively which are moderately different 

from the previously reported data (110). They also reported that 

absorption at 219 nm was not suitable for analytical utilizations 

because of its sensitivity to impurity. 

Waller et al. (111) have reported in detail the ma_ss spectrometric --
analysis used for the assignment of labelled atoms of isotopically 

enriched ricinine together wi,th the mass spectral fragmentation pattern 

of ricinine. Nuclear magnetic resonance spectra of ricinine, 

N-demethyl ricinine and 0-demethyl ricinine were reported by Skursky 

et al. (93). -.-
Yang (86) reported that ricininic acid (0-demethyl ricinine) was 

obtained from ricinine by alkaline hydrolysis. Ricininie acid crystal

_lized from water melted at 298 - 299°/760 mm. was slightly soluble in 

water, ethanol, chloroform and ether. 

B. Biosynthesis of Ricinine 

The first experimental evidence indicating biosyuthesis of 

ricinine·in the castor bean plant seed was reported in 1932 by Weevers 

(112). Me studied the ricinine content in the seed during germination 

in the dark and found that the ricinine nitrogen in 100 seeds increased 

in three weeks from 4 to 72 milligrams. James (113) developed a 

different view and showed that the accumulation of alkaloid in the 

cotyledons and hypocotyl during germination appeared to be due to the 

translocation, with or without decomposition, from the endosperm. He 

found an extractable.amount of ricinine only in the cotyledons and 

hypocotyl and trace amounts in the endosperm and young emerging root, 
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when ricinine was extracted from youngei' seedlings in which the 

cotyledons were still retained within the endosperm. Bogdashevskaya 

(114) reported that the absolute amount of ricinine in the whole plant 

increased with the development of the plant, but percentage wise it was 

highest in the 20 days old plants, after which it fell sharply, 

increasing again slightly after flowering. Waller et al. (115) --
reported that the ricinine in the seed acc.o.unted for about 75 % of 

the total alkaloid in the plant at 20 weeks of age and the amount of 
-· 

ricinine per gram of leaves and stems decreased to 60 % but the rieinine 

content of the flowers and seed remained relatively constant in post 

flowering plants. 

The biosynthesis of ricinine with the use of radioisotopes in the 

castor bean plant was first reported in 1952 by Dubeck and Kirkwood 

(116). They investigated the origin of the 0- and N-methyl groups of 

14 ricinine by feeding germinating castor seeds L-methionine-methyl- C, 

_choline-methyl-14c and sodium formate- 14c and found that only the 

carbon-14 labelled methyl group of methionine was appreciably in

corporated into the methyl groups of rieinine. 

The inability of lysine to se:r;ve as a precursor of the ix.•pyridone 

ring of ricinine in higher plants was reported in 1958 by Grimshaw and 

Marion. However, a conflicting result was reported by Tamir and 

1l• Ginsburg who found that lysine-2-. C was incorporated into ricinine to 

the extent of 0.01 % with all of the radioactivity located in carbon-6 

of ricinine (117). 14 They also reported that ~-amino-adipic acid-2- C 

gave arise to ricinine labelled in carbon-2 and ~6. Juby and Marion 

(118) studied lysine as a precursor of ricinine and found that the 

extent of incorporation was very low. They considered that lysine was 

not an important precur~or of the p,!ridine ring in higher plants; a 
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concept supported by studies made by Waller and Henderson (46). 

Juby and Marion (118) found 93 % of activity in the cyano group of 

ricinine obtained from feeding sodium acetate-1- 14c to castor bean 

plants. The distribution of radioactivity in ricinine synthesized from 

acetate and glutamate could be accounted for by the operation of the 

. citric acids cycle with or without the glyoxylate bypass. Anwar et al. --
(119) also reported that 90 % of the radioactivity from acetate-1- 14c, 

glutamic acid-2-14c and propionic acid-3-14c was located in the nitrile 

carbon of ricinine. These results agreed with and supported the earlier 

findings of Waller and Henderson (33) that succinic acid or a related 

four-carbon·ditarboxylic acid found in the citric acids cycle was a 

direct precurs6r of ricinine. The four-carbon dicarboxylic acid would 

be incorporated in such a way that one of the carboxyl groups provided 

the carbon for the cyano group of ricinine and the methylene groups 

provided the carbon for the 2 and 3 positions of the pyridine ring 

respectively. The other carboxyl group must eventually be lost by 

decarboxylation. In these el!:periments the radioactivity of succinic 

14 acid-1,4- C was distributed 85 % in the cyano group and 15 % in the 

(l(~pyridone ring of ricinine, Juby and Marion ( 118) reported that 

succinic acid-2,3 .. 14c was incorporated into ricinine to an extent of 

38.9 %, 38,3 % and 20.8 % in carbon atoms 2, 3 and 8 (cyano group) 

14 14 respectively. The incorporation of glycerol-1,3- C and glycerol-2- C 

into ricinine to the same extent as many other precursors was reported 

( 106). 

1. The Relationship Between the Pyridine Nucleotide Cycle and 

Biosynthesis of Ricinine~ 

Leete and Leitz (120) first suggested that intermediates of what 
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is now called the pyridine nucleotide cycle might be involved in the 

biosynthesis of ricinine in the c~stor bean plant; however, the 

experimental proof was not attempted until the 14c-labelled compounds 

became available. 

Leete and Leitz {120) and Waller and Henderson (46) showed that 

the pyridine ring of nicotinic acid and nicotinamide could }!!come the 

oc-pyridone ring of ric,inine. 14 Leete and Leitz fed nicotinic acid-7_.. C 

to 3 week old castor bean seedlings and then after 14 days isolated, 

purified and treated ricinine with 57 % sulfuric acid to yield N-methyl 

-4-methoxy-2-pyddone which contained none of the radioactivity. Thus 

all of the radioactivity was found to be located in the nitrile group. 

Waller and Henderson { 46) confirmed and extended their finding using 
14 3 . 

C and H doubly labelled nicotinic acid to show that all the carbons 

of nicotinic acid were incorporated into the pyridine ring of ricinine. 

Yang and Waller {34) have established by!!! ~.experiments with young 
. 14 

castor bean plants that quinolinic acid-2,3,7,8- C can serve as a more 
· 14 

efficient precursor of ricinine than nicotinic acid-7- Co They also 

performed chemical degradation of ricinine formed from quinolinic acid 

14 14 14 14 
-2,3,7,8- c, aspartate-4- C, succinate-1,4- C and -2,3- C, 

glycerol-1,3-14~ and -2~14c and confirmed that carbons 2, 3 and 8 of 

ricinine arise from a four carbon dicarboxylic acid such as aspartate 

and that carbons 4, 5 and 6 arise from intact glycerol. The relative 

· efficiency of various four carbon dicarboxylic acid and inorganic 

nitrogen sources for the ricinine was reported {45). 

The relationship b~tween the pyridine pucleotide cycle and the 

biosynthesis of ricinine was established by Waller and collaborators 

{3). They showed that each compound in the cycle could serve as an 

efficient rieinine precursor for the castor bean.plant. The possible 
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role of the cycle in ricinine biosynthesis is.illustrated in Figure 2. 

A different view which suggests that NAO and ricinine are made 

from quinolinic acid by separate pathways (Figure 32) was reported 

recently by Riles and Byerrum (122). Their view is based on competitive 

feeding experimental data exogenous NAO did not cause a decrease in 

the total radioactivity incorporated into ricinine from quinolinic acid, 

but instead caused an increase. However, their argument can only be 

justified when. one .assumes that NAD is an o~ligatory intermediate in 

the biosynthesis of ricinine from qu:l.nolinic acid and that exogenous 

NAD can cross the cellular membrane barrier intact' as they mentioned. 

It. is hard to understand the 2.9 fold increase in the incorporation of 

quinolinic acid into ricinine by NAD .if pathways I and II (Figure 32) 

are independent. Their results might be more reasonably expl'ained by 

assuming that ricinine might be deriv~d from an intermedi~te, such as 

nicotinic acid mononucleotide, which is located before NAD in the 

cycle (see Figure 2). 

/ .CJCCOOH 
N COOH 

Pathway I 

Quinolinic 
acid 

Pathway II 

"'-._____ 

Pyridine 
Nucleotide 

Cycle 

C=N 

Ricinine 

___,/ 
0 

Figure 32, The Two Possible Pathways for the Biosynthesis 
of Ricinine from Quinolinic Acid 
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2. Factors that Affect the Biosynthesis of Ricinine 

The physiological conditions that affect the biosynthesis of 

ricinine were studied at the beginning of this century by several 

authors (112, 123). Weevers reported that the quantity of ricinine in 

etiolated castor bean seedling was higher than in normal seedling. 

However, it has been found that ric~nine production may be stimulated 

by sunlight. Bogdashevskaya (123) found an 18 % reduction in the 

content of ricinine in the leaves which were shaded from the light; 

however, the upper unshaded leaves of such plants produced ricinine at 

a 14 % higher level than normal plants. 

Waller and Nakazawa (124) report~d that the ricinine content of 

young castor bean seedlings growing in the sand increased from 30 to 

50 fold in the 2 to 5 day period following planting of the seed . 

Waller~ al. (115) also demonstrated that the ricinine production by 

individual castor bean plants was increased from 0.1 m mole in an 

individual castor bean seed to levels of about 1.2 m moles in a 17 week 

old plant. 

Weevers (112) studied the effect of the availability of nitrogen 

in the soil on ricinine production and f ound that 100 seedlings which 

were germinated in light in the soil "as nitrogen-free as possible" 

yielded 273 milligrams of ricinine after 3 weeks and 175 milligrams 

after 5 weeks. He sought to implicate ricinine as a nitrogen source 

in the nitrogen depleted condition that could be used f or other pur-

poses. 

Skursky and Waller (125) showed that nicotinic acid-7-14c was 

significantly incorpor ated into both ricinine and N-demethyl r icinine 

during the first day of germination indicating that alkaloid 
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biosynthesis is one of the earliest metabolic processes initiated with 

growth and differentition in Ricinus communis L, In fact seeds which 

contained less than 0,8 % of ricinine and 0,04 % of N-demethyl ricinine 

(normal seed contain approximately 0,1 % and 0,07 % of these compounds 

respectively) failed to germinate; causing them to speculate that 

ricinine might have some metabolic or physiological role in the germi

nation process. 

Nowacki and Waller (126) recently reported that addition of 

ammonium nitrate to the plant decreased the incorporation of nicotinic 

acid into ricinine, however, addition of ammonium nitrate to the soil 

increased the content of ricinine and also the content of asparagine 

and glutamine, arginine and ammonia in the plant after 6 weeks. This 

was explained as being due to intensive new growth, i.e., the plants 

with additional nitrogen started to produce a greater number of side 

shoots. The same authors also studied the inhibition of biosynthesis 

of ricinine in the castor bean plant and found that nicotinic acid did 

not depress the incorporation of aspartate nor did asparagine depress 

the incorporation of nicotinic acid. They suggested that asparagine , 

aspartate and nicotinic acid did not have an obligatory substrate 

-product relationship, but that parallel biosynthetic pathways for 

ricinine formation mi ght exist . Such a re lationship could exist in 

complete agreement with the operation of the pyridine nucleotide cycle . 

They also reported that nicotinonitrile and 0-demethyl ricinine 

inhibited the conversion of nicotinic acid to ricinine. 

C. Metabolism of Alkaloids 

During the early part of this century, it was generally thought 

that alkaloids were byproducts produced by a number of irreversible 



and physiologically useless reactions (16, 36), however, there are 

growing evidences in the literature (92, 127) that alkaloids are not 

final product of nitrogen metabolism. 
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Experimental evidence indicating that decomposition of poppy 

alkaloids could occur in the living plants was obtained as early as 

1897 (113). Several other investigators (113, 128) have obtained 

similar non-isotopic results which support the view that alkaloids are 

not inactive metabolites. 

The conversion of alkaloids to other organic compounds was first 

demonstrated, using isotopically labelled compound, by Tso and Jeffrey 

(129). They administered 15N-labelled tobacco alkaloids to tobacco 

plants which degraded the labelled alkaloid and it was found that some 

of the products were used for resynthesis of the nicotine and anabasine. 

Leete and Bell (130) demonstrated that nicotine could act as a methyl 

d 90 °1 f h 1 14c · · · · f d · h group onor; ~ o met y - -nicotine activity was oun int e 

methyl groups of choline. Griffith~ al. (131) showed that nicotinic 

acid was a metabolite of nicotine. They found that during the first 

four days of metabolism about 30 % of the nicotine was lost through 

metabolic processes, but subsequently little loss occured up to 14 

days. Isolated nicotinic acid contained a significant quantity of 

isotope with dilution ranging from 18 to 88. Tso and Jeffery (132) 

have shown that the carbon-14 activity of the groups of compounds 

recovered from tobacco pl_ants w,hich had been feq. with carbon-14 and 

nitrogen-15 labelled nicotine decreased in the following order with 

respect to carbon-14 activity: alkaloids, free amino acids, pigments, 

furfural (after hydrolysis), amino acids (after hydrolysis), sugars 

(after hydrolysis), free organic acids, free sugars, insoluble residue 

and organic acids (after hydrolysis). A different order was observed 
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in the isolated groups of compounds which contain nitrogen-15. 

Waller and Nakazawa (124) reported a finding that was interpreted 

to indicate that the alkaloid had a "sparing" action on the vitamin . 

They found that ricinine was rapidly utilized by castor bean cotyledons 

in the dark; however, the amount of ricinine di d not decrease when 

nicotinic acid was presented in the medium. 

Waller et al . (115) demonstrated that ricinine-H3 and ricinine --
14 

-8- C were metabolized by the castor bean plant and that the extent of 

metabolism varied fr om 75 to 90 % after 20 weeks following administra

tion of the alkaloid. In addition it was demonstrated that the 

alkaloid could be transported to the seeds since radioactive alkaloid 

administered to a young non-flowering castor bean plant was isolated 

from the seeds of mature plants. 

The conversion of ricinine to respiratory 14co 2 in vivo indicating 

degradation of ~-pyridone ring of ricinine was reported by Waller and 

Lee (92) . They also demonstrated that yellow leaves, which contained 

a trace amount of the alkaloid, could metabolize ricinine-3,5- 14c to 

14co2. 

Recently a rapid interconversion of exogenous ricinine and 

N-demethy l ricinine in senescent and green castor bean plant leaves 

(Figure 33) was reported by Skursky ~ al. ( 93). They made the 

assumption that the interconversion might be involved in a salvage 

operation performed by the plant in order to utilize ricinine from the 

leaves which are being prepared for abscission. This assumption was 

supported by the fact that a rapid methylation of N-demethyl ricinine 

to give ricinine occurred in fresh green leaves . 

Waller and Skursky (97) showed that a remarkably high proportion 

of the total administered radioactivity of ricinine-3,5-14c was found 
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in the racemes of immature fruit after two days and more than 95 % of 

the radioactivity isolated was found in ricinine. Skursky,!!:. .!l• (93) 

recently identified N-demethyl ricinine, 3-cyano-4-methoxy-2-pyridone, 

as a ricinine metabolic product (Figure 33). They presented chromato

graphic, ultraviolet, 'infrared, mass spectral and nuclear magnetic data 

to support the structure of N-demethyl ricinine and discussed in detail 

the possible role of demethylation and methylation reaction in ricinine 

translocation during senescence. 

Catabolism and translocation of some alkaloids have been known 

and some connections between the processes and physiological state of 

the plant have been made, however, little is known about the metabolic 

or physiological significance of these processes for the plants. 
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CHAPTER VII 

EXPERIMENTAL METHODS 

A. Materials and Methods 

1. Plants 

The castor bean plants used were of the Cimarron variety grown on 

port clay loam at the Agronomy farm of the Oklahoma State University 

in Stillwater, Oklahoma. The plants of 4 to 6 months of age which were 

planted on May 30, 1970 were used for these experiments. The other 

group of the plants planted on June 30, 1970 were grown in pots with a 

mixture of clay lo~m soil and vermiculite at··the green house of the 

Horticulture Department, Oklahoma State University, Stillwater, 

Oklahoma. The yellow leaves used were the senescent ones (from 70 to 

95 % of the leaf was yellow) w~ich were on the lower part of the stalk. 

2. Labelled Compounds Used 

Ricinine-3,5-14c was synthesized on a micro scale from sodium 

14 cyanoacetate-2- c, according to the procedure described by Yang and 

Waller (34). The synthesized ricinine was purified by preparative 

thin layer chromatography using a solvent system consisting of 

chloroform and methanol (5: 1, v/v). The purity was checked by 

ascending paper chromatography on Whatman No. 1 paper in two different 

solvent systems, The Rf values of ricinine in 85 % isopropanol and in 
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95 % ethanol•1 M ammonium acetate (7 : 3, v/v, pH 5.0) were 0.75 and 

0.85 respectively. The constant specific activity of the ricinine used 
> 4 

was 1.78 x 10 dpm/mg. 

14 0-demethyl ricinine-3,5- C was isolated from the yellow castor 

bean plant leaves fed with ricinine correspondingly labelled by the 

procedure described in the following section. The constant specific 
' ' ' ' 4 
radioactivity of this compound was 1.12 x 10 dpm/mg. 

B. Metabolism 

1. Administration of Labelled Compounds 

The general method of injection used for the castor bean plants 

was identical to the method described in Part I. The yellow leaves 
I 

were given injected with a 5 % methanol solution of ricinine-3,5-14c 

(5 mg/ml) in the petioles near the leaves and veins. 

2. Isolation and Purification 

The fresh pl~nt material was weighed, frozen with liquid nitrogen 

and homogenized with a Virtis 11 231' omnimb;er in 80 % methanol. This 

extraction procedure with methanol was repeated until ~he remaining 

material was free of soluble pigments. The organic solvent was 

removed from the pooled extracts by evaporation at room temperature and 

reduced pressure. The remaining aqueous solution was freed of liquid 

and pigments by extraction with petroleum ether. The aqueous phase, 

which contained ricinine and the metabolites of interest, was evapo

rated to dryness. The petroleum ether extract and the plant debris 

were not further examined. The dry residue from the aqueous portion 

of the extract was extracted with boiling methanol, the volume was 



reduced, and this solution was then used for preparative thin layer 

chromatography as described in Part I, except the solvent systems: 
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I) chloroform and methanol (5 : 1, v/v) and II) ethanol : ammonium 

hydroxide: water (80: 4: 16, v/v/v). The solvent systems I and II 

were used for separation of the relatively non-polar compounds, ricinine 

and N-demethyl ricinine, and relatively polar unknown compounds res

pectively . The radioactive and/or UV quenching zone of interest on the 

thin layer chromatography plates was scraped off, put in a small scale 

column and extracted with a sufficient volume of methanol, The 

methanol extract was usually rechromatographed ,and further purified. 

The isolated compounds were crystallized in the cold methanol and 

sublimed. The purity of the isolated compounds were checked with 

ascending paper chromatography using an isopropyl alcohol-toluene-acetic 

acid-water (5 : 10: 1 : 1) solvent system, 

3, Measurement of Radioactivity 

Methods for the measurement of the radioactivity on thin layer 

chromatography plates and of purified compounds were identical with the 

procedure described in Part I, 

14 The respiratory co2 from the castor bean plant was measured (92) 

as follows: the plant was immediately placed in a closed respiratory 

chamber after adm~nistering ricinine-3,5- 14c into the petiol of the 

yellow leaves . The entering air was passed through with 1 N NaOH so 

that carbon dioxide-free air was present in the chamber . The outlet 

of the chamber was connected by small sections of rubber tubing to a 

series of four test tubes, 150 x 115 nun, as shown in Figure 3, The 

first tube was cooled to liquid nitrogen temperature, and was used for 

trapping the volatile compounds . The second and third tubes each 
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contained 10 ml of ethanolamine in methylcellosolve (1 : 1, v/v) and 

were used for collecting the respiratory co2• The final tube contained 

10 ml of saturated barium hydroxide which was used as an indicator: the 
' 

lack of precipitation in the saturated barium hydroxide indicated that 

all the carbon dioxide was quantitatively trapped by the-ethanolamine 

in methylcellosolve. A portion of the CO2 trapping solution, 3 ml, was 

added to the scintillation solution (10 ml) which was composed of 

methylcellosolve and toluene (1 : 2, v/v) with 5.5 grams of PPO per 

liter for determination of the radioactivity by liquid scintillation 

spectrometry. 
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1. Detection 

CHAPTER VIII 

RESULTS AND DISCUSSION 

A. Detection, Isolation and Identification 

of a New Ricinine Metabolite 

During the course of quantitative studies on the catabolism of 

ricinine in senescent leaves of the c~u;tor bean plant following 
. 14 

injection of ricinine-3,5- C, a radioactive zone was observed at the 

origin of the thin layer chromatography plate developed with the 

relatively non-polar solvent system, chloroform: methanol (5 : 1, v/v). 

Radioactivity in this non-migrating zone after development had been 

observed previously by Skursky (93); however, no attempts had been 

made to identify the compound( s) in the zone ,a.t that. time. The thin 

layer chromatographic behavior of.the compound(s) in the non-polar 

sol.vent system suggested that it. might be a relatively mo're polar . . 

compound(s) than the N-demethyl ricinine which was recently identified 

as a ricinine metabolite in senescent leaves of the castor bean plant 

by Skursky et al. (93). It was thought that this polar compound(s) --
could be either a cleavage product of the cx-pyridone ring, one or more 

pyridine nucleotides, or the 0-demethyl form of .. ricinine. 
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2. Isolation and Purification 

In order to positively identify this unknown compound(s), the 
l 

silica gel zone at the origin (Rf value 0.0 - 0,05) was removed and 

extracted with methanol, The methanol extract was reduced in volume, 

applied on the thin layer chromatography plate and developed with a 

relatively polar solvent system, ethanol water: ammonium hydroxide 

(80: 16 : 4, v/v/v). A comparison ot two thin layer chromatography 

plates developed with the relatively non-polar and polar solvent 

systems are shown in Figure 35. 'J:he thin layer chromatogram developed 

with the relatively polar solvent system showed two quenching zones 

at 254 nm. One of these zones was radioactive,, The radioactiv·e 

zone was eluted from the thin layer chromatogram with methanol and 

re~hromatographed with various solvent systems as listed in Table XVI. 

For further purification, the unknown radioactive compound was 

dissolved in hot methanol and crystallized after letting stand over

night at 38°F after which it was further purified by sublimation, The 

following purification data were recorded with the non radioactive 

metabolite .. 

Number of Weight of M.P .. /760 mm 
Purification producta ( ing) (uncorrected) 

1. Crystallization 1 10.6 274- - 276°c 

2. Crystallization 2 8.4 277 - 279°c 

3. Sublimation 3.2 279°C 

\Jeight of compound was measured with E = 7 .32 x 103 1/mole. 
The extinction coefficient for 0-demethyl ricinine was determined by 
the author in this study. 
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TABLE XVl 

THIN LAYER CHROM.4,TOG~ Rf VALUES OF RlCINlNE, 
~-DEMETHYL ~lClNINE AND UNKNOWN MET4BOLITE 

Solvent 

Chloroform: Methallol 
(5 : 1, v/v) 

Chloroform: Methanol 
(5: 5, v/v) 

Chloroform : MethatJ.,Ol 
(1 ·: 5, v/v) 

Et};i.anol : Water : NR40H 
(80 : 16: 4, v/v/v) 

Ricinine. 

0.42 

0.,58 

0,48 

0,53 

N ... demethyl 
ricinine 

0.21 

o.so 

0.63 
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Unknown 
(0-demethyl 
iicinine) 

0.0 .. 0.03 

0.35 

o.68 

0.75 
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3. Identification 

Mass Spectrometry: This new metabolite of ricinine formed white 
i 

needles when crystallized from methanol and had a melting point of 

279°c. The mass spectrum of the unknown compound was compared with 

mass spectrum of the authentic 0-demethyl ricinine (ricininic acid) 

in Figure 36. The mass spectrum of the unknown compound was essentially 

identical with that of authentic 0-demethyl ricinine. Both compounds 

had a molecular ion, M+ 150, which was their base peak. The postulated 

route for the formation of the relatively abundant ions and a list of 

the metastable peaks and the transitions denoted by them are given in 

Figure 37 and Table XVII respectively. 

Decomposition reactions that can account for at least some of the 

prominent features could have been predicted from earlier work with 

similar molecules such as ricinine and N-demethyl ricinine which 

contain the same functional groups. The molecular ion, M+ 150, 

undergoes opening of the ~-pyridone ring to form ion b, ~/~ 84, c4H60N, 

which is the second most intense peak. It is of interest to compare 

the formation of ion~/~ 84 with the ion~/~ 82 which is the third 

most intense peak of ricinine (111) as shown in Figure 38. In mole

cular ions, M+ 150 and M+ 164, the only difference is the location of 

+ the hydrogen atom; for ion M 150 the structure is a 4-0H, 2-pyridone 

and for ion M+ 164 the structure is a 2-0H, 4-pyridone. The formation 

of ions~/~ 84 and~/~ 82 probably occur by ~nalogous processes , 

Ion b, ~/~ 84, can lose a hydrogen atom to form ion c, ~/~ 83, 

and further Loss of CO results in ion e, ~/~ 55. The molecular ion 

loses CO and H to yield the 5 numbered heterocyclic ion d, ~/£ 121 . 

The formation of a similar ion species was reported (133) with 
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~-pyridone ring compounds. The ion d, ~/~ 55, can be further cleaved 

and lose either CH2 or c2H3 to form ion f, ~/~ 41 and ion g, ~/~ 28 

whose species are already known (133). 

Infrared Spectroscopy: The infrared spectra of 0-demethyl ricinine 

isolated from the castor bean plant and that of standard in a KBr 

pellet ar~ shown in Figure 39 . The infrared spectra of the 0-demethyl 

ricinine isolated from the castor bean plant was found to be virtually 

superimposable on that of the standard. Both spectra have a very broad 

OH st r etching absorption in the region of 3.0 to 4.0 microns, strong 

=C--0 stretching at 62 microns and a sharp ketone absorption band f rom 

7.7 to 9.5 microns. A very sharp absorption peak at 4.5 microns 

indicated ~=N stretching which is observed not only with 0-deme thyl 

ricinine but also. with N-de~ethyl ricinine (93) and ricinine (86). 

Ultraviolet Spectrophotometry: Figure 40 shows the ultraviolet 

spectra of 0-demethyl ricinine, N-demethyl ricinine, dihydroricininic 

acid, and ricinine in distilled water . Note that the ultraviolet 

spectra of 0-demethyl ricinine is similar to that of dihydroricininic 
I 

acid and the spectra of N-demethy,1 ricinine is similar to that of 

ricinine where the absorption peaks of 0-demethyl ricinine and 

N-demethyl ricinine are shi f ted to the shorter wavelength reg i on a s 

compared with those of dihydro r icininic acid and ricinine respectively. 

Based on these data (chromatographic, ultraviolet, infrared , 

nuclear magnetic resonance and mass spectrometry) the metabol i te was 

conclusively identified as 0-demethyl ricinine, N-methyl-3-cyano- 4 

-hydroxy-2-pyridone . 

Afte r the unknown metabolite of ricinine had been confirmed a s 

0-demethyl r icinine, the molecular extinction coefficient of t he c om-
.. 

3 -1 pound in water at 272 nm (E = 7 , 32 x 10 l mole ) was determined and 
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this value used for further quantitative metabolism studies (Figure 41). 

Conclusive Proof of Oecul;'ren~e of o .. demethyl Rici.nine a;; a 
. , I . . ' 

Natural Castor Bec:1,n Plant Metabolite: To make cert;.ain that the 

metabolite had actually been produced by the castor bean plant and was 

not an artifact as the results of microbial actiqn, the following two 

experiments were conducted. 

In the first experiment, r:l.cinine (10 mg) was added to a fresh 

homogenate of two green leaves (10 g) and ricinine and its metabolites 

were isolated as described. The green leaves were chosen for this 

experiment since it was known that they did not have demethylating 

activity (93) even though they contained .a significant amount of 

endogenous ricinine (1 % dry weight), The recovery of ricinine was 

good (94 %) and practically no metabolite of ricinine was detected as 

shown in Table XVIII. 

In the second, a short term experiment 1.inder semisterile conditions 

as desc:1;ibed by Skursky et al. (93) was carried out to eliminate the --
possible demethylation by microorganisms. Rictnine (10 mg) in a sterile 

sol1,1tion was injected into two yeUow leaves (15 g) ~h~ch })ad been 

previously washed with 1 % aqueous sodium hypochlorite solution and 

rinsed with ste:i:-ile water. The recovery and conversion.data after 

three hours of injection is shown in Table XIX. 

These two short te1;m experiments provided convincing evidence 

that 0-demethyl ricinine in the yellow leaves of the castor bean plant 

was a normal metabolite of ricinine. 
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TABLE XVII 

METASTABLE PEAKS IN MASS SPECTRUM OF 0-DEMETHYL RICININE 

Probable neutral 
Apparent nta$fii Transition denoted product 

.. 120.0 (122)+ ~ (121)+ + 1 H 

99.2 (150)+----+ (122)+ + 28 co or CH2N 

47.2 ( + 95) ·--t ( 67)+ + 28 co 

36.4 ( 85)+~ ( 55)+ + 28 co 

21.0 ( 84)+---+ ( 42)+ + 42 CHfO 



CN 

~o 

M+ 150 

·. ·t~3NO 
+ . . 

CH2=N;;::(;H...CH2-.CHO 

b, m/e 84 ........ 

1~ 
Cll 2 =N-CH:;:(lfl-.CHO 

c, m/e 83 --

. -co, H 

-co 

f, rn/e 41 
~ ... 

Figure 37, Proposed l?arttal Fragmentat;iQn of O•demethyl 
Ricinine 
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Figure 40. 

Wave length (nm) 

Ultraviolet Spectra of Ricinine, N-demethyl 
ricinine, 0-demethyl ricinine and D!hydro 
R!cininic Acid 

Ricinine • - • - Dihydro rlcininic acid 
···• 0-demethyl ricinine ---- N .. demethyl ricinine 
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TABLE XVIII 

RECOVERY OF RIClNlNE FROM A HOMOGENATE OF THE GREEN LEAVES 

Administered 
· ricinine 

ing 

10 

Recovered 
ricinine 

mg 

21.3 

Recovery 
( uncorrected) 

% 

213 

No demethylated form of ricinine was detee:l~d. 

· Recovery. 
(corrected) 1 

% 

94 

1Recovery percentage was corrected based on the natural content 
of the ricini~e (0.7 %) and of water (83 %) in the average green leaf. 

C . 



TABLE XIX 

FORMATION OF N-DEMETHYL RICININE AND 0-DEMETHYL RICININE 
FROM RICININE BY SEMI-STERILIZED YELLOW LEAVES 

Compound 

Ricinine 

N-demethyl ricinine 

0-demethyl ricinine 

Total 

Isolated 

mg 

7 ,,,6 

1.35 

0.2 

9.15 

Recovery 

% 

76 

13,5 

2,0 

91.5 

127 

____ .. 
:Ouration of e~,periment was 3 hours" Percen·tage of the recovery 

was determined by dividing total weight of ricinine administered by 
the weight of compound isolated, 
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B, Metabolism and Translocation of Ricinine 

1. Demethylation of Ricinine in Excised Senescent·Leaves 

The foi-mation of N .. demethyl ricinine, 0-demethyl r;i.cinine and 

carbon dioxide from different an;1.ounts of administered ricinine in 

excised senescent castor beap plant leaves is summarized in Table. XX. 

A major drawback to studying the lUetaboUsm of ricinine has been the 

difficulty in synthesizing high specific activity l.:1belled ricinine. 

Large amounts of ricinine were administered in previous work (93), 

but the metabolism of r;Lcinine using d:ifferent dosage levels had not 

been done. In thi$ study, three levels of ricinine, 34.5, 84 and 143 

µg/g fresh weight, were administered to senescent leaves. The percent

age of N- and 0-demethylated ricinine products at the three different 

levels of ri,cinine administered in the yellow leaves are shown in 

Figure 42. TJ1ese results suggest that ricinine inhibited the 0- and 

N-demethylating reactions. They also indicated that senescent leaves 

have a certain limitation of the rate of demethylation activity. The 

low extent of N-demethylating activity obtr;J.ined after the administra-· 

tion of t:he high level of ricinine agreed with previous work (93), 

The results showed that majority of the administered ricinine could 

be converted to its demethylated forms at low dosage level which is 

comparable to the normal physiological level$. This conclusion can 

be justified by extrapolating the line shown in Figure 42 to low 

dosage level. The approximate disappearance rate of ricinine obtained 

by extrapolating the ricinine curve is 3.8 JJg/g fr.esh weight/day. 

The low yield of co2, Q.2 - 0.4 %, suggested that intensive 

degradation of the lX•pyridone ring does not occur in the yellow leaves, 

therefore, these results confirmed earlier findings (92) .. 
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As shown in Table XXI, 38, 7 % of the adm.inistere_d 0-demethyl 

ricinine was methylated by excised green leaves in 2 days, This con

version.percentage is higher than the reported value of 12,3 % obtained 

with use of whole plant (86). Skursky !£!.l· obtained about L~8.7 % of 

ricinine after administration of N-demethyl ricinine, These two 

experimental results show that the 0-demethylation and 0-methylation 

of ricinine is not as active as the N-demethylation and N-methylation 

of ricinine in.the castor bean plant. Nowacki recently showed an 

interesting result that 0-demethyl ricinine inhibited the biosynthesis 

of ricinine from nicotinic acid-7- 14c (126). A schemetic diagram 

summarizing the extent of the demethylation of ricinine and the 

methylation of the demethylated forms of ricinine is given in 

Figure 43, 

Demethylation has·been-tound to be connected with the process of 

senescence in the case .of nicotine ( 13l~), hyo~cyamine ( 135) and ricinine 

( 93). Methylation is considered to be connected ·rdth detoxication 

(136). Mothes (137) has suggested that the methylation of a compound 

makes it less reactive, or "metabolically stabilized". In contrast, 

the demethylation of a cornpouno makes it metabolically or physiologi

cally active, Demethylation of nicotine to nornicotine in connection 

with the quality of tobacco has been intensively studied since nor

nicotine has been found to be less toldc than nicotine. N~demethyl 

ricinine has been found to be a norrnal constituent of mature seeds 

and disappears during germination (125). The site of the demethylation 

reaction has been found mostly to be in the leaves (93). Even though 

the demethylation processes of some alkaloids have been demonstrated 

and some of the methylated products have been identified, the 

physiological or metabolic significance of this process is totally 



compound 

Ricinine 

N-demethyl 
ricinine 

0-demethyl 
ricinine 

TABLE XX 

FORMATION OF N .. DEMETHYL RICININE, o .. DEMETHYL RICININE AND CARBON DIOXIDE 
FROM RICININE IN EXCISED SENESCENT LEAVES 

No. 
I 11 Ill ........ 

dpm X 102 % dpm X 102 % dpm X 102 

13.51 llo5 16.4 62.83 12.6 38.2 143.20 10.1 

32020 10.7 39.1 47.ll 11.4 28.7 71.81 8.4 

4.94 9.9 6.1 4.12 u.s 2.5 4.94 8.5 

Carbon dioxide 0 .. 18 0.2 0,29 0.2 1 .. 32 

Tot~l 50 .. 83 61.8 114.55 69.6 221.27 

% 

43.5 

21.s 

1.5 

-0.4 

67.2 

Percentage of incorporation was determined by dividing total radioact"ivity administered 
by the total amount recovered. 

Experiment Io 
Experiment II., 
Experiment III. 

Total Administered Ricinine Radioactivity 

8023 x 103 dpm (0.5 mg), 34.5 pg ricinine/g., fresh weight 
1.646 x 104 dpm (1 mg), 83.0 pg ricinine/go fresh weight 
3.,292 x 104 dpm (2 mg), 143.0 µg ricinine/g .. fresh weight 

.... 
t.,.) 
0 
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Detailed legend is given in Table XX. 

a - Ricinine Q - N-demethyl ricinine 
c - 0-demethyl ricinine 

131 



. 
·• 

unknown, much like the nature of the alkaloids themselves. 
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It is of interest that the demethylated form of ricinine is 

practically absellt in the green leaves and that very small amounts of 

ricinine and N-demethyl ricinine are present in the yellow leaves as 

shown in Table XXII. The very small amount$ of ricinine and N-demethyl 

ricinine found in the yellow leaves might be due to the incomplete 

process of senescence since naturally detached leaves were found to be 

void of both compounds. The fact that; a) absence of both ricinine 

and its metabolites J;nthe yellow leaves, b) the methylation and 

demethylation reactions occur in the green leaves and yellow leaves 

respectively, and c) the .. pyridone ring of ricinine is not intensively 

degraded in the yellow leaves, i;;upported the conclusion that ricinine 

and/or N-demethyl ricinine or 0-demet.~yl rici!line in the yellow leaves 

are translocated from the senescent tissue to othel;" part of the plant,· 
,· 

especially to th.e grow:l,ng ape~. 

2. Demethylation and Translocation of Ricinine 

Table XXIII shows the demethylation and translocati<;m of 

14 ricinine-3,5- C administered to a yellow leaf attached to the lower 

part of ;he stem of a mature castor bean plant. The castor bean plant 

used in this experiment was 4 months of age,, 60 cm high and grown in a 

pot in the green house. A plant possessing a similar appearance and 

similar conditions was selected for a duplicate experiment. The 

radioactivity of ricinine and the demethylated foJ;"ms of it were found 

to be highest in the yeUow leaf where ricinine was injected. Radio

active N-demethyl ricinine was found in all parts of the plant except 

in the root. The second highest tQtal recqvery of radioactive ricinine 

and N-demethyl ricinine was in the stems; however, the recovery of 



Ricinine 

TABLE XXI 

METHYI.ATlON OF O•DEMETHYL RICININE TO RICININE 
·:· IN EXCISED. GREEN LEAVES AFT)l;R 48 HOURS 

. . 3 
dpm X 10 

7.67 

mg 

3.45 

3 . 
dpm x 10 /mg 

o~demethyl ricinine t~ace 

133 

% 

38.7 

The.~_lants used were gto~n in the green aouse. O•demethyl ricinine 
(2 mg) W:J.th total radioactivity of 2.24 x 10 dpm was administered. 
Percentage of incc;,rporation was dete:i;'tnined by dividing the total 
radioactivity administered by the total amounts recovered. 
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F~gure 43. Methylation and Demethylation Re
actions involving the Alkaloid 
Ricinine in the Castor Bean Plant 
Lei:!,ves 

lvalue of Skursky at a similar precursor level. 

Conversion percentage are based on the results 
obtained when 1 mg., of precu1:sor was administered 
to one leaf of about 5 g. " 
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TABLE XXII 

CONTENTS OF RICI~INE,.N-DEMETHYL R.ICININE AND OiDEMETHYL RICININE 
l~ TijE GREEN AND YELLOW LEAVES 

135 

Ricinine N-demethyl ricinine 0-demethyl ricinine 

Green (204 g) 2 

Yellow (193 g) 

251 mg 
(0.84 %)3 

2, 25 mg 
(0,009 %) 

0,075 mg 
(O.Q003 %) 

1 . 
Green leavei; were fully developed t;:.he hea,lthy leaves. Yellow 

leaves were 80 - 90 % senes~ent leaves, 

2Fresh weight of the leaves. 

3ory weight was taken as 15 % of .fresh weight. 



TABLE XXlll 

DISTRIBUTION OF RADIOACTIVII! IN THE CASTOR BEAN PLANTS 
FED WITH RICININE .. 3,5 .. C TO THE YELLOW LEAVES 

Isolated 
compound 

Plant Ricinine N-demethyl o ... demethyl 
part r.icinine ricinine 

dpm X 102 (%) 

One yellow 64.42 31.60 6.26 
leaf (4 g) (14.1) (9.6) (1.9) 

Three green 8.88 1.65 
leaves (13 g) ( 2. 7) (O.S) 

Stems (18 g) 38.85 21.40 3,95 
(11.8) (6.5) ( 1. 2) 

Growing 17.45 J.62 
apex (5 g) (5.3) (1, 1) 

R9ots (15 g) 3.62 
( 1.1) 

Total· 115. 22 58,27 10.21 
(35.0) (17.7) (3.1) 
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Total 

84.28 
(25,6) 

10.53 
(3' 2) 

64. 19 
(19.5) 

21.07 
( 6 .4) 

3.62 
( 1.1) 

183.69 
(55.8) 

The radioactivity was the average of two experiments. Duration 
of experiment was 48 hours., The plan,ts used were grown in the green 
house. Ricinine.,.3,5 .. 140 (2mg) with a total radi.oactivity of 
3.292 x 104 dpm was administered. Percentage of the incorporation was 
determined by dividing the total l;'adioactivity administered by the 
total amounts recovered. 



radioactive ric;i.nine per gri,im of fresh plant weight and that of 

0-demethyl ricinine were high in the growing apex and stetns res

pectively. 
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To gain a better understanding of the process of demethylation and 
· 14 . 

translocat~on of ricinine-3,5 .. G administered to a yellow leaf, an 

experiment was conducted using castor bean plant cuttings with one 

yellow and one green leaf (Figure 44, A). The castor bean plants of 

4 months of age grown in pots in the green house were selected; the 

distance between the yellow and green leaves Oll the cuttings varied 

from 15 to 20 cm but the plants were otherwise similar in appearance. 

The degree of senescence also varied; i.e., the extent of yellowing of 

the leaves was 80 - 90 %. A, time course study on the accumulation of 

riainine and its demethylated forms :J,n the stems, and the yellow and 

green leaves fol\owirig the admitlistration of ricinine-3,s-14c to a 

yellow leaf of these castor bean plant cuttings ;Ls shown in Table XXIV • 
. . 

The recovery of raclioact:ive ricinine and its demethylated forms 

in the green leaves were always very low compared to that found in the 

stems or the yellow leaves where ricinine was adtninistered. This 

result suggested that the translocation of ricinine and/or its 

demethylated forms are reduced when the preferred translocation site 

organ is removed. The highest concentration of radioactive ricinine 

per gram of fresh plant weight was found in the growing apex except 

the yellow leaf where ricinine-3,s-14c was administered. In the 

yellow leaves, radioactive ricinirie was decreased and that of its 

demethylated forms were increased as the time elapsed (Figure 44, B). 

Interpretations of the above two results were complicated by the 

fact that the radioa,ct;i.vity ratio between ricinine and its demethylated 

forms did not necessarily indicate the.ra~io of translocated forms 
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since the demet;:hylated form of ricinine upon arrival of the green leaf 

from the yellow leaf may undergo methylation. The resqlt showed that 

ricinine administered in the yellow leaves was translocated to healthy 

parts of the plant, especially the growing apex where ricinine is 

actively synthesized. The result supports the idea that ricinine 

translocation process might be a salvage operation performed by the 

plant in order to reutilize ricinine from the leaves which are being 

prepared for abscission. This is a broad concept of the traditional 

source-sink relationship (138); the translocation of ricinine is a 

reutilization of saving-type process. Another possible speculation 

for the phenomenon may be that the demethylation reactions, which is 

generally believed to make a compound more metabolically active, in 

the yellow leaves of the castor bean plants may represent a process 

whereby the vital precursors for the compounds in the pyridine 

nucleotide cycle are maintained within the yellowing leaves. This 

process might inhibit the progression of senescence. 

The finding that both ricinine .;1nd its demethylated forms are 

present and the ratios between them in stems and yellow leaves are not 

strikingly different, indicates that there is no preferred form of 

translocation between them .. 



TABLE XXIV 

DEMETRYLATION AND TRAN$LOCATION OF RICININE-3,5-14c 
FROM YELLOW LEAF TO GREEN LEAF OF 

THE CASTOR BEAN PLANT CUTTINGS 

Exp. 
no. Green Yellow Stem 

lUcinine 2.6 

I N-demethyl ricinine 1.3 

(12 hrs.) 0-demethyl ricinine 

Total 

Ricinine 

3.9 

4.5 

11 N-demethyl ricinine 1.5 

(24 hrs.) 0-demethyl ricinine 0.4 

Total 6.4 

Ricinine 8.6 

Ill N ... demethyl ricinine 7 ,, 3 

(36 hrs.) 0-demethyl ricinine 1.5 

Total 17 .4 

dpm X 102 

129.3 47,3 

14.8 12,3 

0.1 o.s 

174.2 60,4 

90.8 56.9 

2.8 28.5 

2,0 1.1 

95.6 86,5 

73,.4 36.8 

52.1 

2,0 

8.5 

0,3 

132 .. 5 45 ,6 

Total 

% 

179.2 54,4 

28.6 

0,9 

8.7 

0.3 

208.7 63.4 

152.2 46.2 

62.8 19 .. 1 

3,.5 Ll 

218.5 66,,~ 

123.8 37.6 

67.9 20,6 

3,8 L2 

195.5 59.l,:. 

The plants used were grown in the gree!} house.. Ricinine-3,s-1'~·c 
(2 mg) with total :radioactivity 3.292 x 10 dpm was administered, 
Percentage of incorporation was determined by dividing total radio
activity administered by the total amounts recovered. 
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Figure 44, Demethylation an~ T:ranslocation of 
Ricinine-3,5-1 C from the Yellow Leaf 
to Adjust Green Leaf of the Castor Bean 
Plant Cuttings (A), and Schemetic Re
presentation of the Ca-st-or Bean Plant 
Cuttings with One Gre,en and One Yellow 
Leaf (B) 

a - Ricinine in the yellow leaves 
b Demethylated form of ricinine in the yellow leaves 
C - Ricinine in the stems 
d Demethylateq form of ricinine in the stems 
e - Demethylated form of ricinine in the green leaves 
f - Ricinine in the green leave$ 
g - Green leaf 
h -Yellow leaf 
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CHAPTER IX 

SUMMARY 

In part one, the purpose of this study was to isolate and 

determine the structure of the insecticidal ester alkaloids from 

Tripterxgium w~lfordii ltook and their subcQtnponents by using modern 

micro analytical techniques. Another objeGtive of this study was to 

determine the biosynthetic orig:l,n of the pyridine moiety of the ester 

alkaloids. 

The confi.rmed molecular weight and formulae of the four ester 

alkaloids, wilforine {8.67, c43H49o18N), wiUorgit\e {857, c41H47o19N), 

wilfordine {883, c43i-149o19N) and wilfortrine {873, c41H47o20N) by 

using low a~d high resolution mass spectrometry were agreed with the 

data reported by Beroza based on elem~ntal analysis in 1953. Four of 

the five acidic components of the ester alkaloids were identified as 

wilfordate, hydrmcy-wilfordate, benzoate and acetate, ;;ind the structure 

of the polyhydroxy component was proposed. 

Nicotinic acid-6-14c and nicotinamide adenine dinucleotide-carbonyl 

• 14c were rapidly metabolized in T. wilfordii Hook with a resultant - .. · . . 

formation of all compounds in the pyridine nucleotide cycle, and the 

nicotinamide moiety of NAO was readily incorporated into t.he ester 

alkaloids with an efficiency of the same order of magnitude as 

nicoUnic acid. 

In part two, the purpose of the study was to identify the 
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possible new ricinine metabolites and to provide further knowledge on 

the demethylation and methylation reactions of the alkaloids in 

connection with the translocation within the castor bean plants. 

A new ricinine metabolite was conclusively identified as 

0-demethyl ricinine, N-methyl-3-cyano-4-hydroxy-2 ... pyridone and the 

interconversion of ricinine and-0-demethyl ricinine in the yellow and 

green leaves of the castor bean plantswas demonstrated. The finding 

that both ricinine and its demethylated forms were present and the 

ratios between them in the stems and the yellow leaves were not 

strikingly different, indicates that there is no preferred form of 

translocation between them. 

The result that ricinine administered in the yellow leaves was 

translocated to the healthy parts of the plant, especially the growing 

apex, supported the conclusion that translocation of ricin:i,ne may be a 

process perfot'Iiled by the plants in order,to reutilize ricinine from the 

leaves which are being prepared for abs~ission. 
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TABLE XXV 

HIGH RESOLUTION MASS SPECTRAL DATA OF WILFORINE 

THIS IS AN EXPERIMENTAL VERSION OF CHAIN 3 OF THE STANDARD HIGH RESOLUTION DATA REDUCTION PROGRAMo PLEASE REPORT 
ANY APPARENT ERRORS TD NORMAN Ro MANCUSO. CHANGES MADE IN THIS VERSION AND THEIR STATUS ARE AS FOLLOWS 

SD CALLED •GL!TCHY' LINES ARE NOT SEARCHED FDRo(TEMPORARYl 
2 DOUBLY CHARGED IONS ARE NOW LISTED ALONG WITH SINGLY CHARGED IONS AT THE DETERMINED MASSo THE ELEMENTAL 

COMPOS IT ION LISTED CORRESPONDS TD TWICE THE DETERMINED MASS AND A CODE (++) IDENTIFIES THESE IONSo (PERMANENT) 
3 DOUBLY CHARGED IONS WHICH OCCUR AT NOMINAL MASSES ARE NOT PRESENTLY RECOGNIZED AS SUCHo(TEMPORARY) 
4 ALL C-13 SPECIES CONTAINING UP TO 2 ATOMS OF C-13 ARE LISTED PROVIDED THAT SUFFICIENTLY* INTENSE C-12 

IONS ARE PRESENT AT THE CORRESPONDING MASSESo(PERMANENTll* THE INTENSITY OF THE C-12 ION.MUST BE EQUAL OR 
GREATER THAN THE INTENSITY OF THE C-13 CONTAINING IONSo(TEMPORARY) 

5 THE SULFUR/HALOGEN SEARCH IS PRESENTLY 1,hf:ANINGLESSo (TEMPORARY) 
6 THE ERROR LIMIT (TOLERANCE) IS NOW A FUNCTION OF MASS. ANO IS LISTED WITH THE FOUND COMPDS!TIONS IN THE 

FIFTH COLUMN OF THE ELEMENTAL COMPOSITION TABLEo(PERMANENTl 
7 A COMPLETE LIST OF THOSE 'MASSES' WHICH DD NOT CORRESPOND TD ANY COMBINATION OF THE ELEMENTS SPECIFIED 

(SEE BELOW)· 1s GIVEN ONLY WITH THE ELEMENTAL COMPOSITION TABLE• IIoEo NOT LISTED ON ELEMENT MAPlofTEMPORARYI 
8 THE STANDARD FORM OF OUTPUT IS PRESENTLY THE ELEMENTAL COMPOSITION TABLE• A MAP MAY BE OBTAINED.ONLY 

BY REPROCESS ING OF THE MASS DECK WITH SENSE SWITCH ZERO IN THE UP POSI TIONo ( TEMPORARY) 
9 ONE MMU MAY BE ADDED TD THE TDLERANCE(SEE ITEM 6) BY PROCESSING THE DATA WITH SENSE SWITCH 2 ONo 

THIS CAN BE DONE FDR THE ENT-IRE SPECTRUM OR FDR ANY GIVEN AREA(S) IN THE SPECTRUM. 
l O IF LINES CORRESPOND I NG TD THE FOLLOW! NG NON-FLUOROCARBON SPEC! ES, OCCUR, THEY WILL BE CONSIDERED 

STAND.ARD MASS LINES AND REMOVED 
CO, N2., 02, CL, A"R, HCL, CO2, CCL, F2S, CHCL2, XE, HG 

I I t t 1 t I·, t I I I t I t I t I I I t I t I 1 t t I t I I I t I 'I I I I I I I 1 I -I I f I I I ·t I I. I I I I I I I I I I t I I f I I t I I I I I I I t I I I I I I I I I I I I -f I I I I 1- I I I I I I· I I I I I I ·1 I I I I I I I I f_ I 

****************~**************************~**********************************************************************•*** 
I I I I I I I I I I I I 'I I I I I• I I Ii I I I I I I I I I If I It I 1 I If t t t t t t It t t It _I I I I I "It I I I I I It I It I -I I 1 t·t ii -f I .t 'i I I I It I I ·I I I 11 I I I I I· t t I ·1 I I l I .t-t I I I I I It I I I 

ABOS-39-03 WILFDRINE C.H. 01/14/71 

TITLE LIM .JH HET AT a WT• 

C 100 2 0 12.000000 
H 200 0 0 10007825 
N l l I 140003074 
D 18 0 l 15.994915 

NORMALIZATION FACTOR FOR COMPOUND LINES= 

THE MAXIMUM INTENSITY IS 310 (M/E = 

HETERDATOM SUM-SINGo SUM-MIX. TOTAL 
N 240 10 250 
D 160 10 170 

HETERDATDM NUM-FDUND SUM-INT PERCENT 

CL 
s 

BR 
10 

.oo 

.s1 

.oo 

10.0000 • 
78.0452 l 

PERCENT 
20.32 
13.82 

~ 

..... 
V, 
w 



TABLE XXV .(Continued) 

ABOS-39-03 WlLFOfllNE C •H• Ol·/l_4/7l ASOS-39-03 WlL"FORINE CeHe 01/14.171 

I·NT DETM. CALC• DiFF TDl.. C c• H N 0 INT OETMe CALCe -OIFF TOL C c• H N 0 
0 73.03039 73.02895 1.1.;. 1. 7 3 5 . 2 20 133.08880" 133.08914 - .2 1.7 9 . 11 1 

10 74.01459 74.01564. -1.0 6 . 2 20 134.05999 134.06057 - .s e . e 
10 75.02319 75.02346 - .2 6 . 3 . . 10 13'h0964-9 131 ... 09696 - .4 9 . 12 
10 70.03129 76.03129 .o 6 . 4 . . 0 135.04$80 135.04461 1.2 e . 7 . 2 

300 · 77.03630 77.03912 - .7 6 . 5 . 10 136.05160 136 • .05243 - o? e . ·8 . 2 
30 79.04190 79.04219 - .2 5 . 5 1 30 137.04919 137.04767" 1.s 7 7 1 ·2 

0 81.03379 81 •. 03403 - .1 5 s . 1 0 138 .os4&9 . 13a.oss49 - .s 7 • e 1 2 
0 83.04950 83.04969 - .1 5 0 7 . l 0 140.02699 140.02621 .e 10 ·O· 4 
0 84.01999 84.02112 -1.0 4 . 4 . 2· 10 14,1.67189 l4le07042 loS 11 9 
0 8s.02s19 85.02894 - ol 4 . 5 0 2· 0 142.07719 142.07824 -1.0 11 . 10 

10 91.05499 91.05477 .2 7 . 7 .. • 10 145.06450 111.s.06534 - o7 10 . 9 0 1 
10 92.05060 92.05003 06 ·6 . 6 1 . ,o 146 .• 06139 146.06058 .a 9 . e 1 1 

120 93.05740 93.05784 - o3 6 . 7 1 0 0 147.07989 147.08098 -1.0· 10 . 11 . l 
10 ~4.04099 94s04.1S5 - -.s 6 . 6 .1 10 148.0ofl.080 148.03986 ,9 e. . 6 1 2 
10 94.06049 9lh06119 - 06 s 1 7 1 0 10 148.05199 "148.05242 - o3 9 . e 0 2 
10 95.05079 9.5.04969 lol 6 . 7 . 1 10 149.04889 J(l.9.0"4767 ,.~ 8 0 7 i 2 

0 96.02-849- 96.02967 -1.1 l 0 6 1 .... 0 l"-9.08269 ·.14:9 .• 08138 lo3 6 0 13 .. .. 
0 97.03029 97.02895 1o3 ·-· 5. ... s 2 0 149.08269 1"49.08405 -1.3 9 . 11 1 1 
0 98.03679 98e03678 .o 5 . 6 . 2 ... 7o: lso.05639 1so.osssO .9 2•0 e 0 e 1 2 
0 l 03 .. 05539 103.05477 ··-~- e 0 7 0 150e09260 1S0e09189 o7 9 . 12 1 ' 1 . 
0 104-.02699 104.02621· -~- 7 . 4 . 1 0 151003909 15le03951 - o3 e . 7 0 ·3 

10 104.04969 104.05001 - .2 .7 .. i, 1 0 l.O ISJ.06119 151 .•. 06065 ·.s 5 . 11 s .. 
0 1 ps.0337-0 105.03404 - .2 7 S· . 1 0 152.04929 152-.04734 ~.o e . 0 .e 0 .3 

10 105.05689 . 105 .. 05783 - .e 7 ·• 7 1 0 152.04929 1s2.osoo1 - 06 11 . 6 l 0 

0 105e06890 105.0704-2 -1.4· 8. 0 9 . . ·o 153.05499 153.05516 - .. 8 . 9 . .3 
·20 , 106.-06590 106.06568 .2 7 . B 1 0 . 0 isT.06590 157.06534 ~6 ll . 9 . l 
10 1.01.oso20 · io7.04969 .s 7 7 1 10 158.05999 t5a.o6o57 - .s 10 . 8 1 l 
10 · 1"07.07250 · 107.07082 lo? 4. 0 11 0 3 ·10 158.-071"19 15a.073t5 -1.9 11 . 10 • l 
10 ..107 .• 07250 107.07349 - .9 7 . 9 l . 10 159.06929 159.06841 -~9 1.0 . 9 1 1 

0 108e0S869 1 os.o.s7s1 1o2 7 . e . l 10 159.08020 159.08099 - o7 ll . 11 . 1 
0 110.03639 110.03677 - o3 6 0 6 . " 1.0 160.04059 160.03985 ;7 9 0 6 l 2 
0 l·lla04300 l ll e044-60 -1.s 6 o. 7 0 2 20 160.07559 160.07622. - .s 10 0 10 1 1 

20 lt.2.01549 1-12.0160~ ~ .. 5 . .4 . ·3 10 . 161.05929 161 .. 06024. - .9 10 . 9 . 2 
10 115.05389 115.05476 - oB 9 . 7 . . 20 161.08260 161.08139- · 1.2 7 0 ·13 . .·4 

0 116.05039 116.05002 o4 e 0 6 1. . .2il 161.08260 16le08406 -1.4 10 . 11 1 1 
10 117.05789 117.05784 ol e . 7 1 . 10 162 .. 05639 102.ossso o9 9 . 8 l 2 
10 1Uh06540 118 • .06567 - o2 e . e l 0 0 162.06759 l~e06807 -. e4 ~o . 10 . 2 
10 119.03480 119.03-444 o4 4 . 7 0 .. 10 162·.09160 162.09188 - .2 10 0 12 1 l 
10 120.04469 120.04492 - .. 7 0 6 l 1 0 164.04899 164.04734 lo7 9 . 8 0 3· 

0 121-.02870 121.02895 - o2 '1 0 s 2 0 164-.04-899 164.0SOOl - o9 12 . 6 l :o 
0 121.05120 121.05009 lol " 0 9 0 .. 20 164.07100 l6t+e07115 - ol 9 0 10 . 1 2 
0 121.05120 121.0~276 -1.s 7 . ·7 1 l 0 165.05.419 165.05516 - .9 9 . 9 .o 3 

10 12.1.06460 121.06534 - 06 8 . 9 . l 0 ·165.05419 165.05337 .e 11 1 6 l . 
20 123.·04150 123.04014 lo4 6 1 6 . 2 0 165.05419 165.05477 - .s 3 2 9 1 . s 

0 124.03220 124.03130 o9 10 .. 4 . 0 0 ·166.06320 166.-06300 .2 9 0 10 0 3 
0 12-4-.05200 124.0524-3 - .3 7 . 8 . 2 10· 173.0S839 173.06024 -1.e 11 . 9 . 2 
0 125.05890 125.06025 -1-.·3 7 0 9 0 2 10 17.ff..05740 174.-05551 1.9 10 . e .1 2 .. 
0 12"6.03099 126.03168 - ··6 6 . 6 . 3 10 174.06839· 174.06808 o3 11 1·0· . 2 
0 128.06390 128.06260 lo3 10 0 8 . . 10 175.06320 175.06332 - oO ·10 . 9 1· 2 
0 129.06969 129.070•1 - ,6 10 0 9 . . 10 175.07419 175.07589 -1.6 11 . 11 . 2 

20 130.06549 130e06566 - ol .9 0 8 1 . 40 176.07279 176.07115 lo6 10 . 10 1 2 
0 131.03539 131.03443 loO s . 7 ·" 0 177.05689 1 ??.0551 r lo7 10 . 9 . 3 
0 131.0~539 13.le03710 -1.6 8 . s l l 0 177.05689 177.05783 - .a 13 0 7 1 . 
0 131.04999 131 e0.969 o3 9 . 7 0 1 10 177.07979 177.07697 .a 10 0 11 l 2 

10 131.07290 131.07349 - oS 9 . 9 1 0 20 178.05209 178.05041 1.7 9 . e 1 3 
10 132.04469 132.04•92 - ol 8 . 6 .1 1 eo 178e08680 178e08680 .o 10 . 12 1 2 
20 132~08020 .. 132.07865 l,6 6· . 12 . 3 0 179.07530 179.07350 ,.a 13 . 9 1 . 
20 132.08020 132.08132 -1 .• 0 9·. lil l . 10 179.09390 179.09195 2.0 7 . 15 . 5 
10 133.053"19 133.05276 ·" e 7 1 1 10 179.09390 179.09462 - ,6 10 0 13 l 2 ...... 

0 1 33 .. o 6'+79 133.06533 - ... 9 0 9 . l 0 186.06880 1e6.o6BOB ,7 12 . 10 · . 2 V1 
.s:,. 



TABLE 

ASOS-39-03 WILFORINE ·. CeH• 

INT DETM. CAL.C. DlFF TOL C c• H 
10 187.07639 187.07590 .s 2.0 12 11 
10 188.07110 188.07115 - .o ll . 10 

0 189.05619 189.05517 1.0 11 . 9 
0 189.05619 189.05783 -1.s 14 7 
o· 189.07970 189.07898 .7 11 11 
0 190.08260 190.08412 -1.4 e ·• 14 
0 190.08260 190.08234 ,3 10 l H 

10 19~.07069 191.07081 - ,O ll . 11 
10 192.06709 192.06606 1.0 10 1-0 

0 t 92.10359 192.10245 1,1 11 14 
10 193.07320 193.07122 2,0 7 13 
10 193.07320 193.07389 - ,6 10 lt 

0 200.08390 200.08373 .2 2.2 13 . 12 
0 201.oasso 201.08709 1,7 12 l 12 
0 201.oseeo 201.os849 ,3 4 2 15 
0 202.06219 202.06298 - .7 12 . 1.0 

10 20,...06709 204.06606 1,0 ll 10 
120 206.07999 206.0790,.. 1,0 8 -- • - 1§ . 
120 2oi.079~9 206._081?0 .:..1.6 11 ~- 12 
20 207.08690 207.08687 ,O 8 . 15 

0 .215 .07170 215.07082 - -,9 13, 11 
0 215.07170 215.07349 -1.7 16 9 

10 216.08010 216.07865 1,5 13 12 
10 216.08010 216.081-.:µ -1 .. 1 16 . 10 
1c, 217.oa&·?·o 21 ?•O.ij647 ,2 13 13 

0 220.09900 220.09737 1,6 12 . 14 
0 233.07979 2-33."08137 -1.s 13 . 13 

10 23-4.07709 2~4.07663 _,5 12 12 
0 2.34.11350 234.11302 .s 13 . 16 

10 262.10670 262.10526 t.4 2.4 11 . 18 
10 262.10(?70 262.10793 -1 :.1 14 . 16 

0 572.21139 572.214.00 -2•~ 3•4 4A 28 
0 572.2.1139 s72.·210.s1 ,9 26 . 36 
0 572.21139 572.2131.7 -1.7 29 . 34 
0 750.26519 750.26175 3.4 4.0 50 38 
0 750.26519 75·0.26762 -2.3 -~ . 42 
0 750.26519 750.26443 .• s 53 36 

20 867.29730 867.29580 1.s 4.2 sa ~ 43 
20 &67.29730 867.29.847 -1.1 61 . 41 
20 867.29730 867.29497. 2.3 43 . 49 
10 868.30400 868.30362 ,4 58 . 44 
,o 868.30400 868.30043 3,6 68 . 38 
10 868.30400 868.30629 ~2.2 ol . ·42 
10 868.30400 868.30280 ·1.2 -43 . 50 
10 868.30400 868.30502 - .9 so l 47 
10 868.30400 868.30183 2,2 f-0 l 41 
10 868.30400 868.30770 -3.6 =3 1 45 
10 868.30400 866.30405 - ,O 6_7 2 38 
-10 -868.30400 868.300S6 3,4 49 2 46 
10 868.30400 668.30642 -2.3 42 2 50 
10 868.30400. 868.30324 ,8 52 2 44 

XXV (Continued) 

01/14/71 .. A&O·S-·39-03 ·WIL'.FORlNE ·c·"· ·'01.,'14/7'1 

N 0 COMPOSITIONS OBTAINED USING ·EXPANDED ERROR LIMITS 
2 INT OETM. CALCe DlFF TOL ·C c• H ,N 0 

1 2 0 71.01099 71.01329 -2.2 3~4 3 . 3 . 2 
3 10 77.02830 77.02655 1.8 5 . 3 

1 . 310 78.04520 78e04e,9S -1.7 6 . 6 
1- 2 -0 86.03879 "&6.03678 2.0 .. . "6 . 2 . 5 120 122e03859 122.03678 ,.a 7 . 6" . . 2 
1 2 10 ·123.02529 12.3.02347 ,.8 10 . 3 . . 

3 0 127.03699 127-.03951 -2.4 6 . 7 . 3 
1 3 0 144.04779 144e04493 2,9 9 . 6 l 1 
1 2 0 l 47e04269 l47e0"59 -1.a g . . 7 . 2 . 6 10 149.05769 l49e06024 -2.s 9 . 9 . 2 
1 3 10. 1"56.09160 l56e09390 -2.2 •• o 12 . 12 . . 

2 0 . 163. 0733.9 163-.075.89 -2 • .- 10 • . 11. . 2 
2 10 190.06049 190.06298 -2.• .l l 10 . 3 . 7 10 1·9,...os-.09 . _l94.o.s171 2,4 IC! . 12 l 3 
3 10 203.06820 203.07082 -2.s •·• 12 . 11 . 3 

l -3 0 2:0S.07629 205.07389 2.4 11 . l1 l 3 
6 0 205.08419 205.08646 -2.2. ·12 . 13 . . 3 

.l 3 -- 20 ~18e084?0 218e08172 3,0 12 ,;- 12 1 3 . 6" . 3 
1 . . 3 VALID ELEMENTAL CO.MPOSITID~S COULD NOT· SE FOUND FOR 5 L.INESe 
l . . 3 
l 3- 0 74.0073 0 75.oi63 10 9h04"74 10 96.0378 . 4 
1 4 "TOTAL iONIZATION OF SINGLY CHA~GED SPECIES~ 2240. 
1. 3 . 7- FRACTION OF UNASSIGNED IONS 0.049107 
1 .. . l 

• f4 
l 11 . 7 . M 
l 4 . 8 
l 5 
l 18 . 8 
l 
l 5 
l · 19 

13 
-1 5 
1 10 . . 

13 . 16 
1 10 

gq 

i,-;. 
i.J1 
0-



TABLE XXVI 

HIGH RESOLUTION MASS SPECTRAL DATA OF WILFORGINE 

ABOS-33- 01 WILFORl:;INE 

INT 
0 

10 
0 

0 

70 

10 
10 

0 

0 
0 
0 

DETMa C,',,LC... 

70e53950++ 70e53951 

75.01959 7S.0490G 
76.03180 7t,03130 
78 .. 03069 78.03168 
78.03069 78.02990 
79.03819 79.03951 
82.02889 82.02927 

83.05039 83.04969 
64.02129 84.02113 
a4·.056l9 a4.0575o 
85.03050 85.02896 
88.01669 88.01604 
94 .. 05179 94.05041 

94.06970 94.06931 
96.04389 96.04492 
99.01149 99.01089 

DIFF TOL 
.o 1 • 7 
.6 
.. 5 

- .9 
.A 

-1.2 

- .3 
.7 
.2 

-1 .. 2 
1.5 

.7 
l .4 

-t"O 
10 
10 

0 

0 
0 

20 
150 

,4 

- .9 
.6 
.5 

- .1 .. 

102.03220 102.03170 
1-03.04480 103.04583 - .9 
103.054·50- 103.05477 - .2 
104.04800 104.0473~·· .7 

105.03379 105.03403 
10 105.04969 
10 105.04969 
20 · 105.05859 

o 106e02119 
0 106.02ll9 

10 l 06.036'+0 
30 106.06580 
10 107.04920 
10 107.07330 

0 108.04639 

0 1 os. 05819 
0 109.06550 
0 110·.03809 

10 llleOb.450 

JO 112.0l 509 
10 113.01009 

10 113.01009 
10 115.05439 
10 117.05829 
10 11·a.06620 
10 119.03690 
10 120 .. 04510 

40 122c03590 
0 123.01149 
0 124 .• 03999 
0 124.05410 
a 12s .. os9so 
0 128 .. 06320 
0 129.05890 

129.06940 

10 130.06660 
0 131.00000 
0 1'31 !!>03660 

10 131.07440 

lO 132c04580 
0 132.06549 

10 132.08170 
0 I33e03689 

10 133.08979 

105.05069 
105.04890 
1os.os1e4: 
100.02213 
106.02034 
106.03740 
l06.065'68 
107.04969 
1 O 7 • 07349 
108 .. 04493 
108.05751 
109.06534 
11 Oe03678 
111.04460 
112.-01603 
l l3e00S6l 

113.01128 
115.05476 
117.05784 
l l S.06566 
119.03711 
120.04494 

122 .. 03-678 
123.01089 
124.03985 
124.05243 
12 s .. 06025 
128.06260 
129.05785 
129 .. 07042 
130 .. 06563 
~31.00072 
131 .. 03711 
131 .. 07350 
132 • 04i~94 
i 32 .. 066<05 

132 .. 08133 
133 .. 03749 
133i,,06914 

- .9 
.s 
.a 

- .s 
.9 

l .o 
.1 - .. 

- ., 
1.s 
.1 
.2 

1.3 
- .o 
- .a 

lo5 
-1.1 
- ·.3 

.5 

.s - .. 

.2 
- .a 

.6 ., 
l • 7 

- .1 
.6 

l • I 
- .9 

.9 
- .6 
- .4 

.9 
o9 

- .s .. 
- .5 

.7 

C 
7 

5 
6 

2 
4 

2 
4 

5 
4 
5 
4 

3 
2 

5 
5 
7 
4 
6 
8 

-,;::: 
7 
3 
5 
7 

2 
4 
6 
7 
7 

'7 
6 
7 
7 
6 

6 
5 

4 

9 

8 
8 
7 
7 

7 
9 
6 

10 
9 

10 
9 

8 

9 
8 

5 

9 

c• 

2 

2 

2 

C.H. 

H 
11 

6 

3 
7 
4 

7 

4 
8 
5 
4 
8 
8 

6 

6 
,-5, 
7, 
8 --

5 
8 

5 
7 
5 

2 
5 
a 
7 

9 
6 

8 

9 
6 
7 
4 
5 

3 
7 

8 

5 
6 
6 
l 
6 

8 
9 
g 

7 
9 
6 

5 
9 
6 

10 
10 

7 

l1 

N 

l 

01-08-7. 

0 
2 

3 

3 

2 
L 
2 
3 
3 

3 

3 
l 
3 

4 

l 

1 
2 
2 
3 
6 

3 

l 
2 

2 
2 
2 

2 

l 

3 

A805-33-0l WILFORG!r-JE 

INT OETM. CALC• 
134. 06058 
134.08172 
134.09698 
136.05242 
136.05204 
137.032'1,l 
138. 05549 

142.07825 
144. 04492 
144.05750 
145. 06534 
147 ... 04459 
148.07623 
149-.07243 
149.08139 
149.08406 
150 .• 03168 
lS0 .. 07604 
150. 09·188 

15i .06065 
151.06331 

DIFF TOL 
• 5 1. 7 

! •• 
20 134.06109 

0 134 .. 0831 0 
10 ~ l34. 09760 
10 136-05209 
10 130.os209 

0 137.03109 

.o 
- .2 

• l 
-1.2 

0 138.05489 
0 142.0794-0 
0 144. 04.409 

0 144.05719 
10 145.06510 

- • 5 

1.2 
- .1 
- .2 
- .. 1 

0 147.('4339 
0 148 .. 07779 
0 149.07189 
0 149.08250 

0 149.08250 
O 150.03039 
0 150e07820 

1-0- 150 • 09349 
ro 1s1·so6259 
10 151.06259 

-1 .1 , .. 
- .4 

1 .1 
-1.s 
-.1.2 2.0 
1.6 
1.,,; 
1.9 

- .6 
0 

0 

0 
0 

10 
0 

10 
10 

10 
10 
10 

0 

0 

0 
0 

0 

10 
0 
0 

0 
0 

10 
50 

20 

10 
0 
0 

10 
10 
10 
,o 
lO 
10 

0 

10 

152·.-03069 152.,03208 -1 .. 3 
152.05059 152.05002 .6 
lS:3.05499 153.05516 ·- .1') 
153.05499 153,.05337 1.c 
153.05499 153.054 7_8 .2 
156 .. 09419 156~09390 q3 
159.05429 159.05315 1.1 
160•04160 160.03986 1.7 
160.05709 160.05651 .s 
160.07629 160eG7623 .1 
161.05939 161.06024 - .a 
161.07040 161 e 06881 1 ~ 6 
161.08230 161e08J39 •9 
161.08230 161.08406 -1.7 
162.09219 l62c09188 9.3 
163.04689 163.04806 -1.1 
163e07489 163.07589 - ~9 
16-4.05139 164-.05002 lo.4-
164e05139 164e05JAl .O 
164.07090 164 ... 071.lS - .2 
165.05399 165.05516 -1 .. 1 
165e05399 165e05337 .6 
165.05399 165.05477 - ,.7 
174.61740++174.61894 -lo.4 

174.65520++174e65532 - .o 
175.06520 175 .. 06333 l;o9 

176.07069 176,:,07114 - .. 4 
177003959 177e03990 - ~2 

177-.06530 177.0637.3 1 .. 6 
177.07470 177.07630 -1"5 
177.07470 177.07451 .. 2 
178.04950 178.0A77t~ 1.8 
178.0495-0 178;,05041 ~ ,.s 
178.06680 17t3.06565 1.1 
178.06680 178$D6707 - t:2. 
110.osst:>9 11a .. 004.12 1.s 
178a08559 l78a086-79 -l.1 

179.07590 179.07937 - .. 4 
l 79~09100 l 79a09195 - .9 

C C 1 

5 
9 
8 

2 2 
3 
7 

11 
9 

10 
10 

9 
9. 
4 2 

• 
9 

8 

5 
9 

5 
8 

• 
11 

8 
10 

2 
12 

6 

9 
5 

10 
10 

6 
7 

10 
10 

5 
10 
12 

4 

9 
9 

;t 

3 
2l 
23 
10 
10 

6 
6 

7 
9 

6 
9 

13 
5 
7 

10 
6 

C.H. 

H 

8 
12 
12 

8 
a 
7 
8 

10 
6 

e 
9 
7 

10 
11 
13 
11 

6 

12 
12 
1-1 

9 
8 
6 

9 
6 

9 

12 
9 
6 
9 

10 
9 

11 
13 
11 
12 

9 

11 
6 

9 
10 

9 

6 
9 

33 
41 

9 
10 

9 

11 
13 
10 · 
10 

8 
8 

11 
14 
12 
13 
15 

N 

l 

01-08-71 

0 

3 

2 
4 

5 
2 

l 
2 

4 
4 
1 
3, 
4 
l 

5 
2 
6 

3 

5 

4 
"2 
4 
1 
2 
4 
4 

l 
5 
2 

5 

2 
3 

5 
4 

2 
2 
2 
6 
5 
5 
2 
6 
3 

5 
5 
2 
5 
5 ..... 

V1 
-...I 



TABLE XXVI -(Continued) 

ASOS-33-01 WILFORGlNE C.H. 01-08-7 ASOS-33-01 WILFORGINE CaH• Ot-OS-71 

INT DETM. CALC. DIFF TOL C c• H N 0 INT DETM. CALC. DIFF. TDL ·c c• H N 0 
iO i7·9.09100 179.09016 .a 2 .o 9 1 12 I 2 20 857.27490 857.27506 - .1 ·4.2 56 41 . 9 

0 185.05919 185.06024 -1.0 12 . 9 . 2 20 8$7.27490 es,: .. 27187 3.o 66 35 1 1-
0 ._187.05489 187e05477 .1 15 . 7 20 857.27490 857e2"1773 -2.7 59 . 39 1 6 
0 187.07399 1B7e07589 -1. 8 12 11 . 2 20 857.27490 857.27424 .7 41 . "7 l 19 
0 189.03819 189.03990 -1.6 7 . 9 6 10 85Se27B49 85Sa27701 1.s o3 . 38 . 4 

· 10 189.07030 189e07042 - .o 15 . ·9 . 10 858.27.849 S58a27967 -.1.1 66 . 36 · 1 1 
10 190.0 6300 190 e06300 • o "· 10 .. 3 ·10 858.27849 858.2.7618 2.3 48 . 44 1 14 

0 190.07989 190.07825 1.6 15 . 10 . . 10 85Ba27649 8sae2a204 -3.S 41 48 1 19 
10 1,91.07240 191007082 1.6 11 . 11 . 3 10 858.27849 858.27841 .1 55 l 41 . 9 
10 191.07240 191.07349 -1.0 14 . 9 1 . 10 858.27849 858.27521 3o3 65 l 35 • l 

0 193.07390 °19·3.07390 .o 10 11 I 3 10 858.27849 858.28108 -2.s 58 1 39 1·. 6 
0 200.09199 200.09227 - .2 2.2 9 . 14 1 " 10 S5Be27849 858.27758 o9 40. l 47 1_ 19 
0 2·02,i,06360 202.06300 ·" 12 . 10· . 3 _10 858e,27849 858.27980 -1.2 47 2 "4 . 14 
0 202006360 202.06567 -2.0 . is . 8 1 10 858.27849 858.27662 lo9 57 2 38 1 6 
0 203.06960 203.07082 -1.1 12 . 11 . 3· 10 858.27849 858.28248 -3.9 50 2 4.2 1 11 

10 204.06820 204.06607 2.1 ll· 10 1 3 
30 206.07909 206.07904 .1. 8 .. 14 • 6 

0 207.06530 -- 207.06573 - .3 11 -. 11· -- .:-----. ' 
10 207.08600 20.7.osos6 - -- ... a. - a._,._•- 15 -- •·. 6:· j~r-- ·- -·· 

0 216.06650 216.06607 ... 12 . .10· I 3 
0 216 •. 07820 216.07894 - .3- 13 . u 3 l 
0 2·17 e08660 21.7.08647 .1 13 . 1"3 ., ·3 I 0 ·.222.07259 222.07394 -t.3 8 . 1 .. •· 7· 

0 233.08330 233.08139 --1.9 13 13 . 4 J 
0 233·~08330 233.08406 - .-r 16 . 11 l 1 + 0 234.10260 234.10446. -1.a 17 . 1.4·. . 1 · 

· o· 2so •. 09e30 .250e09938 ~1 .• 0 2~4· 17. . 1• . 2 j 
o .. 250.1oa79 250.10793 .9 II.a . 16 1 4 

I 0 262.10889 262.10793 1.0 l4 . 16 1 4 
0 512.21089 572e214PO -3. 0 3.4 44 . 28 . 1· 

I 
0 572.21089 572.21051 .4 26 • · 36 . 14· ! o · sv~.21Qs9 572.21317 -2.2 29 . 34 1 11 
0 740.25389 740.25040 3.5 3.a '59 . -32 . . 
0, 740.2~389 740.25626 -2.3 · 52 36 . 5 
0 740.2538"9 740.25277 1.1 34 . 44 . 18 
0 7'.40.25389 740e255't3 -1.4 37 42 1 15 
0 784 •. 25140 784.25198 - .• 5 4.0 46 . 40 • 12 
0 784.25140 7.84eZ4879 2.6 56 .. 3·4 I 4 
o. 784.25140 784.25465 -3."2 49 . . 38 1 9-
0 798.23539 . 798.23475 06 64 . ~o . 
0 798.23539 798.23711 -1.6 39 . 42 . 18 
0 798•23:539 798.23392 1-.s 49 36 I 10 
0 79Se26260 798e26176 • e 54 . 38 . 7 . 

0 798.26260 · 798.26443 -le7 57 36 l 4 
0 798.26260 7918.26093 I o7 39 44 1 17 
0 799.20669 799.20619. .s 63 27 . 1 
·o 799.20669 7i;)9.206S5 -1.e 38 39 19 
0 799.20069 799020536 lo3 48 . 33 1 11 
0 799.26010 799.26370 -3.5 61 35 . 2 
0 799.26010 799.26020 - .o 43 43 . 15 
0 799026010 799.25701 3.1 53 37 l 7 
0 799.26010 799.26287 -2.7 46 41 1 12 
0 829.24979 829.25313 -3.2 4.J 65 33 1 
0 829.24979 629.24963 ,2 47 41 14 
0 829.24979 829024643 3.4 57 35 I 6 
0 829.24979 829. 25230 -2.4 50 . 39 1 11 
0 829.28209 829.28014 2.0 55 . 41 8 
0 829.28209 829.28601 -3.8 48 . 45 13 
0 s2·9.2a209 829.2828:t - .6 58 . 39 1 5 ..... 
0 82.9.28209 829.27931 2.a 40 47 • 18 V1 

OJ 



TABLE XXVII 

HIGH RESOLUTION MASS SPECTRAL DATA OF WILFORDINE 

A80S-27-03 ~ILFORDINE c • .tt. 01/14/71 A.805-27-03 Wl.LFOROINe CeHe 01.'14/71 

INT OETM._ CALC:•. DIFF TOL C c• H " 0 INT DETN• CALCe DIFF TOL· C _c, H N D a 73.57900++ 73.57907 .1 2.7 7 1 20 1 l 10 117.05600 ll 7eOSS17 .a 2e7 .5 . 9 . 3 
10 74.01459 74.01564 -1.0 6 2 . . 10 • 117.05600 117e05784' -1.7 8 . 7 1 . 
10 74.01459 74.01525 - .6 . 2 2 1 2 0 118e06350 ll8e06300 .s 5 . 10 . 3 

0 75.01429 75.01452 - .1 4 2 1 . . 0 • J-J8e06350 118e06567 · -2,l 8 . 8 1 . 
10 75.02299 75.02346 ••• 4 6 3 . . 10 119.03319 119.03442 -1.1 .. . 7 . 4 
10 75,02299 75.02307 - .o . 2 3 .·l 2 10 120.04279 120.04226 .s 4 . a· . 4 
10 76.03319 76e03130 1.9. 6 . .. . . 10 120.04279 120e04492 -2.0 7 . 6 1 I 
20 77.·02419 77.02387 ,3 2 . 5 . 3 80 12-2.03650 122.03678 - .2 7 . 6 . 2 
20 77.02419 77.02653 -2.2 5 . 3 1 . 10 123.02119 123.02346 · -2.2 10 . 3 . . 

100 77.04139 77.03912 2,3 6 . 5 . . 0 123.02699 123.0293,4 -2.3 ·3 . 7 . 5 
380 78.04719 78.04695 .2 6 . 6 . . 20 123.03840 l23.b4013 -1.6 6 1 6 . 2 
20 79.04410 79.04220 1,9 5 . 5 1 . 10 124.02940" 124.03130 ..;.1.a 10 . 4 

0 01.03499 81.03404 1.0 s . 5 . 1 0 128.06300 128.06260 ... 10· . 8 
0 82.04349 82.04186 1.6 5 . 6 . I 0 129.06849 129e0704l -1.a 10 . 9 
0 83.04940 83.04969 - .2 5 . 7 . 1 D 129.06849 129.06595 2.s 9 1 8 
0 84.48910++ 84.48874 ... 6 . 1 . 6 0 129.06&49 129.07002. -1 ... .. 2 9 1 ·2 
0 84.50780++ 84.50695 1,0 7 . s . 5 20 130.06530 130.06300 2,3 6 . 10 . 3 
D 84.50780++ 84.50618 - .3 10 . -3 -1. 2 .20 130.06530 130.06567 - ,3 9 .. 8 I . 
0 84.52~20++ 84.52504 -1.7 8 . 9 . 4 __ 120 131.00239 131·.00072 1o7 7 . I 1 2 
0 84.55130++ ·8·~-55093 ... 1'3 ·-. 13. . . 10 131.04810 131.04969 -1.s 9 . 7 . ·1 
0 85.02789 85.02894 -1.0 4 . . 5 . 2 10 131.07150 1:n.07082 .7 6 . 11 . 3 
0 86.03650 86.03678 - .2 4 . 6 . 2 10, 131.07150 13-le0734-9 -1.9 9 ~ 9 I . 
0 86.55010++ 66.55259 -2 •• 8 . 15 1 3 20 132.044-40 132e0~226 2.1 5 . 8 . 4 
0 89.03669 89e03911 -.2.3 7- . 5 . . 20 132.044lt0 132.04493 - .. 8 . 6 ' I 
0 a9·.05es9 89.06024 -1.6 .. . 9 . 2 10 · 132.07960 i32.0786S · 1.0 6 . 12 . 3 
0 89 .• 09490 89.09664 -1.6 ·s . 13 . l 10 13i.o7960 132.08132 -1.6 9 . 10 l .. 
0 91.01879 91.01839 ... 6 . 3 . I 40. 133.05219 1;33.05008 2.1 5 . ·9 . .. 
0 9·1.02719 91.02694 .3 2 . 5 I ·3 -40 133.05219 133.05275 - .s· 8 . · 7 1 l 
0 91.07370 91.07590 -2.1 .. . II . 2 30 13tt.1)5969 l34-.0579i 1.e 5 . 10 . .. 
0 92.04630 92.04734 - ,9 3 . 8 . 3 30 13lh05969 l3lt.06057 - .a a . 8 1 I 

10 93.05600 93.0.5517 .a 3 . . 9 . 3 10 135ii04310 135.044-60 -1.4 8 . 7 . 2 
10 93 •. 05600 93.05784 -1.7 · 6 . ?. I . 0 135.06229 135.06126 1.0 .. I IO . 4 

0 95.(13709 95.03443 2.7 2 . 7 . 4 0 135.06229 135.06393 -1.s 7 I 8 I I 
0 95.03709 95.03710 .o 5 . 5 1 1 10 136.05049. 136.05242 -1.8 8 . 8 . 2 

10 95.04749 95.04968 -2~1 6 . 7 . l 0 137.04810 137.04768 ... 7 . 7 _l 2 
10 96.02370 96.02113 2,6 5 . 4 . 2 JO 137.05789 137 .. 06024 -2.3 8 . 9 . 2· 
10 97 .. 02519 97.-02448 ,7 .. 1 .. . 2 0 140.02650 140.02622 ,3 10 4 . I 

0 102.02949 102.03168 -2.1 " . 6 ;. 3 10 141.07020 ·1111.07042. - .1 II . 9 
0 103.054-90 103.054-78 .1 8 . 7 . . 0 · 142 .. 07639 142.07824 -1.s II . JO 
0 104.02779 104.02621 1~6 7 . .. . 1 0 14-4-.05719 14-4.05750. - .2 10 . 8 

20 104.05050 1oti..osoo3 .s 7· . 6 . I . 0 1·45.03969 145.03750 2.2 5 . 7 1 .. 
520 105.03620 !OS.034-04 2.2 7 . 5 . I 10 145.06329 14-5.06533 -1.9 10 . 9 . l 

JO 1os.os730 1os.oss17 2.1 .. . 9 . 3 0 l 46.05799 146.05791 .1 6 . 10 .. .. 
10 ·105 .. 05730 106eOS784 - •" 7 . 7· 1 . 0 146.05799 1lt6.06057 -2.s 9 . 6 l I 
70 106.03929 106.04185 -2.s 7 . 6 . 1 0 146.07049 146.07315 -2.6 10 . 10 . I 
70 106.03929 106.03739 1.9 6 I 5 . l 10 147.04259 147.04459 -1.9 9 . 7 . 2 
70 106.03929 106.04146 -.2.1 1 2 6 I 3 10 147.06899 147.06841 06 9 . 9 I I 
30 106.06630 1C6e06568 .6 7 . 8 1 0 141.07929 14-7.08098 -1.6 10 . 11 . I 
10 107.04889 107.04968 - ., 7 . 7 l 0 148.01889 148,.01872 .2 II 2 1 . 

0 107a05859 107.05824 ,4 3 . 9 1 3 20 148.03989 148a03717 2o7 5 . 8 . 5 
10 107.071"10 107.07082 o3 4 11 3 20 148.03989 148.03985 .. 8 . 6 1 2 
10 107.07110 10?.073.a9 -2.3 7 . 9 1 . 10 148.07479 148.07356 1.2 6 . 12 . 4 
IO 107•·07110 .;.07.06903 2.1 6 1 a 1 . 10 148.07479 148.07622. -1.3 9 . 10 l ' 0 108.05719 108.05750 - .2 7 . a . l 20 14,9.08090 149e06138 - .. 6 . 13 . " 0 109.06039 109e06086 - ·" 6 1 8 . 1 100 150.05459 150.05282 1.s a.o 5 . 10 . 5 

0 110.03620 110.03678 - .s 6 6 . 2 100 150.05459 150.05549 - .e 8 . e I 2 
0 ll le04150 111.040·1,.. 1,4 s 1 6 . 2 20 150e08989 !50e0S92l .7 6 . 14 . • 
0 111.04-JSO 111.04421 -2.6 . 2 7 1 4 20 1so.oa9a9 1so.09187 ;...1(119 9 12 l 1 

20 112.01479 112.01603 -1.1 5 . " . 3 10 151.05779 151.06064 -2~s 5 . 11 . 5 
0 115.03870 115.03952 - .7 s . 7 3 10 15le05779 151.0~617 , ... 4 l 10 . '5 

I-' 
Vt 

'° 



TABLE XXVII (Continued) 
i 

ASOS-27-03 WILF0R0INE CeHe 01,1.:4,/71 A~OS-27-03 WILFORDJNE C•H• 01/14/71 

).NT DETMe CALC•· DIFF TOL C C' H N 0 INT OEt'Me CALCe ~JFF TOL C ·c• H· N 0 
10 151.05779 1s1.os8s" -1.0 3.0 7 1 8 1 2. 20 206.08090 206.07904 le.9 3e2 8 0 14 . 6 
10 isz.()4929 152.0.4734 2o0 8 0 8 3 20 206.08090. 206.0817l - o? 11 0 12 1 3 

.. ·10 152·e04929 1s2.oso01 - 06 11 0 6 1 0 0 207.06839· 20.7.-06573 2.7 11 . 0 11 0 .. 
0 153.05699 153.0!:?S17 108 8 0 9 0 C3 0. 20Te06B3i9 207.06840 oO j4 0 . 9 1 1 
o. 153e0S699 153. 05783 - o7 11 0 7 1 0 0 207.08890 207.0868?. 2o0 8 0 15 0 6 
Ii 157.06409" 157.06533 -1.1 11 0 9 0 1 0 207.08890 207.08954 - o5 u 0 13 l 3 

20 158.07069 l58e07315 -2.4 11 10 . l 20 215.01.790 215.01918 -1.2 8 0 7 0 7 
10 l59e08-lOO· 159 .. 08099 oO 11 0 11 0 1 ~ .2.1 s.o?~so 215e07669 - ol 6 0 15 0 8 
10 160.;0;3979 160.03717 206 6 • 8 0 5 0 215.07650 2.1Se07350 3.0 . 16 0 9 1 0 

10 160.03979 160.03984 - oO 9 0 6 1 2 0 215 •. 07650 215e07937 -2.a 9 . 13 1 5 
10 161.05929 161.06024 - o9 10 0 9 0 2 10 2-16.08540 216.08719 -t.7 9 0 14 1 5 
10 162e05509 162.05282 2.3 6 . lO • 5· 10 217.091199 217 ... 09501 oO g 0 15 l 5 
10 162e0S509 162.05549 - o3 9 0 8 1 ·2 30 231.01239 23le01408 -1 .. 6 8 . 7 . 8 
1.0 163.07380 143.07590 -2.0 10 ·11 .. 2 110 232.00169 2,ii2-.00079 o9 11· . 4. 0 6 

0 164.05489 164.05588 - o9 5 • .· ,10 1 5 110 2.32e00169 232.00345 -1.7 14 ·o 2 1 3 
20 164.07320 164.07116 2o0 9 0 10 1 2 HO 233.009-69 233e00861 le 1 11. . 5 0 6 
1·0 165.05579 165c0.55l 7 o·6 g 0 9 3 .110 233e00969 -233 .• oi12.a . -1.s ,. •· 3 .1 3 
10 165.05.579 _ 165.05783 -1 .. 9 .12 0 ~T -i..·-:.... • · .. 0, 233.09209 . 233.08993 .2.2 9 . 1s: l. 6·· 
20. 168.00529 l 68•00586 - -~ .s . - .7 ·- -· 4 :o s·: :-'- 20 . 234.08.60(! i!34e0892J · -3.1 ·13 . H . . 4 

. 40 169e01279 169.01369 - oe 7 0 5 . 5 20 250el0670 ·250e10526 le4 3e4 10 . 18 0 . 7. 
10· 173.05899 173.06024 -1~2 · 11 0 

• g ·. . 2 20 250el0670 250el0793 .-1,.1 ··u ·• 16 1 ... 
10 '1711-.05759 174e0SS50 2ol 10 . o 8 1 2. 10 718.271.9 718e27J91 - e3 4e8 50· . 38 0 ·s 
IO 174c06650 174.0&0oe . -1.s 11 0 10 0 2. 1!> 718.Z?.149 718e27109. •4 35 . 44 l 15 
20 l t.5.06030 175.06065, - .3 7 0 H 0 5 10 839 .• 29690 839e294-t·B 2e7 5el 49 • 45 ·1 12 
10 175.07020 175.07143 -1.1 10 l 10 0 2 10 839.-29690 839~300'05 -3.1 42· 0 49 1 17 
10 176.00079 17·6e00162 2o4 8 0 2 1 .. 10 a•o.3()370 .840.30201 lo? 4·9 0 46. 1 12 

· .90 ·176.06779:. 176.0684·6 - 06 7 0 12 0 5 10 840.30370 840.30787 -4.1 "2 . 50 . l 17 
.20 177.00719 177.00620 1·.o 8 0 3 l .4 10 840.303'70 840e3034-1 o3 41. 1 49 l i? 
10· t77.06B6o· .' 177.0?042 -t.7 14 0 9 0 0 1'0 84-0.30370 84-0.30563 -1 .• e .. 48 2 ..6 . 12 
10 ·177.06860 .177.06596 2c6 · 13 l ·a o· 0 10 883.28549 883.28400 1.s s.2 so 0 45 1. 1·4 
10 177.06860 177.06736 1.2 5 2 11 .0 5 IC! 883.28~9· ~83.28987 -4.3 43 . ·_49 1 19 
10 177.06860 J. 77.07003 -1.3 8 2. 9 1 .2 
40 178.0-4259 l7'8e04186_. · o7 13 0 6 0 1 

0 ·179.04440 179.04299 lo" ;; 0 9 1 ti 
0 l 7'9c04440 '· 179e.04521 - o? 12 1 6 O· 1 
0 · l 79e04440 179~04662 -2.1 4 2 9 . 6 

.!O 184.00349 ·1a•.o-0079 2o7 7 . 4 0 6 
so 184.e00349 , .184.00~46· .o 10 0 2 1 3 

0 J86.o652o. 1a6.06~oa -2.e 12 0 1·0 2· 

10 .187.07399 187.07589 -1.8 · i2 . 11 o . 2 
0 1a9.,05so9 189~05516' - .o 11 0 9 . 3 

.0 · 189.05509 189.05783 -2.6 1• 0 
7·· 1 0 

0 1go.060-49 190 .. 06298 -2.4 · 11. 0 10 0 3 
0 190.06049 190 .. 05852 2o0 .10 1 9 0 3 
0 190906049 190.06119 - 06 13 1 7 1 0 

0 190.06049- 190 .• 06259 -2.0· 5 2. 10 1 5 
10 19·1 • .07180 191.07082 loO 11 0 11 0 3 
10· .. 191.c071BO '191.07349 -t.6 1• 0 9 1 0 

20 192.06619 192.·06339 208 7 0 12 6 
20 · 192.06619 192.06606 ol 10 . 10 ·. 1 3 
so 194.08440 194.08172 2o7 10 0 12 .1 3 
10 195.08310 195.08099 2.1 .,,. 0 11 0 1 

0 200e08260 200.08373 -1.0 3.2 13 0 12 2 
0 202•062.79 202.00298 - ol 12 . 10 .... 3 
0 202:.06279 202.06566 -2oe 15 8 1 

10 2Q3e06S90 203e079'~ ·-1.e 12 11 0 3 
10 204.066.39 204.06339 ·3.0 8 0 12 0 6 
10 204-eQ.6639 204.06606 o3 11 10 1 3 

0 205008680 .2o·s.os647 .3 12 . 0 13 0 ·.3 

0 . 205.08680 205.08914 -2 .• 2 15 11 1 ....... 

°' 0 



INT 
0 
0 

10 
0 
0 
0 

10 
0 
0 
0 

280 
30 
10 
60 
60 
10 
10 
10 
10 

0 
0 
0 

50 
10 
10 

0 
0 
0 

30 
0 

10 
10 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

70 
0 

10 
10 

0 
0 
0 

• 
0 
0 
0 
0 
0 
0 
0 

" 30 
30 

TABLE XXVIII 

HIGH RESOLUTION MASS SPECTRAL DATA OF WILFORTRINE 

A'BOS-19--01 ·wILFO~TRlNE· 

DETM. CALC. 
70.04419 70.04186 
70• 07790 70• 0782S 
71·.01569 71.01330 
71 eOSl 70 71 e 04969 
7le088~ 71.08608 
74e01339 74e01564 
74.03599 74.03677 
75.-02459 75.02347 
75.04630 75.04461 
76e03300 76e0:3130 
77.03809 77.03911 
78e03569 7Be03437 
78.04550 78.04695 
79.04220 79. 03952 
79.04220 79.04220 
79.05539 79.05477 
81.03550 81.03404 
a1.0?220 01.07043 
·a2.o 4230 e2.04t B7 
82e078.50 a2.-07825 
82e53S20++ 82e53825 
82e53820++ 82e53948 
83e05020 83e04969 
83e08810 83.08608 
a.i.02139 S4eo2_ 113 
84.05649 8••05750 
e•.09160 84e09390 
84e091S0 84e069•3 
85.0291'9 85.02895 
85e l0270 85-e 1-0173 
86.03620 86.03678 
86.09690 86•09697 
87 .o 4469 87 •0.460 
89a03720 89e03912 
90.50130++ 90.50063 
90.s12•0++ 90.51447 
90e53810++ 90.53705-
90.54400++ 90.54336 
90.54400++ 90.54457 
90.54680++ 90a5475J 
90.55340++ 90.55380 
90.55340++ 90.55513 
91.05389 91 e05476 
91.07800 9le07591 
92.04999 92•04734 
92e04999 92a05001 
92e05780 92.05812 
92..48670++ 92.46628 
92e5086o++ 92aS0861 
92.aS2600++ 92a52677 
92e53460++ 92.-53459 
92a55630++ 92a55888 
92.55630++ 92.55664 
92.55630++ 92,55798 
92a55630++ 92,555S4 
92&59610+~ 92.59533 
92.60550++ 92e60?~7 
921961350++ 92.61353 
93.g5730 93.05517 
93~0S730 93005784 

O~FF TOL 
2.3 2.7 

- .3 
2.4 
2.0 
2.3 

--2.2 
- .7 

1.1 
1.7 
, • 7 

- .9 
1.3 

-1.4 
2.7 
.o 
.6 

1.5 
1.a 
.4 
.3· 
.1. 

-1.2 
.5 

.2.0 
.3 

- .9 
-2.0 

2.4 
.2 ,.o 

- .s 
- .• o 

.1 
-1.s 

.7 
-2.0 

1.2 
.s 

- .5 
- .6 
- .3 
-1.6 
"'!"' .a 

2.1 
2.7 

.o 
- .2 

.6 

.o 
- .7 

.2 
-2,5 
- .3 
-1.6 

.s 

.a 
~1 .. 6 

.o 
2ol - .. 

C 

4 
5 
3 
4 

s 
6 
3 

6 
3 
6 
6 
5 
6 

2 
5 
6 
5 
6 
5 
6 
6 
9 
5 
6 
4 

5 
6 
5 
4 

.6 
4 
5 
4 
7 
7 

12 
9 

10 
13 

6 
7 

10 
7 
4 
3 
6 
6 
6 

3 
4 
8 

,o 
9 

12 
11 
12 
12 
13 

3 , .. 

C' H N 

6 
10 

3 
7 

11 
2 
6 
3 
7 .. 
5 .. 
6 
7 
5 
7 
5 

-9 
.6 
10 --. 
13 
1·1 ·1 

7 
11 

4 

8 
12 
11 

5 
13 

6 

12 
7 
5 
3 
5 

11 

13 
11 
15 
17 
15 

7 
11 

8 
6 

7 

7 

11 
11 
17 
16 
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. 25 

27 
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0 

2 
l 

2 . 
2 
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- 1 

5 
2 

2 

2 

2 

2 

5 
2 
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3 

5 

5 
2 

2 
3 

7 
8 
7 

4 
3 
3 

3 

! 
!. 
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0 
0 
0 
0 
0 
0 

10 
10 
10 
10 
20 

0 
10 

0 
0 
0 
0 

10 
10 

0 
40 
40 
10 
20 
20 
20 

0 
0 
0 
0 
0 

60 
60 
10 
10 

0 
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0 
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10 
10 
10 

0 
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40 

0 
10 
10 
10 
10 
10 

0 
() 

10 
iO 

0 
10 

0 
0 
0 

A80S-19--01 WJLFORTRIN,E 

OETM. CALCa 
93••9290++ 93e4939• 
93.49290++ 93.49527 
93,.s2sso++ 93.52741 
93.52650++ 93.53032 
94.04.200 
95a02190 
95e05160 
95.08750 
97a03089 
97a10340 
98.03660 
98.~7090 
98a07510 
99.04719 

100e05429 
t 01.os960 
102.030&9 
l03e-04020 
103.0402.0 
103a05439 
104.04910 . 
10 •• 04910 
10·5.03580 
1-os.o•s10 
105e05710 
1-o.s .• 05710 
105e07010 
106e02859 
106e02859 
106.04150 
106e04l50 
106e06430 
106°e06430 
107·.oso20 
107.o?•oo 
1 oa.os7eo 
109 .. 06550 
109.10230 
110.03699 
111.0•239 
111.0•239 
tJ t.04239 
lllallS=--0 
112.01629 
112a01629 
112.05420 
1·13.01919 
113.0 1919 
115.05420 
117e05639 
11·7..,os639 
11e.06s20 
1 JB.06820 
119.03660 
!19.03660 
119.04899 
120.04580 
120.o·ssoti 
121.06360 
122.03770 

9 •• 04187 
95.02186 
9s.0•969 
95.08609 
97e02895 
97.10173 
98.03678 
98.073.16 
98.07317 
99.04460 

100.05243 
101.06025 
102.03168 
103.03952 
103.0o\219 
103.05476 
104a04735 
104e·05002 
105.03404 
lOS.04260 
105a05517 
105.05764 
lOS.070•2 
106.02661 
106.02927 
106.04186 
l06a04l4B 
106.06300 
106.06567 
107.04969 
107.07350 
108.05752 
109.06534 
109.10173 
110.03676 
111.01i•59 
111.04013 
llla04420 
111.11737 
112.01604 
112 .. 01871 
112.052-43 
113.01939 
113a01760 
115.05477 
117.0551'1 
ll 7a05783 
118.06568 
1 ts,..06930 
119.034oif4 
119.03711 
11. 9 ... 049&8 
12041044-94 
120-05751 
121<1>06534 
122.03678 

DIFF TOL 
- · •. 9 2a7 
-2.3 

1 .1 
-1.? 

.1 
.o 

1.9 
1o4 
lo9 
1.7 

- .1 
-2.2 

1.,~ 
2.6 
lo9 

- .6 
-· .7 

.7 
-t.9 
- .3 

1.e 
- .e 

1-.e 
.2.s 
lo9 

- .6 
...: .2 

2 •. 0 
- .6 
- .3 .. 

1.3 
-t.3 

.5 

.s 

.3 

.2 

.6 

·" -2.1 
2.3 

~1.7 
-t.9 

.3 
-2.3 

-l"S 
..;. .. 1 

l 06 
- .s 
1.2 

-1·.a 
2,..5 

-1. 0 
2.2 

- ·.e 
- .i; 

.9 
-1.a 
-1.6 

.9 

C C' 
6 
9 

15 
8 
6 

' 6 
7 
5 
7 
5 
6 
6' 
5 
5 
5 
4 

• 7 
8 
4 
7 
7 
3 

" 7 
8 
3 

·6 
7 
1 2 
4 
7 
7 
7 
7 
7 
8 
6 
6 
s l 

B 
5 
8 
6 
4 

2 

6 2 
9 
5 
8 
8 
7 2 
4 
7 
8 
7 

" " 7 

H N 
3 
1 
7 

11 
6 
5 
7 

11 
5 

13 
6 .• 

10 
'l·O 

7 
a 
9 .• 
6 
7 
5 i 
7 
a 
6 . 1 
5 
7 
9 
7 
9 
6 
4 
6 
6 

10 
e 
7 
9 
8 
9 

13 _ 
6 
7 
6 
7 

15 
4 
2 
8 

" l 
7 
9 
7 
8 
8 
7 
5 
7 
6 

" 9 
6 

0 
7 
4 . 
5 
1 
4 
1 

2 

2 
l 
l 
2 
.! 
2 
3 
3 

3 . 
1 
3 
3 

4 
l 
l 
3 
3 

2 
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TABLE XXVIII {Continued) 

A805-19-01 .WILFORTRlNE C.H. ABOS-19-01 WI LFQRTR I NE C•H• 1..:.09..:71 

INT DETM,.. CALC. DIFF TDL C c• " N 0 INT OETM. CALCe DIFF TDL C c• H N 0 
10 123.04l!-10. 123.04460 - e4 2e7 7 7· . 2 10 160.04010 160.03718 2.9 3.0 6 . 8 . 5 
10 124.05399 124.05243 1.6 7 . 8 . 2 10 160.04010 160.03986 .2 9 . _6 1 2 

0 125:e00589 125.00860 -2-.. 6 2 . 5 . 6 10 161.05869 l61 e06024 -1.s .10 . 9 . 2 
0 125.06250 125.06026 2,2 7 . 9 . 2 10 162.06199 162.06360 -1.s 9 I .,, . 2 
0 126.03499 126.03437 06 9 .. 1 10 162e06199 162e05913 2.9 8 2 8 . 2 
0 128.06269 128.06260 .1 ID . 8 . . 0 162.0703'0 162 .. 06808 2.2 10 . 10 . 2 
0 129.07310 129.070.43 2.7 10 . 9 . 0 163.-07769 163.07590 1.s 10 . 11 . 2 

10 130.06619 130.06567 .5 9 . 8 I . 0 165.04479 165.04259 2,2 8 . 7 I 3 
0 131.03859 131.03711 1,5 8 . 5 1 1 0 165.06079 165.-05784 3.0 12 . 7 1 . 
0 13'1.05219 13le04969 2,5 9 . 7 . 1 0 165.06079 165e06371 -2,8 s . 11 1 s 

10 131.07429 1a1.07349 ,8 9 . 9 1 . 0 166.06590 166.06300 2,9 9 10 . 3 
20 13·2.04569 132.04493 ,8 8 . 6 l l 0 166.06590 166.-06568 .2 12 . 8 l . 

0 132.08289 132.08132 1,6 9 . 10 1 . 0 166.06590 166.06707 -1.1 .. 1 11 1 5 
50 133.05439 133.05276 1-.6 8 . 7 l l 0 167 .• 07989 167.07937 ,S 5 . 13 l 5 

0 133.06440 133.06534 - .s " . 9 . 1 10 168.00469 168.00586 -1.1 7 4 . 5 
20 13 ........ 06049 134.05791 2,6 s 10 . .. 0 173.06090· 173.06026 .6 11 . 9 2 
20 134.06049 134.06057 - ,O 8 8 l 1 10 17lh06989 174.06808 1.e u . 10 . 2 .. 
10 136.05289 136.05243 ,5 8 . 8 .. ~. 2 60 175.06469 175.06332 t.4 10 . 9 l 2 
10 136.05289 136.05204 .9 2 2 8 .1 4 -- 0 175.07lt-89 175.07S89 - ,9 11 . 11 . 2 

0 139.02449 139.02426 ,2 3 .. 7 6 0 175.07489 175.07550 - ,5 5 2 n 1 .. 
0 139.02""49 139.02693 -2,3 6 . 5 l 3 30 176.07259 176.07115 1,4 10 . 10 1 2 
0 139.04090 139.03952. lo4 7 . 7 . 3 0 177.06290 t 77.o6a72 - .7 6 . 11 1 5 
0 139.04090 139.04219 -1.~ 10 . 5 1 . 10 177.07740 177.-07630 lol 7 . 13 5 

10 14lo071B0 141e07043 1,4 11 . 9 . . 10 177e07740 177.07897 -1.s 10 . ll 1 2 
0 143.00269 143.00072 2,0 8 . l 1 2. 10· 177.07740 177.07451 2e9 9 1 10 1 2 
0 144.00860 144.00588 2.7 5 . 4 . 5 20 178.04999 l 78e04774 2e,3 6 . 10 .. 6 
0 144.00860 144.00856 .o 8 . 2 1 2 20 178.04999 178e05040 - ,3 9 . a l 3 
0 145.01580 145.01370 2,1 5 . 5 . 5 0 179.07049 179.07081 - .2 10 . 11 . 3 
0 145.01580 145.01.637 - .5 8 . 3 l 2 0 179.07049 179.07348 -2.9 13 ·• 9 1 . 

10 145.06559 145•06534 ,3 10 . 9. ; 1 0 180.04310 180.04226 ,a 9 . 8 . 4 
0 145.07170 145.07389 -2.1 6 . 11· 1 3 0 t80.o43to 18Ce04493 -1.7 12 . 6 l 1 

0 1~.06609 146.06868 -2.s 9 l 9 . 1 0 1'81•05039 1e1.osooa ,3 9 . 9 . .. 
0 146.06609 146.06.c-+22 1,9 8 2 8 . 1 0 1Ble05039 lSJ..05275 -2.3 12 . 7 1 1 
-0 147.04619 147.04460 1.6 9 . 7 . 2 0 182.0297.9 182.03006 - .2 " . a l 7 
0 147.08209 147.08099 1.1 10 . 11 . 1 0 182.04419 18-2.04265- 1.5 5 . 10 . 7 
0 147.08209 147e08060 1,5 .. 2 11 l 3 0 182.04419 182.04532 -1.0 8 . 8 1 .. 

10 148.04239 148.0398S 2,5 8 6 I 2· 20 182.08289 1s2.oe1?1 1.2 ·9 . 12 l· 3 

10 149.05939 149.06024 - ,8 9 . 9 . 2 0 l82el l2l9 182.10955 2,6 1'> • . 14 
20 149.08400 l 49e08139 2,6 6 . 1~ . .. 10 1e2.1ss20 182.15411-9 .7 11 • ·20 

20 149.08400 149.084-06 - .o 9 . 11 1 I 0 182.16970 182.16707 206 12 . 22 

70 150.05769 1so.ossso 2.2 3.0 8 . 8 1 2 0 182.18850 182.19087 -2.3 12 . 24 
0 150.07900 1S0.0766t+ 2 .• 4 5 12 1 .. 0 183.08820 183.08687 1,3 6 . 15 . 6 

20 150.09390 150.09189 2.0 9 . 12 1· I 0 183.08820 183.08954 -1.2 .. . 13 l 3 
0 151eOA099 151,03952 1.5 a 7 3 ,o 187.07800 lEl7e0759l 2., 12 . 11 . 2 
0 151.04099 151.04218 -1.1 11 5 1 . 0 189.01909 189.01878 .3 10 . 5 . 4 

10 151e06160 15la06065 ,.o 5 . 11 . ·5 0 189.01909 189002145 -2.3 13 . 3 1 1 
10 151.06160 151.06332 -t .. 6 a . 9 1 2 0 190.06300 190.06300 ,O n . 10 . 3 
10 151.06160 ·151.05886 2,7 7 1 8 1 2 0 190.06300 190.06567 -2.6 14 . a 
10 152.05139 152.05002 ••• 11 . 6 1 . 10 19le07520 191.073SO 1.7 14 9 
10 153.05679 153.05517 1.6 8 . 9 . 3 0 192.00430 192.00587 -1.~ 9 . " . 5 
10 153.05679 l S3e0S783 - .9 l1 . 7 1 . 0 195.08660 )95.08686 - .2 7 . 15 . 6 
10 153.05679 153e05924 -2..4 3 1 10 1 s 0 195.08660 195.08954 -2.e 10 . 13 ! 3 
10 153.056(9 153.05478 2.0 2 2 9 1 5 0 195.08660 195e08508 1.s 9 l 12 1 3 

0 153.07339 153.07042 3,0 12 . 9 . 10 203.06870 203.07082 -2.0 3.2 12 . 11 . 3 
0 153.07339 153w.07629 -2.e 5 . 13 . s 10 204.06800 204.06607 t.9 11 . 10 1 3 

0 155.00249 lSS.00072 1.e 9 . l I 2 0 205.08750 2cs.oa647 1.0 12 . 13 . 3 
0 156.09349 156".09389 - .3 12 . 12 . . 0 20So087'.50 2:0S .. 08914 -1.s 15 . 11 1 . 
0 158.06139 158.06058 .a ID . s 1 1 10 206.08010 206.07904 hl 8 14 . 6 

10 158.0704-9 1S8.07315 -2.6 11 . 10 . 1 10 206.08010 206.08171 -1.s 11 . 12 1 3 
10 159.08129 159.08099 .3 11 . 11 1 0 216.07670 2l6e07864 -la8 13 . 12 . 3 ..... 

°' N 



TABLE 

ASO_S-19-01 WlLFORTRINE 

INT DETM.· CALC. DiFF TOL C c• H N 

0 217.08320. 217.08200 1.2 3.2 1?.. 1 12 . 
0 21 '7e.08320 2·17.08467 -1.4 !fr 1 10 l 
0 217.08320 217.08340 - .1 4 2 15 . 
0 217.08320 217.08021 3.0 14 2 " 1 
0 217.08320 217~08608 -2.a 7 2 13 1 
0 222.07·170 222.07395 -2.2 8 . 14 . 
0 233.08409 2~3.08138 2.7 13 13 . 
0 233.08409 233.08406 ·.o 16 . 1·1. 1 
0 234-.00889 234.00972 - .7 3 . 8 1 

10 ·2so.107-a9 2so.1os2s 2e6 3e4 10 . 18 . 
10 250.10789 2so.10792 .o 13 16 l 

0 ·718e27370 ·ne.27193 le8 4e8 50 . 38· 
0 71Se27370 ;71a.277eo -4.0 43 . 42 . 
0 718.27370 718.27460 - .8 53 36 1 
0 718.27370 718.27110 206 35 . 44 1 
0 718.-27370 718.27697 -3,2 28 48 1 

10 829.27649 829.27-'2.7 2.2 s.1 <,2 • . 37, 
10. 829.27649 829.28013 -3.5 55 -i-
10 -a29.27fM."9 829.27693 - o3 65 

.. . 35 1 
10 S29a27649 '829.,27930 -2.7 ··,.·o· . 47 l 

0 830.28400 830.28210 1.<> - 62 . 38 
0 830.28400 830.28797 -3.9 55 . 42 . 
0 830e26400 830e28477. ~- .7 65 . 36 l 
0 830.28400 830.28714 -3.0 40 • · 48 1· 
0 830~28400. 830.28350 .5 54 1 41 . 
0 8~0.2840.0 830.28617 -2.1 57 l 39 l 
0 830.28400 830.28268 1.3 39 1 47 l 
0 830.28400 830e2&840 -4.3 64 2 36 . 
0 830.28400 830.28490 - .s 46 2 44 . 
0 830•281f.OO 830.28-171 ·2.3 56 2 38 1 
0 830e28400 830.28758 -3.5 49 2 42 1 

10 873e26629 873.26410 2.2 s.2 63 . 37. . 
10 873.26629 873.2.6996 -3.6 56 41 . 
10 873.26629 673.-26676 - ... 66 . 35 1 
10 873e26629 873.26913 -2.7 41 . 47 l 
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