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two pitch ratios were presented and discussedo The computed friction 

factors were compared with experimental datao 
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CHAPTER I 

INTRODUCTION 

Most recent and reliable design methods for baffled shell and tube 

heat exchangers are based upon the heat transfer and fluid friction 

factors of the ideal tube bank which approximates the array of tubes 

between each pair of baffles. Successful empirical correlations of the 

shell side friction factors and heat transfer factors for ideal tube 

banks have been obtained for most tube layouts of interest over a wide 

range of Reynolds number. 

However, there has been no significant progress in the theoretical 

investigation into the tube bank flow and heat transfer mechanisms which 

are important for evaluating design parameters and for providing the 

insight and accurate understanding of experimental data. 

The purpose of this study was to survey the fluid dynamics and 

heat transfer mechanisms during flow across banks of tubes by exploring 

possible semi-empirical models and analytical and/or numerical methods 

to predict heat transfer and friction factors for ideal tube banks, and 

finally to compare these predictions with the available experimental 

datao 

were: 

Fluid flow models and methods originally intended for investigation 

I. Mechanistic models, where arrays of tubes are assumed to 

behave as: 

1 



1. A series of nozzles 

2, A porous medium 

3. A mesh of woven wires 

II. Analytical-empirical models in which fluid flow is assumed 

to be equivalent to: 

1, Flow across a si:n.gle cylinder, corrected for the 

influence of neighboring tubes· 

2. Flow aeross an infinite transverse row of tubes, 

corrected for the influence of preceding and 

succeeding tube rows 

III. Analytical solutions of related geometries such as: 

1. Flow in cQnverging and diverging ducts 

2. Flow over wedges 

IV. Boundary layer analysis for a single cylinder with a wake 

correction 

v. Variational method for solution of the Navier-Stokes 

equations for laminar flow 

VJ;. Numerical integration of the Navier-Stokes equations for a 

unit cell of tube bank 

Only some of the simplified flow models were investigated, but 

numerical methods were explored in detail. Heat transfer calculations 

were not attempted as part of this thesis, but are mentioned in the 

recommendations of C~apter VI~ 
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CBA.PTER II 

BACKGROUND 

Tube Bank Arrangements 

Three tube arrangements in shell and tube heat exchangers are most 

commonly used for s~tisfing the ordinary requirements for industrial 

practice on heat exchange and pumping power. Figure 1 shows ,the sche

matic of these three tube layouts and the unit cells of tube banks· 

defined. 

flow 
~ 

D ~ 
CTQO~ 

Inline Square Pitch 

flow -

Triangular Pitch Rotated Square Pitch 

Figure 1. Tube Layout Schematic 

The unit cell of a tube bank may'be defined as an element of flow 

channel and part of tube(s) in which all the characteristics of flow 

across tube bank can be represented. The tube clearance, Dc, is the 

shortest distance between adjacent tubes~ The tube pitch is defined as 

.3 



the shortest ,eenter-to-center distance between adj~cent tubes (s1 , St, 

and Sd). The most common term used in this study is the pitch ratio, 

defined as the ratio of the pitch to the outside diameter of the tube 

(e.g., st/Dt and s1/nt). 

Fluid Dynamics in Ideal Tube Banks 

4 

There is no clear-cut Reynolds number criterion for the laminar

turbulent transition for flow in tube banks, unlike for flow in cylindri

cal conduits. The University of Delaware Experiment Station Bulletin 

No. 5 (10) states: 

Because the cross sectional area of the flow channel is not 
constant, the inertia terms (those involving velocities to 
the second degree) in the Navier-Stokes equations are not 
zero (though they become vanishingly small compared to the 
viscous terms at very low Reynolds numbers) and the onset 
of true turbulence is masked by kinetic or iriertial effects 
on the pressure drop. On the other hand, inertial phenomena 
min;imize the effect of disturbances in the entering flow and 
other entrance length phenomena and eliminate (so far as has 
been observed) the possibility of quasi-stable laminar flow 
at high Reynolds numbers in tube banks. 

However, for the sake of convenience and uniformity, the following 

divisions of the flow reg:i,ons. have been usually adopted: 

0 < Re< 100 

100 < Re < 4000 

4000 < Re· 

laminar 

transition 

turbulent 
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The laminar flow regime of tube bank flow whtch may be taken as the 

Stokes flow or creeping flow regime is the Reynolds number range over 

which the friction factor is very nearly inversely proportional to the 

Reynolds number, and the initial deviation from t}ti.s linearity is due to 

inertial phenomena rather than to the random velocity fluctuations that 

are characteristic of turbulent flow, 

Transition flow regime is characterized by the appearance of 

occasional eddies in the main flow stream in the tube banks: the friction 

factor becomes greater than the value expected from laminar flow, which 

indicates the irreversible momentum loss due to random eddies. For 

inline tube banks, the friction factor curve goes through a minimum and 

then increases smoothly to the value for fully developed turbulence. 

In the turbulent flow regime, where random velocity fluctuations 

and continuous well-developed eddies exist, the friction factor becomes 

proportional to about -0.2 to -0.4 power of the Reynolds number. 

Literature Survey 

The discussion of publications in this section will primarily 

concern fluid flow and pressUJ;'e drop for incompressible viscous flow 

across tube banks. 

§xperimental ~ 

Extensive experimental data of pressure drop and heat transfer for 

flow across banks of tubes were presented by Huge (2) and Pierson (3) in 

1937. The most recent and most comprehensive experimental investigations 

to develop design methods for shell and tube heat exchangers were initi

ated at the University of Delaware in 1946 and completed in 1963 (1, 4, 

5). The chief result of the Delaware project was the accumulation of a 
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large amount of carefully-obtained data whose interpretation has been 

published as correlations of pressure drop and heat transfer coeffici:ents 

and as proposed methods of shell and tube heat exchanger design (6). 

Empirical Correlation 

In 1933, Chilton and Genereaux (7) proposed a friction factor corre

lation with the scattered, meager pressure drop data available at that 

time. They presented the following correlations, 

f = 

f "i' 

f = 

where 
f = 

and 

Re= 
C 

13.2 

Rec 

0.57 

Reo.2 
C 

0.264 

Re0.2 
C 

2b.P gcp 

4 G2 N m t 

D G 
C m 
f 

(laminar flow; 
rotated square pitch) 

(turbulent flow; 
rotated square pitch) 

(turbulent flow; 
inline square pitch) 

(2-1) 

(2-2) 

(2-3) 

(2-4) 

(2-5) 

No correlation was presented for laminar flow in inline tube layouts due 

to the absence of data. 

In 1937 Grimison (8), using the data reported by Huge and Pierson 

(all of it in the turbulent flow regime), presented graphical correla

tions of friction factor as a function of Reynolds number based on tube 

diameter, Dt, 
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(2-6) 

with the parameters of the transverse tube spacing to the tube diameter, 

st/Dt' and the ratio of the longitudinal tube spacing to the tube diame

ter, s1/nt. 

Gunter and Shaw (9) in 1945, also based on the data by Huge and 

Pierson, attempted to develop a single friction factor correlation appli

cable to all the tube layouts and spacings, by using the volumetric 

hydraulic diameter Dv' instead of tube diameter, Dt• 

However, as was pointed out by Boucher and I.apple (10) in 1948 in 

their critical comparison of the reported data and proposed correlations 

for pressure drop of Newtonian fluids across tube banks, no equivalent 

diameter should be expected to correlate the data from geometrically 

different tube banks into a single curve, because hydro~ynamic similari

ty requires geometric similarity. 

Recommended empirical correlations from the Delaware project (1) 

are hence presented in the form of graphical correlations of the friction 

factors defined by Equation 2-4 for different tube layouts as a function 

of Reynolds number based on tube diameter, or Equation 2-6. 

Theoretical Study 

There has been little progress in theoretical investigation on tube 

bank flow phenomena. The difficult geometry involved and the complex 

mathematical solutions anticipated have so far discouraged seeking a 

rigorous solution. 

The Navier-Stokes equations have been recognized as the appropriate 

system of partial differential equations for describing flow of viscous 
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fluids. The difficulty of solving the Navier-Stokes equations is due to 

the non-linearity of the equations introduced by the convective terms. 

In analytical approaches to solving the equations for the limiting case 

of very low Reynolds number, the non-linear terms are either neglected 

or linearized: in the Stokes solution, the convective terms are neglect

ed; in the Oseen•s solution, those terms are approximated by utilizing a 

constant free stream velocity. 

Three attempts have been made to predict the tube bank friction 

factor without resort to flow experiment. 

In 1957 Tamada and Fujikawa (11) solved Oseen•s linearized equation 

for steady state laminar flow past an infinite row of regularly spaced 

cylinders in a plane perpendicular to the uniform stream (Figure 2). 

y 

Lx - 1 
Dt 

_J -
Figure 2. Flow Normal to a Single Row of Cylinders 

Oseen•s linearized equation is expressed in terms of vorticity~, 

(2-7) 

where r is defined by 

c)V ~U 
?: = -·--';:)x d y 

. (2-8) 
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The solution is obtained as an infinite series in Reynolds number with a 

parameter of the pitch ratio, St/Dt. Their solution verifies some of 

the observed features of tube bank flow at low Reynolds numbers: 

1. At a fixed fluid velocity, the drag on a cylinder in the 

infinite row is greater than the drag on the same cylinder 

when alone in a uniform flow. 

2. As the Reynolds number increases, the drag on the cylinder 

deviates more from the drag for a cylinder in the uniform 

flow. 

3. The dr~g is proportional to the velocity at low Reynolds 

numbers. 

However, the solution does not account for the interaction effect of the 

neighboring rows that is characteristic of tube bank flow. 

In 1959, Happel (12) proposed an "equivalent free surface" model 

for flow normal to arrays or cylinders, thereby conveniently describing 

the boundary conditions in the polar coordinate system (Figure 3). 

actual array model of unit 
cell or fluid 

Figure 3. 11Equi valent Free Surface" Model 



Happel solved the Stokes equation expressed in terms of the stream 

function Y1, or the biharmonic equation for 'f/!, 

v4 -y.r = o 

where ljf is defined as 

V =--r 

"?; Yi 
V =--
0 ~r 

10 

(2-9) 

(2-10) 

(2-11) 

His result for rotated square array is in good agreement with the 

pressure drop reported by Bergelin et al (4) in the Delaware project for 

Re<::. 100, but about 30 to 55 percent low for the other tube layouts. 

Friedl and Bell (13) in 1960 applied an electro-conductive analogy 

to the creeping flow regime, assuming that the streamlines and isopo

tential lines of the steady potential flow of an inviscid fluid are 

identical with the stream lines and constant pressure lines of creeping 

flow. The isopotential lines were found by laying out the tube bank 

array on conducting paper and applying a voltage difference between 

edges of the paper (Figure 4). 

potentiometer 

\ 
J 

Figure 4. Electro-conductive Analogy 
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The isopotential field was divided into an arbitrary number of flow 

elements bounded by solid surfaces and two arbitrarily spaced.isopoten

tial line~. The pressure drop for each flow element was computed utiz

ing the solutions derived by Graetz (14) for laminar flow through rectan

gular conduits. The total pressure drop was then found by integrating 

the pressure gradient~ for the flow elements along a stream line through 

the entire tube bank. Friction factors calculated for three tube arrays 

(inline square, rotated square and equilateral triangular) were within 

-2 to -14 percent of the Delaware experimental friction factors over the 

Reynolds number.range of 2 to 50. 

All of these attempts have been limited to the friction factors at 

low Reynolds n\111/,be~ or creeping flow,and they failed to give much physi

cal insight into flow phenomena in tube banks. No treatment has yet 

been proposed either for the friction factor at higher Reynolds numbers .. 

or for heat transfer over any range of Reynolds number. 



CHAPTER III 

SIMPLIFIED FLCM MODEIS 

Tamada and Fujikawa's attempt (11) is mathematically too complex 

and tedious. Happel's "equivalent free surface" model (12) is physi

cally unrealistic. Friedl and Bell's electro-conductive analogy (13) 

is based upon an unproven assumption concerning the basic fluid dynamics. 

In the early stage of the project, simplified flow models which 

would give more realistic and useful pictures of tube bank flow were 

investigated in an attempt to obtain tube bank friction factors as a 

function of Reynolds number. 

The flow models attempted are presented in the following sections. 

The variational method reported in the last section is discussed in 

somewhat more detail. 

Model I: Converging and Diverging Channel Flow 

In this case, the flow between two tubes in a tube bank was assumed 

to be the flow through a family of converging and diverging channels 

(Figure 5). The equation of continuity and the equations of motion 

applied at an angular position of.¢ were reduced to the dimensionless 

equation of velocity distribution. The derivation of the equation is 

given in Appendix A. The resulting expression was written 

F ' ' ' + 2Re F F ' + 4F ' = 0 r 

12 

(3-1) 
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where the dimensionless velocity profile is defined by 

F(¢) (3-2) 

and R~r is the Reynolds number on the centerline x = 0 defined by vu;:/µ. 

The boundary conditions for Equation 3-1 are 

F(¢) = 0 at the wall 

F(O) = 1 } 
on the centerline x = 0 

F'(O) = 0 

Figure 5. Converging ·and Diverging Channel 
Flow Model 

(3-3). 
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The attempt to.obtain the solution or Equation 3-1 was not success

ful.¢ When the converging section or the flow channel is assumed to con

sist ot a boundary layer flow near the tube surface and of potential 

:f'low in the core region, which approximates the flow at high Reynolds 

number, the analytical solution has been reported (15): 

2 ~ ' 
.F(Q) = 3 tanh [i~(e - ¢) + 1.1462 J - 2 (.3-4) 

The friction factor for the converging section of the channel is calcu

lated from Equation 3-4 in terms of tube bank Reynolds number defined by 

Equation 2-6, · 

14.7 
f = -.=====

~ Re(Pt - 1) 
(3-5) 

where Pt is the transverse pitch ratio equal to St/Dto The derivation 

or the equation is presented in Appendix A. The experimental evidence of 

f being,proportional to ...0.2 to -0.4 power of Re at turbulent region 

does not support this expression, although Equation 3-5 is at most valid 

ozµy for the forward halves of the tubes. 

Model IIi Non-uniform Duct Flow 

Assuming a·creeping flow between_ two tubes with no pressure gradi

ent in y-direction (Figure 6), the Hagen-Poiseuille equation may be · 

written in differential form as, 

dP 3 f-W 
------ 3 

dx . 2 f gc cl 

(3-6) 



where W = mass flow rate between tubes per unit depth of tube 

= u (Pt - 1) Dt 

c1 = one half the clearance between tubes 

= Pt - ~ 2X. - x2 

and X = x/R 

15 

(3-7) 

(3-8) 

Equation 3-6 is rearranged with Equations 3-7, 3-8 and the tube bank 

friction factor definition, Equation 2-4, and then integrated from x = 

0 to x = 2R to result in 

where 

6 P - 1 
f = - ___ t __ f(Pt) 

Re p3 
t 

-- ~01 dX f(Pt) --"";1-=-=:~-::i::-
[Pt -12X. - X:G J" 

I 
W ~CI 

iJ..: I I __ t., ,, 

/' ,4~ 
ldx I 

X = 0 1 ,..--.--.. 

I 

_...._ --x 

:\ 
I X = 2R 

f 

Figure 6. Non-uniform Duct Flow Model 

(3-9) 

(3-10) 
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· The function f(Pt) -has:.been .calculated as a !unction· oi'. Pt ( 18) and is 

given graphically ih Figure 7. 

50 
40' 

30 

20 

10 

1/Pt 

Figure 7. Function f(Pt) 

For Pt= 1.50 and Pt= 1.25, f(Pt) is 13.9 and 48.7, respectively, 

and the tube bank friction factors become 

15.5 
f = (3-11) 

Re 

and 
37.5 

f = 
Re 

for Pt • 1.25 (3-12). 

The Delaware isothermal friction factor data for inline square tube 

banks show that in the creeping flow range 

18.0 
f=-.--

Re 
for Pt= 1.50 (3-13) 
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and 
48.0 

f ---- for Pt .. 1.25 (3-14) 
Re 

Thus Equations 3-11 and 3-12 are in fairly good agreement with the 

experimental data, indicating some validity of the model in the creeping 

flow range. 

Model III: Channel-Wake Flow 

In this model, at high flow rates, tube bank flow is assumed to be 

a combination of flow in a duct and wakes between succeeding tube rows 

(Figure 8). 

interface 

---- __ vortex induced 
by main flow 

Figure 8. Channel-Wake Flow Model 

For the duct flow, the method of Model II was applied using the 

turbulent friction factor equation for uniform duct, or the Blasius 

equation ( 19) , 

f = (3-15) 

For wakes, the pressure loss was assumed to be the energy dissipated 

through the vortex motion of the fluid. The Rayleigh flow (15) induced 
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by sudden motion of a plate was assumed in order to calculate the energy 

transfered to the vortex from the main channel flow; that is, a sheet of 

fluid is continuously accelerated by the main flow at the interface of 

the flow regions. The derivation of the equations is given in Appendix 

B. The final expression obtained is 

f = 
1.13 (Pt - 1)3/ 2 

+-------------{Re" (Pt - cos e)(Pt - sin e) 

(3-16) 

where 

dX 
(3-17) 

The contribution of the second term of the right hand side of Equation 

3-16 is found to be too small to be reasonable as the energy dissipated 

by the wakes. 

Indirect Solution of the Navier-Stokes Equations 

by the Variational Method 

T~e variational method makes use of the principle that the stable 

configuration is the one which minimizes the rate of entropy productiono 

The method has been found to be particularly useful to obtain approxi

mate solutions for a wide variety of problems, especially in structural 

engineering and elasticity. The variational techniques applicable to 

transport phenomena have been well summarized in the textbook by 

Schechter (20). Schechter (21) has solved the steady flow of a non

Newtonian power;.-law fluid in a cylindrical conduit by the variational 
r 

method. Delleur and Sooky (22) have obtained approximate velocity 
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distributions for Newtonian flow in rectangular duct. 

The variational principle states that the motion of an incompressi

ble fluid which satisfies the equation of continuity, the equation of 

motion, and the specified boundary conditions along the whole boundary 

is such that the dissipation integral, 

(3-18) 

attains a minimum for steady uniform flow, where Fis the variational 

function specific to the particular problem and represents the rate of 

total energy change in an unit volume of the system. It has been 

proved ( 23) that minimizing the integral of Equation 3-18 is equivalent 

to solving the Navier-Stokes equations with the inertia terms neglectedo 

The variational function for the two-dimensional power-law fluid 

flow across an unit cell of tube bank shown in Figure 9 may be written, 

n+l 

F = [ 2 { <!~)2 + <!~)2)+ <!~ + ~~)2] 2 

(3-19) 

The derivation of Equation 3-19 is presented in Appendix c. Here, n is 

the power-law index in shear stress-strain expression; thus Equation 3-

19 reduces to the Newtonian case when n = 1; X and Y are normalized by 

R; U and V by ii; and Re and fare defined by Equation 2-6 and Equation 

2-4, respectively. 

In applying the variational principle for steady, incompressible 

flow, use is usually made of the Ritz-Galerkin method (20), in which a 
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trial velocity profile is to be so chosen that the boundary conditions 

are satisfied and the dissipation integral becomes a minimum. 

In this particular tube bank flow problem, first, velocity distri

butions for U and V are assumed which satisfy all the boundary conditions 

on a unit cell of tube bank (Figure 9), that is, 

U = 0 

V = 0 

~U. -·= 0 .?>Y 

u = u max 

V = 0 

/ 
X. -P I 

11 

} on the tube surface 

+ at Y .. - Pt 

} at Y = :!: Pt 

rru 

' y = -Pt 

Figure 9o Unit Cell and Flow Model 
for Variational Method 

(3-20) 

(3-21) 

(3-22) 

The assumed velocity profiles that are functions of X and Y with 

parameters, C., to be specified, are then substituted into the dissipa-
1. 

tion integral I of Equation 3-18, or 

pt pl . . Eil. } 
I =\ \ {[2( ;~)2+2( :i)2+( ~~ + ~i)2 ] 2 -i (U+\T.~i) dXdY 

-Pt-Pl 

(3-23) 
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where m = Re f 
l' n n 

and P1 = longitudinal pitch ratio, s1/nt. 

The integral I is then minimized with respect to each of the parameters 

in the assumed velocity profiles by the following set of conditions:•· 

_:L = ~\ ~ dX dY = 0 o>C. de. 
l. l. 

(i = 1,2, •••• np) (3-24). 

where n is the number of parameters in the U- and V-profiles. 
p . 

One of the velocity profile parameters can be determined.a priori from 

the continuity condition that 

p -1 

1 = -p-:---1 \ t U X=O dY (3-25) 

'Equations 3-24 and 3.-25can be solved to find the optimum values for the 

parameters Ci and ~·which in turn minimize. the dissipation integral. 

Since Equation 3-23 can be integrated analytically for n = 1, it 

was first solved with the Newtonian case. The first trial velocity 

distributions attempted were 

. 2 2 . 2 
U = (c1 + Cf- )(X + Y - 1) 

v = c3x Y (P! - Y2)(x2 + Y2 ..;. 1) 

(3-26) 

(3-27) 

These satisfy the non-slip condition on the.tube surface and the maximum 

velocity condition along the boundary line of a unit cell, Y =±Pt. It 

must be noted however that the U-profile does not satisfy the condition 

of zero velocity gradient along the same boundary line of Y =!Pt, i.e., 

Equation 3-21, since 



~u 
~y = 2 Y (Cl + C 2 X2) 

does not become zero at Y =±Pt• 
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(3-28) 

The details of integration and minimization of the dissipation integral 

with these first trial velocities are given in Appendix D. 

The following friction factor vs. Reynolds number relations result 

~x when the last term in the right hand side of Equation 3-23, i.e., V. 0 y, 

is neglected: 

18.4 
f = (3-29) 

Re 

45.5 
f .. (3-30) 

Re 

These results give unexpectedly good comparison with the experimental 

data (Equations 3-13 and 3-14) despite the fact that the trial velocity 

profiles Equations 3-26 and 3-27, do .not satisfy the condition of zero 

velocity gradient at Y =~Pt or Equation 3-21. 
-;;ix 

It is interesting to note that when ~ term was not neglected but 

assumed to be 

oX X 
c>Y = y 

the final results become, 

21.7 
f =---

(3-31) 

(3-32) 
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and 

52.8 
f =---

Re 
for Pt = 1.25 (3-33) 

In the next step, a more sophisticated and presumably better 

velocity profile for U was tried: the second trial velocity profiles 

were 

U =(cl+ c2 x2)(x2 + Y2 - 1)(2 p~ - 1 - Y2 + x2) (3-34) 

2 2 2 V = c3 X Y (Pt - Y ) (X + Y - 1) (3-27) 

which satisfy all the boundary requirements including Equation 3-21 as 

can be shown by 

oU ( 2 2 2 ( ) aY = 4 Y c1 + c2 x )(Pt - Y) + = o 3-35 
y = - pt 

Equations 3-34 and 3-27 are substituted into Equation 3-23. Upon int~ 

gration, the dissipation integral is then minimized with respect to 

velocity parameters, C .• The details of the manipulation of this pro-
1. 

cess are given in Appendix D. 

ox 
The following final results are obtained for the case of c)Y = O; 

98.3 
f = (3-36) 

Re 
and 

478 
f = 

Re 
for Pt = 1.25 (3-37) 

oX X and for the case of c,Y = -y-; 
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111 
f = for Pt = 1.50 (3-38) 

Re 

and 

555 
f = for Pt = 1.25 (3-39) 

Re 

Contrary to the fact that the second trial velocity is presumably better 

than the first one, the results obtained are worse. 

In order to check the analytical solution of the variational method 

for n = 1 as well as to explore the case of n F 1 once the Newtonian 

case was successful, a computer program was written to perform the 

numerical double integration of I of Equation 3-23 and its derivatives 

~ ~- a~ to execute the minimization process ~y the steepest-descent 
J. 

method. The double integration was carried out using the simple trape-

zoidal rule by discretizing the flow channel area of a unit cell of tube 

bank with square meshes. The steepest-descent method of Booth (24) was 

applied for optimizing the assumed velocity profile that would minimize 

the dissipation integral. Derivation of the equations for the Booth 

method is presented in Appendix E, which is adapted from the paper by 

Simon and Briggs (25). A block diagram of the computer program is shown 

in Figure 10. 

The calculations were tried for the Newtonian fluid case of n = 1 

for pitch ratios of 1.50 .and 1.25. But the solutions using the first 

velocity profiles Equations 3-26 and 3-27 with~= o, c>Y 

f=--- (3-40) 
Re 
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START) 

! 
Read control parameters and 
initial guess of c 2 and c3 

J, 

Calculate integral I and;~.' (i = 1, 2 and 3) 
l. 

1 
I 

Compute i 
I 

C. = - S [ r(..!1 )/ £ (il ) 2 ] 
1. QC, . l ~C. l. l.= l. 

for 1 ~= 2 and ~ = 1 

l 
Compute I(i) 

3 ~I . 
and I(l) by using I = I(O)+~ [Gae. J 

i=l ~ i l. 

New 
I and C. 

where I(O) • I at s= O, I(i) = I at 1 l. ~- 2 and 

' 
I(l) • I at s = 1 . 

l 
Compute 

~I 

c~ew= - [I(l)-4I(t)+3I(O)]I(O) ( ~ 02 s =0 
1 4[I{l)-2I{t)+I{O)] 3 clI 2 2 [~ <aa) J 

i=l i s =0 
J 

3 
Compute Inew = I(O)old + 2, ~- ~C~ew and ~c. i 

. 1 l. l.= 

c:1ew = c?ld + ~c:1ew 
l. l. l. 

! 
no Inew _ Iold 

Is < specified value ? 
Inew 

l yes 

STOP) 

Figure 10. Computer Block Diagram for Variational Method 



26 

and 

f = 
1708 

Re 
for Pt= 1.25 (3-41) 

did not reproduce the analytical solutions of Equation 3-29 for Pt= 

1.50 and Equation 3-30 for Pt~ 1.25. 

After considerable time spent on checking the computer program and 

the minimization procedure used and yet obtaining no reasonable results, 

the variational method was abandoned. 



CHAPTER IV 

NUMERICAL SOLUTIONS OF THE 

NAVIER-STOKES EQUATIONS 

The difficulty of obtaining an analytical solution for the flow 

over any submerged object beyond the creeping flow regime is that the 

non-linear convective effects are no longer negligible and the eddy 

behind the body leads to a region of separated flow which is not easily 

amenable to analytical treatment. 

Numerical solution of the Navier-Stokes equations is, therefore, 

coming to play an important role in theoretical research in fluid dynam

ics, especiall.y because of the advent of high speed electronic computers. 

The main roles of numerical solutions are that they can (i) give the 

minute details of phenomena of interest thus providing insight into 

the characteristics of the flow field, and therefore (ii) reduce the 

amount of experimental effort needed for the evaluation of design para

meters, and also (iii) be suggestive of new approaches to analytical 

solution~ 

The foundations of numerical methods £or solving fluid flow problems 

were laid about forty years ago by Thom (26). Among the flow problems 

which have been solved by numerical methods are (i) uniform flow past a 

single cylinder (26, 27, 28, 29, 30), (ii) flow in a conduit expansion 

(31)~ (iii) flow through pipe orifices (32), and (iv) flow in rectan

gular cavities (33). All these flow problems are relatively easily 

27 
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attacked because of possible variable transformations, in the case of 

(i) due to only one cylinder in the field, and because of rectangular 

boundaries in the cases of (ii) - (iv), where no irregular "star" exists 

at the boundaries. 

The difficult geometry involved has however so far apparently dis

couraged seeking numerical solutions of the Navier-Stokes equations for 

the flow in tube banks. 

The basic method of solution employed here is the classical "two

field" method used by Thom (26): replacement of the fourth-order non

linear partial differential equations of Navier-Stokes for the stream 

function yr, by two second order simultaneous equations for the stream 

function and the vorticity Z:. These equations are then replaced by 

their simplest finite difference approximations. In the case of two

dimensional flow, this coupled pair of finite difference equations has 

been known to exhibit superior convergence properties compared with 

finite difference expressions of the fourth-order partial differential 

equations involving the stream function when iterative methods are used 

for the solution. 

The difficulty of handling irregular "stars" on the boundary and 

lack of a single pertinent coordinate system for the tube bank geometry 

were overcome by smooth matching of the two coordinate systems - polar 

and rectangular - at the boundaries of the unit cells in the tube bank 

and by marching down the computation from inlet to outlet through the 

series of unit cells in the tube bank. 

The computer program has been developed for solving stream function 

and vorticity fields of an inline square tube layout with any number of 

tube rows in tube arrays having effectively infinite extent in the 
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direction normal to the flow. Only three tube rows are, however, con

sidered in the actual computation due to practical limitations of com

puter capacity available; this is sufficient to give interaction effects 

of neighboring rows as well as entrance and exit effects which are char

acteristic of flow across tube banks. 

Fundamental Governing Equations 

For two-dimensional, steady, incompressible, viscous N~wtonian 

fluid flow, the governing equations in rectangular coordinates are: 

(primed quantities are dimensional) 

Equation of continuity 

~ u' ::"l"lr' 
---- + .:..:... .. 0 o> x' ~Y' 

Equation of motion 

'cm' u' - + v' -ax' 
au• 1 ~P' -=---+ 
';;>y' p dx' 

Introducing the stream function l/i' defined by 

";)1jll 
u• =-

c)Y' 

v' ;;J1/n 
= - -a,x' 

(4-1) 

(4-2) 

(4-3). 

(4-4) 

(4-5) 
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then, the equation of continuity 4-1 is satisfied as 

~21f = 0 
~ Y' o>X' 

(4-6) 

Cross-differentiating the equations of motion, 4-2 and 4-3, with resepct 

toy' and x', respectively, and utilizing the continuity condition 4-1, 

one gets after rearrangement 

·}u, '$u' 1 ?>'2p, ]u, -Ju, 
u '-~-x-'a_y_' + v '~2 • - -p -~-y·,-~-x-, + JI ( 2 + --""!!!3-) 

,2 ' ,ov 
v ax'~Y' 

';)y' ;;:,y,~x' ~Y' 

Subtracting one from the other and thereby eliminating the pressure 

terms, one finds 

.... 
where it is assumed that the conservative body force g provides 

(4-7) 

(4-8) 

(4-9) 

clg' 
X 

'c;)Y' "' 
~g' y 
dX 1 

= 0 (4-10) 

• 



' Defining the vorticity "C, 
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~· - '::) u' 
~Y' 

(4-11) 

Equation 4-9 then reduces to 

(4-12) 

It should be noted that the vorticity ~'is defined by Equation 4-11 to 

be positive instead of the usual definition of 

,..., • -a.v• 
'? d x' (4-13) 

The reason for our definition is simply for computational convenience of 

handling vast numbers of computed values. This does not make a;ny differ

ence in the results obtained as far as the definition is consistently 

used throughout the derivation of equations and the computation w;i..th 

them. Equation 4-12, together with Equation 4-11 which is expressed in 

terms of 'fl'on the right hand side, i.e., 

~· (4-14) 

makes up the 11two-field11 expressions - stream function and vorticity 

formulation - of the Navier-Stokes equations. 

It is convenient to work with these expressions being non-dimen

sionalized. The following non-dimensional variables are introduced: 
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x = x'/R', y .. y'/R' (4-15) 

I_, _, 
(4-16) u • u' u , V • v 1/ U 

yr• 1/"/R' u1 (4 ... 17) 

C • ~1R1/ ii'. (4-18) 

Thus, the dimensionless Navier-Stokes equations in terms of stream 

function and vorticity for two-dimensional, steady, incompressible, 

viscous, Newtonian fluid flow are expressed in rectangular coordinat·es 

by 

(4-19) 

(4-20) 

•. 

where vorticity and stream function are redefined by 

(4-21) 

dvr 
u = -o>y (4-22) 

~-vr 
V =--

~X 
(4-23) 

and the Reynolds number is defined by 
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_, 
2R' u 

Re=---
JI 

(4-24) 

Similarly in the polar coordinate systems, the dimensionless govern

ing equations become 

(4-25) 

, • ~2 vr -2.Y. ,.; 1/1" 
'::::. 2 + + 2 2 

~r rc)r r ~e 
(4-26) 

where r .. r'/R' (4-27) 

I_, ;;;.yr 
(4-28) v0 = VQ . U = -~r 

I_, ~vr 
(4-29) V = V 1 U = - r~e r r 

1 do ~vr 
J (4-30) and ~ = ~ [ ~(r V) 

r ~r e d9 

Geometry and Boundary Conditions 

The geometry employed and the boundary conditions involved in 

computation are illustrated in the schematic diagram of Figure H. 

The reference length taken is the radius of a tube R equal to le The 

distance between upper and lower symmetry lines becomes therefore the 

transverse pitch ratio Pt. 
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y=Pt upper symmetry 11/r= pt -1 '\ line ~ Pt-I 43210 ~= 0 
'lf'=O, 

I 

I I j+l I 

y I j 
j-1 

yr -o J J \~cO ~ -o lower symmetry lJr .. J/r 
y = y(Pt-1)/Pt 

0 line 
~ =c 0 

Figure 11. Geometry and Boundary Conditions 

Incoming Flow: For uniform inflow, the vorticity is prescribed as zero 

at an inlet section some distance upstream of the first tube. The 

stream function is a linear function of the distance from lower symmetry 

line, i.e., -yr= y(Pt - 1)/Pt' such that the incoming flow velocity pro

file is uniform. The stream function at upper symmet'ry line y = Pt is 

set equal to (Pt - 1) so that the volumetric flow rate between lower and 

' ' 
upper symmetry lines becomes (t/ry'=R'Pt - lj-Y'=O ). 

Hence, 

(4-31) 

but (4-32) 

where uJo is the incoming uniform velocity. 



35 

From Equations 4-31, 4-32 and 4-17, one gets 

_, ' 
u R 

(4-33) 

Length of the inlet section was about 6.5 Rat Re= 1, which fur

nished an adequate inlet section in which the stream function was uniform 

to the order of 10-4• It was found that as the Reynolds number increased 

the diffusion of vorticity upstream became increasingly smaller and con

sequently the inlet length could be shortened to as little as 2o5 Rat 

Re• 100. 

Upper Symmetry Line: Since no mass and momentum transport occurs across 

the axis of symmetry throughout the tube bank, the following set of con

ditions is pertinent: 

(4-34) 

Lower Symmetry Line: Similarly, the following pair of values is set on 

this boundary; 

1.fr=O and ~ =0 (4-35) 

Tube Surface: To satisfy the non-slip condition at the tube surfaces, 

the normal and tangential gradients of the stream function must be zero 

at these boundaries. The tangential conditions are satisfied by setting 

Y,= constant, or more specifically lJr= O, along the tube surfaceso A 

special boundary formula which. satisfies the normal conditions has to be 
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developed for estimating the vorticity on the tube surfaces. 

The technique employed here is similar to that used by Hung and 

Macagno (31) for specifying boundary conditions at the straight walls of 

a conduit: essentially, expanding both "I/rand ~in Maclaurin series about 

the boundary values at the wall and utilizing the governing equations 

and boundary conditions to provide expressions for the higher order 

derivatives. The full derivation of the equation is given in Appendix 

F. The final expression for estimating tube surface vorticity ~Bis 

C:B = ( 1 
1 

(4-36) 

where h is mesh size in r-direction, 1./r B+l and ~ B+l are the stream 

function and the vorticity at the mesh point next to the surface node B, 

as shown in Figure 11. This expression should be accurate to the order 

of h-3• Estimation of the tube surface vorticity by Equation 4-36 is 

done at every computational sweep from upstream inlet section to down

stream outlet section. 

Outgoing Flow~ Outgoing flow at the downstream end must be given care

ful consideration because the conditions on this outlet section are 

expected to have a strong influence on the size and configuration of the 

eddy behind the last tube in tube rows. The condition of uniform 

velocity distribution must be imposed sufficiently far downstream so 

that the wake structure behind the last tube is not influenced by 

computational feedback. 

But for computational solution, the length of outlet section should 

be as short as compatible with the desired accuracy and computational 
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effort required. Instead of imposing a particular profile at the outlet 

section, e.g., 1f = y(Pt - 1)/Pt and C' =, O, a rather more flexible and 

plausible condition is prescribed based on Milne's predictor formula at 

every iteration (34): 

C o,j = z;4 .-2;'J .+2(1. ,J J,J ,J (4-37) 

'f'" . = 1'r4 . - 2 1/,r.3 j + 2 Y.,-1 · o,J ,J , ,J (4-38) 

where j is the index for y-coordinate at the outlet region (Figure 11). 

These formulae have been successfully used by Hung and Macagno (31) to 

project the trend resulting from upstream flow patterns, and the result 

is adopted as valid for the next iteration. This method was cheeked 

against the results obtained with fixed outlet profile, i.e. , ~ = 0 and 

'fr= y(Pt - 1)/Pt, at Re= 1, 5, and 10 for Pt= 1.50, and was found 

completely satisfactory. 

The distance of the downstream end from the last tube of three tube 

rows was about 6. 5 ti.mes the tube radius or 6. 5 R for Re = 1 to 18.; R 

for Re =100 for both pitch ratios. 

Finite Difference Approximation 

The simplest central difference scheme with second order accuracy 

has been widely accepted for the finite difference expressions as an 

approximation of the Navier-Stokes equations without extreme complica

tions of the higher order formulations. Thus the central differencing 

formula adopted here (35) is, 
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for the first derivative; 

_[~_Ji_+_l,_j_-~[_J_i-_1_,j +«h~ (4-39) 
2h 

and for the second derivative (35); 

--f'[ J Cl • j 1, 
= 

_[ __ Ji_+_1 .... 2 j.._-_2_[_J __ 1 ..... ,1_+_[_] __ 1-.... 1 ..... j + o( h 2) 
h2 

i+1 7m 

i 

Li,m-1 m __,.._ ____ _...._ i, i 7m+ 

h 

i-1,m 

h y. 1 1-

Figure 120 

Rectangular Field Nodes 

j 

Figure 130 

Polar Field Nodes 

(4-40) 

Finite difference expressions of the go-verning equations 4-19 and 

4=20 with variable rectangular mesh sizes in y- or j-direction may be 

written i.n rectangular coordinate system (Figure 12), respectively; 

2 ; ~+1 ] 
y.Y. l 1 7m 

1 l.-

2 )"'k rk+l ) 
+ l )(y ~- 1 +y,7 , 1 y.Y, 1 Y .. +y, 1 ' i-1 1.+ ,m 1 1- ,m 

1 1- 1 1-

(4-41)· 



and 

1/1'.k 211J<+l y);+l 
l; ~+1 = i 2m+1~ 'I' i 7m + i,r_a.-.1 

i;m h2 

+ i/rk+l J _ 2 '7/rk+l 
Yi't'i-1,m y.y. l T i,m 

1 1-

where superscript k denotes the iteration number. 
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(4-42) 

After rearrangement of the equations, one gets the following working 

formulae, 

.,,.k+l ) (''"'k ,,.,.k+l )( k k+l )} J 
-, i-1,m - 't' i+l,m-.,.. i-1,m <; i,m+l-~i,m-1 · (4-43) 

and 

(4-44) 

Similarly in the polar coordinate systems of Figure 13 7 Equations 4-25 

and 4-26 are approximated by the following finite difference expressions, 

respectively; 
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and 
(4 .. 45) 

.,,..k -21/l'k+l+ipf+l k _,,-"'k+l "\/.,Jc -2)1..k+l H..k+l 
~k+1 _~n::,,1+1 i,.1 . i,.1-1 +1ri,.1+1 'i,j-1 +"'i+l,j ri,.t"i-1,j 
i,j - 2 2rh 12 

h j 

(4-46) 

After rearrangement, one obtains 

+ Reh lj 
2 2 [ (i/r~+1 .-y)':+11 ·) < C ~ ·+1·· 

16(h +lj) 1 ,J i- ,J i,J 

(4-47) 

and 

k )b--k+l , /,_k lf.k+l 
. . +7 .• . "f . . - . . [ 1.Jr i,.J+l 1,,J-1 + i,.J+l 1,.)-1 

h2 2rh 

k ~+1 
+ 1Yi+1,.t i-1,.i _ 'C ~+1 ] 

1~ i,j 
(4-48) 

J 

Equations 4-43 and 4-44 for rectangular sections, and Equations 4-

47 and 4-48 for polar sections may be used for iterative computation of 
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the inner fields (i.e., field not including boundary and matching planes) 

of the respective coordinate sections. But expecting quicker conver

gence, the method of successive over-relaxation was incorporated into 

the stream function computationo The over-relaxation parameter proposed 

by Russel (36) 

2 
(4-49) 

was adopted for iterative computation at inner mesh points, where I and 

J are number of increments in i- and j-direction respectively. This 

equation has been found to give good values of the relaxation parameter 

by Son and Hanratty (30)o The finite difference equations with over

relaxation parameter (J.f are thus expressed as follows: 

In rectangular coordinates, from Equation 4-43, 

2 
h2 ., 1..k k 1 h y y. 1 k 1 

+ ( 'f -l 'Y + ) j J.- ~ . + J 
y. +y. 1 Yi-1 i+l,m +yi i-1,m - 2 . 1,m 

J. J.-

(4-50) 

and in polar coordinates, from Equation 4-47, 

k 1 k w h21 ~ vr~ . l+l/r~+~ 1 
"\.Ii".+ = (1-W)lfr. + . . [ i,.J+ i,.J-
T i,m i,m 2(h2+l~) h2 

J 

+ "1"~ 1 .;+1-t~7~-1 + ~+1,.;+1t~:i,,; _ C k+1 J 
2rh 1~ i,j 

(4-51) 

J 
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Equations 4-44 and 4-50 in rectangular coordinate systems and Equations 

4-48 and 4-51 in polar coordinates constitute the working formulae for 

inner mesh points of the system. 

No quantitative test of this successive over-relaxation.method 

against the ordinary iterative computation has.been made, but from pre

liminary computations Equations 4-50 and 4-51 seemed to give definite 

indication of convergence with fewer iterations required than the iter

ative computation by Equations 4-43 and 4-47. 

Coordinate Arrangement 

Rectangular and polar coordinate systems are conveniently arranged 

in such a way that calculated values of stream function and vorticity at 

the boundary in one unit cell can be most easily transmitted to another 

at the matching plane. The coordinate arrangement is illustrated in 

Figure 14. Table I gives the field definition of variable parameters 

and constants in Figure 14 for Re= 100 and Pt= 1.50 as a representative 

case. 

The detailed description of the working eq~ations used at the match

ing planes as well as at the boundary regions is presented in Appendix Io 

Computer Program 

£12.! Chart 

The general computational sequence of the program for numerical 

iterative solution of the Navier-Stokes equations of tube bank flow is 

shown in the schematic diagram of Figure 15. The basic feature of the 

program is that the computation is broken down into sub-calculations 

with specific and independent functions, which allows debugging and major 
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Section 
I.D. 

number 

K 

1 

2 I 

3 - 8 

9 

10 

11 

12 

Number of 

TABIE I 

F'IELD DEFINITION OF VARIABLE 
PARAMETERS AND CONSTANTS FOR 

Re• 100 and Pt• 1.50 

Number of total 
increments·in increments in field 
i-direction j-direction points 

in a section 

NI• 10 NS• 18 153 

4NPT-2• 38 NS • 18 646 

Variable: 470 
2NS+l• 39 NPT-2Pt/h (for each of 

• 10 ""23 6 sections) 

4NPT-2· 38 NS• 18 646 

NO• 39 NS• 18 646 

NO= 39 NS• 18 646 

NO= 39 NS ... 18 646 

Total field points in entire system z 6203 
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Mesh size 
in x- or r-
direction 

2h=0.1 

h-0.05 

h•0.05 

h-0.05 

2h=0.1 

2h=0.1 

4h=0.2 
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changes in working formulae without disturbing the over-all program. 

The complete description of the main program, the subroutine func

tions, the required input data and format, and the control parameters 

for the operation of the program are presented in Appendix I. 

Computational Procedure 

Initialization of a computation consists of reading the necessary 

control parameters of the program operation as first input data and 

defining a set of constants based on the parameters. Then a tagged 

array is established to define every mesh point in rectangular and polar 

coordinate sections. The format of the subsequent calculation at each 

point of various parts of the solution is determined by the tag values 

of the point to be calculated. 

In order to reduce the number of iterations needed, the initial 

guess should be as close as possible to the expected solution. The 

initial guess used at Re= 1 for Pt= 1.50 and 1.25 with h = OplO and 

also at Re= 10 for Pt= 1.50 with h = 0.05 was the Poiseulle flow pro

file between infinite parallel flat plates applied for non-uniform tube 

bank channel. 

The computation proceeded from rectangular inlet section to the 

rectangular outlet section, marching down through series of three unit 

cells of the tube bank in polar coordinates by alternative computation 

of ;and then Y,at every mesh point utilizing Equations 4-36, 4-4h, 4-50, 
• 

4-47, 4-51 and also their boundary point formulae with iterative field 

values and prescribed boundary values. Once a solution is obtained for 

a given Reynolds number, then this is used as starting solution for the 

next higher value of Reynolds number. 

' 1l'• 



47 

Convergence Criterion 

Thom and ARelt (37) have studied the effect of small computational 

disturbance introduced into a two-dimensional vorticity field and obtain

ed a convergence criterion for a square mesh. Lester (38) has general

ized this work to include a rectangular mesh and shown the disturbance 

will not grow in magnitude provided that 

h. ~ 2 7 Re(8(3q + 4 + (4-52) 

where Lis the characteristic length of the system and q is the ratio of 

the mesh length in y-direction to that in the x-directiono Lester also 

found that a convergence criterion based on stream function is less 

stringent than that on vorticity fieldo It has been found that the 

condition given by Equation 4-52 gives some indication as to where diver

gence is likely to occur. 

In polar coordinate sections, mesh sizes are generally smaller than 

those in rectangular sections as is seen in Figure 14a The computational 

stability for the entire tube bank is therefore safely defined in rect

angular sections alone, provided that the condition given by Equation 

4-52 is valid in polar coordinate systemso 

As the order-of-magnitude indication test of condition given by 

Equation 4-52, the maximum attainable Reynolds number was calculated 

from the equation for the basic mesh size in the x- or r-direction, that 

is, h = 0.05. This mesh size was used in all the computations but Re= 

1, 5, and 10 for Pt= 1.50. 
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There are three regions in rectangular sections which give represen

tative mesh size for comparison {Figure 14). 

A. Smallest mesh size region at the lower corner of sections 

K • 2 and K • 9 of built-in inlet and outlet ~ection, where 

h • 0.05 and 

Re < {4o { ~ ) • ~ 40{ oi~& ) • 127 

B. Medium mesh size region at the middle field of sections 

K • 1, K • 10 and K • 11, where h • 0.10 and 

c. Largest mesh size region at the upper corner of section 

K • 12, where h • 0.20 and 

Re< 31.7 

For the above system with basic mesh size of 0.05, actual converged 

solutions have been obtained at Reynolds number up to 100, but the com

putation diverged at the second iteration when Re= 150 for Pt~ 1.50 

was attempted using the solution at Re• 100. 

The condition to be observed for a stable converged solution is that 

the fractional change on the vorticity and stream function at any point 

over a iterative step is small. Termination of iterative computation is 

set by the following arbitrary empirical condition: 

(4-53) 
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and 

~. ( ~ ~+jl - ~ ~ j) < 0.5 (4-54) 
i,j i, i, 

It was found that in this particular problem L ( yr~+: -1/r.~ j) was about 
i j i,J i, 

one-fifth of L ( C ~+jl -~ ~ j). ' 
i,j i, i, . 

At the most severe case for convergence of the solution at Re= 100 

and Pt• 1.50, the maximum difference in the vorticity at a middle-field 

mesh point of about one radius downstream from the last tube row was 

found to be 0.0038 between the fiftieth iteration and the ninety-second 

iteration at which the convergence conditions were reached. The maximum 

vorticity in the entire field,,; , was 10.1 at a surface point of the 
max 

first tube row, thus giving 

[ ~ 92 _ ~ 50] 
____________ m_a __ x • 0.0004 

~ max 

(4-55) 

Considering the number of iterative steps covered, this would indicate 

the stringent conditions imposed by Equations 4-53 and 4-54 compared 

with the convergence conditions used elsewhere; e.g., by Mills (32) 

-C: max 
<0.0001 (4-56) 

and 

"\/"k+l tk 
i,J - i,.j < 0.00003 

'rmax 

(4-57) 
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where the changes on vorticity and stream function are taken over asingle 

iterative step, and by Hung and Macagno (31), 

°C ~+~O - ~ ~ . 
J.,,J 1.,.l < 0.0001 

~ max 
and 

'\/J'k+lO -1/1'-k 
i,,j i •• j < 0;000015 

¥max 

where ten iterative steps are taken for calculating the fractional 

changes. 

(4-58) 

(4-59) 



CHAPTER V 

PRESENTATION AND DISCUSSION OF RESULTS 

Converged Solutions 

The series of calculations were started at Re= 1 in both cases of 

Pt= 1.50 and Pt= 1.25, in which the Poiseuille flow profile between 

infinite flat plates applied for non-uniform tube bank channel was used 

to generate the initial guess of the stream function and the vorticity. 

A series of resulting flow patterns and their corresponding vorti

city contours are shown in Figures 16 to 28 at Reynolds numbers 1 to 100 

for pitch ratios of 1.50 and 1.25. The plotting of the contours was done 

by the CAID<J,tP 565 digital plotter hooked up to the IBM 360 Model 65 

computer. The computer programs developed for plotting instructions are 

presented in Appendix J. The mesh size of x- and r-direction was 0.10 at 

Re• 1, 5 and 10 for Pt= 1.50 and h • 0.05 for the rest of the cases. 

At Res 10 of Pt= 1.50, the two solutions with both mesh sizes were 

obtained for comparison and found that the two results were almost iden

tical except minor details in the eddy regions. The mesh size of 0.05 

was sufficiently small for resolving the detailed flow patterns in the 

eddy regions and in the wake-bubble (i.e., eddy region enclosed by 

contour of zero stream function appearing behind the last tube row). 

Figure 16 and Figure 23 show that, even for Re= 1, small eddies 

exist between tubes in the tube. The stream functions at each corre

sponding mesh point in two eddies formed between tube number 1 and tube 

51 
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Figure 16. Contours of Vorticity and Stream Function (Re=l;Pt=le50;h=0.10) 

Figure 17. Contours of Vorticity and Stream Function (Re=5;P t =h50;h=0.10) 
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Figure 18. Contours of Vorticity and Stream Function (Re=10;Pt=lo50;h=O.l0) 

Figure 19. Contours of Vorticity and Stream Function (Re=10;Pt=lo50;h=0.05) 
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Figure 200 Contours of' Vorticity and Stream Function (Re=20;Pt__;::lo50;h=0.05) 

Figure 21. Contours of Vorticity and Stream Function {Re=50;Pt=l.,50;h=0.05) 
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Figure 220 Contours of Vorticity and Stream Function (Re=lOO;P t =1.50;h=Oo05) 
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Figure 230 Co~tours of Vorticity and Stream F~ll..?lction (Re:a:l;Pt =lo25;h=OD05) 

Figure 240 Contours of Vorticity and Stream Function (Re=5;Pt=l.25;h=OD05) 
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Figare 2$o Contcmrs of Vorticity and Strea..111 Function (Re,,.lO;Pt""le25;h=Oo05) 

Figure 26~ ·· .. Contours of Vorticity and Stream Function (Re=20;P t =1.25;h=0.05) 
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Figure 27. Contours of Vorticity a~d Stream Function (Re=50;Pt=l.25;h=Oo05) 

Figure 28. Contours of Vorticity and Stre~ Function (Re=100;Pt=l.25;h=Oo05) 
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number 2, and between tube number 2 and tube number 3 are found to be 

almost identical. As the Reynolds number is increased, the eddies grow 

in size and the point of detachment on the leeward part of the tube and 

the point of reattachment on the front part of the next tube (Figure 29) 

creeps up toward the point of minimum clearance of tube bank flow 

channel. The angles of detachment and reattachment on the second tube 

are given in Table II and also plotted in Figure 30 and Figure. 31 as a 

function of Reynolds number. 

Although there has been no reported experimental vi~ual evidence in 

this Reynolds number range of eddies formed between tubes in the tube 

bank, Acrivos et al,(39) have obtained photographed flow patterns of the 

confined cavity formed between two backward facing steps perpendicular to 

the free stream at relatively low Reynolds numbers. Their pictures give 

some qualitative evidence to the calculated stream line profiles of 

eddies in the tube bank flow. 

The wake behind the last tube row in the tube bank does not appear 

until Reynolds number excee4s 20, which compares with the first appear

ance of wake at the Reynolds number of 5 in case of a uniform flow past 

a cylinder (40) where the Reynolds number d~fined is based on the veloc

ity of undisturbed flow. The sizes of the wake-bubbles in tube bank 

flow at Re= 50 and Re= 100 are smaller than those observed behind a 

single cylinder in a uniform flow at the corresponding Reynolds numbers. 

This may be explained by the presence of straight downstream channel of 

tube bank where the flow is contained in the narrow region into which 

the wake has to expand, thus suppressing the wake growth and i'ormation. 

On the other hand, in case of uniform flow past a cylinder the flow field 

is infiriite and: the .wake-bubble behind the cylinder' -is unconstrained. 
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Figure 29. Angles of Separation on a Tube 

TABIE II 

ANGIES OF SEPARATION FOR THE SECOND TUBE 

Pitch ratio Reynolds Angles of Angles of 
number detachment reattachment 

(degrees) (dergees) 

pt Re QD QR 

1 17 16 

5 19 17 

10 21 18.5 
1.50 

20 28 21 

50 44 30 

100 52 38 

1 24 23 

5 24 23.5 

10 25 24 
1.25 20 26 24 

50 34 28 

100 50 36 
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As the Reynolds number increases, the vorticity is carried away 

further downstream by convection, while the diffusion of vorticity 

upstream toward the entrance from the first tube row of the tube bank 

becomes smaller. In general, the shape of wake-bubble and the corre

sponding vorticity contours behind the last tube row of the tube bank 

are more elongated in the direction of flow than those in case of uni

form flow past a single cylinder. 
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Figures 32 to 44 show the vorticity around the tube surfaces of 

three tube rowa for all the Reynolds numbers and pitch ratios covered. 

The point of maximum vorticity appears about on the tube surface of 

m:i.pimum clearance of tube bank while in case of flow past a single 

cylinder the point of maxi.mum vorticity is situated on.the forward part 

of the cylinder. 

Form Drag and Friction Drag 

Once the converged numerical solution is obtained, the pressure 

variation along the tube surface, the form drag coefficient and the . 

friction drag coefficient can be calculated from the tube surface 

vorticity and its gradient around the tube surface. The full derivation 

of the equations used in this section is presented in Appendix G. 

The final expression of pressure variation around the tube surface 

is given as 

p*( e ) = p* + ...!:J:_R (e [~~ J R de 
o e )0 ~r r•R 

(5-1) 

where pressure has been normalized witb respect to i pu.2 and P~ is the 

normalized press-:)..re at the front stagnation point. 
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The contribution of the pressure forces, i.e., form drag, to the total 

dra,g is therefore 

70 

(5-2) 

I : · ~~ 1 

Ther,_vorlicity gradient ['Z'r"]r•R at a point on a tube surface·'in Equation 

S-1 may be estimated from an appropriate expression of~ as a'tunction 

of rat that point.·, parabolic function of r was used to approximate 

the radial distribution of ; at a point on the tube surface. The deri va

tion of the equation used is presented in Appendix G. The vorlicity 

gradient equation used in the numerical integration.of Equation 5-1 is 

where 

[~] • ..l...(2 r - ..!_;- - _LJI' ) (t::.-'l) 
~r r.:R h ~1,2 , 2 '>1,.3 2 ,.i,1 ~ -' 

t; 111 • vol't,icity on the tube surface point (i,1) 

t; 1 , 2 • vorticity on the tube surface point (i,2) 

;i,3 • vorticity on the tube surface point ·ci,.'.3) 

The tube surface points mentioned above should be referred to Figure 67 

of Appendix·G. 

The contribution of the shear forces, i.e., friction drag, to the 

talial drag is calculated from 

(5-4) 
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Total drag coefficient for a tube, CD' is thus 

cD • cP + cf (5-5) 

In tube bank fluid flow experiments, the drag coefficient is•· report

ed in terms of the friction factor, f, defined by Equation 2,...4. In order 

to compare the results obtained from numerical solutions with experi

mental data, the relationship between drag coefficient CD and the ideal 

tube bank friction factor f must be derived. 

Considering the momentum balance on a control volume of inline 

square tube bank with three tube rows of Figure 45, one can write the 

force balance 

2 Pt g .D.P = ( AF + 6. 1:") g 
C C 

where AF= pressure drag contribution to total pressure drop 

A -C: = friction qrag_ contribution to total pressure drop 

b.P=P -P 1 2 

---r 
I-
I p 
I - -=-2-
r 
1------_---2\ 

control volume 

Figure 45. Tube Bank Force Balance 

(5-6) 
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In the Delaware correlations, the isothermal friction factor is defined 

by Equation 2-4 or 

2 gc 6.P 
f = -2 (5-7) 

4 Nt pu 

where Nt • number of tubes in a tube row in inline tube bank. Eliminat

ing ~p from Equation 5-6 and 5-7, one obtains 

(~F +SC) g f • ______ c ___ _ 

4 Nt 2 Pt tp u2 

But computed pressure drag and friction drag on the tube bank is 

expressed, respectively, as 

and 

C = p 

(6.-r./2) g 
C 

From Equations 5-8, 5-9 and 5-10, one finds 

C + Cf 
f =-P----

or 

f -

(5-8) 

(5-9) 

(5-10) 

(5-11) 

(5-12) 
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The detailed description of computer program for calculating the 

form drag coefficient, the friction drag coefficient and the ideal tube 

bank friction factor, together with the required input data and control 

parameters, is given in Appendix K. 

The computed pressure variation around the tubes at Re= 1, 5, 10, 

20, 50 and 100 for pitch ratios of 1.50 and 1.25 is shown in Figures 46 

to 58. Although no experimental data have been reported on pressure 

distribution around the tubes in tube banks at these low Reynolds 

numbers, the measured pressure distribution obtained by Kitaura et al. 

(41) at Re= 16,000 and 20,200 for an inline tube layout are indicative 

of the computed results we obtained. Kitaura et al. have observed that 

(i) pressure variations around the third tube and thereafter are about 

identical; (ii) for the second tube and thereafter the pressure first 

increases due to momentum recovery at the rear stagnation region of the 

preceding tube and then decreases steadily again after detachment of 

flow in the leeward part of the tube; (iii) effect of tube proximity 

on pressure appears as the maximum pressure drop which is greater for 

smaller pitch ratios and occurs around the point of minimum clearance 

of tube bank flow channel, i.e., an angular position of about 90° from 

the stagnation point. 

The calculated form drag coefficients, friction factor coefficients, 

.total drag coefficients, tube bank friction factors and the ratio of 

form drag to total drag coefficient are listed in Table III for both 

pitch ratios of 1.50 and 1.25 at Reynolds numbers 1 to 100. Unlike a 

uniform flow past a single cylinder (30), the ratio of CP/CD for all the 

tubes in three tube rows is almost constant at the order of 0.7 for Pt= 

1.50 and 0.8 for Pt• 1,25 over the Reynolds number range covered. 
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TABIE III 

CAU::UIATED FRICTION FACTORS (Pt= 1.50) 

Re NPT/h Tube cf C CD f le /c. 
number p p D 

1 30.9 71.6 102.5 17.1 0.700 

1 2 30.3 70.0 100.3 16.7 0.700 

5 3 30.9 71.8 102.7 17.1 0.700 
-· 0.10 1 6.21 14.4 20.6 3.43 0.700 

5 j 2 6.06 14.0 20.1 3.34 0.696 

3 6.16 14.3 20.4 3.41 0.701 
---·~·-···-

_L 1 ~ ~~ ~~ 3 7.20 10.3 .7 J 0.698 0.10 
~ ~~ ~I~ 10 

..lQ.. 
2 

•' • i 0.697 3.02 .95, 9.96 
0.05 3 ~ ~::%~,_,10~ 3.06 7 • 051 _ 0.1 I~ 2_._~8 e 698 - --~---·-

j 1 1.58 3.78, 5.36 I o.893 0.705 
' ! 

20 2 1.51 3.56 5.07 0.844 0.702 

3 1.52 3.58 5.10 0.850 0.702 
-

1 0.679 1.91 2.59 0.432 0.738 

50 10 2 0.597 1.59 2.19 0.365 0.725 0.05 
3 0.597 1.59 3.19 0.365 00725 

-
1 0.389 1.39 1.78 0.297 0.780 

1 00 2 0.295 0.928 1.22 0.204 0.760 

! ' 3 0.293 0.922 1.22 0.203 0.755 
I 



Re NPT/h 

t 
1 

5 

I 
I 

! 

10 
5 

0.05 

20 

50 

100 .~ 

TABLE III (Continued) 

CAICULATED FRICTION FACTORS (Pt • l. 25) 

Tube cf C CD :r 
number p 

1 46.6 178.3 224,9 45.0 

2 46.0 176.4 222.3 44.5 

3 46.6 178.4 224.9 45.0 

1 9.33 35.7 45.0 9.00 

2 9.19 35.6 44.5 8.89 

3 9.30 35.6 44.9 8.89 

1 4.67 17.9 22.6 4.51 

2 4.59 17.6 22.2 4.45 

3 4.63 17.8 22.4 4.49 

1 2.34 9.07 11,4 2.27 

2 2.30 8,86 11.2 2.23 

3 2.31 8.92 11.2 2.25 

1 0.947 3,80 4.75 0.950 

2 0.913 3.67 4,58 0.916 

3 0.915 3.67 4,58 0.916 

1 0.490 2.24 2.73 0.546 

2 0.451 2.03 2.48 0.496 

3 0.450 2.03 2.48 0.495 
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c/cn 

0.793 

0.794 

0.793 

0.793 

0.793 

0.793 

0.792 

0.793 

0.795 

0.791 

0,791 

0.796 

0.800 

0.801 

0.801 

0.820 

0.818 

0.818 



The calculated tube bank friction factors are compared with the 

Delaware isothermal data for inline square tube layout in Figure 59. 

8.3 

In both pitch ratios, the first tube contributes the largest 

pressure loss of total tube bank pressure drop, and the second and the 

third tube shows ne.ar-identical values of friction factors. The entrance 

effect and the ex~t effect for tube banks appear in the difference of 

calculated friction factors between the first and the second tubes, and 

the second and the third tubes, respectively. As is seen in Figure 59, 

the entrance effect becomes more distinctive as the Reynolds number 

increases, while the difference between the second and the third tubes 

is negligibly small over the entire Reynolds number range covered. 

In order to compare the computed friction factors of tube bank 

three tube rows deep with the Delaware experimental data based on ten 

rows deep, it is assumed that the friction factor can be estimated by 

f .. -r8-< f 1 + 8£2 + r3) ( 5-1.3) 

where the superscript for f is the tube number in the rows counted from 

the inlet. This may be justified because of the fact that the exit 

effect on the friction factor is negligibly small so that the friction 

factor for the second tube can represent that of all the inner tubes in 

ten rows deep. The calculated results are given in Table IV and compared 

with the experimental friction factors read from the Delaware data. 

The computed average friction factors are within -7 to -13% of the 

Delaware data for Pt= 1.50 and -7 to ·-1o% for Pt= 1.25 over the 

Reynolds number range studied. 

The most plausible explanation of the difference between the 
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TABLE IV 

C~ARISON BETWEEN CAI.CULATED AND EXPERIMENTAL FRICTION FACTORS 

Reynolds Pitch ratio Pitch ratio 
number 

Re 

1 

5 

10 

20 

50 
...... ~-·· 
100 

1.50 

fcal fexp difference fcal 
%(c) 

16.8 
(b) 

18.0 -6.7 44.6 

3.36 3.75 -10 I 8.90 , 
··---1aj ··-··- ·--· 

I 1.67 1.90 -13 4.46; 

0.850 0.94 -9.6 I 2.24 , 
I 

0.372 0.42 -12 0.919 

0.213 0.24 -12 0.501 

(a) finer mesh size, i.e., h = 0.05 

(b) extrapolated 

1.25 

fexp 

(b) 
48.0 

9.90 

4.90 
----

2.40 

1.00 

0.55 

(c) % difference= (fcal - fexp)/ fexpx 100 

---

difference 
%(c) 

-7.5 

-10 

-9.0 
~------·-

-6.7 
·----
-8.1 

~·-······-

-8.9 
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calculated and the experimental friction factors in which the calculated 

!-factor is smaller than the experimental on an average of -1~ is that 

the calculated friction factor is based on tube bank of infinite tube 

length and infinite number of tubes in a row normal to the direction of 

flow. The effect of the two side walls parallel to the long side 

of the tube may be negligible because of the tube bank construction of 

the Delaware ideal tube banks in which the outer-most tubes of the tube 

banks are half-way imbedded on the side walls to minimize the side wall 

effect. The amount of increased pressure drop due to the presence of the 

other two side walls (top and bottom) may be calculated using the Graetz 

solution for flow through rectangular channel (14) with values of the 

height-width ratio of tube bank flow channel. The discussion and calcu

lation 6f the Graetz correction factors are given in Appendix H. From 

Table V, the increase in friction factor due to side wall effect should 

be from +4.3 to +12% for Pt= 1.50 and from +2.1 to +1~ for Pt= 1.25. 



CHAPTER VI 

CONCLUSIONS AND RECG.1MENDATIONS 

The initial purpose of this study was to investigate the fluid 

dynamics and heat transfer mechanisms during flow across tube banks. 

However, the latter objective was not achieved because of the great 

effort required to solve the fluid dynamics problem. 

CONCLUSIONS 

No simplified flow model attempted was found satisfactory in pre

dicting tube bank friction factors. Numerical s·olutions of the Navier

Stokes equations have been obtained for two-dimensional, incompressible, 

viscous Newtonian flow across banks of tubes of inline square tube lay

out at Reynolds numbers of 1, 5, 10, 20, 50 and 100 for pitch ratios of 

1.50 and 1.25. An attempted solution at Re= 150 utilizing the solution 

at Re= 100 diverged at the second iteration. 

It has been found that there are eddy regions between tube rows at 

all Reynolds numbers studied, while the wake-bubble behind the last tube 

row appears only after the Reynolds number exceeds 20. As the Reynolds 

number increases, the size of the eddy between the tube rows grows and 

the wake-bubble lengthens. 

The ratio of computed form drag to total drag has been found almost 

constant at the order of 0.7 for Pt= 1.50 and of 0.8 for Pt= 1.25 on 

all the tube rows over the Reynolds number range covered. It also has 
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been found that the contribution of the first tube row to the total 

pressure drop is the largest of three tube rows for both pitch ratios 

88 

and at all the Reynolds numbers calculated. The calculated tube bank 

friction factors has been found within -7 to -13% for Pt= 1.50 and from 

-7 to -1~ for Pt= 1.25 of the Delaware isothermal data of inline square 

tube bank over the Reynolds number range covered in this study. 

RECOMMENDATIONS 

The following recommendations are made based on the results of this 

exploratory study: 

1. Semi-empirical flow models should be reconsidered in the light 

of the numerical solutions obtained in this study. The goal 

would be to represent tube bank flow mechanisms by analytical 

expressions and thereby enable us to predict pressure drops and 

heat transfer coefficients as direct functions of Reynolds 

number. 

2. Numerical as well as analytical and/or semi-empirical solutions 

should be sought for other tube layouts, i.e., equilateral tri

angular and rotated square configurations. 

3. In order to attain solutions at higher Reynolds numbers, the 

unsteady state equations as well as a finer mesh size should be 

attempted. The unsteady state approach or time-dependent method 

of numerical solution of the Navier-Stokes equations takes into 

account the time derivative of velocity. The incremental time 

steps which appear in the denominator of the finite difference 

expression provide greater stability in numerical computations. 

For the time-dependent method, the finite difference equations 



become: 

In rectangular coordinates; 

and 

1/r~+l • ( 1 
T 1.,rn 2 

h + y.Y. l 
l. 1.-

In polar coordinates; ' 

Reh y.y. l 
l. l.-
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J 
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(6-1) 

(6-2) 

(6-3) 
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and 

(6-4) 

where the superscript n is the time step index and c:S's denotes 

the incremental time step. 

The computation for higher Reynolds number with the time

dependent method starts with the results of the steady state 

solutions at one Reynolds number. With a time step of cS"s, the 

vorticity c; at the time (n + · 1) 8" s can be calculated from the 

settled values of z; and l/rat the time nos and (n - 1) 5' s using 

Equations 6-1 and 6-3. Equations 6-2 and 6-4 are then used to 

obtain new values of 1pat (n + 1) § s applying a single iterative 

process in which new values of ~ at the time (n + 1) o s are 

utilized. This computational process with next time step ~ s 

is repeated until the settled solution of 7:; and 1frwith respect 

to time are reached. 

4. Finally, but not least urgently, heat transfer calculations 

should be carried out, first with constant physical properties 

and ultimately with temperature dependent viscosity, thermal 

conductively, heat capacity and density. If constant physical 

properties are assumed, the energy equations and the equations 

of motion can be decoupled. The equations of energy in terms 

of nondimensionalized temperature T and stream function 1,1' 

become exactly similar to the vorticity transport equations or 
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the Navier-Stokes equations in terms oft except the Reynolds 

number, Re, is replaced by the Prandtl number, Pr. 

In rectangular coordinates, the energy equation is written 

as 

and in polar coordinates, 

where 
t - t. 

J. 
T •---- for constant wall temperature 

t.• temperature of incoming flow 
J. 

tB= temperature of tube wall 

(6-5) 

(6-7) 

Boundary conditions for tube bank heat transfer for constant 

wall temperature, e.g., condensing vapor on tube-side, may be 

best illustrated in Figure 60. 

• 0 ~T 
( ;;,y 

...--------------· 
t t. 

J. 

T. 0 

Figu~e 60. Tube Bank Heat Transfer Boundary Conditions 
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Knowing that stream function has been solved a priori, the 

temperature· distribution can be calculated··by a single T-field 

iteration wi\h finite difference approximations of Equations 

6-5 and 6-6 •. Computational procedure is shown by the block 

diagram of Figure 61. 

T - field iteration 

Guess initial 
T - field· 

New value 
of T 

with finite difference 
e~essions £or Equations 
6-5 and 6-6 

No Is T - field 
conver ed? 

, Yes 
'I 

l 

t-out solution of T 

Figure 61. Computer Block Diagram of 
Temperature Profile 

Calculation 

Once the temperature distribution .is obtained, the local 
' Nusselt number around the tube may be computed from 

~T 
Nu(G) • - 2 [ c)r ]r-R 

'!tie Nuaselt number tor the tube is then calculated from 

lf 

Nu = ~ \ 0 Nu(e) d0 "' f(Re1Pr) 

(6-8) 

(6-9) 



Ultimately, tube bank heat transfer coefficient or j-factor 

would be calculated from the Nusselt number obtained above. 
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a 

a. ,a 
1 m 

"a" 

b. 
1 

B, B+l 

c ,cf,c 
D p 

NCMENCIATURE 

For the Text 

= width-length ratio; Equation H-4 

z length parameters; Figures 70, 71 and 73 

= a point on a contour surface; Figure 65 

= parameters in radial velocity distribution equation; 
Equation G-17· . 

= length parameter; Figures 70, 71 and 73 

= tube surface node and field mesh point next to the point B 
and also scale factor; Equation E-2 

= total drag, friction drag and form drag coefficients 

C.(c1,c2,c3)= parameters in laminar velocity profiles in variational 
1 method; Equations 3-24, 3-26, 3-27 and 3-34 

b.C. 
1 

D 
C 

Det 

F(9) 

b.F 

f 

• incremental change in parameter C. 
1 

~ distance between tube walls of two adjacent tubes in 
transverse direction [ft] 

= minimum clearance between two tubes in transverse 
direction [ft] 

= determinant; Equation D-21 

= tube diameter [ft] 

= angular length parameter [rad]; Figure 70 

= integration constants; Equations A-10 and A-11 

= variational function; Equation 3-18 

• dimensionless velocity profile; Equation 3-2 

;,· 

= pressure drop due to form drag [lbf/ft2J; Eq~ation 5-9 

= tube bank friction factor 
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= tube bank friction factor for the first, second and third 
tube row, respectively; Equation 5-13 

f 1,f2, •••• f 9• coefficients in the dissipation integral I; Equation D-14 

f(a) 

f(Pt) 

f0(Pt,e) 

f 
n 

G 
m 

h. ,h 
1 0 

I 

• function of a• z1/z2; Equation H-7 

= function of pitch ratio·; Equation 3-10 

• function of pitch ratio and e; Equation 3-17 

• tube bank friction factor for power-law fluid; Equation 
: .. C-9 

• mass ve~ocity at the minimum clearance in tube bank 
[lbm/ft -sec] •pu. -= conservative body force vector, x- and y-component of g 
[lbf/lbm] 

= conversion factor [lbf-ft2/lbm-sec2J 

= mesh size in x- and r-direction 

= length parameters; Figures 70, 71 and 73 

• dissipation integral; Equation 3-18, and also the number 
of increments in i-direction; Equation 4-49-

r1,r2 ,r3,r4 = components of dissipation integral; Equation D-14 

J = number of increments in j-direction; Equation 4-49 

K 

L 

* L 

1. 
1 

m 

Nu 

n 

• tube section identification number; Figure 14, and also 
power-law fluid consistency index; Equation C-1 

= characteristic length of the system 

• length used in Rayleigh flow problem; Equation B-7 

• length parameter; Figures 70, 71 and 73 

• mesh size in j-direction 

• parameter; Equation H-2 

= dummy index in summation notation; Equation H-1 
-;'~; 

= number of major restrictions encountered in flow through 
a tube bank 

• Nusselt number; Equation 6-8 

= power-law fluid index of shear stress-strain expression; 



n 
p 

"0" 

O(h) 

Q 

q 

r 

R 

Re 

Re 
C 

Re 
n 

Re 
r 

s 

11SD" 

Ss 

T 

t 

Equation C-1 ~ and also time step index; Equation 6-1 

= number of parameters in trial velocity profiles 

= irregular star point; Figure 71 

= order of magnitude of h 

2 
= pressures [lbf/ft J 

= pressure at stagnation point [lbf/ft2J 

= longitudinal and transverse pitch ratio, respectively 

= Prandtl number 

= volumetric flow rate [ft3/sec] 
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= ratio of the mesh length in y-direction to that in the x-
direction; Equation 4-52 

= independent space variable in polar coordinates 

= radius of tube 

= length parameters; Figure 70 

= irregular star point; Figures 70, 71 and 73 

= tube bank Reynolds number based on Dt; Equations 2-6 and 
4-24 

= tube bank Reynolds number based on D • Equation 2-5 c' 

= Reynolds number for power-law fluid; Equation C-8 

= Reynolds number on symmetry line between tubes; Equation 
3-3 

• time [sec] 

= irregular star; Figure 70, 71 and 73 

= irregular star; Figure 73 

• incremental time step [sec] 

= dimensionless temperature; Equation 6-7 

= temperature [°FJ; Figure 6-1 

= tube wall temperature [°FJ; Figure 6-1 

= temperature of incoming fluid [°FJ; Figure 6-1 



u,v 
-V 

* u,v,u 

V 
0 

u 

w 

X,Y 

YI. ,Y. 
J. J. 

= dimensionless velocities 

= velocitr vector 

= velocities [ft/sec or dimensionless] 
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= velocity in r- and 9 -directions [ft/sec or dimensionless] 

·::;; velocity:. oh symmetry line [ft/sec] 

= mean velocity at minimum tube clearance [ft/sec] 

= mass flow rate per unit depth of tube in tube bank [lb/ 
sec-ft]; Equation 3-7 m 

= dimensionless independent space variables in rectangular 
coordinates 

= length parameters; Figure 70 

= short side of a duct of rectangular cross section [ft] 

= long side of a duct of rectangular cross section [ft] 



Q 

Greek Letters 

• viscosity [lb /ft-sec] 
m 

= dehsity [lb /£t3J 
m 

2 
= kinematic viscosity [ft /sec] 

= stream function 

• vector gradient 

• biharmonic operator 

• rate of deformation tensor 

• similar.ity·· variable; Equation B-2 

= vorticity 

= independent space variable in polar coordinates [rad] 

QD,QR = angle of detachment and angle of reattachment· [ 0 ]: Table II 

= Re•f 
0 

= independent space variable in polar coordinates [rad] 

2 
= shear stress vector and shear stress [lbf/ft J 

= pressure dropfdue to friction drag [lbf/ft2J •· 
w = over-relaxation parameter; Equation 4-49 

~ = parameter; Equation E-7 



duct 

max 

vortex 

r 

e 

1 

t 

co 

n 

Subscript 

• indices of space variables 

• of the duct 

= of the maximum 

"' of the vortex 

• of the r-direction 

• of the 9 -direction 

= of the longitudinal direction 

• of the transverse direction 

• of the centerline (symmetry line) 

• undisturbed or at infinity 

§.1;m,erscript 

• tube row number counted from inlet 

= iteration index 

= time step index 

99 

= physical quantities in the definition of the non-dimension= 
alization 

cal = calculated 

exp = experimental 

·* = normalized values by deviding by ~ p uf 



EPSMAX 

ITMAX 

K 

N2 

NI,NO 

NJ 

NPT 

NS 

NT 

RE 

PT 

F(M) 

NCOUNT 

100 

Notation Cited from Computer Programs 

= limit to. be specified for ~.(C~+jl-~~ .) and ~.(iv~+~ -1/'f • ) 1 f J 1 f 1 , J 1, J 1, J 
1,J 

= maximum number of iterations for one computer run 

= section identification number; Figure 14 

= number of increments in x-direction at the section K=12 

• numbers of increments in x-direction at the inlet and 
outlet sections, respectively; Figure 14 

= number of j-increments 

= number of increments at the minimum clearance of tube 
bank flow channel; Figure 14 

.. number of increments in Q---direction per an angle of K/4; 
Figure 14 

• number of tube rows; Figure 14 

• tube bank Reynolds number 

• transverse pitch ratio 

• contour values of vorticity or stream function to be 
plotted 

• number of contour values to be plotted 

Q(1,J).,.Q(2,J) • values of vorticity or .str.eam .function read .at every 
two i-incremental steps 

F(K,I,J) 

V(K,I,J) 

• stream function 

""vorticity 
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APPENDIX A 

VELOOITY PROFILE IN CONVERGING 

AND DIVERGING CHANNEIS 

For the radial flow between converging and diverging walls (Figure 

62), the Navier-Stokes equations in polar coordinates may be written: 

Continuity condition; 

(A-1) 

Equations of motion; 

r-component (A-2) 

e - component 1 • 

2)). ·~.Vr ~ p ....----r ~e i:;>8 (A-3) 

Figure 62. Flows in Converging and Diverging Channels 
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Here, ~he boundary conditions are 

V • 0 at Q • ~ r 

vr • vt 

J 
(A-4) 

at Q • 0 
~v 
-£. 0 
dQ 

General Equation 

The equation of continuity, Equation A-1, is satisfied by introduc

ing the similarity variable, F(Q), a function of Q given by 

))Re 
v • ( r) F(e) 
r r · 

where Re is defined by r 

Re • 
r 

r vi. 

JI 

and v is the radial velocity along the centerline of the channel. 
0 

(A-5) 

(A-6) 

Since the flow is radial, the velocity is inversely proportional to the 

radius and hence the Reynolds number Re is invariant along the channel. r 

Differentiating Equation A-2 and A-3, with respect to Q and r respective-

ly, and subtracting one from the other to eliminate pressure terms, one 

gets 

(A-7) 
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Differentiating Equation A-5 with respect to 8 and r, and substituting 

into Equation A-7, one obtains, after rearrangement, the ordinary differ

ential equation of F(e) 

F"'(8) + 4 F1 (8) + 2 F(8)F 1 (8) • 0 

Boundary conditions, Equation A-4, may be rewritten 

F(: ¢) • 0 

F 1(0) • 0 

F(O) • 1 

High Reynolds Number Approximation 

(A-8) 

(A-9). 

At high Reynolds number a potential flow exists in the core region 

and a boundary layer flow is expected at the region adjacent to the wall. 

The solution of the boundary layer equation for the converging flow has 

been obtained by Pohlhausen (16). 

Integrating Equation A-8 with respect toe, one gets 

[F(8)]2 + 4 F(e) + F"(8) + E1 a 0 (A-10) 

Multiplying Equation A-10 by 6F 1(Q) and integrating again, one finds 

(A-11) 

where E1 .and E2 denote the integration constants. 
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Solving Equation A-11 for F 1(e), and after rearrangement, the following 

expression is obtained 

{A-12) 

For high Reynolds number, Equation A-12 has been integrated to yield ( 17) 

.~ 
F(e). 3 tanh2[~--;--<e - ¢) + 1.1462 J - 2 (A-13) 

Shear stress at the angular position¢ in the converging section of the 

channel (Figure 5) may be given by 

(A-14) 

,r· 

From Equation A-5, one gets 

d vr J) Re 
- =--r F•(e) 
dQ 

(A-15) 
r 

Differentiating Equation A-13 with respect toe, F 1 (e) is found 

~ 
F•(e) = 6V 2 

Re 
sinh[~(e - ¢) + 1.1462] 

Re 
cosh3 [ 2r(Q - ¢) + 1.1462] 

(A-16) 

Thus, 

F 1 (¢) • 1.155 ~ (A-17) 

From Equations A-14, A-15 and A-17, one obtains the local shear stress 

at angular position of¢ on a tube surface in the converging channel 



section, 

T. 2.31 

ifv~ • Fr 
Since the continuity condition gives 

or after rearrangement, 

V r d9 r 

¢ 
Re(Pt - 1) = 2 Rer \ F(e) d8 

0 
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(A-18) 

(A""'.19) 

(A-20) 

Substituting Equation A-13 into Equation A-20, one finds after integra

tion 

pt -1 ~ ( Re( )-~2Rer[2¢+3 ¢+3 tanh(l.1462) 
2 

- tanhd~r ¢ + 1.14£,2)} J (A-21) 

For high Reynolds number ¢ and the term 3[tanh(l.1462)-tanh( ~Re/2 ¢ 

+ 1.1462)] are negligible compared with the term~Rer/2 ¢. Hence, 

Equation A-21 can be approximated by 

(A-22) 

Substituting Equation A-22 into Equation A-18, the normalized shear 

stress becomes 



2.31 --2- .. -::=====-t f vo pt - 1 
Re ( 6e ) 
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(A-23) 

The friction factor around the converging part of channel between tubes 

is then calculated by integrating Equation A-2.3 from O to Tt.j2, 

r • ~2)(2.31H6l (1r12f¢ d!il 
1 Re (Pt - 1) ) 0 

• 14.7 
1 (Pt-l)Re 

(A-24) 



APPENDIX B 

ENERGY DISSIPATION DUE TO VORTEX MOTION 

The Rayleigh flow which describes the flow induced by a sudden 

motion of flat plate originally at rest at times= 0 (Figure 63), may 

be expressed in terms of velocity profile of fluid at times 

where 

y 

' u. 2 ( 2 
1 - J=,c) 0 exp(-1 ) d7 

YJ y 
l • -2-~V-s-

* U • u/u 

* . 
u • co~stant velocity of flat plate 

* u 

Figure 63. Rayleigh Flow 

The shear stress acting on the surface of a plate is given by 
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(B-1) 

(B-2). 
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(B-3). 

Upon substitution of Equation B-1 into Equation B-3, the shear stress is 

obtained after integration 

(B-4) 

Work required to move the flat plate from x • 0 at standstill to x • L* 

at the constant velocity of u* may be calculated from 

(B-5) 

* * where the use is made of s • L /u in the process of integration. 

* 

Figure 64. Vortex Flow Between Tubes 



113 

The vortex motion in the eddy between tubes (Figure 64) is assumed 

to be induced by the main flow which accelerates a sheet of fluid in the 

eddy at the point of detachment, x • O, to the point of reattachment, x 

* • L, where the fluid is then turned back along the tube surfaces and the 

velocity dies out where the sheet of fluid returns the original point 

around the neighborhood of the point of detachm~nt, and then new cycle 

starts. All the energy transfered from the main flow to the wake at the 

interface which is. then dissipated by the vortex motion in the wake may 

be calculated from Equation B-5. The pressure drop to the energy lost 

is then given by 

2 
6P •-vortex 1* 

~ 
u 2 

Rearranging with the following expressions 

* L • Dt(Pt - cos 0) 

* * u (Pt - sin 0) 
u -------

pt - 1 

into the form of friction factor, Equation B-6 results in 

f = 1.13 
vortex Re 

3/2 
(Pt - 1) 

(B-6) 

(B-7) 

(B-8) 

(B-9) 



APPENDIX C 

VARIATIONAL FUNCTION FOR TWO-D;IMENSIONAL 

POJER-LAW FLUID FLOl 

The power-law (Ostwald-dewaele) model of non-Newtonian fluid flow 

characteristic may be expressed in terms of tensor notation (19) by 

n-1 

"f. _ K ( IA~A I )2 A (C-1) 

where A is the rate of deformation tensor, K is the consistency index of 

a fluid expressing the physical property of the fluid, and n is the 

power-law index characterizing the degree of non-Newtonian behavior of 

the fluid. 

For the steady flow of an incompressible power-law fluid through 

the unit cell of tube bank (Figure 9), where the boundary condition 

specifies the velocity on one part of the boundary and the stresses on 

the other part of the boundary, the energy change per unit volume of 

fluid may be given (22, 23) by the dimensional expression 

n+l -
F' = _K __ ( A: A) 2 - 2 V •p V (C-2) 

n + 1 

The first term in the right hand side of Equation C-2 is the rate of 

irreversible conversion to internal energy and for the power-law fluid 

this term reduces to the following expression (19, 22) in the two-
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dimensional rectangular coordinates, 

~-=c•'\lT.) = _L [ 2 {<~)2+ (~)2}+ (~ + ~)2] (C-3) 
m. · 2 ~x' ~Y' dX 1 dY' 

The second term in Equation C-2 turns out to be 

(C-4) 

Substituting Equation c~3 and Equation C-4 into Equation C-2, one gets 

F' = 
K 

n+l 

- f (-. ~p. ') u' + (- ~) V' L 
l ~x' ~ Y' J (C-5) 

The following variables are introduced to non-dimensionalize Equation 

C-5: 

and 

X = x'/R', Y = y 1/R' 

U • u'/u', V = v'/u' 

F' 
F = -----------,-n-+_1_ 

<n!1H ~,) 

Substituting these into Equation C-5, one finds 
n+l 

F _ [ 2(~)2 (..il..)2 ( -;;,u· + ~ )2 ]2 
- clX + ;;,y + ~ ~X 

{ 
oip 2R 

- (- ~)( -2) 
fu 

(2R)n u 2-n} 
2n 
-K n+l 

(C-6). 

(C-7) 



Rearranging further with the definition given by 

and 

Re • n 

f • (- .::1....) 2R 
n ~x 2n 

-K n+l 

and also assuming that 

(- ;;,p) 
;;,y 3)X -----b)Y 

(' · .. ~p) 
.,J -· ..;)X 

one obtains the final formula for F, 

n+l 

F = [ 2(~~)2+ 2(~~)2+ (~~ + ~~)2 ]2 
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(C-8) 

(C-9) 

(C-10) 

(C-11) 



APPENDIX D . 

INTEGRATION AND MINIMIZATION 

OF THE DISSIPATION INTEGRAL 

The dissipation integral, Equation 3-23, may be written for the 

case oJNewtonian fluid (n = 1) as 

(D-1) 

where 

Il =\pt\pl 2(~ )2 dX dY (D-2). 
-Pt -Pl 

cl X 

!2 -\pt (pl 
2(~ ) 2 dX dY (D-3). ~y·· 

-Pt -Pl 

pt pl 
au cJV 2 

I3 = \ \ ( 3'y + ~) dX dY (D-4) 

-Pt .,.pl 

and 

dX dY (D-5) 

Since the integrands in Equations D-2, D-3 and D-4 are always positive, 

the. symmetry condition can be applied to simplify the integration of 
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these equations. And considering the non-uni:t'orm boundary o:f the inte

gration, Equations D-,2, D-3 and D-4 become 

(D-2 I) 

(D-3') 

r=l r·P t "u ";)V 2 
I 3 • 8 ) ) ( ~ + ~) dY dX 

x ... oy ... p 
X•Pl y.,.pt 

( ( ~u av)2 
+ 8 \ \ (~ + ~ dY dX 

X=l YaO 

(D-4') 

With~ First Trial Velocity Profile 

The velocity gradients :from Equation 3-26 and Equation 3-27 are 

calculated as: 

oU ( 2 2 ax= 2 x [c1 +c2 2 x - 1 + Y )] (D-6). 

(D-7). 

(D-8) 
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(D-9) 

Substituting Equation P-6 into Equation D-2' and integrating with respect 

to Y, one gets 

+ ~- :,f.7)3 }+ c~ { (zx.2_1/(Pt-P> + 2(2X2-1) 

~-(-Q)3 
t 'VJ.-,.A + +(Pi - (11-X2) 5)} ] dX 

3 

. X=P1 3 

~ \ X2[C~t + 2'.:f2 { (zx.2-l)Pt + ;t } 

X•l 

3 5 
2 ( 2 2 2 pt pt} 

+ c2 \ (2X -1) Pt + 2(2X -1)3 + 5 J dX 

Introducing new variable e defined by 

sine .• x, cose =µand dX •· cose d8 

Equation n.-10 may be wrttten as -

1T 

(I)-10). 

(D-ll) 

3~ 1.i • rsin2e cos8 [C:(Pt-cos8)+ a:1c2 { (2sin2e)(Pt-cos8) 

0 
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After tedious piece-wise integration, one finds 

Similar expressions are obtained for r2, r3 and r4, and then substituted 

into Equation D-1 and rearranged to result in 

where 

f = 12P3p + l?,p P3 - 31f 
1 3 t 1 3 t 1 

(D-14) 



f • l!-3p3 + !!:I> p5 _ !;.- P?- 1!. 
8 .. ~t 1 5 t 1 ~t 1 12 

f ""0 
9 
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(D-15) 

( 

It should be noted here that, in the process of integration of Equation 

D-5, the !~ V term was neglected so that f 9 become zero in Equation D-

15. This should be justifiable since V should not be important in steady 

uniform flow compared with U. 

Applying the s~t of conditions for minimization of I, Equation 3-24, 

one gets 
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(D-16) 

However the continuity condition, Equation 3-25, plled-etermines c as 
,1 

1 
1 = -----pt ... 1 

or 

Pt-1 

\ c1(i' - 1) dY 
1 

(D-17) 

The set of equations in Equation D-16 are then solved for c2, c3 and i: 

2fl f7 f5 

c1 
C2= Det f2 fg f6 (D-18) 

f5 f9 2f4 

• 

·2r· 
1 f2 f7 

cl 
C3• net f2 2f3 f8 (D-19) 

f5 f6 f9 

w.l 
2fl:' f2 f5 l ... 

.... ····· 
and "' :·,:1- ·,. ~. 

. C 
f2 2f3 f6 1 (D-20} Ji·-

Det 
f5 f6 2f4 
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where 

f? f2 f5 

Det ,.., fg 2f3 f6 (D-21) 

f9 f6 2f4 

When Pt= P1 = 1.50 and Pt= P1 = 1.25 .(inline square layout) are sub-
, 

stituted into Equations D-17, D-20 and D-21, the following friction 

factor vs. Reynolds number relationships are obtained, respectively: 

f = ----
Re 

for Pt = 1.50 (D ... 22) 

45,5 
f---

Re 
for Pt = 1.25 (D-23) 

If the term "!.,i Vis not neglected but assumed to be 

(D-24) 

the coefficient f 9 of Equation D-15 becomes 

(D-25) 

and the following results, 

f .. --
21,7 

(D-26) 
Re ,-



124 

and 

52.8 f---
Re 

for Pt• 1.25 (D-:-27). 

l'!!!:h~ Second Trial Velocity Profile 

Exactly the same procedure will be followed: 

The velocity gradients from Equations 3-34 and 3-27 are; 

(D-28) 

(D-29) 

(D-30) 

and 

(D-31) 

Substituting Equation D-28 into Equation D-2' and first int_egrating with 

respect to Y and introdu:cing new variable 9 defined '.by Equation D-11, 
Tf 
2 one finds· 

3~ ! 1 • (2P!-1)~ sin2e cos9[C~(Pt-cos9)+2Cf2 ( (2sin2e-1)(Pt
O 

~-cos3e 1 2 { 2 2 2 
cosQ) + 3 · 1-.c2 (2sin 9-1) (Pt-cos9)+2(2sin e 
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After considerable manipulation in the integration process, one obtains 

~4 L~+ 1) 11 ·} E:c>Lq 6!:!t,7-~(2-2 1) 32 5~ <r1- ?11 3 - 245ir + 2r7i+ rt~ 5P1- 3 + 5pt 1 

(D-33) 

Similarly upon.integration of I 2, I3 and I 4 with the second trial 

velocities and substitution into Equation D-1, the dissipation integral 

assumes the same form as Equation D-14 but with different expressions 



21 8 41f2 7 +P - -)] ---1T p + - p - -1( 
1 3 3 t 3 t 20 

- li·lrp~+ Fa 1\"p~ - !~6 rr 
11 9 7 

pt pl ptpl ~ 2 ptpl .2 4 8 2 1 
f4 • 32[ 693 · · + 315 ( 3P1-2)+ 35 (5Pl - 3P1+ 3) 

Pf Pi p~ 2-2 1 3Jf. 4 ~ 2 -111 
+ 5 (-;;, - '?1 + 3)] - lbpt + 128011:Pt- ?l,8o TI: 

2 

f5 • ~g~iPi(i + Pi - 1) - ,t11: 
3 2 

256 7-"' ~ :i 1 rr 4 1C 2 it 
f6 • 35PtPi_(27 + 5 -zr) - "'6'"pt +lOPt - 48 
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and (~-...!...) 
dY Y · 

0 

f • 
9 

(D-34) 

Here again c1 is prescribed from the continuity condition as 

1 
C •------2..---'!!-2--------~ 

l (Pt-1) (?Pt+ 21Pt + 12) 
(D-35) 

When Pt= P1• 1.50 and Pt= P1• 1.25 are substituted into Equations D-20 

and D-21, the optimum values of~ are calculated and the following 

equations result, 
dX 

for the case of~• 0: 

98.3 
f --- (D-36) 

Re 
and 

478 
f ---

Re 
for Pt = 1.25 (D-37) 

;;i X X 
and for the case of~• -v-= 

111 
f .. (D-38) 

Re 
and 

555 
f • 

Re 
for Pt = 1.25 (D-39) 



APPENDIX E 

STEEPEST .... DESCENT METHOD OF BOOTH 

Then -dimensional space in which the object function I is defined p 

may be considered as being made up of a family of (n ~ 1) dimensional 
p 

hyper.surfaces of constant functional value. The minimization process 

consists of moving from a given contour:inthe n -dimensional space to 
p 

the one having the smallest value in the neighborhood region of defini-

tion. The steepest-descent method is one way of doing this searching by 

moving along a path which is perpendicular to the surface of constant 

value (Figure 65). 

contour of I as 
a function of 
cl and c2 

Figure 65- Path Followed by Steepest-~escent 
Method in Two-dimensional Space 
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Define I as the object function whose minimum is sought. The 

vector perpendicular to a surface at a given point is given by 

where the i.'s are unit vectors along the coordinate axes. 
J 

..lo. 
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(E-1) 

Movement along the vector Q can be accomplished by multiplying all of 

its components by a scale factor B yet to be determined. Thus the com-

--ponent of a vector coincident with Q but having a magnitude B times as 
,.\ 

large as Q and a direction of maximum decrease of I is 

aI 
dC. "'-B(-) 

1 oC, 
1 

To obtain an estimate of B, the function I is expanded in a Taylor 

series about a given point "a", 

n 
pd!~ I • I + ~. ( ~ C. Ci+ higher order terms 

a 1•1 1 

Neglecting the higher order terms in Equation E-3 and substituting 

Equation E-2 for dC., one gets 
1 

or solving for B, 

n 
p 

I•I -B~(aI)21 
a . 1 de. 

1• 1 a 

I - I a B-=------n 
iJ ( aI )I 
· 1 o)C. a 1=- 1 

(E-2). 

(E-3). 

(E-4) 

(E-5) 



Therefore from Equation F,..2 and Equation F,..5, 

AC. • -
1 

Since O $ Ia - I ~Ia, Equation E-6 may be rewritten as 

where OS. c <1. 
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(E-6) 

(E-7) 

· · Booth ·suggest's an effective procedure for calculating this incre

mental step ACi for finding the minirrru.m of I, whereby two points in 

addition to the base point "a" are found and the.-'ininirrru.m of the parabola 
. I 

through these points is taken as .the minirrru.m of I in that direction. 

For this method the equation of AC. is 
' . 1 

[I(l)-4I(t)+3I(O)] i(O)[:~. ]~=O 
1 

AC, • - ---------------1 n ~ 2 
4[I(l)-2I(i)+I(O)][ z:l( ~~ ) ] 

i•l i ij=O 

(E-8) 

where I(l) is the value of I at the point given by applying the correc

tions from Equation E-7 with ~ • 1, I(t) the values with half these 

corrections, and I(O) the value with ~ = o. 



APPENDIX F 

TUBE SURFACE VORTICITY 

The derivation of the equation for estimating the vorticity on tube 

surface in polar coordinate systems is as follows: 

The fundamental governing eq~ations are 

and 

(F-2) 

Write a Maclaurin series expansion of fand ~ about the boundary point 

"B" of Figure 66: 

V r 

Figure 66. Tube Surface Point 
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(F-4) 



Boundary conditions at "B" are 

yr. 0 

Vn • ~'If- • 0 
"' a r 

and 
. ~-vr 

V • --·= 0 r r'o\Q 

Differentiating Equation F-7 with respect toe, 

1 ~21/r c\lv 
-2 ···~). 0 

r ~82 ~\re 

Thus Equation F-2 becomes with Equations F-6 and F-8, 

Differentiating Equation F-2,w:j.th respect to r, 

But from Equation F-7 and E~uation F-8, 

Thus; 
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(F-5). 

(F-6). 

(F-7) 

(F-8) 

(F-9) 

(F-10) 

(F-11) · 



1.3.3 

Substituting Equations F-6, F-8, F-9 and F""."ll into Equation F-10 at "B", 

(F-12) 

or 

(F-1.3) 

Differentiating Equation F-10 again with respect tor, 

2 ~,v •, 6 ~ 2l{r 2 ~.3tJ, 

- ·,?~r~e2 + r 4 ~ e2 ,.. . r2;;Jr '«:> e2 (F-14) 

Substituting Equations F-6, F-8, F-9, F-11 and F~l.3 into Equation F-14, 

(F-15) 

Differentiating Equation F-2 with respect toe twice, 

(F-16) 

But from Equation F-8, · 

(F-17) 
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With Equations F-11 and F-17, Equation F-16 becomes 

thus, 

(F-18) 

Subtracting Equation F-18 from Equation F-15, 

or 

(F-19) 

Substituting Equations F-5, F~6, F-9, F-13 and F-19 into Equation F-3, 

(F-20) 

Rearranging Equation F-4 for (!-e'r)B! 

~, ) 1 r .,- h * h2 -Jc (- = -( ":, --:, )- -(-) - -(-) - ••••• 
::> r B h B+l B 2 ;;, r2 B 6 ;, r3 B (F-21) 

Substituting Equation F-21 into the second term of right hand side of 

Equation F-20, 



135 

Thus, 

(F-22) 

But from Eq~ation F-1 applied at the boundary point B, 

(F-23) 

Substituting Eq.uation F-23 into Equation F-22 to eliminate O(h4) term, 

Solving for CB , one obtains 

(F-25) 



APPENDIX G 

FORM DRAG AND FRICTION DRAG 

Pressure Variation Along~~ Surface (primed quantities are dimen

sional) 

The Q - component of equation of motion at the surface of a tube is 

Rearranging Equation G-1, 

1 dP' • ~(i ..2.... (r'v')) 7 r' c:';lQ c:iJr' · r' o>r' Q 

Stream function and vorticity are defined by 

1 ~Vr' 
v' = --·r r' 'c;;)Q 

c;'lp-' 
v' ·-6 ';;Ir' 

~v' 
r;. 1 

• ..l....r .?__( r I V 1 ) - ____t ] 
7L c3r 1 0 d0 
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(G-1). 

(G-2) 

(G-3)' 

(G-4) 

(G-5) 
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From Equations G-5 and G-3, 

...L ~(r1v 1 ) • ..l... ~(r•v•) + C: ' r• ~r' e ... r 
r'2d9 

(G-6) 

Substituting Equations G-3, G-4 and G-6 into Equation G-2, 

thus, 

(G-7) 

. ,2 
Nonnalizing _Equation G-.°1 with respect to if u , and integrating it from 

G = 0 toe• G, the dimensionless pressure variation results: 

G 

""'*' ""'*' p* AP 1 1 \ a,p 1 
. .I:' - .I:' o=6 • 2 = -----2 r• cl).Q r' d9 

t f u' t pu' o 
Q 

/A ( ;;,i;' • - J r' d.Q 2 ;;, r' r'•R' _, 
ifu 0 



Thus, 

The pressure contribution to the total drag coefficient is then, 

( 1t" * 
C p • ) AP cose dQ 

0 

Shear Stress Variation Along~~ Surface 

Shear stress on a tube surface is given by, 
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(G-8) 

(G-9) 

(G-10) 

Substituting Equations G-3 and G-4 into the right hand side of Equation 

G-10, 

{G-11) 

But from Equations G-3, 0-4 and G-5, 

(G-12) 

Substituting Equation G-12 into Equation G-11, 

{G-13) 

• 



1.39 

Bu.t at the surface ot a tube, 

'l'hus1 

{G-14) 

-2 Normalizing Equation G-14 with respect to i p u 1 , and integrating it 

a1o:ng the surta~e ot the tube, the dimensionless stress distribution 

· is obtained1 

-* ll"C. µ (1T 
/l l.-. 2 • -----i2 ( sine dQ 

ifu' i -• r'•R' ru . 0 

I. 

{0-.15) 

The skin friction contribution to the total.drag coefficient is therefore 

cn • cP + c:r {G-16) 
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Vorticity Gradient 2B ~ Surface 

If a parabolic profile of Casa function of r is assumed, one may 

write, referring to Fig'1,re 67, 

Therefore, 

Boundary conditions are, 

and 

z: = ~- 1 
i, 

z; -~. 2 
J.' 

z; .,. 3 
J., 

(. 1 
i, 

at r = R = 1 

at r • h+l 

at r • 2h+l 

equi-vorticity lines 
(vorticity contours) 

Figure 67. Vorticity Gradient at 
the Tube Surface 

(~17) 

(G-18) 

(G-19) 



Substituting these boundary conditions into Equation G-17, 

z; i, 1 • Al + A2 + A3 

( i, 2 = A1 ( 1 + h) 2 + A2 ( 1 + h) + A3 

and 
2 

~ l,J III A1 (1 + h) + A2(1 + h) + A3 

Thus, from Equations G-20, G-21 and G-22, 

and 

Subtracting Equation G-23 from Equation G-24, 

or 

~ 2 2 
'-:i • 3 - 2 "5. 2 + C::. l • A1(3h + 2h- h - 2h) 

1, 1, 1, 

A • 
1 

Substituting Equation G-25 into Equation G-23, one finds 
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(G-20) 

(G-21) 

(G-22) 

(G-23) 

(G-24) 

(G-25) 

(G-26) 

Substituting Equations G-25 and G-26 into Equation G-18, one obtains 

( ~, ) • ..L[ 2)"" _ _L't" _..l..'7" J 
ar r-R h ~i,2 2 ",i,3 2 ':7i,1 (G-27) 



APPENDIX H 

WALL EFFECT CORRECTION 

BY GRAETZ SOULTION 

A solution of the Navier-Stokes equations for steady laminar flow 

in ducts of rectangular cross section (Figure 68; (a)) found by Graetz 

(14) may be written in terms of the differential pressure drop, (~)duct' 

where 

Q 

z3 z 
1 2 

12 

Q • volumetric flow rate 

M • (2m + 1)7C/z1 

(a) Rectangular Duct 

• 

00 

--z--
1 

00 

(b) Narrow Slit 

Figure 68. Narrow Slit and Rectangular Cross 
Sectional Duct 
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(H-1) 

(H-2). 



14.3 

After substitution of Equation H-2 and rearrangement, Equation H-1 may 

be expressed as 

(H-4). 

On the other hand, for the laminar flow in a narrow slit of infinite 

height (Figure 68; (b)); the differential pressure drop, (~)CD, with 

the same height z2 and the flow rate Q as in the duct flow, is given (17) 

by 

(H-5) 

From Equations H-3 and H-5, the following expression results; 

(H-6) 

where 

f(a) = 1 - 0.627a ~ (2m+l)-5tanh (2m;l)1\ 
~ a (H-7) 

In applying Equation H-6 for estimating the correction factor of wall 

effect in tube bank flow, it is assumed that the pressure gradient in 

they-direction is negligible so that z1 is taken as the clearance 

between tubes perpendicular to x-axis (Figure 69). 



Figure 69. Two Extreme Cases for Wall 
Effect Correction 

The following two extreme cases may be considered for estimating the 

limits of the correction factors: 

(i) z1 is taken as the transverse tube pitch, or z1 • PtDt. 

(ii) z1 is taken as the minimum tube clearance, i.e., (Pt - l)Dt. 
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In both cases z2 is the tube length of 6 inches for the Delaware ideal 

tube bank. Table V shows the correction factors calculated for the two 

cases with two pitch ratios used. 

· TABLE V GRAETZ CORRECTION FACTORS FOR TUBE BANK FI.01 

pt case a= z1/z2 f(a) 1/f(a) % 
correction 

(i) 0.0938 o.8883 1.1257 12.6 
1.50 

(ii) 0.0313 0.9591 1.0426 4.3 

(i) 0.0781 0.9048 1.1051 10.5 
1.25 

(ii) 0.0156 0.9791 1.0213 2.1 



APPENDIX I 

CCMPUTER PROORAM FOR OBTAINING 

STREAM FUNCTION AND VORTICITY 

The computer program for solving the Navier-Stokes equations for 

vorticity and stream function for tube bank flow is written in FORTRAN IV 

for use on the Oklahoma State University Computing Center's IBM 360 Model 

50 digital computer. The block diagram of the program is shown in Figure 

15. The basic feature of the program is that the computation is broken 

down into sub-calculations with specific and independent functions. A 

description of each of the subroutines is presented in the following 

sections. Approximate computer times and number of iterations required 

are listed in Table VI along with other system parameters. 

Main Program 

This is the executive program for the entire calculation. The main 

program arranges the subroutines in order for iterative computation and 

is independent of the working equations used. The data input and output 

subroutines and the major calculational subroutines are called by the 

main program at the appropriate time during the iterative process. 

Subroutine COUNT 

COUNT calculates tagged constants and parameters needed to establish 

tag array and geometrical parameters at various boundaries necessary for 
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Pitch Reynolds 
ratio. number 

pt Re 

1 

5 

10 

1.50 10 

20 

50 

100 

1 

5 

10 
1.25 

20 

50 

100 

TABLE VI 

CCMPUTER EXECUTION TIME 

FOR CONVERGED SOLUTION 

Basic Number. of 
mesh total field 
size points in 

h entire 
system 

0.10 1318 

0.10 1358 

0.10 1358 

0.05 5241 

0.05 5341 

0.05 6543 

0.05 6203 

0.05 3897 

0.05 3897 

0.05 3897 

0.05 3897 

0.05 3897 

0.05 5189 
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Number of Computer 
iterations time 

(hrs) 

91 0.40 

158 0.75 

173 0.78 

313 0.93 

110 0.31 

123 0.37 

146 0.44 

236 0.63 

275 0.93 
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iterative computation. Figure 70 shows a typical geometry involved at a 

boundary in which tagged parameters are calculated. 

y. 
J_ h 

I 
m-

y .. 1 i-

i 

~1,i-1 
I 

i-1 

r',-

NS 

.~ ----------------

Figure 70. Geometry for Calculating 
Parameters and Constants 

Here, the parameters and constants depicted in Figure 70 are defined as 

follows: 

oe = 4/Ns 

e = ice 

h = (Pt - 1)/NPT 

Rt = Pt/cose 

Yii = Rtsine 

R. = h(j - 1) 
J 

a. = R.(e - cos-[Pt/R.]) 
J_ J J 

(I-1) 
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Subroutine COUNT is called by the main program at the initialization 

stage of the iterative process. 

Subroutine GUESS 
'II,:: . 

.. \' .. 
GUESS is the subroutine program that generates the initial guess for 

stream function and vorticity at all the field mesh points. As the initial 

guess of ~ and 1fr , the values of laminar velocity profile in a non

uniform tube bank channel are used. GUESS is called only at the begin

ning of the calculation of series of Reynolds numbers studied. 

Subroutine DATA 

DATA reads in the stream function and vorticity at all the field 

mesh points from punched-out cards as the initial guess. DATA is called 

at the beginning of the iterative computation. 

Subroutine DISK 

DISK is used to read the initial guess of stream function and vorti

city from the permanent storage disk which was used in the later phase of 

the study. The basic structure of the subroutine is the same as the 

subroutine DATA. 

Subroutine SQUARE 

SQUARE is the subroutine that is responsible for calculation of all 
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the inner field vorticity and stream function of rectangular coordinate 

inlet and outlet sections. Equations 4-44 and 4-50 are utilized in this 

subroutine. 

Subroutine STMESH 

S'IMESH is the subroutine that performs the matching calculation at 

the boundary between rectangular inlet section and polar section of the 

first unit cell of tube bank. Finite difference expressions used in 

this subroutine program are as follows: 

For a representative boundary point (m,i) in rectangular section in 

Figure 71, the finite differencing method is applied to the governing 

equations, Equations 4-19 and 4-20, at the points (m,i+l), (m,.i-1), (m+ 

1 i) and "0" ' .. 
K =3 

i 

L Yi-

m L---+---1-........,.--9__ 
h 

Figure 71. Rectangular-Polar 
Matching Plane 
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The following final expressions result; 

(I-1). 

and 

k 1 1 y.y. 1 k 1 hh k 
1/,-. + • ( ),[ l. l.- (h \Ir+ h '\Ir + )+ 0 ( 1/.... 
T i,m hh + y.y. h+h r o o Ti m-1 · y.+y. Yi-lT i+l m 

o l. J.-1 o ' l. i-1 ' 

(I-2) 

where Z: and 1/r are the vorticity and the stream function at irregular 
o ro 

star "0" whose values are interpolated from the two points (i+l,j) and 

(i,j) by, respectively 

~ • '. l jl. /lj + C: . j ( 1 - 1. /lj) 0 l.+, l. i, l. (I-3). 

and 

\Jr • llr. 1 jl. /lj + 1/F;, j ( 1 - 1. /lj) r o Ti+, l. i., l. (I-4) 

Similarly, for a boundary point (i,j) in polar coordinates of the section 

K • 4 where the points IIR", 11S", (i,j-1) and (i+l,j) are used, the 

working equations become, 
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(I-5) 

and 

k 1 1 a.li k 1 . a.l.b.h -yr . + = (.. ) [ 1 ( 1/r + ilr ). · 1· kJ· 1 (' J,. 
j 1 b b b b1·T1·,J·-1+ hrs· + 2r(b.+bJ 's 1, -a .. +. .+ 

1 J 1 1 1 

k+l bih k __ a_i1_..J __ b1_.h_Y" k_+l.J -'Jr . . 1)+ ~(a.'lf .+1 j+ 1.'riR)- '=> 1,J- aiTn 1 1 , J 2 1,J 

(I-6) 

where the s's and 1.Jr's at the irregular stars "'8'-' and "R" are given by 

(I-7) 

(I-8) 

~R ... ~ ~+ll .hl/y. l+~~+l(l - hl/y. 1) 1- ,m 1- 1,m 1- (I-9) 

,P-,R = 1/J'~+ll hl/y. 1+ ~+1( 1 - hl/y. 1) 1- ,m 1- 1,m 1-
(I~lO) 
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Subroutine TUBE 

TUBE is the subroutine that commands calculations in the entire 

tube section. This subroutine calls the subroutines POLAR, T'IMESH, and 

TSMESH and patches these together with the boundary point equations in 

the process of computational sweep at every iteration. For an irregular 

star (i,j) like the one shown in Figure 72, the same expressions as 

Equations I~5 and I~6 are used but with different boundary values for 

1/,rR, ~ R ~ 1f's and ~ s, that is, 

and 

upper symmetry line 
s R 

Figure 72. Irregular Stars on the Upper Symmetry :Ll..ne 

Subroutine POLAR 

(r~11) 

(I-12) 

POLAR is responsible for calculation of all the inner field stream 

functions and vorticities of polar coordinate sections including tube 

surfaces. Equations 4-36, 4-47 and 4-51 are utilized in this subroutine. 
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Subroutine TTMESH 

T'flolESH is the subroutine that carries out the matching calculations 

at the unit cell-to-cell boundaries in polar coordinate sections (Figure-

73). 

K K+l 

I 
/ 

I // 
' / v/ 

Figure 73. Polar-Polar Matching Plane 

Finite difference equations used are given as follows: 

For a typical boundary point (m,j) of the section Kin Figure 73, the 

finite differencing method applied to the governing equations, Equations 

4-25 and 4-26, at the points (m-1,j), (m,j-1), "R", and "S". The result

ing equations are 
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(I-13) 

and 

k 1 b.h k 1 a l.b.h k 1 - t, + . ) + 1 ( a :f,"" + . + 1 . ~ )- m J 1 r: + .] 
m,J-1 a+ 1. m rn-1,J J R 2 m,J 

m J 
(I-14) 

Similarly, for a boundary point (i,j) of the section K+l, for which the 

mesh points "R", "8", (i+l,j) and (i,j-1) are employed, the working equa

tions become 

(I-15) 

and 

(I-16) 
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Here, the values of { and i/r at the irregular stars "R" and 11811 in Equa

tions I-13 to I-16 are interpolated as follows; 

Ss .. .2:..2 [(~k+11 .+t:~+1 .)1./1.+(~k+~+C~ j)(1-1./1j)J m- ,J . 1 ,J 1 J . m,J 1, 1 (I-17) 

~s = _!_2 [('fk+11· j+~ 1 j)1./1.+(¥"k+~+~~ .)(1-1./1.)J m- , . 1+ , 1 J m,J 1,J . 1 J (I-18) 

(I-19) 

and 

(I-20) 

where 

(I-21) 
and 

~sn= ---21 [('¥rk+~ 1+¥':~ · 1)l. 111- 1+<~ 1 · 1+v}; 1 · 1)<1-1· 1/1. 1)] , m,J- 1,J- 1- J- m+ ,J- 1- ,J- 1- J-

(I-22) 

Subroutine TSMESH 

TSMESH is the subroutine that performs the matching calculation at 

the boundary of the polar tube section K=8 and the rectangular section 

K=9. TSMESH is the mirror image of subroutine STMESH. The finite 

difference equations used and the geometry i~volved should be referred 

to the section of subroutine S'IMESH. 
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Subroutine STORE 

STORE is the subroutine that stores the intermediate or final 

results of stream function and vorticity in the permanent strage disk of 

the computer according to the control parameters in the main program. 

STORE is called by the main program after each completed calculation. 

Subroutine PRINT 

PRINT is the subroutine that prints out all or part of the results, 

or punches out all the results of stream function and vorticity!. The 

print-out format is specified by the internal command. 

Input!!!!:!,~ 

The input data cards required for the program are arranged in the 

following order: 

(cARD 11 
(a.ARD 21 "Format specifications". 

The fir~t two cards are for built-in format specifica

tions of the input and output data. 
I 

READ: (FM1(I),I•l,l8) 
READ: (FM2(I),I•l,i8) 

FORMA'l': 18A4 

"Control parameters a¢ constants for iterative 
computation" f 

T~is card contains nine constants and parameters 

required for the operation of the program. Each of 
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them is described below: 

NI a number of incremental steps in x-direction to 
be specified for the inlet section K•l. 

NT = number of tube rows. Three tube rows are used 
in this study. 

N2 • number of incremental steps in x-direction to 
be specified for the outlet section K•l2. 

NS. • number of incremental steps in the 9 - direc
tion per an.angular distance of rr/4 to be 
specified at polar tube section •.. 

NPT = number of incremental steps to be specified in 
r-direction at the minimum clearance of the 
tube bank flow channel. 

= 10 at Re=lO to 100 for P sl.50. 
= 5 at Re= 1 to 100 for P:=1.25 and at Re=l, 5 

and 10 for Pt=l.50. 

ITMAX s number of maximum iterations at a time to be 
specified. 

EPSMAX = limit for ~ (l:;~+:-Z:~ .) and ~ (1/11;-+: 
1,J 1,J 1,J 1,J 1,J 

k -y . . ). 1,J 
PT = inline square pitch ratio 

Re = Reynolds number 

READ: NI , .NT i N2, NS , NPT, I 'IMAX, EPSMAX, 
PT,. 1 ~ . 

FORMAT: 6I5, 3F10.5 

(CARD 4 and thereafter! 

In these cards the stream function and the vorticity are 

punched that are read in as initial guess. 

READ: F(K,I,J) 
V(K,I,J) 

FORMAT: 18A4 



c 
C 
C 
C 
C 
C 
C 
C 
C 
C 

STEADY STATE Vl5'0US FLGW ACROSS BANKS OF TUBES AT LOW REYNOI.S NUMBERS••• 

AUTHOR: KOHEi JSHIHARA, SCHOOL OF CHEMICAL ENGIMEERING, OltUHONA STATE 
UklVERSITY, STiLUlATER, OltLAHDMA 74074 NAY, 1971 

NUMERICAL SOLUTIOMS OF THE NAVlER-STOltES EQUATIONS FOR ¥0ilTICITY AND 
STREAM FUNCTION •••• . 
VCl,Jl~VORTlCITY 
FCl,Jl•STREAM FUNCTION 

C ••• POLAR AllO ltE:CTANGUl.Afl COOA.DlltATE SYSTEMS ARE USED ••• 
C 

CONHOM FC12,50,4Sl,VC12,50,4SI 
CCJIIIMON ·,uu20,31,KI C20,3hRt501,KLJlSOl ,NlSO) 
COIUEN Y(20l.RU201,SSUOl,HOU201,Gl20 .. YU201 
COMMON FM1U811FM2UBI . 
COMMON RE,H,PT,Ott 
CIJMMOM Nl,MT1~NS1NPT1NP,NSS,NIN1NINl,Nll1NOl1NTll.1NSl,NS2,N02 

300 FOR~TIUA41 
READlS,3001· lFMllll,1•1,181 
REAOts,3001 lFM2Cl I. l•l, l81 
REM> lS,1001 Nl,NT,N2,NS,MPT,ITMAX,EPSMAX1PT,RE 
WRlTElf>,2001 Nl,NT,"2,NS,NPT,ITMAX,EPSHAX,PT,RE 

100 FORIIAT(6IS14FlOoSI 
200 ·FORMAT(/, SX 1 Nl• 1, l2, 1X1NT• 1 ,12·, 1x•N2•1 , 12, lX 1NS••, 12, 1X1 NPT•', 12,1 

lX'ITNAX•'113,lX'EPSHAX•',F8o411X 1PT• 1,F&.4,lX 1RE•1 1F8041/I 
tt-CPT-lol/llPT 
OH-1.-K/2.+3.•H*K/8. 
IFlPT.EQ.1.SI 60 TO l 
OPT•O. Sl(f'T-1.1 
60 lO 2 

1 CONllNUE 
DPT•lo . 

2 CO#TINUE 
NINalt ..... T*OPT-2 
NS2•2*NS-1 
NSlstlS+l 
NTKsfff•2+3 
NP-10 
lilllattl+l. 
Ill Nl -N 1 .. 1 
NSS-NS-1 
ND-tlS2+2 
NOl•NO+l 
NOZ-N2+1 
WAI TEl6,201 I K,OH,NTK,NIN,NS1,NS2,NP, NSS,N INl, NI l,NOl,NO.Z 

201 FORMAT(, .sx•Ha• ,FS.4, lX, 'DH-' ,FB.4,lX'NT·K•', 12,lX'NlN•', 12, lX• NS1• 
·1•,12.1x•NS2• 1 ,t2,lX 1 NP• 1 ,12,1X 1NSS- 1 ,12,lX 1 NIN1•',12,1X'Nl1•',12, 
21X 1 NOl• 1 ,12,lX1 N02•',12,/) 

CALL COUNT 
C .... ESTABLISH INITIAL GUESS FOR VORTICITY FIELD AND STREAM FUNCTION •••• 

REWIND 3 . 
CALL DISKC-31 

C •••PRINTOUT INITIAL GUESS••• 
w«ITi:16,2081 

208 FORMATl/,•INITlAL GUESS OF STREAM FUNCTION AND VORTICITY',/1 
CALL PRINTC61 . 

C ~ •• CALCULATE SUCCESSIVE AP1>ROXIMATJ ON FOR STREAM FUNCTION AND VORTICITY 

I TERaO 
NN•lOO 

20 CONTINUE 
tl.•l 
EP·SV•O, 
EPSF-Oo 
·ni:R•ITER+l 

C ••• INLET SECTIONfSPECIFIEOI ••• 
. .DD 22 J•l ,NS 

Fltt,Nl+21Jl•FCK+l131JI 
YlK,Nf+2 ,Jl•VCK+l ,3,JI 

·22 CONTINUE 
. -·cALL SQUAREl2,tt,Nll,EPSV,EPSf1 

.K-tt+l 
C ••• INLET SECTIOltC.aUILT-INI ••• 

DD. 23 Jsl,NS 
FCK,1,Jl-fCK-1,NlhJI 
VlK1l,Jl•V(K-l1Nll,J) 

23 CONTINUE .. 
CALL SQUAfU:U,K,NIM.EPSV,EPSFI 
CALL STMESHCtt,NINl,EPSY,EPSFI 
gaK+l 

C ••• MAIN SECTION ••• 
CALL TU8ElK1EPSV,EPSFI 
K•K+l 

C ••• OUTLET SECTION(BUILT-lNI ·••• 
00 .25 J•l,NS 
Fltt,NIN+Z,Jl•IFCK+l,1,Jl+F(tt+l,2,J))/2, 
VIK,NIN+2,Jl•lVl1t+l,1,Jl+YlK+l,2,JIJ/2, 

25 CONTINUE . 
CALL SQUARECl,tt,NINl,EPSV,EPSFI 
K•K+l 

. DO 27 J•l;NS 
Fltt,1,Jlaf (K-1,NINl,JI 
VCK,1,J)•V(K-1,NJNl,JI 

27 CONTINUE . 
DO 28 J•l,ilS 
FIK.NDl,Jl•FCK+l,2,JI 
VlK,NOl,Jl•V(K+l,2,JI 

28 CONTINUE . 
CALL SQUARE'21K1NOoEPS¥,EPSF I 

C ••• OUTLET SECTIONCSPECIFIEDI ••• 
K-t<+l 
DO 29 ·J•l,NS 
Fl K,l ,Jlaf l K-1,NO,JJ 
V(Kol1JJ-Vl~-l1NO~J) 

29 CONTINUE 
DO 19 J•l,NS 
F IK,NOlo.JI• (FIK+l, l,Jl+F:ltt+l ,2,JI 1/2~ 
Vl~oNOl,J ~- (V CK+lo lo J)+VIK+l, 21.JI 1/2~ 

19 CONTINUE 
.CALL SOUAREU,K ,NO,EPSV,EPSF J 
K•K+l 
DO 18 J•l,NS 
FCK,l;Jl•FCK-1,NO,JI 
Vltl.1l 1JI •Yl K-1,NO.,JJ 

18 CONTINUE 
CALL SQUAREC3,K.,N2,EPSV,EPSF1 I-' 

Vl 
0) 



C 

C 
C 

C 
C 

C 

N.EkD•NU2 
DC ioO Jsl ,IIIS 
Fl K,NENO, JI •f I K,NEND-t,.Jl-2•·~,f K,N:E:t<D-3,.·.:i-t•Z•·•ff K,,:NE:ND-l ,JI 
VIK,NEND,Jl•VIK,NEND-lo,Jl-2.•VCK,NENU-3,Jl+2.•VIK,NEND-l,JI 

loO CONTINUE 
PRlkT OUT SUCCESSIVE RESULTS 
WRIJEl6,2011 IT~R 

207 FORMATl/,2X'ITER•',13,/I 
IFIITER.EQ,NNI GO TO 30 
GO TO 31 

30 CONTINUE 
hN•NN+50 
REWIND 3 
CALL STOREl31 
CALL PRINTC61 
STUP ITERATION .If COMPUTED VALUES SHOW LITTLE FURTHER CHANGE OR 

NUMBER OF ITERATIONS IS TOD LARGE•••• 
31 CONTINUE 

WRITEl6,2041EPSF,EPSV 
204 FURMATll,IOX,' EPSF •',fl0,5,zx~ EPSV •',Fl0,5,/1 

IFIEP'SF,LE,EPSMAXI GO TO 32 
GO TO 33 

32 IFl~PSV.LE,EPSMAX) GO TO 34 
33 IFIITER-ITMAXI 20,35,35 

PRlkT VALUES OF THE ITERATION COUNTER •1TER• AND THE FINAL 
STREAM FUNCTION AND VORTICITY ••• 

3io WRITE( 6,2021 ITER 
202 FORMATl5X, 1 CONVERGENCE CONDITION HJS BEEN REACHED AFTER',13,2X'ITE 

1RATIONS',/,5X'STREAM FUNCTION AND VORTICITY flELD IS GIVEN BY'I 
CALL PRUIT 171 
REWIND 3 
CALL STORE 131 
CALL PRINTlbl 
GO TO 36 
COMMENT IN CASE •ITER• EXCEEDS ITMAX ••• 

35 WRITEC6,2061 
206 1'0RMATl5X, 'NO CONVERGENCE, CURRENT VALUES OF F AND V ARE GI VEN AB 

lOVE' ,/1 
REWIND 3 
CALL ST0REC3I 
CALL PRI NTC 61 

36 CALL EXIT 
· ENO 

C 
C 
C 
C 

SU!ROUTINE COUflT 

THI~ SUBROUTINE CALCULATES TAGGED PARAMETERS ANU CONSTANTS NECESSARY FOR 
SUBSEQUENT NUMERICAL CCMPUTATION •••• 

COMMON FC12,50,451;VC12,50,io51 
COMMON RRC20,31,HIC20,31,RC501,HLJl5~1,NC501 
COMMON Yl201,Rll201,SS12Cl,HUll201,Gl20l,Yll2UI 
COMMON FMlll81,FMZl181· 
COMMON RE,H,PT,DH 
COMMON Nl,NT,NO,NS,NPT,NP,NSS,NIN,NIN1,Nll,N01,NTK,NS1,NS2,N02 
DIMENSION ASl201,DSl31,YRl20,31 
Pl•3, Hl59Zo536 
OAS•Pl/14,•INS-111 
As2. 
NPM•I SQ~TIAl•PT-1,I/H+l 
00 Z J•l,NPM 
RIJl•H•CJ-11+1, 
HLJIJl•RIJl•DAS 

2 CONTINUE 
DO 1 1•1,NS 
ASI I l•DAS*l l-11 
RT •PT/ COSIASIIII 
RII ll•RT 
Yllll•RT* SINCASIIII 
IFll,E0.11 GO TO 3 
Yll-ll•YIIII-Ylll-11 

3 CONTIIWE 
NCI l•CRT-1, l/ltH 
NPB•NIII 
RAD• SQRTCRCNPBl•RCNPBI-YICll*YIIIII 
SSCll•RT-RCNPBI 
HOI I I l•PT-RAD 
DDS• ARS1NIYIC11/RINP811-ASIII 
GI I l•DDS/DAS 
IFCl,EQ,11 GD TO 5 
KN•NI II-NII-II 
IFIKN,EQ.DI GO TO 6 
JK-0 
GO TO 7 

o KN•l 
JK•l 

7 CONTINUE 
DO 4 K•l,KN 
J•NCI-H+K-JK 
DSCKl•AHII- AKCOSIPT/RCJII 
IFCDSCKl,LT,DASI GO TO 10 
DSCKl•DAS 

lD CONTINUE 
RRll,Kl•RCJl•DSIKI 
AR•RCJ J•RIJ 1~PT*'PT 
IFUR,LE,D. I GO TO 8' 
YR Cl ,Kl• SOR HAR I 
Hlll,Kl•IYl(ll-YR(l,KII/YCl-11 
GO TO 9 . 

8 YRCl,Kl•Ylll-11 
HI 11,Kl•l,O 

9 CONTINUE 
4 CONTINUE 
5 CONTINUE 

· l CONTINUE 
RETURN 
ENO I-' 

Vl 
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Sll8ROU:flNE GUES'S 

~ ••• THIS SU8ROUTIN£ GENERATES TK\:" INJTUL GUESS OF- THE SOLUTION ~--c . . . . . . . . 
COMMON FllZ,50,451,VUZ,50,451 . . . 
COMHOl!I RRCZ0,31,HIC 20,31,Rl501,HLJC501,NC 501 
CCMIIDil. Y.(20 I ,RI (201,SS(ZO 1,HPil 201,GIZOJ.-YJC 2oi 
COMMON FN11181,FM21181 -. - - -
COMMON RE,H,PT,DH· 
COMl'ION NI ,N'F,NO,NS ,NPT ,NP, NSS ,NIN,NINl ,HI 1.NOl, NTK,NS 1,NS2.-N02 
PTSQslPT-lol*CPT-lol 

C • • • INLET SE·CTIDN 
K•l 
DO 1 1•1,Nll _,., 
F(Ki I, 11•0. 
VC-K,1,ll•Oo 
DD· l J•2,HS 
Fllt. 1,Jl•tPT-1 o l*YJIJl/PT 
VIK,1,-J.l•O. 

l toitTINUE 
Katt+i -

c· ••• IHL:ET SECTIONCJIU-II.T-11111° 
DO 3 1•1,NINi -
FUt,hl 1•0. . 
VIK, 1,,11 •0-• 
DD 3 J•2,NS 
F C-K,1,Jl-•CPT-lo-l*YI IJI-/PT 
VCK-,1,JI.-Oo ' 

3-(;0NTHI.IE 
- K-K+l 

c; ••• MAIN SE«;TIOII ••• 
c; ••• FIRST HAl.F OF A TUBE 

9 (;ONTINUE -
.,DO 4 l•l,NS 

MPB•NU I 
RllaRlC 11-1. 
DD 4 J•hNPB 
R.l*RIJl-1• . . . . 
Fl K,'1,Jl•CPT-lo t•C 1-U*RJ•RJIC RI l•Rll*INS -11 I 
vu.I.JI• 1.5 .•11-ll•UlIIH-RCJIJ/IRU •tNS2-lll/PTSQ 

~ (;ONTI IIIUE 
DO 5 I....Sl,NS2 
M-NS2-l+l 
NPBaN·IMI 
R.lflalllltl 1-1. 
DO 5 .,.1-.JIPB 
RJaRIJl-h . 
ft'K, I,Jt•CPt-1. t•RJ•RJ-/lllltl*RlMI . 
VCK,I.Jt• lo5 -•n-1ra-tRHMI--RCJH/fRlM *INSZ-111/PTSQ -

5 CONTI.HUE -
. KaK+l 

C • •• ·sEaJHD HALF 
DO 6 1•1,NSS 
Nl'llaltC 11 
Rll-RI Ill-lo 
DO 6 Jal,IIPB 
RJall(J 1-1. 

_. FIK,1,Jl•CPT-lol*AJ•JtJl_lllll*Alll 

~-
V(K,1,JI• 1.s *INS2-1t•CRl1li~R-IJiti1R11' -.,N's2:i111PTSQ 

6 CONTINUE -
OD 7 l•NS ,NS2 
MaNSZ-1+1 
NPJ!-NCMI _ 
RIMaRICMl-lo 
DD 7 J•l,HPB 
RJaRIJl-1. -
FIK, I.Jl•IP-T-lo l*I_M-l l*RJ*RJ/lllIM*RIM*CNS -1 ti 
V"IK,1,JI-• 1.5 *111-l l•IRII Nf"."RIJI 1/IRIM *CNSZ-11 J/PTSQ 

7 CONTINUE - -
K•K+l· 
IF(KoEQ.NTKI.GO TO 8 
GO TD 9 -

8 CONTINUE 
C • •• DUT1.ET SECTIDN-CBUILT-INI 

DD 10 1•1,NINl 
FCK,I.11•0. 
VIK, 1,ll•Oo 
OD 10 J•2,NS
FCK,1,Jl•IPT-lol*YlCJI/PT 
V( K, l,J l•Oo 

10 CONTINUE. _ 
C ••• OUTLET SECTl0NCS,PEC1F1ED1 

KDUf•l 
NDUTaNOl 

70 CDNTINUE 
K•K+l 
DO 12 l•l ,NOUT 
F(K,1,11-0o 
VIK,loll•Oo 
DO 12 J•2 ,NS_-
FC K,1,Jl•CPT-1. l*Yl CJI/PJ 
VIK,1,Jl•Oo -

12 CONTINUE 
KDUT•K.OUT+l 
GO JO 170,T0,72,711,KDUT 

72 CONTINUE 
NOUT•N02 
GO TO 70 

71 CONTINUE 
RETURN 
ENO 

I-> 
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;;. 

-~ --
. SU&ROUTl~ _DAT'A 

C . • 
-C ••• THIS SU8P.OUT1NE READS THE DAT~·FROM THE PUNCHED-OUT DATA CARDS••• 
C . 

COMMON FllZ,50,451·.vcu.so.451 . 
COMMON RR(ZII, 31,HIIZ0,31 ,11(501 ,HLJC501,.NC 501 
COMMON YCZOl,RIIZO 1,SSlZOJ.HIIU20hGl20hYlf 201. 
COMMON FM1U81,FMZC181 . • 
COMMON RE,H,PT,OH . 
COMMON NI ,NT.,NO,NS,NPT ,NP,NSS ,NIN,NINl, NJi,-NOl,NT-K,NSl,NSZ,NOZ 
Dll'IENSION JN1'41,JNZl41 . 

101 .FORMAT(lOFS.51 
NC•NINSI/NP 
JNll 11•1 
JNZlll•NP 
IFINC.EQoll GO TO 1~ 
DO 9 L•Z,NC 
JNllLl•JNZIL~ll+l 
JNZILl•JNZI L-ll+NP 

9 CONTINUE 
18 CONTINUE 

Kll•l 
19 CONTINUE 

K•l 
C ••• INLET SECTIOHISPECIFIEDI 

NC•NS/NP 
00 Z4 l•l,Nll 
GO TO 125,261,KII 

25· IFINS.GT.NPI GO TO 60 
READ15,F·MZI IFIK,I,Jl,J•l,NSt" 
GO TO Z4 

60 DO 50 L•l,NC 
JN•JNllLI 

?JNP•JN21LI 
READ 15,FMZI (FIK,l,Jl,J•JN,JNPI 

50 CONTINUE . 
IFINSoLE.JNPI GO TO 24 
JNaJNP+l 
READ 15,·FMZI IFIK,1,JI.J•J-N,NSI 
60 TO Z4 

Z6 IFINS.GT.NPI ·GO TO 61 
RUD15,FM21 -IVIK,1,JI , . .,.;1,NSI 
GO TO 24 . 

61 00 51 L•l,NC 
JNaJNllLI 
JNP•JN21LI 
READ 15,FMZI ·IV(K~l,Jl,J•JN,JNPJ 

51 CONTINUE . 
IFINSoLEoJNPI GO TO 24 
JNaJNP+l 
READ (5,FMZI lVlK,1,Jl,J•JN,NSI 

. 24 CONTINUE 
K•K+l 

C ••• INLET SECTIONl·BUILT-INI 
DO 27 1•1.NlNl 
GO TO (28,291,KII 

28 IFINS.GT.NPI GO TO 62 
REA015,FN21 IFIK,1,Jl,Jal,NSI 

GO TO 27. 
62 00 53 L•l ,NC 

JN-JNllll" 
JNP•JH2(LI 
READ 15,FMZI IFIK,i,Jl,J•JN,JNPI 

53 CONTINUE 
IFINS.LEoJNPI GO TO 27 
JN•JNP.+l 
READ 15,FM21 IFIK,1,JhJ•JN,NSI 
GO TO 27 

29 IFINS.GT.NPI GO TO 63 
REA0(5,FM21. · (VIK, I ,JI ,Jal.NS I 
GO TO Z7 

63 DO 54 L•l,NC 
JNaJNllLI 
JNP•JN2(LI 
READ 1S.FM21 IV(K·,1,Jl_,J•JN,JNPI 

54 CONTINUE 
IFCNS.LEoJNPI GO TO 27 
JNaJNP+l 
READ 15,FMZ I IVIK,t,Jl,J•JN,NSI 

27 CONTIMUE 
K•K+l 

30 CONTINUE 
C ••• MAIN SECTION 
C ••• FIRST QUATER 

DO 31 1•1,NS 
NPB•NCII 
NC•NPII/NP 
GO TO 132 ,33 I ,KIi 

32 lFINPB.GToNPI GO TO 1 
READ 15,.FMZI IFIK,J,Jl,J•l,NPBI 
GO TO 31 

1 DO Z L•l,NC 
JNaJNllLI 
JNP•JNZILI 
READ 15,FM21 IFIK,1,J-1,J•JN,JNPI 

2 CONTINUE 
IFINPB.LE.JNPI GO TO 31 
JNaJNP+l 
READ n;,FMZI (F(K, 1,Jl,-J•JN,NP81 
GO TO a1 

33 IFINPB.GToNPJ GO TO 3 
READ 15,.FMZI IVIK1l,Jl,J•l1NPBI 
GO TO 31 

3 DO 4 L•l,NC 
JN•JNllLI 
JNP•JN21LI 
READ 15,FMZI IVCK,1,Jl,J•JN,JNPI 

4 CONTINUE 
IFINPB.LEoJNPI GO TO 31 
JN•JNP+l 
READ 15,FMZI IVIK,1,JJ,J•JN,NPBI 

31 CONTINUE 
C ••• SECOND QUATER ••• 

DD 34 l•NS1,NS2 
NPB•NINS2-1+11 
NC•KPB/NP 

I-' 
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GO TO 13S,361,KW 
3S IFINPB.GT.NPI GO TO S 

READ tS,FM21 IFIK,1,Jl,J•l.NPBI 
GO TO 34 

5 DO 6 L•l,NC 
JN•JNllLI 
JNP•JN21L I 
READ 1S,FM21 IFIK,1,Jl,J•JN,JNPI 

6 CONTINUE 
IFINPB.LEoJNPI GO TO 34 
JN•JNP+l 
READ 1S,FM21 IFIK,1,Jl,J•JN,NPBI 
GO TO 34 

36 IFtNPB,GT,NPI GO TO 7 
READ 1S,FM21 IVIK,1,Jl,J•l,NPBI 
GO TO 34 

7 DO 8 L•l,NC 
JN•JNllL I 
JNP•JN21LI 
READ 1S,FM21 IVIK,1,Jl,J•JN,JNPI 

8 CONTINUE 
IFINPB,LE,JNPI GO TO 34 
JN•JNP+l 
READ 15,FM21 IVIK,1,Jl,J•JN,NPBI 

34 CONTINUE 
K•K+l 
IFIK.EQ.NTKI GO TO 37 
GO TO 30 

37 CONTINUE 
C ••• OUTLET SECTIONIBUJLT-INI 

NC•NS/NP 
00 38 I•l,NINl 
GO TO 139,401,KW 

39 .JFINS,GT,NPI GO TO 64 
iEADIS,FM21 IFIK, 1.,Jl,J•l,NSI 
GO TO 38 

64 DO SS L•l,NC 
JN•JNllLI 
JNP•JN21LI 
READ 1S,FM21 IFIK,1,Jl,J•JN,JNPI 

SS CONTINUE 
IFINS.LE,JNPI GO TO 38 
JN-JNP+l 
READ 15,FM21 IFIK,1,Jl,J•JN,NSI 
GO TO 38 

40 IFINS,GT.NPI GO TO 6S 
REA01S,FM2I IVIK,1,Jl,J•l,NSI 
GO TO 38 

6S 00 S6 L•l,NC 
JN•JNllLI 
JNP•JN21LI 
AEAD IS,FMZI IVIK,1,Jl,J•JN,JNPI 

S6 CONTINUE . 
IFINS,LE,JNPI GO. TO 38 
JN•JNP+l 
READ 15,FM21 IVIK,1,Jl,J•JN,NSI 

38 CONTINUE 
C ••• OUTLET SECTIONISPECIFIEDI ••• 

KOUT•l 
NOUT•NOl 

70 CONTINUE 
K•K+l 
DO 42 1•1,NOUT 
GO TO 143,441,KW 

-

43 IFINS,GT,NPI GO TO 66 
READ1S,FM2I IFIK,1,Jl,J•l,NSI 
GO TO 42 

66 DO S7 L•l,NC 
JN•JNl ILi 
JNP•JN2.l LI 
READ 1S,FM21 IFIK,1,Jl,J•JN,JNPI 

57 CONTINUE 
lflNS.LEoJNPI GO TO 42 
JN•JNP+l 
READ 1S,FM21 IFIK,1,Jl,J•JN,NSI 
GO TO 42 

44 IFINS,GT,NPI GO TO 67 
READ1S,FM2I IVIK,l,JI ,J•l,NSI 
GO TO 42 

b7 DO 58 L•l,NC 
JN•JNllLI 
JNP•JN21 LI 
READ 15,FM21 IVIK,1,Jl,J•JN,JNPI 

58 CONTINUE 
IFINS,LE,JNPI· GO TO 42 
JN•JNP+l 
READ 15,FMZI IVIK,1,Jl,J•JN,NSI 

42 CONTINUE 
KOUT •KOUT + 1 
GO TO 170., 70,72, 711,KOUT 

72 CONTINUE 
NOUT•N02 
GO TO 70 

71 CONTINUE 
IFIKh,EQ.21 GO TO 45 
KW•KW+l 
GO TO 19 

45 CONTINUE 
RETURN 
ENO 

I-' 
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C 
C 
C 

SUBROUTINE-OISKIMI 

THIS SUBROUTINE READS THE DATA FROM THE PERMANENT STORAGE DISK••• 

COMMON Fl12,50,451,Vl12,50,451 
COMMON RRl20,31,Hil20,31,Rl501,HLJl501,Nl501 
COMMON Y 1201,Ril201,SSl201,H011201,Gl20 I. YII 20 I 
COMMON FM11181,FM21181 . . 
COMMON RE,H,PT,DH 
COMMON Nl,NT,NO,NS,NPT,NP,NSS,NIN,NIN1,Nll,N01,NTK,NS1,NS2,N02 
KW•l 

19 CONTINUE 
K•l 

C ••• JIU.ET SECTIONISPECIFIEDI 
00 24 1•1,NI 1 
GO TO 125,261,KW 

25 READ IMI IFIK,1.Jl,Jal,NSI 
GO TO 24. 

26 REilO (Ml IVIK,ltJI.J•l,NSI 
24 CONTINUE 

K•K+l 
C ••• INLET SECTIONIBUILT-INI ••• 

00 27 1•1,NINl 
GO TO 128,291,KW 

28 READ IMI IFIK,J,Jl,J•l,NSI 
GO TO 27 

29 READ IMJ I\IIK,1,JI.J•l·,NSI 
27 CONTINUE 

K•K+l 
30 CONTINUE 

C ••• MAIN SECTION 
C ••• FIRST QUATER 

DO 31 l•ltNS 
~PB•NIII 
GO TO 132,331,KW 

32 READ CMI IFCK,l,Jl,J•l,NPill 
GO TO 31 . 

33 READ IMI I\IIK,I,Jl,.1•1,NPBI 
31 CONTINUE 

C •·••· SECOND QUATER ••·• 
00· 34 I •NSl ,NS2 
NP&-N.CNS.2-1+11 
GO TO 135,361,KW. 

·35 READ (Ml CFCK,I,Jl,J•l,NP8l 
GO. TO 34 

36 READ CMI CVIK,I,Jl,Jal,NP81 
34 CONTINUE . 

K•K+l 
JFIK;.EQ.NTKI GO TO 37° 
GO TO 30 

37 CONTI.NUE 
C ••• OUTLET SECTIONIBUILT-INI 

00 38 I•l.NINl 
GO TO 139,401,KW. 

39.READ IMI IFIK,1,Jl,J•l,NSI 
GO TO 38 

40 READ IMI IVIK,1,Jl,J•l,NSI 
38 CONTINUE 

:c .... oun.u S·ECTf-ONHfitcti:1E1>1 
KOUT•l 
NOUT•NOl 

70 CONTINUE 
.K•K+l 
DO 42 1•1,NOUT 
GO TO 143,441,KW 

'+3 READ (Ml IFIK,1,Jl,J•l,NSI 
GO TO 42 

44 READ IMI I\IIK,l,Jl,J•l,NSI 
42 CONTINUE 

KOUT•KOUT+l 
GO TO 170,70,72,711,KOUT 

72 CONTINUE 
NOUT•NOZ 
GD TO 70 

71 CONTll\lUE 
IFIKW.EQ.21 GO TO 45 
KW•KW+l . 
GO TO 19 

45 CONTINUE 
RETURN 
l:1'10 

,.. 

...... 
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C 
C 
C 

SUBROUTINE SQUARECM;K,NC,EPSV,EPSFI 

THIS SUBROUTINE EXECUTES RECTANGULAR.FIELD CALCULATION 

COMMON Fl1Z,5D,45),VCl2,5D,4SI 
COMMON RRl20,3) ,Hll 2D,31, RC SO),HLJC SDI ,NI SDI 
CCMMON Y 120 I ,Rll2D) ,SS 12D) ,HQ 1(201,GC20J, VII ZD I 
COMMON FMlllB),FM21181 
COMMON RE,H,PT,DH 
COMMON Nl,NT,NO,NS,NPT,NP,NSS,NIN,NIN1,NII,N01,NTK,NS1,NS2,N02 
GO TO 12,3,4),M 

2 EeH 
GO TO S 

3 E•H+H 
GO TO 5 

4 E•H+H+H+H 
5 EE•E•E 

P1•3ol4159211536 
W•2.ll lo+PI •SQRTCFLOATCNC•NC+NSS•NSS) 1/1 NC•NSSI I 
DO l 1•2,NC 
DO 1 J•2,NSS 
HOLOV•VIK,1,JI 
HOLOF•FIK, 1,JI 
VIJ•IYIJl*YIJ-ll•CVCK,1+1,Jl+VCK,l-l,Jll/2o+EE•IYCJ-ll•VIK,1,J+ll 

l+YIJl•VCK,1,J-lll/lYIJl+YCJ-lll+RE•E•YCJl•YCJ-ll/l8o•IYIJl+YIJ-ll 
ZI l.•11 fl.K, 1+1,J 1-FIK, 1-l,J 11•1 VIK., i ,J+ll-VI K, 1,J-111-1 VIK, 1+1,J l-
3VCK,1-1,Jl l•I Fl K, I ,J+l l-F I K; I ,J-l I I I I/C EE+YIJ l•Y IJ-l I I 
FIJ•I YI J l•YC J-ll•CFC K ,1+1, Jl+FCK, 1-1,JI 1/2.+EE•C YIJ-ll*FCK, 1,J+l.l 

l+YCJl*FCK,1,J-lll/lYIJl+YIJ-lll-EE*YIJl*YIJ-ll•VCK,1,Jl/2ol*W/ 
21EE+YCJl*YIJ-lll+llo-Wl•FCK,1,JI . 

DV•VIJ-HOLDV 
OF•FIJ-HOLDF 
FCK,1,Jl•FIJ 
YIK,1,Jl•VIJ 
EPSV•EPSV+ABSIDVI 
EPSF•EPSF+ABS(DF) 

1 CONTINUE 
RETURN 
END .. 

SUBROUTINE STMESHIK,M,EPSY,EPSFI 
C 
C ••• THIS SUBROUTINE PERFORMS THE MATCHING CALCULATION ON REC_TANGULAR-P'OLAl\l 
C BOUNDARY ••• ·. . ,, ,_.:-
C 

COMMON Fll2,50,451,YC12,50,451 
COMMON RRIZO ,31,Hll 20,31,Rl501,HLJI 50 I ,NI 501 
COMMON Y 1201,Rfl201,SSl201,HOil 201,GIZOJ, Yll 201 
COMMON FMlllBJ,FMZllBI 
COMMON RE,H,.PT ,DH . 
COMMON NI ,NT ,·NO,NS ,NPT ,N.P,NSS,NIN,NINl,·Nl l,NOl,NTK,NSltNSZ,,NDZ 
Kl•K+l 
DO l J•Z,NSS 
l•NIJI 
HDLDF•FIK,M,JI 
HOLDY•v·c K, M, JI 
Gl•GIJI 
GZ•l.-Gl 
VO•Gl*YIKl,J+l, I l+GZ*YIKl,J, 11 
FO•Gl•FIKl,J+l, l l+GZ*FIKl,J, 11 
YP•YIJ l*YIJ-11 
YA•YIJl+YIJ-11 
HO•HDIIJI 
HP.H*HO 
HA•H+HO 
VMJ•IYP*IH*YO+HO*VIK,M-1,J I i/HA+HP*I YIJ-1 l'*YI K,M,J+l I+ 

1 YIJ l*VIK,M,J-l I I/YA+RE*HP*YP/14.•HA*YAI •I I FD-FIK,M-1,JI I* 
21 VIK,M,J+lt-VIK,M,J-111-IFCK,M,·J+ll-FIK,M,J-l I l*IYO-VIK,M-1,J 1111 
3/IHP+YPI 

FMJ•IYP*IH*FO+HD*FIK,M-1,JII/HA+HP*IYIJ-ll*FIK,MiJ+ll• 
lYCJ l*FIK,M,J-111 /YA-HP•YP*YM-J/2• I /CHP+YPI 

OV•VMJ-HOLDV 
OF•FMJ-HOLDF 
VIK,M,Jl•VMJ 
FIK,M,Jl•·FMJ . 
EPSV-EPSV+ABS( DY I 
EPSF•EPSF+ABSI OF I 

· 1 CONTINUE . 
00 Z 1.•2,NS 
B•SSIII 
JK•Nll 1-Nll-11 
IFCJK.EQ.01 GO TOT 
GO TO 8 

T JK•l 
8 CONTINUE 

DO 2 L•l,jK 
KS•JK+l-L 

· Hl•HHl,KSI 
. HZ-1.-Hl 

J•NIH-L+l 
HOLDF•f(Kl,I,JI 
HOLDV•V(Kl, I.JI 
A•RRIJ,KSI 
HL•HLJCJI 
IFCL.EQ.11 GO TO 3 
FS•FIKl, 1,J+ll . 
VS•VI Kl i I ,J+ 11 
B•H 

~. 
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~ ..... J'" 
GO TO t, 

3 FS•FIK,M, 11 
VS•VIK,M,11 

t, IFINllloEQ.Nll-111 GO TO 9 
VR•Hl*VIK,M,1-ll+H2*VIK,M,11 
FR•Hl*fl K,M, 1-ll+H2*f IK, M, II 
GO TO 10 

9 VR•VIKl,1-1,JI 
FR•F(Kl.1-1,JI 

10 CONTINUE 
lfll.EQ.NSI GO TO 5 
VRl•VIKl,1+1,JI 
FRl•F(«l, 1+1,J I 
GO TO 6 . 

5 VRl•O• 
FRl•PT-lo 
Ht.•A 

6 CONTINUE 
BK•B•H 
BPK•B+H 
AL•A*HL 
APL•A+HL 
AK•At.+BK . 
VIJ•IAL*lll*VIKl,l,J-ll+H*VSI/BPK+AL*BK•tVS-VIKl,1,J-111/12.•RIJI• 

lBPKl+BK*U*VRl+HL•VR 1/APL-fl.E*Al.*BK'*{ I FS-FlKl, 1,J-ll l•IVRl-VRl-
2(FRl-,.fRl• IVS-VCKl, 1, J-1111 ii (APL+BPKl*"• 11/AK 

FIJ•CAL•·I B*FIK1, 1,J-ll+H•FSI/BPK+AL*BK*IFS-FIK1, 1,J-ll l/12o*RIJ I* 
lBPK l+BK*I A•FRl+HL*f.R I/APt.-M.*BK*VIJ/2. I /AK 

DV•VIJ-HOLDV 
DF•FIJ-HOLDF 
V(Kl,1,Jl•VIJ 
FIKl,I.JI .. FIJ 
EPSV•EPSV+ABSIDVI 
EPSF•EPSF+ABSCDFI 

2 CONTINUE . 
RETURN 
END 

SUBROUTINE TUBEIK,EPSV;EPSl"I 
C 
C ••• THIS SUBROUTINE CDIIIIAlfDS .. THE TUBE S~'TION C.ALCULATIONS 
C 

COMMON f(12,50,t,51,Vl12,50,t,51 
COMMON RfUZ0,31,HI 120,31 tRl50hHLJ( 501,Nl 501 . 
COMMON Yl201,RIC20l ,SS1201 ,H011201,IH201,YJC20), 
COMMON FM111Bl,FM21181 
COMMON RE,H,PT,DH. . . . . 

. COMMON NI ,NT ,MO,NS,NPT ,NP,NSS ,NIN,NINl, Ill 1,NOl,NTK,NSl ,NS2,N02 
NJl•Nlll . . 
NTC•l 
NS3•NS2-l 

15 CONTINUE 
C • •• FIRST QUATER. • • o. 

DO 1 1•2,NS 
IFCNIII.EQ.NCl-111 GO·T0.20 
NJaNI i-H 
GO TO 21 

20 NJ•NC 11-1 
21 CONTINUE 

JK•NI II-NJ 
CALL PDLARCK,1.NJ,JK.,EPSli,EPSfl· 

1 CONTINUE 
C ••• SECOND QUATER ••• 

DD 9 l•NS1,NS2 
M•NS2-l+l 
IFI 1.EQ•NS2 I GO TO 13 
IFlNIMloEO.NIM-UI .GD TO 22 
FR•PT-lo 
VR•O. 
NJaNIM-11 
GO TO 23 

13 NJ•NJl-1 
DO 16 J•l,NJl 
FIK,I+i,Jl•FIK+l,2,JI 
VIK, 1+1,J.l•VIK+l,2,J I 

16 CONTINUE 
. JKs.l 
CALt. POt.ARIK,1,NJ,JK,EPSV,EPSFI 
GD TD 9· . 

22 NJ•NIMl-1 
FR•FCK,l+l.,NCMI I 
·V.R•VIK.l+l,NtM·t 1 

23 CONTINUE . 
JK•NCMl""NJ 
DD 2 L•l,JK . 

. KS•JK+l-L 
B•SSCMI 
JsNJ+KS 
HOLDF•FIK,I;JI 
t«>LDV•VIK,1,JI. 
HL•KLJ(JI 
A•RRIM,KH 
IF·lloEOoll GO TO 3 

· FS•FIK,.1,J+ll 
VS•VCK,J.J+l I 
B•H . 

..... 
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GU TO 4 
3 FS*PT-1. 

V'S•O'• 
4 CONTINUE 

AL'"A*HL 
BK*B*H 
APL•A+HL 
IIPK•B+H 
AK•AL+BK 
VI Js(AL*IB*VIK, l~J-11 +H*VS 1/BPK+AL*BK*I VS-VIK, l ,J-111/12o*R I JI* 

lBPKl+BK*IA*VIK,l-l,Ji+HL*VRI/APL-RE*AL*BK/l4o*APL*BPKl*IIFS-
2F I K, l, J-111 * IVR-VI K, 1-1, J 11-1 VS-VIK, I.J-11 l*I FR-FIK, 1-1,J 1111/AK 
FIJ• I AL*I B*FI K, l,J-1 l+H*FS 1/BPK+AL*BK* IFS-FI K, l ,J-111/12 •*RIJ I* 

lBPKl+BK*(A*FIK,l-l,Jl+HL*FRJ/APL-AL*BK*VlJ/2ol/AK 
OV•YIJ-HOLOV 
OF•F IJ-HOLDF 
VIK,l,JlzVIJ 
flK,I,Jl•FlJ 
EPSV•EPSV+ABSI DV I 
EPSf•EPSF+ABSCDFJ 

2 CONTINUE 
CALL PDLARIK,1,NJ,JK,EPSY,EPSFI 

9 CONTINUE 
KsK+l 

C ••• THIRD OUATER ••• 
OD 6 J•l,NJl 
FIK,l,Jl•FIK-l,NS2,Jl 
VIK,l,Jl•VIK-l,NS2,JI 

6 CONTINUE 
DD 17 1•2,NSS 
lFINCll.EQ.Nll-111 GO TD 24 
FR•PT-lo 
VR•O. 
l!IJ•NI l-1 I 
GO TD 25 

24 NJ•NI l l-1 
FR•FIK,1-1,Nll I I 
VR•YIK,1-1,Nllll 

25 OONT INUE 
.JK•Nll 1-NJ 
DO 5 L•l,JK 
KS•JK+l-L 
B•SS 111 
J•NJ+KS 
HOLDY•VIK,1,JI 
HOLOF•FCK,1,Jl 
H(cHLJ( JI 
A•RRI l,KSI 
IF I loEQ.11 GO TO 'I 
FS•fl K, l ,J+ll 
VS•VIK, I ,J+ll 
B•H 
GO TO I 

7 FS•PT-1. 
VS•C. 

8 CONTINUE 
AL•A*l-ll 
8K•B*H 

APL•A+HL 
BPK•B+H 
AK•AL+BK 
VIJ•I Al* I B*VIK, I.J-11 +H*VS 1/BPK+Al*BK*I VS-VIK, l,J-111/(2.*RIJ I* 

lBPKl+BK*IA*VIK,l+l,Jl+HL*VRI/APL-RE*AL*BK/(.r,.•APL*8PKl*IIFS-
2FCK,l, J-111 *IV CK, l +l ,J 1-VR 1-C Fl K, 1 +l, J 1-FRl*I VS-VIK, I ,J-11111/AK 
FlJ•IAl*IB*FIK,l,J-ll+H*FSI/BPK+AL•BK*IFS-FCK,l,J-lll/12.•RtJI* 

lBPK J+BK*IA*f1 K, l+l,J l+HL*FRI/APL-AL*BK*YIJ/2o l /AK 
DV•VIJ-HOLDV 
Of•FIJ-HOLDF 
YCK,1,JJsVIJ 
f'(.K,l,Jl•flJ 
EPSVzEPSV+ABSIDYI 
EPSfzEPSF+ABSIDFI 

5 CONTINUE 
CALL POLAR( K,1,NJ,JK,EPSV,EPSF I 

17 CONTINUE 
C ••• LAST QUATER ••• 

DD 10 l•NS,NS3 
MsNSZ-l+l 
lFINCHI.EQ.NIH-111 GO TO 26 
NJ*·NCH-11 
GO TO 27 

26 NJ•·NIHl-1 
27 CONTINUE 

JK•NIHI-NJ 
lflNTC.EQ.NTJ GD TO 11 
CALL TTHESHIK,l,NJ,JK,EPSV,EPSFI 
GO TD 14 

11 CALL TSHESHIK,1,NJ,JK,EPSV,EPSFI 
1.r, CALL POI.ARIK,l,NJ,JK,EPSV,EPSFI 
10 CONTINUE 

lFINTC.EQ.NTI GO TO 12 
K•K+l 
NTC•NTC+l 
GO TO 15 

12 RETURN 
ENO 

f-> 
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C 
C 
C 

SIJB~UUHNE: PULARIK,1,~J,JK,EPSV~EPSF I 

.THIS SUBROUTINE EXECUTES INNER FIELD CALCULATION Of POLAR SECTION••• 

COMMON Fl12,50,451,Vll2,50,451 
COMMON RRIZO ,31,HI 120, 31, RISO·t, HLJ 1501,N 1501 
CCMMON Yl2Cl,R11201,SS1201,H011201,Gl201,Yil201 
COMMON FMll 181,FM21 ldl 
COMMON RE,H,PT,DH 
COMMON Nl,NT,NO,NS,NPT,NP,NSS,NJN,NJN1,N11,N01,NTK,NS1,NS2,N02 
NPB•NJ+JK 
NJl•NPB -'-1 
.JK•NPB -NJ 
JKl•JK+l 
Pl•3,1415926536 
W•Z./11.+Pl*SQRTIFLOATll•l+NJl•NJlll/lI•NJlll 
00 l M•JKl,NJl 
J•NPB +1-M 
VIK,1,11•13,*FIK,1,21/IH•Hl-.5•VIK,1,211/DH 
HL•HLJIJI . 
PKL•H•HL 
AKl•H•H+HL*Hl 
HOLOV•VIK,I,JI 
HOLOF•FIK,1,JI 
VIJ•PKL•IPKL*IIVIK,l,J+ll+VIK,1,J-lll/lH*Hl+IYIK,l,J+ll-VIK,1,J-11 

ll/12.*RIJl•Hl+IVIK,1+1,Jl+VIK,1-1,JII/IHL*HLII-RE/8.•IIFIK,1,J+ll-
2F IK, 1,J-11 I *IVI K, l+l ,.JI-YI K ,1-1,JI I- IF I K, H-1,.JI-FIK, 1-l ,JI I• 
3IYIK,1,J+ll-YIK,1,J-lllll/12,•AKLI 

Fl J•PKL•PKL/12.•AKLI *I If IK, I ,J+l l+FI K, 1,J-111/IH*Hl+I FIK, 1,J+ll
lFIK, 1, J-111112.•RI JI *Hl+I f I K, I+l,J l+f IK, 1-1, JI II iHL*HL 1-VIJ J•w+ 
211.-Wl•FIK,1,JI 

OV•VIJ-HOLOY 
DF•F lJ-HOLDF 
YIK,1,Jl•VIJ 

. FIK,1,Jl•FIJ 
EPSV•EPSV+A8SIOVI 
EPSF•EPSF+ABSIDFI 
CONTINUE 
RETURN 
ENO 

C 
C 
C 

SUBROUTINE TTHESHI K,M,NJ,JK,EPS.V ,EPSF I 

THIS SUBROUTINE PERFORMS THE MATCHING CALCULATION ON POLA.R-POLAR IIOUNOARY. 

CO!IMON F(l2,50,451,Y(l2,50,451 
COMMON RRl20,31,Hll20,31,Rl50l,HLJl501,Nl501 
CCMMON Yl201,RU201 ,SSl201,H011201,6120 I ,Y 1120 I 
COMMON FM11181,FH211BI 
COMMON RE,H,PT,OH 
COMMON Nl,NT,NO,NS,NPT,NP,NSS,NIN,NINl,Nll,NOl,NTK,NSl,NS2,N02 
KW•l 
KlsK+l 
l•NS•2-M 
JU•NIII 
JD•Nil-11 
Gl•GI 11 
62•1.-Gl 
Gl-Gll-11 
G4alo-G3 

20 CONTINUE 
DO l L•l ,JK 
KS•JK+l-L 
B•SSII I 
J•NJ+KS 
Hl•Hll l,K.SI 
H2•1.-Hl 
A•RRll,KSI 
HL•HLJ(JI 
IFIH.EQ.NSI GO TO 11 

.. FS• IGl•I FIKl, l+l,JUI +FIK ,M-1,JUI l+GZ*IF I Kl, 1, JUl+FlK,M,JUI 11./2,; 
VS•IGl•IVIKl,1+1,JUl+VIK,M-1,JUll+G2*1VIK1,1,JUl+VIK,M,JUlll/2. 
GO TO 12 

11 FS•PT-lo 
VS•O • 

12 CONTINUE 
FSO-IG3•1FIK1,1,JOl+FIK,M,JDll+G4*1FIK1,1-1,JOl+F(K,M+l,JOlll/2o 
VSD•IG3*1VIK1,1,JOl+VIK,M,JOll+G4*IVIK1,l-l,JOl+VIK,H+l,JDlll/2. 
GO TO 12 ,31 ,KW 

2 HOLOY•VIK,M,JI 
HOLOF•FIK,H.,JI 
GO TO 4 

3 HOLOY•VIKl,1,JI 
HOLOF•FIKl,1,JI 

4 CONTINUE 
GO TO 15,61,KW 

5 IFCM.EQ.NSI GO TO 30 
FRM•FIK,M-1,JI 
VRM•VIK,M-1,JI 
GO TO 7 

30 FRM•PT-lo 
VRMaO. 
Hl•A 
GO TO 7 

6 IFIM.EQoNSI GO TO 32 
FRI•FIKl,1+1,JI 
VRl•V(Kl,1+1,JI 
GO TO 7 

32 FRl•PT-lo 

....,. 
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V.Rl•O. 
Hl•A 

7 CONTINUE 
fR•Hl•fSD+H2•FS 
VR•Hl•VS0+H2•vs 
IFILoEQ.11 GO TD 8 
GO TO 124,251,KW 

24 FS•FIK,M,J+~I 
VS•VCK,M.J+lJ 
S•H 
GD TO 8 

25 FS•FIKl,1,J+ll 
VS•VIKl, 1,J+ll 
B•H 

8 CONTINUE 
IFINIII.EQ.Nll-111 GO TO 14 
GO TO 23 

lit Gei TO 121,221,KW 
21 VR•VIK,H+l,JI 

FR•FIK,M+l,JI 
A•Hl 
GO TO 23 

22 VRcVIKl, 1-1,JI 
FR•FIKL, 1-1,JI 
A•Hl 

23 CONTINUE 
AL•A•HL 
APL•A+HL 
BK•B*H 
BPK•B+H 
AK•AL+BK 
GO TD 19,101,KW 

9 CONTINUE 
VMJ•IAL*IB•VIK,M,J-ll+H*VSI/BPK+AL*BK/12.•RtJl•BPKl•tvs-vcK,M,J-ll 

l l+BK*I A•VRM+HL*VRI /APL-RE•AL•BK/ 14.•APL•BPKI * I IFS-FIK,M,J-l I l*IVR
ZVRMl-(FR-FRMl•I VS-VIK,M,J-11111 /AK 
FHJ•IAL•IB•FIK,M,J-ll+H*FSI/B~+AL*BK/IZo*RIJl•BPKl*IFS-FIK,M,J-11 

ll+BK*IA•FRM+HL*FRI/APL-AL*BK*VMJ/Zol/AK 
DV•VMJ-HCLDV 
OF•FMJ-HOLDF 
VIK,M,Jl•VMJ 
FIK,M,Jl•FMJ 
GO TO 18 

10 CONTINUE 
VIJ•IAL*IB•Vlkl,1,J-ll+H•VSI/BPK+AL•BK/12.•RIJl•BPKI• 

ltVS-VIKl,1,J-lll+BK*IA*VRl+HL*VRI/APL-RE*AL*BK/l4o•APL•BPKl•IIFS
lFIKl,1,J-lll•IVRI-VRI-IVS-VIKl,1,J-lll•IFRI-FRIII/Ak 
FIJalAL•I B•FIKl, loJ-1 l+H•FSI /BPK+AL*BK/1 z.•RtJl•BPKr• 

llFS-FIKl,1,J-lll+BK•tA•FRl+HL•FRI/APL-AL•BK*VIJ/2ol/Ak 
DV•VIJ-HDLDV o 
DF•FIJ-HOLDF 
FIKl,loJl•FIJ 
Vlkl,l,Jl•VIJ 

18 EPSV,,EPSV+Aes·1ov1 
EPSF•EPSF+ABSIDFI 
CONTINUE . 
GO TO 119,401,KW 

19 Kli•Kli+l 

GO TO 20 
40 CONTINUE 

RETURN 
ENO 

j....l 
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·c 
i: 
C 
C 

., . .,..,_;r -· ~ - .. ~- . 
SUBROUTINE TSMtSHIK,M,NJ,JK,EPSV,EPSF1 

THIS SUBROUTINE PERFORMS THE MATCHING CALCULATION ""Otl "POL"AF~'T-MGIILMI 
MATCHING PLANE•••• 

COMMON Fl12,50,451,Vl12,50,451 
COMMON RRl20,3h HI 120,31,Rl501,HLJI 50 I ,NI 501 
COMMON Yl201,Rll201.SSl20 I ,H011201,Gl20 I ,Yll-201 
COMMON FMlllBl,FMZllBI 
COMMON RE,H,PT,OH 
COMMON N1,NT,NO,NS,NPT,NP,NSS,;NIN,Nlt11,N11,N01,NTK,NS1,NS2,N02 
l•NS•Z-M. 
Kl•K+l 
DO 1 L•l,JK 
KS•JK+l-L 
B•SSIII 
J•NJ+KS 
HL•HLJIJI 
A•RRll ,KSI 
Hl•HI 11, KSI 
H2•1.-111 
HOLDV•VIK,M,JI 
HOLDF•FIK,M,JI 
IFIL.EQ.11 GO TO 2 
FS•FIK,N,J+l I 
V~VIK,N,J+l I 
B•H 
GO TO 5 

z· CONTINUE 
FS•FIKl ,1,11 
VS•VIKl, 1,11 

5 CONTINUE 
BK•~H 
BPK•B+H 
IFINII I oEQ.Nll-111 GO·. TO 7 
VR•Hl*VIKl-,1,1-l l+HZ*VIKl ,1, 11 
FR•Hl*FIKl,1,l-ll+HZ*FIKl,1,11 
GO TO 8 

7 VR•VIK,M+l,JI 
FR•FIK,M<'l,JI 

8 CONTINUE _ _ _ 
IFIMoEO.NSI GO TO 3· 
VRl•VIK,M-1,JI 
FRl•FIK,M-1,JI 
GO TO 4 

3 CONTINUE 
- FRl•PT-lo 

VRl•O. 
-HL•A 

4 CONTINUE 
AL•A•HL 
APL•A+HL 
AK•AL+BK 
VMJ•IAL*IB•VIK,M,J-Jl+H*VSI/BPl(+AL*BK*IVS-VIK,M,J-111/12.•RIJI* 

lBPKl+BK*IA*VRl+HL•VRI/APL-RE•AL*BK*IIFS-FIK,N,J-lll*IVR-VRll
ZIFR-FRll*IVS-VIK,M,J-1111/IIAPL+BPKl*'toll/AK . 
FNJ•I AL*I B*FIK,M,J-11 +H•FS 1/BPK+AL*BK*I FS-F IK,M,J-111/ l2o*RIJ I* 

lBPKl+BK•tA•FRl+HL•FRI/APL•AL*BK*VMJ/2.I/AK 

DV•VMJ-HOLDV 
DF•FMJ-HCLDF 
FIK,M,Jl•FNJ 
VIK,M,Jl•VMJ 
EPSV•EPSV+ABSIDVI 
EPSF•EPSF+ABSIDFI 

l CONTINUE 
J•NJ+JK 
IFII.EQoNSI -GO TO 6 
Gl•GIII 
GZ•lo-Gl 
HO•HOI I 11 
HDLDV•V I Kl. 1.11 
HCLDF•F I Kl, 1, II 
VD•Gl•VIK,M-1,Jl+GZ•VIK,M,JI 
FO-Gl*FIK,M-1,Jl+GZ*FIK,M,JI J 

YP•YI ll*Yll-11 -
YA•YI ll+Yll-11 
HP•H*HO 
HA•H+HD 
VIJ•IYP*IH*VD+HO•VIKl,2, II I /HA+HP•IY~ 1-u•vc Kl,l,1+11+ 

lYI ll*VIKl ,1, 1-111/YA+RE*HP*YP/14.•HA*YAl*I If I Kl,2, 11-F-OI• 
21VIKl,1,l+ll-VIKl,l,1-111-IFIK1,1,l+ll-FIKl,1,1-lll*IVIKl,2,JI-VOI 
311/IHP+YPI 

FIJ•IYP*IH*FO+HO*FIKl,2,111/HA+HP*IYll-ll•FIKl,l,1+11+ 
lYlll*FIKl,1,1-111/YA-HP*YP*VIJ/Zol/lHP+YPI 
D~•VIJ-HOLDV 
DF•F IJ-HOLDF 
FIKl, lo ll•F IJ 
VIKl,l,ll•VIJ 
EPSV•EPSV+ABSIDVI 
EPSF•EPSF+ABSIDFI 

6 CONTINUE 
RETURN 
END 

I-' 
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SUBROUTINE STORefin 
C 
C ••• THIS SUBROUTINE STORES INTERMEDIATE OR f INAL RESULTS Of SOLUTION IN THE 
C PERMANENT STORAGE DISK 
C 

COMMON f 112, SD,451 ,V 112, 50,451· 
COMMON RRl20,31 ,HI 120,31 ,R1501 ,HLJl50 I ,N1501 
COMMON Yl201,Rll201,SSl201,HOll201,Gl201,Yl1201 
COMMON FM11181,FM21181 
COMMON RE,H,PT,DH 
COMMON Nl,NT,NO,NS,NPT,NP,NSS,NIN,NIN1,Nll,N01,NTK,NS1,NS2,N02 
KW•l 

19 CONTINUE 
K•l 

C ••• INLET SECTIONISPECIFIEDI 
DO 24 l•l,NI l 
GO TO 125,261,KW 

25 WRITEIMI lftK,1,Jl,J•l,NSI 
GO TO 24 

26 WRITEIMI IVIK,1,Jl,J•l,NSI 
24 CONTINUE 

K•K+l 
C ••• INLET SECTIDNIIIUILT-INI ••• 

00 27 l•l,NINl 
GO 10 128,2'11,KW 

28 WRITEIMI IFIK,1,Jl,J•l,NSI 
GD TO 27 

29 WRITEIMI IVIK, 1, Jl,J•l,NSI 
27 CONTINUE 

K•K+l 
30 CONTINUE 

C ••• MAIN SECTION 
C ••• FIRST QUATER 

_oo 11 l•l,NS 
0 NPB•Ntl I 
GO TO 132,331,KW 

32 WRITEIMI IFIK,1,Jl,J•l,NPBI 
GO TO 31 

33 WRITEIMI IVIK,1,Jl,J•l,NPBI 
31 CONTINUE 

C ••• SECOND QUATER ••• 
00 34 l•NS1,NS2 
NPB•N I NS2-I + 11 
GO TO 135,361,KW 

35 WRITEIMI IFIK,1,Jl,J•l,NPBI 
GD TO 34 

36 WRITEIMI IVIK,1,~l,J•l,NPBI 
34 CONTINUE 

k•k+l 
JFIK.EQ.NTKI GO TO 37 ~ 
GO TO 30 

37 CONTINUE 
C ••• OUTLET SECTIONIBUILT-INI 

DO 38 l•l,NINl 
GO TO 139,401,KW 

39 WRITE!Hl IFIK~l,Jl,J•l,NSI 
GO TO 38 

40 WRITEIMI IVIK,1,Jl,J•l,NSJ 

38 CONTINUE 
C ••• OUTLET SECTIONISPECIFIEDI 

KOUT•l 
NOUT•NOl 

46 CONTINUE 
K•K+l 
00 42 l•l,NOUT 
GO TO 143,441,KW 

43 WRITEIMI IFIK,1,Jl,J•l,NSI 
GO TO 42 

44 WRITEIMI IVIK,1,Jl,J•l,NSI 
42 CONTINUE 

KOUT•KOUT + 1 
GO TO 146,46,48,471,KOUT 

48 CONTINUE 
NOUT•N02 
GO TO 46 

47 CONTINUE 
IFIKW.EQ.21 GO TO 45 
KW•Kw+l 
GO TO 19 

45 CONTINUE 
RETURN 
ENO 

I-> 
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·suBROUTiNE PRINT IHI 
C 
C ••• THIS SUBROUTINE PRINTS OR PUNCHES OUT INTERMEDIATE OR FINAL SOLUTION••• 
C 

COMMON f(12.50,451•Vl12•50•451 
COMMON RRIZ0.31.HH20,31 9Rl50>.HLJl501 9Nl501 
COMMON Y 120 I ,RI 1201.ss1201.HOIC201.,.;120 i.·,11201 
CDIIMON FM11181.FM21181 
COMMON RE 9H9·PT .DH 
COMMON Nl 9NT,ND,NS.NPT.NP,NSS.NIN,NIN1,N11,ND1•NTK.NS1,NS2.ND2 
DIMENSION FMTl181 
IFIM.EQ •. 61 GD TD 1 
JS•l . 
NSM•NSl 
DD 2 1•1,18 
FMTI ll•FM21 ll 

2 CDNHNUE 
GD TD 4 

1 CONTINUE 
JS•ININSl+31/NP 
IFIJS.EQ.11 GD TD 50 
GD TD 52 

SO NSJlaNSl 
GD TD 51 

52 CONTINUE 
NSil•NSl+l 

51 CONTINUE 
oo· 3 1•1,18 
FMT II l•FMl 111 

3 CONTINUE 
4 CONTINUE 

Kll•l 
19 CONTINUE 
? K•l 

IFCM.EQ.61 GD TD 23 
GD TD 22 

23 c·oNTJNUE 
GD TD 120,211,KW 

20 WRITEIM,2031 
GD TD 22 

·21 IIRITEIM,2051 
203 FORMATl/,5X 1STREAM FUNCTJ.DN' 1/1 
2D5 FORMAT l/951t1 VDRT.JCIT'I FIELD' ,II 

22 CONTINUE 
C ; •• INLET SECTIONISPECIFIEDI ••• 

DO 24 l•l,Nll,JS 
GD TD 125.261.KW 

25 WRITEIM,FMTI IFIK,1,Jl,J•l,NS,JSI 
GO TO 24 

26 WRl·TEIM,FMTI IVIK,I.SJ 9J•l•II .. S•JSI 
24 CONTINUE . 

K•K+l 
C ••• INLET SECTIONl8UILT-INI ••• 

DD 27 1•1.NINl.JS . 
GO TO 128,291,KW 

28 WRITEIM,FMTI IFiK,1.Jl,J•l•NS,JSI 
GD TO 27 

29 IIRITEIM.FMTI IVl«,1,JI.J•hNS.JSI· ' 

27 CONTINUE 
K•K+l 

30 CONTINUE 
C ••• MAIN SECTION 
C ••• FIRST QUATER •·•• 

DO 31 1•1,NS.JS 
NPB•NIII 
GD TD (32.331,KII . 

32 WRITEIM.FMTI IFIK,I.JI.J•l,NPB,JSI 
GD TD 31 

33 IIRITEIM,.FMTI· IVIK•l•Jl,J•1,NP8,J$.I 
31 CONTINUE . 

C ••• SECOND QUATER ••• 
00 34 l•NSM.NS2,JS 

. -NPB•NINSZ-1+11 
GD.TO 135.361,KII. . 

35 IIRITEIM.FMTI IFIK.I,Jl,J•l•NP8,JS1 
GD TD 34 

36 IIRJTEIM.FNTI IVU,1,JI-.J•l,NPB,JSI 
34 CONTINUE 

K•K+l 
IFIK,EQ.NTU GO TO 37 
GO TO 30 

37 CONTINUE 
C •·•• OUTLET SECT1DNl8Ull. T-JNI 

· DO 38 l•hNINl .JS 
GD TO 139.401.KII 

39 IIRITEIM.FMTI lf.-lK,1.Jl,J•l,NS.JSI 
G.D TO 38 

40 IIRJTEIM 9FMTI IVIK, 1.Jl,.J•l.NS.JSI/ 
38 CONTINUE 

C ••• OUTLET SECTIONISPECJFIEDI 
KOUT•l 
NOUT•NDl 

46 CONTINUE 
K•K+l 
DO 42 l•l•NDUT,JS 
GD TD 143.441.KII 

43 IIRITEIM,FMTI IFIK9l1Jl,J•l,NS,JSI 
GD TD 42 

44 IIRITEIM,FMTI IVIK.1,JhJ•l,NS,JSI 
42 CONTINUE 

KDUT•KDUT+l 
GO TD 146.46.48,47.J.,KDUT 

48 CONTINUE 
. NDUT•ND2 

GD .TD 46 
<H CONTINUE 

lfl.KII.EQ.21 GD TO 45 
Kll•Kll+l . 
GD TO 19 

45 CONTINUE 
RETURN 
END 

I-' 
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APPENDIX J 

CCMPUTER . PROJRAM FOR PLOTTING 

STREAM FUNCTION AND 

VORTICITY CONTOURS 

This computer program developed for plotting contours of stream 

function and vorticity obtained from numerical solution of the Navier

Stokes equations is written in FORTRAN IV for use on the Oklahoma State 

University Computing Center's IBM 360 Model 65 computer which has a 

terminal connection to the CAJCCMP 565 digital plotter. 

Figure .74 is .the block diagram showing the operation of the program. 

Approximate plotting time required for one complete figure was about 

four plot-units or one hour (one plot-unit is 15 minutes). A brief 

description of the subroutine functions is given in the following sec~ 

tions. 

Main Program 

The main program arranges the subroutines to perform the plotting 

of contours of stream function and vorticity starting at built-in rec~ 

tangular inlet section to rectangular outlet sections through series of 

three polar tube sections. The equi-vorticity lines are plotted first 

on the upper-half of the symmetry line in the channel and then the 

contours of stream function are traced on the lower-half of the section. 
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START 

Read the contro 
parameters 

Start plotti:qg the 
equi-vorticity lines 
on the upper-half of 
the channel symmetry 
line 

Built-in inlet 
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----i.:S:.:e:.:c:.:t=i:::On:.:_-_,..::C:::A:=IJ.,=...:S:.:C=A::NR::::r----, 11SCANR" - scan the rec-
tangular field and trac 

Plot 'lf"
contours on 
the lower
half section 
of tube bank 
channel 

No 

the prescribed ,;- and yr 
values 

Tube section o three---,-- "SCANP" - scan the polar 
tube rows - CAIJ.. inner field and trace 
SCANP the prescribed~ and V, 

Built-in outlet 
section - CAIJ.. SCANR 

pacified outlet 
section - CAIJ.. scA~TDlo.---' 

values 
11POINT" - compute x-y 

coordinate osition 
I : 

"CIRCIE" - draw half
circle for tube surface 

"P!AT'' - actuate built.ti 
plot subroutines fur
nished by Calcomp 

'------< 
Are both ~ and 1/J"" 

plotted? 

Yes 

Figure 74. Computer Block Diagram of Plotting 
Program 
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Subroutine SCANR 

SCANR is the subroutine that scans the rectangular mesh field to 

locate the point of prescribed values of {; and yr to be traced out succes

sively. 

j 

C III D 

• II 

B 

Figure 75. Search Procedure in a Rectangular 
Mesh Cell 

Basic search procedure for points to be traced is that the values 

at the four mesh points A, B, C and D at the corner of border I, II, III 

and IV of every rectangular mesh cell (Figure 75) in the field are exam

ined in this sequence and compared with the prescribed value of the 

vorticity (or stream function) to be traced: if a prescribed value falls 

between the values of a pair of mesh points at the edges of a border, 

say I, the point, say E, is located by linear interpolation on the border 

line I and the plotter pen is placed down; the three other border lines 

are similarly searched and if another point, say F, is found, say on the 

border IV, the pen is moved to the new location. Thus any prescribed 

value can be systematically traced out in the field except the boundary 

regions where irregular stars exist. 
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Subroutine SCANP 

SCANP is the subroutine that scans the polar field to locate the 

points of prescribed values of e and -yrto be traced successively. The 

basic function of this subroutine is the same as SCANR except the work

ing equations used for interpolating the point on the border line which 

is not linear. 

Subroutine POINT 

POINT is respons~ble for computing x-y coordinate location for every 

point in polar section to be traced by the plotter pen. POINT is called 

by the subroutine SCANP at every time when a point to be located is 

found. 

Subroutine CIRCIE 

CIRCIE draws the half-circle for locating tube surfaces for three 

tube rows. CIRCLE is called by the main program at appropriate time. 

Subroutine PLAT 

PLAT activates the built-in plotting subroutines supplied by Calcomp 

and determines the status of pen position, up or down, so that the 

plotter pen traces properly the desired paths.,, 
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Input Data Cards 

The input data cards required for the program operation are arrang

ed in the following order: 

"Control parameters" 

This card contains five constants, i,e., NS, NPT, 

NCOUNT, PT and RE, which are required for the operation 

of the program. All the constants except NCOUNT are 

described in the last section of Appendix I. NCOUNT is 

the number of prescribed contour values of vorticity or 

stream function to be plotted •• 

( CARD 2 or CARD 3 if necessaryj 

This card(s) contains the contour values of vorticity 

to be plotted. The values are read by the following 

format: 

READ: (F(M) ,M=l,NCOUNT) 
FORMAT: 10F8. 5 

(cABD 3 (4) to the last card for vorticity! 

In these cards the vorticity values are punched that 

are read in by every two i-incremental steps at a time: 

READ: (Q(l,J),J=l,NJ) 
READ: (Q(2,J),J=l,NJ) 
FORMAT: 10F8,5 

CARD 1 (and 2 if necessary) of the data set for plotting stream 
function 

This card comes right after the last card of vorticity 

data and is similar to the (CARD 21 for vorticity. 
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This card contains the values of stream function to be 

plotted. The values are read by 

READ: (F(M) ,M•l ,NCOUNT) 
FORMAT: lOFS.5 

[ CARD 2 ( or 3) and thereafter! 

In these rest or the cards the converged solution or 

stream function has been punched, The values are read 

by every two i-increments at a time: 

READ: (Q(l,J) ,J•l,NJ) 
READ: (Q(l,J),J•l,NJ) 
FORMAT: lOFS.5 



- ~--••• COUNTOURS OF STREAM FUNCTION AND VORTlt"l:TY •FtiR· KtlW. I.EaOSS: T~M i!ANK C - • - . - • 

c· ••• AUTHOR: 11.0HEI ISHIHA·il.-A, SCHOOL Of CHEMICAL ENGINE_t:RING, OKLAHOMA STA.TE_ 
'.UNl•tERSITY, STILLWATER, OKL/ltOMA 74C14 MAY-,197~ • C 

C 

:c 

COMMON F 1191 ,QCZ ,231;,:,.Sl_371.,Yfr19 l-,NI 191 
COMIION RE,PT,H,DAS,P,PS.X0,5 · . 

-COMMON KW,N,Q,NCOUNT ,NS,-NSS ,NSl, NS2,,NIN-l ,f'401 

j;ALL PLOTS · 
READ15,10DI NS ,NPJ ,NCCUNT ,-PT ,RE 

100 FORltATl315,2FlO.!U - -
H•I PT-le liNPJ · 
NINalt•NPT.,2 
NSlaNS+l. 
NSZ-2•NS-l 
NlNl•NIN+l ·. -
NSS•NS-1 
ND-NINI 
NOlaND+l 
P•3e l415926536 
DAS•P/14.*NSSI 
,s-o.o 
5•2· 
D020 l•l,NS 
ASlllaDAS•i 1~11 -
NI I )•1PT/COSIASI 111-1.JIH+le 
YJlll•PT•TAN·.IASIIJl•S -

20 CONTINUE 
DO 21 l•NS1,NS2 
ASl l l•DAS•U-11 

21 CONTINUE 
., IUIIN-0,0 

YIIIN•-PT•S 
--XIIAX•l 2.•H*I NIN+NO 1+6 •• , r • •s 
"YltAX•P.T•S 

-. C •••• SET THE ORI-GIN •• ~. _ 
CALL -PL"DTCIXltlN, .. ll .• 0,--,.31 

C .••• -. RESET THE DRIG1'1 H:~•-• 
CALL PLDTCIXNI N,s .• s,-3·1, 

C •••• FRAltl!'IG -AND SCALING •·•·• 
CALL PLOTCIX1tIN-,1'1t1N,31 
CALL PLOTCIXNAll,YMIN,21 
CALL PLOTCIIIMAll,YltAX,31 
-CALL PLOTCliUIIN,1'-MAX,21 -
CALL 'PLOTCI XMIN,0.0,3) 
XE•IH*NIN+PT-lo l·•S -
CALL PLOTCIXE,0.0,21 :~ 

t ••••TITLING•••• 
X•S•IH*NIN+PTl-1,;2 ,.,. ... 
CALL SYMBOLIX+0.1,1.o,.056•T,•VORTICITV•,o.o,91 
CALL SVMBCLIX+o •. 5,0.70, o056*T, • I XlOO I' ,O.Cl,~I 
CALL SYMBOL ,x-o.4,-0.60,o0'56•T,• STREAM FUNCTION• .o.o, 151 
CALL SYMBOL I X+0.4,-0.90,.C56•T, •:1 XlOOOI-' ,O.O, 71 
00 2 l•l,3 . 
CAL_L SVM80LIX-Oe5,0o40,.056•_T,'-RE• ;PT••,OoO,lll 

"1'-; 

CALL NUMBER I X•0.4,0. 40, .• 056•J ,RE,o.o ,-11 
CAI.L NUMBER(X+2.l,0.4,.056•T,PT,0.0,21 
FPN•l . 
CALL- SYMBOL! x-_o.2_,-o.1s,o .• 01•t, • TUBE 1110.-1 ,O.O,BI 
-CALL NUMBER I ll+2. 5,-0. l5,0.o7•T ,FPN,o.·0,-11 
X•ll+2.•PT•S . 

2 CONTINUE-· 
KW•l 

- C. •••• - INLETIBU-li:T-INI 
13 CONJINUE -

- 99 FORMAT llOFB.51 
READU,99) IFI Ml ,M•l ,M:OUNTI 

202 FOil.MATl6115HflMl•,l5F7.4i -
- WRITE16,2021 IFIMl,,.•l,NCCUNTI 

C •••• INLET SEC"TJDNl8UILT-INI •••• 
.xo•o.o · 
READ15..,991 ''IQll,Jl,J•l,NS-1 
E•H•S 
DD 1 1•2,NINI 
RtAOl5,991 IQ12,Jl-eJ•l,NS1 
DO 24 J•l,NS . 
IF(012,Jl~EO.o.o, GO TO 24 
GO TO 26 

24 CONTINUE 
GO TO 25 

26 CONTINUE 
CALL SCANRI E ,NSS, 1;..11 

25 COlliTiNUE -
.DO l J•l,NS
Qll,Jl•Q12,JI 

l CDl\iTINUE 
XO•S•PT•E•NIN 
CALL CIRCLE 
NQ•l -

. 5 CONTINUE 
C ~. •• .f·IRST QUA.TEil •••• 

NJ•Nll I 
READ15-,991 1011,-JI ,J•l-,N'JI 

-oo 3 1•2-.Ns. 
NJ•NUI 
REA015,991 ·1012•Jl,J•l,NJI 
IFINO.GT.21 GO TO 28 
DO 27 J•l.NJ 
IFCIIU,J 1.Eo.0.01 GD TO. 27 
GO_ TO 28 

27 CONTINUE 
GO.TO 29 

28 CONTINUE 
NJl•NI l-'li-1 
CALL SCANPIE,NJl,1-11 

29 C,ONTINUE _ 
·oo 3 J•l,NJ 
Oll,Jl•Q12,J 1· 

3 .CONTINUE 
C •••• SECOND OUATER 

NQ•NQ+l 
DO 4 l•NSltNS2 
MaNS2+l-l 

..... 
-.J 
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NJ•Nll'!I . 
REA015,991 IQIZoJl,J•l•NJJ. 
NJl•NJ-1 
C..\LL SCANPIE,NJl,1-11 
00 It J•l ,NJ 
QI l oJl•QtZ,JI 

It CONTINUE 
C • •• • ·JHIRO QUATER 
C •••• FORTH QUATER 

NQ•NQ+l 
lFIN0-51 f>ollo9 

f> PSsP/.2• . 
GO TO 5 

I CONTINUE 
IFlltW.EQ.21 GO TO lit 
Jll•XO+S 
'CALL PLOTCUf.o0.0,31 
·xe•X1+2.•tPT-1.1•s 
CALL PLOTC1xe.o.o.21 

. lit CONTINUE 
xo-xo+z.•PT•S 
PS-0.0 
CALL CIRCLE 
GO lO 5 

9 IFINQ-91 6,lhll 
11 IFINQ-131 6,12,12 
12 CONTINUE 

P.s-c.o 
IFIKW.EQ.21 GO TO 22 
Xl•XO+S 
CALL PLOTCIXl,Oo0o3t 
XE-E•NIN+JIO+P:T•S 
CALL PLOTCIXE ,0.0.21 

22 CONTINUE 
. . xo-xo+PT•S 

C ••• • OUTlET(BUI·L,T-INJ •••• 
READl5,991 1011,JI.J•l,N.SI 
00 10 1*2•NIN1 . 
READl5.991 1012,JI.J•l,NSI. 
CALL SCAlolttE,NSS,1-11 
00 10 Jal.NS 
011,Jl•Ql2,JI 

10 CONTINUE 
C ·•••~ OUTLET SECTIONISPECIFIEDI 

·xo•xo+E•NIN 
CALL PLOTCIXO,O.D,31 
E•2.•HO<S 
1F1u,.eo.2t GO TO 23 
XE•Xo+E•NO 
CALL PLOTCI xe.0.0.21 

~3 CONTINUE 
READ15,991 (Qll,Jl,J•l,NSI 
DO 15 1•2,NOl , 
READ15,991 1012,Jl,J•l,NSI 
CALL SCANRIE,NSS•l~ll 
DO 15 J•loNS 
Qll ,Jl•Ql2 ,JI 

15 CONTINUE 

C 
C 
C 
C 

C 

C 
C 
t 

C 

IFIKW,-21 17,i;i.,fa 
17 K-111:Klf+l . - -, 

Ps-P 
OAS•-DAS 

.. OU 3v I• loNS2 . 
ASI 11•'-ASI 11 

30 CONTINUE 
DO 31 1•1,NS 
YU 11s-v.1u1 

31 CUNT INUE· 
Go.ni 13 

18 CONHNUE 
STOP 
ENO 

Sl.lll<GUJINE PLATIX,Y,111 

THIS SUl!ROUTJNc ACTUATES THE LIIIRMY PLIJTTING SUIIROUTINES FUAIIIISHEl>' IY 
CALCOMP ANU UETERMINES Tkl: STATUS OF Pl:N POSITION .~. . 

CUMMUN Fl 191,QIZ,231.ASI 371,Yll 191.Nll'II 
COMMON RE,Pl,H,OAS,P,PS,XO,S 
COMMON KW ,N;.,NCOUNT ,I\S,NSS ,NS1,NS2 ,NINl,NOl 

GO TOll,21,M 
CALL PLOTCIX,Y,31 
CALL PLOTCIX,Y,21 
M•Z 
RETURN 

2 CALL PLOTctx.v.21 
RETURN 
END 

SUBROUTINE CIRCLE 

THIS SUdROUTINE DRAWS THE HALF-CIRCLE Flllt LOCATING THE T.f;. SUllFACE .. ••• :, 

COMMON Fl 19l ,,112,231,AS1371 .• YJl19h.Nll91 
COMIION REtPhHoDASoPoPS.,XO,S 
CUkMUN KW,NQ,NCOl;NT ,hS,t.SS oNS1,NS2 t.NINl ,NOi 

NPs1t•NSS+l 
Msl 
DO l l•l,NP 
SXYsPS•DAS•ll-11 
CALL Pill NHS ,SXY,XoYI 
CALL PLUIX,Y,MI 
C.DrH INUE 
tALL. PLOTCIX,Y,3J 
RETUR" 

. ENO 
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C 
C 
C 
.C 

C 

SUBROUTINE SCANRIE,NJ, II 

THIS·SUBl>.OUTINE LOCATES THE POINTS FOR PRESCRIBED VALUES OF·voRTICITY OR 
STREAM FUNCTION ANO TRACES IT OUT THROUGH RECTANGULAR FLO\I SECTIONS· ••• 

COMMON Fl l91,Qi2,231,ASI 371, Y11191,NI 191 
COMMON RE,PT,H,OAS,P,PS,XU,S. 
COMMON KW,N.Q,NCOUNT ,NS,NSS ,NS1,NS2,NI Nl ,NOl 

EAl•E•ll-11 
DO l L•l,NC.OUNT 
KS•l 
IFIFILII 5u,5l,50 

50 NJl•l 
NJZ•NJ 
GO TO 52 

51 CONTINUE 
IFIKW.EQoll GO TO 2" 
GO TO 25 

2'1 CONTINUE 
XE•H*NINl*S 
Xf0•6.•Pl*S+XE 
IFIXD.LT.XE.OR.XOoGT.XEOI GO TO l 

25 CONTINUE 
NJ1•2 
NJ2•NJ-l 

52 CONTINUE 
00 2 J•NJ1,NJ2 
M•l 
OIJ•flll-Qll,JI 
Dll•FCLI-Q12,JI 
Qf l•O IJ*D 11 
OJl•flLI-Qll,J+ll 
QFJ•OIJ•DJl 
YJ•YIIJI 
YJl•Yll J+ll 
IFCKSI 16,17,16 

17 CALL PLATIXCC,YSC,MI 
GO TO 5 

C ..... · BORDER I •••• 
16 lflQfl I 3,'o,5 

3 DX•DIJ/IQl.2,JI-Qll,JI I 
Y•YJ 

·x•XO+EAl+E•Dx 
CAU PLAHX,Y,MI 
GO TO 5 

'o Y•YJ 
IFCDIJI 'o0,6,'oO 

'oO X•XO+EAl+E 
CALL PLATIX,Y,MI 
GO TO 5 

6 X•XO+EU 
CALL PLAT IX ,Y ,Ml 

C •••• BORDER 11 •••• 
5 lfCQFJI 7,8,9 
7 DY•DIJIIQU,J+ll-1111,Jll 

X•XO+EAl 
Y•YJ+DY*IYJl-YJI 

CALL PLATIX,Y,MI 
GO TO 9 

8 X•XO+EAl 
lflDJll 19,15,19 

15 Y•YJl 
CALL PLATIX,Y,MI 
GD TO 9 

19 Y•YJ 
CALL PLAilX,Y,MI 

9 KS•l 
C •••• BORDER Ill ••• ~ 

OIJ•f1Ll-Q12,J+ll 
QFl•DIJ*DJl 
lflQFII 10,11,12 

10 DX•OJ1Jlll12,J+ll~Qll,J+lll 
Y•YJl 
x~xo+EAl+Dx•E 
XCC•X 
CALL PLATlX,Y,MI 
YSC•Y 
KS=O 
GO TU 12 

.11 Y•YJl 
IFIOJII 18,2C.,18 

20 X•XO+l:Al 
CALL PLATIX,Y,MI 
GO TO 12 

18 X•XO+EAl+E 
CALL PLATIX,Y,MI 

C •••• BORO~R VI ••••• 
12 QFJ•OIJ•DH 

IFIQFJI 13,21,2 
13 DY•Dll/11112,J+ll-1112,JII 

X•XU+EAl+E 
Y•YJ+OY•I YJl-YJ I 
CALL PLAT IX, Y,111 
GO TO 2 

21 X•XO+EAl+E 
lfCDIJI 22,23,22 

23 Y•Y Jl 
CUL PLATCX,Y,MI 
IFCOlll 2,22,2 

22 Y•YJ 
CALL PLATIX,Y,MI 

2 CONTINUE 
l CONTINUE 

CALL PLOTCIX,Y,31 
~ETURN 
END 

f....1 
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su~~OUTINt SLANPIE,NJ,11 
C 
C ••• THIS SUBROUTINE LOCATES THE POINTS fOR PRESCRIBED VALUES OF VORTICITY OR 
C STREAM FUNCTION ANO TRACES IT ouf THROUGH POLAR TU~E SECTIONS •• ~ 
C 

C 

CCMMON Fll9l,Q12,231,AS137l,Ylll91,Nll91 
COMMON REtPT.H,OAS,P,PS,X0,5 
COMMON Kw ,NQ ,NCOUNT, ~S ,NSS ,N>l ,NS2 ,NI NI ,NOl 

00 1 L• 1, NCOUNT 
KS=l 
IFIFILll 50,51,50 

5G NJl•l 
GO TO 52 

51 Cot<TINUE 
IFINQ.LE.21 GU TO l 
IFIPSI 54,55,54 

54 IFINSZ-1-ll 53,1,53 
55 IFll-11 53,1,53 
53 NJ1•2 
52 CONTINUE 

00 2 J•NJl ,NJ 
M•l 
DIJ•FlLI-Qll,Jl 
D1l•FlLI-Q12,J.I 
QFl•DIJ•Dll 
DJl•FIL I-QI 1,J+ll 
QFJ•DIJ*DJl 
RJ•.E*I J-ll+S 
IFIKSI lb,17,lb 

17 X•XCC 
Y•YSC 
GO TO 5 

C •••• -CSORDER I•••• 
lb IFIQFJl 3,4,29 

3 OX•OIJ/IQ12,JI-Qll,Jll 
CALL POINTIRJ,PS+ASlll+DAS•ux,x,vl 
GO TO 5 

4 IF1Dlll 6,19,b 
19 CALL POINTIRJ,PS+AS11+11,X,YI 

GO TO 5 
b CALL POINTIRJ,PS+ASlll,X,Yl 
5 CALL PLATIX,Y,MI 

C •••• BORDER 11 •••• 
29 !FIQFJI 7,B,30 

7 DY•DIJ/IQll,J+ll-Qll,Jll 
CALL POINTIRJ+E•DY,PS+ASlll,X,Yl 
GO TO 9 

8 IFIOIJl 15,20,15 
20 CALL POINTUJ,PS+ASlll,x',YI 

GO TO 9 
15 CALL POINTIRJ+E,PS+ASlll,X,Yl 

9 CALL PLATIX,Y,Ml 
30 KS• l 

C •••• BORDER Ill •••• 
OIJ•FIL)-Q12,J+ll 
Qfl•CIJ•UJl 
IFIQFII 10,11,H 

10 UX•OJl/lQ12,J+ll-Qll,J+llJ 
CALL POINTIRJ+E,PS+ASlll+DAS*OX,X,YJ 
KS•O 
XCC•X 
YSC•Y 
GO TD 12 

11 IFIUJII 18,21,ld 
21 CALL POINTIRJ+E,PS+ASlll,X-YI 

. GO TO 12 
18 CALL POINTIKJ+E,PS+ASll+ll,X,YI 
12 CALL PLATIX,Y,HI 

C •••• BOROtR VI••••• 

C 

31 Ql'J•OIJ*Ull 
IFIQFJI 13,22,2 

13 OY•Oll/lQ12,J+ll-Q12,JII 
CALL PUINTIRJ+E*DY,PS+ASll+ll,X,YI 
GU TD 14 

22 lf!OIJI 23,24,23 
24 CALL POINTIRJ+E,PS+ASll+ll,X,Yl 

IF:Ulll 14,25,14 
25 CALL PLATIX,Y,MI 
23 CALL POINTlkJ,PS+ASll+ll,X,Yl 
14 CALL PLATIX,f,~I 

2 COlliTINUE 
1 CUM INUE 

CALL PLOTCIX,Y,31 
RETURN 
END 

SLBROUTINE POINTIRXY,SXY,X,YI 

C ••• THIS SUBROUTINE COMPUTES THE X-Y COURDlr.ATES IN TUBE SANK FLOW CHANN£L ••• 
C 

C 

COMMON Fllql ,Q12,231,AS137l,Ylll91,N(l9l 
COMMON RE,PT,H,OAS,P,PS,XO,S 
COMMON Ko,NQ,NCOUNT,NS,NSS,NS1,NS2,NIN1,N01 

X•XO-RXY*CuSl sn I 
Y•RXY*SIN(SXYI 
RE TURN 
END 

t; 
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APPENDIX K 

CCMPUTER PROORAM FOR CAICULATING 

FORM DRAG AND FRICTION DRAG 

This computer program ia also written in FORTRAN IV for use on the 

Oklahoma State University Computing Center's IBM 360 computer. The 

block diagram of the program is shown in Figure 76. 

START 

Read-in control parameters 

Call "DATA" to read-in vorticity 

Call "COEFF" to calculate pressure 
distribution, shear stress distri
bution, form drag, friction drag 
and tube ba friction factor 

Call "PRINT" to print-out the 
r~sults 

Figure 76. Computer Block Diagratn for Calculating 
Form Drag and Friction Drag 

.,. 

A description of each of the subroutine functions and input data 

cards req~red are as follows. 

182 
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Main Program 

This is the executive program tor the entire calculation. The main 

program arranges the subroutines in proper order for calculating form 

drag and friction drag. The main program calls the data input subroutine 

at the early stage of the calculation, then the subroutine of drag calcu

lation and finaly the output subroutine. 

Subroutine CCXJNT 

This subroutine is explained in Appendix I. 

Subroutine DATA and DISK 

These subroutines are also described in Appendix I. The only dif

ference in these subroutines f'rom the previous ones is that only the 

vorticity is read in for the calculation. 

Subroutine COEFF 

COEFF is the subroutine that calculates the pressure and shear 

stress distributions around the tube, f'orm drag coefficient, friction 

drag coef'f'icient and tube bank friction factor f'rom the converged solu

tion of' the vorticity at particular Reynolds number. 
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Input Data Cards 

The input data cards required for the program are arranged in the 

following order: 

[CARD l! 
(cARD 2! 

(cARD 3! 

"format specifications" 

These first two cards are exactly the same cards as(CARD 

1] and (GARD 2j in Appendix I for format specifications. 

READ: 
READ: 

FORMAT: 18A4 

"Control variables and parameters" 

This is also exactly the same one as (CARD 3jof Appe~dix 

I. 

READ: NI ,NT ,N2,NS ,NPT ,I'IMAX,EPSMAX,PT ,RE 

FORMAT: 6I5, 3F10.5 

Nomenclature of the constants above should be referred to 

Appendl.x I. 

f CARD 4 and thereafter] "Vorticity values" 

';['hese cards contain the vorticity values that have been 

punched upon the convergence of the solution at the 

particular Reynolds number. 

READ: V(K,I,J) 

FORMAT: 18A4 



C 
C 
C 
C 

-.C 
C 

C 

~;;; :>; 

l"DEAL TUBE BANK FRICTION UCTUR Of VISCOUS fLUW AT LOW RE,YNULQS NUMdER$ •-• 

AUTHOR: KOHEi ISHIHARA, SCHCOL Of CHEMICAL ENGINEEKING, OKLAHOMA STATE 
- UNIVERSITY, SHLLll~_tER, OKLAHOIIA 7'oC,7'o MAY, 1971 • 

COMMON PlhSOl ,PCU.sOl.DPI lo801,Al3,B01,B13,BOl ,OCFl3.-80 .. CI 3 .sc:1 
COMMON DU'U,801, V17,'o0,5tl ,IH401,FMll181,FIIZll81,FIITll81 
COMMON RE,H,PT,PL,Nl,NT,NO,NS,NPT,DAS 
COMMON NSl,NS2,NSS,NP.NPl,~IN,Nll,NlNl,NDl,NTK,NOZ 

300 FORMATlldA'ol 
READ15,3001 CFMllll,l•l,181 
REAOI 5-. 3001 I FMZH I, 1 •l, 111 
READ 15,1001 Nl,NT,NZ,NS,NPT,JTIIAX,~PSIIAX,PT,RE 
WRITEl6,Z0vl Nl,NT,N2,NS,NPT,ITMAX,EPSIIAX,PT,RE 

100 FORMATl615,'oFlDo51 
200 FORMAT I/ ,5X' NI••, IZ, 1X 'NT•', IZ, lX 'ICZ•', IZ, lX 'MS•', IZ, lX•N·PJ••, 12,1 

1x•JTMAX• 1 ,13,lX1 EPSMAX•',fB,4,lX1 PT••.~a.1o.1x 1 RE• 1 ,F8.4,/t 
H•IPT-l,1/NPT 
NIN•4o'*NPt-z 
NSZ•Z•NS-1 
NSl•NS+l 
NTK•NT*Z+l 
NP=lC 
NPl•ll 
-Nll•Nl+l 
NINl•NIN+l 
f\lC-aNS,2 
NOl•NO+l 
ND2•N2+l 
Pl•3,l'olS9Z6536 
DAS•Pl/14,*INS-ltl 

~WRITEl6,ZOll H,DAS ,~TK,NIN,NSloNSZ 
ZDl FORMATl/,5X'Ha',F8,'oolX,'0AS• 0 ,FBo'o,lX'NTK•',IZ,lX'NIN•',12,lX 

l'NSl•', l 2-, 1X'NSZ• 1 , IZ,/1 
101 FDRMATl5X,15,3X,15,313X,F8,'ot,3X,F8,3,313X,F8,411 

WRITE16,2C31 
Z03 FORMAT11Hl,1CX 1 lNTEGRATION OF PRESSURE AND FRICTION LOSS ROUND THE 

,l TUBE SURFACE' ,/ I 
DO 1 l•l.-NS 
RT•PT/ COSIDAS•ll-111 
Nllt•IRT-1,1/H+l 

1 CONTINUE 
CALL DATA 
K•l 

Z CONTINUE 
2oz FORMAT,, .sx•CF•'-,FB.4,ZX •tP•' ,FS,4,ZX •co•• ,f 8,4,ZX, •F •• ,F8,4,2X, 

11 FOR TUBE NOo••,lZI 
CALL COEFFIK,IN,NE,CF,CP,COI 
F-C0/14o*PT I 
WRITEl6,ZOZI CF,CP,CD,F,K 
'aRITE16,1031 

103 FORMATl/,9X'l',7X 1 Mi,3x•voRTICITY 1 ,3X'Vo GRA0,',6X 1 DP',9X'P',9X 1 PC 
1•,9x•ocF•,1x•ocP•,11 

DO 50 1•1,IN 
Mel 
WRITEl6, 101 t 1.M,AIK, l t,BCK, I l.DPIK, 11,PCK, l 1,PCCK, 11,DCFIK, 11, 

lDCPIK,11 
5v CONTINUE 

INl•IN+l 
DO 60 l•JNl,NE 
M•J-IN+l 
WRITEI b, 1011 1,M,AI K, 11,81 K, 11,DPIK, lt ,PIK, 11,P.CCK, lt,OCFIK, l I, 

lDCPCK,11 
60 CONTINUE 

IFIK,EQoNTI GO TO 3 
K•K+l 
PCIK,ll•PCCK-1,NEI 
Plk,ll•PCK-1,NEI 
GO TO 2 

3 CO ... TINUE 
LALL E:XIT 
END 

~ 
<» 
V, 



C 
C 
C 

C 

SU&ROVTINE DATA 

THIS .SUIIIUIUTlf&E READS THE VORHCITY DATA FRO" THE PUNCHED-OUT DATA CARIIS • 

c.oM- Pl3.80hPcu.ao1. DPU.so1.Au.ao.1.1H3,80l ,DCFC.3.ao1.c,3.so1 
COMMON OCP13,80I. vn.1tO,'>OI ,N(401.F1Ull8hF"2Cl81,Fl!TC181 
COMMON 11£,H,PT,l>L.NhNT ,NO.NS .• NPT ,OAS 
C~ NSl.NS2.NSS,IW.NPl.Nll4Nll,NINl•NOl,NTK,N02 
Ol~lOJ,I JNlC4t.JIIZl41 

NC•IU NS I /1'1' 
JtUlll•l 
JNZ r l lslllP 
lFINC.EO.U GO TO 18 
00 9 L•2•·IIC 
JN11Ll•JN2CL-ll•l 
JN2(Ll•.tNZlL-U+NP 

9 COftTIMIE 
H ~IINUE 

«•l 
30 CONUitUE 

oo: :n l•l•NS 
NP6at61U 
NC..,,....,ntl' 

33 ·1fl-•. GT of;.PJ GO TO 3 
REM! I S.FIIZI .IVIK.l ,.JI •.J•l,8PtU 
GO TO 31 

3 00 4 L•l ,.fft 
JIPJNlll.l 
JNl'-JN.Zt LI 
READ 15-.FIIZI (Y.(Ko l+Jt,J•JllloJliPI 

4 CDNT1 IIIUE 
IHWII.Lf..lNPI GO. T.0 31 
---JNP+1 . ' 
READ lS,FNZI l·VtK.,1.,U·,.pJ:M,NP81 

31 CONTINUE 
C • • • SECOND QU.-AT ER ·• ... 

DO 34 1-*SloNSZ 
lff'9slttHS2-J • 11 

·1'•NP&IMP 
36 IFl·Nl'&,GT,NP·I GO TO 7 . 

READ 1S.Fll2) ,.vt«,loJlr:J•loNPill 
GQ. TO 34 

7 DO 8 1.•hNC 
JNaJltlU.I 
JNltaJNZILI . 
Ri:AD 15-o Fl!Z t 11'lK, l • .t hJaJk, J.IIPl 

8 CONUII.-JE 
IFIMPB,LE.JNPI ·c.o TO ~ 
JNaJ8P•l . 
REAII IS,E"21 IYIK,J.,.JhJ•JN.NPII 

34 CBlllllNUE 
K•K+·l 
lFl!L.flkNTKI GO W 37 
GO TO 30 

3l CDN'UIUE 
. RETURN 

Elllil 

SUBROUTINE COEFFIKT.IN,NE.CF,CP,CIII 
C 
C •••· THIS SIJUOUTUtE CALCUl.ATES VORTICITY GRADIENT, PRESSURE VARIATION, 

SHEAR 5TRESS V'A.RIAf.lON., FORM DRAG, AND FRll;TION ORAG ••• C 
C 
C 
C 

Co- TOTAL DRAG COEFFICIENT ALONG THE SURFACE .QJ= A CYLINDER 
CP• ,_SSURI: COEFFICIENT ••• 

C ••• Cf• S'MBl,R STRESS COEFFICIENT •• • 
C 
C 

C 

P• P11£SSURE DROP AL~ THE SURFACE OF THE. CYLINDER uo 

COM"°II PU,801.·PC u. ,·,a,Ol'u,101 .... 3.801.81 hlOi ,DC-1'13,ICU i,Cl3~IOI 
COltNON DCPl3,801, vn.4o .. SO·I •. N(401..f1tll111,FM.Zl.'Ht..FMTtlll 
COtlMOM RE ,11.PT ,.PL,Nl,,N'f .NO,NS,NPT,IIAS . . 
CllltMOfi NS l• NSZ, KSS.Nl' oJfP hJll;llhN I l tNOll•kDl •NTK, NO;t 

COMST•4.*DAS/RE 
INalNS-'U•ZH 
NE•lNS-ll*lt•l 
K•tttT-U•,2•1 
Cf'aO.O 
CF•O•O 
PIKT,·u-o. 
OP( kT • 11•0. 
OCFlkT .11•0, 
l(l(f.,11•0. 
C(KT,11•1• 
00 l 1•2.IN 
AIKT,tt•VIK,1,11 . 
81 KT., ••. 12.•v&K, 1,2t-.5ev Ck. l.31-1.s•Y(K., h 111/tl· 
OPlKT,11,; CCiNST•atKT,11 
Cl KT. I l•COS(l)AS•·< 1-1 U 
Pl KT, U•P(.KT,1-l I +Dl'IKT ,11 
OCFIKT., •• S tNI OAS•( 1-1u•v<K, I.ll•CONST 
CF•CF+DC.FIKT ,11 

·1 CONTlNUE 
l"l• IN+l 
DOZ J•INl,NE 
N•I-Hl+l 
AIKT,l t•V(·K•l.M,11 
S(Kl. n-, z.•vl K+l tM•,,Z ·--5•1flK•-t ,M •. 3·J-1°,S*VIK•l•M, lJI/H . 
OPIKh 11• C0NS:fet1H<T ,n . 
CI KT, n•cos.t DASot;( 1-i 11 
P!KT, U•PIKT •J-ll+OPl«'J:,H 
OCHKT, 11• Sl1UDAs•11-.nt•VlK•.l,M,.UeG0NST 
CF•C!'..C,CH,Khl 1 · ' . 

2 CONHNOE 
00 3 1•1.·NE 
PC'iKT,U • ·p:1 kl .11•c1,u .11 
OCPIKhU• DAS•PCIKT.U .. 
CP-f:P+DCP IKT • 11 

3 CQNHKUE 
CO-CF+tP 
ltETUIIN. 
END 

...... 
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