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I. MECHANISM OF PHOTOLYSIS OF (9-ACRIDINYLMETHYL) 

QUATERNARY AMMONIUM SALTS

CHAPTER 1

INTRODUCTION

Our interest in the photolysis of quaternary ammonium 

salts arose during the development of a fluorescence method for 

assaying ternary amine drugs in biological fluids (1 ).

Scheme I

R,N +

CHoBr + — 
CH2NR3 Br

fluorescent
products

In the method, the tertiary amine drug is first quatemized via reaction 

with 9-bromomethylacridine [1 ](2). The quaternary ammonium 

adduct (itself nonfluorescent) is seoarated from other compounds by 

TLC and photolyzed on the TLC plate to generate fluorescence. The 

amount of fluorescence obsen/ed is proportional to the am.ount of
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tertiary amine drug originally present, diereby enabling its quantita

tion. Recently reported results from our laboratory (3) indicated 

that the analytical photolysis reaction generates 9-methylacridine [2], 

9-acridinylcarboxaldehyde [3] and 9-acridinylmethanol [4]. However,

CH CH,OH

these products represent only ca. 25% of the theoretical yield of 

fluorescent products. We felt that a mechanistic study of the photolysis 

reaction might produce information that could be applied to increasing 

the yield of fluorescent products in the photolysis reaction, thereby 

improving the analytical methodology. Also, we were interested in 

making a mechanistic comparison of the photolysis reaction of 

(9-acridinylmethyl) quaternary salts with those of the structurally 

similar benzyl trialkyl ammonium salts. In 1971 , Ratcliff and Kochi (4) 

first reported on the photolysis of a series of primary, secondary, 

tertiary and quaternary ammonium salts. Subsequently, Appleton 

et al. (5,6) proposed the following mechanism (scheme II) to account 

for the products observed in photolysis of benzyl trim ethyl ammonium 

salts, which are analogous to the 9-acridinylmethyl quaternary 

ammonium salts used in this investigation.



HU
homolytic

PhCHgNMeg R Br

% k'
heterolytic

Scheme II

•+
[PhCHg- + NMeg R Br]

PhCHg^g + PhCHg + CH2  =  NMe R Br

-[PhCHp + : N/Viep R + Br ]

PhCHp Br + PhCH., OR

In their work, they suggest that the photoexcited molecule 

may either react as a singlet or undergo intersystem, crossing to a 

triplet. They conclude that the triplet photoexcited state undergoes 

homo lytic cleavage of the C-N bond to yield a geminate radical pair 

which may either disproportionate in a solvent cage reaction or escape 

the cage and primarily-dimerize. The use of a triplet quencher 

piperylene showed that all the bibenzyl and ca. 60% of the toluene 

produced in the reaction came from the triplet state.

The solvent cage disproportionation reaction was suggested 

by the presence of dimethylamine in the reaction mixture following 

acidic hydrolysis (scheme III).

It was suggested that the singlet photoexcited state may undergo 

either heterolytic cleavage to finally yield an ether as the solvent
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Scheme III

/ CHq N MeFR ^  HO — GHg — N MeR — CHg — OH + HN MeR
Hgb \ +  A

recombination product or hemolytic cleavage to form a radical pair 

which then disproportionates in the solvent cage. Ratcliff and Kochi (4) 

had shown earlier that the singlet pathway predominates in the unsensi

tized reaction and that there is an almost equal probability of occurrence 

for both heterolytic and hemolytic cleavage of the singlet excited state.

In the photolysis of (9-acridinylmethyl) quaternary ammonium salts 

dissolved in methanol, the yield of 9-(methoxymethyl)-acridine [5] 

and/or 9-bromomethylacridine [1] would indicate the amount of hetero

lytic cleavage occuring in the reaction (scheme IV). On the other hand.

Scheme IV

Aci— CHa-N Meg Br ^ “ ^3

Ac I CHg — OCHg Acr—CHQ—Br

ho mo lytic cleavage of the C—N bond would produce a geminate radical 

pair inside a solvent cage. The radical pair could disproportionate 

inside the solvent cage and produce 9-methylacridine and dimethyl- 

immonium bromide. If, however, the radicals escape the cage, a 

variety of products could be produced such as a dimer, 1 , 2 -bis
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(9-acridinyl) ethane [6 ], 9-methylacridine [2] and 2-(9-acridinyl) 

ethanol [7] (scheme V).

CHgCHgOH

: o io io :

Scheme V

Acr-CHg N Meg Br homtlyST ""

y^c r—CHg )" 2

AcrCHgCHgOH

+ N Meg Br

V̂CHg = N Meg 3r

Ac rCH-

Furthermore, in the acridine system further photolysis of the 

primary acridine photoproducts is also possible. Acridine and 9-alkyl 

acridines undergo photo reduction (7) in deoxygenated alcohol solvents 

to yield various reduced acridans (scheme VI).

JuL

Scheme VI

H H h (s)
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Early investigators felt that the reacting species in the 

acridine photo reduction was a triplet since the reaction was quenched 

by oxygen (8 ). However, the absence of photolysis in the triplet 

sensitized reaction using biphenyl as the sensitizing agent (1 0 ), and 

the observation that acridans are photo-oxidized to acridines in the 

presence of o>o/gen (9) led others to suggest that a singlet excited 

state was the reactive species (10). Subsequently, it was shown that 

photoreduction and fluorescence were simultaneously quenched by 

biacetyl, further confirming that the reactive species was indeed a 

singlet (11). However, later experimental evidence (1 2 ) suggested 

that the photo reductive singlet was different from the fluorescing 

singlet. This conclusion was obtained by comparing the effect of 

solvent composition on the quantum yield of both photo reduction and 

fluorescence. It was found that replacement of benzene by toluene 

enhanced photo reduction but had no effect on the fluorescence. The 

same result was observed for the addition of 2 -propanol to tert-butanol. 

Therefore, these authors proposed that the initially formed  ̂-rf , Tf * 

singlet decays to a lower lying singlet, probably the  ̂ n ,m'* singlet 

which is the species undergoing photoreduction.

Therefore, in the case of 9-acridinylmethyl quaternary 

ammonium salts, various pathways and reactive species could be 

involved. The following study was undertaken to determine the mechanism 

of photolysis of quaternary ammonium salts.



CHAPTER 2 

RESULTS AND DISCUSSION

Conditions of Photolysis 

Since initial studies of the photolysis of chlorpromazine 

quaternary salts indicated a complex mixture of products, we chose 

to first study a case in which the amine was structurally simpler and 

in which fewer non-acridine containing products would be expected to 

be formed. Therefore, the mechanistic studies were performed with 

the quaternary salts produced by reacting 9-bromomethylacridine 

with trimethylamine and N, N-dimethyl-3-phenylpropylamine.

CH2N(CH3)3

10

Bp”

(CH3lN|CHj,Ph 
CH:

II

The limited solubility of the quaternary acridine salts 

restricted the solvent choice to polar solvents such as alcohols. 

Furthermore, other workers have previously investigated the

-7-
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photolysis of both 9-alkylacridines (9-12) and benzyl ammonium salts (4) 

in alcoholic solvents. Anhydrous methanol was found to be the solvent 

of choice because the ether which might arise from solvent attack on 

the intermediate produced by heterolytic cleavage of the C-N bond (see 

scheme II) could be prepared and purified (scheme VII). The ethyl ether

Scheme VII 

AcrCHgBr AcrCHgOR
q O

was found to be far less stable and could not be successfully prepared 

and handled, at least under conditions similar to those which would be 

encountered in the photolysis reaction.

A possible explanation for the observed differences in stability 

can be drawn from results obtained with the analogous picolyl ethers (13), 

In that system, treatment of the ethyl ether but not the methyl ether, 

with strong base results in abstraction of the benzylic proton followed 

by alkyl migration (scheme VIII).

Scheme VIII

C H -O -R

NaNH

RCHOHC H -0
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In our system, we feel that the benzylic protons are much 

more basic than those in the picolyl ethers and therefore would be 

much more susceptible to base catalyzed decomposition initiated by 

the alkoxide used to synthesize the ether. Furthermore, by analogy, 

the ethyl ether should be the least stable. Because of the observed 

differences in stability of the methyl and ethyl ethers derived from 

9—bromomethylacridine, methanol was chosen as the primary alcoholic 

solvent to be used in the mechanistic studies of the photolysis reaction.

Considerable variations in product distribution were observed 

in our initial photolyses. Two major factors were responsible for 

these observations. First, in some instances (less concentrated 

solutions), further photolysis of the primary photoproducts resulted 

in a variety of secondary photo reduced products. Second, variable 

trace amounts of oxygen were evidently present in the solvent following 

an initial "degassing" procedure, which entailed bubbling prepurified 

nitrogen through the reaction mixture. This conclusion was suggested 

by the observation that variable amounts of oxygenated products such 

as acridone [8 ], 9-acridinylcarboxaldehyde [3], 9-acridinylmethanol [4] 

and 9-acridinecarboxylic acid [9] were formed under these conditions.

COOH
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In order to achieve reproducible results and to prepare the large 

number of degassed samples necessary to perform the study, the 

following apparatus and procedure was employed.

Freeze-thaw procedures normally used to deoxygenate 

samples are not very applicable to a large number of small volume 

samples because each sample must have a vacuum stopcock with very 

little dead space between the liquid surface and vacuum source in 

order to prevent significant solvent losses. The need for these stop

cocks can be negated, however, if  the freezing point of the solvent is 

lower than the temperature at which its vapor pressure is 1 mm.

Such is the case for methanol which has a 1 mm vapor pressure 

at - 4 4 0  (14) and a freezing point of -94° (15). Therefore, by alternating 

the samples between a dry ice acetone bath and a liquid nitrogen bath, 

the freeze-thaw cycle can effectively be achieved without solvent loss. 

Furthermore, it was subsequently shown that subjecting a sample, 

cooled to —78°, to a vacuum of 0.05-0,01 Torr for approximately 

12 hrs was sufficient to achieve deoxygenation. The samples for 

photolysis were prepared by placing ca. 0.5 mL of reaction mixture 

in 8 mm x 10 cm pyrex tubing sealed at one end, degassing by the 

above procedure, and sealing the tubes under vacuum. Large volume 

preparative photolysis samples were prepared by the normal freeze- 

thaw procedure.
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The photolysis reaction was then investigated by irradiating 

the sample in the region of the acridine long-wavelength absorption 

(ca. 360 nm) and the products were quantified spectrophotometrically 

following TLC fractionation.

Photolysis Products and Stoichiometry 

The photolysis of (9-acridinylmethyl) trimethylammonium 

bromide [10] (100 mg, 0.3 mmole) in 30 mL deoxygenated anhydrous 

methanol led to the separation of 26 mg (45%) of straw-colored crystalline 

product which was recrystallized from chloroform and identified as 

1 ,2-bis-(9-acridinyl)ethane [6 ] on the basis of its NMR (Figure 1)

Scheme IX

AcrCH2 fQ(CH3 )^Br- —cHgQH AcrCHg + AcrCHĝ -g

[ 10] [2 ] [6 ]

IR (Figure 2) and mass spectra (Figure 3). The NMR spectrum shows 

the characteristic acridine aromatic protons from 7.35-8.35 delta 

(16H) and the singlet methylene protons at 4.15 delta (4H). The mass 

spectrum shows a parent ion at m/e 384-

The filtrate obtained from the photolysis was evaporated, 

dried and shown by its NMR spectrum to contain [2] and [6 ] (ca. 4% 

and 8 % of theory, respectively) and un reacted starting material. The 

presence of 9-methylacridine in the mixture was suggested by the
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Figure 1 . 60 MHz PMR spectrum (CDClg) of 1 , 2-bls-(9-acridinyl)ethane [6 ].
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presence of a singlet methyl absorption at ca. 3.0 delta. The position 

of the NMR methyl absorption is concentration dependent and varies 

from 2.9-3.1 delta. Further, confirmation for this structural assign

ment was obtained by TLC comparison of the reaction mixture to 

authentic [2 ] and [6 ].

An additional NMR absorption (2.95 delta) present in the PMR 

spectrum of the photolysis reaction mixture was shown to be due to 

trimethylamine which was isolated from the reaction mixture after 

neutralization with NagCOg by vacuum distillation. No dimethylamine 

could be detected. Since the identity of the amine fragment produced 

during the photolysis can be used to determine whether or not a solvent 

cage disproportionation reaction (scheme X) is occuring, an accurate 

identification of all amines produced is needed. We felt confident in 

our NMR amine identification procedure which indicated dimethylamine 

was not present within the limits of detection. However, the implica

tion of the somewhat surprising absence of a solvent cage disproportion

ation reaction prompted the further investigation of another quaternary 

salt to confirm this fact as a generalization for acridine quaternary 

salts. Therefore, the quaternary salt [11] derived from N, N-dimethyl- 

3-phenylpropylamine was prepared to further confirm the results 

obtained with the trimethylamine quaternary.

When a 10 ~M solution of the quaternary salt derived from 

N, N-dimethyl-3-phenylpropylamine was photolyzed in deoxygenated
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methanol for thirty minutes, 92% of the quaternary was consumed.

The reaction mixture was concentrated, subjected to dilute acid 

hydrolysis and the amine products were extracted into hexane after 

basification with Na^COg. The only amine found was N, N-dimethyl- 

3-phenylpropylamine (76% yield by GLC). The absence of detectable 

amounts of N-methyl-3-phenylpropylamine ( < 1 0 %) further confirmed 

that a solvent cage disproportionation (scheme X) is not a significant 

reaction pathway.

In order to further understand the photolysis reaction, time 

profiles for the disappearance of the trimethylamine quaternary [ 1 0 ] 

and the appearance of [ 2 ] and [6 ] were obtained from photolysis of 

10“2 and 10“  ̂ solutions in methanol and are shown in Figure 4 . Under 

these conditions, all products remain in solution.

The concentration of the various components present in the 

photolysis reaction mixture was determined by a combination of TLC 

and of UV spectrophotometry. The components were fractionated on 

silica gel TLC plates using benzene : acetone (95:5) as the eluting 

solvent. The compounds were then extracted from the silica gel 

using 95% ethanol for the photoproducts and 2N H^SO  ̂in 95% ethanol 

for unreacted started material. Quantitation was achieved by measuring 

the intensity of their ultraviolet maxima relative to those of known 

quantities of the products processed in the same manner. In the early 

time intervals the unphotolyzed starting material, [2 ], and [ 6 ], account
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Figure 4. Time profiles for the photolyses of 1 0 ~̂  (A) and 1 0 ~^M (B) 
solutions of [ 1 0 ] in degassed methanol. Compounds measured are 
[10] • — • — •; [6 ] X—X—x; [2] o — O — o.

for greater than 90% of the components in the reaction mixture.

However, at later time intervals, the primary photolysis products

appear to undergo secondary photolytic reactions. This phenomenum

is most evident in the 10~®M time profile. The quaternary concentration

decreases very rapidly initially with most of it being converted to [6 ].

The level of [6 ], however, was subsequently reduced from a high of

30% of theoretical at 1 minute to 12% at 5 minutes. Secondary photolysis

of the primary products was confirmed by irradiating 1 0  degassed

methanolic solutions of various 9-substituted acridine compounds.
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The photolysis of 9-methylacrldine [2] yields a series of 

photo reduced acridans [12-14], Following a preparative scale

CH3 CH,OHCH

H

1 2

CH

H

14

photolysis, the acridans were isolated by column chromatography 

and identified by their previously reported PMR spectra (7). The 

photolysis of pure samples of [ 6 ] indicates that it also undergoes 

secondary photoreductions to first yield [ 2 ] and then the photoreduced 

acridans. A probable mechanism is the rapid cleavage of the ethylenic 

C-C bond to yield two 9-acridinylmethyl radicals which abstract a 

hydrogen radical and form [2]. The 9-methylacridine thus produced 

is slowly photo reduced giving the same product profile obtained by 

photolysis of pure [2]. In deoxygenated methanol, the trimethylamine 

quaternary [ 1 0 ] yields [6 ], [2 ] and the various photo reduced acridans 

whereas under oxygenated conditions, the primary products are [2 ],

[ 6 ] and various oxygenated products.

Another possible pathway for quaternary photolysis (scheme X) 

is heterolytic cleavage of the C-N bond yielding either a methyl ether [5] 

or the bromide [1 ] from reaction of the 9-acridinylmethyl carbonium ion 

with the nucleophiles present in the reaction mixture. Therefore, the
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stability of these two compounds under reaction conditions was investi

gated to determine if they were stable enough to reaction conditions to 

be observed if formed. Although 9-(methoxymethyl) acridine [5] has 

the same TLC value as does 9—methylacridine in all solvent systems 

investigated, NMR analysis of the reaction mixtures could be used to 

examine the fate of [5] under reaction conditions. Preparative scale 

photolysis of a 1 0  solution in deoxygenated methanol revealed 

that [5] is only slowly consumed under reaction conditions. The products 

were not investigated in detail, but appeared by NMR and TLC analysis 

to be the acridans expected to result from photo reduction. Further, 

these products had R̂  values slightly different from those produced in 

prolonged photolyses of [2] and [ 6 ]. Control photolysis of the other 

possible carbonium ion product, 9-bromomethylacridine [1] indicated 

that it was too unstable under reaction conditions to be observed. 

However, the primary product of photolysis of [1] in deoxygenated 

methanol, as shown by NMR analysis of a 10 ^M preparative scale 

photolysis, is [5]. Therefore, the ether, which only undergoes a slow 

photo reduction under control reaction conditions, would be indicative 

of heterolytic cleavage. However, this product was not observed by 

NMR analysis of a 10 ^M preparative scale photolysis of the quaternary 

acridine salt [10]. Therefore, heterolysis of the C-N bond is not a 

significant reaction pathway in the quaternary photolysis.

The results previously mentioned are consistent with the
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Scheme X

AcP-CHg + CHg =  N Me R

^Acr-CHgNMegR Br -(uLm-CAcr-CHg- + N Meg R + B r]

\A
heUrAljtic /

Acr-CHg-tg + Acr-CHg HNMegRX

[B r + Acr-CHg + IN MC2 R]-»-Acr-CH2 Br + Aci—CHgOMe

Âcr =

reaction pathway shown in scheme X. Homolytic cleavage of the C-N 

bond occurs to the apparent exclusion of heterolytic cleavage. Thus 

9-bromomethylacridine [1], and 9-(methoxymethyl) acridine [5]j 

expected products of heterolytic cleavage, are not observed as products, 

while 9-methylacridine [2] and 1 ,2-bis (9-acridinyl) ethane [ 6 ] are 

produced in good yield. Solvent cage disproportionation of the radical 

resulting from homolysis of the C-N bond does not occur in this system 

since the only amine products produced are tertiary amines.

This mechanism proposes that the hydrogen atom abstracted 

by the 9-acridinylmethyl radical originates from the solvent. An 

attempt to obtain further confirmation of this pathway, by analysis of 

the deuterium content of the 9-methylacridine resulting from photolysis 

of [10] in d^-methanol, was unsuccessful. Control experiments 

established that 9-methylacridine containing three deuterium atoms
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in the methyl group suffered extensive deuterium loss during the 

isolation procedure.

No secondary amine, which should be produced by hydrolysis 

of the immonium ion, could be observed. It is proposed that the amine 

cation radical produced by homolysis escapes the solvent cage and 

abstracts a hydrogen atom from solvent. Hydrogen abstraction from 

solvent by aminium ions is well documented (16). Further, support 

for the proposed fate of the aminium ion was provided by observing 

the NMR spectrum of the reaction mixture obtained by photolyzing [10] 

in d^-methanol. A large singlet at 2.95 delta, the same as that observed 

for the hydrochloride salt of trimethylamine, was observed prior to 

workup of the reaction mixture. The lack of solvent cage dispropor

tionation in this system, as opposed to that observed in photolyses of 

benzyl quaternary ammonium salts, may reflect a greater stability of 

9-acridinylmethyl radical vs. benzyl radical, which enables escape of 

the radical from the solvent cage prior to reaction.

The deuterium isotope effects on the rate of production of 

9-methylacridine [2] and 1,2-bis (9-acridinyl) ethane [6 ] in d -̂MeOH 

vs. MeOH have been examined. The reduced yield of [2] obtained 

during photolysis in d -̂MeOH relative to that obtained in MeOH 

(Table 1) is consistent both with the proposed mechanism (scheme X) 

and with an alternative mechansim for the production of 9-methyl- 

aoridine via photo reduction (scheme XI). However, the latter mechanism
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Table 1 . The Effect of Deuterated Methanol on the Photolysis of [10]^
Solvent Percent Reactant Consumed Percent Products Produced 

. 2  , 6

Methanol 67.8 
90% d^-methanol 64.7

7.7 
1 .3

39.7
36.2

f(10] = 10 M in anhydrous deoxygenated solvent. 3 min photolysis using 
broad band irradiation at 350 nm.

Scheme XI

is unlikely based upon results obtained during photolysis of [ 1 0 ] in the 

— 2
presence of 10 M benzophenone. Previous results (10, 17) have 

established that a 5-6 fold increase in the rate of photo reduction of 

acridine occurs under these conditions, due to rapid hydrogen atom 

donation by the benzophenone ketyl radical. However, the yield of [2] 

produced from the photolysis of [ 1 0 ] is unchanged by the presence of 

10~^M benzophenone. Consequently, the photo reduction route to [2] is 

unlikely.

The proposed photolytic route in scheme X leaves unspecified 

the multiplicity and nature of the reactive excited state. In order to 

gain insight into the nature of thie excited state involved, several 

experiments were devised. The effect of reaction medium on the rate
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Table 3. The Effect of Reaction Medium on the Photolysis^ 
and Fluorescence^ of (9-acridinylmethyl) 

trimethylammonium bromide [%]

Reaction M edium
Photolysis

P / P o -

Fluorescence
f / fo ^

Anhydrous methanol 1 .0 0 .1
Anhydrous methanol (Og = 8 . 9 x 1 0 " ^  M ) o . i a f 0.1
33% aqueous methanol 0 .49 0 . 2
66% aqueous methanol 0 .3 3 0 . 5
90% aqueous methanol —— — 1 .0
0 .5  N aqueous HgSO^ c a . 0 ___ 3.

— X = 10~^M  in stated solvent. 3 m in  photolysis using broad band irrad ia tio n  
at 350 nm . Deoxygenated reaction  m edium  unless otherw ise stated.

— X= 2 x 1 0 ~ ® M  in stated solvent. Values obtained a t peak height at excitation  
and em ission m axim a.

— Pq taken as the amount of X consumed in anhydrous deoxygenated m ethanol.
— fq taken ais the fluorescence in ten s ity  observed in 90% aqueous m ethanol.
^  See bL in T ab le  11.
— The desired  concentration of X could not be attained because of solub ility  

problem s.
^  Under these conditions, the intense fluorescence of the dication is observed  

at a d iffe re n t em ission m axim um .

of photolysis and on the fluorescence of [10] (Table 3) makes the 

involvement of a  ̂tt’ , •rY * state highly unlikely. Thus, as the hydrogen 

bonding ability of the solvent increases, fluorescence is enhanced, as 

expected (18) by anology in the acridine but the rate of photolysis 

decreases. The effect is especially pronounced in the case of strongly 

acidic medium, wherein the acridine nitrogen is protonated. Further, 

the quantum yield of fluorescence is unaffected when the methanol 

solution is saturated with O ,̂ although the rate of photolysis drops 

sharply under those conditions.

The effect of oxygen upon the rate of photolysis (Table 2) 

enables the calculation of an approximate lifetime of the photo reactive



Taole 2. The Effect of Various Energy Transfer Agents on the Rate of Photolysis 
_____________________of (9-acridinylmethyl) trimethylammonium Bromide [x |__________

Agent Concn, M
Energy levels of agents 

K-r A's
Results"

p a /p

fosiii/ers
Benzophenone'' 10"'' 09 1.0
M il hler's ketone' 10-" 01 0.11

Item hers'
Oxygen 1.8 X 10-"/ 22.5, 3G.G/-' 2.9

8.9 X 10" '/ >7.5''
Nal 1 0 -" - l ( ) - ‘
Benzophenone 10-"-10"" 09J 70/ 1.0
Biphenyl 10“"-10"" 05/ 110/ 0.875-1.05
Naphi lialene It)-" 01/ 90/ 0.91
Biacetyl It)"" 55* 08 0.89
Benz.il 10-"-10-" 53/ 73' 0.875-1.0
Benz.oipiinone 10"" 50/ GO"' 1.02
Azobenzene 10"" " ~ ‘t()/ 04" 1.03

" Halios ol'Xcan.siiinud uiutcr control conditions (P„) to the amount consumed in the presence of the energy transfer agent (P). ''X 
(T) X III ' M ) in anhydrous methanol, 10 min photolysis at 280 i  5 nm. ‘ l.l'-Bisldimethylaminolhenzophenone. X d  X 10"'' M ) 
in anhydrous methanol, It min photolysis using broad irradiation a I 350 nm; >95% of light absorbed by sensitizer. •' X (5 X 10"" M l 
in anhydrous methanol, 3 min photolysis time using broad irradiation witb a maximum of 350 nm. !  (Imelins “ Handliuch der Anor- 
ganischcn Chemie”, 8th ed, VerlagChemie, Weinheim/Bergstr., Cermany, 1958. " O. J. (iuzeman, F. Kaufman,and (1. Porter,./. Chvm. 
.̂ 'oi-.. Faraday Trans. 2, f>9,708 ( 1973), Higher ratios were also observed bul the values obtained arc subject to wide variations because 
ol the small value of the denominator. ' High concentrations of N al interfere somewhat with the analytical chromatography and UV  
analysis and the results al high concetti ration are approximate. ■' 0 . 1,. Chapman. “Organic Photochemistry", Vol. 2, Marcel Dekker, 
New York, N .V., 1909, pp. 10 13.  ̂ N. .1. Turro, “ Molecular Photochemistry” , W. t\. Benjamin, New York, N .Y ., 1907, p 132. ' B. S. 
Ault and B. S. P im e n t e l ,Phys. C/icm., 79,020 ( 1975). P. K. Stevenson,,/. Mal. Spvctrasc., 17, 58 (1905). " Higher concentrations 
.'ibsorhed significant amounts of the incident light and were not investigated. " K. O. Bergman and B. Pullman, Fd., “The Jerusalem 
Symposia on ()iiaulum  Chemistry and Biochemist ry”, Vol. 2, “Quantum Aspects of Heterocyclic Compounds in Chemistry and Bio
chemist ry“, The Israel Academy of Scietice and Humanities, 1970, p 201.

I
IV)
t
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state (19). Assuming a Stern-Volmer relationship for the quenching,

po/p =  1 -f- kq T  [Q]

po/p = the ratio of reactant consumed under control 
conditions (P°) to the amount consumed in the 
presence of the quencher (P) 

kq = quenching constant 
T  = lifetime of the reactive state 
[Q] = concentration of quencher

and quenching constants of 3.1 x 10^̂  M  ̂ sec and 3.4 x 10̂  M~̂  

sec for singlets (2 0 ) and triplets (2 1 ) respectively, lifetimes of 

^215 nsec are calculated for a triplet and >25 nsec for a singlet.

The effects of energy transfer agents on the photolysis reaction have 

been investigated, (Table 2 ), using concentrations dictated by the 

approximate lifetimes calculated. The lack of triplet sensitization 

requires that a triplet state, if involved, have E-p : ca. 60 kcal/mole.

Since acridine is reported (17) to have energy levels at ca. 45

kcal/mole for the ^ 'tY , - r f *  state and in the range of 61-67 kcal/mole 

for the ^  n , * state, the involvement of the ^/rf , * state is unlikely

because of the large energy difference between it and the sensitizer.

The involvement of the ® n , «rf state is also unlikely, based upon the 

quenching data cited in Table 2 , since the lower energy quenchers do 

not retard the photolysis rate. Thus, triplet states do not make a 

major contribution to the reaction.

The involvement of a  ̂ n , «rf * excited state is a strong 

possibility. The lifetime calculated for the excited state in this reaction



—2 0 “

(:^25 nsec), is somewhat longer than expected based upon the value 

(1-5 nsec) reported by Whitten and Lee (12) for the proposed  ̂ n , -n' * 

state involved in the photo reduction of acridine, but is not unreasonable 

for a typical  ̂ n , <1 ' * state which may have lifetimes from 1 0 “ ®-1 0 ~  ̂

sec (22). The energy of the  ̂ n , * state of [ 1 0 ] is difficult to estimate.

The difficulties of estimating the energy of this state have been discussed 

in detail (10, 23) in the case of acridine and in that case is estimated to 

be 75 ± 5 kcal/mole. The concentrations of the lower energy singlet 

quenchers were limited because of their absorptivity to levels that are 

calculated to produce small effects on reaction rate. Therefore, the 

data in Table 2 are equivocal with respect to the involvement of the 

 ̂ n ,'Tf* state. Another possible excited state, involving charge 

transfer between the counterion (Br") and the acridine nucleus is 

unlikely, since replacement of Br“ with (24) had no effect on the

reaction rate. The  ̂ n , * state thus appears to be the most likely

candidate for the photo reactive state.

Photolysis of Chlorpromazine Quaternary [15]

The information obtained about the photolysis of acridine 

quaternary salts using the model compounds [ 1 0 ] and [ 1 1  ] was then 

applied to the Investigation of the photolysis of the quaternary salt of 

chlorpromazine [15]. The rate of photolysis of [15] was compared to 

that of the trimethylamine quaternary [ 1 0 ] in oxygenated and deoxygenated
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n
l O ) c H j ^ C H 2 ^ N  S

B  H
15

Table 4. Comparison of the Photolysis of Acridine Quaternary Salts 
Derived from Trimethylamine [ 1 0 ] and 

_________________________Chlorpromazine [15]______________________________

Reactant, Conditions Reactant Consumed (%) Yield (%)
 [2] [6]
[15], deoxygenated 17.4 5.9 2.7
[10], deoxygenated 54.6 7.0 22.6
[15], 100% Og atm 14.6 5.9 ca.O
[10], 100% Og atm 7.2 2.9 5.3

methanol (Table 4). The product distribution was also determined.

The rate of photolysis of [15] is only ca. one third of that of [10]. This 

may well explain the differences in the product ratios observed since a 

lower steady-state concentration of the acridinylmethyl radical would 

be expected to result in the formation of a higher percentage of 9-methyl

acridine (see figure 4 for effect of concentration on product ratios).

The two most important differences observed in the photolysis 

of [15] compared to [ 1 0 ] are the apparent insensitivity of the rate of 

reaction of [15] to oxygen concentration and the constant yield of [2 ]. 

First, the unchanged yield of 9-methylacridine under oxygenated and 

deoxygenated conditions could have been indicative of a solvent cage
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reaction which is immune to exogenous radical scavengers. A solvent 

cage reaction would produce desmethylchlorpromazine [17] as the 

amine product after acidic hydrolysis rather than chlorpromazine [16] 

(scheme XII). A TLC investigation of the amines produced in the

Scheme XII

+ In; +
Acr-CHg-NCCHg) R —̂  ► [Acr- CHg" 'N(CHg) R]

V 'H^CHg

Acr-  CHg + N (CHg) R — HN(CHg) R 

CHg

R =  3-[10-(2-chlorophenothiazinyl] propyl-

n Cc Hj) , 16

NHCH, 17

reaction showed that chlorpromazine [16] was_jthe only arnine produced, 

in analogy with the results obtained from photolysis of the model 

compounds [10] and [11], It must therefore be concluded that the lack 

of effect of oxygen concentration on the rate of production of [2 ] is not 

a result of a change to a solvent cage mechanism.

The failure of a 1 0 0 % oxygen atmosphere to significantly 

reduce the reaction rate implies a reduced lifetime of the reactive
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photoexcited state of [1 5] relative to [10] and thus would rule out 

significant triplet involvement. A variety of possible explanations 

such as the formation of a charge transfer excited state, energy transfer 

from the acridine to the phenothiazine nucleus or the involvement of 

the shorter lived  ̂Tf , * state were considered. Photoreactivity

from the  ̂fT , f f  * state cannot be unequivocally ruled out by presently 

available information. The fact that the photolysis of [15] proceeds, 

although slowly, in aqueous acid and is not quenched by oxygen tends 

to support involvement of a  ̂ / r f  , < (  *  state. However, it is difficult to

reconcile a ^ / r f  , / r f *  photo reactive state in this reaction with the 

properties normally attributed to that state. It usually fluoresces; 

the chlorpromazine quaternary does so only weakly. The fluorescence 

does not increase in going to 1 2 N and the extremely low quantum 

yield of fluorescence observed for [15] relative to [ 1 0 ] and [ 1 1 ] would 

indicate that the phenothiazine nucleus functions to facilitate deactiva

tion of the acridine singlet excited state. Since the fluorescent state 

of [ 1 0 ], which is not quenched by oxygen, does not appear to significantly 

participate in the photolysis of [ 1 0 ] reaction under oxygenated conditions, 

it seems unlikely that the of [15] could be involved in the photo

reaction. Therefore, it is likely that the  ̂ n , * state, whose properties

have been modified by the presence of the phenothiazine nucleus, or a 

new charge transfer excited state is the photo reactive state.

The lifetime of the excited state, T^, (19) can be described
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by the following equation where represents the rates of the various 

pathways by which the excited state can be deactivated. The natural

° i = 1

lifetime which is an intrinsic property of excited states can be calculated 

for the case where radiative emission is the only pathway: the average 

measured lifetime is usually shorter due to other competing intramolec

ular and intermolecular processes, such as internal conversion and 

intersystem crossing. The most reasonable process which could 

effectively contribute to a shortened photo reactive lifetime would 

involve energy transfer from the acridine excited state to the phenothia

zine nucleus, a process that is likely to lead to deactivation of the 

photo reactive state. Alternatively, an exciplex excited state with 

different properties from that of the uncomplexed excited acridine 

molecule could account for the experimentally observed results.

Attempts were made to investigate the possibility of energy 

transfer to the phenothiazine nucleus by looking for luminescence from 

that nucleus. Previous reports indicate that the optimum fluorescence 

from chlorpromazine occurs in aqueous base (25). However, the 

fluorescence at 455 nm in 0.1 N NaOH is extremely weak. Although 

the observed fluorescence characteristics of acridines from [15] is ca. 30 

times less than that observed for the trimethylamine quaternary [ 1 0 ] 

under these conditions, it is still sufficient to obscure the fluorescence
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preduced by an equimolar amount of chlorpromazine. Thus it does 

not appear possible at this time to account for the apparent reduced 

lifetime of photo reactive excited state by an energy transfer mechanism.

The possible role of a charge transfer ground state or an 

exciplex excited state was also investigated. Generally, a C-T ground 

state interaction should be detected as a new UV absorption band (26) 

or as a shift in the proton NMR spectrum (27), however, neither was 

observed. Similarly, exciplex emission which would be observed as 

a new longer wavelength emission band in the fluorescence spectrum (28) 

was not observed using the experimental techniques and equipment 

available for this study. The details of the spectroscopic study are 

presented in Part II. The fluorescence quenching observed for [15] 

relative to [ 1 0 ] could be attributed to an excited state charge transfer 

complex but also is consistent with other mechanisms such as enhanced 

radiationless decay rates or energy transfer. None of the proposed 

mechanisms could be confirmed under conditions similar to those used 

for the photolysis reaction. The apparent properties of the chlorproma

zine quaternary salt [15] can be summarized as follows. The lifetime 

of the photo reactive excited state is much shorter than that observed 

for the trimethylamine quaternary salt [ 1 0 ] and the rate of photolysis 

is relatively Independent of changing environmental conditions. The 

lack of appreciable fluorescence under all conditions tends to rule out 

the Involvement of the  ̂ , •n' * state and the insensitivity of the rate of
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photolysis to oxygen would rule out any triplet state involvement. An 

energy transfer mechanism would account for most of the observed 

properties as would exciplex formation.

As a final stage of our investigation of the photolysis of 

acridine quaternary ammonium salts, the solid state reaction under 

conditions similar to those used in the analytical procedure (1 ) was 

studied. The comparison of the solid state photolysis of [10] and [15] 

was made by adsorbing the quaternary salts on silica gel plates and 

the results are given in figure 5.

15 Consumed75

10 Consumed
50

from

from

25

6030 501 0 4020
time min

Figure 5. Time profile for the photolysis of [ 1 0 ] and [15] on a silica
gel TLC plate using broad band irradiation at 350 nm .   represents
amount of quaternary consumed during the reaction; *----------  represents
the appearance of fluorescent products.
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The percentage yield of fluorescent products based on the 

amount of quaternary consumed is apparently lower for [15], The 

yield of "fluorescence" at 40 min was approximately the same, however, 

ca. 70% of [15] was consumed compared to ca. 50% of [10]. The amount 

of quaternary consumed was determined by the UV method described 

previously. The major products of the photolysis of [15] which include 

9-methylacridine [2], 9-acridinylcarboxaldehyde [3] and 9-acridinyl- 

methanol [4] have previously been reported (3). These products have 

similar quantum yields and hence the fluorescence data adequately 

reflects the yield of these identified products. The fluorescence values 

were converted to a molar basis by comparing the observed intensity 

to that obtained from a known amount of 9-methylacridine processed by 

the same procedure.

Figure 5 shows that the differences in photolysis rate observed 

for [10] and [15] are further exemplified in the solid state. The chlor— 

promazine quaternary, whose photolysis is not quenched in solution by 

acid or by oxygen, is photolyzed much faster than [10] on the TLC plate. 

The presence of acid on the silica gel plates is indicated by the fact that 

the visual fluorescence observed is that of the cation and hence the 

differing results on the TLC plate are consistent with the previous 

results where the photolysis of [ 1 0 ] in solution is quenched completely 

by 0.5 N H and the photolysis of [15] still proceeds slowly in 12 N H

Chromatographic examination of the quaternary spot after
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photolysis revealed a number of additional minor products such as 

acridone [8 ] and 9-acridinecarboxylic acid [9] which were identified by 

their Rj= values whereas others could not be identified by values and 

were not investigated further. No major non-fluorescent product(s) 

and no dimer [6 ] could be found to account for the remaining ca. 30% of 

unaccounted for products. The photolysis of quaternary salts on silica 

gel plates always results in the deposition of non-elutable acridine- 

containing fluorescent materials on the silica. This observation was 

further confirmed by depositing the quaternary on silicic acid and 

performing the photolysis in a transparent cyclohexane slurry. The 

major amount of visible fluorescence remained on the silicic acid after 

exhaustive elution with acidic alcohol and therefore, it must be concluded 

that these products are covalently bound to the silica, probably through 

silyl ether linkages.

Qualitative TLC analysis of the amine products produced by 

co-chromatography with authentic samples indicated that chlorpromazine 

was the major amine produced. Visual examination of the TLC plate 

indicated that only a small percentage of desmethylchlorpromazine [ 1  6 ] 

was produced. Other minor phenothiazine containing products were also 

present but since they also appeared in the control photolysis of chlor

promazine, they were not investigated in detail. The very small yield 

of secondary amine product indicates that geminate pair disproportion

ation is still a minor pathway even under conditions that should favor that 

pathway.
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A question still remained regarding the mechanistic pathway(s) 

responsible for the solid state photolysis reaction. The results in 

solution had indicated that the photolysis proceeds almost exclusively 

by a homolytic route with only radical derived products being observed 

under deoxygenated conditions. As the percent water in the reaction 

mixture was increased, 9-acridinylmethanol [4], an expected heterolytic 

cleavage product, was not observed. It was, however, observed under 

oxygenated reaction conditions. Since the solution photolysis of 

9-bromomethylacridine [1 ] had indicated that it proceeded by a 

heterolytic mechanism, the solid state photolysis of (9-acridinylmethyl) 

trimethylammonium bromide [10], 9-bromomethylacridine [1] and 

9-methylacridine [2] was compared for possible mechanistic information. 

A qualitative examination of products produced during photolysis on silica 

gel plates indicated that all the observed products could arise from 

each of the compounds. This observation yielded no conclusive mechan

istic information about the involvement of a heterolytic pathway since 

heterolytic cleavage of [2] is highly unlikely. However, all the observed 

products could arise from an initial homolytic cleavage by analogy to 

the results gained from previous investigations of reactions of organic 

radicals (29). The major product of the solid state photolysis is 9-methyT 

acridine [ 2 ] which arises from a straight forward hydrogen abstraction 

reaction from silica gel or the organic binders present on the plate.

All the other products are produced in very low yields and can come
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from secondary reactions of the 9-acridinylmethyl radical with the 

oxygen, water and acid present on the plate (Figure 6 ).

CHôKsilyloxy)
Acr—CH

Acr-CHo-O-O

CHoOHRH

Acr-CHoOOH

Acr-CH rO - 0~ CH2~ Acr

Acr-CH^OOH

Acf-CH2

Acr - CH2

^ 6 % H 2

0-silyl)

A c r -0 -  CH

Figure 6 . Potential reaction pathways for 9-acridinylmethyl 
radical on silica gel TLC plates.
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Although the intermediate 9-acridinylmethyl carbonium ion 

could be produced by heterolytic cleavage of the quaternary, its genera

tion from a protonated hydroperoxide intermediate is more consistent 

with the results observed. The significant yield of acridone under 

oxygenated conditions further supports the presence of the hydroperoxide 

intermediate. Thus, it is concluded that the mechanistic description 

of the photolysis reaction gained from the solution studies where the 

parameters can be better controlled, is also applicable to the solid 

state reaction.



CHAPTER 3 

EXPERIMENTAL

Ultraviolet spectra were obtained on a Cary 14 spectrophoto

meter. NMR spectra were obtained on a Varian Associates T-60 or 

XL-100 spectrometer. Mass spectra were obtained on a Hitachi- 

Perkin Elmer RMU-7 spectrometer. Fluorescence spectra were 

obtained on either an Aminco Bowman or a Perkin Elmer MPF-3L 

spectrofluorometer. IR spectra were recorded on a Beckmann IR-8 . 

Intensities of absorptions are referred to as strong (s), moderate (m) 

and weak (w). Melting points were determined on a Gallenkampf 

MF370 capillary melting point apparatus and are uncorrected. Merck 

*̂ 2̂54+366 silica gel was used for column and general thin layer 

chromatography (TLC) while 100 m terephthalate backed silica gel 

plates without indicator, Eastman Kodak, were used for the quantitative 

analyses. Micro analyses were performed by Galbraith Laboratories, 

Inc., Knoxville, Tenn. Anhydrous methanol refers to Nanograde metha

nol which is dried by distillation over Mg(OMe)2(30). Degassed methanol 

refers to methanol that was degassed by at least four freeze-thaw cycles 

under a vacuum of 0.05-0.01 Torr by alternating between liquid Ng

—3 8 —
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and dry ice-acetone baths or by pumping on the sample for 1 2  hrs in a

dry ice-acetone bath.

Photolyses were effected with a Rayonet RPR-1 00 Photochemical

Reactor. The photolysis results cited in Figure 4 and Tables 1-4 were

obtained by the following procedure. To a 8  mm x 10 cm Pyrex tube

sealed at one end was placed 0.5 mL of a 10”  ̂or 10“ ^ M solution of

[10], [11] or [15] in anhydrous methanol. The samples were degassed

by the procedure cited above, were flame sealed under vacuum and

were photolyzed for periods of time from 10 sec to 10 min in a Rayonet

o
reactor equipped with eight 3500 A lamps. Following photolysis, the 

tubes were opened and 1 0  p L aliquots were spotted on two silica gel 

TLC plates. One was developed with benzene:acetone (95:5) to isolate 

the dimer [6 ], and methylacridine [ 2 ] and the other was developed in 

acetonitrile:water (9:1) to isolate the quaternary salts [ 1 0 ], [ 1 1 ] or [15].

The products were visualized under UV light, and the spots were cut out 

with scissors and added to 50 mL centrifuge tubes. Products [2] and [ 6 ] 

were eluted with 5 mL of ethanol and the quaternaries with 2 N ethanolic 

H2 SO4 . The tubes were shaken for 15 min, the solvent decanted and 

analyzed spectrophotometrically at 252 nm for [2] and [6 ] and 262 nm 

for [10], [11] and [15]. Yields were determined by comparing the extinction 

coefficients of the products at the cited wavelengths with those of known 

quantities of authentic compounds processed in the same manner. For 

benzophenone, a 5 x 10“ '̂  M solution of [10] containing 10“  ̂M
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benzophenone was irradiated at 280 x 10 nm for 1 0  min. Quenching 

experiments were performed by dissolving the indicated concentration 

of quencher in a 5 x 10“ ® M solution of [10] and exposing the deoxygen

ated solution to UV light (350 nm) for 3 min.

Oxygenation experiments were performed as above except that 

a stopcock was sealed to the photolysis tube to permit introduction of 

the desired quantity of oxygen. A ir or 100% oxygen was bubbled 

through the sample for 1 0  min, the stopcock closed and the rate of 

photolysis determined by the above procedure.

Control photolyses of the "dimer" [ 6 ], 9-methylacridine [2], 

9-bromomethylacridine [1] and the ether [5] were also performed 

under the above conditions.

Preparation of (9-acridinylmethyl) trimethylammonium bromide [101

Into a saturated solution of 9-bromomethylacridine [1] 200 mg, 

0.735 mmoles) in acetonitrile (ca. 20 mL) was bubbled approximately 

a five-fold molar excess of trimethylamine (generated from the hydro

chloride salt by addition of 40% KOH). The reaction mixture was 

allowed to stand at room temperature for 24 hr and deposited crystals 

of [10] (208 mg, 85% yield), which were recrystallized from a 9:1 

mixture of acetonitrile:methanol as light yellow plates that decomposed 

upon heating above 175° without melting. The spectral data for [ 1 0 ] are: 

60 MHz NMR (CD3 OD, TMS, delta)(Figure 7): 3.23 (9H,s), 5.76 (2H,s),
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FiQLire 7. 60 Ml Iz PMR spectrum (CD3 OD) of (9-acridinylmethyl) trimethylammonium bromide [10].
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8.74-7.66 UV: 95% EtOHj \  (G max)= 252 (1 .25x10^),

366 ( 7 . 2 x 1 3 9 0  (3.1x1q3); IR: (cm"’' , KBr)(Flgure 8 ): 3405 (m), 

3340 (w), 3050 (w), 2995 (m), 2985 (m), 1660 (w), 1620 (m), 1540 (w), 

1480 (s), 1470 (s), 1450 (s), 1440 (s), 1130 (m), 1025 (w), 960 (m),

930 (w), 865 (m), 840 (w), 760 (s), 725 (s). Analysis for gN^Br:

calculated, C 61 .64, H 5.78, N 8.45; found, C 61 .50, H 5.71, N 8.47.

Preparation of (9-acridinylmethyl) (3-phenylpropyl) dimethylamnnonium 

bromide [ 1 1 1

N,N-dimethyl-3-phenyl-propylamine (31) (0.3 g, 1.83 mmole) 

was added to a solution of [1] (0.5 g, 1 . 8  mmole) in ca. 50 mL CHgCN. 

The reaction mixture was allowed to stand at room temperature for 

72 hr, the CĤ CN was removed under reduced pressure, and the solid 

residue was ti tu rated with three 5 mL portions of acetone, which gave

[11] (417 mg, 87% yield) which was then recrystallized twice from 

CHgCN at -20°. The pale orangish yellow plates of [11] melted with 

decomposition at 160-164°. Spectral data for [ 1 1 ] are: 60 MHz NMR 

(CDClg, TMS, delta)(Figure 9): 2.06 (2H,m), 2.58 (2H,t), 3.33 (6 H,s), 

3.98 (2H,m), 6 . 6 8  (2H,s), 6.86-7.26 (5H,m), 7.58-8.16 (8 H,m);

UV: 95% EtOH; ^max°'̂ J (G rnax)= 252 (1.14x105), 365 (9.4x103),

390 (3.4x10^); IR: (cm"’' ,KBr)(Figure 10): 3450 (s), 3410 (s), 3050 (m), 

2980 (w), 1625 (w), 1600 (w), 1550 (w), 1515 (m), 1495 (m), 1450 (s), 

1135 (w), 1120 (w), 1020 (w), 975 (w), 940 (w), 835 (m), 760 (s).
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Analysis for CggHgyNgBr: calculated, C 68.96, H 6.25, N 6.43; found, 

C 68.85, H 6.28, N 6.28.

Preparation of C9-acridinylnnethyl) [3-(2-chlorophenothiazin-10-yl) 

propyl] dimethylammonium bromide [15]

The preparation and properties of [15] have previously been 

reported by Lehr and Kaul (3). Samples of [15] used in this study were 

prepared by that method.

Preparation of 9-(methoxymethyl)-acridine [5]

Sodium methoxide ( 6  mL, 0.4 M) in methanol was added drop- 

wise over a two hr period to a solution of 9-bromomethylacridine [1] 

(273 mg, 1.0 mmole) in anhydrous methanol (5 mL). The reaction 

mixture was allowed to stand at - 2 0 ° for twelve hrs, then it was added 

to ether (ca. 100 mL) and the solution was washed with saturated 

aqueous NaHCOg (20 mL) once and with water (20 mL) three times. 

Removal of the ether layer and evaporation afforded the crude product 

(210 mg, 94%) as a straw colored powder. It was recrystallized twice 

from ether at - 2 0 ° and was further purified by column chromatography 

using TLC grade silica gel (10 gm) and using CHgClg to firs t flush the 

more non-polar components and CHgClg plus 5% acetone to elute the 

desired product. In retrospect, a more gradual polarity gradient 

would have been desirable. The [5] Isolated in this manner was recry

stallized twice from Et, ; ^ 0  to afford light straw-colored needles of
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mp 113.5-114°. Spectral data for [5] are: 60 MHz NMR (CDClg, TMS, 

delta)(Figure 11): 3.4 (3H,s), 5.36 (2H,s), 7 .3-8.4 (8 H,m); UV: 95% 

EtOH; (G max̂ = 252 ( 1  .47x 1 0 ^), 343 (6.8x10^), 359 ( 1  .0 x 1 0 ^),

384 (3.9x 1q3); IR: (cm""', KBr)(Figure 12): 3060 (w), 2990 (w), 2880 

(w), 1620 (w), 1605 (w), 1550 (w), 1450 (w), 1090 (s). Mass spectrum 

(70 ev, relative abundance) (Figure 13): 223 (M"*", base peak), 208 (18), 

192 (8 6 ), 180 (47), 178 (10). Analysis for C-j gĤ  gNO: Calculated,

C 80.69, H 5.87; found, C 80.49, H 5.90.

Preparation of d^-9-methylacridine

A solution containing equimolar amounts of [2] and triethylamine 

in 0.5 mL d -̂methanol was prepared. The reaction mixture was allowed 

to stand at room temperature for two weeks. Direct mass spectral 

analysis of the solid obtained by evaporating the sample to dryness 

indicated that the mixture contained the following distribution of label: 

dg = 5.4%; d̂  = 19.3%; dg = 41 .0%; dg = 34.3%, for a total of 68.0%

(d ave = 2.04) deuteriation. When the compounds were isolated by 

TLC, developed in benzene:acetone (95:5) and were eluted from the 

plate with methanol, the mass spectral results indicated: dg = 47.5%, 

d̂  = 33.2%; dg = 15.5%; dg = 3.8%, for a total of 21.5% (d ave = 0.65) 

deuterium content. Thus, the high degree of isotope exchange observed 

under TLC conditions precludes any meaningful mechanistic studies 

using isotopic labeling.
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Preparative scale photolysis of [ 1 0 1

A 50 mL pear-shaped pyrex flask containing [10](100 mg,

0.3 mmoles) in a 30 mL anhydrous methanol was fitted with a vacuum

stopcock and deoxygenated by freeze-thawing under a vacuum of 0 . 0 1

Torr. The mixture was photolyzed one hr in a Rayonet reactor using 

o
eight 3500 A lamps. A straw—colored product [6 ] (26 mg, 45%) crystall

ized out of the reaction mixture. It was collected and recrystallized 

from CHClg at -20° as clear straw-colored needles that melted at 

257-259° with decomposition when the melting point chamber was pre

heated to that temperature. Attempts to obtain a melting point by the 

normal procedure of slowly raising the temperature results in a slow 

time-dependent decomposition from 240-255° resulting in a brown 

amorphous mass which will not melt ( < 300°). However, if  the sample 

is put in the preheated melting point apparatus at any temperature at or 

above 257-259°, melting occurs while temperatures of 255° and less 

result in decomposition with no melting. Spectral data for [ 6 ] are:

60MHz NMR (CDClg TMS, delta) (Figure 1): 4.15 (4H,s), 7.35-8.35 

(16H,m); UV: 95% EtOH; Xmax^m, (S rnax)= 342 (1 .26x10"^), 359 

(1 . 9 4 x 1 0 )̂ and 393 (9.41 x 10 )̂; IR: (cm"’’ ), KBr)(Figure 2): 3480 (w-br), 

3050 (m), 1620 (w), 1605 (w), 1548 (m), 1510 (w), 1485 (w), 1435 (w),

1405 (m), 732 (s); Mass spectrum (70 ev, relative abundance)(Figure 3): 

384 (M"'",4), 192 (base peak). Analysis for CggHgoNg'QHgC: Calculated,

C 79.98, H 5.75, N 6 . 6 6 ; found C 80.23, H 5.67, N 6.69.
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The filtrate was concentrated and analyzed by NMR, which 

indicated the presence of un reacted starting material, [ 2 ] (ca. 8 %) 

and [ 6 ] (ca. 4%). The presence of [2] in the mixture was suggested 

by the presence of its characteristic methyl absorption (ca. 3.0 delta) 

and further confirmation was obtained by TLC comparison of the 

reaction mixture with authentic [2], using benzene:acetone (95:5) as the 

eluting solvent. An additional NMR absorption (2.95 delta) was ascribed 

to trimethylammonium bromide. The assignment was confirmed in a 

subsequent experiment in which a deoxygenated 1.9x10  ̂M d^-methanol 

solution of [10] was photolyzed for 90 min. The photolysis tube was 

opened while frozen in liquid Ng, solid K2 CO3  was added and the tube 

was resealed under vacuum with a NMR tube attached as a side arm.

The mixture was allowed to warm to room temperature and the volatile 

components were transferred to the NMR tube by cooling it in liquid 

Ng. The only absorption observed was a singlet at 2.2 delta units, 

which is identical to the chemical shift of authentic trim ethyl amine in 

the same solvent. Also, acidification of the solution with HCl shifted 

the absorption to 2.95 delta, the same absorption observed for authentic 

trimethylamine acidified with HCl.

Identification of the amine produced in photolysis of [11]

A 50 mL flask containing [11] (43.5 mg, 0.1 mmole) in 10 mL 

anhydrous CĤ GH was deoxygenated and photolyzed for 30 min. An 

aliquot of the reaction mixture was removed and analyzed by TLC-UV,
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which indicated that the reaction was 92% complete. The remaining 

solution was concentrated to ca. 1 mL, and 4 mL 0.2N HgSÔ  was 

added (4, 5). The solution was allowed to stand at room temperature 

for 30 min. The reaction mixture was neutralized with NagCOg and 

extracted with hexane. This procedure extracts the amine products 

relatively free of acridine products. The hexane extract was concen

trated to 0.5 mL and was examined by GLC (6'x1/8” , 5% apiezon L on 

3% KOH treated Chromsorb W 100/120, 175°). These conditions 

separate N, N-dimethyl—3—phenylpropylamine and N-methyl-3-phenyl— 

propylamine. Only N,N-dimethyl-3-phenylpropylamine could be 

detected. Its yield was estimated at 76%, based upon comparison of 

peak areas resulting from three, one juL injections of the hexane 

solution with three, one juL injections of a standard hexane solution of 

the amine (11 .7 mg/0.5 mL).

Identification of the amine produced in photolysis of [1 5]

A 5 X  10“® M solution of [15] in methanol (5 mL) was placed in 

a 15 mm O.D. pyrex tube, deoxygenated and sealed under vacuum. The 

reaction mixture was photolyzed as previously described, for 30 min, 

concentrated to ca. 0.5 mL and 4 mL 0.2N H^SO  ̂added (4, 5). After 

1 hr, the mixture was neutralized with Nâ COg and extracted three 

times '/vith 10 mL portions of hexane. The hexane extract was dried 

over anhydrous Na^SO  ̂and concentrated to 0.1 mL. A 10 juL aliquot



—54—

was spotted on a silica gel TLC plate and developed in benzene :dioxane: 

diethylamine (95:5:2). The phenothiazine containing amines were 

visualized by spraying with 2N HgSO  ̂containing ca. 1% FeClg. The 

only amine produced was identified as chlorpromazine by co-spotting 

with authentic material. No desmethylchlorpromazine, which has a 

lower Rf value, was found.

Solid state photolysis of [10]

Preparative scale reaction: A 50 mL round bottomed flask 

containing 2 gm 100 mesh silicic acid, 40 mg [10] and 10 mL anhydrous 

methanol was placed on a rotary evaporator and the solvent was slowly 

removed to deposit [10] on the silicic acid. Samples of 200 mg + 5 mg 

were weighed and 1 mL cyclohexane added to form transparent slurries. 

Deoxygenation was attempted by 3-5 freeze-thaw cycles and the samples 

were photolyzed for 10 min. The samples were treated with 10 mL 

methanol followed by 5 mL ethanolic 2N Hg SO4 . The extracts were 

concentrated, the acidic extract neutralized with NagCOg, and analyzed 

by TLC. The primary products found were 9-methylacridine and 

un reacted [10]. Variable amounts of 9-acridinylmethanol [9] were 

observed and since the yield was highest under conditions where deoxy

genation was not complete, it appeared likely that the yield of [4] was 

correlated with the degree of deoxygenation. However, the presence 

of [4], although much reduced by extended deoxygenation, could not be 

completely elim.inated indicating that complete deoxygenation was not
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achieved under experimental conditions. The extracted silicic acid 

still had a very intense fluorescence. Further confirmation of this 

observation was obtained by spotting ca. 2 0 ju L of the cyclohexane 

slurry on a TLC plate and developing in acetonitrile:water (9:1). A 

very large fluorescent spot remained at the origin indicating that a 

significant amount of the fluorescent products are covalently bound to 

the silicic acid.

TLC photolysis: Duplicate 10 mL aliquots of a 10"  ̂M stock 

solution of [10] and [15] were spotted on 2-100j j  silica gel plates. The 

plates were suspended in the Rayonet reactor and exposed to UV light 

for periods up to 1 hr. The spots on one plate were cut out and placed 

in 50 mL centrifuge tubes and eluted with 5 mL 0.1 N containing

1 0 % methanol and the fluorescence determined. The molar equivalence 

of the fluorescence intensity was determined by processing various 

concentrations of [ 2 ] through the same procedure.

The other plate was developed in acetonitrile:HgO (9:1) and 

the quaternary spot was eluted with ethanolic 2 N H^SO  ̂and quantified 

by the normal UV method.

Photo reduction of 9-methylacridine [2]

The procedure used was essentially that of Goth et al. (7) to 

isolate the photo reduced acrid an products needed as TLC reference 

samples. Since the yield of 9,9'-dlmethyl-9,9* biacridan [14] from 

the photolysis of [2 ] is concentration dependent, a concentrated
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photolysis reaction mixture was used to isolate that product while a 

dilute solution was used for the other products.

A solution of 9-methylacridine [2] (200 mg, 1 .03 mmoles) in 

anhydrous methanol (15 mL) in a 50 mL pear shaped pyrex flask was 

degassed and photolyzed (as described under preparative photolysis of 

[10]) for 15 hr. At the end of the reaction, 95 mg (46% crude yield) of 

[14] had crystallized out and was isolated and washed repeatedly with 

acetone to give 50 mg (25% yield) of a powder. The PMR spectrum 

was obtained in CF̂ COOM and was identical to that reported (7):

3.52 ppm (6 H s) and 7.8 - 8 .4 ppm (16H m); except that the aromatic 

protons had an additional component from 8.65-8.9 ppm which was 

required to obtain the proper integral area (Figure 14). This compound 

is extremely insoluble in normal solvents and readily exidizes when 

exposed to air and disproportionates when under nitrogen in the dark (7). 

Therefore, it was not possible to obtain a reference TLC value for 

this compound because no new R̂  value could be observed. The 

monomeric photo reduced products were obtained from the preparative 

photolysis (under identical conditions as above) of 9-methylacridine 

(100 mg, 0.52 mmoles) in anhydrous methanol (125 mL). The reaction 

mixture was filtered to remove the solid precipitate of [14] and taken 

to dryness. Short column chromatography using dichloromethane as 

the eluting solveny gave 9-methylacridan [12] (11.5 m.g, 11% yield) and 

9-methyl-9-hydroxymethyl acridan [13] (34 m.g, 26% yield) which were 

identified by their PMR spectra (7).
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Figure 14. 60 MHz PMR (CF3 COOH) of [14].
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Photolyses of 9-bromomethylacridine [1 ] and 9-Cmethoxymethyl)- 

acridine [51

Photolyses were effected under the conditions described for 

preparative scale photolysis of [ 1 0 ]. The reaction mixtures were 

analyzed by TLC and NMR. The NMR spectra of the mixtures produced 

in the photolyses of [1] and [5] were almost identical. In each instance, 

9-(methoxymethyl)-acridine was identified as the major constituent by 

its characteristic NMR absorptions at 3.40 (3H s) and 5.36 (2H s) 

delta and by its TLC R̂r value of 0.51 in benzene:acetone (95:5). The 

spectrum of the photolysis mixture in both cases contained a single 

peak at ca. 5.35 delta but the addition of [1 ] produced a new signal 

with approximately the same chemical shift indicating that [5] is the 

major product. Furthermore, no absorption characteristic of the 

methyl group in 9-methylacridine (ca. 3.0 delta) was observed. 

Additionally, each mixture contained minor products tentatively 

identified as acridans derived from [5] by their characteristic TLC 

behavior. Namely, their spots are initially nonfluorescent but, upon 

standing, exhibit the fluorescence characteristic of acridines.
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II. LUMINESCENCE CHARACTERISTICS OF 

9-SUBSTITüTED ACRIDINE DERIVATIVES

CHAPTER 1 

INTRODUCTION

Prior experience in using fluorescent tagging reagents as the 

basis for the development of an analytical method for the quantitation of 

chlorpromazine metabolites (1-3) stimulated our interest in the lumines

cence characteristics of acridine derivatives. We were looking for a 

fluorescent molecule which, when suitably derivatized, would react with 

tertiary amine drugs thus enabling their quantification by fluorometry.

Alkyl and benzyl halides react quantitatively with tertiary 

amines to yield quaternary salts (4). More specifically, “̂̂ C-methyl 

iodide has been shown to react with chlorpromazine to yield a radioactive 

quaternary salt which is the basis for a radioassay procedure (5). There

fore, the introduction of a substituted methyl halide functionality/ appeared 

to be the preferential coupling mode for a fluorophore.

In screening the potential compounds which might be useful as 

tagging reagents, it very quickly became evident that acridine derivatives

—62—
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should be suitable for this purpose for a number of reasons. First, the 

quantum yield, and more importantly, the relative fluorescence yield of 

most acridine derivatives is sufficiently intense to allow quantification 

of the pi comole quantities of tertiary amine drugs present in biological 

samples. Secondly, the chemistry of acridine derivatives has been 

extensively studied (7,33,54) with over 3,000 derivatives prepared and 

their chemical properties investigated. Furthermore, the synthesis of 

one potentially useful tagging agent, 9-bromomethylacridine, had previously 

been reported (6 ).

These facts all supported the choice of acridine derivatives as 

the basic fluorophore. Table 1 (7) shows the state-of-the-art of much of 

the acridine fluorescence characterization data. The data shows that a 

detailed fluorometric characterization is not available for most acridine 

derivatives; however, enough information is available to develop a pre

liminary list of potentially useful tagging reagents, several of which are 

shown in Figure 1 .

The tagging reagent, 9-bromomethylacridine, was prepared and 

reacted with chlorpromazine [16]. The product was isolated, purified 

and found to be nonfluorescent. However, exposure to UV light on a 

TLC plate resulted in the appearance of fluorescent products via a 

photolysis reaction. That reaction has been characterized in detail in 

Part I. The quantitation procedure for chlorpromazine using 9-bromo

methylacridine was developed and standardized and is presently being
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Table 1

Colour o f Fluorescence o f various Acridines in  Ultra-violet L ight (7 ).
(The flttoreacence in daylight is weaker but similar in colour except where otherwise indicated.)

Substance. Neutral
molecule.* Kation." Anion. Reference.

Acridine Violet-blue Green
1-, 2-, 3> and 4-MethyIacridines 
3-Me1hoxy-6: 8-dichloroacridiue

Violet-blue Green — Reed (1944
Violet-blue A—.  

=  4500 A., in 
amyl alcohol)

Butler (1944)

2-Hydroxyacridine — Yellow f Yellow t —
3-Hydroxyacridine — (Faint orange) Orange Î —
V-Hydroxyacddine —— NU NU —

I'Aminoacridihe N il NU __ -

2>Aminoacridin'e (Faint green) Yellow t _ _

3-Aminoacridine Greenish-yellow (Faint orange) ---
4-Aminoacridine (Faint orange) NU --- _

5-Aminoacridine Green Violet-blue 
(yellow t when 
concentrated)

1 :8-Diaminoacridine NÜ Yellow t ---
2: 5-Diaminoacridine (Faint yellow) Yellow-green 

(violet in 
strong acid)

2 : ft-Diaminoacridine (Faint yellow) (Faint yellow) ---
2 :7-Biaminoacridine Greenish-yellow Orange J --- _
2 :8-Diaminoacridine (Faint yellow) Yellow - green 

yellow in 
strong add)

2 :8-Diamino-.f/-methyI- 
acridinium chloride

Green (Am i. =  
5275 & 5360 .\.)

--- Twarowska (1935)

2 : 8-hwDimethylaminoacridine Yellow-green Yellow t --- _
2 : 3-Diamino-3 : 7-dimethyl- 

acridine
Orange-yellow $ Yellow-green --- Twarowska (1935)

2: 8-Diamino-5-phenyl-3 : 7-di- 
methylacridine

— Green (Am i. =  
5360 A.)

---- —

2 :5-Diamino-7-ethoxyacridine Green Yellow-green _ _
6-Amino-3-methoxy-8-chloro-

acridine
— Blue (Am i. =  

4800 A.)
--- Butler (1944)

Atebrin Green Green (Aan. =  
5000-5100 A. 
depending on 
solvent ; an
other peak at 
4000)

Butler (1944) ; Brodie 
& Udenfriend (1943)

2-Acetamidoacridine Violet-blue Yellow-green
Acridine-3-carboxyIic acid Violet Green Blae ____

Acridan NÜ _ —
Acridone Violet Greenish-blue Blue-green --
N-Methylacridone — Green Blue ----
3-Methoxy-8-chloroacridone Violet (Am»%. =  

4200 A.)
— — Butler (1944)

2-Aminoacridone Violet Green _
3-Aminoacridone Green Nil
2 :7-Diaminoacridone Green NU
2 :8-Diaminoacridone Violet Green — —

* Neutral molecule in 0-lN-alcoholic sodium hydroxide; katien as hydrochloride in water, 
t Green in daylight, 
t Nil in daylight.

Reed, J. Chem. Soc., 679, (1944)
Butler, J. Pharmacol., 80, 70, (1944)
Twarowska, Acta Rhys. Polon., 4, 369, (1935)
Brodie and Udenfriend, J. Biol. Chem., 151, 299, (1943).
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CHjX CHgX

HoN
o lo T b .

CHjX

CHoX

C H ,X

Figure 1 . Potentially useful acridine fluorescence tagging reagents.

applied to blood samples obtained from schizophrenic patients (8 ). 

However, we still had an interest in developing a suitable tagging 

reagent for preparing fluorescent quaternary salt derivatives of tertiary 

amine drugs and felt that a basic study of the chemical and luminescent 

properties of acridine derivatives should lead to a viable approach to a 

solution of this problem.

The luminescence characteristics which might be exhibited by 

a compound can best be understood by discussing the mechanistic path

ways of excited state population and deactivation and then looking at the 

general rules for fluorescence and phophorescence which have been 

developed in light of these factors.

The understanding of the radiative processes in organic
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molecules has been advanced significantly in the last two decades. The 

total integrated absorption over a band for a given transition is a 

constant characteristic of a molecule and is relatively independent of 

the temperature, state of the molecule and other variables (9). However, 

the distribution of intensities between the various structured bands within 

the absorption region can alter with conditions.

The absorption of light results in the promotion of an electron 

from the lowest vibrational level of the highest occupied molecular 

orbital of the ground state to an unoccupied anti bonding molecular orbital 

(Figure 2) of a singlet excited state. The equilibrium internuclear 

distances in excited states are often greater than those in the ground 

state because of the reduced bonding character. The probability for an 

electronic transition from the lowest vibrational level of the ground 

state, Sq(o), to the vibronic level of an excited state, S-j , is given 

by the oscillator strength f^ In symmetry allowed transitions,

the most probable vibronic transitions, according to the Franck-Condon 

principle, are those in which the potential energy surface boundary of 

the vibronic level is at the same internuclear distance as the

starting point of the transition. Thus, the 7-^ O, 8 -^ O and

9 -------O ( \1 ' given first) for the example given in Figure 2 are the

most intense bands. In such a vertical transition, the nuclear configura

tion and the kinetic energy of the vibrational motion remains almost 

unchanged during the transition, thus satisfying the requirements of the 

Franck-Condon principle.
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Absorption

Fluorescence

ü”

00

Phosphorescence
0 ------

a .

u .

Distance along critical ordinate

Fig. 2 Potential energy diagram, giving the shape of the hypersurface along a 
critical coordinate for the ground state 5» and the first excited singlet Si and triplet 
T i states o f a representative organic molecule in solution. C is a point of intersystem 
crossing, S, —  7",. For convenience in representation the distances r  were chosen 
fs , <  >’si <  ''r i so the spectra are spread out. Actually, in complex, fairly symmetrical 
molecules and the 0— 0 absorption and fluorescence bands almost
coincide, but phosphorescence bands are significantly displaced to the longer wave
lengths. (10)

TTne calculation of ŝo»s-| quite fundamental to our understand

ing of radiative processes in that the reverse transition from the excited 

state (fluorescence) depends, subject to certain limitations, on the same 

parameters. Therefore, any factors which reduce the transition 

probability to the excited state will also reduce the rate of luminescence 

from that state.
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The derivation of the relationship between the molar extinction 

coefficient and the natural lifetime, o , was done by Strickler and 

Berg (11) and is given by the following equation:

1 /*To = 2 . 8 8  X 1 0 ~^n  ̂ av“  ̂ gl/gu J 'q  d In V

n = refractive index of the solvent

Jv"^ I(V) dV 

I(V ) = intensity of a vibrational band

V = frequency of the transition in cm~̂  

gUj gl = the degeneracies of the upper and lower states, respectively 

G = molar extinction coefficient

The natural lifetime. T'a, represents the lifetime of the excited state 

that would be observed if fluorescence were the only excited state 

deactivation process.

The above relationship holds because it is often observed that 

the fluorescence spectrum of a large molecule in solution will very 

closely resemble a mirror image of the absorption spectrum. In these 

cases, the frequencies of vibrational excitation in the lowest excited 

singlet are within 1 0 - 2 0 % of those in the ground state, which is respon

sible for the m irror image relationship. The absence of such a relation

ship between the two spectra may be taken to indicate a large change in 

the excited state configuration, and in these cases, the correlation 

between the radiative transition probabilities for absorption and fluores

cence may not be observed.
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Kasha (12) has proposed an interesting empirical relationship 

between the observed molar absorption coefficient (S), the oscillator 

strength (f) and the natural lifetime ('T'o) (Figure 3). In this analysis,

MOLECULAR ELECTRONIC TRANSITION T-NUMBER SCALE

log log /

5 0

4 - —I 

3 2

2 ---3

_l_- 4___

0 5

-2 ---7 

-3---8

n

- 9 - -  

- 8-  ■ 

•7 - -  

- 6- -

-3-1-

2

0 - -

I - -
-4---9

SINGLET-SINGLET

J

SINGLET— TRIPLET

I

Figure 3. Classification of molecular 
electronic transitions by approximate 
correlation with molar absorption coeffi
cient (G), oscillator strength ( f ), and 
intrinsic luminescence lifetime ('T'q).

the spin allowed singlet-singlet transitions and spin forbidden singlet- 

triplet transitions are classified as "allowed" or "forbidden" based on 

symmetry considerations. Spin forbidden transitions occur through

spin-orbit and spin-spin interactions while symmetry forbidden
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transitions occur through vibronic coupling. However, the total symmetry 

of a vibronic state is specified by the direct product of the representation 

to which the electronic and vibrational wave functions belong and thus the 

symmetry selection rules are modified according to the total symmetry 

of the higher vibronic levels of the excited state. This fact generally 

reduces the differences observed between the transition probabilities for 

symmetry allowed and symmetry forbidden transitions.

Thus having identified the fundamental relationship between the 

natural lifetime and the absorption extinction coefficient, which is only 

strictly valid in cases where good m irror symmetry exists, we are now 

ready to proceed in our analysis. If the natural lifetime, T^o, is equal 

to the observed lifetime, then the fluorescence quantum yield 0  ̂must 

be equal to unity by defanition. Using the relationship between the 

experimentally measurable parameters, namely molar extinction 

coefficient and fluorescence intensity, certain assumptions can now be 

made. In a series of structurally related compounds having similar 

absorption characteristics, changes in fluorescence intensity must be 

related to changes in radiationless pathway transition probabilities and 

not fluorescence transition probability. Similarly, when changes in 

environment for a given compound do not alter the absorption character

istics, then changes in fluorescence intensity must also be indicative of 

changes in radiationless rather than fluorescence pathways.

The observed luminescence characteristics of a molecule are
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therefore determined by the relative rates of various excited state 

deactivation pathways. The major radiative and non radiative pathways 

and the order of magnitude estimates of their rates can best be discussed 

by examining a modified Jablonski diagram (Figure 4).

i>lNGL_t_T 

MANIFO LD
TRIPLET

MANIFOLD

Figure 4. A modified Jablonski diagram showing various radia
tive (solid lines) and nonradiative (wiggly lines) pathways. See 
text for definition of the various rate constants (13, 14, 15).
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Light is absorbed by a molecule at a rate (k^) which is very 

fast (ca. 1 0 ^  ̂sec”  ̂) with respect to the time constant for intramolecular

vibrational motion. Nonradiative internal conversion occurs very 

rapidly (kĵ  ̂= sec~ )̂ between higher excited states or

vibronically excited levels to the lowest excited level (S-j) of the singlet 

manifold. Fluorescence then results from the S-| state at a rate (k̂ :) 

which is <10^ sec“  ̂. The rate of the competitive internal conversion 

pathway (k^ '̂)) ranges widely (O< kĵ '̂ <10^^ sec~^). As a firs t approxi

mation, this process is usually considered nonsignificant for most 

aromatic compounds. The rate of intersystem crossing (k̂ gc) must be 

: ^ k f in order of magnitude to permit population of the triplet manifold. 

Although the reasons are not understood, it is interesting to note that 

the "spin-forbidden" intersystem crossing process and the "allowed" 

fluorescence process have comparable transition probabilities.

The rate (kp) for the "forbidden" radiative process from the 

triplet state (phosphorescence) is quite slow (kp = 10^-10“  ̂sec“ ^). The 

phosphorescence decay time T'p which is the observed lifetime of the 

triplet state is given by;

= l/(Kp +

Since, for a given molecule, kp should be fairly constant, any variations

in the observed lifetime that occur due to changes in the external

environment must be related to changes in k. '. Experimental observa-isc

tions have confirmed that the rate for the competitive "forbidden"
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nonradiative process varies widely. Even in the same molecule,

the observed rate depends primarily on parameters such as temperature 

and the physical state of die molecule. The lifetime of the lowest triplet 

state of naphthalene in n-hexane at room temperature is ca. 1 0 ~® sec 

whereas it is ca. 2 sec in a rigid organic solvent at 77°K (16) which 

would suggest that in this case, k^sc’ ^/sries from 0.484 to 9.84 x 10“̂  

sec“  ̂. Therefore, phosphorescence is rarely observed for molecules 

in liquid solution because of the fast nonradiative pathway although the 

vibronically deficient molecule biacetyl is one of the notable exceptions (17).

The first real question that must be addressed deals with how a 

radiationless process such as intersystem crossing which involves a 

change in spin state can effectively compete with a spin allowed radiative 

process (fluorescence). Since the radiationless pathways involve 

transition between states of differing spin and symmetry elements, the 

perturbations that allow for forbidden radiative transitions must also be 

operating in the case of radiationless transitions. Henry and Siebrand (18) 

observed that spin allowed transitions, all other things being equal, tend

Q

to be about 1 0  times faster than the corresponding spin forbidden 

transitions. This finite number (rather than infinity) is due mainly to 

spin-orbit coupling. Furthermore, these authors noted that for aromatic 

hydrocarbons, orbitally allowed and orbitally forbidden transitions 

actually occur at roughly the same rates.

Various models have been proposed to calculate and describe
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the transition probability for radiationless transitions. However, there 

is a certain attractiveness in looking at the early model of Robinson and 

Frosch (19, 2 0 ) because of the consolidated manner in which energy 

transfer, vibronic deactivation, solvent effects and the temperature 

dependence can be treated. In their model, electronic relaxation is 

simply a result of radiationless transitions among nearly degenerate 

nonstationary states of the overall system. This definition of the system 

as the solute molecule of interest plus the surrounding solvent molecules 

is fundamental to their argument. The so called electronic states of the 

free solute molecule are not free stationary states but are mixed 

through electronic and vibronic interactions with the solvent. One of the 

most important empirical relationships drawn from their study is the 

dependence of the square of the overlap integral on AE which is shown 

in Figure 5.

These authors concluded " . . .  certainly one important 
general conclusion can be drawn from these crude estimates.
One expects nonradiative singlet-triplet transitions among 
excited states to be much faster, because of small energy 
gaps, and probably larger matrix elements, than those 
which occur between the lowest triplet and the ground state.
Thus S-)------► T  ̂ transitions either directly or through
intermediate triplet states are fast, while T  ̂ -------► Sq

transitions are generally slow."

One of the basic premises of the Robinson and Frosch model 

was that in the simplest case, the solvent plays no role in the radiation

less transition other than to act as a collection of phonon oscillators 

into which energy in the form of lattice vibrations may ultimately flow.
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Figure 5. The dependence of vibrational 
overlap integral on the energy separation 
between the lowest triplet and ground states, 
as calculated by Robinson and Frosch (19).

Gouterman (21) developed a semiclassical model for radiationless 

transitions by noting that the problem of the radiationless transition is 

not very different from that of radiative transitions. In the latter case, 

a molecular system interacts with the harmonic oscillators of a photon 

field, while in the former case, with the phonon field. This model 

successfully described:

(a) the fast rates of radiationless transitions,

(b) the observed temperature dependence,

(c) the cut-off frequency for radiationless transitions.
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(d) the existence of the Franck-Condon principle and,

(e) the lack of selection rules.

The study of radiationless transitions is currently one of the 

most active areas of investigation. Furthermore, this is an area where 

the combined expertise of the theorist and experimentalist is needed to 

attack the problem. Basically, sophisticated quantum mechanical 

models must be used to describe the experimental results since the 

primary event, the radiationless transition, is nonspectroscopic. How

ever, photoacoustic spectroscopy (2 2 ) shows some promise in observing 

some of these transitions directly. The major difficulty in applying the 

theoretical models and experience gained from investigations of radiative 

transitions to the study of radiationless transitions is the following: 

the energy differences between interacting states for radiative processes 

is from 1 , 0 0 0  to 1 0 , 0 0 0  cm“  ̂ and hence the Born-Oppenheimer approxi

mation which is required to solve the mathmatical descriptions is 

valid. However, in the case of radiationless transitions, the energy 

differences are on the order of 1 -  1 0 0  cm~̂  and the magnitude of the 

uncertainties introduced by the Born-Oppenheimer approximation and 

many of the other commonly used simplifying approximations are 

greater than the possible range of values for the rate determining 

parameters. Thus, the theoretical descriptions for radiationless 

processes have lagged behind those for radiative transitions for the 

reasons mentioned above.
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Years of experimental investigations have generated a set of 

empirical rules which are useful in making preliminary predictions 

about the luminescence characteristics which might be observed for a 

given compound. Among the large number of known organic compounds, 

only a small fraction exhibit intense luminescence. The fluorescence 

(or lack thereof) of a molecule is dependent upon the structure of that 

molecule and the environment in which the spectrum is measured. There 

are only a limited number of generalizations which can be made about 

the structural factors which tend to enhance or repress luminescence 

and the chemist usually has little opportunity to chemically manipulate 

the structure to alter luminescence characteristics. On the other hand, 

the investigator usually has available a wide choice of media in which to 

examine the fluorescence of a compound. Although "structural" and 

"environmental" factors are treated separately, it is clearly impossible 

to completely separate these two topics which are so intimately related.

Analytically useful photoluminescence is restricted to compounds 

possessing large conjugated systems and for most aromatic hydrocarbons 

both fluorescence and phosphorescence is observed. The most intensely 

fluorescent aromatic compounds are characterized by rigid planar 

structures. For example, fluorescein [18] exhibits very intense fluores

cence in liquid solution whereas phenolphthalein [19] does not, despite 

the structural similarity (17).

Table 2 (17) shows the effect of various substituents upon
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Table 2. Effects of Substituents upon the 
Fluorescence of Aromatics(17).

Effect on frequency Effect on
Substituent of emission Intensity

Alkyl None Very slight 
increase or 
decrease

OH, OCHg,OC2 H- Decrease Increase

COgH Decrease Large decrease

NHg,NHR, NRg Decrease Increase

NOg,NO ------ Total quenching

CN None Increase

F
Cl
Br
I

Decrease Decrease

SOgH None None
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fluorescence of aromatics. Though useful, such generalizations must 

be applied to practical work with care, for exceptions are not uncommon. 

Substituents which act as conjugated electron donors often increase the 

total luminescence yield of an aromatic system. The principal effect 

is to increase radiative transition probability. However, the list of 

substituents which can cause this effect is usually limited to amino and 

hydroxy functionalities. On the other hand, most strongly electronic 

accepting substituents or heavy atom substituents produce a very signifi

cant decrease in fluorescence yields. Heavy atom substituents increase 

spin-orbit coupling thus enhancing the rate of intersystem crossing.

This may or may not affect the yield of phosphorescence.

The introduction of a heteroatom into an aromatic ring usually 

profoundly alters the luminescence characteristics compared to those 

of the parent aromatic. Most common heteroatoms possess at least one 

lone pair of nonbonding electrons which may be excited into the ft  * ring 

orbital resulting in an n , Tf* transition. If that state is the lowest 

excited singlet state, then fluorescence may be significantly quenched 

due to its very low radiative transition probability (G <1000). Fluores

cence is further diminished because singlet-triplet energy gaps are 

commonly smaller for n , ' r f *  than for -rr, excited states which leads 

to a greater rate constant for intersystem crossing.

The changes in fluorescence characteristics which may be 

ascribed to structural factors can only be explained relative to some
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reference compound. Furthermore, the structural effects noted above 

are only valid under experimental conditions where optimum fluorescence 

intensity is observed. Although a wide range of solvent types are 

available, the fluorescence characteristics for most compounds have 

only been investigated for the "normal" solvents used for fluorescence 

characterization. The importance of this observation in trying to make 

general observations is best supported by a recent investigation of the 

fluorescent characteristics of halogen substituted anthracenes (23).

The fluorescence of the reference compound, anthracene, is quite low 

(0.02) when measured in bromobenzene compared to 0.30 in hexane 

which is consistent with the previous description of "heavy atom" 

quenching of fluorescence. On the other hand, 9, 10 -dibromoanthracene 

which has a low quantum yield, 0.087, in hexane actually has a higher 

quantum yield of 0.29 when measured in bromobenzene.

The effect of the solvent environment on fluorescence generally 

occurs because of two distinct mechanisms. Specific solute-solvent 

interactions such as hydrogen bonding, energy transfer, charge transfer 

complexation and protonation produce dramatic effects on the observed 

fluorescence. The potential existence of these interactions can usually 

be predicted by a knowledge of the fundamental chemical properties of 

the solvent and solute molecules. There is, however, a more general 

effect of the solvent environment on the fluorescence process which can 

be observed as changes in the emission wavelength and the variation in 

quantum yield.
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The Franck-Condon principle of light absorption asserts that 

molecular transitions occur in a time interval, ca. 1 0   ̂̂  sec, that 

produces a transitory "Franck-Condon excited state", possessing an 

altered electron distribution but with the ground-state geometry. Rapid 

changes in molecular geometry and resolvation by the solvent cage 

produce a new equilibrium excited state. It is commonly observed that 

the fluorescence maximum of polyatomic molecules is shifted to lower 

energy (red shift) by solvation and the magnitude of the shift depends on 

the specific nature of the solvent-solute interaction, several important 

types of which are (17):

1 . Dipole-dipole interactions between solute and solvent, 

in the case where both are polar.

2. Interactions between solute permanent dipoles and dipoles 

induced in the solvent by them.

3. Interactions between solvent permanent dipoles and dipoles 

induced in the solute by them.

4. Dispersive interactions between the transition dipole of 

the solute and the dipoles induced in the solvent by them; 

this interaction is present in all solute-solvent systems.

VeljkDvic (24) was able to correlate the red shift in fluorescence 

in many meso substituted anthracenes with solvent polarlzability. He 

attributed this effect to dispersion forces since the energy of this 

interaction, U, is related to polarizability
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U =  3/2h .. ^
la+Ib R®

where the I's represent ionization potentials and the a ’s are polarizabi- 

lities of the interacting molecules at a distance R. Also, the red shift 

in polar molecules such as 9-CN anthracene could be correlated with 

the solvent dielectric constant and may well represent an enhanced 

dipole-dipole interaction.

Solvent effects on the quantum yield of fluorescence are generally 

more difficult to explain. The effect of purely electrostatic (dipolar) 

solvent-solute interactions are often due to the solvent shifts themselves 

if one accepts the hypothesis of Kearvell and Wilkinson (23). They 

propose that the rate of intersystem crossing is highly dependent on the 

relative levels of , T2  and Tg as demonstrated by the temperature 

dependence. Changes in solvent usually affect singlet levels much more 

than triplet levels and will significantly alter the energy differences 

between these levels, thereby affecting the radiative quantum yield.

Specific short-range interactions such as hydrogen bonding, 

charge transfer complexation, energy transfer, etc., which were 

previously mentioned may also occur in addition to the general solvent 

effects. The influence on fluorescence of these specific interactions, 

if present, will usually predominate over generalized dipolar inter

actions (17).

Previous investigations of the acridine fluorescence character

istics exemplify many of the effects of the specific solvent-solute



—8 3 —

interactions. Many nitrogen heterocycles are relatively nonfluo rescent, 

even when the fluorescence yields of the parent hydrocarbon are quite 

large (25). The presence of one or more nonbonding orbitals which give 

rise to n ,^1" * transitions are usually considered to be primarily respon

sible for the differences in the luminescence behavior. Furthermore, 

in the case of acridines and other heteroatom containing aromatics, 

hydrogen bond formation and acid-base reactions may lead to more than 

one fluorescing moiety. For example, acridine fluoresces very weakly 

(0^<0.001) in cyclohexane and benzene (25) and it is reported that many 

workers have failed to detect any fluorescence (26). In hydrogen bonding 

solvents such as alcohol and water, a more intense fluorescence is 

observed (25). The acridinium ion, on the other hand, has a quantum 

yield of 0.54 in water, and shows little solvent dependence (27). Various 

fluorescing species of acridine exists in protonating and hydrogen 

bonding solvents (scheme I) and the emission maxima for [20], [21] and 

[22] are 400, 415 and 474 nm respectively (25, 26).

Scheme I

SH = hydrogen bonding, ionizing solvent
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The variations in fluorescence yield most probably represent 

the percentage of [ 2 1 ] present in the solvent since the observed fluores

cence of [21] is much greater than [20]. This conclusion is based on the 

fact that no further bathochromic (red) shifts are observed in luminescence 

in going from alcohol to water but the quantum yield increases (Table 3).

Table 3. Effect of Water on the 
of Acridine (27)

Fluorescence

Volume % of water 0 f Ethanol
1 0 0 0.37
90 0.34
80 0.28
70 0.18
60 0 . 1  1

50 0.079
40 0.062
30 0.048
2 0 0.036
1 0 0.034

0 0.032

Furthermore, Bowen (27) has pointed out that since the absorption spectra 

of acridine are remarkably similar in water, alcohol and benzene and the 

water solubility of acridine is very low (ca. 2  x 1 Q~̂  moles/L), there is 

probably negligible hydrogen bonding in the ground state. Following 

light absorption by [2 0 ], the more basic singlet excited state (28) 

rapidly hydrogen bonds with solvent to form [ 2 1 ] which either fluoresces 

or dissociates with energy degradation.

Acridines (27) as well as the parent hydrocarbon anthracene (23) 

show variations in quantum yield with temperature (Table 4). These data 

support the hypothesis that the primary processes which determine
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Table 4. Effect of Temperature on Observed 
Quantum Yield of Fluorescence (23, 27)

Temp. (OQ) 0 f^-acridine 0  jT̂ -anth racene

0 0.49 ——"—

1 0 -------- 0.283
2 0 0.33 0.275
60 —---- 0.243
70 0.09 ------

9̂0% aqueous ethanol as solvent, 

quantum yield are the nonradiative ones. Temperature dependent inter

system crossing from to a triplet state slightly above S-] would be 

consistent with the experimental observations. With acridine, the 

relative energy levels of higher triplets such as the ^ n j'TI'* state which 

may be close to the fluorescing  ̂«rf , •rf * singlet are particularly important 

based on the studies of El-Sayed (29), who concluded that the nonradiative 

singlet-triplet transitions between states of different types (̂  n , /rf *—►

3/rf , ' r i *  or 1 "ff , -rf *  n ,<rf *') should be two orders of magnitude

more probable than those involving singlet and triplet states of the same 

type. The primary factor of importance is the presence of one-center 

spin-orbit interaction terms for transitions between states of different 

types which vanish for states of the same type. The observed magnitude 

of the spin-orbit coupling factor then depends on the AE between the 

states and, therefore, small changes in the relative energy levels of 

interacting states can profoundly alter the luminescence yield.

Because of a num.ber of apparently anomolous fluorescence 

characteristics that have been observed for a variety of heteroaromatic 

and substituted aromatic compounds, a selected sample of data will be
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presented to demonstrate some of the parameters that have been 

investigated in attempting to explain the experimental results. In most 

instances, definitive mechanistic confirmation was not found, but 

certain trends were observed. In all cases, it is important to remember 

that the results for a particular compound should be considered relative 

to some reference compound such as the analogous hydrocarbon. The 

spectrum must also be run under experimental conditions that consider 

the most obvious potential specific solvent effects such as hydrogen 

bonding and acid-base reactions. Also, aromatic and ketonic solvents 

which are capable of energy transfer or charge transfer complexation 

are best avoided. When these factors are taken into consideration, it 

is possible to summarize the fluorescence characteristics of acridine 

as follows:

the fluorescence of the neutral molecule acridine is 

comparable to the analogous hydrocarbon, anthracene, 

while fluorescence from the protonated acridinum ion 

is much more intense.

Acid-base reactions have significant effects on the observed 

fluorescence of most compounds which contain acidic or basic function

alities. Table 5 shows the fluorescence observed from selected 

derivatives as a function of the state of ionization of the solute. Although 

there are no clear trends for predicting pH effects, the variations in 

quantum yield clearly show th,e need for investigating this effect for all
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Table 5. Effect of Acid-base Properties on Fluorescence

Compound 0 ^(or rel. fluor.)

benzene£ 0.07
toulene£ 0. 17
phenol£ 0 . 2 1

phenol, anionÉ NFC
aniline— 0.08
aniline, cation £ 0.003
aniline, anion £ 0.0015
benzoic acid^ NF
benzoic acid, anion A NF
pyridine £ NF
2  amino pyridine £ 0.71^
2  amino pyridine, cation £ 1 . 2 0 ^

— I.B. Berlman, Handbook of Fluorescence Spectra of Aromatic 
Molecules, Academic Press, N.Y., (1965).

Ë J.W. Bridges and R. T. Williams, Biochem. J ., 107, 225, 
(1968).

£ NF = practically non-fluorescent

— B.L. Van Duuren, Chem. Rev., 63, 525, (1963).

£ A. Weisstuch, Fluorescence of Pyridine Derivatives, Ph. D. 
Dissertation, St. Johns University, (1969).

f. relative to dl-tryptophan, 0 f  =  0.09

compounds which possess significant acid-base properties. Furthermore, 

a variety of pH values should be investigated because excited state pKa’s 

are often different from ground state pKa's and complete protonation/ 

deprotonation is desired to accurately assess the effect of ionization 

on fluorescence.

Another important parameter to be considered is the substitution 

pattern for isomeric compounds. The extensive study of pyridine 

derivatives by Weisstuch (30) provides a clear indication of the 

significance of this parameter (Table 6 ).
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Table 6 . Effect of Isomeric Substitution on the 
Fluorescence of Pyridine Derivatives (30)

Compound 0 f^

2 -amino pyridine 0.71
3-amino pyridine 0.32
4-amino pyridine 0 . 0 0 1

— relative to dl-tryptophan, 0  ̂= 0.09

This phenomenum has been extensively studied (see ref. 30, 

chapter 2  for a detailed discussion) and is termed the "proximity effect" 

which relates to the progressive increase in the extent of n , * character

of the lowest excited singlet as the position of the substituent is varied 

from the 2- to the 4- position. Albert (32) has also observed different 

fluorescence characteristics for isomeric monoaminoacridines (Table 7).

Table 7. Fluorescence Characteristics of Isomeric 
Aminoacridines (32)

Acridine Fluorescence in solution 
base in alcohol salts in HgO

unsubstituted violet green
4-amino- none none
3-amino- green intense yellow
2 -amino- green none
1 -amino- orange none
9-amino- green intense bluish violet

These results, however, clearly indicate that the trend observed for the 

pyridine derivatives cannot be extended to the acridine series because 

4-aminoacridine should be fluorescent by analogy.

In a recent study of the effect of molecular geometry on the 

spin-orbit coupling of aromatic amines, Adams, et al. (31) concluded
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that the excited state behavior of aromatic amines is dominated by the 

influence of molecular geometry. The fluorescence quantum yield, 

phosphorescence quantum yield and lifetimes (Table 8 ) of a series of

Table 8 . Fluorescence Characteristics of Selected 
Aromatic Amines (31 )

Compound Kfb 
x 1 0 ^ sec~ 1

Xp-,
sec" 1

Kiscê. 
x1 0  ̂sec" 1

diphenylamine [23] 0 . 1 1 4.6 0.73 0.41 36
iminobibenzyl [24] 0.24 4.5 0.51 0.27 1 0

acridan [25] 0.32 3.1 0.51 0.24 5.2
carbazole [26] 0.42 2.7 0.24 0.056 3.7

— quantum yield of fluorescence

K jr = 0 ^'T'^ = rate of fluorescence 

£ quantum yield of phosphorescence

K|2 = 0  p / ' T ' ^  ( 1  -  0  =  rate of phosphorescence

£ Kisc = 1 - 0 f  =  rate of S* ■T intersystem crossing

23
H

24

25

I
H

26
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aromatic amines whose molecular configurations vary from nonplanar 

to a planar geometry were investigated in order to study the influence 

of the geometry of the lone pair orbital on spin-orbit coupling. The 

compounds studied varied from the distinctly non-planar diphenylamine 

to the progressively more planar compounds, iminobibenzyl, acridan 

and carbazole.

Comparison of these data reveals a particularly striking fact: 

the rate of inter system crossing and the phosphorescence rate constant 

decrease dramatically in going from diphenylamine to carbazole while 

the rate of fluorescence varies only slightly. Since the phosphorescence 

and intersystem crossing processes between the singlet and triplet 

manifolds are spin forbidden and are allowed only through spin-orbit 

coupling of electronic motion in the presence of the nuclear fields, the 

authors concluded that the observed luminescence behavior is dominated 

by the dependence of the spin-orbit coupling factors on molecular 

geometry. However, even though these data seem to explain the effect 

of spin-orbit coupling for this series of compounds, the same discussion 

does not explain the high quantum yield of acridan, 0^ = 0.32 compared 

to acridine 0 f  =  0.37 since planarity is usually considered to be one of 

the primary requirements for intense fluorescence.

The effects of structural and environmental factors on 

fluorescence are best summarized as too complex to allow the 

development of simple predictive models for describing luminescence



— 9 1  —

behavior. This prediction is bom out in a recent report by Sinsheimer 

et al. (100) who were evaluating the use of 9-acridinylisothiocyanate as 

a fluorescent labeling reagent for amines. The analomous fluorescence 

characteristics observed for various derivatives are shown in Table 9. 

Although the synthesis and luminescence characterization of all compounds 

of interest is quite time consuming, there does not appear to be a good 

alternative to this type of experimental approach at this time.

Table 9. Fluorescence Characteristics of Various 
(9-acridinyl) thiourea Derivatives (100)

Thiourea Derivatives Relative Fluorescence^

Ri R2

—H -CjlHg 0.013
-H -C6 H5 0.030
—H -CH2 COOH 0.084
-C2 H5 -C2 H5 0.0069

Reference Compounds ̂

—NHg 2.64
-Cl 0.088
-NCS 0.67

^ Relative fluorescence is relative to a 1 .60 x 10 ®M 
solution of fluorescein isothiocyanate at pH 10.

N -C -N C g i

c.

o lo lo ,
'N '



CHAPTER 2

RESULTS AND DISCUSSION: GENERAL PROPERTIES

OF ACRIDINE DERIVATIVES

From the discovery of acridine in 1870 to the present day, the 

acridines have been extensively studied, not only because of their 

interesting chemical and physical properties, but also because of the 

many useful applications which have been found for them. Many noted 

Investigators such as Acheson, Albert, Bernthsen, Zanker and Uliman, 

to name a few, have spent many years investigating the properties of 

acridines. For this reason, the preparation of many of the compounds 

needed for this study has previously been reported. In fact, many of 

the basic synthetic procedures have been independently reviewed by 

Albert (7, 33) in much the same manner as are the synthetic procedures 

reported in the Organic Synthesis series. In this chapter, the basic 

synthetic approach to the desired compounds and their general chemical 

and physical characteristics will be discussed.

A number of synthetic approaches exist for the preparation of 

9-methylacridine which was the desired starting material for many of 

the derivatives needed for this investigation. The following (scheme II)

-92-
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are the most common approaches to 9-alkylacridines:

Scheme II

Br H jN' H A o / a .0X010'
N

(36)

CH3

o i o i o
9 3 %

C.

H

C H j C O O H / Z n C I - M
to -  30% -loiQio: (35)

All metioods offer certain advantages and disadvantages for the 

bulk preparation of starting materials. The Bernthsen synthesis 

(scheme II-C) offers the most direct route to 9-methylacridine and thus 

avoids the disadvantages of dealing with 9-chloroacridine [27]. Although 

the route involving [27] gives the highest yields, the tremendous dyeing 

capacity and lachrymator properties of [27] makes this approach very
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undesirable for bulk chemical synthesis. On the other hand, the 

Bernthsen synthesis presents two major technical difficulties. First, 

the temperature required for the reaction (ca. 2 2 0 °) is difficult to 

attain and secondly, the recommended workup procedure which included 

extraction of the cooled solid mass with dilute sulfuric acid, proved 

impractical. Pressure bomb reactions were suitable for the preparation 

of small quantities of [2 ] but a more general procedure was developed 

that was much more practical for large scale preparations. Following 

the recommendations of Porai-Koshits and Kharkharov (37), diphenyl

amine, dry zinc chloride and acetic anhydride were refluxed at ca. 180° 

for 5-10 hrs with mechanical stirring and then the temperature was 

slowly raised by distillation of the acetic acid to ca. 240° for ca. 1/2 hr. 

As the mass was allowed to cool to ca. 150°, 80% glacial acetic acid 

was cautiously added to the melt in a sufficient quantity to maintain a 

pourable mixture as the temperature was further cooled. As the tempera

ture reached ca. 60 -  80°, the melt was slowly added to a large quantity 

of vigorously stirred ethyl acetate. This step is the key to the success

ful workup of the reaction mixture because the soluble tar components, 

diphenylamine and diphenylamine derivatives are removed in the ethyl 

acetate layer which is discarded. The acid layer was filtered to remove 

the zinc salts, neutralized with ammonium hydroxide and the product 

was extracted into chloroform. The crude product was then purified 

by recrystallization from toluene and column chromatography on TLC
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grade silica gel using dichloromethane to elute off diphenylamine and 

diphenylamine derivatives and dichloromethane-acetone (1-5%) as the 

eluent for [2]. Recrystallization from hexane was then used to finally 

complete the purification procedure.

A variety of approaches to the Bernthsen synthesis were used 

in our laboratory at various times with yields from 5 — 40%. In retrospect, 

the use of the modified workup procedure described above could be used 

with any of these approaches with less problems and giving a product of 

better purity. These reactions, although somewhat low yielding, can be 

easily scaled up to give the 5-10 gm of pure [2] needed for this study.

The 9-bromomethylacridine [1 ] alkylating reagent which was 

used to prepare many of the desired derivatives was prepared from [2 ] 

by the method of Campbell et al. (6 ) (scheme III).

Scheme III

benzoyl peroxide
NBS ^  r Q

C H ,B r

C C I4 , ku

Attempts to prepare 9-acridinylmethanol [4] from [1] using potassium 

hydroxide in tetrahydrofuran were unsuccessful. However, the alcohol 

can be prepared in good yield (ca. 65%) from 9-acridinylmethyl acetate 

(scheme IV).
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Scheme IV

Acr-CHo-Br sodium ^ Aci—CHp-OOCCHo Acr-CHp - OH
acetate d. a d

The methyl and ethyl ethers were prepared from [1 ] by slowly 

adding the sodium alkoxide to a solution of [ 1 ] in alcohol over a 2  hr 

period. The presence of excess base, as shown by adding [1] to the 

alkoxide, results in decomposition of the product. Furthermore, the 

differences in stability of the methyl and ethyl ethers were described 

in Part I. The fact that the ether(s) could be prepared by using a strong 

base as a nucleophile whereas the alcohol could not, may be due to two 

factors. Because of the insolubility of [1 ] in basic water, only a 

limited quantity of water could be added to the tetrahydrofuran solution 

of [1 ] and hence the differences in the solvent characteristics for the 

reaction may be responsible for the failure of hydroxide to give a 

product whereas the alkoxides do. On the other hand, the facile reaction 

of sodium acetate with [ 1 ] would suggest that there is a competition 

between the displacement reaction and proton abstraction when strong 

bases are used and the alkoxides give products because, although they 

are slightly stronger bases than hydroxide, they are also better 

nucleophiles and displacement reaction proceeds much faster than 

proton extraction.

The difficulties of using strong bases with 9-methylacridine 

derivatives was further exemplified during attempts to prepare a
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tosylate from [4]. Attempts to pre-form the alkoxide of [4] by NaH, 

n-BuLi or sodium metal followed by reaction with tosyl chloride resulted 

in decomposition of the starting material with very little desired tosylate 

being formed. The tosylate was evident by TLC examination throughout 

the course of the reaction, however, it appeared that decomposition 

prevented any significant accumulation of product. Since base catalyzed 

decomposition was a real possibility, other approaches that did not 

involve strong bases were attempted (scheme V).

Scheme V

A. Acr-CHo-OH jutadine________̂  Aci—CHo-OTs (38)
tosyl chloride

B. Acr-CHg-OH CH3 CN Ar.r-CH^-OT.g (39)
AgOTs

These approaches generated small amounts of product which decomposed 

during the workup procedure. The instability of the tosylate, which has 

also been demonstrated for many analogous benzyl derivatives (39), 

indicated that it would not be a desirable alternative to the bromide [ 1 ] 

as an alkylating reagent. An attempt was made to prepare the sulfinate 

ester, which has proved useful as an alternative to tosylates in other 

cases where the tosylate is unstable (40). However, initial efforts in 

this area were not productive and this area of investigation was 

terminated.

The analytical (41 , 42) as well as the preparative quaterniza- 

tion reaction (scheme VI) is quite sensitive to the reaction conditions
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Scheme VI

• • 4- _
Acp — CHg — Br + NRg ------------► A c p — CHg — NR3  Br

employed. Previous results (43) from our laboratory had indicated that 

acetonitrile was the solvent of choice for the quaternization reaction.

The major differences observed for various solvents were the yield of 

quaternary from the reaction and the presence of polar side products 

which made purification of the quaternary difficult. A general procedure 

was adopted for the preparative quaternization reaction. The tertiary 

amine was added to a hot, nearly saturated solution of 9-bromomethyl

acridine [1] in acetonitrile. A 50% molar excess of [1] is used to ensure 

complete reaction of the tertiary amine since the presence of unreacted 

amine makes purification of the product very difficult in many instances. 

The reaction mixture is set in the dark at room temperature for 24 hr 

and then in the freezer (-20°) for 24 hr. Under these conditions, most 

quaternary salts crystallize out of the reaction mixture and after washing 

with a minimum volume of ether-acetone (1 : 1 ) are sufficiently pure for 

most uses. The quaternaries could be further purified by recrystalliza

tion from acetonitrile-methanol (ca. 1 0 :1 ).

A number of quaternary salts of tertiary amine drugs were 

prepared. The structures of the tertiary amines are shown in Figure 6 . 

Although the chemical and spectral properties of the quaternary salts 

derived from [ 1 ] were generally quite similar, certain notable excep

tions were found. For example, only the quaternary salt derived from
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,N,
Imipramlne

K

Amitriptyline

.N
Chlorpromazine

Cl

Chlorpromazine Sulfoxide Ohio rp rothixene Promcizine

Figure 6 . Tertiary amine drugs used to prepare quaternary salts for 
chemical and spectral characterization.

imipramine [28] was found to possess significant fluorescence in

12 N Hg SO4  (see Part II, Table 12). The fluorescence characterization

of the quaternary salts will be discussed in detail in the next chapter.

The NMR spectrum of the amitriptyline quaternary [29] proved 

to be unique among the derivatives investigated. The NMR spectrum of 

the chlorpromazine quaternary [1 5] (Figure 7) was typical of all of the 

other derivatives investigated in that the N,N-dimethyl signal at 

ca. 3.2 delta was a sharp singlet. On the other hand, the N,N-dimethyl
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signal for the amitriptyline quaternary [29] was a broad doublet centered 

at ca. 3.2 delta at room temperature (Figure 8 ). As the temperature 

was raised (Figure 9), the doublet collapsed to a sharp singlet at 80° 

which reverted back to a doublet as the temperature was lowered back 

to room temperature. These data indicated that a barrier to conforma

tional equilibration exists at room temperature. That barrier can be 

estimated at ca. 16.5 Kcal by using the following equation (102);

à o j "  = 2.3 RT  ̂[10.32 + log T^/k^]

where T^ is the coalescence temperature and the rate of interconver

sion, k  ̂= TT ÔV /y /2  (103). The most plausible explanation for this 

observation is a pseudo chair—boat interconversion in the dibenzocyclo- 

heptenyl ring which results in the N, N-dimethyl groups being in different 

magnetic environments in each conformation. The failure of the 

methylene protons in the cycloheptene ring to give a singlet signal 

(which is observed for the analogous imipramine quaternary (Figure 30) 

further supports this explanation for the NMR results.

One aspect which created considerable difficulty in dealing 

with the quaternary salts was their chromatographic behavior. These 

salts are mobile on silica gel plates when using a number of solvents 

such as n-butanol—acetic acid-water (5:1:4), chloroform—methanol- 

benzene-amimonium hydroxide (8:17.5:5:2.5) and acetonitrile-water 

(9:1). However, an assumably pure quaternary salt sample may give
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Figure 8. 100 MHz PMR (CDClg) of the amitriptyline quaternary [29] at room temperature.
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PPM
3.5

Figure 9. The effect of temperature on the N,N-dimethyl 
PMR signal of [29].
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from 1 to 3 distinct TLC spots depending upon the manner in which the 

TLC plate was handled during spotting, drying and development. At 

the present time, although the application to the TLC plate may be 

responsible for certain amounts of degradation, the cause of multiple 

spots appears to be relative to parameters such as the solvent used 

for spotting and the manner in which that plate was dried. Furthermore, 

two dimensional chromatography indicated that even when a quaternary 

produces multiple spots, each of those can in turn generate all of the 

other observed spots. The variability of the chromatographic behavior 

has also been confirmed during the standardization of the analytical 

procedure. Even under apparently identical conditions, various spotted 

samples behaved differently. Work in this area is continuing in attempts 

to understand this phenomenum.

Another area of general concern was the development of good 

criteria for purity of the samples to be used for the fluorometric and 

photochemical studies. The problem of assuming compound purity 

based on literature reports is best exemplified in the case of 9-methyl

acridine prepared by Bernthsen synthesis. Certain reports (37) 

indicated that up to a 70% yield was obtained. However, the product 

obtained which melted at 94-96° is now known to be a 1:1 complex of 

9-methylacridine and diphenylamine (35). TLC of the complex gives 

spots for both diphenylamine and 9-methylacridine. For this study, 

the TLC behavior of the products prepared was a primary criterion of
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product purity. This was important because fluorescent impurities 

which could be the most damaging to the fluorescent characterization 

studies could be easily identified even in cases where other spectro

scopic or physical evidence such as NMR, MS or IR spectra or melting 

point would not be particularly sensitive to low levels of fluorescent 

impurities.

One particularly difficult compound to prepare and purify 

according to reported methods was 9-acridinecarboxylic acid [9].

A number of routes leading to this product were available:

Scheme VII(44)

CH2CH2OH COOH

HCHO

CHO

[O]
COOH

jJJ.

COOH
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The route via 9( / 8 -hydroxyethyl) acridine (route I) yielded crude acid [9]; 

however, repeated attempts by recrystallization to obtain a sample 

uncontaminated by acridine byproducts having Rp values less than [9] in 

acetonitrile-HgO (9:1) were unsuccessful. In fact, the crude product 

obtained by route III appeared cleaner by TLC than the previously 

obtained recrystallized product. However, even this sample could not 

be purified to a point where only a single spot was observed in TLC.

In general, purification of acridine compounds poses an 

interesting problem. Many derivatives such as 9—acridinylmethanol [4], 

acridone [8 ], 9-acridinylcarbo>c/lic acid [9] and the quaternary salts 

are sparingly soluble in common laboratory solvents and are very 

difficult to handle and purify by crystallization. Recrystallization of 

some acridine derivatives is an ineffective method of purification because 

of co-crystallization of complexes between the desired product and 

impurities. For this reason, preliminary separations such as short 

column chromatography, sublimation or controlled pH extraction can 

prove quite useful in removing significant amounts of impurities 

leaving a semi-purified sample that can then be purified by crystalli

zation. These observations also explain why changing to a different 

synthetic approach can give samples that are easier to purify. In most 

cases, the key to a successful synthetic approach was the development 

of satisfactory purification procedures. Specific procedures for individ

ual compounds are described in the Experimental Section.



CHAPTER 3

RESULTS AND DISCUSSION: SPECTRAL

CHARACTERISTICS OF ACRIDINE 

DERIVATIVES

The initial observation that led to the study of the spectral 

characteristics of 9-substituted acridines was the apparent non-fluor

escence of the quaternary ammonium adduct derived from chlorproma

zine [16] and 9-bromomethylacridine [1]. The firs t step chosen for 

investigating the mechanism of quenching of the acridine fluorescence 

was to determine the luminescence characteristics of various 9-substi

tuted compounds. Such studies have been often used to investigate the 

mechanistic aspects of certain chemical and spectral observations.

The dependence of acridine fluorescence quantum yield on the 

environment has previously been documented (25 , 26 , 27). Using 

these studies as a guide, an examination of the effect of solvent, pH 

and other environmental factors on fluorescence was undertaken for 

selected derivatives. Based on these results, standard conditions 

were established for the fluorescence characterization of the other 

derivatives. Acridine [20], 9-methylacridine [2] and (9-acridinylmethyl)

-107-
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trimethylammonium bromide [ 1 0 ] were used for the initial standardiza

tion experiments.

The fluorescence characteristics of acridines, and particularly 

the observed quantum yield, strongly depend on the solvent medium. 

Figure 10 shows the relationship between the relative fluorescence

o  =  [ l o ]
0 .4 03 0 0

27S
0.35

0.30

200
0.25
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■ 0.201 50
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■ 0.15

100

0.1075
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0.05

1009 06 0 70 SO5 00 4 010 20 3 0

YoHsO in Me OH

Figure 10. Relative fluorescence (RF) of 9-methylacridine [2] and 
(9-acridinylmethyl) trimethylammonium bromide [10] in aqueous 
methanol compared to the reported quantum yield (0 f) (27) of 
acridine [2 0 ].
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observed for 9-methylacridine [2] versus the percent water in the 

solvent and the reported quantum yield for acridine [20] (27). 9-methyl

acridine appears to have a slightly higher quantum yield particularly 

at lower percentages of water in the solvent. This comparison allows 

one to make an estimate of the quantum yield for 9-methylacridine 

which, although not experimentally measured in this study, should be 

within 0.05 of the 0.34 reported for acridine (27) when the solvent 

contains 90% water. Subsequent fluorescence measurements were 

made in aqueous methanolic solutions of various compositions in 

order to determine the fluorescence characteristics of the various 

substrates.

The quantum yield for the acridinium cation has been measured 

to be 0.54 (27). It is this molecular species that is of primary interest 

due to its higher quantum yield relative to that of the neutral species. 

The ground state pKa of acridine is 5.5 but the excited state is much 

more basic with a pKa of approximately 10.6 (45). The red shifted 

fluorescence ( X max = 474 nm) of the acridinium cation becomes 

obvious at a pH of about 7 and protonation is complete around pH 

3.5 (46). However, it was obvious early in the study that certain 

derivatives, such as the (9-acridinylmethyl) trimethylammonium 

quaternary were much less basic than unsubstituted acridine. No 

fluorescence typical of the protonated species could be observed in 

0.01 N HgSO .̂ However, as the concentration of acid is increased.
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the expected fluorescence is observed and reaches a maximum in 

about 12 N H2 SO4 . The profile of fluorescence intensity versus acid 

concentration for [10] is given in Figure 12. Therefore, the fluores

cence was determined in both 0.01 N and 12 N acid solutions to ensure 

that maximum protonation was obtained.

Uncorrected excitation and emission spectra for 9-methyl

acridine are given in Figure 11 . The raw spectral data obtained are 

adequate for a study such as this provided that the lirhitations of using

c

Em

460380300220
Wavelength nm

Figure 11 . Fluorescence excitation and emission spectrum of 
9-methylacridine in water.
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Figure 12. The effect of acid concentration on the fluorescence 
of (9-acridinylmethyl) trimethylammonium bromide [10],
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such spectra are recognized. To obtain a corrected spectrum, there 

are a number of factors that must be considered. The three most 

important parameters which vary with wavelength and must be consi

dered in the normalization process are: the intensity of exciting

light (Figure 13) (49), attenuation due to the monochromator (Figure 

14) (50) and system geometry, and the photomultiplier response. The

&
s

12,00010,0008000600040002000
Wavelength, A

Figure 13. The energy distribution from two types 
of commercial point-source lamps. Curve 1 was 
obtained from the mercury HBO 200 lamp of Os ram 
(Germany); curve 2, from the xenon X-75 lamp of 
PEK, Inc. (49).

fine structure observed in the emission spectrum also varies with the 

experimental parameters chosen such as s lit width, concentration, 

solvent and temperature.

Since the emission spectra for the derivatives investigated 

covered only a narrow spectral range and were not significantly 

different, no major corrections were necessary for spectral
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Figure 14. Reflectance curves for spectrofluorometer gratings. 
The maximum output occurs at the cited blaze wavelength (50).

interpretation. Of a major concern in this study were the differences 

in the fluorescence intensity observed from excitation at the long and 

short wavelength maxima.

The rate of fluorescence is given by (48):

If = [Io(1 - 1 0 «cl) 0 ]̂

If -

ô — 
c =
I =
G —
0 f  —

total fluorescence emitted per unit time 
total flux of exciting light 
concentration of solute 
optical depth of solution (cm) 
molar extinction coefficient of the solute 
quantum yield of fluorescence.

Since previous studies (47) have indicated that the fluorescence quantum 

yield for acridine derivatives is independent of the excitation wavelength.
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then log If should be proportional to S if 0f is independent,of wavelength 

and Iq is constant as the wavelength of exciting light is varied. The 

molar extinction coefficient for 9—methylacridine is 170,000 and 8,200 

at 252 nm and 355 nm respectively (see Figure 15) and clearly the 

fluorescence excitation spectrum presented in Figure 12 does not reflect 

this relationship. The differences must be related to instrumental 

characteristics and the ratio of peak heights are generally much different 

in the corrected spectrum from those in the uncorrected spectrum, 

particularly at wavelengths below 300 nm (Figure 16) (51), since the 

output of the Xenon lamp is over 4 times greater at 350 nm than at 

250 nm (51). Also, the air medium significantly attenuates the exciting 

source at wavelengths below 300 nm. From a purely analytical point 

of view, where detection of very low levels of fluorescence is required, 

the loss of an order of magnitude of detectibility due to instrumental 

design factors should be re-examined. Such an instrument would use 

a light source that has a more intense UV emission at the excitation wave

length desired, and would use a monochromator scribed for maximum 

efficiency at 250 nm. Secondly, the whole excitation mechanism should 

be enclosed in a vacuum chamber with a quartz window to minimize air 

attenuation. The use of a photon counter (50) rather than the normal 

photomultiplier for luminescence detection would further increase 

sensitivity and reduce the problems of background fluorescence which 

is more troublesome when the shorter excitation wavelength is used.
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Figure 15. Absprotion spectra for 9-methylacridtne [ 2 ] in ethanol (---------) and ethanolic
2 N H2 S0 _ 4  ( ----------). Long wavelength measurements were made on solutions 5 times
more concentrated than those used for the short wavelength measurements.
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Figure 16. Energy corrected excitation spectrum of benzopyrene in 
ethanol. The peaks marked ”C" are those of the corrected spectrum 
and those marked "U" are of the uncorrected spectrum (51).

Short of the development of such a special puî ose analytical fluore

mets r, most commercial instruments, when used as fluorometric 

detectors, are as sensitive at the long wavelength absorption as at the 

short wavelength absorption even though the latter has a 1 0 -fold greater 

absorptivity.

Another environmental factor which potentially could have an 

effect on the observed quantum yield is the use of oxygenated solvents. 

Although acridine fluorescence is not generally considered to be 

quenched by oxygen, a recent report by Olmsted (55) indicated that a 

1 0 0 % oxygen atmosphere could cause quenching of fluorescence.
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Although the magnitude of the effect is not reported, a Stern-Volmer 

relationship

lo/j = 1 + kq [Og] 

where kq, the quenching constant, equals 1 x 10̂  ̂ sec (55); 'T ', the

observed lifetime, equals 0.9 nsec (53); and [Og], the oxygen concentra

tion, equals 8.9 x 10~®M (56), can be used to determine the reduction 

in fluorescence intensity in the presence of the quencher. These data 

indicate that the intensity (I) in the presence of the oxygen was c^. 93% 

of that observed in the absence of the quencher. In our hands, a 100% 

oxygen atmosphere was found to have no quenching effect on the fluores

cence of the 9-methylacridine or (9-acridinyImethyl) trimethylammonium 

bromide cation and neutral molecule. The cause of this observation 

could be a shortened fluorescence lifetime or a reduced quenching 

efficiency. Oxygen quenching of fluorescence has been used to determine 

the lifetimes of aromatic hydrocarbons (52) where quenching is usually 

diffusion controlled (57, 58). Although the reasons are not clear, the 

quenching efficiency can vary from the diffusion controlled rate of 

3.1 X  10̂ *̂  M~̂  sec “ I (59) to rates much less than that (55). These 

observations are in agreement with the conclusions drawn in Part I, 

namely when excited state quenching occurs, the information can be 

quite useful; however, failure to observe quenching does not necessarily 

infer any information about the excited state lifetime.

The sum.m.ary of the standardization experiments indicate that
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the spectra should be determined in absolute methanol, water, 0.01 N 

H2 SO4  and 12 N H2 SO4 . Deoxygenation is not important; however, in 

certain instances photolysis which increases fluorescence or changes 

the observed maximum can occur and readings were taken immediately 

and one minute later to check for photolysis. All fluorescence spectra 

were determined at the long wavelength excitation maximum.

The absorption and fluorescence characteristics of a number of 

9-substituted acridines in methanol, water and acidic solvents are 

given in Tables 10-12 respectively. The results obtained with this

Table 1 0 . Spectroscopic Characteristics for 9-acridinyl- 
methyl Derivatives in Methanol

UV Absorption fluorescence
Substituent wavelength G excitation emission RF

-H 355 8 , 2 0 0 355 420 2 . 2

- 0 356 9,600 358 420 2 . 2

-OH 357 9,200 358 420 1 . 2

-OOCCH3 359 9,100 358 420 0.7

- A ( C H g ) 3 366 10,700 368 430 0.94
-Br 363 7,900 3. ___ s 0.26
-NO2 362 10,600 362 412,428 0.18

S-Photochemically degrades too rapidly for spectral characterization.

limited group of derivatives indicates that the introduction of electron 

withdrawing substituents generally reduces the fluorescence yield and 

causes a bathochromic (red) shift in both absorption and fluorescence 

for the non-protonated hydrogen bonded fluorescing species in methanol 

and water. However, the magnitude of this effect does not correlate 

with generally accepted substituent constants (Table 13) (60).
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Table 11 . Spectroscopic Characteristics for 9-acridinylmethyl ̂
Derivatives in Water

UV Absorption Fluorescence
Substituent wavelength B excitation emission RF

-H 355 432 20.5
- 0 358 432 17.2
-OH same as in 358 432 15.8
-OOCCHo Table 10 358 432 16.3
-A(CH3 )g 368 440 1 1  . 6

-B r ___ 3. ___ 3 1 .4
-NOo 366 420,438 0.06

^ Photochemically degrades too rapidly for spectral characterization.

Table 12. Spectroscopic Characteristics of 9-acridinyl- 
methyl Derivatives in Acidic Solvent 

UV Absorption ̂ Fluorescence Rel. Fluor.
Substituent wavelength 6 excitation emission 0.1 N H+ 12.0N H+

-H 352.5 13,800 352 480 41.1 41 .1
- 0 356.5 14,200 360 490 32.9 47.5
—OH 357 14,600 360 490 32.1 32.1
-OOCCHg 360 15,000 360 490 31 .7 33.1

-î (CHg) 3 370 16,900 375 500 1 . 6 17.2
-Br 363.5 1 1 , 1 0 0 ___s ___ s 9.2 12.5
—NOg 365 15,500 370 500 9.1 55.4

^Photochemically degrades too rapidly for spectral characterization. 
bAbsorption spectra obtained in ethanolic 2 N HgSO .̂

CHt-

.OlQIQ
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Table 13. Hammett Substituent Constants  ̂for 
Selected Functional Groups (60)

Substituent CR
—H 0 0

-0 - 0 . 1 1 0 . 1 0

—OH -0.60 0.25
-OOCCHg -0.09 0.39
-fti(CH3 ) 3 0 0 . 8 6

-B r - 0 . 2 2 0.45
—NOg 0.16 0.63

^The values are a relative measure of the effect 
caused by a given substituent if  the effect were 
transmitted through sigma electrons whereas the 

value also includes the resonance effects.

For example, if the effects on fluorescence could be described by 

inductive effects, a dramatic difference between the methyl and acetate 

substituted compounds should be observed. On the other hand, if reson

ance effects were involved, there should be a large difference in the 

fluorescence of the alcohol and acetate derivatives. The only clear 

trend, as shown by the characteristic cation fluorescence, was the 

requirement of a higher acid concentration to effect ring nitrogen proton

ation for compounds substituted with electron withdrawing substituents.

One of the disappointing aspects of the structure-fluorescence 

study was the failure of the results to provide any reliable predictive 

power. For example, if  the results in Table 12 were available for all 

compounds except (9—acridinylmethyl) trimethylammonium bromide [ 1 0 ], 

one would not predict the large relative fluorescence observed for [ 1 0 ] 

in water. Likewise, information on the same compounds in 12 N HgSÔ
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would not be useful in predicting the fluorescence characteristics of 

the nitro compound in that solvent either. One of the problems in 

describing the substituent effects on fluorescence for the above com

pounds exists because only inductive effects are operative for these 

compounds which have an alkyl methylene unit between the substituent 

and the aromatic ring system. No convenient valence bond (resonance) 

structures are useful in depicting the interaction. Furthermore, since 

the lone pair electrons on the ring nitrogen atom are formally 

orthogonal to the pi-system, sigma bond delocalization is the only way 

to describe the status of the lone pair electron density as well as the 

inductive effects of the substituents.

It must be noted, however, that even in other cases where 

resonance structures can be drawn, excited state behavior cannot be 

adequately described by this method. For example, pyridine itself is 

non-fluorescent but the introduction of electron donating substituents 

such as -NHg results in observable fluorescence (30). A similarity 

in the fluorescence characteristics was observed for the 2- and 3- 

derivatives (Table 6 ) (30) as well as distinct differences between the 

fluorescence of the 2- and 4- derivatives. Valence bond descriptions, 

which are useful in predicting ground state chemical properties, would 

suggest that the properties of the 2- and 4- derivatives should be 

similar. Clearly, the order of fluorescence activation due to the 

substituents, namely, 2>3>4, would have not been predicted by resonance
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structures. Thus, these compounds exemplify the difficulty in using 

ground state resonance descriptions to describe excited state behavior. 

The mesomeric (charge-transfer) molecular orbital model more 

adequately describes the effects (61).

In a recent study, Bailey and Bailey (63) used CNDO molecular

orbital calculations to obtain the one center core parameters to be used 

in PPP 7T-electron calculations for protonated aza-aromatics. These 

authors assumed that the changes in the sigma-framework caused by 

protonation could account for the spectral changes observed. The 

calculated results obtained led to a satisfactory interpretation of the 

experimental spectra. Similarly, such results would indicate that 

sigma framework changes could well account for the spectral alterations 

caused by various substituents. However, such a correlation does 

nothing more than suggest the plausibility of the proposed mechanism.

It does not rule out other possible alternatives or provide a confirmed 

mechanistic model for the experimental observations.

The absorption spectrum of the 9-methylacridine free base 

and protonated species is given in Figure 15. The UV characteristics 

shown for 9—methylacridine are representative of the results obtained 

for all derivatives used in this study. It has been suggested (30) that 

the increased molar absorptivity of the long wave absorption upon 

protonation is due in part to a loss of n , rr * character (which has a 

very low absorptivity) in thelY , «rf * transition. Although this mechanistic
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explanation is attractive, it is probably over-simplified in that the 

transition probability for the short wavelength transition is also very 

sensitive to substituent effects and protonation. This transition should 

have much less n , Tf * character due to the greater energy difference 

between the states and thus the previous mechanistic explanation does 

not adequately explain the data.

In general, the UV characteristics can be summarized as 

follows: electron withdrawing substituents in the 9-position and

protonation of the ring nitrogen tend to cause a red shift and a reduced 

molar extinction coefficient for the short wavelength transition. For the 

long wavelength absorption, the spectrum is red shifted by electron 

withdrawing substituents and the transition probability is increased by 

protonation. Also, a long wavelength shoulder appears in the spectrum 

of the protonated species.

The fluorescence characteristics discussed previously indicated 

that, although certain generalities are possible, the trends observed are 

not reliable enough to make predictions about particular derivatives.

This observation is not surprising in light of the tremendous differences 

in fluorescence characteristics reported for all types of compounds and 

presented in the Introduction. The obser'/ed quantum yield, which is 

the variable of most interest from an analytical standpoint, is determined 

by the relative rates of the radiative and radiationless pathways. In the 

case of the acridines studied, the radiative transition probability can be
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estimated from the UV absorption data (11) and does not vary enough to 

account for the differences in fluorescence observed. Of the critical 

parameters which determine the rates of the radiationless pathways, 

the energies of the  ̂ n , r f *  and ^  n transitions are unknown

because neither transition has to our knowledge ever been observed 

spectroscopically for any acridine derivatives. The energy of the 

second , r f  * transition is also unknown and the spin-orbit coupling 

factors cannot be measured.

In addition to the 9-acridinylmethyl derivatives characterized 

in Tables 10- 12, the fluorescence of certain 9-acridinyl derivatives 

(Table 14) in acidic methanol was recorded.

Table 14. Relative Fluorescence Values for Selected 
9-acridinyl Derivatives in Acidic Solvents

Substituent
Relative Fluorescence 

0.01 N 12.0 N

-H 9330 1 1050
-CHg 12800 12800
—OCHg 7000 7000
-CHO 7150 7350
p-tolyl 2080 3450

These fluorescence data indicated that the fluorescence 

intensity of most derivatives is within ± 2 0 % of that of acridine except 

for certain notable exceptions which have very low fluorescence yields. 

The 9-(p-tolyl)acridine derivative was one such derivative where the 

low fluorescence intensity was unexpected particularly in light of the
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results obtained for 9-(p-tolyl) anthracene which has a fluorescence 

quantum yield of 0.55 compared to 0.27 for unsubstituted anthracene (65). 

Even more confusing was the observation that the fluorescence intensity 

of 9-(p-tolyl) acridine in basic methanol is approximately twice that of 

9-methylacridine.

We had hoped that this could be used as a tagging reagent after 

derivatization. In spite of the low fluorescence in acid of the parent 

compound, the bromide alkylating reagent [33] was made and reacted 

with chlorpromazine [16] because of the possibility of observing

CHjBr

fluorescence in the quaternary salt. In the ground state, steric factors 

cause the t-system of phenyl group to be insulated from that of the 

acridine system. However, the quaternary salt derived from [33] 

and [ 1  6 ] was nonfluorescent and the failure of the phenyl ring to 

insulate the acridine nucleus from the effect of the quaternary nitrogen 

is not surprising since Albert (6 6 ) had previously observed that the 

spectral characteristics of 9-phenyl acridines are consistent with 

conjugated resonance forms such as [34].

Th,e difficulties in characterizino acridine excited states are
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exempUfied by studies of Tokumura et al. (64) who measured the amount 

of fluorescence, photoreduction and intersystem crossing (triplet 

production) occuring during flash photolysis. They found that ca. 45% 

of the singlet excited state could not be accounted for and its loss was 

ascribed to internal conversion. These results are quite different 

from the results obtained for anthracene derivatives where deactivation 

through fluorescence and intersystem crossing accounted for all of the 

singlet excited state produced.

In many cases, fluorescence represents only a minor pathway 

for excited state deactivation and therefore small changes in the rates 

of non—radiative transitions can result in large differences in the 

fluorescence yield. The non-spectroscopic nature of the transitions 

which seem to determine the yield of fluorescence makes systematic 

study of these parameters extremely difficult. Having concluded that 

the spectral characteristics of various 9-substituted acridines would 

not be particularly useful in understanding the fluorescence characteristics 

of the quaternary salts, a number of quaternary salts were prepared to 

investigate the relationship between the amine structure and the observed 

fluorescence. Based on the results previously discussed, the fluorescence 

of the quaternaries were determined in 1 2 N HgSO  ̂and the results are 

summarized in Table 15. The quaternaries were chosen for study based 

on previous reported structural features which might influence the 

fluorescence characteristics.
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Table 15. Fluorescence Characteristics in 12 N HgSO  ̂
in Methanol of Quaternary Salts Derived 

from 9-bromomethylacridine

Amine Compound Relative Fluorescence

trimethylamine 5350
N,N-dimethyl -3-phenylpropylamine 5350
pyridine 5300
imipramine^ 4800
amitriptyline 160
chlorpromazine 1 1 0

chlorpromazine sulfoxide 250
chlorprothixene 2 0 0

promazine 430

‘for structures, see Figure 6 , page 99.

The quaternary salts can be divided into two groups based on 

the relative fluorescence observed: Those that are approximately

one-half as fluorescent as 9-methylacridine and those that are essentially 

non-fluorescent. Of the limited number of quaternaries derived from 

tricyclic amine drugs which were prepared and examined, only the 

i mi p rami ne quaternary possessed significant fluorescence. There are 

no apparent structural features which could be used to make a priori 

predictions as to the expected fluorescence characteristics of these 

quaternary salts. However, a promising quantitative fluorometric 

procedure appears possible for imipramine. This procedure would be 

twice as sensitive as the method developed for chlorpromazine and the 

other non-fluo rescent quaternaries which must include the photolysis 

step. It appears that a productive area for further investigation would 

be the screening of a large number of tertiary amine drugs for which
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quantification procedures are needed to identify those quaternaries 

which are fluorescent and thus good candidates for fluorometric 

quantitation. A rather simple quaternary salt synthesis procedure 

applicable to such a study was described in Chapter 2 which would 

facilitate the preparation of a large number of derivatives and thus make 

such a study quite feasible.

Heavy atom counterions have been implicated in fluorescence 

quenching mechanisms for 10-methylacridinium bromide [43] which

H2~N

35

could be made fluorescent by changing the counterion to the perchlorate 

anion (67). Therefore, the perchlorate salt of [35] was made and its 

luminescence characteristics were determined. Since no differences 

in the fluorescence of the bromide or perchlorate salts of [35] were 

observed, it was concluded that the heavy atom quenching mechanism 

was not operative for these compounds. The preparation of the perchlorate 

salt of the chlorpromazine [15] was attempted to fbrther confirm these 

results; however, the presence of silver salts decomposes [15] and thus 

the desired salt could not be obtained. It is interesting to note here 

that the anthracene analogue of [35], (9-anthranylmethyl) pyridinium
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bromide, is nonfluo rescent (6 8 ). After establishing that the fluorescence 

of anthracene is quenched at a diffusion controlled rate by N-methyl- 

pyridinium bromide, the authors concluded that the fluorescence 

quenching of the anthracene quaternary salt is not due to a specific 

substituent effect but rather a generalized collisional excited state 

deactivation process.

The presence of long alkyl chains which increase the vibrational 

degrees of freedom have been implicated as a factor affecting fluorescence 

characteristics (69). Also, fluorescence quenching due to intramolecular 

energy transfer between two chromophores connected by an alkyl chain 

has also been documented (70). Either one of these mechanisms could 

be operative in the case of the non-fluo rescent quaternary adducts derived 

from tertiary amine drugs which are the primary thrust of this study.

The quaternary salt [11], derived from the amine, N,N-dimethyl-3- 

phenylpropylamine was prepared as a model compound to help test this 

hypothesis. Since this compound had the same fluorescence characteris

tics as the trimethylamine derived quaternary [ 1 0 ], we can assume that 

the increased vibrational degrees of freedom do not contribute to the 

fluorescence quenching.

One interesting feature that exists for the N, N-dimethyl-3- 

phenylpropylamlne quaternary [16] is the possibility of intramolecular 

energy transfer between the phenyl moiety and the acridine nucleus.

If energy transfer were occuring, then the ratio of fluorescence intensity
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observed for excitation at the long and short wavelength absorption 

maxima should decrease (Table 16). However, the range of ratios

Table 16. Fluorescence Characteristics of Selected 
Acridine Derivatives

Relative Fluorescence Intensity 
Excitation Wavelength 

Compound (solvent) Short Long l^S Ratio

9—methylacridine (MeOH) 1 . 0 9.7 9.7
9—methylacridine (HgO) 29.8 83.0 2 . 8

trimethylamine quaternary
salt (HgO) 5.4 38.5 7.1

N, N-dimethyl-Q-phenylpropylamine
quaternary salt (HgO) 9.4 46.0 4.9

N, N-dimethyl-3-phenylpropylamine
quaternary salt (MeOH) 0.06 1 .3 21 .7

1 , 2-bis (9-acridinylmethyl)
ethane (HgO) 0.3 0.4 1 .3

observed prevents tdneir utilization in experimentally confirming the 

hypothesis about energy transfer since 9-methylacridine and the 

trimethylamine quaternary should have had comparable ratios for 

making any meaningful comparisons with the N, N-dimethyl-3 -phenyl- 

propylamine quaternary. These data do, however, raise serious 

questions about the previous documentation (47) relating to the constancy 

of quantum yield as a function of excitation wavelength. Clearly, the 

dependence of the ratio on solvent type further supports the questions 

raised. Therefore, the experimental evidence obtained cannot be used 

to support the energy transfer hypothesis and raises more questions 

than it answers.

The most straightforward method of demonstrating that an
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energy transfer mechanism is responsible for the fluorescence quenching 

in the tricyclic amine quaternaries would be the observation of lumines

cence characteristic of the non-acridine ring system following illumin

ation of the acridine nucleus. Chlorpromazine has a weak fluorescence 

in basic aqueous solution at 460 nm (71). However, the chlorpromazine 

fluorescence has such a low quantum yield that it cannot be clearly 

observed due to the weak acridine—like fluorescence of the quaternary 

and the extremely rapid rate of photolysis which generates 9-methyl

acridine and further prevents any possible analysis of the chlorpromazine 

fluorescence.

The quantum yield of fluorescence observed from the phenothia- 

zine nucleus is highly sensitive to the nature of the substituent in the 2 - 

position. Of the derivatives readily available, those such as methiomep- 

razine [35] and thioridazine [36] which are 2-thiomethyl derivatives 

have the highest quantum yields of fluorescence (71). These derivatives 

were not made and investigated but it appears that a study of quaternary

SCH

— N —

SCH

35 36
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salts derived from these compounds could well provide information about

an intramolecular energy transfer mechanism. Future work in this area

using these and other derivatives should be pursued.

Another possible area of study which could be informative would

be an investigation of the effect of the alkyl chain length on fluorescence

characteristics. Such a study would require that the fluorescence

characteristics of both fluorophores be clearly identifiable and could

only be undertaken after the successful conclusion of the preceding

proposed study. Such studies that investigate the relationship between

transfer distance and energy transfer efficiency can be quite informative

as to the mechansim of the singlet-singlet nonradiative electronic

energy transfer. The proposed mechanisms and the critical parameters

are presented in Table 17 (72).

Table 17. Singlet-Singlet Nonradiative Electronic 
Energy Transfer Mechanisms

Energy Transfer Distance
Mechanism Dependence Comments

1 . dipole-dipole transfer long range transfer over
—Forster Mechansim 1 /R p  distances up to 50-100

which are present in 1 0 “ ^- 
10~®M solutions

2 . dipole-quadrapole transfer 1 /R^ intermediate range transfer
with a probability of about a 
factor of 1 0  less than for the 
wholly allowed process above

3. exchange transfer 1/R® rate of transfer may not
-collisional transfer complex exceed the bimolecular diffu

sion controlled rate (kdiff <- 
1 0 ^ 0  liters/mole/sec); increas
ing the distance by 1 mole
cular diameter reduces the 
transfer probability by a factor 
of 1 0 0 .
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Forster’s equation, also derived independently by Dexter, which 

gives the rate of inter molecular dipole-dipole transitions is (72):

where  ►A = the transfer rate constant

= the orientation factor (about 2/3)
0 f  = quantum yield of fluorescence of the donor
n = solvent refractive index
N = Avogardo’s number
Tq = actual mean lifetime (sec) of the excited state
RqA ~ intermolecular distance between donor and acceptor 

~ spectral distribution of donor fluorescence (in quanta 
and normalized to unity)

6 ŷ (V) = molar extinction coefficient of the acceptor as a 
function of V 

V = frequency in cm~”*

This mechanism assumes that the energy available for transfer 

by the donor is that which would otherwise be emitted radiatively. The 

transfer probability is thus stated in terms of the strengths of the 

individual allowed transitions and the energy overlap of the emission 

band of the donor and the absorption band of the acceptor.

A number of studies have looked at intramolecular electronic 

energy transfer. In a series of 4-(1-naphthylalkyl)-benzophenones (70), 

excitation of the naphthlene moie^ results in singlet transfer to benzo- 

phenone. The efficiency of transfer, however, decreases as the chain 

length is increased from n = 1 to n = 3,

In a series of 2-(2-naphthylalkyl)-anthracenes (73), excitation
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n

of the naphthyl group results in singlet transfer to the anthracene 

moiety. The authors concluded that the transfer probability was 

independent of alkyl chain length, however, the results of a less 

rigorously controlled study might have indicated that the transfer 

efficiency was greatest for the n = 2 derivative. Actually, the 

anomolously variable fluorescence yields observed for the derivatives 

is the complicating factor. All the derivatives proved to be more 

fluorescent than the standard compound, 9-methylanthracene, with the 

order being n = 2>n = 3>n = 1 > 9-methylanthracene in the ratios 

of 2.1, 1.6, 1.1 and 1 .0 , respectively. Presently, no plausible 

explanation exists on the basis of an energy transfer mechanism to 

explain the yields observed for the various anthracene derivatives.
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The results would also indicate that different energy transfer mechanisms 

are operative for the two cases discussed.

One mechanism that was initially considered to have great 

potential for explaining the altered fluorescence characteristics of the 

quaternary adducts containing two heterocyclic chromophores was the 

formation of a charge transfer complex. Such an interaction fundamen

tally differs from the energy transfer mechanisms in that the integrity 

of the individual chromophores is lost through the formation of a new 

dimeric molecular species. There are a large number of potential 

molecular interactions which may occur in solution both for the ground 

state molecules and the excited state species. The range of potential 

interactions are shown schematically in Scheme IX.

Scheme IX

Potential Molecular Interactions Leading to 
Altered Luminescence Characteristics (74,75)

h V + A A

A + A + hs/’

A + h V

AD + hv'’

A + D + hv 

©

A  + hV'
D + hV’

Note: In order to simplify the graphic presentation, only singlet excited
state pathways are presented.
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1. Excitation of the ground state molecule in a dilute solution gives 
rise to the singlet excited state. A* which can fluoresce or undergo 
other pathways of deactivation.

2. Many compounds form ground state dimers, AA, in more concen
trated solutions. A number of spectral techniques are useful in 
observing the dimerization such as the UV absorption and NMR 
spectroscopy. Excitation of the dimer to AA*, can result in 
dissociation of the complex, or in some instances, in a broad 
structureless fluorescence that is red shifted compared to the 
monomer fluorescence.

3. In sufficiently concentrated solutions where the excited species can 
encounter a ground state molecule during its lifetime (ca. 1 0 ~® sec), 
the encounter complex, AA*, which is an excimer, can then fluoresce 
and immediately dissociate.

4. The encounter complex, AD*, formed by the same mechanism as 
in (3) between chemically different molecules can give rise to 
exciplex fluorescence. The complex formed by this mechanism is 
also very short lived and dissociates simultaneously with excited 
state deactivation.

5. The encounter complex AD* can also undergo an energy exchange
reaction giving rise to a new excited molecule. A*, which exhibits 
its typical luminescence. The transition energy of A* must be 
4= D* for this mechanism to be operative. This mechanism has 
previously been discussed in detail.

The mechanistic pathways describing the potential fate of the 

encounter complexes was presented in Scheme IX. However, a given 

complex is not necessarily limited to just one mechanistic pathway and 

the potential occurrence of one or more pathways depends upon the 

interaction of a large number of complex variables including the solvent 

environment, the chemical characteristic of the molecular species 

involved, and the concentration of the interacting molecules. Since the 

mechanisms of encounter complex formation and excited state decay
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are competitive, the final luminescence characteristics observed will 

be the result of the relative rates of the various pathways. It must be 

pointed out, however, that although the mechanistic scheme was pre

pared to show only singlet states to maintain graphic clarity, there are 

an equal number of potential triplet pathways as well as a host of 

radiationless pathways which will compete with any observable lumin

escence. In fact, most encounter complexes fluoresce very weakly, 

if  at all, and their spectrofluorometric characteristics are quite difficult 

to obtain experimentally.

For the purposes of this study, routine spectral techniques 

should provide an insight as to which mechanisms could be responsible 

for the non-fluorescence observed for certain acridine quaternary salts. 

A summary of spectral characteristics expected for each pathway is 

presented in Table 18.

Table 18. Expected Spectral Characteristics of Encounter Complexes

Scheme IX 
Description

AA, AD AA* AD* AD*-----̂ A*+D
Charge transfer Excimer Exciplex Energy transfer

Spectral type: 
UV red shifted normal
NMR altered normal
fluorescence quenching of normal fluorescence

appearance of new red shifted 
fluorescence

fluorescence of 
new species

Before presenting the results obtained for the acridine derivatives 

which were the subject of this investigation, a review of previously 

reported observations for closely related systems will be discussed.
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It has been known for many years that when two different 

stable molecules are mixed in a suitable solvent, the color of the 

solution sometimes changes. Although various models for explaining 

these observations have been proposed by many authors, a question 

still remained as late as 1952 concerning the origin of the intense color 

brought about by the complex formation. In an attempt to clarify these 

problems. Mulliken (76, 77) introduced quantum mechanical language 

into the theory of molecular complex formation. In the simplest case 

a 1:1 complex, (D-A) is formed by the weak interaction of an electron 

donor (D) and an electronic acceptor (A). The molecule (D) has an 

electron which is easily removed to produce a D"*" species and the mole

cule A has a large tendency to accept an electron and produce an A" 

species.

The wave function for the charge transfer structure (D"^-A“ )

is given by ^  ̂ = 4̂ (D'*'-A~) and the wave function for the nonbonding

structure (van der Waals interactions) is given by T o = 4̂ (D-A). The

ground state of the complex 4* ^ and its corresponding excited state 

IpT E are given as:

= a. 4̂o + b T 1  

a* 4^1-b* 4̂ 0

Thus, the ground state 4* n is a mixed state of Y g and 4̂-j . Using a 

traditional perturbational quantum mechanical approach, one can show 

that the strength of the complex, as well as the ratio b/a which is a
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measure of the extent of charge transfer in the complex, depends upon 

the overlap between and *1 *1  ̂ and the energies of To and T-j where

^ 0 1  “ d Y

E o  = < t |  ^ | T . )

E l  =

%  =

and the eigenvalue W is obtained by solving the appropriate secular 

equation. The larger Sqi and the smaller the energy differences 

(E-[ -Eq), the more stabilized is the complex.

In Figure 17 (78) the potential energy curves are drawn 

schematically to show the relationship between E^, and VV̂

5

W«

Figure 17. Schematic diagram of potential energy curves 
corresponding to the charge transfer excited state and 
ground state of the CT complexes. R, Ip, and E  ̂represent 
the intermolecular distance between donor and acceptor, 
the ionization potential of donor, and the electron affinity 
of acceptor, respectively (78).
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where Wf̂  and are the eigenvalues for T|\j and respectively.

As the intermolecular distance, R, decreases Eq may be stabilized 

by van der Waals interactions and especially by electrostatic forces 

for polar molecules. In the case of E-{, strong stabilization occurs 

because of electrostatic and covalent bonding interactions between 

D+ and A~.

The absorption spectrum arising from an electronic transition 

from state W[̂  to is the charge transfer spectrum h^ . For the 

simplest case where A = D, the stabilization energy for the complex 

is given by the difference in the absorption frequencies of the monomer 

and dimer. In recent years, various sophisticated methods have been 

developed to theoretically calculate energies and mechanistically 

explain charge transfer complexes. One of the advances is in the 

inclusion of locally excited states (A* + D) in the general molecular 

orbital description for charge transfer states. This arises because 

the excitation cannot be localized on only one molecule if  symmetry 

allowed interactions are possible. This firs t order interaction which 

splits the energies of the interacting state is called exciton transfer (95).

The generic term "charge transfer" complex is widely used but 

can be misleading because there often is very little contribution of ^ -| 

in the total ground state wave function Yr\|. The same is true for 

exciplexes and excimers. Therefore, the charge transfer label is 

applicable to almost any encounter complex without providing much 

information about the actual nature of the complex.
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The range of spectral characteristics and possible molecular 

interactions have been extensively studied for various aromatic hydro

carbons. Anthracene exhibits a variety of spectral characteristics 

which all are indicative of the molecular interactions which it undergoes. 

Figure 18 (80) shows the fluorescence observed for both the dimer and

25 15

Figure 18. Fluorescence spectra of anthracene
monomer (-------), the dimer B (• • Oj and the excimer
(—• — *)j respectively, in cyclohexane matrix at 77°K (80),

excimer at low temperature. The excimer fluorescence for unsubstituted 

anthracene cannot be observed at room temperature where photodimeri- 

zation predominated (80). Using 9-substituted anthracenes which do 

show excimer fluorescence at room temperature, Birks et al. (81) 

predicted that the cis-excimer fluoresces whereas the trans-excimer 

dimerizes. This is based on the observation that only trans photodimers
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have been isolated. To further study the geometrical requirements of 

anthracene fluorescence, 1,2-di(1-anthryl)ethane [37] and 1,2-di(9- 

anthryl)ethane [38] were prepared and investigated (82). For other

-OIQî
37 38

composite systems, Ar-(CHg)^-Ar, Ar = phenyl (83) and naphthyl (84) 

groups, intramolecular excimer fluorescence could be observed only 

when n = 3. In the case of the anthracenes where n = 2, two types of 

excimer fluorescence can be observed (82). Type I, observed at room 

temperature, comes from the non-symmetric crossed dimer whereas 

the type II fluorescence from the parallel sandwich dimer can only be 

observed at low temperature. »

When mixed with aromatic molecules, N-H containing amines 

quench the fluorescence (85) whereas electron donor molecules like 

N, N-diethylaniline gives rise to a broad structureless emission band to 

the red of the fluorescence band of the aromatic hydrocarbon (8 6 ).

Polar solvents produce a further red shift and a decrease in intensity 

of the exciplex band. In studying the details of the anthracene-diethyl- 

aniline exciplex, the alkq/l linked intramolecular derivatives have been
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made and studied (87, 8 8 ). These investigations revealed that the 

reduced quantum yield in polar solvents is due to the following mechanism:

kc^CA-D+)*

"^ (A -. . . D+) +

(A“  D+)* = fluorescent exciplex
Ag • • = solvated ion-pai r which is nonfluorescent

It is assumed that and k{p increase in polar solvents and 

solvents promote complete electron transfer resulting in the formation 

of a nonfluorescent solvated ion pair. The fact that the absorption 

spectrum is identical to an equimolar solution of anthracene and diethyl- 

aniline indicates that there is no interaction in the ground state.

Acridines also form exciplexes with anthracene and other 

aromatic hydrocarbons (89). However, excimer fluorescence has never 

been observed for acridine itself although calculations suggest that the 

excimer should be red shifted by approximately 6000 cm“ (̂90). This 

would indicate that the acridine excimer should fluoresce at ca. 550 nm. 

This raises some questions since the anthracene excimer emits at 

ca. 480 nm (80) which is the same as the acridine cation fluorescence 

maximum. These data would suggest that the acridine excimer fluores

cence could range from 480 - 560 nm and be solvent dependent. Further

more, such fluorescence, if observed, might be incorrectly ascribed 

to the cation.

In Table 18 we described the spectral changes that might be
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expected to result from various types of charge—transfer interactions. 

Both acridine (91 ) and acridine orange [39] (92) exhibit tendencies to

^  N.

39

form ground state aggregates in concentrated solutions. The ring 

protons show significant shifts in d-|-chloroform solutions but not 

dg-dimethyl sulfoxide solutions (91). The 100 MHz spectra of 0.1 29 M, 

0.324M and 0.648 M solutions of 9-methylacridine in CDCI3  are given 

in Figure 19. The spectrum of acridine has been accurately analyzed 

as that of a four-spin A B C D system with the two outer rings consid

ered independent of each other (93). A first order splitting diagram 

for 9-methylacridine is presented in Figure 20. The analysis breaks 

down slightly for Vg and Vg where second order or long range coupling 

with the methyl group is clearly evident. Also, a very critical examin

ation of the signals for V ̂  and would also reveal some further 

splitting not accounted for by the spin approximation.

All signals move upfield as the concentration is increased 

but \J 1 and V g shift more than either \7 3  or These observed

shifts are consistent with those observed for acridine (91) but opposite 

to the direction observed for acridine orange dimers (92). However,
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0.648M

0.324M

0.129M

CDCI

P» 4 y» I

PPM

Figure 19. 100 MHz PMR signals in CDCI3  for
the aromatic protons of [2 ] as a function of 
concentration.
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PPM

Figure 20. First order splitting diagram for 9-methylacridine.

both authors suggest that the concentration dependent spectra observed 

for each compound are a result of the formation of asymmetric dimers 

where the nitrogen atoms are antiparallel and the rings are not 

directly over each other. The shift differences appear to be a result
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of the positioning of protons of one molecule in the ring current of the 

other interacting molecule.

The NMR spectrum of the dimer, 1,2-bis-(9-acridinyl) ethane [6 ] 

in dilute (0.065 M) solutions (Part I, Figure 1) would indicate that there 

is a ground state interaction because the V ■) and \) 4  proton signals, extra

polated to infinite dilution, appear similar to those of the intermediate 

concentration signals for 9-methylacridine. In much more concentrated 

solutions (0.325 M), the spectrum observed is similar to that observed 

for a concentrated solution of 9-methylacridine. These data suggest that 

there is some type of interaction between the two aromatic nuclei that 

comprise this compound and thus the 0.065M solution spectrum does not 

change significantly upon dilution.

In another attempt to verify the NMR shift changes which might 

occur with complexed acridine, another interacting system was investi

gated. Diphenylamine co-crystallizes 'yvith 9-methylacridine to form a 

1 : 1  adduct and fractional crystallization cannot be used to separate these 

two compounds. However, no change in the spectrum of a 0.1 29 M 

solution of 9-methylacridine in CDCI3  was observed when diphenylamine 

(0.148-0.780M) was added.

The NMR chemical shift changes that accompany the charge 

transfer complexation of 1,4-dinitrobenzene with various phenothiazine 

derivatives including chlorpromazine has been documented (94). How

ever, the chemical shift data for the acceptor alone was reported and
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not that for the phenothiazine nucleus. Therefore, in investigating the 

potential complex formation between the acridine and phenothiazine 

nuclei, the applicability of the NMR technique has been documented 

but the chemical shift changes expected cannot be predicted.

The effect of chlorpromazine on the NMR spectrum of the 

trimethylamine quaternary salt [10] is presented in Figure 21 and no 

significant changes in the spectrum can be seen. However, there is 

also very little concentration dependence observable in the NMR 

spectrum of [10] in d^-methanol (Figure 22). If a ground state inter

action existed, the asymmetric substitution on the phenothiazine ring 

should be quite effective in reducing the NMR degeneracy of the acridine

PPM

Figure 21. 60 MHz PPM signal 
(CD3 OD) for the aromatic protons 
of a 0.075M solution of (9-acridinyl- 
methyl) trimethylammonium bro
mide [10] separately (curve A) and 
in the presence of 0.378M chlorpro- 
m,azine [16] (curve B).
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PPM

Figure 22. 60 MHz PMR signal (250 Hz sweep 
width in CD3 OD) for the aromatic protons of 
(9-acridinylmethyl) trimethylammonium bromide 
[10] at 0.075 (A) and 0.375 M (B).

signals and be quite obvious. Therefore, we conclude that a ground state 

complex is quite unlikely.

The apparent preference for the formation of acridine -  acridine 

dimers rather than heterocomplexes is provided by the crystal structure 

determined by single crystal x-ray crystallography (9 5 ). The structure 

is shown in Figures 23 and 24.

It has been previously mentioned that excimer fluorescence has 

not been observed in concentrated acridine solutions (90). As is the 

with anthracene derivatives (82), the 9-acridinylmethyl "dimer" [6 ] 

should sen/e as an optimum m.odel for excimer fluorescence. The 

fluorescence of the "dimer" is very weak. The intensity in methanol i<

case



en

?

Figure 23. Computer drawing of a single molecule of the quaternary 
ammonium salt derived from 9 bromotnethylacridine and chlorpromazine (95).
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Figure 24. CoiTiputer drawing showing Ihe acridine-acridine antiparrallel 
sLacking about the center symmetry at 0, 1/2, 0. The box represents the 
unit cell boundaries (95).
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only 15% of that observed for 9-methylacridine and further decreases 

in water to 27% of the methanol value. The relative intensity observed 

in methanol is not increased by the addition of acid although the 

expected bathochromic shift for the fluorescence maxima is observed. 

The fluorescence spectrum was recorded in cyclohexane, methanol 

and water and there was no clear evidence for excimer fluorescence. 

The emission spectrum obtained in water was very broad with 

maxima at ca. 420 and 440 nm. However, excimer fluorescence should 

have occurred from ca. 480 -  550 nm in this solvent (90) and was not 

observed. The very low quantum yield would indicate that some mole

cular interaction which enhances radiationless pathways is occuring 

but the spectral characteristics observed provide no insight as to the 

cause of this anomolous fluorescence behavior.

The results obtained in this study indicate that certain quater

nary salts of trimethylamine drugs are nonfluorescent but no clear 

mechanistic description for this behavior could be experimentally 

confirmed. The results obtained for the "dimer" [6] indicate that 

acridine excimers, if they exist, are nonfluorescent. Furthermore, 

charge transfer complexes or exciplexes are also likely to be non

fluorescent. A recent report in Chemical Abstracts (101) from some 

Italian workers indicated that certain acridine — phenothiazine complexes 

had been observed but no details about the experimental approach were 

given. It now appears likely that, although no mechanistic information
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could be obtained from the derivatives investigated by the described 

experimental approach, certain model compounds such as (9-acridinyl- 

methyl)[3-(9-anthryl) propyl] dimethylammonium bromide could yield 

information about potential exciplex formation and the quaternary salt 

of methiomeprazine might yield information about possible energy 

transfer.



CHAPTER 4

EXPERIMENTAL

Ultraviolet spectra were obtained on a Cary 14 spectrophoto

meter. NMR spectra were obtained on a Varian Associates T-60 or 

XL-100 spectrometer. Mass spectra were obtained on a Hitachi-Perkin 

Elmer RMU-7 spectrometer. Fluorescence spectra were obtained on 

either an Aminco Bowman or Perkin-Elmer MPF-3L spectrofluoro- 

meter. IR spectra were recorded on a Beckman IR-8 or Beckman 

IR-3. Melting points were determined on a Gallenkampf MF 370 

capillary melting point apparatus and are uncorrected. Merck F’F’2 5 4 + 3 6 6  

silica gel was used for column and general thin layer chromatography 

(TLC) while 1G0yu terephthalate backed silica gel plates without 

indicator, Eastman Kodak, were used for the quantitative analyses. 

Microanalyses were performed by Galbraith Laboratories, Inc., 

Knoxville, Tenn.

All solvents used for fluorescence characterization were 

Nanograde or Analytical grade, twice glass redistilled, and were 

checked for the presence of fluorescent contaminants by obtaining the 

blank fluorescence spectrum at an excitation wavelength of 350 nm.

-154-
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The absorbance and fluorescence characteristics of the compounds were 

described in text and are not repeated in the experimental section.

The primary criteria of compound purity for spectral purposes 

was a singlet spot by TLC examination. The following solvent systems 

for silica gel plates could be used to identify the purity of the compounds 

used in this study: dichloromethane, benzene-acetone (95:5) and 

acetonitrile-water (9:1). By examining a sample in these three systems 

where all the known derivatives had identifible Rj= values, the purity 

could be ascertained.

9-methylacridine [2] was obtained by a modified Bernthsen 

synthesis described in Chapter 2 and 9-bromomethylacridine [1] was 

prepared by the method of Campbell et al. (G). Acridine, Merck 

commercial grade, was purified by an initial sublimation at ca.90° 

followed by repeated recrystallization from alcohol. 9-chloroacridine 

was prepared by the method of Albert (33). Collectively, these com

pounds plus diphenylamine of various origins and recrystallized from 

alcohol-water served as the starting materials for the preparation of 

the acridine derivatives used for this study. Samples of tertiary 

amine drugs were kindly supplied by the manufacturers or the National 

Institute of Mental Health.

Preparation of 9-acridinyl nitromethane [40]

The compound [40] was prepared essentially according to the 

method of Krohnke and Honig (96) by the route given in scheme X.



-156- 

Scheme X

CHoNO,

Nitromethane
I w k s / R.T.

The crude product from the nitromethane reaction was recrystallized 

from ethanol and oxidized in dilute HCl-FeClg (2.7 gm/10 mL HgO) 

for 30 minutes.

The crude product which crystallized from the aqueous 

oxidizing mixture was sublimed yielding semipurified [40] (19% based 

on the amount of acridine). The product was dissolved in water, 

neutralized with NagCOg and extracted into CHCI3 , evaporated to dry

ness and recrystallized from benzene and melted at 155-156° (lit. mp. = 

156-157°) and gave a single spot on TLC in benzene-acetone (95:5).

The NMR spectrum of the acridan intermediate and the final product 

and mass spectrum was obtained to confirm product identity, 60 MHz 

PMR of 9-acridanylnitromethane: (CDCI3 , TMS, delta):6 .7-7.3

(8 H, m)6.2(1H, br s) 4.85 (1H, t) 4.3 (2H, d). 60 MHz PMR spectrum

of 9-acridinylnitromethane [40]: (dg-benzene, TMS, delta):7.0-8 . 6  

(8 H, m) 5.55 (2H, s). Mass spectrum (70 ev, relative abundance):

238 (M+, 8 ), 192 (base peak).
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Synthesis of 9-acridtnylmethanol [41

Method I (6 ): via 9-acridinylmethyl acetate [41]. 

9-acridinylmethyl acetate [41 ] was prepared in good yield by reacting [1 ] 

(100 mg 0.37 mmole) with an equal weight (100 mg) of potassium 

acetate in refluxing ethanol for 2 hr. The reaction mixture was 

concentrated to ca. 5 mL, 20 mL of water was added and extracted 

with ether. The crude product was recrystallized from 50% ethanol 

giving 34 mg of product melting at 124.5-125° (lit. mp. = 124°). The 

product was found to be a single component by TLC in benzene-acetone 

(95:5). 60 MHz PMR of [41]: (CDClg, TMS, delta):7 .45-8.5 (8 H, m)

6.1 (2H, s) 2.1 (3H, s). If the desired product is [4], 2 equivalents 

of 1 N NaOH in HgO was added and the above reaction mixture was 

allowed to sit at room temperature for 24 hrs. The mixture can then 

be worked up by adding an equal volume of ether and sufficient water 

to get two layers. The organic layer is removed, evaporated to dry

ness and washed 3 times with ether leaving a product that melts at 

ca. 160° when preheated to 158° (lit. mp. = 164-165° dec).

Method II (97): via 9-acridinylcarboxaldehyde [3].

To a warmed solution of 9-methylacridine [2] (1 gm, 5.2 mmole) in 

ca. 150 mL xylene, 0.6 gm (5.5 mmole) of selenium dioxide was added 

and the mixture re fluxed for 1 hr. The xylene was evaporated to near 

dryness, ca. 50 mL water/KgCOg was added and extracted exhaustively 

with ether. The organic layer was dried over NagSÔ  ̂and concentrated.
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The crude product was chromatographed on a silica gel preparative 

layer plate with benzene-acetone (95:5), eluted from the plate with 

CCI4  and recrystallized from the same solvent yielding 455 mg 

(42.5% of theory) of [3]. The product was then twice recrystallized 

from hexane and melted at 144-145° (lit. mp. = 150°). The aldehyde 

prepared above was dissolved in ca. 50 mL methanol and 100 mg 

(2.6 mmoles) NaBH  ̂was added. The reaction was over within 5 min 

and 5 mL 2 N NaOH was added and the mixture refluxed for 1 hr to 

hydrolyze the borate ester (98). The mixture was cooled and 280 mg 

(62% yield) of 9-acridinylmethanol [4] was collected by filtration. The 

precipitate was washed with cold ether and shown to be pure by TLC 

in benzene-acetone (95:5). The melting point was 166-167° when 

preheated to 158° (lit. mp. = 164-165°). Mass spectrum (70 ev, 

relative intensity) 209 (M"̂ , base peak), 192 (20), 178 (84). All of the 

above are known compounds and were characterized only to the extent 

necessary to confirm the product identity.

Preparation of Quaternary Salts.

All salts were prepared by the following general procedure:

The hydrochloride salt of the tertiary amine drug was dissolved in a 

minimum amount of water, neutralized with solid KgCOg and extracted 

into either hexane or chloroform. The extract was dried over anhydrous 

NagSO  ̂and evaporated to dryness. The free base was then added to a 

nearly saturated warm solution of 9-bromomethylacridine [1] in acetonitrile
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and left at room temperature for 24 hrs and then in the freezer (-20°) 

for 24 hrs. The crystals were collected and washed with a minimum 

volume of acetone-ether (1 :1 ). In cases where the initial crystallization 

was low yielding, the reaction mixture was concentrated to ca. one half 

the original volume and put in the freezer (-20°) for 24 hrs. The 

products were recrystallized from acetonitrile or acetonitrile containing 

up to 15% methanol depending on solubility. Specific details for the 

compounds are given:

(9-acridinylmethyl) trimethylammonium bromide [10]: Preparation 

described in Part I.

(9-acridinvlmethyl)(3-phenylpropyT)dimethylammonium bromide [11): 

Preparation described in Part I.

(9-acridinylmethyl)[3-(2-chlorophenothiazine-10 -yl)propyl~| dimethyl

ammonium bromide [15]: Preparation described in Part I. 

(9-acridinylmethyl)[3-(2-chlorothiozanthen-9-yl- )propyl]diméthyl

ammonium bromide [31 ]: Starting with ca. 500 mg ( 1  .42 mmole) of

chlorprothixene HCl, 840 mg (ca. 100% of theory) of crude [31 ] 

crystallized from the reaction mixture. The crystals were washed 

with acetone and then recrystallized from 15% methanolic acetonitrile, 

(mp. = 156-159° dec). The 60 MHz PMR spectrum (Figure 25) and 

IR spectrum (Figure 26) were consistent with the proposed product. 

Analysis for CggH^gNgS^Cl̂  Br̂  : calculated, C 65.37, H 4.80, N 4.76;

found, C 65.20, H 4.93, N 5.00.
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icjure 25. 60 MHz PMR (CDClg + CD3 OD) of the chlorprothixene quaternary [31].
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C9 -acridinylmethyl)[3 -Cphenothia2 in - 1 0 -yl) propyl] dimethylammonium 

bromide [32]: Starting with ca. 300 mg (1 .05 mmole) promazine HCl

ca. 430 mg (75% of theory) of crude [32] crystallized from the reaction 

mixture. The crystals were washed with acetone-ether (1:1) and 

recrystallized from 10% methanolic acetonitrile. The 100 MHz PMR 

(Figure 27) and IR spectrum (Figure 28) were consistent with the 

proposed compound. Analysis for Cg-jHgQNgSBr* 1 .5 HgO: calculated,

C 63.80, H 5.70, N 7.19; found, C 63.79, H 5.50, N 7.01 . 

(9-acridinylmethyl) [3-(10,11 dihydro—5H-dibenzo [a,d] cyclohepten-5— 

yl- )propyl] dimethylammonium bromide [29]: Starting with

ca. 500 mg (1 . 6  mmole) of amitriptyline• HCl, 730 mg (83% of theory) 

of crude [29] crystallized from the reaction mixture. The crystals were 

washed with acetone and recrystallized from 1 0 % methanolic acetonitrile 

(mp. = 168.5-170° dec). The 100 MHz PMR interpretation has previously 

been discussed in text (Figures 27, 28). The best analysis obtained for 

Cg4 H3 3 N2 Br-CH3 CN, although not within acceptable limits was: 

calculated, C 73.21 , H 6.14, N 7.12; found, C 74.62, H 6.13, N 7.20. 

(9-acridinylmethyl)[3-(2-chlorophenothiazine-10-yl-5-oxide)propyl] 

dimethylammonium bromide [30]: Only trace amounts of starting 

material, chlorpromazine sulfoxide-HCl, was available and therefore 

the quaternary salt [30] was not chemically characterized. The 

value in acetonitrile-HgO (9:1) was consistent with that expected for 

a quaternary salt.
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Figure 27. 100 MHz PMR spectrum (dg-DMSO) of the promazine quaternary [32].
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9-acridinylmethylpyridinium perchlorate: A sample, 28 mg (0.08 mmole)

of 9-acridinylmethylpyridinium bromide previously prepared in our 

laboratory was dissolved in methanol-water (1 :1 ) in a centrifuge tube 

and silver perchlorate (0.08 mmole) dissolved in the same solvent was 

added to the reaction mixture and let stand in the dark for 1 hr. The 

supernatant was removed after centrifugation and put in the freezer 

(—20°) and the product crystallized out. Following recrystallization 

from acetonitrile, the characteristic perchlorate IR absorption at 

625 and 1100 cm”  ̂ (Figure 29) was observed.

(9-acridinylmethyl)[3-(10 , 1 1-dihydro-5H-dibenz[b,f] azepin-5-yl) 

propyl] dimethylammonium bromide [28]: The compound [28] was 

previously prepared in our laboratory by the following procedure. 

Imipramine free base (472 mg, 1. 6 8  mmole) and [1] (520 mg, 1 .93 

mmole) in 30 mL acetonitrile were reacted over night and the reaction 

mixture evaporated to dryness. The crude powder was dissolved in a 

minimum volume of dichloromethane and ether was added to precipitate 

the quaternary salt [28]. The fine flocculant precipitate (ca. 600 mg,

65% of theory) was collected by centrifugation and gave a single spot 

by TLC in acetonitrile-water (1:1). The 60 MHz PMR (Figure 30) was 

consistent with the proposed product.

Preparation of 9-benzylacridine [42] (99): To a glass pressure bomb 

was added 1 gm phenylacetic acid, 1 .3 gm dry ZnClg and 0 . 8  gm 

diphenylamine. The reaction was heated to 200° for 6  hr. After
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cooling j ca, 150 mL CHCIq was added and the mass digested on a steam 

bath. The CHClg layer was washed with basic water and evaporated to 

dryness and the product was sublimed to yield 270 mg (21% of theory). 

The product was recrystallized from ethanol and melted at 174-175°

(lit. mp. = 173°). The 60 MHz PMR spectrum: (CDClg, TMS, delta)

7.0-8.4 (13H, m) 5.0 (2H, s). Mass spectrum (70 ev, relative intensity) 

269 (M"*", base peak) 192 (10) were consistent with the proposed product. 

Preparation of 9-(p-bromomethylphenyl) acridine [33]: 9-(p-tolyl) 

acridine previously prepared in our laboratory was recrystallized from 

ethanol-hexane (1:1) and melted at 187—188° (lit. mp. = 189-190°).

60 MHz PMR (CCI4 , TMS, delta):7.2-8.35 (12H, m) 2.55 (3H, s). To 

the to lyl derivative (640 mg, 2.49 mmole) in ca. 30 mL dry CCl̂  was 

added 480 mg N-bromosuccinimide and 10 mg benzoyl peroxide. The 

reaction at reflux temperatures was initiated with light and the reaction 

allowed to proceed for 2.5 hr. The progress of the reaction could not 

be followed by TLC because the starting material and product have 

identical Revalues in all solvents investigated. The progress of the 

reaction could be followed by NMR by looking for the appearance of a 

signal at 4.62 delta (Figure 31) and the disappearance of the signal at 

2.55 delta. The reaction mixture was filtered hot and then evaporated 

to dryness. The crude solid could be recrystallized from CCI4 , 

methanol or ether in varying yields but all samples still had small 

amounts of acridine starting material by NMR. The IR (Figure 32)
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f-igure 31 . 60 MHz PMR spectrum (CDCI3 ) 0-(p“bromomethylphenyl) acridine [33].
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Figure 32. IR spectrum (KBr) of 9-(p-bromomethylphenyl) acridine [33].
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and NMR spectra (Figure 31) were consistent with the bnominated 

compound being the major component.

A preliminary attempt was made to evaluate the alkylating 

reagent [33] by reacting an equal weight amount of [33] with chlorproma

zine [16] in acetonitrile. A quaternary product was formed (by TLC 

examination) and appeared nonfluorescent on the TLC plate. Since 

the observation of fluorescence on the TLC plate had proven very 

reliable as a screening method for determining if  a particular quaternary 

would possess analytically useful fluorescence, this adduct was judged to 

be a nonfluo rescent quaternary and the product was not characterized 

further. Thus, this area of investigation was terminated.

Preparation of 9-acridinylcarboxylic acid [9]: The various routes 

leading to [9] have previously been described in text and only the details 

of synthesis via 9-cyanoacridine will be described in detail in this 

section. Crude 9-chloroacridine [27] (ca. 1 . 0  gm) was refluxed in 

ca. 75 mL benzene and filtered hot through a medium fritted glass 

filte r to remove much of the acridone present and the solution evaporated 

to dryness. The resulting 0.8 gm of [27] plus 0.3 gm potassium cyanide and

0.17 gm CuCN in ca. 15 mL methanol were heated for 4 hr at 150-170° 

in a pressure bomb. The hot reaction mixture was filtered and concen

trated to ca. 1/2 the original volume which yielded 537 mg (74% of 

theory) of crude 9-cyanoacridine which was recrystallized twice from 

methanol and melted at 170-174° (lit. mp. = 179-180°). 9-cyanoacridine



-172-

(142 mg, 0.66 mmole) was dissolved in 1 .5 ml_ 90% H2 SO4  and heated 

to 1 1 0 ° for 3 hr. After cooling, 0.4 gm NaNOg was slowly added and 

the reaction continued for 3 hrs more at 140°. The reaction mixture 

was cooled and diluted with 25 mL water and the solid collected by 

filtration. The solid was dissolved in basic water, filtered and the 

filtrate acidified. The crude [9] (92 mg, 62% of theory) was collected 

and dried. The Rf value of [9] in acetonitrile-water (9:1) is 0.45 and 

certain impurities having lower values were still present. The 

recommended recrystallization from a large volume of ethanol is 

extremely low yielding and the purity of the product (mp. = 285-290° 

dec., lit. mp. = 289-290°) was not significantly improved.
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