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Chapter I 

Introduction 

Mathematics educators are experiencing a time of change in mathematics 

education. These changes are being affected by current research on how 

children learn and recommendations by the National Council of Teachers of 

Mathematics (NCTM). Central themes in the Curriculum and Evaluation 

Standards (NCTM, 1989) focus on developing students who have mathematical 

power; changing content, "we do not assert that informational knowledge has no 

value, only that its value lies in the extent to which it is useful in the course of 

some purposeful activity" (p. 7); and teaching methods, pointing to research that 

indicates that learning occurs when students are actively engaged. 

Mathematics teachers have typically practiced what Fiere (1970) refers to 

as the banking concept of education, "knowledge is a gift bestowed by those who 

consider themselves knowledgeable upon those whom they consider to know 

nothing" (p. 53). Fiere referred to teachers, practicing traditional approaches to 

teaching, as narrators that lead students to memorize endless facts and view 

students as vessels to be filled. NCTM's Professional Standards for Teaching 

Mathematics (1991) points out that teaching practice must change from a 

traditional lecture-mode of instruction to a style of teaching where in students are 
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actively engaged in the learning process through discovery and inquiry. Learning 

experiences based on discovery learning and inquiry methods support active 

engagement of students in the learning process, foster a student's natural 

curiosity, build upon prior knowledge of students, cause students to use higher 

order thinking skills, help students form positive and excited attitudes toward 

learning, and help students not only learn specifics but rather learn how to learn 

(Bruner, 1960; Conference Board of the Mathematical Sciences, 2001 ). Many 

mathematics educators believe that constructivism encompasses the essence of 

the proposed changes in teaching. As von Glasersfeld (as cited in Anthony, 

1996) expounded upon a basic tenet of constructivism, he stated "learning is not 

a passive receiving of ready-made knowledge but a process of construction in 

which the students themselves have to be the primary actors" (p. 349). 

Prospective teachers are not familiar with this type of teaching and 

typically have not had any experiences with learning through discovery. In their 

future classrooms, they typically teach how they were taught. So, the question 

becomes, how do we stop this cycle? A recommendation from the Conference 

Board of the Mathematical Sciences (CBMS) suggests that not only should 

mathematics content courses be concerned with building the mathematical 

content knowledge of teachers, but with demonstrating "flexible, interactive styles 

of teaching" (2001, p. 8). 

The Principles and Standards for School Mathematics (NCTM, 2000) 

states "effective mathematics teaching requires understanding what students 

know and need to learn and then challenging and supporting them to learn 
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well .... students must learn mathematics with understanding, actively building 

new knowledge from experience and prior knowledge (NCTM, 2000, p. 11 )." 

Schofield ( 1981) points out that for elementary teachers to be effective they must 

have a positive attitude towards mathematics; however, Rech, Hartzell, and 

Stephens (1993) found that elementary education majors possess a more 

negative attitude towards mathematics than do the general college population. 

Additionally, Schofield (1981) found positive correlations between teachers' 

attitudes toward mathematics and both pupil achievement in mathematics and 

their attitudes toward mathematics. 

Teachers' affective factors have become increasingly more important in a 

time when reform efforts are encouraging higher-order thinking. The Curriculum 

and Evaluation Standards (1989) include as a goal that students value 

mathematics and develop mathematical confidence, both of which are 

considered attitudes toward mathematics. If students are going to be encouraged 

to work non-routine problems and use higher-order thinking skills, their attitude 

and self-efficacy are going to be important factors for their success in 

mathematics. In order to foster these ideals in their own students, teachers must 

have both a positive attitude toward mathematics and a high mathematics 

teaching efficacy. 

Foundation of the Problem 

Reform in mathematics education in the United States can be noted as far 

back as the early nineteenth century. In the 1820s Warren Colburn was 
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questioning teaching for memorization and in his book First Lesson in Arithmetic 

on the Plan of Pestalozzi With Some Improvements he advocated for a more 

discovery approach to student learning (Sztajn, 1995). However, according to 

Sztajn (1995), in the mid 1800s the "pendulum swung back to drill. ... instruction 

returned to rote memorization, and today drill is the term mainly used to 

characterize nineteenth century mathematics education in America" (p. 380). The 

swinging pendulum, used by Sztajn as a metaphor to characterize shifts in the 

philosophy of teaching mathematics, illustrates the ongoing debate among 

mathematics educators between teaching for understanding in contrast to 

teaching for skills acquisition or what is commonly referred to as teaching for 

conceptual versus procedural knowledge. 

In response to a criticism of the study of mathematics in schools and a 

qesire to reform mathematics education, the National Council of Teachers of 

Mathematics (NCTM) was founded in 1920. Although membership began to 

grow and NCTM began to make recommendations for reform the effect was 

minimal. In the 1950s efforts to reform mathematics curriculum were already 

under way when the Sputnik was launched in 1957 but this reform gained 

increased attention from the public, policy makers, and mathematicians and 

gained monetary support from the government for the improvement of 

mathematics education. These "new math" reform efforts continued into the 

1960s; however, the 1970s brought with it a back-to basics movement (Kilpatrick 

& Stanic, 1995). In 1980, NCTM published its Agenda for Action in which it 
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rejected a return to basics and urge that the emphasis in mathematics teaching 

be put on problem solving. 

Current reform in education began in 1983 with the National Commission 

on Excellence in Education's report, A Nation at Risk. Over the last two decades 

there have been a variety of documents published calling for reform in 

mathematics education beginning with Everybody Counts: A Report to the Nation 

on the Future of Mathematics Education (Mathematical Sciences Education 

Board, 1989) and Curriculum and Evaluation Standards for School Mathematics 

(NCTM, 1989). These publications were followed by Professional Standards for 

Teaching Mathematics (NCTM, 1991), Before It's Too Late: A Report to the 

Nation from the National Commission on Mathematics and Science Teaching for 

the 21st Century (U.S. Department of Education, 2000), The Mathematical 

Education of Teachers (Conference Board of the Mathematical Sciences 

(CBMS), 2000), Shaping the Future: New Expectation for Undergraduate 

Education in Science, Mathematics, Engineering, and Technology (Education 

and Human Resources Advisory Committee, 1996), and others. All of these 

documents called for a new vision in the mathematical education of students and 

most made recommendations for the preparation of prospective teachers. This 

new vision calls for preparing teachers to become mathematical thinkers and 

problem solvers. Mathematics courses designed for the mathematical 

preparation of elementary teachers should initially approach the mathematics 

from a concrete and experientially-based direction. These courses should help 
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prospective elementary "learn how to learn mathematics" (CBMS, 2001, p. 8) and 

demonstrate an interactive and flexible teaching style. 

The Curriculum and Evaluation Standards for School Mathematics 

(NCTM, 1989) promoted change in mathematics education and emphasized the 

mathematical empowerment of students. These standards were "viewed as 

facilitators of reform" (p.2). These standards dealt only with changes in 

curriculum and evaluation; therefore, the Professional Standards for Teaching 

Mathematics (NCTM, 1991) followed and addressed ways in which the goals of 

the 1989 curriculum standards could be met. Five major shifts for teaching of 

mathematics to ensure the mathematical empowerment of students were 

outlined. NCTM (1991) pointed out the need to shift: 

• toward classrooms as mathematical communities - away from 

classrooms as simply a collection of individuals; 

• toward logic and mathematical evidence as verification - away from the 

teacher as the sole authority for right answers; 

• toward mathematical reasoning - away from merely memorizing 

procedures; 

• toward conjecturing, inventing, and problem solving - away from an 

emphasis on mechanistic answer-finding; 

• toward connecting mathematics, its ideas, and its applications - away 

from treating mathematics as a body of isolated concepts and 

procedures. (p. 3) 
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These standards for teaching pointed out that there are no recipes or 

prescriptions for teaching mathematics. The writers indicated that good teaching 

involved teachers having knowledge in several areas - mathematics, diversity of 

learners, school and community, how students learn mathematics, classroom 

setting, and the ability to engage students in mathematics. Knowledge in these 

areas helps the teacher make informed decisions about pedagogical practices. 

- Most recently NCTM published the Principles and Standards for School 

Mathematics (2000) that continue to promote reform in mathematics education 

and set forth a vision for school mathematics. These standards address six 

principles for school mathematics including Equity, Curriculum, Teaching, 

Learning, Assessment, and Technology. The teaching principle emphasizes that 

"to be effective, teachers must know and understand deeply the mathematics 

they are teaching and be able to draw on that knowledge with flexibility in their 

teaching tasks" (NCTM, 2000, p. 17). This type of understanding was described 

by Ma (1999) as a "profound understanding of fundamental mathematics". In 

addition to these six principles, the Principles and Standards for School 

Mathematics established ten standards overarching all grades K-12. These ten 

standards are comprised of five content and five process standards. The five 

content standards; Number & Operation, Algebra, Geometry, Measurement, and 

Data Analysis & Probability; lay out what students should learn. The five process 

standards; Problem Solving, Reasoning & Proof, Communication, Connections, 

and Representation; highlight ways for students to understand and use content 

knowledge. 
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Statement of the Problem 

Despite these efforts toward reform in mathematics education little seems 

to be changing in mathematics classrooms across the country. In their book, The 

Teaching Gap: Best Ideas From the World's Teachers for Improving Education in 

the Classroom, Stigler and Hiebert (1999) reported that "the typical U.S. lesson is 

consistent with the belief that school mathematics is a set of procedures" (p. 89) 

and that although 70% of teachers video taped as a part the Third International 

Mathematics and Science Study (TIMSS) believed they implemented reforms of 

the NCTM standards there was little evidence of reform. These results indicate 

an existing gap between the standards and their implementation in mathematics 

classrooms. 

Although NCTM's standards documents and reports such as The 

Mathematical Education of Teachers (CBMS, 2001) have discussed the need for 

reform in the mathematical preparation of prospective teachers, most 

mathematics faculty still adhere to the traditional lecture format of instruction 

(Alsup, 2003). Prospective elementary teachers are a product of the 

mathematics instruction they are being asked to reform and have rarely seen or 

experienced reform for themselves (Ball, 1996). Additionally, Ball points out that 

prospective elementary teachers know that their students need to understand the 

mathematics they are to teach and not to just tell them how, but were not taught 

themselves in this fashion. Therefore, it is important for prospective elementary 

teachers' notions of what it means to learn be challenged and extended. 
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Prospective elementary teachers need to experience mathematics through active 

explorations and sense making of mathematical concepts. 

While in the past some educators have doubted the benefits of children 

engaging in discovery learning activities (Friedlander, 1965), there has been little 

research on using guided discovery learning activities with prospective teachers. 

While some research has been conducted regarding the comparison of inquiry 

teaching to the traditional lecture methods of teaching no definitive results have 

been found. Generally, this research has shown only small positive results in 

favor of inquiry (Anderson, 2002). Researchers have argued that teachers' 

attitudes and self-efficacy play a significant role in the actions taken in their 

classroom and in the types of instructional strategies utilized (Gibson & Dembo, 

1984 ). Teach er efficacy and attitudes that prospective elementary teachers 

develop about mathematics and its teaching follow them into the classroom and 

are related to the achievements (Schofield, 1981) and attitudes (Aiken, 1972) of 

their students. 

Although there is a plethora of research on prospective elementary 

teachers in college mathematics methods courses, there is little research on 

prospective elementary teachers in college mathematics content courses. 

Recently, research studies on teaching and learning with understanding and 

ways children construct meaning in mathematics have emerged in the literature 

(Carpenter & Lehrer, 1999). However, there has been little research that 

describes the characteristics of non-traditional college mathematics content 

courses or on the impact of such courses on affective factors that influence the 
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perceptions of prospective elementary teachers about mathematics and their 

ability to teach mathematics. 

Purpose of the Study 

The purpose of this study was to describe the characteristics of a non­

traditional geometry content course designed for prospective elementary 

teachers and to focus on prospective elementary teachers' perceptions about 

these characteristics as affecting their attitude toward geometry and their 

mathematics teaching efficacy. This study also examined the impact the non­

traditional geometry content course had on prospective elementary teachers' 

attitudes toward mathematics and mathematics teaching efficacy. The following 

research questions were addressed: 

1. What are the characteristics of a non-traditional geometry content 

course for prospective elementary teachers? 

2. What are the perceptions of prospective elementary teachers about the 

characteristics of this non-traditional geometry content course? 

3. Are prospective elementary teachers' attitudes toward geometry 

influenced by this non-traditional geometry content course? 

4. Are prospective elementary teachers' mathematics teaching efficacies 

influenced by this non-traditional geometry content course? 

Results of this research contribute to literature on the mathematical 

preparation of prospective elementary teachers, more specifically to the literature 

on prospective elementary teachers learning mathematics through experiences 
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based in a constructivist learning theory. Additionally, it adds to the current 

literature on prospective teachers' attitudes and beliefs about mathematics. 

Assumptions 

1 . It was assumed that each subject responded honestly and thoughtfully 

to all surveys and questionnaires. 

2. It was assumed that the instructor of the observed course had a 

positive attitude toward mathematics, specifically geometry, and had a 

high mathematics teaching self-efficacy. 

Limitations 

1. The participants of this study were prospective elementary teachers 

enrolled in a content course designed for elementary majors in a 

Midwestern university town. Therefore, it was a sample of convenience 

and the findings may not be generalizable to the general population of 

all prospective elementary teachers. 

2. The participants of this study were primarily Caucasian and female. 

3. This study was carried out during a two-month summer course; 

therefore, findings may not be reflective of findings from a typical four­

month fall or spring semester when students would have a longer time 

to think and reflect upon their experiences. 

4. The researcher of this study had prior experiences with the course; 

therefore, she brought with her some preconceived notions about the 
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characteristics of the course and its impact on students enrolled in the 

course. 

Definition of Terms 

Attitudes Toward Geometry- set of beliefs focusing on geometry that 

predisposes a person to respond in a certain way. 

Confidence to Learn Geometry- how sure a person feels about their 

ability to learn and perform geometry tasks. 

Enjoyment of Studying Geometry~ how much pleasure or enjoyment a 

person feels while performing a geometry task. 

Prospective Elementary Teachers - undergraduates who have declared a 

major in either elementary education or early childhood education. 

Mathematics Teaching Efficacy- a person's opinion of their ability to 

teach mathematics and whether their teaching results in student success. It 

consists of two components , namely teaching outcome expectancy and personal 

teaching efficacy. 

Personal Teaching Efficacy- "a belief in one's ability to teach effectively" 

(Enochs, Smith, & Huinker, 2000, p. 194). 

Teaching Outcome Expectancy- "belief that effective teaching will have a 

positive effect on student learning" (Enochs, Smith, & Hu inker, 2000, p. 194 ). 

Usefulness of Geometry- how useful a person views geometry to be 

currently and in their future. 
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Organization of the Study 

This study is presented through a five chapter organizational format. The 

first chapter provides a general overview, the foundation and statement of the 

problem, the purpose of the study, assumptions and limitations, and definitions of 

terms that will be used throughout the study. A review of relevant literature that 

will provide the framework for the study is presented in chapter II. In chapter Ill, 

the methodology of the study will be discussed. Specifically, information relating 

to the participants, the research design, data collection procedures and 

instruments and the procedures for analysis of the data will be described. 

Chapter IV will present the analysis of the data and Chapter V will present the 

findings of the study as well as the conclusions, implications of this study, and 

call for additional research. 
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Chapter II 

Review of the Literature 

The purpose of this chapter is to review the research that is relevant to the 

examination of potential changes in prospective elementary teachers' attitudes 

toward geometry and mathematics teaching efficacy due to experiences during a 

non-traditional geometry content course. Several areas of research are relevant 

to the current study including: 

1. constructivism as a theory of learning 

2. pedagogical practices that support student knowledge construction 

3. attitudes towards mathematics 

4. self-efficacy. 

Constructivism as a Theory of Learning 

Two views on the teaching of mathematics permeate mathematics 

education today. In one view the teacher is a transmitter of knowledge; this is 

known as transmissionist teaching or direct instruction (Selley, 1999). In 

traditional mathematics instruction, the way most of us were taught, students are 

passive receivers of knowledge, vessels to be filled. There is a static body of 

rules and algorithms invented by others that the teacher is expected to transmit 

to his/her students. The second view of teaching rests with the teacher serving 

as a facilitator of knowledge; this is known as constructivist teaching. In this view 

14 



of learning concepts are not simply transferred from teacher to student, but are 

constructed by the learner (von Glasersfeld, 1995). Constructivism presents a 

sharp contrast to the traditional mode of teaching. 

Constructivism is not a set of instructional methods, but a philosophy of 

learning (Harris & Alexander, 1998) and a theory based on the writings of Jean 

Piaget during the last 10 to 15 years of his life (Fosnot, 1996). Constructivist 

learning theory asserts that "all mental activity is constructive" (Noddings, 1990, 

p. 14 ). According to Confrey ( 1990), constructivism is "a belief that all knowledge 

is necessarily a product of our own cognitive acts" (p. 108). Piaget (1973) 

believed that the basis of learning is discovery: ''To understand is to discover, or 

reconstruct by rediscovery and such conditions must be complied with if in the 

future individuals are to be formed who are capable of production and creativity 

and not simply repetition" (p. 20). In addition, Vygotsky (1978) believes that 

construction of knowledge is a social act and that children internalize talk that 

occurs in group discussions to make meaning of their own experiences. From a 

Piagetian framework, Kamii (1991) asserts that knowledge is constructed "from 

the inside, in interaction with the environment, rather than by internalizing it 

directly from the outside" (p. 17). 

In constructivism, learning is a process, not a product. Constructivism is 

based on the premise that by reflecting upon our experiences we construct 

meaning of the world around us. In a conversational interview, Piaget described 

his notion of constructivism as "knowledge is neither a copy of the object nor 

taking consciousness of a priori forms predetermined in the subject; it's a 
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perpetual construction made by exchanges between the organism and the 

environment, from the biological point of view, and between thought and its 

object, from the cognitive point of view" (Bringuier, 1977, p. 110). Students enter 

a learning situation with previous knowledge and experiences they have 

arranged into an existing cognitive structure. As new information is encountered 

they attempt to understand this information based upon this cognitive structure. 

The construction of new knowledge occurs when this new situation challenges 

their existing cognitive structure. When this happens learners perceive that their 

present "cognitive structures do not adequately resolve, explain, predict, or allow 

for navigation of the problem situation" (Schiffer & Simon, 1992, p. 188). A state 

of disequilibrium occurs when the students experience cognitive discomfort. 

Students arrive at new knowledge through an active process of assimilation, 

adding new information into existing knowledge structures, and through 

accommodation, modifying existing knowledge structures to be consistent with 

new information (Gadanidis, 1994 ). 

Although constructivists may have different opinions about a variety of 

theoretical issues, they all tend to agree on the following tenets (Simpson, 2001; 

Gadanidis, 1994; Shifter & Simon, 1992; Clements & Battista, 1990; Noddings, 

1990): 

1. Knowledge is actively constructed. 

2. Learners construct their own understandings through interaction with 

their physical and social environments. 
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3. A learner's cognitive structure is activated during the process of 

knowledge construction. 

4. Learner bring to the learning situation previous experiences ahd 

knowledge they have organized into cognitive structures. 

5. A learner's cognitive structure is not static but is continually being 

revised. 

6. Learning situations should be relevant and meaningful for the learner. 

Those who consider themselves to be radical constructivists add an additional 

controversial position: 

7. For the learner, knowledge is not preexisting outside of their mind. 

Piaget (1973) believed that a student's mastery of logic and reason are 

hindered by traditional instruction and that ineffective passive methods of 

teaching mathematics result in only a fraction of students absorbing mathematics 

knowledge. Additionally, Piaget suggests that the goal of education should be for 

learners to master concepts not simply to be able to repeat what they have 

learned or to memorize meaningless algorithms. Today in many traditional 

classrooms, children learn by hands-on activities, using a variety of 

manipulatives. However, these activities are carried out according to instructions 

of the teacher with little or no exploration or conjecturing encouraged. 

When mathematics educators embrace constructivism as a theory of 

learning, their classrooms will look very different from the traditional classroom 

described above. In a learning environment that adheres to the constructivist 

learning theory, the student and teacher work together and share the 
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responsibility of constructing meaning. Mathematics educators must be cautious 

so they do not fall into the trap of believing that constructivism means if they 

leave their students alone they will naturally construct mathematical knowledge 

and understanding. Instead of utilizing algorithms that cause students to focus on 

the steps and not the mathematical reasoning of the problem, students should be 

encouraged to invent their own procedures (Kamii, Lewis, & Jones, 1991 ). The 

mathematics educator in a constructivist learning environment plays an important 

role to guide and support students' knowledge construction of mathematical 

ideas. 

Pedagogical Practices That Support Student Knowledge Construction 

The creation of a learning environment that supports student knowledge 

construction requires a paradigm shift for teachers and "the willing abandonment 

of familiar perspectives and practices and the adoption of new ones" (Brooks & 

Brooks, 1993, p. 25). Brooks and Brooks (1993) set forth a set of twelve 

characteristics that present the teacher as a mediator of knowledge construction 

rather than a giver of knowledge. The following is a summary of these 

characteristics: 

1. Teachers encourage and accept student autonomy and initiative. 

2. Teachers use raw data and primary sources along with manipulative, 

interactive, and physical materials. 

3. When framing tasks, teachers use cognitive terminology such as 

"classify," "analyze," "predict," and "create." 
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4. Teachers allow student responses to drive lessons, shift instructional 

strategies, and alter content. 

5. Teachers inquire about students' understandings of concepts before 

sharing their own understanding of those concepts. 

6. Teachers encourage students to engage in dialogue, both with the 

teacher and with one another. 

7. Teachers encourage student inquiry by asking thoughtful, open-ended 

questions and encouraging students to ask questions of each other. 

8. Teachers seek elaboration of students' initial responses. 

9. Teachers engage students in experiences that might engender 

contradictions to their initial hypotheses and then encourage . 
discussion. 

10. Teachers allow wait time after posing questions. 

11. Teachers provide time for students to construct relationships and 

create metaphors. 

12. Teachers nurture students' natural curiosity through frequent use of the 

learning cycle model. 

There are a variety of pedagogical practices that are utilized in a learning 

environment that supports student knowledge construction including questioning, 

group work, worthwhile mathematical tasks, writing, and multiple solution 

strategies (Selley, 1999). In addition, the learning environment should foster 

mathematical discourse that enhances the learning of students (NCTM, 1991; 

Knuth & Peressini, 2001 ). 
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Traditional classroom teachers ask many questions, but theses questions 

are often closed, convergent questions (What is the sum of 2 and 2?). These 

questions are usually centered on a fact or procedure that students should have 

memorized. However, the constructivist teacher encourages questions from 

students and then must decide whether to answer the question, have another 

student answer, or have students explore the question to find the answer 

themselves. 

Questioning is crucial to student success in a learning environment where 

students are expected to construct their own mathematical meanings. These 

questions can not be scripted, but should help students express their thinking 

and aid the teacher in understanding the thought processes of their students. 

Teachers should be cautious not to ask questions in such a way that the 

questions solicit a desired response. Questions should encourage students to 

explain their thinking and to validate their thought processes (Ward, 2001) as 

well as challenge student thinking (NCTM, 1991 ). 

According to Windshitl (1999), small groups of students talking and 

sharing ideas is a typical occurrence in a constructivist learning environment. 

Whether the students are working on a well-defined task or on an open 

exploration, students need to be able to discuss ideas, try out methods, and 

explore ideas in a collaborative manner with their peers. Talking and working 

with peers help students to make sense out of the problem they are working and 

students are more apt to be less inhibited and more likely to express their ideas 

(Selley, 1999). Small group interactions can create a support system and help 
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to counteract fear that many students may have in mathematics class. During 

small group time, the teacher's role is that of mediator and a facilitator in terms of 

asking questions that will provoke thoughtful thinking. Additionally, the teacher 

may encourage individual students to explain their thinking to his/her group 

members. 

NCTM's Professional Standards for Teaching Mathematics (1991) points 

out that teachers must pose worthwhile mathematical tasks that engage their 

students' intellect and promote mathematical problem solving and reasoning. The 

use of mathematical tasks can help students see that there are multiple ways of 

solving a problem. According to Selley (1999), when students are finished with 

their investigations, they should share with each other, compare their methods, 

and if their methods differ they should attempt to make sense of these alternative 

methods. Mathematical investigations can be very structured and almost funnel 

the students into developing an idea, procedure or algorithm or they can be 

exploratory where each group may take a different direction and make 

discoveries or conjectures based upon their own line of thinking. 

The act of writing "encourages students to examine their ideas and reflect 

on what they have learned. It helps them deepen and extend their 

understanding" (Burns, 1995, p. 13). NCTM (1989, 2000) points out the need for 

students to be able to communicate their mathematical thinking to others as well 

as being able to formalize their thoughts. Standera (1994) suggests that writing 

opens a line of communication between the teacher and the students, giving the 

teacher valuable information about their students' thinking. According to Ehrich 
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(1994) writing promotes student thinking; creates cognitive dissonance; clarifies, 

affirms and strengthens student understanding; develops language and 

communication skills; and aids the teacher in assessing student understanding. 

An idea central to reform in mathematics education is for teachers to 

develop a learning environment that supports students doing and talking about 

mathematics (NCTM, 1991, 2000). Three of the six standards for teaching 

mathematics set forth in the Professional Standards for Teaching Mathematics 

(NCTM, 1991 ), deals with discourse in the mathematics classroom outlining the 

role of the teacher, the role of students, and the tools necessary for enhancing 

mathematical discourse. Wertsch and Toma (1995) describe two types of 

discourse: univocal and dialogic. Univocal refers to a passive reception of 

information while dialogic refers to a dynamic give-and-take communication 

between participants. As a part of classroom discourse, it is important for 

students to justify their thinking not only to explain their reasoning, but also to 

think about how the listener is making sense of what they are saying (Kamii, 

2000b). Wertsch and Toma (1995) claim that 80% of the discourse in classrooms 

across America can be characterized as univocal. Knuth and Peressini (2001) 

point out that both univocal and dialogic discourse are important in the 

classroom, but that more emphasis needs to be placed on dialogic discourse in 

order for students to gain a deeper understanding of the mathematics they are 

studying. 

While solving mathematical tasks students may take a variety of 

approaches and view them from a variety of perspectives. Student individuality 
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should be encouraged. In addition to multiple ways of solving a problem, 

mathematical tasks with multiple solutions should be given to students. This 

enables students to develop a real-world perspective on problem solving. In this 

context, most problems have multiple solutions and it is the problem solvers 

responsibility to decide upon the best solution for the current situation (Selley, 

1999). 

These pedagogical practices should not be viewed as discrete practices 

that are simply inserted into the current traditional mathematics classrooms. 

Teachers must question their vision of what it means for students to learn and 

develop a culture that "affects the way learners can interact with peers, relate to 

the teacher, and experience the subject matter'' (Windschitl, 1999, p. 752). The 

decision is not whether to use specific pedagogical practices, but "how to use 

these techniques to complement rather than dominate student thinking" 

(Windschitl, 1999, p. 753). 

Confrey (1990) summarizes constructivist teaching in mathematics as 

follows: 

As a constructivist, when I teach mathematics I am not teaching students 

about the mathematical structures which underlie objects in the world; I 

am teaching them how to develop their cognition, how to see the world 

through a set of quantitative lenses which I believe provide a powerful way 

of making sense of the world, how to reflect on those lenses to create 

more and more powerful lenses and how to appreciate the role these 
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lenses play in the development of their culture. I am trying to teach them 

to use one tool of the intellect, mathematics (pp. 110-111 ). 

A learning environment that supports student construction of knowledge 

effects not only students' cognitive structures, but also effects the affective 

domains. The affective domain includes the beliefs and attitudes of students. 

Attitudes such as confidence to learn mathematics play important roles in getting 

students to share their thinking (Ward, 2001 ). 

Attitudes Toward Mathematics 

As early as 1935 a definition for attitude was purported when Allport 

defined attitude as a "mental and neural state of readiness, organized through 

experiences, exerting a directive or dynamic influence upon the individual's 

response to all objects and situations with which it is related" (p. 810). Rokeach 

(1972) defined attitude as an "organization of several beliefs focused on a 

specific object or situation predisposing one to respond in some preferential 

manner" (p. 159). Reyes (1980) defined attitudes toward mathematics as 

"feelings about mathematics and feelings about oneself as a learner of 

mathematics" (p. 164 ). Definitions that researchers use in mathematics 

education for attitudes toward mathematics varies, but each researcher should 

clearly explain as best they can the attitudes that they are attempting to measure 

(Kulm, 1980). 
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Development of Attitudes 

As soon as a child is exposed to mathematics their attitude toward 

mathematics begins developing. During the middle and junior high years, the 

development of attitudes toward mathematics appears to have the most impact. 

It is during these years that negative attitudes toward mathematics begin to be 

the most noticeable especially among girls. It is not known whether the increase 

in the level of abstractness of the mathematics, social preoccupations, or some 

other factor can be attributed to the increase in negative attitudes during these 

years (Aiken, 1985). Wilkins and Ma (2003) followed a group of 3,116 students 

from yth grade through 1 ih grade measuring their attitudes toward mathematics 

each year. They found that the attitudes consistently became more negative 

each year. In ylh grade the students had a mean score of 3.78 on a five-point 

Likert-type scale while in 1 ih grade their mean score had dropped to 3.42 on a 

five-point Likert-type scale. 

Effects of Attitude 

Affective variables such as attitudes toward mathematics are related to the 

learning of mathematics and to the learning environment in a classroom (Reyes, 

1984 ). Some students are prevented from learning mathematics to their full 

potential due to their negative attitudes toward mathematics (Reyes, 1980). 

Therefore, to improve the learning of mathematics it is important to study 

students' attitudes toward mathematics (Fennema & Sherman, 1976; Reyes, 

1984). 
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The relationship between attitudes toward mathematics {ATM} and 

achievement in mathematics (AIM) has been the focus of a plethora of research 

studies. Crosswhite (1972) found a small positive correlation between ATM and 

AIM of secondary students. In a review of literature, Aiken (1976) cited various 

studies that also showed a small positive correlation between ATM and AIM at 

the elementary, secondary, undergraduate, and postgraduate levels. Ma and 

Kishor (1997) conducted a meta-analysis of 113 studies that investigated the 

relationship between ATM and AIM. They found a statistically significant 

relationship between ATM and AIM indicating that the relationship was "positive 

and reliable, but not strong" (p. 35). McLeod (1992) suggests that "neither 

attitude nor achievement is dependent on the other; rather, they interact with 

each other in complex and unpredictable ways" (p. 582). 

While overall measures of ATM have small positive correlation with AIM, 

other studies have revealed a relatively strong positive correlation between 

confidence and AIM (e.g. Dowling, 1978). In a study with middle school and high 

school age students, Fennema & Sherman (1978) found that, when there was no 

difference in mathematics achievement, females had a lower confidence in 

mathematics than males. Additionally, it has been shown that students with 

higher confidence in mathematics tend to have more frequent interactions with 

the teacher, both teacher and student initiated, than did students with a lower 

confidence in mathematics (Reyes & Fennema, 1980 as cited in Reyes, 1980). 

A student's attitudes can affect how the teacher treats them. "Teachers seem to 

pay more attention to students who are sure of themselves in mathematics then 
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they do to students who are less sure of themselves, even when both sets of 

students perform equally well in mathematics" (Reyes, 1980, p. 163). Therefore, 

students can affect the amount of interaction they have with the teacher. 

Another area of interest in attitude research is mathematics anxiety. 

Research has shown a consistently negative relationship between mathematics 

anxiety and AIM (Aiken, 1970; Crosswhite, 1972). In other words, a high level of 

AIM corresponds to a low level of mathematics anxiety. Betz (1978) examined 

the mathematics anxiety of college students. She found that mathematics anxiety 

was a problem for college students including those pursuing a career requiring 

an extensive background in mathematics and that for students in low level 

mathematics courses, women had lower levels of mathematics anxiety. 

Additionally, Betz's study confirmed other studies' claims that a high level of AIM 

corresponds to a low level of mathematics anxiety. 

Reyes (1980) discovered that a student's attitudes toward mathematics 

could affect their decision to enroll in mathematics courses and the amount of 

effort they put into learning the mathematics once they do enroll. Additionally, 

Aiken (1972) suggested that student's attitudes play an important role in the 

mathematics course they choose to take, in their engagement of mathematical 

activities and in the perseverance in their efforts once they are engaged. 

Attitudes of Prospective Elementary Teachers 

Kulm (1980) pointed out that numerous studies have investigated 

prospective teachers' attitudes toward mathematics. He then indicated two 
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reasons this was the potential of teachers to influence their students' attitudes 

toward mathematics and that prospective teachers are a readily available 

population with which mathematics educators can study attitudes toward 

mathematics. Prospective elementary teachers that prefer to teach in the primary 

grades tend to have a less positive attitude toward mathematics then those who 

prefer to teacher the upper-elementary grades (Early, 1970 as cited in Kulm, 

1980; Raines, 1971 as cited in Kulm, 1980). This has very important implications 

for the development of student attitudes since the teachers with the least 

favorable attitude toward mathematics are working with young children during 

their most formative stages. 

Using a revised version of seven of the Fennema-Sherman Attitude 

Scales, Becker (1986) found that prospective elementary teachers attitudes were 

slightly positive overall. On six of the seven subscales, they found prospective 

elementary teachers to be slightly anxious when it came to mathematics. In 

contrast to this study, Rech, Hartzell, and Stephens (1993) found that 

prospective elementary teachers possessed a slightly negative attitude toward 

mathematics. Additionally, Rech, Hartzell, and Stephens (1993) compared 

prospective elementary teachers' attitudes with the attitudes of the general 

college population. They found that while the prospective elementary teachers' 

attitudes were shown to be slightly negative the general college population's 

attitudes were shown to be slightly positive. 

McDevitt, Heikkinen, Alcorn, Ambrosio, and Gardner (1993) found that 

when prospective teachers participated in integrated learning where they could 

28 



utilize prior knowledge that their attitudes toward mathematics improved. 

Additionally, Philippou and Christou (1998) found that prospective elementary 

teachers had significant positive changes in their attitude toward mathematics 

from the beginning of their first mathematics content course until they had 

completed all of their mathematics course work. The researchers also found that 

individual characteristics such as gender, grade-point averages from high school, 

or socioeconomic status do not predispose them to change their attitude toward 

mathematics; therefore, preservice teachers' experiences in their college 

mathematics content courses can significantly affect their attitudes. 

Influence of Teachers' Attitudes 

A teacher's attitudes toward mathematics are influential on the 

development of their own students' attitudes toward mathematics (Aiken, 1972). 

McDevitt, Heikkinen, Alcorn, Ambrosio, and Gardner (1993) stated that a 

teacher's attitudes toward mathematics influences the amount of time spent on 

teaching mathematics and the methods they employ in its teaching. Research 

has shown that many teachers that are mathematically anxious tend to plan less 

instructional time for mathematics {Trice & Ogden, 1987). Schofeld (1981) found 

that teachers tend to transmit these negative attitudes to their students resulting 

in a decline in AIM by their students. 

Meyer (1980) surveyed 120 prospective elementary teachers concerning 

their feelings about mathematics and what they felt accounted for their feelings. 

She found that teachers were the most significant factor affecting their attitudes, 
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regardless of whether the prospective elementary teachers' attitudes were 

positive or negative. 

Ma (1999) found that 87% of the United States elementary teachers in her 

study either accepted students' claims or did not investigate their claim 

mathematically and she attributed this to their less favorable attitudes toward 

mathematics. She suggested that the two attitude factors that came into play 

were whether the teacher was interested in the student's claim and the 

confidence level of the teacher. Ma found that when the teachers were not 

confident in their ability to pursue the mathematics involved, they did not 

investigate the student's claim. 

Measuring Mathematics Attitudes 

The measurement of mathematics attitudes can be obtained in a variety of 

ways. For example, attitudes toward mathematics can be determined through 

direct observations, interviews, questionnaires, student drawings and writings, 

and attitude scales. Aiken (1985) pointed out that attitude scales have proven to 

be the most popular method of measuring attitudes because of its "greater 

efficiency and apparent objectivity" (p. 3234 ). 

The earliest instruments used to measure attitudes toward mathematics 

simply measured a student's like or dislike of a subject. These instruments were 

not of much value to teachers because they were not well defined in what they 

measured (Reyes, 1980). During the mid to late 1970's, there was a move in the 

development of attitude scales from a composite measure to a trend of 
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multiscore measures. For example, the Fennema-Sherman Mathematics 

Attitude Scales (Fennema & Sherman, 1976) consist of nine well-defined 

subscales including confidence, usefulness, and effectance motivation consisting 

of 12 questions each, 6 positively and 6 negatively worded. In addition, there are 

a variety of instruments that measure a specific attitude such as the Mathematics 

Anxiety Rating Scale (MARS) and Dowling's Mathematics Confidence Scale 

(1978). Aiken's (1985) reported that "the reliabilities of well-constructed scales of 

attitude toward mathematics are usually in the 0.80s and 0.90s" (p. 3234 ). 

The Attitude Toward Geometry Scales (ATGS) was developed by Utley 

(2004 ). The ATGS was developed after reviewing a variety of existing 

instruments used to measure attitudes toward mathematics (e.g. Akin, 1974; 

Fennema & Sherman, 1976; Dowling, 1978; Tapia, 1996). The ATGS was 

created to study preservice teachers' confidence to learn geometry, perceived 

usefulness of geometry, and enjoyment of geometry. The Likert-type instrument 

has been found to be a valid and reliable instrument to use with the general 

college student population (n = 264; Cronbach alpha = 0.96) and with preservice 

teachers (n = 100; Cronbach alpha = 0.97) (Utley, 2004 ). 

Self-Efficacy 

In addition to attitude, self-efficacy is an affective variable that is important 

when individuals are doing and teaching mathematics. According to Bandura 

(1986), how a person thinks, believes, and feels will affect how they behave. 
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Thus, the effects of their actions partially affect their thoughts and reactions to a 

task. 

Self-efficacy is defined as a person's opinion of himself or herself based 

on prior experiences. Bandura (1977) pointed out that self-efficacy is a situation­

specific belief. Perceived self-efficacy is defined by social learning theorists as a 

person's sense of confidence regarding his or her performance of specific tasks. 

Efficacy is concerned not with the skills one has but with the judgments of what 

one can do with whatever skills one possesses. A person with a positive self­

efficacy tends to persist until they succeed while a person with a negative self­

efficacy tends to stay away from or quit difficult tasks. 

Bandura (1977, 1986, 1997) has set up a theoretical framework for the 

study of teacher efficacy. He argues that individuals' beliefs are influenced by 

two classes of expectations - outcome expectation and efficacy expectation. 

Outcome expectation refers to a person's estimate that a given behavior will lead 

to a certain outcome. For example, when teachers think that good instruction 

can offset the influence of a poor home environment they are said to have high 

outcome expectancy. Efficacy expectation refers to a person's conviction that he 

or she can successfully execute the behavior required to produce a desired 

outcome. For example, when teachers are confident that they are personally 

capable of good instruction and can offset the influence of a poor home 

environment they are said to have high personal teaching efficacy or efficacy 

expectation. Gibson and Demo (1984) state that: 
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Outcome and efficacy expectations are differentiated because individuals 

can believe that certain behaviors will produce certain outcomes, but if 

they do not believe that they can perform the necessary activities, they will 

not initiate the relevant behaviors, or if they do, they will not persist 

(p. 570). 

Bandura (1977) suggests that self-efficacy is most malleable in the early 

stages of learning. Research has shown that pre-service teachers reevaluate 

their teaching efficacy beliefs as they engage in new tasks or when they feel a 

task is important for their future. In contrast, in-service teachers' teaching efficacy 

beliefs are resistance to change once these beliefs are firmly established (Gist & 

Mitchell, 1992). 

Sources of Self-efficacy Beliefs 

The interaction between an individual's efficacy beliefs with environmental 

and behavior events impacts the individual's efficacy beliefs. Therefore, this 

relationship provides an opportunity for the individuals efficacy beliefs to be 

changed (Dellinger, 2002). According to Bandura (1986, 1997) self-efficacy 

beliefs can be enhanced or raised through four main types of influence: mastery 

experiences, vicarious experiences, social persuasion, and changes in 

physiological and emotional states. Mastery experiences are the most influential 

way to help individuals create a strong sense of efficacy. Individuals gauge the 

results of their performance on a task and their interpretation of this performance 

influences their self-efficacy beliefs (Pajares, 1997). Through the successful 
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performance of tasks, individuals can enhance their self-efficacy; however, 

Bandura (1997) cautions that if a person only experiences success that he or she 

will be easily discouraged by failures. Individuals need to develop a resilient 

sense of self-efficacy in order to overcome obstacles and failures. 

A second influential way to enhance self-efficacy beliefs is through 

vicarious experiences where others model behavior. The more closely that an 

individual identifies with the model, the stronger the influence of that model. 

When an individual can identify with the model and the model performs well, the 

individual's belief that he or she can succeed has been raised. On the other 

hand, when the model does not perform well the individual's belief that he or she 

can succeed is undermined (Bandura, 1997; Tschannen-Moran, Hoy, & Hoy, 

1998). 

The third way of strengthening an individual's self-efficacy beliefs is 

through social persuasion. Through verbal and nonverbal communication from 

others, an individual can be persuaded or dissuaded of his or her capability to 

master a given activity. Social persuasion may involve a pep talk or feedback on 

a performance task (Tschannen-Moran, Hoy, & Hoy, 1998). Social persuasion 

has a weaker influence on self-efficacy beliefs than does mastery or vicarious 

experiences (Pajares, 1997). The effect of persuasion depends on the credibility, 

trustworthiness, and expertise of the persuader (Bandura, 1986). 

A fourth way an individual's efficacy belief may be altered is through his or 

her physiological and emotional states. Pajares (1997) noted that when an 

individual has a strong emotional response to a task, cues are provided about the 
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anticipated reaction of the individual. How the individual perceives his or her 

response determines how his or her efficacy belief will be affected. When 

individuals experience a positive emotional response, they tend to view the 

experience as an energizer and their self efficacy beliefs are enhanced; however, 

when they experience aversive emotional responses, their perceptions of their 

capabilities are lowered thus lowering their self-efficacy beliefs (Bandura, 1997). 

Teacher Efficacy 

Teacher efficacy is a form of self-efficacy relevant to education (Gibson & 

Dembo, 1984; Henson, 2001; Tschannen-Moran, Hoy, & Hoy, 1998) and has 

gained increased attention among researchers (Pajares, 1992). A teacher's 

efficacy belief has been defined in a variety of ways, such as "the extent to which 

the teacher believes he or she has the capacity to affect student performance" 

(Berman, McLaughlin, Bass, Pauly, & Sellman, 1977, p. 137) or as teachers' 

"confidence in their ability to promote students' learning" (Hoy, 2000, p. 2). 

Similar to self-efficacy, research has shown that teacher efficacy consists of two 

related constructs: personal teaching efficacy and teaching outcome expectancy 

(Gibson & Dembo, 1984 ). Personal teaching efficacy is the belief in one's 

competence in teaching (Tschannen-Moran & Hoy, 2001 ). Teaching outcome 

expectancy is the belief that effective teaching results in a positive effect on 

student learning (Enochs, Smith & Huinker, 2000). 

The study of teacher efficacy originated with RAND researchers' 

examination of whether teachers believed they could control the reinforcement of 
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their actions (Armor et al., 1976). As a construct, teacher efficacy is about a 

quarter of a century old; its meaning and measure are still a subject of debate 

(Henson, 2001; Tschannen-Moran, Hoy, & Hoy, 1998). Enochs, Smith, and 

Huinker (2000) pointed out that Bandura asserts that self-efficacy beliefs are 

situational specific; therefore measures should be used to measure a specific 

task such as teaching. Teacher efficacy has been the focus of study by several 

researchers (e.g. Enochs & Riggs, 1990; Gibson & Dembo, 1984; Guskey, 1988; 

Pajares, 1997; Woolfolk & Hoy, 1990). Philippou and Christou (2002) point out 

that with respect to the learning and teaching of mathematics, teacher efficacy is 

an area in need of further research. 

Effects of Teacher Efficacy 

The construct of efficacy has been acknowledged as having important 

implications for the field of education. The belief that one can effectively teach is 

critical to quality instruction as well as to adherence to reform issues of best 

practice (Allinder, 1994; Coladarci, 1992; Guskey, 1988; Stein & Wang, 1988) 

and to the types of instruction utilized (Gibson & Dembo, 1984 ). Coladarci (1992) 

found that personal teaching efficacy and teaching outcome expectancy are 

strong predictors of a teacher's commitment to teaching with teaching outcome 

expectancy as the stronger of the two as a predictor. Teacher efficacy has been 

shown to be related to both student outcomes and to teacher behavior. 

Teacher efficacy and student outcome. Teacher efficacy has been found 

to be correlated to student achievement in reading (Armor, et al, 1976; Ashton & 
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Webb, 1986) and mathematics (Allinder, 1995; Ashton & Webb, 1986; Tracz & 

Gibson, 1986). Researchers have found that students of efficacious teachers 

tend to outperform students in other classes on achievement tests such as the 

Iowa Test of Basic Skills (Moore & Esselman, 1992) and the Ontario Assessment 

Instrument Pool (Ross, 1992). Additionally, teacher efficacy has been found to be 

related to students' sense of self-efficacy (Anderson, Greene, & Loewen, 1988) 

and student motivation (Midgley, Feldlaufer, & Eccles, 1989). 

Teacher efficacy and teacher behavior. Teacher efficacy has been found 

to be related to teacher behaviors. Gibson and Dembo (1984) found that the 

more efficacious the teacher the more they tended to persist with struggling 

students, the less they criticized incorrect student responses and the more 

flexible they were if the classroom routine was interrupted. Teachers with high 

teaching efficacy tend to be more open to try new instructional methods and 

search for improved teaching strategies (Allinder, 1994; Czernaik & Schriver, 

1994; Guskey, 1988). Highly efficacious teachers tend to use inquiry, discovery 

and student-centered teaching strategies (Allinder, 1994; Czernaik, 1990; 

Enochs, Smith, & Huinker, 2000). Allinder (1995) found that teachers with a high 

sense of teacher efficacy set higher goals for their students. Teachers exhibiting 

a high degree of teacher efficacy tend to be more likely to use learning centers, 

observation activities, simulations, and small group discussions (Czerniak & 

Schriver, 1994 ). 

Bandura (1977) suggests that teachers with a low teaching efficacy tend 

to believe that student motivation and performance rests with the home 
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environment rather than the teacher. Low efficacious teachers tend to be more 

concerned with student behavior rather than student learning and tend to rely on 

traditional teacher-directed strategies such as lectures (Czerniak & Schriver, 

1994 ). Wenner (2001) examined the science and mathematics efficacy beliefs of 

both in-service (N=101) and prospective teachers (N=187). Based upon 

participant responses to the Science Teaching Efficacy Belief Instrument 

(Enochs & Riggs, 1990) and a variation of this instrument developed by 

substituting mathematics for science, his study suggests that low teacher efficacy 

is a significant contributing factor to teachers' reluctance to teach mathematics 

and science. Similarly, Ashton & Webb (1986) found that teachers whose self­

efficacy is low with reference to a particular subject would reduce teaching time 

for that subject or avoid teaching that subject altogether. 

Efficacy Beliefs of Prospective Teachers 

Bandura (1977) suggested that teaching efficacy is malleable early in the 

learning process then tends to be resistant to change. Therefore, researchers 

have studied how teaching efficacy develops among prospective teachers. 

Woolfolk and Hoy (1990) found that teaching efficacy of prospective teachers is 

linked to their attitudes toward children and issues of control. Researchers have 

found that student teachers' personal teaching efficacy was positively, although 

weakly, related to lesson presentation, questioning, and management of student 

behavior when rated by their supervising teacher (Saklofske, Michaylu, & 

Randhawa, 1988). Teaching efficacy of prospective teachers has been found to 
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increase during methods courses and then fall during student teaching (Hoy & 

Woolfolk, 1990; Spector, 1990). Huinker and Madison (1997) found that 

mathematics methods courses have a positive effect on prospective teachers' 

mathematics teaching efficacy. 

Measuring Teacher-Efficacy 

Teacher efficacy as a construct was first conceived in 1976 by Rand 

researchers in their study of teacher characteristics and student learning. This 

first measure of teacher efficacy was grounded in Rotter's social learning theory 

(Tschannen-Moran & Hoy, 2001 ). The Rand researchers placed two statements 

on their questionnaire and asked teachers to indicate their level of agreement 

with the statements. The sum of the two statements was called teacher efficacy 

(TE). These two statements were: 

1. When it comes right down to it, a teacher really can't do much because 

most of a student's motivation and performance depends on his or her 

home environment. 

2. If I really try hard, I can get through to even the most difficult or 

unmotivated students. 

When a teacher agrees with the first statement, he or she is indicating that 

environmental factors are a stronger influence on student learning than the 

teacher's ability to effectively teach. Statements that deal with environmental 

factors were labeled general teaching efficacy (GTE); Bandura (1977) referred to 

this construct as teaching outcome expectancy (TOE). When a teacher agrees 
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with the second statement, he or she is indicating his or her confidence in his or 

her ability to effectively help students learn. Statements of this type have been 

referred to as personal teaching efficacy (PTE). 

In the early 1980s, Gibson and Dembo (1984) sought to construct and 

validate a reliable way to measure teaching efficacy. They used the two items 

from the RAND study that corresponded to Bandura's (1977) self-efficacy and 

outcome expectancy of social cognitive theory to develop their 30-item Teacher 

Efficacy Scale. Factor analysis revealed a two construct instrument that directly 

related to Bandura's two-factor theoretical model of self-efficacy. 

There have been a variety of subject specific modifications of the Gibson 

and Dembo instrument. In 1990, Enochs and Riggs published a Science 

Teaching Efficacy Belief Instrument {STEBI) for prospective elementary teachers 

to measure efficacy of teaching science. Consistent with the Gibson and Dembo 

TES, they found two uncorrelated factors that they called personal science 

teaching efficacy and science teaching outcome expectancy. Using the STEBI, 

several researchers developed other subject-specific teacher efficacy 

instruments. Sia (1992) developed the Environmental Education Efficacy Belief 

Instrument (EEEBI) for preservice teachers. Additionally, Rubeck and Enochs 

(1991) established an instrument to measure chemistry teaching efficacy. 

Huinker and Enochs (1995) developed the Mathematics Teaching Efficacy 

Beliefs Instrument (MTEBI) for prospective teachers by modifying the STEBI. 

Similar to the STEBI, the MTEBI is a 5-point Likert-scaled instrument consisting 

of two scales - personal mathematics teaching efficacy (PMTE} and mathematics 
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teaching outcome expectancy (MTOE). The Reading Teachers' Self-Efficacy 

Instrument (RTSEI) for prospective teachers was developed by Szabo, Mokhtari, 

and Walker (in review) following the pattern of the STEBl-8 and the MTEBI. 

Summary 

Researchers have argued that attitudes and self-efficacy play a significant 

role in the actions taken by teachers in the classroom. Additionally, NCTM's 

Principles and Standards for School Mathematics (2000) suggest that in order for 

students to be successful in mathematics they must believe they can do 

mathematics and that they must see the usefulness of the mathematics they are 

studying. Exploring the impact of a non-traditional geometry content course on 

prospective elementary teachers' attitudes and mathematics self-efficacy will 

enable mathematicians and mathematics educators to better plan and implement 

mathematics content courses in the future. In addition, changing the attitudes 

and self-efficacy of prospective elementary teachers should be an important part 

of teacher education programs. 
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Chapter Ill 

Methodology 

The purpose of this study was to describe the characteristics of non­

traditional geometry content course designed for prospective elementary 

teachers and examine prospective elementary teachers' perceptions about these 

characteristics as affecting their attitude toward geometry and their mathematics 

teaching efficacy. Both qualitative and quantitative data were collected and 

analyzed to determine the characteristics of the non-traditional geometry content 

course and to gain information concerning the attitudes toward geometry and 

mathematics teaching efficacy of each prospective elementary teacher. The 

appropriateness of combining qualitative and quantitative methodology is 

addressed in this chapter along with data collection and data analysis procedures 

unique to each research paradigm. 

The research questions guiding this study were: 

1. What are the characteristics of a non-traditional geometry content 

course for prospective elementary teachers? 

2. What are the perceptions of prospective elementary teachers about the 

characteristics of this non-traditional geometry content course? 
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3. Are prospective elementary teachers' attitudes toward geometry 

influenced by this non-traditional geometry content course? 

4. Are prospective elementary teachers' mathematics teaching efficacies 

influenced by this non-traditional geometry content course? 

Combining Qualitative and Quantitative Designs 

This study employed both qualitative and quantitative data. Creswell 

( 1994) and Tashakkori and Tedd lie ( 1998, 2003) refer to this as combining or 

mixing of approaches. Debate continues today about the appropriateness of 

combining the two approaches within a single study, with some researchers 

arguing that only quantitative methods are truly scientific and others arguing the 

reverse. Researchers adhering to either of these arguments are considered 

purists. Purists argue that the two approaches should not be mixed because their 

assumptions are in opposition to each other. Purists also tend to adhere to the 

methodology that fits their particular worldview. According to Creswell (1994 ), 

the situationalists believe that the approach should be appropriate to the 

situation. In other words, the research questions drive whether the researcher 

should follow a quantitative or qualitative methodology rather than the 

researcher's worldview. Pragmatists have begun to argue the value of 

combining qualitative and quantitative methods within a single study and argue 

against the existence of a dichotomy between the two approaches. Additionally, 

some social scientists are leaning toward acceptance of a mixing of methods. 
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Researchers first suggested combining methods for purposes of 

triangulation of data (Patton, 2002). They believed that triangulation strengthened 

the validity of the results. After reviewing some fifty-seven articles using mixed 

methods, Greene, Caracelli & Graham (1989) posited five major purposes for the 

combination of qualitative and quantitative methods. The current study was 

guided by three of these purposes. First, the combination of methods helps in the 

classical sense of triangulation of data. In other words, it helps in testing for the 

convergence and consistency of findings from various data sources. Second, the 

methods are complementary to each other. They tend to clarify and illustrate 

findings from one method with findings from the other method. The data overlap 

and different aspects of the phenomena are revealed. Patton (2002) also stated 

that they are used in a complementary fashion in order to "answer different 

questions that do not easily come together to provide a single, well-integrated 

picture of the situation" (p. 557). Third, combining of methods can expand the 

study by providing richness and details, therefore adding scope and breadth to 

the study. 

Creswell (1994) and Tashakkori and Teddlie (1998, 2003) describe 

several designs for combining methods. These researchers describe what they 

independently refer to as a mixed-model design. In this design qualitative and 

quantitative approaches are mixed at a variety of steps in the research process. 

For example, the approaches might be mixed in the introduction, in how the 

literature review is put together, in the statement of the purpose and research 

questions, in the methodology section and/or in the reporting of the results. 
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Creswell suggests that this design uses the advantages of both qualitative and 

quantitative methods; however, the researcher must be well versed in both 

methods to be effective. 

Research Design 

According to Creswell (1994 ), a phenomenological study is conducted 

when the researcher plans to examine and describe human experiences - a 

telling of their life-world experiences. Mertens (1998) states that phenomenology 

"seeks the individual's perceptions and meaning of a phenomenon or 

experience" (p. 169). Therefore in this study, a form of phenomenology was 

conducted in order examine and describe the perceptions of preservice 

elementary teachers about the characteristics of the non-traditional geometry 

content course as affecting their attitude toward geometry and their mathematics 

teaching efficacy. 

For triangulation of data, videotaping occurred during approximately half of 

the class periods, field notes were taken by the researcher, course documents 

were examined, interviews with four students and the instructor were conducted, 

and self-reported surveys were solicited. According to Mertens (1998), in 

qualitative research the researcher is the instrument since he or she decides 

what to observe and what to write down. In this study the researcher will take on 

the observation role that Adler and Adler (1994 as cited in Mertens, 1998) have 

described as peripheral-member-researcher. In this role the researcher 
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observes and interacts "closely enough with members to establish an insider's 

perspective, without participating in the activities of the core group" (p. 318). 

Participants and Instructional Setting 

The participants for this study were twenty-one (19 female and 2 male) 

prospective elementary teachers who were enrolled in a non-traditional geometry 

content course at a land grant university in the Midwestern United States. While 

the participants were not selected at random, all students who were enrolled in 

the non-traditional geometry content course were invited to participate and only 

those who agreed to participate were included in this study. Demographic 

information was collected on each participant using the form in Appendix A. 

The average age of the participants was 21. 7 years. Twenty (95%) of the 

participants were of traditional age (~ 25 years old), with the remaining 

participant's age being 27. Eighteen (86%) Caucasians were the largest group of 

the participants, with non-Caucasians (Asian American and Native American) 

making up the remaining three (14%) participants. 

A non-traditional geometry content course designed for prospective 

elementary teachers was the instructional setting for this study and the course is 

specifically designed to help prospective elementary teachers gain conceptual 

understanding of geometric concepts. Student participation in this study was a 

part of the normal course work with the exception of the pre and post data 

collected. 
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Data Collection 

In this study, data were collected over an extended period of time primarily 

in a classroom situation. There were multiple data sources including both 

qualitative and quantitative data. These multiple data sources helped the 

researcher gain a more complete and accurate picture thus helping to confirm 

the interpretations made by the researcher. 

Qualitative Measures 

Observations. Field observations were an important part of this study in 

order to make sense of the classroom interactions and happenings that would 

have been difficult to capture and record at a later time from reflection. Field 

observations occurred throughout the course and each of these sessions was 

videotaped. Careful attention was made not to video any student who wished not 

to participate in this study. Field notes were taken by the researcher during each 

of these class periods including teaching strategies that were used, reminder 

notes to be sure and review certain scenarios on the videotape, and general 

notes on the happenings in the classroom; 

Written Responses. Prospective teachers were asked to provide 

information about their attitudes and perceptions of themselves as an elementary 

teacher focusing particularly on those aspects that relate to their attitude toward 

geometry and to their own mathematics teaching efficacy. These were in the 

form of a pre- and a post questionnaire (Appendix B). Additionally, the post 

survey asked participants to tell which aspect (CD problems, class discussions, 
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projects, group activities, writing or seeing multiple solution strategies) of the 

course impacted them the most as a future teacher and why. 

Journal prompts were a normal part of the course and solicited students' 

thoughts and feelings about their experiences in the course including various 

instructional strategies. At the end of the course the instructor asked students to 

respond to journal prompts about how their experiences in the course had 

effected their confidence to learn geometry, their confidence in their ability to 

teach geometric concepts, their belief in the usefulness of learning geometry, and 

their enjoyment of learning geometry. See Appendix C for samples of the journal 

prompts. 

lnfe,views. Audio taped, semi-structured interviews were conducted with 

prospective elementary teachers and with the course instructor. From those 

prospective elementary teachers willing to be interviewed six were selected 

based upon their responses to the pre/post attitude survey. Three students 

interviewed had an increase in their overall attitude score and three students had 

a decrease in their overall attitude score. The interview protocol (Appendix D) 

consisted of questions in three areas: (a) past and present experiences in 

geometry content courses, (b) attitude, and (c) teaching efficacy. These 

interviews allowed the researcher to gain a better picture of the perceptions of 

prospective teachers about the characteristics of the non-traditional geometry 

content course and how these characteristics affected the prospective teachers' 

attitude toward geometry and their mathematics teaching efficacy. Audio 

recordings of the interviews were transcribed and analyzed. The researcher used 
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what Maxwell (1996) refers to as a categorizing strategy that utilizes coding and 

thematic analysis. According to Rubin & Rubin (1995) "coding is the process of 

grouping interviewees' responses into categories that bring together the similar 

ideas, concepts, or themes you have discovered, or steps or stages in a process" 

(p. 238). Additionally, Schuman (as cited in Glesne & Peshkin, 1992) states that 

data gained from the interview can be a form of validity check for the responses 

of the participants to the various surveys and instruments. 

Course Documents. Course documents were evaluated to give the 

researcher some insight into the characteristics of the course. Included in this 

analysis was the student workbook style text, the course web site, and student 

work samples. Glesne and Peshkin (1992) suggest that "documents corroborate 

your observations and interviews and thus make your findings more 

trustworthy ... They also provide you with historical, demographic, and sometimes 

personal information that is unavailable from other sources" (p. 52). According to 

Patton (2002), these documents can provide the researcher with information that 

can not be observed. 

Quantitative Measures 

Attitude Toward Geometry Scales (ATGS). The Attitude Toward 

Geometry Scales (Appendix E) was designed to specifically measure the 

attitudes of prospective elementary teachers toward geometry. The instrument 

contains three subscales: 1) confidence to learn geometry, 2) usefulness of 

studying geometry, and 3) enjoyment of studying geometry. The instrument is a 
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5-point Likert-scaled survey consisting of thirty-two statements, seventeen 

positively and fifteen negatively worded statements. Negatively worded items 

were recoded prior to analysis. Scores on the instrument can range from 32 to 

160, with higher scores indicative of an overall higher attitude toward geometry. 

Illustrative items are "I believe that I will need geometry for my future" and "I feel 

sure of myself when doing geometry problems". Utley (2004) reported the 

instrument to have content, criterion, and construct validity. Additionally, she 

reported the Cronbach alpha coefficients of 0.96 for the instrument as a whole 

and subscale Cronbach alpha coefficients of 0.95 for the confidence subscale, 

0.93 for the usefulness subscale, and 0.92 for the enjoyment subscale. 

Mathematics Teaching Efficacy Beliefs Instrument. Hu inker and Enochs 

(1995) developed the Mathematics Teaching Efficacy Beliefs Instrument (MTEBI) 

for prospective teachers. The MTEBI is a 5-point Likert-scaled instrument 

consisting of two scales - personal mathematics teaching efficacy (PMTE) and 

mathematics teaching outcome expectancy (MTOE). The PMTE scale consists 

of thirteen statements and the MTOE scale consists of eight statements. The 

instrument contains eight negatively worded items that were recoded prior to 

analysis. Scores on the PMTE can range from 13 to 65 with higher scores 

indicating greater teaching efficacy. Scores on the MTOE can range from 8 to 40, 

with higher scores indicating a greater belief in their ability to impact student 

learning. Enochs, Smith, and Huinker (2000) performed a confirmatory analysis 

on the instrument and found that the two scales are independent of each other. 

Additionally, they reported Cronbach alpha coefficients of 0.88 on the PMTE 
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scale and 0. 77 for the MTOE scale. Illustrative items are "I know how to teach 

mathematics concepts effectively" from the PMTE scale and 'When the 

mathematics grades of students improve, it is often due to their teacher having 

found a more effective teaching approach" from the MTOE scale. A copy of this 

instrument is included in Appendix F. 

Procedure 

This study was conducted in four phases. After initial IRB approval 

(Appendix H), the first phase involved outlining the study to students in the non­

traditional geometry content course and asking students to participate in the 

study. Those agreeing to participate signed an informed consent outlining the 

study, completed a demographic survey, completed both the MTEBI and the 

ATGI instruments, and completed a pre-questionnaire. 

The second phase of the study involved the researcher conducting 

observations of twenty class sessions. Each of these observations involved the 

researcher talking field notes and videotaping. The field notes included 

comments by the instructor and students, general observations of the workings of 

the class and to review an episode from the classroom on the video. Additionally, 

during this phase course documents and journal prompts were collected. 

The third phase of the study involved participants again completing the 

MTEBI and the ATGI. Additionally, a post-questionnaire and a journal prompt 

concerning how their experiences in the course had effected their confidence to 
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learn geometry, feelings about their ability to teaching geometric concepts, belief 

in the usefulness of learning geometry, and enjoyment of geometry. 

The fourth phase of the study involved conducting interviews with six of 

the prospective elementary teachers that were willing to be interviewed. 

Interviewees were selected based on their responses to the questionnaires and 

their responses to the self-reporting MTEBI and ATGI instruments. Each 

interview was audio taped and lasted approximately forty-five minutes. 

Interviews were conducted during the fall academic semester, 2003. 

Additionally, the instructor was interviewed to gain information about the course 

and his perceptions of the course as affecting attitudes and teaching efficacy of 

the students. Table 1 shows an overview of data collected for the study. 

Table 1 

Overview of Data Collected 

Phase 1 Phase 2 Phase 3 Phase 4 

• Demographic • Course • MTEBI • Interviews 
Data Documents 

• ATGS 

• MTEBI • Video of Class 
Sessions • Post-

• ATGS Questionnaire 

• Observation of 

• Pre- Class 
Questionnaire Sessions 

• Journal 
Prompts 
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Data Analysis 

Quantitative data was analyzed in order to determine to what extent the 

non-traditional geometry content course had an impact on prospective 

elementary teachers' attitudes toward geometry and to their mathematics 

teaching efficacies. Item responses from each instrument was coded and 

entered into SPSS 10.0 (SPSS, 1999) exactly as each appeared on the 

instrument. All negatively worded items were recoded in order to allow for 

consistency in reporting of the scoring, the higher the score the more positive the 

respondents' attitude or teaching efficacy. Descriptive statistics (means, 

standard deviations, ranges, and confidence intervals) were reported on each 

administration of all instruments as well as for the subscales of all instruments. 

Additionally, Cronbach's alphas are reported on each administration of all 

instruments as well as for the subscales of all instruments. Paired t-tests were 

conducted to check for a significant difference between the pre- and posttest 

scores on the ATGI and the MTEBI. 

A constant comparative method (Strauss & Corbin, 1998) for analysis was 

used for the qualitative data. To understand the changing attitudes or teaching 

efficacy of prospective teachers requires openness to emergent themes and 

areas for exploration that can only be revealed through continual analysis of the 

data as it is collected. Thus, this study employed the constant comparative 

method for analysis of data, creating a process of identifying categories, themes, 

and patterns in the data. These categories, themes, and patterns, grounded in 

the data, were used to describe the characteristics of the course and the 
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perceptions of prospective teachers about the characteristics of the non­

traditional geometry content course and how the characteristics affected the 

students' attitude toward geometry and their mathematics teaching efficacy. 

While data were analyzed for emergent themes the themes of whole class 

discussion, group activities, geometric constructions, projects, and reflective 

writing were predetermined. Cresswell (1998) recommends that a general 

review of data be conducted to help the researcher get an overall picture and to 

help the researcher begin the process of examining the data. Next, he 

advocates creating charts or displays of the data in order for the researcher to 

begin to develop codes or categories. At this point he suggests the researcher 

develop five or six categories to sort data into with the idea that this coding 

scheme can be expanded to include more categories as necessary. 

Ethical Considerations 

All participants' responses were coded to protect their anonymity. The 

use of pseudonyms for all participants was used to help ensure the privacy and 

confidentiality of all participants. An assurance of privacy and confidentiality was 

presented in writing to all participants. 
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Summary 

A summary of each research question and the related measure and 

statistic follows: 

1. What are the characteristics of a non-traditional geometry content 

course for prospective elementary teachers? Videotapes, field notes, 

course documents, and interview transcripts were examined and a 

coding scheme established in order to see emergent themes and 

patterns. 

2. What are the perceptions of prospective elementary teachers about the 

characteristics of this non-traditional geometry content course? 

Videotapes, field notes, course documents, and interview transcripts 

were examined and a coding scheme established in order to see 

emergent themes and patterns. 

3. Are prospective elementary teachers' attitudes toward geometry 

influenced by this non-traditional geometry content course? 

Descriptive statistical analysis (means, standard deviations, and 

confidence intervals) and a paired t-test between the pre- and post 

ATGS were conducted. In addition, journal prompts, open-ended 

questionnaires, and interview transcripts were analyzed for emerging 

themes and patterns. 

4. Are prospective elementary teachers' mathematics teaching efficacies 

influenced by this non-traditional geometry content course? 

Descriptive statistical analysis (means, standard deviations, and 
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confidence intervals) and a paired t-test between the pre and post 

MTEBI were conducted. In addition, journal prompts, open-ended 

questionnaires, and interview transcripts were analyzed for emerging 

themes and patterns. 

The results of the data analysis are presented in Chapter IV with a 

discussion of the findings presented in Chapter V. 
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Chapter IV 

Results 

This study combined quantitative and qualitative data gathered from 

prospective elementary teachers to characterize a non-traditional geometry 

content course designed for prospective elementary teachers and to investigate 

prospective elementary teachers' perceptions about these characteristics as 

affecting their attitude toward geometry and their mathematics teaching efficacy. 

In this chapter research data will be presented that was gleaned from 

observations, written responses, interviews, course documents, and pre/post 

attitude and mathematics teaching efficacy surveys. The research questions 

guiding this study were: 

1. What are the characteristics of a non-traditional geometry content 

course for prospective elementary teachers? 

2. What are the perceptions of prospective elementary teachers about the 

characteristics of a non-traditional geometry content course for 

prospective elementary teachers? 

3. Are prospective elementary teachers' attitudes toward geometry 

influenced by this non-traditional geometry content course? 

4. Are prospective elementary teachers' mathematics teaching efficacies 

influenced by this non-traditional geometry content course? 
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In this chapter, four major sections will be presented. First, the 
i 

characteristics of the non-traditional geometry course will be described. Second, 

qualitative data will be examined to determine the perceptions of the prospective 

elementary teachers about these characteristics. In the third section, quantitative 

and qualitative data will be examined to determine the influence of the 

characteristics of this non-traditional geometry content course on the attitude 

toward geometry of prospective elementary teachers. The fourth section includes 

an examination of both quantitative and qualitative data to determine the 

influence of the characteristics of this non-traditional geometry content course on 

the mathematics teaching efficacy of prospective elementary teachers. 

Characteristics of a Non-Traditional Geometry Content Course 

The course examined in this study is a non-traditional geometry content 

course that was designed for prospective elementary teachers and referred to as 

Geometric Structures. The goal of the course was "to provide a discovery-based 

and creative experience with geometry ... [and to] support each student's growth 

toward being a confident, independent learner empowered to make sense of the 

geometric world" (Aichele & Wolfe, in press, p. iii). The topics covered in the 

course were aligned with topics that prospective elementary teachers encounter 

on competency and certification examinations. The course was organized 

around the interweaving of four types of manipulatives paper folding, geoboards, 

straightedge and compass, and miras to help students make sense of and 

represent basic geometric ideas. 
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During the first two weeks of classes, the instructor insured through 

discussion with the students that his view of teaching mathematics and student 

responsibility was understood. He shared his belief that most mathematics 

courses designed for prospective elementary teachers are "too authoritarian on 

the part of the teacher and too passive on the part of the student" (Field notes, 6-

17-03). In line with this, the course text stated that "practices for this course 

place substantially more of the burden for initiating and assessing learning on the 

shoulders of the student" (Aichele & Wolfe, in press, p. iv). Analysis of course 

documents, video tapes, and fieldnotes suggest that the instructor encourages 

and seeks to develop autonomous thinking among the prospective elementary 

teachers. 

One of the hallmarks of this non-traditional geometry course is whole class 

discussion fueled by a variety of activities including daily activity sheets, group 

activities, and geometric constructions. Additionally, students are given projects 

to work on outside of class. While projects are not a specific focus of whole class 

discussion, they are inextricably connected to students' sense making as it 

relates to their understanding of geometric concepts that are central in the whole 

class discussions. 

Creating An Environment Through Whole Class Discussions 

Implicit in the above stated goal for this course is the creation and 

development of a dynamic environment wherein students can discuss and 

grapple with significant mathematics. Contrary to the traditional lecture-oriented 
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structure of most college mathematics courses where students depend on the 

teacher to impart explanations and answers, this course provided students with 

the opportunity to listen and converse with each other about concepts they were 

struggling to understand and about concepts that made sense to them. Whole 

class discussions provided students with an avenue to continuously learn and/or 

reinforce their understanding of geometric ideas and terminology. Additionally, 

the opportunity to verbalize their thinking allowed students to think about and 

construct meaning about the various geometric concepts including the 

vocabulary studied throughout the course. The whole class discussions in this 

non-traditional geometry course can best be characterized as dialogic discourse 

(Wertsch & Toma, 1995). In other words, whole class discussions could be seen 

as give-and-take or two-way communication among students whose function was 

to generate meaning. Thus, the whole class discussions aided the creation of a 

classroom community wherein meaningful geometry concepts could be wrestled 

with. 

Examination of course documents, video tapes, and fieldnotes revealed 

that whole class discussions served a variety of purposes. These purposes 

included providing opportunities for students to raise questions they had, a 

source of ideas to help students make sense of the material, an opportunity for 

students to confirm their understanding of the material, an opportunity for 

students to share their ideas and strategies with the rest of the class, and an 

opportunity to encourage thoughtful reflection by the students. Additionally, 

whole class discussions allowed students to vocalize their struggles and 
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frustrations as they gained support and encouragement from others. The 
! 

instructor indicated that it is important to honor and accept this frustration 

because it is an essential part of the learning process. 

Whole class discussions were a major part of the class accounting for at 

least three fourths of a typical class period. Class discussions usually began with 

questions and/or issues that arose from the assigned daily activity sheets, 

geometric constructions, or group activities. Two students described a typical 

class discussion as "we went over the homework from the night before and 

various people went over how they have worked the problems" and "everybody 

would just tell how they got the answer and the different ways they came to that 

answer ... so you see a lot of different points of views." 

The instructor and developer of this course indicated that the pedagogical 

practices he used in teaching this course had gradually evolved over the past ten 

years through critical reflection of his own teaching and how students learn. His 

continual asking himself how can he ask better questions and how can he allow 

the students to do more of the thinking fueled much of his own personal evolution 

as a teacher and the design of this course. His current pedagogical practices in 

this course support students' construction of their own knowledge and his role 

could best be described as a facilitator. 

Observation of the class revealed that the instructor asked questions to 

facilitate and keep the discussion going and made decisions about how much 

time was spent on each activity. Questions were asked by the instructor to solicit 

student input on how they made sense of a particular problem such as "how did 
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someone do that problem," "did anyone do this problem in a different way," 

"someone else want to read their conclusions," or "did anyone describe this 

relationship differently?" Additionally, questions were asked to confirm student 

understanding. For example, the instructor would ask "do you all understand 

what Lori said", "how many follow what Becky said" or "does that make sense to 

you?" The instructor's continual probing, paraphrasing of student questions and 

answers, and efforts to encourage participants' vocalization of their mathematical 

understandings is characteristic of what Davis (1997) referred to as interpretive 

listening. 

The instructor and students worked together throughout the course to help 

students make sense of the material being studied. The instructor, together with 

the students, was responsible for creating a learning environment wherein 

meaningful geometry was grappled with and discussed while student 

construction of knowledge was supported. This dynamic and interactive 

environment, created by the ongoing whole class discussions, was fueled by the 

instructor's questioning and probing of student thinking and ideas. 

Daily Activity Sheets 

For this course, students used a 195-page packet that included general 

course information, group activities, and geometric constructions along with daily 

activity sheets. Daily activity sheets occasionally included pages for students to 

read introducing a new concept such as congruence conditions prior to the 

student working the activity sheets on that new concept. These activity pages 
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were identified with a tree in the upper right hand corner. At the end of each class 

period, the instructor would place page numbers corresponding to various pages 

in the student packet on the chalkboard for assigned activity sheets followed 

occasionally by a brief comment. These brief comments by the instructor 

included instructions that students were required to read a certain page, that a 

certain page indicated a new concept being added for discussion, or that certain 

pages were cutouts to be used with the previous page. For samples of the daily 

activity sheets see Appendix G. 

The daily activity sheets were used on a try first basis and "provide[d] an 

experiential basis for understanding the geometric concepts and relationships 

presented" (Aichele & Wolfe, in press, p. ii). The idea behind try first was that 

students were to attempt to complete and make sense of each of the activity 

sheets independently prior to discussion in class. The comment "do the 

assignment in advance, so we can talk about it" (fieldnotes 6-9-03) made by the 

instructor illustrates the idea behind try first and emphasizes to the students that 

it was okay if they did not fully understand an activity because they could bring 

their questions to class for discussion, thus setting the stage for the next whole 

class discussion. Typically, the instructor assigned four to six daily activity 

sheets at the end of each class period. The students came to the next class 

period with a myriad of questions. From a student's question, the instructor could 

glean whether they had no understanding, some understanding, or only slight 

holes in their understanding. Their questions also revealed when students 

thought they were on the right track and had realized they needed to reevaluate 
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their own understanding based on the discussion going on around them. Student 

questions fueled the whole class discussions along with the students various 

solution strategies. The instructor was always careful to read directions on each 

activity sheet prior to discussion of that sheet. This seemed to allow students 

time to focus on and think about their own reasoning on the activity as well as 

determining what their questions were on that particular activity. 

Each daily activity sheet consisted of a series of questions, activities, 

and/or writing prompts that assisted student sense making of various geometric 

ideas. The activity sheets allowed students to investigate, explore, make 

conjectures, ask questions, and communicate their thinking both in writing and 

orally during whole class discussions. For example, while studying the area of 

solid tile shapes, participants were asked, as part of a daily activity sheet, to 

describe any relationship they saw between the number of edge pegs and the 

area of a tile shape. Students' written responses consisted of descriptions in 

sentence form and/or a kind of algebraic-type equation. See Appendix G for 

samples of students' written responses. 

Group Activities 

In this course, the instructor referred to cooperative learning opportunities 

as group activities. As part of these group activities, students worked on and 

discussed a variety of group activities. While working in groups, students 

explored, observed, and made conjectures while having the support of their 

peers. Observations of group activities revealed that students who were shy or 
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hesitant to talk during whole class discussions were more open and willing to talk 

and discuss. During group activities, students were encouraged to listen to each 

other's ideas, ask questions, and explain their reasoning to aid in their 

understanding of the mathematical ideas involved in the activities. Group 

activities were used on average about every three or four class periods with the 

first group activity of the semester occurring during the third class period. 

Group activities in this course were used in two ways. First, group 

activities were used as a first try giving students an initial look at a geometric 

concept with the assistance of their group members. First try group activities 

tended to be centered on concepts that were being introduced for the first time in 

the course or to help students get started thinking about particularly difficult 

material. For many students, this first try was important to help them make sense 

of and understand the group activity. For example, students were asked to work 

with their group and figure out how to construct the perpendicular bisector of a 

line segment they had drawn on paper using paper folding. As a part of this 

group activity, students had to discuss and determine the meaning of the term 

perpendicular bisector. This sense making of mathematical vocabulary was 

typical of most of the group a_ctivities. This group activity allowed students to 

attempt and begin thinking about their first CD problem of the semester with the 

aid and support of their group members. First try group activities occurred during 

the last five to ten minutes of a class period. The expectation of the first try group 

activities was for the activity to be started in class, finished individually, and 

followed up the following class period with a whole class discussion. 
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' 

For one student an understanding of the term "convex" was important for 
I 

her understanding and ability to complete a first try group activity. The group 

activity involved students deciding which statements would make a good 

definition and which statements would make a bad definition for a kite. Katie and 

Becky discussed while the other two members of their group listened. Becky 

was trying to make sense of the term "convex". 

Becky: 

Katie: 

Becky: 

Katie: 

Becky: 

Katie: 

Becky: 

Katie: 

Becky: 

Katie: 

Becky: 

Do any of you guys know what a convex quadrilateral is? 

Convex goes out and concave goes in. 

Yes. 

And that is about all I know. 

Okay. [laughs] So convex would be one that a quadrilateral 

goes on. 

Yes, all I know is that you know cave is like, as in, cave in. 
So, 

[interrupts] So, no cave ins. 

Yes. 

Okay, so that means that all of these [meaning figures on the 
activity sheet] would be convex. 

I think so, yea. 

So if it doesn't go back into its self it should be convex. 

After the group seemed to have made sense of the term "convex", they went on 

to discuss the ''What is a Kite" group activity (see Appendix G). For these two 

students, making sense of the term convex was important for them to understand 

the statements that represented the possible definitions of a kite; while for the 
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remaining two members of their group and for many other groups this term did 

not seem to be an issue. 

Second, group activities were used as a second try. Second try group 

activities gave students a second look at a geometric idea and allowed them to 

validate their understanding of the idea or to clarify where their confusion or 

grappling with a concept lay. These second try group interactions occurred 

during the first five to ten minutes of the class period and allowed students to ask 

others in their group about things that had confused them or did not make sense 

as well as check their solutions with others in their group. One example of a 

second try group activity was when students were assigned two informal proofs, 

called four-step problems in the course (see Appendix G). Although the 

instructor had given a rare mini-lecture the previous day on solving these 

problems, few students came to class with these problems completed. 

According to the instructor, this is a common occurrence in the course, thus, he 

used the idea of a second try group activity for students to help each other make 

sense of these types of problems. In his estimation, this allowed the whole-class 

discussion to be more rich in that more students had participated in completing 

and making sense of the two four-step problems. 

While students worked on their assigned task in their groups, the 

instructor walked around observing and listening to the various groups' sense­

making of the task. The instructor's facilitation of group activities came in the 

form of his posing questions to help students initiate dialogue among their group 
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members. Additionally, the instructor acted as an encourager in order to get all 

students engaged in the group activity. 

Geometric Constructions 

Geometric constructions were an integral part of this course and were 

referred to as CD problems. The initials CD stand for construct and describe. 

On each geometric construction students were required to perform the 

construction and then describe their process in their own words. The instructor 

emphasized to students that describing their process was an important ability to 

help them make sense of the vocabulary and that the written and oral 

descriptions would give students practice communicating their descriptions. 

Throughout the semester CD problems were performed using three techniques: 

paper folding, straight edge and compass, and mira. Each of these techniques 

were used for about one-third of the course. An example of a student's response 

to a CD problem can be found in Appendix G. 

On the second day of class, CD problems were introduced using paper 

folding. The following excerpt illustrates how CD problems were typically 

incorporated into the daily whole class discussions: 

Instructor: On your sheet of paper draw a line segment. [Instructor 

illustrates this on his own sheet of paper.] By folding this 

paper, I would like you to find a line which is perpendicular to 

this line [segment] and passing through the middle of this 

line [segment]. 
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[Instructor walks around and encourages students to talk and work 

together.] 

Instructor: Can I have a student describe what they did? 

Amy: You put the two dots together on top of each other. 

Instructor: [Repeats and illustrates Amy's instructions] Put the two dots 

together. 

Amy: And fold it. 

Instructor: Put the two dots together and fold it. What do you think 

Mandy? Does that look perpendicular? 

Mandy: Yes. 

Throughout the semester, students would orally verbalize their method of 

constructing a CD problem in class. During this verbalization, other students 

could be seen performing the construction and possibly writing out what they 

were doing. The instructor either had the students demonstrate the CD 

construction process themselves or he would illustrate the construction according 

to a student's description. When the instructor illustrated the construction, he 

was very careful to do exactly what the student said. This helped the students to 

see when their wording was missing a step or if they needed to alter their 

wording to fit their meaning. 

Projects 

Projects were also a part of the complex myriad of tasks used throughout 

the semester to allow students to demonstrate their understanding of various 

geometric concepts. Analysis of course documents, video tapes, and fieldnotes 
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revealed that projects were used to provide students a creative way to illustrate 

their understanding. The instructor encouraged the students to be creative and 

imaginative as well as to connect new concepts with previously discussed 

concepts. Projects provided an avenue for students to deepen their 

understanding of the geometric concepts. The instructor shared with students 

that he was interested in how they thought about and communicated their 

understanding of geometric ideas. 

Projects during this course included creating three-dimensional origami 

models, examining relationships between two geometric concepts, and 

demonstrating an understanding of geometric concepts. The prospective 

elementary teachers created origami models of cubes, stellated octahedrons, 

and stellated icosahedrons. They were shown how to fold a basic parallelogram 

unit and the end product, then participants were required to assemble their 

stellated polyhedron without assistance from instructor. Some students relied 

heavily on help from other students to get their model together. 

Relationship projects required participants to examine two related 

geometric concepts in detail. For example, during this course the prospective 

elementary teachers were asked to think about two terms - definition and 

property. They were then asked to describe in their own words what was meant 

by each term and demonstrate through illustrations the relationship between the 

two terms. See Appendix G for an example of this project. 

In a third type of project, prospective elementary teachers were asked to 

demonstrate their understanding of a geometric concept. For example, during 
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this course students studied the idea of symmetry. As a real world application of 

symmetry students examined the seven types of border patterns. The 

prospective elementary teachers were shown examples of previous students' 

border projects and asked to create their own set of all seven-border patterns. 

Students used a variety of creative techniques to create their border patterns 

including computer graphics, hand-drawn graphics, stickers, and shapes cut from 

a die-cut machine. A couple of students border pattern sets were centered 

around a theme such as a picnic or sports. 

Perceptions of Prospective Elementary Teachers About These Characteristics 

In order to determine the perceptions of prospective elementary teachers 

about the characteristics of this non-traditional geometry course, data were 

examined from post-questionnaires, journal prompts, and interviews. From this 

data, prospective elementary teachers' perceptions of whole class discussions, 

group activities, geometric constructions, and projects were examined along with 

their feelings about the course as a whole. Additionally, a theme that emerged 

from student interviews was the perceptions of prospective elementary teachers 

about the learning environment of this non-traditional geometry course. 

Perceptions About The Course 

Six prospective elementary teachers were asked to describe what they 

would tell someone else about their experiences during this non-traditional 

geometry course. Additionally, on the post-questionnaire, twenty prospective 
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elementary teachers described their feelings about geometry based on their 

experiences in this course. Analysis of interviews and post-questionnaires 

revealed that participants used words like frustrating, overwhelming, fun, 

worthwhile, and hands-on to describe their experiences. Participants tended to 

be perturbed by the class, but felt it was a worthwhile course to take. Below are 

excerpts from participant interviews about their experiences during this course. 

Nancy: "I hated, I liked the class .... I got frustrated, because I just felt 

there were lots of times that you can learn from other people, but 

you never knew if you were right or wrong .... l did think it was a 

fun class and it was a worthwhile class." 

Jean: "I found so much use and I get so excited about this class .... It was 

a hands-on learning situation. I am a very visual person and I 

learn better that way." 

Amy: "It wasn't necessarily hard, but there was a lot of outside work. 

There was a lot of things that I hadn't' done before like the CD 

problems, using miras, and origami. I liked doing those things, it 

was fun once I figured it out." 

Ruth: "Probably frustrating because I was so used to being told whether 

this is the right way, this is the wrong way to do it, that I always 

had the backup that you were correct. And when you get thrown 

into this environment all of a sudden, what do you think, how did 

you get that, and not being reassured that you were correct, it was 

72 



frustrating ... It was not difficult, it's was just an adjustment to get 

used to after 12 years or so of being told you were correct." 

As Ruth's and Nancy's responses reveal, students were frustrated that 

they did not have that reassurance of a correct answer. Additionally, the 

excerpts below from participant responses on the post-questionnaire about their 

experiences during this course indicated students were frustrated that they did 

not have reassurance that their answers were correct. 

Ashley: "I dislike math because it is not my best subject and frustrates 

me. I feel dumb when in math class. This course was okay, but 

I wanted more direct answers than what I got." 

Kristina: "I feel that I could have learned a lot more if I was given the 

chance .... I think I would have done a lot better if I was taught." 

During observations these same comments of frustration about whether 

participants were right or wrong were overheard frequently at the beginning of 

the course, but much less by the end of the course. Kristina's comment also 

typifies most of the students' notions of what it means to teach at least this was 

the impression from student comments heard at the beginning of the course. In 

other words, they expect to be told what to do and how to do it by the teacher. 

This sense of "not being taught" captures the essence of the non-traditional 

nature of this course. 

Prospective elementary teachers responses' to the post-questionnaire 

revealed similar responses to Nancy's, Jean's, and Amy's interview responses 

indicating that the class was worthwhile, fun, and hands-on. For Anna, 

73 



"Geometry was more interesting and could be fun." Amanda felt that she 

"learned a lot more geometry than in the past" while Becky liked "all the hands-on 

stuff." For Beth, it was an enjoyable experience and "proved that we can basically 

figure out a lot of this material on our own." 

Whole Class Discussion 

Participants were asked to respond to a journal prompt about whole class 

discussions. The prompt read as follows: 

Most of the class time in this course is taken up by whole class 

discussion of the day's assignment. This replaces the more 

traditional lecture. My thoughts and feelings about this are ... 

Two mathematics professors and two graduate students coded each 

response according to whether they felt the student's response indicated a 

positive, negative, or neutral feeling about whole class discussion. Nine (42.9%) 

students responded with positive thoughts and feelings about whole class 

discussion. Three examples of students' positive thoughts follow: 

• I like it better because it is more interactive. The students get to 

contribute their ideas instead of just listening to the teacher's ideas. 

• I like it. I often do things a 'hard way', hearing others ways of doing 

things helps me to be sure I understand the reasons behind an idea 

and not just the process. I feel that many students didn't like this 

method because they have to think, but I feel it builds confidence in 
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thinking and as teachers we need confidence in our thinking or our 

students won't feel comfortable in theirs. 

• I learn better by doing things myself rather than listening how to do 

things. I believe it improves my learning. 

Six (28.6%) students expressed negative feelings about whole class discussions. 

Three example statements of negative feelings follow: 

• In all honesty, I learn better when there is a set lecture and I am able to 

ask the professor questions and get an answer from him. When the 

discussion is left to the class I tend not to ask questions and leave the 

class wondering/doubting myself. 

• I do not feel if the class as a whole is struggling for answers, that 

expecting them to work through it without the aid of guidance is the 

answer. Call me a traditionalist, but I believe a teacher does just that, 

teaches. It is okay to guide students to an answer, but I have no 

confidence I will remember what we covered because the points a) 

were not reiterated and b) I'm not sure we had the correct answer. 

• Well, I feel that I would be doing a lot better if I was being taught by a 

teacher. Since we do not get straight forward answers I am never sure 

if what I am doing is correct. Therefore, I am left with doubt of my 

ability in this class .... 

While some students tended to have either a positive or negative feeling about 

whole class discussions, six (28.6%) students expressed thoughts and feelings 

that seemed to be neutral. Three examples of neutral responses follow: 
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• Sometimes it is helpful to hear other student's ideas, but when there is 

confusion among everyone sometimes it is best for the teacher to step 

in with the right answer on how to do it. 

• I like that we don't have to sit through lecture everyday, but sometimes 

I get frustrated by the lack of explanation. 

• It works great some days because I find that there are different ways to 

work problems and not just one teacher way. Some days it is very 

frustrating when no one knows how to do the problem. 

Interviews revealed that for some students these discussions were 

equated with increased understanding and confidence building. It made them 

"feel more confident" and that "if there is something you don't know you can 

... get it right then" without having to go "until the end of the year and still not 

understand." Active listening during the whole class discussions helped many 

students "to understand and it also helps you to teach it." Students also felt that 

talking about it helped them understand because "by you saying something out 

loud ... [it] makes even more sense when I hear myself say it, instead of just 

writing it down on paper." For Ruth, whole class discussions were both helpful 

and a waste of time. For example, Ruth stated "I felt like whole class discussions 

were a waste of time, because you are telling people to get up there and they 

would do it incorrectly and then other times it was helpful because I didn't know 

how to do a problem and someone else did and it was helpful." 

On the post-questionnaire, participants were asked to respond to a 5-point 

Likert-type scale consisting of a series of five questions about whole class 
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discussion. Approximately two-thirds of the prospective elementary teachers 

indicated that whole class discussions were an enjoyable part of the course and 

that it helped them to make sense of the geometric ideas. Seventeen (81 %) did 

not believe whole class discussions were a waste of time thus indicating they 

were worthwhile. Additionally, slightly more than one-half of the participants 

believed that whole class discussions helped them gain confidence to learn and 

teach geometric concepts. 

Group Activities 

Observations of group work revealed that students who were more often 

quiet and reserved during whole class discussions seemed to be more open to 

participate in the small group discussions. Some students found the group 

activities to be very helpful, while others did not find them to be helpful at all. 

Jean felt that the group work "helped a lot because even if you didn't get it or if 

your like I got it right and they are like no I got this you know you can still work 

the problem over." For Anna, "group activities gave [her] a chance to get 

feedback from others and interact with classmates." Additionally, Anna 

commented "I would say that what helped me the most would be group work, just 

because I was able to get into a small group, and when I'm in smaller groups I'm 

more likely to answer a question, to throw out my answer versus the entire 

classroom." On the other hand, Jamie felt group activities were a "waste of time." 

She also indicated that she might feel differently if she had had another group to 

work in or if they had had "more time in groups." Amy stated "I'm not a huge fan 
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of group work;" however, she also thought "it was nice to have help and work it 

out together, and that always helped." 

On the post-questionnaire, participants were asked to respond to a 5-point 

Likert-type scale consisting of a series of five questions about group activities. 

Approximately three-fourths of the prospective elementary teachers felt that 

hearing other student's ideas during group activities were an enjoyable part of 

the class and that it helped them make sense of the geometric concepts. The 

majority (85.7%) of the participants indicated that hearing another student's ideas 

during group activities was not a waste of their time, thus suggesting that it was a 

worthwhile part of the course. Slightly more than one-half of the participants 

believe that hearing other students' idea's during group activities helped them 

gain confidence to learn and to teach geometry. 

Geometric Constructions 

On the post-questionnaire, prospective elementary teachers were asked 

what part of the course had impacted them the most as future teachers. More 

than half of all participant responses indicated that CD problems had impacted 

them the most. Examination of responses revealed that participants believed 

that CD problems improved their mathematical thinking and their ability to 

communicate that thinking. For example, Joseph felt they helped him "think 

about math," while Beth suggested that "CD problems, though not my favorite, 

showed me that I have the ability to both figure out a solution and explain my 

thinking," and Jean believed that she had "gained the necessary skills to be able 
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to not only work these problems, but to verbalize my process as well." 

Furthermore, for Jane they provided an "interesting way to look at things." 

Additionally on the post-questionnaire, participants were asked to respond 

to a 5-point Likert-type scale consisting of a series of five questions about CD 

problems. One-third of the prospective elementary teachers felt they were an 

enjoyable part of the class while another one-third did not find them an enjoyable 

part of the class. Two-thirds of the participants did not find CD problems a waste 

of time; thus, indicating they believed they were a worthwhile part of the class. 

Slightly less than half of the prospective elementary teachers believed that CD 

problems helped them make sense of geometric concepts and helped them gain 

confidence to teach geometric concepts effectively. In response to whether CD 

problems helped them gain confidence to learn geometric concepts, eight 

(38.1 %) participants felt CD problems did help while eight (38.1 %) participants 

indicated CD problems did not help them gain confidence to learn geometric 

concepts. 

Analysis of interview data revealed that participants found the CD 

problems to be frustrating, valuable, interesting, and increased understanding. 

For Jamie, CD problems were "frustrating at first, but they were valuable and 

definitely a keeper ... at the end I got better at figuring them out on my own." 

Although she tried the CD problems at home "it was frustrating for me because I 

wasn't getting it. I didn't understand what I was doing." Similarly, Amy felt "they 

could be very frustrating, because I don't really like the trial and error stuff, I like 

to go, this is how you do it.. .. When you did figure it out you definitely 
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remembered it and you definitely knew it." Jean liked the idea that there were 

different ways to do the constructions and "it kept your interest." Jamie thought it 

was "really cool to see that there was so many different ways" to do a CD 

problem. Additionally, Ruth "found them kind of interesting. I liked messing 

around with the folding." Participants felt the CD problems helped them to 

understand the geometric concept better. For example, Jamie indicated they 

helped her "understand and visualize the problems better" and Jean stated that 

"you learned by others doing them in different ways." 

Projects 

For some prospective elementary teachers, projects helped develop their 

understanding of a geometric idea and provided them with self-assurance that 

they truly did understand. For example, Lucy stated "once I did the projects, I 

understood that portion or section better" and Jamie commented "they helped 

you understand better and it helped you remember the material because you 

totally understood." For Anna, projects allowed her to express her 

understanding. She wrote, "projects gave me a chance to put into words/art 

what/how I understood a subject and I was able to break it down in my own 

words." 

On the post-questionnaire, participants were asked to respond to a 5-point 

Likert-type scale consisting of a series of five questions about projects. Slightly 

more than one-half of the participants found completing projects to be enjoyable 

and helped them to make sense of geometric ideas while approximately one 
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quarter of the participants did not find completing projects enjoyable and did not 

feel they helped them make sense out of geometric ideas. Three-fourths of the 

participants felt that completing projects was an important use of their time 

indicating they thought the projects were a worthwhile part of the class. About 

one-half of the prospective elementary teachers indicated that completing 

projects helped them gain confidence in learning and teaching geometry. 

Classroom Community/Environment 

Although no explicit questions were asked about the classroom 

environment, the classroom community/environment emerged, primarily from 

interviews, as a major characteristic of the course and seemed to be highly 

important to students. Students expressed that a positive learning environment 

was created in this course. During class discussions, some students "felt 

comfortable enough to speak in the class ... [and] to say no this is what I got and 

this is how I derived this answer." Students appeared to connect this comfort to 

their ability to learn as one student pointed out "[if] you feel comfortable 

speaking ... then you feel comfortable to learn" and that as they spent more time 

discussing their grades improved and "they felt more comfortable to learn." 

Additionally, students equated this comfort within the environment with their 

confidence to learn with statements such as "I think when you feel more 

comfortable you feel more confident in the class." One student even commented 

that if the professor "makes the classroom feel comfortable and you don't feel like 

you're going to get in trouble or embarrassed when you don't have a right answer 
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it [referring to the non traditional class structure] would work." In addition to 

discussing the importance of their comfort level, students pointed out that "at first, 

until you get used to it [referring to the non traditional class structure], it is 

overwhelming" and "at first it [referring to the non traditional class structure] is 

very overwhelming ... [but] it gets better with the discussion and as you get used 

to trying to figure out things rather than just using a formula." 

Attitude Toward Geometry 

A total of twenty-one prospective elementary teachers completed the 

32-item Attitude Toward Geometry Scales (ATGS)(Utley, 2004) at the beginning 

of the first class period of the semester and again during the last week of 

coursework to determine if their attitude toward geometry changed during the 

course of the semester. With a possible range of 32 to 160 on the ATGS, 

prospective elementary teachers' scores on the first administration of the ATGS 

ranged from 55 to 143. On the second administration the scores ranged from 48 

to157. A higher score on the scale is indicative of an overall higher attitude 

toward geometry. Individual participant scores are reported in Table 2. 

Utley (2004) reported the ATGS to have good reliability with Cronbach 

alpha coefficients of 0.96 for the instrument and subscale Cronbach alpha 

coefficients of 0.95 for the confidence subscale, 0.93 for the usefulness subscale, 

and 0.92 for the enjoyment subscale. Using Cronbach alpha, the reliability of the 

data on the ATGS for all twenty-one participants was 0.97 for the pre-test and 

0.98 for the post-test. Cronbach alpha coefficients for the three sub scales 

revealed a reliability of 0.93 for the pre-test and 0.97 for the post-test for the 
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confidence subscale, 0.95 for the pre-test and 0.96 for the post-test for the 

usefulness subscale, and 0.95 for the pre-test and 0.96 for the post-test for the 

enjoyment subscale. 

An examination of the individual differences (see Table 2) on the ATGS 

from the pre-test to the post-test revealed that two-thirds of the students had an 

increase in their overall attitude toward geometry score ranging from 4 to 59 

points. The remaining one-third of the students had a decrease in their overall 

attitude toward geometry score ranging from 1 to 11 points. Descriptive analysis 

(see Table 3) of the students responses to the surveys showed an increase in 

the groups mean score from the pre-test (M = 94.10, SD = 22.82) to the post-test 

(M = 105.00, SD = 25.80). The mean difference was 10.90 with a 95% 

confidence interval for the difference in the means of 3.05 to 18. 75. A paired 

t-test showed a significant difference (t20 = 2.90, p=.009) between the pre-test 

and post-test scores of the participants indicating that the prospective elementary 

teachers had a higher overall attitude toward geometry upon completion of the 

non-traditional geometry content course. 
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Table 2 

Individual Results for Attitude Toward Geometry Scales 

Pre Post Pre Post Pre Post Pre Post 
Sex ATGS ATGS Conf Conf Jol Jol Use Use 

1 F 116 105 39 33 36 34 41 38 

2 M 107 132 35 49 36 40 36 43 

3 F 101 121 41 48 30 36 30 37 

4 F 55 48 18 17 16 17 21 14 

5 F 55 84 18 28 13 25 24 31 

6 F 105 109 35 39 29 30 41 40 

7 M 68 98 21 29 19 36 28 33 

8 F 93 110 27 42 33 37 33 31 

9 F 114 143 34 53 38 44 42 46 

10 F 77 136 38 58 18 36 21 42 

11 F 87 91 29 30 22 21 36 40 

12 F 123 116 51 47 34 32 38 37 

13 F 78 91 31 37 24 27 23 27 

14 F 106 105 37 36 32 29 37 40 

15 F 72 67 25 24 22 20 25 23 

16 F 101 114 34 40 30 34 37 40 

17 F 97 88 41 46 23 15 33 27 

18 F 143 157 52 58 43 49 48 50 

19 F 86 82 33 32 26 25 27 25 

20 F 117 121 42 47 36 36 39 38 

21 F 75 87 41 43 17 20 17 24 

Note: Conf refers to the confidence to learn geometry subscale; Joy refers to 
the enjoyment of studying subscale; Use refers to the usefulness to study 
geometry subscale; ATGS refers to the overall instrument 
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TABLE 3 

Means, Standard Deviations, and Results of the Paired Samples T-Test for the 

Attitude Toward Geometry Scale (N=21) 

Administration Mean Standard Deviation 

Pre-Test 94.10 22.82 

Post-Test 105.00 25.80 

95% 
Standard Confidence 

Mean Error of Mean Interval of the 
Difference Difference Difference t(20) p 

Lower Upper 

10.90 3.76 3.05 18.75 2.90 .009** 

**p<.01 

Confidence to Learn Geometry Subscale 

Quantitative results. The twelve confidence to learn geometry subscale 

items were analyzed to determine if the prospective elementary teachers 

confidence levels significantly changed. An examination of individual differences 

revealed that fifteen (71 %) of the students' scores increased from the pre-test to 

the post-test ranging from 1 to 10 points and six (29%) of the students' scores 

decreased from 1 to 6 points from the pre-test to the post-test. Descriptive 

statistics reporting the mean and standard deviation of the pre- and post-tests 

are reported in Table 4. 
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TABLE 4 

Means, Standard Deviations, and Results of the Paired Samples T-Test for the 

Confidence Subscale of the Attitude Toward Geometry Scale (N=21) 

Administration Mean Standard Deviation 

Pre-Test 

Post-Test 

Mean 
Difference 

34.38 

39.81 

Standard 
Error of Mean 

Difference 

95% 
Confidence 

Interval of the 
Difference 

Lower Upper 

9.27 

10.95 

t(20) p 

5.43 1.55 2.19 8.67 3.50 .002** 

**p<.01 

Against a potential range in scores of 12 to 60 on the confidence to team 

geometry subscale, the prospective elementary teachers scores ranged from 18 

to 52 on the pre-test and 17 to 58 on the post-test. Examination of data 

presented in Table 4 revealed that prospective elementary teachers achieved a 

higher mean score on the post-test (M = 39.81, SD= 10.95) than on the pre-test 

(M = 34.38, SD = 9.27). After noting these descriptive differences, a paired 

t-test was used to determine if the mean difference was statistically significant. A 

95% confidence interval was calculated for the mean difference. Results of the 

paired t-test are shown in Table 4. The mean difference was statistically 

significant (t20 = 3.50, p = .002), indicating that the prospective elementary 

teachers felt more confident to study geometry. Thus, quantitative results 
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indicate the characteristics of this non-traditional geometry content course had a 

positive effect on prospective elementary teachers' confidence to learn geometry. 

Qualitative results. A more in-depth examination of the confidence of 

participants was provided through qualitative data collection and analysis. Data 

analysis was conducted on twenty journal prompt responses, twenty-one open­

ended questionnaires, and six semi-structured interviews. In order to ensure 

confidentiality of participants, pseudonyms were assigned to participants. 

Twenty of the twenty-one participants responded to the journal prompt: 

"Have the experiences in this course had an effect on your confidence to 

learn geometry? Please comment." 

Three mathematics education professors, one mathematics professor, and one 

doctoral student examined participant responses to the journal prompt and coded 

each response according to whether the response indicated a positive, negative, 

or no effect on the participants confidence to learn geometry. When at least four 

out of five of the raters agreed upon a code for a response, the code was 

considered to be reliable. Two responses were eliminated due to unreliable 

coding. All percentages are reported based on the number of responses with 

reliable codes. 

Results of this journal prompt revealed that fourteen (78%) of the 

prospective elementary teachers' felt their experiences in this non-traditional 

geometry course had a positive effect on their confidence to learn. In other 

words, they felt their confidence to learn geometry had increased. In this 

response, Mandy indicated, "Yes, this class forced me to think on my own. 
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Before in math classes I would just do what I needed to get by." Similarly, Julia 

commented, "I understand some of the concepts better; therefore, I have more 

confidence in doing geometry problems." 

While more than three-fourths of the participants felt their experiences had 

a positive effect on their confidence to learn, three (17%) felt their experiences 

had a negative effect. Nancy indicated that her experiences had a negative 

impact, stating, "I felt that it was really hard to learn throughout this course. I 

really need a teacher who will lecture or at least someone whom you feel you can 

talk to and ask questions." Additionally, one participant's comment suggested 

that her experiences in the course had not affected her confidence. She stated "I 

do feel as if I have more knowledge of geometry but my confidence level in 

learning hasn't really increased." 

Examination of data from the journal prompt responses, open-ended 

questionnaires, and semi-structured interviews revealed that prospective 

elementary teachers tended to equate changes in their confidence to learn 

geometry to their level of understanding and to the characteristics of the course. 

Participants felt that as their level of understanding increased so did their 

confidence to learn geometry. Jean indicated, "I think you are more confident 

when you understand the material better. It has to improve your confidence. If 

you don't know what you are talking about, you are obviously not going to be 

confident talking about it." Lynn commented, "I feel that I have learned a lot more 

geometry than in the past. It has made me more confident in the fact that when I 

apply myself my mind really does do math." Similarly, Mandy stated, "I feel that I 
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have learned a lot more geometry than in the past. It has made me more 
I 

confident in the fact that when I apply myself my mind really does do math." 

Several prospective elementary teachers attributed the characteristics of 

the class as effecting their confidence to learn geometry. For some prospective 

elementary teachers, the structure of the course positively effected their 

confidence. For example, Beth stated "I feel the structure of the class allowed me 

to confidently learn the material" while Mandy commented "yes, this class forced 

me to think on my own. Before, in math classes, I would just do what I needed to 

get by." Additionally, Jamie felt her confidence had increased but suggested 

that "you really learn a lot more when you have to figure out things on your own, 

as opposed to lecture." Jamie also attributed the whole class discussions as 

allowing her to see a variety of ways to solve a problem; therefore, she indicated, 

"I think your confidence level is increased by having so many different ways to 

explain it and to understand it." Only a few prospective elementary teachers 

indicated that the structure negatively effected their confidence. Nancy indicated, 

"I felt it was really hard to learn throughout this course. I really need a teacher 

who will lecture." Kristina stated "I feel that I could have learned a lot more if I 

was given the chance. What I mean is that I left this classroom maybe five times 

feeling good (confident) about my ability in geometry. However, I think I would 

have done a lot better if I was taught." 

In summary, approximately three-fourths of the prospective elementary 

teachers believed that their experiences in this non-traditional geometry course 

had a positive effect on their confidence to learn geometry. Additionally, the 
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prospective elementary teachers tended to attribute thi~ positive effect to the 

characteristics of the course and/or to their increased understanding of geometric 

concepts. 

Enjoyment Subscale 

Quantitative results. The ten enjoyment subscale items were analyzed to 

determine if the prospective elementary teachers' enjoyment levels as related to 

geometry significantly changed. The construct ranges from a lack of involvement 

in studying geometry to active enjoyment of studying geometry. An examination 

of individual differences revealed that thirteen (62%) students' scores increased 

from the pre-test to the post-test ranging from 1 to 18 points, seven (33%) 

students' scores decreased from 1 to 8 points from the pre-test to the post-test, 

and one student's score remain unchanged. Descriptive statistics reporting the 

mean and standard deviation of the pre- and post-tests are reported in Table 5. 
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TABLE 5 

Means, Standard Deviations, and Results of the Paired Samples T-Test for the 

Enjoyment Subscale of the Attitude Toward Geometry Scale (N=21) 

Administration Mean Standard Deviation 

Pre-Test 27.48 8.32 

Post-Test 30.62 8.98 

95% 
Standard Confidence 

Mean Error of Mean Interval of the 
Difference Difference Difference t(20) p 

Lower Upper 

3.14 1.39 0.24 6.04 2.26 .035* 

*p<.05 

Against a potential range in scores of 10 to 50 on the enjoyment subscale, 

the prospective elementary teachers' scores ranged from 13 to 43 on the pre-test 

and 17 to 49 on the post-test. Examination of data shown in Table 5 revealed 

that prospective elementary teachers achieved a higher mean score on the post-

test (M = 30.62, SD= 8.98) than on the pre-test (M = 27.48, SD= 8.32). After 

noting these descriptive differences, a paired t-test was used to determine if the 

mean difference was statistically significant. A 95% confidence interval was 

calculated for the mean difference. Results of the paired t-test are shown in 

Table 5. The mean difference was statistically significant (t2o = 2.26, p = .035), 

indicating that the prospective elementary teachers were more involved and felt 

more enjoyment to study geometry. Thus, quantitative results indicate the 
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characteristics of this non-traditional geometry content course did have a positive 

effect on prospective elementary teachers' enjoyment to study geometry. 

Qualitative results. A more in-depth examination of the enjoyment and 

motivation of participants was provided through qualitative data collection and 

analysis. Data analysis was conducted on twenty journal prompt responses, 

twenty-one open-ended questionnaires, and six semi-structured interviews. In 

order to ensure confidentiality of participants, pseudonyms were assigned to 

participants. 

Twenty of the twenty-one participants responded to the journal prompt: 

"Has your enjoyment of studying geometry been affected by your 

experiences in this course? Please Comment." 

Three mathematics education professors, one mathematics professor, and one 

doctoral student examined participant responses to the journal prompt and coded 

each response according to whether the response indicated a positive, negative, 

or no effect on the participants motivation and enjoyment to study geometry. 

When at least four out of five of the raters agreed upon ·a code for a response, 

the code was considered to be reliable. Two responses were eliminated due to 

unreliable coding. All percentages are reported based on the number of 

responses with reliable codes. 

Analysis of the eighteen responses to this journal prompt revealed that 

twelve (67%) of the prospective elementary teachers' felt their experiences in this 

non-traditional geometry course had a positive effect on their level of motivation 

and enjoyment to study geometry. In other words, they believed that their level 
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of motivation and enjoyment had increased. For instance, Beth stated, "Prior to 

this class, I did not enjoy geometry. My attitude has changed because I have 

been successful in this class, but my enjoyment came with understanding the 

material." Cheri commented that she "enjoyed this class a lot" and Amy stated 

"Some of the things that I enjoyed doing I did not realize were even part of 

geometry." Additionally, Carol commented "I used to dislike geometry because I 

really did not know how to work most of the problems, but now I know I can 

handle some of it." 

While two-thirds of the participants felt their experiences had a positive 

effect on their level of enjoyment to study geometry, two ( 11 % ) felt their 

experiences had a negative effect. Nancy commented that she had "never really 

enjoyed geometry ... ! hate it now and can't wait for it to be over." Similarly, Ruth 

indicated that she "dislike[d] geometry even more, probably because you do not 

like what you don't understand." 

The remaining four (22%) students did not perceive their enjoyment of 

studying geometry changed as a result of their experiences in the non-traditional 

geometry course. Katie commented "I have never really enjoyed it. So, I believe 

that whether good or bad the experiences wouldn't affect me." Lucy stated "Math 

is math. But of the [various] types, geometry is the best but nothing to get me 

excited." 

An examination of data from the journal prompt responses, open-ended 

questionnaires, and semi-structured interviews revealed that prospective 

elementary teachers attributed changes in their level of motivation or enjoyment 
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to characteristics of the course and to their level understanding. Several 

participants felt their level of motivation and enjoyment changed with their level of 

understanding. Beth commented, "my enjoyment came with understanding the 

material." Ashley stated, "I enjoyed working with my fellow students because 

they added to my understanding of the concepts." Similarly, Carol indicated, "I 

used to dislike geometry because I really did not know how to work most of the 

problems, but now I know I can handle some of it." Ruth stated, "I dislike 

geometry even more, probably because you do not like what you don't 

understand." 

Several prospective elementary teachers cited their experiences in this 

non-traditional geometry course as instrumental in changing their level of 

motivation and/or enjoyment. For example, Jamie stated "I really enjoyed 

several of the projects and learning neat things to make." Lynn believed that 

specific topics and projects helped her increase her confidence. She commented 

"I have enjoyed the mandalas, borders, tessellations, and hands-on projects." For 

Jamie, seeing multiple ways of doing problems made studying geometry "more 

enjoyable" and motivated her to keep trying "If I start one way and don't 

understand I start over." Additionally, Jamie indicated that whole class 

discussions "helped me try harder." For another student the characteristics this 

course motivated her to get her assignments done. Jean commented, "Even 

when I was with my family I was still thinking about geometry .... And even though 

it is going to be explained in class you still wanted to try to get it right before class 

started." 
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In conclusion, approximately three-fourths of the. prospective elementary 

teachers perceived that their experiences in this non-traditional geometry course 

positively effected their level of motivation and enjoyment in studying geometry. 

In addition, the prospective elementary teachers attributed this positive effect to 

the characteristics of the course and/or to their increased understanding of the 

geometric concepts. 

Usefulness to Study Geometry Subscale 

Quantitative results. The ten usefulness to study geometry subscale items 

were analyzed to ascertain whether the prospective elementary teachers' belief's 

about the usefulness to study geometry significantly changed. An examination of 

individual differences revealed that twelve (57%) of the students had their scores 

increase from the pre-test to the post-test ranging from 2 to 21 points and nine 

(43%) of the students had their scores decrease from 1 to 7 points from the pre­

test to the post-test. Descriptive statistics reporting the mean and standard 

deviation of the pre- and post-tests are reported in Table 6. 

Against a potential range in scores of 10 to 50 on the usefulness to study 

geometry subscale, the prospective elementary teachers' scores ranged from 17 

to 48 on the pre-test and 14 to 50 on the post-test. Examination of data shown in 

Table 6 revealed that prospective elementary teachers achieved a higher mean 

score on the post-test (M = 34.57, SD= 8.81) than on the pre-test (M = 32.24, 

SD = 8.34 ). After noting these descriptive differences, a paired t-test was used 

to determine if the mean difference was statistically significant. A 95% confidence 
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interval was calculated for the mean difference. Result~ of the paired t-test are 

shown in Table 6. The mean difference was not statistically significant 

(t20 = 1.77, p = .091 ), indicating that the prospective elementary teachers' beliefs 

about the usefulness to study geometry did not significantly change. Thus, the 

characteristics of this non-traditional geometry content course did not have an 

effect on prospective elementary teachers' beliefs about the usefulness to study 

geometry. 

TABLE 6 

Means, Standard Deviations, and Results of the Paired Samples T-Test for the 

Usefulness Subscale of the Attitude Toward Geometry Scale (N=21) 

Administration Mean Standard Deviation 

Pre-Test 32.24 8.34 

Post-Test 34.57 8.81 

95% 
Standard Confidence 

Mean Error of Mean Interval of the 
Difference Difference Difference t(20) p 

Lower Upper 

2.33 1.32 -0.41 5.08 1.77 .091 

Qualitative results. A more in-depth examination of participants' belief in 

the usefulness to study geometry was provided through qualitative data collection 

and analysis. Data analysis was conducted on twenty journal prompt responses 
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and six semi-structured interviews. In order to ensure confidentiality of 

participants, pseudonyms were assigned to participants. 

Twenty of the twenty-one participants responded to the journal prompt 

"Has your belief in the usefulness of geometry been affected by your 

experiences in this course? Please comment." 

Three mathematics education professors, one mathematics professor, and one 

doctoral student examined participant responses to the journal prompt and coded 

each response according to whether the response indicated a positive, negative, 

or no effect on the participants notion of the usefulness of geometry. When at 

least four out of five of the raters agreed upon a code for a response, the code 

was considered to be reliable. No responses were eliminated due to unreliable 

coding. All percentages are reported based on the number of responses with 

reliable codes. 

Analysis of the twenty responses to the journal prompt revealed that 

eleven (55%) of the prospective elementary teachers' felt their experiences in 

this non-traditional geometry course had a positive effect on their view of the 

usefulness of geometry. In other words, they felt their perception of how useful 

geometry is increased. For example, Carol stated, "I hadn't realized all the 

places that geometry was present, so learning about all the concepts that go 

along with it has been helpful to me." Lynn believed that her experiences in the 

class had helped her to see geometry as more useful and commented that she 

believed that "geometry concepts are useful and needed in many real-life 

experiences and careers." 
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While slightly more than half of the participants believed their experiences 

helped them to see the usefulness of geometry, five (25%) believed that their 

experiences had an adverse effect on their belief. Ruth stated, "I believe this 

class was a waste of my time. I don't believe I learned anything compared to the 

time spent in this classroom." Nina felt that some topics were useful, but that she 

"really did not see why [she] need[ed] to know most of the information." 

The remaining four (20%) participants did not feel that their experiences in 

the non-traditional geometry course had altered their perceptions of the 

usefulness of geometry. Mandy stated, "I have always believed that geometry is 

useful." Anna commented, "In all reality, no they haven't changed. I do feel that 

having basic knowledge of geometry is good ... " 

Analysis of data from both the journal prompts and the semi-structured 

interviews revealed that prospective elementary teachers attributed their beliefs 

about the usefulness of geometry to their perception of its uses in the world 

around them and/or to its usefulness to them in their future careers as 

elementary teachers. Several students believed their perception of the 

usefulness of geometry could be equated with their newly acquired perception of 

geometry in the world around them. Carol commented that she "hadn't realized 

all the places that geometry was present. As Lynn put it "geometry concepts are 

useful and needed in many real-life experiences and careers." Additionally, Jean 

felt that studying geometry had helped her mind think more mathematically and 

had helped her while working at her summer job. 
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A few students attributed their belief in the usefulness of geometry to their 

future careers as elementary teachers. Anna felt that "having a basic knowledge 

for geometry is good for [her] and the students [she] plan[s] to teach." Similarly, 

Mandy felt that her experiences helped her to see that it was "very useful for [her] 

to learn how to teach geometric ideas" and Kristina believed that she could utilize 

the study of "simpler problems with first, second and third graders." 

Several students equated their belief in the usefulness of geometry to both 

their perception of its uses in the world around them and to its usefulness to them 

in their future careers as elementary teachers. Ashley felt that is was useful to 

her career as an elementary teacher because "you are teaching little kids and it 

is something they need to know" and to her everyday life because she felt there 

"were lots of things that you could relate it to." Additionally, Ashley believed that 

geometry was a good tool for many people's occupations. Amy felt that the 

geometric concepts being studied in this course could be "used in everyday life 

experiences;" however, she questioned the value of some of the topics because 

she felt they were too "advanced for the field [she] was entering." 

In summary, slightly more than one-half of the prospective elementary 

teachers felt their experiences in this non-traditional geometry course had 

positively effected their belief in the usefulness of geometry. Additionally, they 

attributed these changes to their belief in the usefulness of geometry to their 

perception of its uses in the world around them and/or to its usefulness to them in 

their future career as elementary teachers. 
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Perceptions of Prospective Elementary Teachers About Teaching Geometry 

In order to determine prospective elementary teachers' perceptions of how 

their experiences in a non-traditional geometry course influenced their belief in 

their ability to teach geometric concepts a variety of qualitative and quantitative 

data was examined. At the beginning and end of the course participants were 

asked to complete the 21-item Mathematics Teaching Efficacy Beliefs Instrument 

(MTEBI) (Huinker & Enochs, 1995) and an open-ended questionnaire with two 

questions pertaining to teacher efficacy. At the end of the course students were 

asked to respond to a journal prompt and five prospective elementary teachers 

were interviewed. 

Quantitative Results 

A total of twenty-one prospective elementary teachers completed the 

21-item MTEBI at the beginning of the first class period of the semester and 

again during the last week of coursework to determine whether their mathematics 

teaching efficacy had changed during the course of the semester. The MTEBI is 

a 5-point Likert-scaled instrument that contains two scales: 1) personal 

mathematics teaching efficacy (PMTE) and 2) mathematics teaching outcome 

expectancy (MTOE). These two scales are viewed as separate constructs and 

not pieces of a larger construct; therefore, each scale will be examined 

separately. Individual participant scores on the scales are reported in Table 7. 
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Table 7 

Individual Results for Mathematics Teaching Efficacy Beliefs Instrument 

Sex Pre PMTE Post PMTE Pre MTOE Post MTOE 
1 F 54 53 29 31 

2 M 36 46 30 32 

3 F 46 51 27 29 

4 F 54 51 33 38 

5 F 47 46 34 33 

6 F 47 47 25 25 

7 M 42 43 30 24 

8 F 44 44 37 20 

9 F 57 64 33 37 

10 F 52 59 31 36 

11 F 51 52 26 24 

12 F 49 51 32 32 

13 F 37 34 29 28 

14 F 41 40 32 32 

15 F 51 47 21 20 

16 F 49 52 33 32 

17 F 50 51 31 27 

18 F 47 47 32 28 

19 F 41 40 31 24 

20 F 36 34 31 35 

21 F 54 54 26 32 

Enochs, Smith, and Huinker (2000) reported the MTEBI to have good 

reliability with Cronbach alpha coefficients of 0.88 on the PMTE scale and 0.77 

on the MTOE scale. Using Cronbach alpha, reliability of the data in this study for 
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all 21 participants was 0.81 for the pre-test and 0.87 for the post-test for the 

PMTE scale. Additionally, reliability analyses for the MTOE scale revealed 

Cronbach alpha coefficients of 0.77 for the pre-test and 0.87 for the post-test. 

Personal Mathematics Teaching Efficacy. With a possible range of 13 to 

65 on the PMTE scale, prospective elementary teachers' PMTE scores on the 

first administration of the MTEBI ranged from 36 to 57 and on the second 

administration scores ranged from 34 to 64. A higher score is more indicative of a 

higher personal mathematics teaching efficacy. In other words, the higher their 

score the greater their belief in their ability to teach mathematics concepts 

effectively. Examination of the individual differences on the PMTE scale from the 

first administration to the second administration revealed that slightly less than 

half of the students had a decrease in their personal mathematics teaching 

efficacy ranging from 1 to 4 points and a slightly less than half of the students 

had an increase in their personal mathematics teaching efficacy ranging from 1 

to 10 points. The remaining four students showed no change in their PMTE. 

Descriptive analysis (see Table 8) of participant scores showed an 

increase in the groups mean score from the pre-test (M = 46.90, SD = 6.20) to 

the post-test (M = 47.90, SD= 7.34). However, a paired t-test revealed no 

significant difference (t20 = 1.27, p = .218) between the pre-test and post-test 

scores of the participants indicating that the prospective elementary teachers 

personal mathematics teaching efficacy was not effected by their experiences in 

this non-traditional geometry course. 
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TABLE 8 

Means, Standard Deviations, and Results of the Paired Samples T-Test for the 

Personal Mathematics Teaching Efficacy Subscale (N=21) 

Administration Mean Standard Deviation 

Pre-Test 46.90 6.20 

Post-Test 47.90 7.34 

95% 
Standard Confidence 

Mean Error of Mean Interval of the 
Difference Difference Difference t(20) p 

Lower Upper 

1.00 0.79 -0.64 2.64 1.27 .218 

Mathematics Teaching Outcome Expectancy. With a possible range of 8 

to 40 on the MTOE scale, prospective elementary teachers' MTOE scores on the 

first administration of the MTEBI ranged from 21 to 37 and on the second 

administration scores ranged from 20 to 38. A higher score is more indicative of a 

higher mathematics teaching outcome expectancy. In other words, the higher 

their score the greater their belief that effective mathematics teaching will have a 

positive effect on student learning. Examination of the individual differences on 

the MTOE scale from the first administration to the second administration 

revealed that slightly less than half of the students had a decrease in their 

mathematics teaching outcome expectancy belief ranging from 1 to 17 points and 

slightly less than half of the students had an increase in their personal 
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mathematics teaching efficacy ranging from 2 to 6 points. The remaining three 

students showed no change in their MTOE. 

Descriptive analysis (see Table 9) of participant scores showed a 

decrease in the group's mean score from the pre-test (M = 30.14, SD= 3.58) to 

the post-test (M = 29.48, SD = 5.24 ). However, a paired t-test revealed no 

significant difference (t20 = 0.59, p = .561) between the pre-test and post-test 

scores of the participants indicating that the prospective elementary teachers' 

mathematics teaching outcome expectancy was not effected by their experiences 

in this non-traditional geometry course. 

TABLE 9 

Means, Standard Deviations, and Results of the Paired Samples T-Test for the 

Mathematics Teaching Outcome Expectancy Subscale (N=21) 

Administration Mean Standard Deviation 

Pre-Test 30.14 3.58 

Post-Test 29.48 5.24 

95% 
Standard Confidence 

Mean Error of Mean Interval of the 
Difference Difference Difference t(20) p 

Lower Upper 

-0.67 1.13 -3.02 1.69 0.59 .561 
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Qualitative Results 

A more in-depth examination of the perceptions of participants about their 

ability to teach mathematics was provided through qualitative data collection and 

analysis. Data analysis was conducted on twenty journal prompt responses, 

twenty-one open-ended questionnaires, and six semi-structured interviews. In 

order to ensure confidentiality of participants, pseudonyms were assigned to 

participants. 

Twenty of the twenty-one prospective elementary teachers participating in 

this study responded to the journal prompt "Has your feelings about your ability to 

teach geometric concepts been effected by your experiences in this course? 

Please comment." Three mathematics education professors, one mathematics 

professor, and one doctoral student examined participant responses to the 

journal prompt and coded each response according to whether the response 

indicated a positive, negative, or no effect on the participants ability to teach 

geometric concepts. When at least four out of five of the raters agreed upon a 

code for a response, the code was considered to be reliable. Five responses 

were eliminated due to unreliable coding. All percentages are based on the 

number of responses with reliable codes. 

Analysis of responses to this journal prompt revealed that twelve (80%) of 

the prospective elementary teachers felt that their experiences in the non­

traditional geometry course had a positive effect on their belief in their ability to 

teach mathematics concepts. In other words, they had a more positive belief in 

their ability to teach mathematics effectively. One student felt her experiences 
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had a positive effect due to her increased knowledge about geometric concepts. 

She stated, "I believe I have more ability to teach geometric concepts because I 

have learned more than I can imagine." Some other students equated the 

positive effect to their belief they would be more effective in the classroom 

teaching geometric concepts. For example, Jamie commented "I think I will be 

clearer and more effective since taking this class" and Sally suggested that she 

knew she could "teach [geometric] concepts and others would understand." 

Becky pointed out that she was more confident to learn "new ways to teach math 

and also to make it more interesting." Some students believed that at the 

conclusion of the course they felt their ability to reason mathematically and 

explain concepts to others had improved. Lynn believed she could "express [her] 

reasoning more and in doing so [she would] be able to teach the concepts 

better." 

Of the remaining three reliably coded responses, two prospective 

elementary teachers' felt their experiences had a negative effect and one 

prospective elementary teacher felt her experiences had no effect on her ability 

to teach geometric concepts. One of the two prospective elementary teachers 

who experienced a negative effect felt that she could not explain geometric 

concepts to students even though she herself knew how to answer questions 

related to those concepts. The other commented she felt more confident about 

geometric concepts, but that "there is always many different ways to get an 

answer that it could be a problem in my teaching. I don't understand even all my 

college peers' ways at arriving at the answer, so how could I ever teach that 
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way." She seemed to be equating the structure of the class with what would be 

expected of her as a future teacher and seemed unsure of her ability to teach in 

that manner. The participant's response that was coded as no effect simply 

stated "No" indicating that she did not feel that her feeling had been altered due 

to her experiences. 

On the pre-post open-ended questionnaire (see Appendix B), participants 

were asked to respond to the following three questions that relate to their 

personal teaching efficacy: 

1. Describe how you now perceive yourself as a teacher of mathematics 

for young children. 

2. Describe how comfortable you now feel about answering your 

student's questions about geometric concepts. 

3. Describe whether you now feel you have the necessary skills to teach 

geometric ideas to young children. 

Twenty of the twenty-one participants responded to these questions. Each 

response from the pre to post questionnaire was evaluated as to whether each 

participant's perception had changed positively, negatively, or no change had 

occurred. 

Five participants did not respond to the actual first question posed. 

Rather, they responded with how they would teach, citing such examples as 

using manipulatives. Additionally, two participants did not respond to this 

question on the post questionnaire. Analysis of the remaining fourteen 

participants' responses revealed that nine felt better prepared, had an increased 
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understanding of mathematics, and felt more confident to teach young children. 

Typical post-questionnaire responses were "I feel better prepared more confident 

in my ability to figure [out] and explain problems" and "I think I'll be able to teach 

them with confidence now that I understand all the basic components." One 

student's response indicated a negative effect. On the pre-questionnaire she 

responded that she felt she "could be good at anything," but on the post­

questionnaire she did not feel she could teach geometry to young children. The 

three prospective elementary teachers with responses that revealed no effect on 

their perceptions indicated that they would be an "effective teacher'' on both the 

pre- and post-questionnaires. 

On the second of these three questions, participants were asked to 

respond to how comfortable they felt about answering their students' questions 

about geometric concepts. On one student's responses from the pre- to post­

questionnaire, the researcher was unable to code a possible effect due to 

inconsistency in the responses. One-half of the participants felt more comfortable 

and confident to answer their students questions. Typical pre-post questionnaire 

responses are as follows: 

Example #1: 

Pre: "Somewhat comfortable." 

Post: "I think that I will be able to answer just about any geometric 

question that may be asked of me in the future." 

Example #2: 

Pre: "At this moment not very confident." 
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Post: "I definitely feel more comfortable about answering my students' 

questions and what I don't know I'm sure I can always find out." 

Analysis of participant responses with no change in perceived ability to 

answers student questions revealed that they already fe.lt comfortable answering 

student questions, with the majority feeling very comfortable. Examination of the 

two participants whose responses showed a negative effect on their perceived 

ability to answer their students' questions revealed that while at the beginning of 

the course they felt comfortable, by the end they did not fell comfortable. One 

participant's post response equated this to the fact that she did not feel that she 

had "learned very much or enough from this course." 

The third question prompted the prospective elementary teachers to 

respond to whether they felt they had the necessary skills to teach geometric 

ideas to young children. On this question one participant did not respond; 

therefore, a total of twenty pre-post responses were analyzed. Fifteen (75%) of 

these responses reflected a positive effect on their personal teaching efficacy 

while the remaining five (25%) responses reflected no effect on their personal 

teaching efficacy. Typical pre-post questionnaire responses that reflected this 

positive effect were: 

Example #1: 

Pre: "Probably not. I could teach the basics as of now." 

Post: "I feel, because of this class, that I can teach geometric ideas 

because of all the discussion put forth in this class." 
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Example #2: 

Pre: "I feel I do not have the necessary skills to teach geometry. I do 

not understand completely and feel I would not be able to 

successfully explain the subject." 

Post: "Not fully." 

Example#3: 

Pre: "Not yet." 

Post: "I feel that I may be closer to being able to teach." 

Although three-fourths of the prospective elementary teachers' responses 

reflected a positive effect, the effect appeared to be provisional for three (15%) of 

these participants. For example, Nina responded that she did not have the 

necessary skills at the beginning of the course and at the end of the course she 

commented, "I do for the most part but it just scares me that there are so many 

different ways to do problems and I don't think I understand all the ways. How 

could I teach it?" 

During the interviews, five of the six prospective elementary teachers' 

responses were consistent with the pattern of responses from participants' 

responses on the open-ended questionnaire. They felt better prepared, had an 

increased understanding of mathematics, and felt more confident and 

comfortable to teach young children. For example, Jean felt "comfortable that 

[she] could teach anything in that book [referring to the course textbook] and 

teach it to any grade in school." Jamie believed that her experiences in the 

course would help her "explain the material better'' because she learned so many 
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different ways to understand a concept. Amy suggested that her experiences in 

the course helped her feel better prepared, that she learned "different ways of 

teaching" and that she had an increased understanding of the material. Amy 

stated, "learning that doing things yourself is better than someone telling you that 

this is how you are going to do it because even if you get the right answer, you 

may not understand how you got it, how you came to that solution. So, being 

able to see myself doing the problems myself, messing round with it until I had 

the right answer showed me that that works better than just someone telling you 

how to do it." 

From the interviews, the remaining prospective elementary teacher's 

experiences had a negative effect on her perceptions about her ability to teach 

mathematics. Nancy felt that due to her negative attitude about "the way it 

[referring to the course] was structured and organized and the discussions" that 

she did not "learn a lot of geometry." Additionally, she stated, "I know I didn't 

come out of it learning a lot of geometry. I don't feel I could teach it real well." 

In summary, more than one-half of the prospective elementary teachers 

felt their experiences in this non-traditional geometry course had positively 

influenced their belief in their ability to teach young children mathematics, 

specifically geometry. Additionally, they attributed these positive changes to their 

feelings of preparedness, understanding, confidence, and comfort with the 

material. 
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Conclusion 

This study investigated the characteristics of a non-traditional geometry 

course and prospective elementary teachers' perceptions about these 

characteristics. This study also investigated the attitudes toward geometry and 

mathematics teaching efficacy beliefs of twenty-one prospective elementary 

teachers for the purpose of noting differences in these factors over the course of 

their participation in this non-traditional geometry course. 

Regarding the investigation of the characteristics of this non-traditional 

geometry course, qualitative data analysis showed that whole class discussion 

was the prominent characteristic of the course fueled by daily activity sheets, 

group activities, geometric constructions and projects. The instructor played a 

key role in this course as a facilitator of these discussions and other activities. 

In order to explore the perceptions of prospective elementary teachers 

about the characteristics of this non-traditional geometry course, qualitative and 

quantitative data were examined. Analysis of data collected through 

questionnaires, journal prompts, and semi-structured interviews indicated that 

participants found the course to be frustrating and overwhelming at first, but on 

the whole a fun and worthwhile experience. Slightly more than three-fourths of 

participants felt the whole class discussions were worthwhile and almost half of 

them responded with positive thoughts and feelings about whole class 

discussions. Group activities were found to be helpful by the majority of 

participants; however, some participants found them to be a waste of time. 

Construct and describe problems are the portion of the course that most 
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participants felt had impacted them the most as future teachers because they felt 

they helped them improve their ability to communicate their thinking to others. 

The prospective elementary teachers believed that projects helped to deepen 

their understanding and/or provided reassurance they understood a geometric 

concept. Participants indicated that a positive learning environment existed 

where they felt comfortable sharing and asking questions. 

The results of this study indicate that participation in this non-traditional 

geometry course had a positive influence on participants' attitude toward 

geometry. Results have also shown that participants had a significantly higher 

overall attitude toward geometry. Both quantitative and qualitative analyses 

revealed that participants experience an increase in their confidence to learn 

geometry and had increased levels of motivation and enjoyment to study 

geometry. While quantitative data did not reveal a significant effect on 

participants' belief in the usefulness to study geometry, qualitative data indicated 

that slightly more than one-half of the prospective elementary teachers felt that 

their experiences had positively effected their believe in the usefulness of 

studying geometry. 

Regarding the investigation of the mathematics teaching efficacy of the 

prospective elementary teachers both quantitative and qualitative data were 

analyzed. Examination of quantitative data revealed no statistically significant 

difference in prospective elementary teachers' personal mathematics teaching 

efficacy (PMTE) or mathematics teaching outcome expectancy (MTOE). 

Analysis of qualitative data indicated that prospective elementary teachers felt 
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that their experiences in this non-traditional geometry course had a positive 

impact on their belief in their ability to teach mathematics effectively. 

In the next chapter, a summary of the findings and conclusions will be 

presented. Chapter V also discusses the implications of the study's findings for 

teacher education along with recommendations for future research. 
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ChapterV 

Summary, Conclusions, and Recommendations 

In universities across the United States, undergraduate mathematics 

courses play a critical role in the mathematical preparation of future teachers. 

Although efforts have been made toward reform in mathematics classrooms, the 

teaching practices in few undergraduate mathematics courses have changed to 

adhere to recommendations made by such documents as the Professional 

Standards for Teaching Mathematics (NCTM, 1991) and The Mathematical 

Education of Teachers (CBMS, 2001 ). Ball (1996) points out that prospective 

elementary teachers tend to teach the way they have been taught and have 

rarely experienced reform teaching. Therefore, if the experiences that 

prospective teachers have while learning mathematics impacts the way they 

teach mathematics to their students, efforts need to be made in the mathematical 

education of future elementary teachers to utilize pedagogical strategies that 

encourage knowledge construction and that model effective mathematics 

teaching. 

This research study was designed to describe the characteristics of a 

non-traditional geometry course and the perceptions of prospective elementary 

teachers about these characteristics. Additionally, this study examined the 

impact of a non-traditional geometry course on the attitude toward geometry and 
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I 

mathematics teaching efficacy of prospective elementary teachers. The research 

questions guiding this study were: 

1. What are the characteristics of a non-traditional geometry content 

course for prospective elementary teachers? 

2. What are the perceptions of prospective elementary teachers about the 

characteristics of a non-traditional geometry content course for 

prospective elementary teachers? 

3. Are prospective elementary teachers' attitudes toward geometry 

influenced by this non-traditional geometry content course? 

4. Are prospective elementary teachers' mathematics teaching efficacies 

influenced by this non-traditional geometry content course? 

The participants in this study were twenty-one prospective elementary 

teachers enrolled in a non-traditional geometry course. Participants were 

primarily Caucasian females. The study employed both quantitative and 

qualitative data collection and analysis. Participants completed a background 

questionnaire, pre/post questionnaires, pre/post ATGS, and pre/post MTEBI. In 

addition, as a part of the normal course students completed journal prompts. 

Course documents were collected and analyzed. Semi-structured interviews 

were conducted with six of the prospective elementary teachers and 

observations of the course were conducted. Results of quantitative and 

qualitative data were used to determine the characteristics of the course, 

perceptions of participants about these characteristics, and the influence of these 
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characteristics on attitude toward geometry and mathematics teaching efficacy of 

participants. 

Characteristics of a Non-Traditional Geometry Course 

The first two research questions explored the characteristics of a non­

traditional geometry course designed for prospective elementary teachers and 

their perceptions of these characteristics. This course was non-traditional in that 

it did not adhere to the typical lecture - homework structure of mathematics 

classrooms. Simply using the course text could not duplicate the essence of this 

course. At the heart of this course is the creation of a dynamic environment by 

the instructor wherein the instructor and students continuously worked together 

to aid in the students' sense making of the geometry being studied. The 

instructor's role in this course was that of a facilitator; choosing appropriate tasks, 

encouraging dialogue, asking questions, and supporting risk~taking on the part of 

the participants. The instructor did not play the role of evaluator, but rather 

encouraged students to become their own authority on various problems. Thus, 

the instructor was encouraging and accepting of autonomous thinking on the part 

of the students (Brooks & Brooks, 1993). The instructor supported students' 

construction of knowledge along with helping them make meaningful connections 

to prior knowledge. The instructor's role in this course is consistent with NCTM's 

(2000) vision of teaching mathematics. 

The aim of this course was to create and develop a dynamic environment 

wherein students could discuss and wrestle with significant mathematics. One 

hallmark of this course was whole class discussions that were dynamic and 
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interactive in nature and involved all of the participants. Whole class discussions 

provided students with an opportunity to participate in mathematical discourse 

that helped students generate meaning about a geometric concept. This type of 

give-and-take communication was characterized by Lotman (as cited in Knuth & 

Peressini, 2001) as discourse that helps students generate meaning and is 

referred to as dialogic discourse (Wertsch & Toma, 1995). 

Whole class discussions could not happen without the careful selection of 

tasks, thus these whole class discussions were fueled by participants' completion 

of daily activity sheets, group activities, geometric constructions, and projects. 

Completion of daily activity sheets, group projects, and geometric constructions 

assisted the students in grappling with making sense of the geometric concepts 

being studied and discussed. Each of these activities allowed students to 

explore their own understanding and infused the whole class discussions. In 

addition to these characteristics, students perceived a positive learning 

environment; one in which they were encouraged to think for themselves, make 

conjectures, and express their mathematical thinking and frustrations. The 

combined characteristics of this non-traditional geometry course created an 

environment wherein students were allowed and encouraged to reflect upon the 

mathematics being studied, to communicate their understanding in a variety of 

ways, and to feel they were a part of a community of mathematical learners. 

The characteristics of this non-traditional geometry course are consistent 

with the first standard for the professional development of teachers of 

mathematics (NCTM, 1991). This standard outlines what mathematics 
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instructors of prospective teachers should model in their teaching. The standard 

states that mathematics instructors should model good mathematics teaching by: 

• posing worthwhile mathematical tasks; 

• engaging [prospective] teachers in mathematical discourse; 

• enhancing mathematical discourse through the use of a variety of 

tools, including calculators, computers, and physical and pictorial 

models; 

• creating learning environments that support and encourage 

mathematical reasoning and [prospective] teachers' dispositions and 

abilities to do mathematics; 

• expecting and encouraging [prospective] teachers to take intellectual 

risks in doing mathematics and to work independently and 

collaboratively; 

• representing mathematics as an ongoing human activity; 

• affirming and supporting full participation and continued study of 

mathematics by all students (NCTM, 1991, p .. 127). 

The perceptions of prospective elementary teachers about the 

characteristics of this non-traditional geometry course were explored. The 

results of the data analysis provided a description of how the prospective 

elementary teachers felt about these characteristics including whole class 

discussion, group activities, geometric constructions, projects, and the classroom 

environment. The majority of the prospective elementary teachers felt that whole 

class discussions, group activities, and projects were enjoyable, helped them 
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make sense of the geometric concepts studied, were a worthwhile part of the 

class, and helped them to gain confidence to learn and teach geometry. While 

less than half of the prospective elementary teachers may not have found the CD 

problems to be enjoyable or to positively influence their confidence to learn 

geometry, they did feel such problems were worthwhile and helped students to 

understand the geometric ideas along with gaining confidence to teach geometry. 

The students felt that a positive learning environment was fostered during 

the course. One student commented, "[if] you feel comfortable speaking ... then 

you feel comfortable to learn." Additionally, students felt that the environment 

had a positive effect on their confidence to learn geometry. The learning 

environment developed as part of this non-traditional geometry course, as 

described by participants, is analogous with the supportive learning environment 

described by the NCTM (1991) in its Professional Standards for Teaching 

Mathematics. 

Attitudes Toward Geometry 

The third research question examined the influence of a non-traditional 

geometry course on the attitudes toward geometry of prospective elementary 

teachers. Both quantitative and qualitative data were collected and analyzed. 

Descriptive statistical analysis (means, standard deviations, and confidence 

intervals) and a paired t-test between the pre- and post-ATGS were conducted to 

determine if the attitude toward geometry of prospective elementary teachers 

changed over the duration of their participation in a non-traditional geometry 
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course. Each of the three subscales of the ATGS was similarly analyzed. In 

addition, journal prompts, open-ended questionnaires, and interview transcripts 

were analyzed to examine the perceptions of prospective elementary teachers 

about whether their experiences in a non-traditional geometry course had an 

effect on their attitude toward geometry. 

This study shows that experiences in a non-traditional geometry course do 

have an impact on prospective elementary teachers' overall attitude toward 

geometry, as there was a statistically significant difference (t20 = 2.90; p=.009) 

between responses on the pre- and post-ATGS. Therefore, these prospective 

elementary teachers had a more positive attitude toward geometry upon 

completion of the non-traditional geometry course. As teachers they should have 

a positive influence on the attitudes of their own students, be more likely to 

investigate the mathematical conjectures of their students, and be more likely to 

spend an adequate time on teaching mathematics. 

A statistically significant difference was found on the confidence to learn 

geometry subscale (t20 = 3.50; p=.002) and on the enjoyment to study geometry 

subscale (t20 = 2.26; p=.035) of the ATGS. These results indicate that the 

characteristics of this non-traditional geometry course had a positive influence on 

prospective elementary teachers' confidence to learn geometry and enjoyment or 

motivation to study geometry. Qualitative data analysis suggests that 

approximately three-fourths of the prospective elementary teachers felt their 

experiences in this non-traditional geometry course had a positive effect on their 

confidence and enjoyment to study geometry. More specifically, they equated 

121 



these positive effects to the characteristics of the course and/or to their increased 

understanding of geometric concepts. This increase in confidence being 

attributed to increased understanding or achievement is consistent with findings 

reported by Reyes (1984) and Dowling (1978). However, the findings of this 

study concerning the enjoyment to study geometry can add to what McLeod 

(1992) considers to be a small body of literature related to the emotional 

reactions of students to mathematics. 

While there was not a significant difference (t20 = 1.77; p=.091) regarding 

beliefs of prospective elementary teachers about the usefulness to study 

geometry on the usefulness subscale of the ATGS, analysis of qualitative data 

indicated that slightly more than one-half of these prospective elementary 

teachers believed their perceptions of the usefulness to study geometry had 

increased. The prospective elementary teachers who felt their belief in the 

usefulness of studying geometry had been positively influenced attributed this 

change in their beliefs to an increase in their perception of the uses of geometry 

in the world around them and/or to its usefulness in their future career as 

elementary teachers. 

Mathematics Teaching Efficacy 

The final research question explored how the experiences of prospective 

elementary teachers in a non-traditional geometry course influenced their 

mathematics teaching efficacy. In other words, did their belief in their ability to 

teach geometry change over the course of these experiences? In order to 

examine the perceptions of these prospective elementary teachers both 
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quantitative and qualitative data was collected and analyzed. Descriptive 

statistical analysis (means, standard deviations, and confidence intervals) and a 

paired t-test between the two administrations of the MTEBI were conducted to 

determine if the personal mathematics teaching efficacy (PMTE) and the 

mathematics teaching outcome expectancy (MTOE) of prospective elementary 

teachers changed over the duration of their participation in a non-traditional 

geometry course. In addition, journal prompts, open-ended questionnaires, and 

interview transcripts were analyzed to examine the perceptions of prospective 

elementary teachers about whether their experiences in a non-traditional 

geometry course had an effect on their personal mathematics teaching efficacy. 

The prospective elementary teachers had a mean score of 46.90 on the 

pre-test and a slightly higher mean score of 47.90 on the post-test for the PMTE 

scale of the MTEBI. The results of the paired t-test used to determine if the 

mean difference was statistically significant indicated no significant difference 

between the pre- and post-tests. These results can be seen in Table 8 of 

Chapter IV. On the MTOE scale of the MTEBI the prospective elementary 

teachers' mean score decreased slightly from 30.14 to 29.48. Once again the 

results of the paired t-test indicated no significant difference between the pre­

and post-test results on the MTOE scale. These quantitative results suggest that 

participants' experiences in a non-traditional geometry course had no effect on 

their mathematics teaching efficacy. 

In contrast to quantitative results, analysis of qualitative responses 

suggests that approximately three-fourths of the prospective elementary teachers 
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felt their experiences in this non-traditional geometry course had a positive effect 

on their belief in their ability to teach geometric concepts to their future students. 

These prospective elementary teachers indicated that they felt better prepared to 

teach, more comfortable to answer student questions, and had the necessary 

skills toteach geometric concepts. 

One possible reason for the inconsistency between the qualitative and 

quantitative results could be the specificity of the measure of teacher efficacy of 

the instrument used. The MTEBI measures the mathematics teaching efficacy 

beliefs of prospective teachers and the qualitative data collected in this study 

explored the geometry teaching efficacy beliefs of prospective elementary 

teachers. Tschannen-Moran and Hoy (2001) point out problems with 

measurement of teaching efficacy and question the appropriate level of 

specificity in measuring of teacher efficacy. 

Implications for Teacher Programs 

The results of this study signify important implications for teacher 

education programs. This study reveals first, that the characteristics of this non­

traditional course were consistent with recommendations supported by such 

organizations as the National Council of Teachers of Mathematics (e.g. NCTM, 

1991) and the Mathematical Association of America (CBMS, 2001 ). Thus, it is 

possible to design and implement a mathematics content course for 

undergraduates that adheres to the vision of the reform efforts outlined by the 

NCTM (1989, 1991, 2000). As pointed out in the standards for the professional 
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development of teachers of mathematics (NCTM, 1991 ), teachers need to 

"experience good mathematics teaching" (p. 127) because through these 

experiences they develop ideas about how mathematics should be taught. 

Frykholm (1999) reported that students felt they had heard a lot about the 

theories behind reform efforts in mathematics, but they had not experienced 

these reform efforts. Therefore, if mathematics content courses continue to 

adhere to the traditional lecture format prospective elementary teachers' view of 

teaching mathematics will remain unchanged and reform efforts will be hindered. 

Thus, the ideal situation would be for the teaching of all mathematics content 

courses taken by prospective elementary teachers to model pedagogical 

strategies that support student knowledge construction and adhere to the vision 

set forth by NCTM in its Principles and Standards for School Mathematics 

(2000). 

Second, this course could not be duplicated by simply incorporating whole 

class discussions, group activities, CD problems, projects, and the use of daily 

activity sheets. The heart of this course is the creation of a classroom 

community by the instructor wherein students' knowledge construction was 

nurtured and students felt comfortable to autonomously ·grapple with the material. 

The orchestration of whole class discussion by the instructor could not have 

happened without the careful choice of mathematical tasks that engage students 

to think and question. As pointed out in the NCTM Principles and Standards for 

School Mathematics (2000), "worthwhile mathematical tasks alone are not 
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sufficient for effective teaching" (p. 19), but must be carefully orchestrated to 

facilitate student learning. 

Third, the perceptions of the prospective elementary teachers about these 

characteristics suggest that the role of the mathematics course can be more than 

just to enhance the content knowledge of the students. The perceptions of the 

prospective elementary teachers about these characteristics revealed that when 

students perceive themselves as part of learning environment that fosters 

mathematical thinking and genuine respect between students and between the 

instructor and students their confidence to learn and teach is increased. 

Additionally, since one of the goals of education is to develop autonomous 

learners (Kamii, 2000a; Kamii 2000b), the type of environment fostered in this 

course is imperative. This study indicated that while students were at first 

perturbed by not being reassured of "correct" answers, this frustration eventually 

gave way to students becoming more confident of their explanations. Therefore, 

this study has implications for future research into the effect of the characteristics 

of this non-traditional course on student autonomy in relation to studying 

geometry or mathematics. 

Fourth, this study reveals that prospective elementary teachers' attitudes 

toward geometry and mathematics teaching efficacy can be enhanced by their 

experiences in the non-traditional practices described in this study. It has been 

established that teachers attitudes and teacher efficacy effects the attitude and 

efficacy of their students (e.g. Aiken, 1972; Anderson, Greene, & Loewen, 1988) 

and their behavior in the classroom and the methods they incorporate into their 
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mathematics teaching (e.g. Gibson & Dembo, 1984; McDevitt, et. al., 1993). This 

realization along with findings of this study provides a basis to consider attitudes 

and teacher efficacy in teacher education programs. 

Recommendations for Future Research 

Further research on affect in mathematics education is needed. The more 

that teacher educators understand about attitudes toward geometry/mathematics 

and mathematics teacher efficacy and how they are influenced, the more 

effectively teacher education programs can address the needs of prospective 

teachers. Recommendations for further research based on findings from this 

study leads to the following possible explorations: 

• Reliability and validity are always an issue; therefore, this study, using 

the newly develop ATGS, should be replicated with other groups of 

participants and at other universities. 

• Since this study was conducted during a two-month summer session, 

the study should also be conducted during a typical four-month 

semester and the results compared. 

• Additional studies should be conducted that involve a comparison of 

the change in attitudes of prospective elementary teachers in a 

traditional lecture-oriented geometry course verses a non-traditional 

geometry course in which the students are active participants. 

• Longitudinal studies should be conducted to determine whether this 

increase in attitude toward geometry carries over into the methods 
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courses, student teaching, and first year of teaching of prospective 

elementary teachers participating in non-traditional geometry courses. 

• Other affective variables such as mathematics anxiety, self-concept, 

and learned helplessness should be investigated to determine the 

influence of a non-traditional mathematics course on these affective 

factors. McLeod (1992) points out that the role of affect is prominent in 

the current reform efforts within mathematics education. 

• Results of this study suggest that future research should be conducted 

to explore the influence of a non-traditional mathematics course on 

student achievement and on conceptual understanding of the 

mathematics being taught. 

• The construction and validation of an instrument that focuses on the 

geometry teaching efficacy of prospective elementary teachers needs 

to be developed. 

• This study revealed some inconsistencies between quantitative and 

qualitative results; therefore, additional studies should be conducted to 

examine the issue of techniques for measuring both attitudes and 

teaching efficacy. Results of this study reinforced a suggestion by 

Kulm (1980) that the construction of self-reported scales should 

continue to be developed and improved but more attention should be 

paid to observation of student behavior and use of responses to open­

ended questionnaires to construct items on these scales. 
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Concluding Comments 

Often times prospective elementary teachers have a background and 

general knowledge of the mathematics they will teach, but do not have a good 

conceptual understanding. The characteristics of this non-traditional geometry 

course lie in stark contrast to those of typical traditional lecture style mathematics 

content courses. In this non-traditional geometry course students were allowed 

and encouraged to think about, mull over ideas, and gain a firm foundation of the 

concepts whereas, in most traditional mathematics content courses students 

tend to mimic the procedure outlined by the teacher over and over resulting in 

little or no understanding. 

The role of research into the affective domain of mathematics education 

can be important to reform efforts for mathematics teaching and learning. 

Although the sample in this study was small, the results of the study provide 

evidence that certain classroom experiences, such as those highlighted as the 

characteristics of the non-traditional geometry course described here, have the 

potential to effect the mathematical attitudes and teaching efficacy beliefs of 

prospective elementary teachers. Therefore, the implementation of a 

nontraditional geometry course for prospective elementary teachers holds 

promise for positively modifying the attitudes toward studying geometry and the 

mathematics teaching efficacy of these prospective elementary teachers. As 

pointed out in the Professional Standards for Teaching Mathematics (NCTM, 

1992), it is the teacher's responsibility to foster a disposition for doing 

mathematics in their students. If teachers do not exhibit a disposition to do 

mathematics themselves, how can they foster it in their students? Thus, 
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developing positive attitudes and efficacy beliefs about mathematics is an 

important goal of any teacher education program, which includes those 

mathematics courses taken by prospective elementary teachers. 
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ID# Date ~-------------~ ------

Demographic Information 

Gender: M or F ( circle one) Age: ____ y,ears 

Major: _______________ _ 

Ethnicity: __ Native-American Latino __ African-American 

__ Caucasian Asian 

__ Other (please specify: ________ ) 

Did you take a geometry course in high school? Yes or No (circle one) 

Have you taken this course previously? Yes or No (circle one) 

I consider myself: 
Poor in Math -- ___ Average in Math Excellent in ---

Math 

Place an X beside each Mathematics course listed below that you took in High 
School. · 

___ Algebra I 

____ Algebra II 

___ Geometry 

__ Algebra Ill 

___ Trigonometry 

___ Pre-Calculus or Math Analysis 

Calculus ---

Statistics ---

__ Other (specify): ___ _ 

Place an X beside each Mathematics course listed below that you have taken in 
college. 

___ College Algebra Mathematical Structures ---

Functions Statistics --- ---

___ Applications of Modern Math 

___ Other (specify): _____ _ 
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Pre-Questionnaire 

1. Based upon your experiences, describe how you think mathematics should 
be taught. 

2. Describe your feelings about geometry based on your previous experiences. 

• Describe what you found to be. the most enjoyable. 

• Describe what you found to be the least enjoyable. 

3. Describe how you perceive yourself as a teacher of :mathematics for young 
children. 

• Describe how comfortable you feel about answering your students' questions. 

• Describe whether you feel you have the necessary skills to teach geometry. 
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Post-Questionnaire - Part I 

ID# ________ _ Date: -----

1. Based on your experiences in this course, describe how you think 
mathematics should be taught. 

2. Describe your feelings about geometry now based on your experiences in 
this course. 

• Describe what you found to be the most enjoyable. 

• Describe what you found to be the least enjoyable. 

3. Describe how you now perceive yourself as a teacher of mathematics for 
young children. 

• Describe how comfortable you now feel about answering your students' 
questions about geometric concepts. 

• Describe whether you now feel you have the necessary skills to teach 
geometric ideas to young children. 

4. From this course, which one of the following impacted you as a future teacher 
the most? 

__ CD problems --

__ Group Activities 

Describe why: 

Class discussions 

__ Writing 
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__ Projects 

__ Seeing multiple 
solution strategies 



Post-Questionnaire - Part II 

ID# Date: 

Please indicate the degree to which you agree or disagree with each statement below by circling the 
appropriate number to the right of the statement. 

1 2 3 4 5 
Strongly Disagree Disagree Uncertain Agree Strongly Agree 

Strongly Strongly 
Disagree Agree 

1. Doing CD problems was enjoyable. 1 2 3 4 5 

2. Doing CD problems was a waste ofmy time. 1 2 3 4 5 

3. Doing CD problems helped me make sense of geometric ideas. 1 2 3 4 5 

4. Doing CD problems helped me gain confidence to learn geometry. 1 2 3 4 5 

5. Doing CD problems helped me gain confidence in my ability to 
teach geometric concepts effectively. 1 2 3 4 5 

6. Completing projects was enjoyable. 1 2 3 4 5 

7. Completing projects was a waste ofmy time. 1 2 3 4 5 

8. Completing projects helped me make sense of geometric ideas. 1 2 3 4 5 

9. Completing projects helped me gain confidence to learn geometry. 1 2 3 4 5 

10. Completing projects helped me gain confidence in my ability to 
teach geometric concepts effectively. 1 2 3 4 5 

11. Hearing other students idea's during group activities was enjoyable. 1 2 3 4 5 

12. Hearing other students idea's during group activities was a waste 
ofmy time. 1 2 3 4 5 

13. Hearing other students idea's during group activities helped me 
make sense of geometric ideas. 1 2 3 4 5 

14. Hearing other students idea's during group activities helped me 
gain confidence to learn geometry. 1 2 3 4 5 

15. Hearing other students idea's during group activities helped me 
gain confidence in my ability to teach geometric concepts effectively. 1 2 3 4 5 

16. Class discussions were an enjoyable part of this course. 1 2 3 4 5 

17. Class discussions were a waste of my time. 1 2 3 4 5 

18. Class discussions helped me make sense of geometric ideas. 1 2 3 4 5 
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19. Class discussions helped me gain confidence to learn geometry. 2 3 4 5 

20. Class discussions helped me gain confidence in my ability to 
teach geometric concepts effectively. 1 2 3 4 5 

21. The opportunity to write about geometric ideas was enjoyable. 1 2 3 4 5 

22. The opportunity to write about geometric ideas was a waste 
of my time. 1 2 3 4 5 

23. The opportunity to write about geometric ideas helped me 
make sense of geometric concepts. 2 3 4 5 

24. The opportunity to write about geometric ideas helped me gain 
confidence to learn geometry. 1 2 3 4 5 

25. The opportunity to write about geometric ideas helped me gain 
confidence in my ability to teach geometric concepts effectively. 1 2 3 4 5 

26. Seeing multiple solution strategies was enjoyable. 2 3 4 5 

27. Seeing multiple solution strategies was a waste of my time. 1 2 3 4 5 

28. Seeing multiple solution strategies helped me make sense of 
geometric concepts. 1 2 3 4 5 

29. Seeing multiple solution strategies helped me gain confidence 
to learn geometry. 2 3 4 5 

30. Seeing multiple solution strategies helped me gain confidence 
in my ability to teach geometric concepts effectively. 2 3 4 5 
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Journal Prompt 
ID# Date: ----------- -----

Please take a few minutes to jot down your thoughts on the following 
questions. 

• Have the experiences in this course had an affect on your confidence to 
learn geometry? Please comment. 

• Has your feelings about your ability to teach geometric concepts been 
affected by your experiences in this course? Please comment. 

(OVER) 
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• Has your belief in the usefulness of geometry be~n affected by your 
experiences in this course? Please comment. 

• Has your enjoyment of geometry been affected by your experiences in 
this course? Please comment. 
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Class Strategies Math 3403: Geometric Structures July, 2003 

Please take a few minutes to jot dawn your thoughts on these ideas. As before, we will type up all 
responses anonymously so that you can see haw other members of this class respond. (Dr. Wolfe 
will not see your names until after the class is over.) 

• Most of the class time in this course is taken up by whole class discussion of the day's 
assignment. This replaces the more traditional lecture. My thoughts and feelings 
about this are ... 

• Many course activities (e.g. CD problems, describing relationships, expressing your 
thinking, etc.) provide opportunities for you to write about your ideas or insights 
about a geometric situation. My thoughts and feelings about this are ... 
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Interview Protocol 

Good morning I am so glad you agreed to talk with me. As you know I am working on a 
study that deals with students' perceptions and feelings about the geometric structures class you took this 
past summer. I wanted to talk with you because I thought you would be a good person to give me some 
information about geometric structures and your feelings about the course. 

• Tell be about your experiences studying geometry prior to taking the geometric structures class. 
o What kinds of things did you find valuable? 
o Describe your feelings about how confident you felt. 
o Can you describe a few of the effects of your participation in class? 

• If you were to tell someone else about your experience in geometric structures, what would you 
tell them? 

o Suppose someone came to observe in your class this summer for a typical class period; in 
what ways would they have seen you participating? 

• How do you think your participation in geometric structures affected your 
attitude toward studying geometry? 

o Suppose I told you that you were going to teach a geometry lesson to 5th graders 
tomorrow, how would this make you feel? 

o Others have commented that this course had an effect on their belief in their ability to 
teach geometry and indicated this in their journal prompts, what about you? 

• Do you now feel that you can teach geometric concepts to elementary children 
effectively? 

• Do you now feel that you are responsible for the achievements of your students 
while studying geometry topics? 

• If you are given a choice, would you now invite the principal in to evaluate you 
during a geometry lesson? 

o Could you tell me what aspect(s) of geometric structures that you feel had an affect on 
your attitude toward the study of geometry? 

• In what way? 
• I've heard that some students' confidence in studying geometry changes during 

the semester they take geometric structures; do you feel that geometric 
structures had an affect on your confidence? 

• (if they respond in a single word) Can you tell why you feel that way? 
o How valuable do you feel that studying geometry is? 

• Do you feel that this changed as a result of taking GS? 
o What, if anything, do you now feel about studying geometry that you didn't feel before 

taking geometric structures? 
• Now lets focus on various aspects of the class? 
• Whole class discussions seemed to be a major part of this class. What is the first thing that comes to 

your mind when you think about these whole class discussions? 
• What was a typical class discussion like? 

• How did these discussions affect your confidence to learn geometry? 
• How did these discussions affect your enjoyment of studying geometry? 
• How did these discussions affect your belief in the usefulness to study geometry? 
• How did these discussions affect your notion of your ability to teach geometry? 
(Repeat with projects, CD problems, writing experiences, seeing of multiple strategies, group 
work) 

• Now that you have an idea about what my study is about, is there anything that I should have 
asked you that I didn't think to ask? 
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Attitudes Toward Geometry Scales 
(ATGS} 

ID# Date: 

For the following statements, circle your level of agreement with each of the following statements. 
SD - if you strongly disagree 

D - if you disagree 
N - if your feeling is neutral 
A - if you agree 
SA - if you strongly agree 

1. I am sure that I can learn geometry concepts. SD D N A SA 

2. I believe that I will need geometry for my future. SD D N A SA 

3. Geometry problems are boring. SD D N A SA 

4. When I leave class with a geometry question 
unanswered, I continue to think about it. SD D N A SA 

5. I often have trouble solving geometry problems. SD D N A SA 

6. When I start solving a geometry problem, I find it 
hard to stop working on it. SD D N A SA 

7. Time drags during geometry class. SD D N A SA 

8. I am confident I can get good grades in geometry. SD D N A SA 

9. When I can't figure out a geometry problem, I feel 
as though I am lost and can't find my way out. SD D N A SA 

10. Geometry has no relevance in my life. SD D N A SA 

11. I lack confidence in my ability to solve geometry problems. SD D N A SA 

12. Geometry is not a practical subject to study. SD D N A SA 

13. I feel sure of myself when doing geometry problems. SD D N A SA 

14. Geometry is fun. SD D N A SA 

15. I just try to get my homework done for geometry class 
in order to get a grade. SD D N A SA 

16. Geometry is an interesting subject to study. SD D N A SA 

17. I can see ways of using geometry concepts to solve 
everyday problems. SD D N A SA 

18. For some reason even though I study, geometry 
seems unusually hard for me. SD D N A SA 

19. Geometry is not worthwhile to study. SD D N A SA 
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20. I often see geometry in everyday things. SD D N A SA 

21. Geometry problems often scare me SD D N A SA 

22. I am confident that if I work long enough on a 
geometry problem, I will be able to solve it. SD D N A SA 

23. Solving geometry problems is enjoyable. SD D N A SA 

24. I will need a firm understanding of geometry in my 
future work. SD D N A SA 

25. Working out geometry problems does not appeal to me. SD D N A SA 

26. I do not expect to use geometry when I get out of school. SD D N A SA 

27. Geometry tests usually seem difficult. SD D N A SA 

28. I will not need geometry for my future. SD D N A SA 

29. I can usually make sense of geometry concepts. SD D N A SA 

30. Geometry has many interesting topics to study. SD D N A SA 

31. Geometry is a practical subject to study. SD D N A SA 

32. I have a lot of confidence when it comes to studying 
geometry. SD D N A SA 
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MATHEMATICS TEACHING EFFICACY BELIEFS INSTRUMENT 
(MTEBI - Preservice) 

Date: __________ _ ID#: _______ _ 

Please indicate the degree to which you agree or disagree with each statement below by circling 
the appropriate number to the right of the statement. 

1 
Strongly Disagree 

2 
Disagree 

3 
Uncertain 

1. When a student does better than usual in mathematics, 
it is often because the teacher exerted a little extra effort. 

2. I will continually find better ways to teach mathematics. 

3. Even if I try very hard, I will not teach mathematics as 
well as I will most subjects. 

4. When the mathematics grades of students improve, it is 
often due to their teacher having found a more effective 
teaching approach. 

5. I know how to teach mathematics concepts effectively. 

6. I will not be very effective in monitoring mathematics 
activities. 

7. If students are underachieving in mathematics, it is most 
likely due to ineffective mathematics teaching. 

8. I will generally teach mathematics ineffectively. 

9. The inadequacy of a student's mathematics 
background can be overcome by good teaching. 

10. When a low-achieving child progresses in mathematics, 
it is usually due to extra attention by the teacher. 

11. I understand mathematics concepts well enough to be 
effective in teaching elementary mathematics. 

12. The teacher is generally responsible for the achievement 
of students in mathematics. 

13. Students' achievement in mathematics is directly related 
to their teacher's effectiveness in mathematics teaching. 

14. If parents comment that their child is showing more 
interest in mathematics at school, it is probably due to 
the performance of the child's teacher. 
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4 
Agree 

5 
Strongly Agree 

Strongly 
Disagree 

Strongly 
Agree 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 



15. I will find it difficult to use manipulatives to explain to 1 2 3 4 5 
students why mathematics works. 

16. I will typically be able to answer students' questions. 1 2 3 4 5 

17. I wonder if I will have the necessary skills to teach 1 2 3 4 5 
mathematics. 

18. Given a choice, I will not invite the principal to evaluate 1 2 3 4 5 
my mathematics teaching. 

19. When a student has difficulty understanding a 1 2 3 4 5 
mathematics concept, I will usually be at a loss as to 
how to help the student understand it better. 

20. When teaching mathematics, I will usually welcome 1 2 3 4 5 
student questions. 

21. I do not know what to do to turn students on to 1 2 3 4 5 
mathematics. 
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Sample Page from Course Text: Daily Activity Sheet 

File: NSkewQua (January 1, 2004) 

j 6.l ! Areas of Skew ·Quadrilaterals 
Name: ___ _,... ____ _ 

On a geoboard, a figure is a skew figure if 
each edge touches exactly 2 pegs (one at 
each end). 

Inside Pegs are the pegs entirely inside the 
figure. 

• 

d .. • 

. 
Skew 

2 Inside Pegs 
• • • 

• 

// 
Not Skew 

• 
Using any method you like, find the area of the skew quadrilaterals pictured and write the value 

of the area inside the figure. Check your answers with others . 

• . · .. ·e·· .. . 0. ... . 
• • 

. . . . . 

• 

• 

• • 

• 

• 
Do you see any relationship between the area and the number of internal dots? Describe the 

relationship that you see. 

Do you think this relationship is always true? Under what conditions is it true? Describe 
briefly. 

104 ' 

Aichele & Wolfe (in press) 

163 



Sample Page from Course Text: Daily Activity Sheet 

~~ 
~~~ !6.2J Solid Tile Shapes 

Solid. Tile . Shapes 
.. . . 

A tile shape is a shape which can be made by putting 
together square tiles. We can make tile shapes either by 
putting together square pieces or by using a geoboard. 
When representing a tile shape we can show the square 
tiles or we can make the. outline with a rubber band 
on a geoboard (or draw it on dotpaper). Here are two 

~""' ,h= efl '""'@."°""-
fil:a ~ 

Here are some more examples. 

.. 
Tit.t···.$ha§J.··~.·.:· .. ••· .. ··DN~\T0~~·.~1pe,$ 

. . . ':. '. ·> •· >"'· 
. . .• ,··· •. ,c . ' '·. •:. ' '. 

We will be interested in solid tile· shapes. A tile shape 
is solid if (a) when two tiles touch they touch either at a 
corner or along an entire side and (b) .each tile is attached 
to the whole shape by at least one side. 

$011d Shapes Not $011d 

[b1P..[5 cP 

Problems 

1. Draw· a circle around the figures below which are 
solid 'tile shapes. Also, if the shape· is .not circled, 
write "Not Solid" or "Not ·Tile Shape" to indicate 
why it is not a solid tile shape. 

Gl ... ·. :.~ ....... :-.19 SJ ~ .. · .. ··. ·· .. · al . it.: [r. lHJ 
Also write ''Skinny" inside the skinny shapes. 

105 
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File: Tilel.tex (January 1, 2004) 

2. Figure the area of these three solid tile shapes. 

·~.· . .,.···:···~·· .. ·.· .. ···.1.·····.·.·. L..-..-J; ·. .•: 
. 

~ ·. .· .... .. . . .. '• 

The area of tile shapes is really easy to figure out. 
What do you think is a good way to get the area 
of a tile shape? Describe: 

3. Several skinny tile shapes are given below. Under 
each shape write the area and also write down the 
number of edge pegs. An edge peg is a peg that is 
touched by the rubber band surrounding the figure. 

Aroa: · • 
Ed~Pegs;_ 

• 

• Area .. ':...·---
Edge Pe'1si_. _ 

Area•. ___ _ 

AtM• . . . 
Edga_Pegs:_ .. 

(a) Do you see a relationship between the number 
of edge pegs and the area?· Describe the re­
lationship that you see. Your description: 

(b) If the area were 9 units, how many edge pegs 
would be around the skinny figure? 

(c) Jf there were 16 edge pegs, what would the 
area of the $kinny tile shape be? 

(d) If you know the number of edge pegs, how can 
you figure out the area'? Describe your way. 

Aichele & Wolfe (in press) 



Sample Page from Course Text: Daily Activity Sheet 

File: Perim (January 1, 2004) 

jS.5! Diagonal Lengths on a Geoboard 

We can find diagonal lengths by two different 
methods. 

Method I 

1. Write the area and side length of each of 
these squares as in the first example. . . . 
D 

Area = Area = Area = 
Side 13ide Side 
length = length = length = 

If you know the area of a square, how can 
you figure the length of a side? Describe: 

2. If the area is 100, how long is a side? __ _ 

If the area is 5, how long is a side? ___ _ 

Note: Square roots often occur as the lengt 
of diagonal (or slanted) lines. 

3. Figure these diagonal lengths by figuring 
the areas of the square. . . . 

. ..,. ...... , 
,' \ \,. __ :,\ 

. . 
Area= 
Side ( a.s square root) = 
Side (a.s decimal) = 

\,,; . ·\, . 
' I• 

I 
I . . ,,• 

_.,.'-" .... 
... -:_ . . 

Area.= 
Side (as square root)= 
Side (as decimal)= 

4. Figure the following slanted length by mak­
ing a square and figuring its area. . . . . . ' . 

\ . 
. 

135 
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Name: ________ _ 

Method II 

The principle of right triangles of squares 
(Pythagorean Theorem) gives a fast way to 
find diagonal lengths. . . . . . ,,,,,. ...... , 

, , I r-4--l' · s · '\· 
I • • • ,.> 
I , , 

l-- .. -- .,. . . 
I 11 
J_ - .l 

The diagonal is a side of a square whose 
area can be found by adding the areas of 
the squares on the legs (smaller squares). 

5. Find the lengths of these two diagonals by 
this method. Express your answer as both 
as a square root and as a decimal. r------N ij. -------: 

T ' ' ' ' ' ' ' T 
I a b I 
• • • • • • • • f 

I I 

L------ ------~ 
I 
! __ J 

6. Find the lengths of these diagonals. 

-....:.._:_ b • ·z~ . .. -~. •·• 

. . . . . . . . . 
Summary 

7. Describe, in your own words, the best way 
you see to figure the length of a slanted line 
on the geoboard. 

Aichele & Wolfe (in press) 



Sample Page from Course Text: Illustrates that some pages are for 
informational purposes only . 

• • File: Constr2* { January 1, 2004) 

!11.4! Congruence Conditions for 'lriangles and CPCT 

Tbcrc are aeveral :wa.ys £or an architect to exactly 
des<:ribe a triqajar .sb,ape. 

Triangle Congruence Conditions 

We have bad 4 worksheets titled "Making 'IHangles". 
In a way these worksheets were about congruence oondi­
tions for triangles. We saw that, in the first three eases 
(SSS, SAS and ASA), there was only one possible trian,. 
gle that could be constructed satisfying the given condi­
tions. 

These experiences are summarized here in terms of 
the idea of a congruence condition. 

I For triangles, SSS is a congruence condition. I 
Imagine.that you and"others in class were each given 

three straws, say with lengths as pictured bcrc. · 

rr you were asl«ld to put the straws together to form 
a triangle, do you think that each student would get the 
same (congruent) triangle? . 

In fact, they would.. When we did the worksheet 
"Mo.king 7rumgles I: Si!le-Side--Bide" everybody ~e 
up with the same triangle. This meallS that SSS is a 
congruence oondition. 

I For triangles, SAS is a congruence condition, I 
Again, imagine that you are given two straws and are 

· •!!mi Triangle Co~ce Conditl~m 

· If. there ~ tll()?C than one triangle wbicll .matches a 
condition then it is not a congruence condition. Both 
AAA (meaning three angles are given) and SSA (mean­
ing two sides and an angle not between the two sides 
1/.l'e given) are not congruence oonditions. Pairs of non­
congruent triangles are given below to illustrate this. 

AAA is not a congruence condition: 
• it • • 

SSA is not a congruence condition: 

This exaniple above is similar to the consturct!on we did 
in the worksheet Making Triangles IV: The Ambiguoll8 
Case. 

required to form a speclfted angle between the two straws CPCT Principle 

<::-· .. >·~:z~ ~~=-~~::~E 
lines up with a side of the other and each angle Oil one 
lines up with an angle or ~he other .. ~ pairs of sides 

Notice that the straws and angle a.re labeled so that or angles, one from each triangle, which line up are called 
the angle is between the two given straws. , comuponding parts. Corresponding pa.rt.s can be either 

There is only one triangle which can be made consis- I CO'ff'e8ponding sides or corresponding angles. 
tent with this information. That is, SAS is a congruence 11 This fact that ~~t triangles always line up is 
condition. , called the CPCT Pnnetple (CPCT stands for Qorrespond-
,-----------.---- 1 ing !?.arts of Qongruent Iriangles. I For triangles, AS.A i..o; a congruence condition. I 

. · CPCT Princlple: Comsponding parts of 
Imagine tlu!,t you are given one straw and are required congruent triangles are congruent. 

For example, the two triangles below are congruent. to form certain angles at both ends (ASA for short) as 
diagramed bcrc. . A. B Using the CPCT principle, see i.f you can figure out all 

L ~ I~·~-~;:.
4 

of.the secojnd triangle. 

y OJ:!8 is possible with these requfrements, j ~ 
Again, ASA is a congruence condition. 

160 
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Sample Student Responses From "Solid Tile Shape" Daily Activity Sheet 

Do you see a relationship between the number of 
edge pegs and the area? Describe the relationship 
that you see. Your description: · · 

Mti(Z)+ l =- EACf (-»jJ 

\, 

Do you see a relationship between the number of 
edge pegs and the area? Describe the relationship 
that you see. Your description: 

Vou J.oJole.. your weo..._ + 
a..M [). +o '?f-+· Lf.60-c 

e..~C\e... pe.t"A s, . 
~ -~ 

Do you see a relationship between the number of 
edge pegs and the area? Describe the relationship-/ 
that you see. Your description: // 

Do you see a relationship between the number of 
edge pegs a.nd the area? Describe the relationship 
that you see. Your description: . 

,/' 

Do you see a relationship between the number of 
edge pegs and the area? Describe the relationship 
that you see. Your description: 

Tut A-<ea.. ~cts lo\j CX)i'!> ox,cH·~c 
E o:i~ t>~~';, ~ov~ ~j ~,;:;. 

'i l<i 
5 ,z. 
G. iq 

Do you see a relatio~hip between the number of 
edge pegs and the area? Describe the relationship 

' that you see. Your description: YOJ. Cein' 
muJ t, pl'-/ J-ttQ area by !) evra 
fhe,n a~d ~ ~ Jho. t i ~ 
-ttu> n(J.:rnber of ed_r ptjS, 

dO. + J ;" .P .. 
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Sample Page from Course Text: Group Activity Sheet 

~ dJiq . File: Kitel (January 1, ~) 

~dil'Od'J<I !2.14:I What is a Kite? - Equivalent Definitions 
Nam.e=--------~- Group·members: '"". __________ ..;._ ____ _ 

Among the exampl; of quadrilaterals drawn above, the kites are circled with a dashed line. 

Note: Included among the kites are some special cases: number 3 is a square, and number 10 is a · 
rhombus, both special cases .of kites. This means we are using an inclusive definition of a kite. 

Your Problem 

Often there are many different ways to define a con­
cept, that is, difforent ways to describe the same thing. 
We will ca.II these equivalent definitions. In this activity 
page we will work with this idea of equivalent definitions. 

Several possible definitions for a kite are given be­
low. For each of these possible definitions carefully work 
through J;he examples drawn above to determine which 
ones. satisfy' the definition. 

After Example. Numbers write down all of the num­
bers of the quadrilaterals which · satisfy the definition. 
Check to make sure you are in agreement with others in 
your group on these. 

After Ts it an equivalent definition (yes or counterex­
ample)f write yes if it seems to be a good definition for 
a kite or, if it does not work, give an example number 
from above which satisfies the possible definition but is 
not a real kite. 

Possible Definition A 
A kite is a conve,; quadrilateral . which has· at least 
one pair of congruent opposite angles. 

Example Numbers: 

Is it an equivalent definition (yes .or counterexample)? 

Possible Definjtion B 
A kite is a conve,; qiiadrilateral that h/1,$ perpen-
dicular diagonals. · 

Example Numbers: 

Is it an equivalent definition (yes or counterexample)? 

Possible Definition C 
A kite is a convex quadrilateral in which at least 
one diagonal is a line of symmetry. 

Example Numbers: 

Is it an equivalent definition (yes or counterexample)? 

Possible Definition D 
A kite is a conve,; quadrilateral that has two pairs 
of adjacent congruent sides. 

Example Numbers: 

Is it an equivalent definition (yes or counterexample)? 

Possible Definition E 
A kite· is a convex qiiadrilateral in which at least 
one diagonal is a perpendicular bisector of the 
other:, 

Example Numbers: 

Is it an equivalent defin,ition (yes or counterexample)? 

49 
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Sample Page from Course Text: Example of a 4-Step Problem 

,0 . JI.. File: Constr3 (January 1, 2004) 

~~~111.rLExample: Model Problem A . 

Official Definition: . An· official rhombus is a quadrilateral where. all 4. sides 
are equal. 

Property: For official rhombuses, opposite angles are congruent (by SSS). 

Note that we are given the hint to use. the congruence condition SSS for this problem. 

8 

C. 

8 

[S,,,0 ~} . W& ~ ·~ ~ ~ S$S f..ti.. 

~~~~~11~11:::. ~#. 
A A'CD ~ A A:t8 1 SSS. · · . 

(§ §] ~.·· .. ·..... /..· B ··~.· . · .. •····.· .·. . tr··.'-. 0 ~. t· .. $11$11., .> 1 .· ... .; .··. C·P.· C ~ 
t... B ~ t. n. ·~ ~ M ~ ~ ¥-
ew. ~. Four Step Model 
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169 

Step 1: Mark given information on figure: official definition, 
constructions, related definitions, earlier results. 

Step 2: Draw and identify apparently congruent triangles. 

Step .3: Cite and fully apply CC to triangles. 

Step 4: Apply CPCT for results needed for the property. 

Aichele & Wolfe (in press) 



Sample Student Responses to a CD Problem 

CD Proble1:11 asked students to "Locate the center of the circle passing 
through pomts J, K, and L; then use a compass to draw the circle." 

~~~~-== 
J._! f'i-1 ... J,.., . . .l VI .)L., r111vil'ltl~I/V"., . . . , • -~ -1~-lll.~uJ'..,"""'-~.±l!LV_er±iWl.)_,_-:r,.._Cu:,\lfJ 

~i~~~;;~==--=--==-= 
I 3=--- ____ ,\- -;--. ···-···--·---·----·- . --·---·-····-----·---·······- .............. -............. .. 

·_-· .!=---·---· ·--··/-v''-r"" •· / -··--·-·---............. - ........... - ............. - ...... ---
! \. I \ ] ·. / 

····-.. ·-···-··--····· .. ·--·-·····-·· .... ·····-····--··--··-

_L.__ 7-:~ ___ _L_ __ ::,+----+--···------.. ··--...... ____ ...... _, ____ ....... 
I . / ./ 1·\ ' -- L------··-·-.. ·---····---.... -..... ,,.~----... -.... --1-' ...... . ......... -... --..... · ·------·-·-............... --... - ... ···----
! / ./ '!'\. \ 

-·········-··l. .. --·-···-"'"''·--··--7" ____ , ......... -. i _ ....... · ·--

' / j ' •-•••••••••,,.-L. .... ,,,,,•,,--•-••••·--~·••••••H•-·---•-•••••••••••••••••••••·--~••·----•••••••'"•H••--•·-·•••••••••---••m••-·-........ , ____ ,,_,.,.,,,,, ___ ,,.,,,,,,•• 

·-- ·--- .. --··"·--·-·"" 

--~llAJerQ. llil ___ 3_ __ ~ ... ki.~eio-t'S ..... tYllU2,±1t11LLba.M~~W:.CJ.ktl~(l 
...... 1.~.tt~~-f10l.n+ ..... of.~11L .. -OOn~s&.cn~~-CJrc,urncM~tll!':}_.9 ... 
_ __J_~awCUALa..c, ret e. __ -}v\(t.\-... .§~-M\A'.:o~h_pfS· .... J, K. 1 .... L ·-·· 
'8~Ublule .. a.. .. e.t.mtun~uil?ecl...C!J.IC1c.. _______ .. _ ........ ______ .............. ---·-··· .................................... . 

i --l - ... . ................. - .......... -............... .. - ................................................. ___ , ................. _______ .,.............. .. ................. -------.. .. 

...... ... 1..... . ..... --, ............. ---""' .......... ______ . ···-· ······· .......... ...... ..................................... . ........... - ... --... , ............................ __ ................ . 

............. J .............. -.. -·-······-·-·-- ........................... -.... ······ ............................................................ .. 
I 
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Instructions for Sample Project 

Making sense out of the idea of defimtions and propetties can be difficult for college students and even 
more so for kids. As we discuss worksheets about quadrilaterals you are encow-aged to think about what 
these two words mean. As a project you will be asked to develop a display to illustrate these ideas in as 
basic and simple a way as you can. 

Your project will take several pages in a notebook. These pages need to be presented in such a way that 
they would be readable and attractive if displayed on the wall of a geometry classroom. Be creative and 
visual - we want to support the idea that geometry can be both fascinating and beautiful. 

' 

Condition Id: Express as clearly and simply as you can what it means for a statement to be a 
definition. · 

Condition ~; Express as clearly and simply as you can bow you can tell if a statement is a 
"good".' detmition or a "bad" definition. 

Condition 3d: (tive at least two examples of"good" definitions, one from ''real life" and one 
from geometry. Be sure to indicate why your examples are "good." 

Condition 4d: Give at least two examples of"bad" definitions, one .from "real life" and one 
from geometry. Be sure to indicate why your examples are "bad." 

Condition Sp: Express as clearly and simply as you can what it means for a statement to be a 
property. 

Condition 6p: All definitions are properties; however, some properties are not definitions. 
Express as clearly and simply as you can. how you can tell that a property is not a definition. 

Condition 7p: Give at least two examples of properties that are not definitions, one from "real 
life" and one from geometry. 

There are many examples of student projects on the websites for this course; 

http://www.math.okstate.edu/-tpSC 
bttp:llwww.math.okstate.ed:u/-geoset 

Eventually all web materials for this course will be on the "GeoSET" site (the second of the two listed 
above). During the transition you will find resouwes on both sites. 

Perhaps the examples most related to this project will be found in the t'RPSc» site under the link 
Geometry: Main Ideas. In the "GeoSBT" site these student examples wm be under the "Student" tab 
through the link StudentProiects: Basic Ideas. 

As part of the GeoSBT project we will use some of the best projects as models to go either m the project 
website or in the materials for teachers who use these curricular materials. If your project is selected for 
inclusion you will get bonus project points. 
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Sample Project - Page 1 
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....... 

......... 
c.,.) 

ood 0~finition \~ 
or 

~ad Befinifion 
A Statemen1: is a sood 
deflnfion when you can·1: 
thi nK Of another examp1e 
that might fit in the 
definjtion. 

""' , Statement is a ltad ddintion 
ti. r, when you. can thinK Of jUS"t one ~,·~{ 
··· ' Other thing or many other 

things that coutd a1so fit in the 
, defintion besides what you are 
trying to define. 

Here Is an example Of a good def!nf1:ioo. 

A pencil is a tool that uses 
tead t0 write and usually has 

Ttlis is a iOOd definition t>eeause no 
Other writit,gtool Au in this definition. 

ere Is an example Of a bad definition. 

A pencil is a tOOI used FOr 
writing. 

Ttlls Is a bad deFlntion beeause 
t here are many tool$ fQr writ:ing 

::t" . •""" ·"" -' 'J • . ,_, 
,. , . .-. ,1 -: ·: • ~:, ',\' 

:- ·,M,\ 
dl ~';-..j 

(.I) 
!l) 
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"C 
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0 --I 
-u 
!l) 
co 
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-...J 
~ 

GIN6Jtd 
6eeMetr~ hfiftitilftS 

Here is ari example or: a BOOd 
d!:flnlt Jon From geometrY. 

A paraue10,grarn is a four· 
sided figure that has 'W.X) pair 
Of para11e1 sides and tneir 
oppesite ang1es are equal. 

This is a good definition beeause no 
other roor-slded fig,Jre fltS tni.s 
definition that is not a 
paralletoaram. 

Here ls an examp1e Of a bad 
definition. 

A para11e1gratn is a four-sided figure. 

This Is a bad ~ tnple beeause any 
f,1gure that has rour s,aes f:!tS tllis 
aeflntion. 

U) 
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3 
-0 
(I) 
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a ,r 
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A definition is a combination 
Of properties. So, definitions 
are always properties, but not 
all properties are definitions. 

Here is an easy way w tell the 
difference between a 
definition and a property. lf 
you can thinK Of something 
eise that atso fitS the 
Statement then the 

. Statement is a property and 
not a definition. 
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Date: Friday, May 02, 2003 

Oklahoma State University 
Institutional Review Board 

Protocol Expires: 5/1/2004 

IRB Application No ED03113 

Proposal TIiie: THE IMPACT OF A REFORM BASED GEOMETRY CONTENT COURSE ON 
PRESERVICE ELEMENTARY TEACHERS' ATIITUDES AND TEACHING EFFICACY 

Principal 
lnvestigator(s): 

Juliana Utley 

249Willa(d 

Stillwater, OK 74078 

Reviewed and 
Processed as; Exempt 

Stacy Reeder 

238witlard ... 

Stillwater, OK 74078 

Approval Status Recommended by Reviewer(s): Approved 

Dear Pl: 

Your IRS application referenced above has been approved for one calendar year. Please make note of 
the expiration date indicated above. It is the judgment of the reviewers that the rights and welfare of 
individuals who may be asked to participate in this study will be respected, and that the research will be 
conducted in a manner consistent with the IRB requirements as outlined in section 45 CFR 46. 

As Principal Investigator, it is yourresponsibitity to do the following: 

1. Conduct this study exactly as it has been approved. Any modifications to the research protocol 
must be submitted with the appropriate signatures for IRB approval. 

2. Submit a request for continuation if the study extends beyond the approval period of one calendar 
year. This continuation must receive IRS review and approval before the research can continue. 

3. Report any adverse events to the IRS Chair promptly. Adverse events are those which are 
unanticipated and impact the subjects during the course of this research; and 

4. Notify the IRB office in writing when your research project is complete. 

Please note that approved projects are subject to monitoring by the IRB. If you have questions about the 
IRB procedures or need any assistance from the Board, please contact Sharon Bacher, the Executive 
Secretary to the IR,B, in 415 Whitehurst (phone: 405-744-5700, sbacher@okstate.edu). 

Car.cl Olson, Chair 
. Institutional Review Board 
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