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Chapter I 

The Need for a Framework for Selecting Optimal Methods for Fault Monitoring 

1.1 Importance of Fault Monitoring 

Despite the advent of the postindustrial era, the importance of the manufacturing sector in 

the economy remains high. Besides that, the global competition tightens, the environmental 

standards become more stringent, and the natural resources get exhausted. As a result, the 

economic benefits of manufacturing high-quality goods and operating industrial processes 

correctly grow. At the same time, industrial processes become increasingly more complex, 

especially in the developed world. It is hard to operate complex systems correctly because of the 

very large number of interactions and unaccounted factors. 

Aside from the well-studied issues linked with the control of complex systems, there is a 

problem of a timely detection of faults. In this work, fault is defined as an undesirable change in 

the process, process operation outside of the acceptable region. Most faults can be corrected with 

a fair amount of effort. Faults must be discovered as they appear because they often lead to 

serious consequences associated with a significant loss in the profitability of the process and the 

company running the process. Fault consequences can be non-dangerous, but undesirable, such as 

a substandard process operation reducing the product quality and increasing the use of 

components per unit product. Alternatively, faults can lead to accidents that pose danger to the 

health and lives of the plant personnel and the residents of the area where the plants are located. 

1.2 Fault Monitoring in the Process Industries 

Discovery of faults in real time is the task of fault monitoring in the process industries. 

Process industries deal primarily with continuous streams of raw materials and products and 
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produce industrial commodities, such as chemicals, petroleum products, metals, foodstuffs, or 

electricity. To monitor faults in the process industries, the values of the process measurements 

and product characteristics (process variables) are constantly collected and analyzed for the 

presence of faults. Fault monitoring in the process industries is a big issue for two reasons. 

First, faults in the process industries may potentially cause enormous damage. The two 

worst technological accidents in history: the Chernobyl' and Bhopal disasters were caused by 

faults at a nuclear power plant and at a chemical plant, respectively. It was estimated that in 1994, 

abnormal situations cost the world's petrochemical industries alone about US$20 billion a year 

(Nimmo 1995). If the other industrial commodity manufacturers were accounted for, this cost 

would be at least doubled and would be equal to at least 0.2% of the world's gross domestic 

product for that year. This figure does not account for the human lives lost and the environment 

polluted as a result of these abnormal situations. Due to the fear of fault-related accidents, the US 

has not built a single nuclear plant for 25 years. 

Second, many faults in the process industries are hard to detect. This difficulty is due to 

the highly nonlinear, non-stationary, multivariate nature of chemical, petrochemical, food 

processing, metallurgical, and power generation processes. Moreover, there is a great variability 

among how different faults display themselves in the observed process variables. Hence, fault 

detection in the process industries requires dealing simultaneously with a large number of values 

of different process variables using different custom approaches. The operators responsible for 

fault detection continuously analyze current process data and use their expertise to determine if 

the supervised processes have faults. 
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1.3 Difficulties in Automating Process Fault Monitoring 

The recent advances in the applied mathematics and in computer hardware and software 

combined with the high-tech frenzy of the late nineties brought about a large number of relatively 

complex multivariate techniques, such as the advanced multivariate statistical methods, neural 

nets, nonlinear multiple regressions, classification and regression trees, advanced linear models, 

etc. These techniques can be potentially used for performing fault monitoring in the process 

industries. Several thousand research papers, describing potential and actual uses of different 

advanced multivariate methods for fault monitoring in the process industries, have been published 

in the last 15 years. However, these proposed methods have found only a very limited application 

in the area of process fault monitoring for several reasons. 

First, the ability of numerical models to monitor each particular user-specified fault in 

real time is unknown. There is no single universal method for monitoring all possible faults 

because different processes have different qualitative and quantitative characteristics plus there 

are different requirements to how the monitoring of each individual fault should be performed. 

Hence, not only will different methods show different performance for different faults, but there 

may also be incompatibilities between some faults and mathematical methods for fault 

monitoring. The superabundance of these methods complicates things further. 

Second, there is no well-established procedure for predicting and/or estimating the 

performance of different methods when monitoring each particular user-specified fault. While 

some performance measures, such as the detection lags, error rate and others have been proposed, 

they primarily aim at satisfying common quality and safety standards and do not convey the 

benefits of automating the process fault monitoring in monetary terms. Without the ability to 

estimate this measure for different faults and different monitoring methods, the plant management 

and operation personnel may not be convinced that it makes sense to replace the "good old" 

manual fault monitoring with a computerized one. 
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1.4 An Overview of the Solution Proposed for Finding Best Fault Detectors 

The widely accepted procedure for selecting models for describing any phenomena 

consists of four steps: 

1) Finding the model types suitable for the 

2) Identifying the parameters of the appropriate model designs 

3) Evaluating the performance of the resulting models 

4) Selecting the best-performing model. 

This work proposes an algorithm that performs the four above steps to construct well-performing 

methods for user-defined fault monitoring problems. 

First, the proposed algorithm views all the possible methods for fault monitoring as a 

combination of structural parts. The proposed algorithm combines these parts into operational 

methods for fault monitoring using the proposed rules that define the compatibility of the 

structural parts with the user requirements, monitored process and fault specifics, the properties 

of the processed data, and other structural parts of the model for fault monitoring. Automation of 

this algorithm allows searching vast arrays of mathematical methods, including those that have 

never been described in the technical literature and those that will be developed in the future. This 

organized search will help find optimal methods for fault monitoring in the cases very common in 

the process industry where no a priori information is available on which methods are suitable for 

fault monitoring and which methods will perform well. 

Chapter II describes the proposed approach for decomposing any mathematical methods 

for fault monitoring into structural components, formalizing the properties of these components 

and user-specified fault monitoring problems, and combining the components into methods 

applicable to solving the user-specified monitoring problems. Essentially, Chapter II explains 

how to perform the first step of the model selection sequence for the case of fault monitoring. 

Second, a procedure for estimating the performance of different fault monitoring methods 

in monetary terms is proposed. The proposed statistical estimator indicates the monetary return on 
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the investment in the automation of monitoring a particular fault using different fault models. 

This monetary return is evaluated as an expectation of the reduction in the risk of fault 

consequences that will be achieved by the automation of fault monitoring. This reduction is 

corrected by the risk of false alarms. Chapter III describes the proposed metric in detail. 

Chapter IV summarizes the proposed algorithm and illustrates its application in practice. 

Every step of the algorithm is described in great detail and the illustration uses a commonly 

known simulation of a chemical process available in the public domain. Although the proposed 

algorithm has not been computer-coded yet, the illustration suggests how to implement a piece of 

software for selecting methods for fault monitoring using an operator-friendly interface. 

This algorithm overcomes the problems outlined in the previous section, which have been 

limiting the automation of fault monitoring in the process industry. To the knowledge of the 

author, the proposed algorithm is the first one that evaluates the return on the investments in 

automating fault monitoring in the process (continuous-stream) industry. In addition, this 

proposed approach might help commercialize many previously developed methods for fault 

monitoring that never made it to the industry. 
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Chapter II 

Constructing Fault Models from Structural Components 

Section 2.1 of this chapter discusses faults in the process industries, methods to prevent 

faults, and the role and functions of automated (computerized) model-based monitoring of 

process faults. Section 2.2 describes a functional hierarchy of various methods for fault 

monitoring presented in the technical literature. Section 2.3 proposes a template that can be used 

to build mathematical models for fault monitoring out of structural components. Section 2.4 

proposes the rules that determine how fault models can be created from the proposed template for 

monitoring different user-specified faults. 

2.1 Faults and the Role of Automated Fault Monitoring in the Process Industries 

2.1.1 Types of Faults in the Process Industries 

In the process-engineering vernacular, process faults (or abnormal situations) mean an 

incorrect operation of the process. All the processes are designed to operate without faults. 

However, from time to time, some components of a process may fail, i.e., lose the ability to 

perform their functions correctly. For example, a control valve may be damaged and thus lose the 

ability to entirely block the flow of the fluid through it. As a result, the process controlled by this 

valve may not be operated correctly. Thus, each process fault has a root cause, i.e., a failure that 

causes the fault. Once a fault occurs, it is important to find and correct the failures that are the 

root causes of the fault as soon as possible. 

Process faults are divided into classes according to the type of root causes, fault onset, 

and the risk. A recent survey on fault monitoring (Venkatasubramanian, Rengaswamy et al. 

2003c) enumerates several types of process faults (abnormal situations) according to their root 

causes. The first type of root cause is comprised by the external causes, such as changes in the 

feeds or ambient conditions. Failures in the control hardware (sensors, actuators, control valves, 

communication lines, and control computers) make up the root cause of the second type. The 
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third type of root cause is made up of the rest of the process hardware, such as pipes, reactors, 

separators, etc. Faults with the second type of root cause are the hardest to detect as they affect 

the equipment delivering the process data that can be used for fault detection. 

Faults can be gradual or abrupt. Gradual faults may arise as a result of the tear and wear 

of the process equipment or as a result of a gradual change in the ambient conditions or process 

feeds. An example of a gradual fault can be a slowly accumulating fouling of a pipe resulting in a 

gradual increase of the head loss across the pipe. Abrupt faults are the results of catastrophic 

changes in the process equipment or process feeds. Control valve sticking is an example of an 

abrupt fault. 

It is important to note that the impact (or effect) of a fault on the process generally 

increases with time. For abrupt faults, this impact may first drop and then grow again as shown in 

Figure 2.1. Hence, there is frequently a substantial time lag between process fault occurrence and 

fault discovery. 

effect of 
a fault abrupt 

.,./'fault 
('/ 
l \ 
! '\. 
I ,, 

I '~ l .......... 

fault inception 

gradual 
fault 

time 

Figure 2.1. The effect of faults on the process variables 

2.1.2 Process Safety Management and Automation of Fault Monitoring 

To reduce the risk associated with process faults and their consequences, each processing 

plant should have a safety management program. Several approaches to safety management, such 

as what-if, interaction analysis, zonal analysis, checklist, Failure Mode Effect Analysis, and 
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HAZOP (Steinbach 1999) have been proposed to date. There are various software tools that 

automate safety management in the process industries. These tools are expert systems 

HAZOPExpert that model the circumstances of faults (Srinivasan, Dimitriadis et al. 1998), 

relational databases filled with reactivity and hazard information (Al-Qurashi, Sharma et al. 

2001), and "data farms" containing taxonomically organized fault histories recorded at various 

plants (Thomas and Moosemiller 2001). 

There are four basic steps that must be taken to reduce the risk associated with faults and 

their consequences at a process facility: 

1) Improvements in plant design, such as installation of additional sensors and fault-

proof process equipment 

2) Safety training of the personnel 

3) Scheduled preventive maintenance 

4) Real-time management of faults as they occur. 

There are government-issued regulations and recommendations on how to implement the 

safety measures that reduce the risk of faults and their consequences (CCPS 2000c). Despite that 

fact, there are some degrees of freedom in the implementation of the above safety program. fu 

particular, human operators can perform the real-time fault management or it can be automated. 

Automation of fault management can lower the risk associated with process faults and their 

consequences. As was outlined by Isermann (Isermann 1997), an automated management of 

faults in a process should consist of at least five stages, as shown in Figure 2.2: 

1) Fault modeling: determining the relationships between the process variables and 

faults; 

2) Fault detection: using a fault model to determine in real time if a process operates 

inside or outside of the applicable appropriate region; 
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3) Fault diagnosis and evaluation: using a fault model to determine the origin of the 

fault that causes the process to operate outside the appropriate region and the extent 

of the fault; 

4) Deciding on what to do to rectify the fault; 

5) Fault Rectification: acting to reduce the negative effect of the diagnosed fault on the 

process and returning the process to the normal operation. 

FAULT 

EVALUATION 

faults 
:and 

DECISIONS 

FAULT 

DIAGNOSIS 

CHANGE/FAULT 

DETECTION 

process 
measurements 

OPERATED 
PROCESS 

normal 
:and fault 
regions 

FAULT 

MODELING 

Figure 2.2. Stages in the Automated Process Safety Management (Isermann 1997) 

2.1.3 The Concept and Functions of a Fault Model 

Fault models are mathematical and logical relationships between the process variables 

and faults possible in the process. These models serve for fault detection (Step 2 of the automated 

fault management process). Some fault models also perform fault diagnosis by finding the root 

causes of process faults (Step 3 of the automated fault management process). Fault models 

effectively solve pattern recognition event-monitoring problems. Event monitoring is the type of 

pattern recognition that consists in identifying the occurrence of certain events in real time. 
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To perform fault detection, the monitored process is divided into process blocks that may 

be entire process plants, process units, or particular streams and pieces of control equipment. 

Each block has one or, sometimes, several modes of abnormal operation known as "fault states." 

For each process block, the latest process data collected over a fixed-length time period called 

monitoring window (grab size) are input into a fault model. All the process data falling into this 

window at a given time instance make up a process data vector. This vector consists of the 

sequentially historicized process data points caught inside the monitoring window. Each process 

data point contains the values of the process variables recorded by the process data historian at a 

given point in time. The constant time interval between acquisitions of adjacent process data 

points is called sampling period or sampling interval. 

A fault model finds out from the process data vector that includes the latest observed 

process data point if the monitored process is in the region corresponding to the normal operation 

of the process or in the region corresponding to a certain fault. Fault models perform the 

mappings from the space O of process data points to the space Q of faults. 

(2.1) 

These mappings imitate the actual relationships between O and Q for a specific fault. To create 

these imitations, fault model parameters are identified by using either the training sets: the sets 

of historical data recorded (historicized) during the occurrences of the monitored faults as well as 

normal operation of the monitored process or by using the first principles. This proposed 

definition of a fault model is broader than the conventional one. This definition takes account all 

the stages of the transformation from the sensor readings to the prediction of faults and not just 

the mapping of process data vectors onto meaningful descriptions of the monitored process states. 

The concept of automated fault monitoring is schematically shown in Figure 2.3. If the 

process data vector is in the faulty region, the process variables whose current values are least 

likely for the normal operation of the process are singled out. Then a logical fault-diagnosing 
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model, such as a fault tree (CCPS 2000b ), is run to name the possible root causes of the detected 

fault. The use of the shared equipment reliability databases together with statistical classifiers 

(CCPS 1998) helps in narrowing down the list of possible root causes. After that, a manual check 

and replacement of faulty equipment and/or correction of external root causes are performed. 

FAULT 
MODEL 

monitoring 
LATEST PROCESS DATA window 

PROCESS STATE 
(FAULT 11 FAULT 2 ... I NORMAL} 

T2 
T3 

' ' 
' 1----+<..........,~P--+- _ ....... .._._ 
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Figure 2.3. Generic flowchart of process fault monitoring 
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There exists a vast array of human knowledge on how to get to the root causes of faults. 

Many activities included in fault diagnosis have to be performed manually. Hence, this work 

primarily focuses on automated real-time fault detection that may also involve partial automation 
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of fault diagnosis. It is important not to confuse fault monitoring with fault detection and fault 

diagnosis. 

2.2 Implementations of Fault Models as Combinations of Different Methods 

2.2.1 Fault Models as Hierarchies of Methods for Fault Monitoring 

As was mentioned in Chapter I, there can be no method universally good for monitoring 

all the possible process faults. A plethora of different numerical and logical methods to model 

process faults have been proposed to date. This work on process fault modeling has been 

summarized in the multiple surveys on methods for process fault detection and diagnosis (Chiang, 

Russell et al. 2001b; Davis, Piovoso et al. 1999; Frank, Ding et al. 2000; Frank and Ding 1997; 

Isermann 1997; Isermann and Balle 1997; Kramer and Mah 1993; Leonardt and Ayoubi 1997; 

MacGregor and Kourti 1995; Phatak and Sparks 1995; Venkatasubramanian, Rengaswamy et al. 

2003a; Venkatasubramanian, Rengaswamy et al. 2003b; Venkatasubramanian, Rengaswamy et 

al. 2003c; and Wise and Gallagher 1996). 

Most of these surveys primarily focus on a particular class or a set of classes of methods 

for fault detection and diagnosis where the authors are the experts. In addition, these surveys do 

not show a distinction between fault models that help imitate faulty operation of industrial 

processes and methods for automated fault detection and diagnosis performing specific tasks in 

this imitation. It is important to show what these tasks are and present a generic fault model as a 

combination of different methods for fault detection and diagnosis. 

Process data typically consist of a very large number of continuous readings of many 

different process variables distorted by noise and random fluctuations due to sensor and process 

noise. In addition, the process control system is set to smooth out all the abnormal deviations in 

the process variables, including the deviations caused by faults. Therefore, the relationships 
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between process variables and fault states are often very complex and a direct real-time mapping 

of the process variables into all the possible faults with the root causes of these faults is a task too 

challenging for a single method for fault modeling (Venkatasubramanian, Rengaswamy et al. 

2003b ). This is why a fault model is usually a combination of different numerical and logical 

methods, even though the presentations of fault models in the technical literature usually focus 

only on the key and most complex component of the proposed fault model and give little or no 

attention to other components of the model. The general strategy of processing data by fault 

models consists in trimming and de-noising a potentially boundless pool of process data, creating 

a small number of indicators sensitive to faults, and mapping those few indicators onto a set of 

process states. 

There are a number of methods, with a long application history in various fields of human 

knowledge, which can perform each of these tasks separately. Each method essentially performs a 

part or a step of the mapping in Equation 2.1. Some methods map the space O of process 

measurements onto an intermediate measurement space O 'that either has fewer measurements 

than O or contains measurements at least partially cleared of noise and outliers, or both. Other 

methods map O or O 'onto a feature or residual space B consisting of a few derived variables that 

are not trends of the monitored variables. The variables spanning B are created to be very 

sensitive to the monitored faults. Some other methods map the feature space B or the 

measurement spaces ( 0 or O 'j onto the symbolic decision space Lt. The decision space spans the 

monitored faults or qualitatively described fault components. Finally, methods for fault diagnosis 

map the symbolic decision space L1 onto the space Q of the root causes of faults. Figure 2.4 

presents possible mapping types performed by the methods for fault detection and diagnosis. 

These mappings are shown as numbered arrows between the rectangles denoting different spaces. 

The remainder of Section 2.2 discusses different methods that perform each type of these 
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mappings and proposes a generic template for designing fault models out of the methods for fault 

detection and diagnosis described in the technical literature. 

Measurement Space 0 

Intermed. Measurement Space O' 

Feature or Residual Space E 
5 

Decision Space L1 

Root Cause Space .Q 

Figure 2.4. Mappings that can be performed by the methods for fault detection and diagnosis 

2.2.2 Methods for the Mapping between the Measurement Spaces ( O~O "Mapping) 

This type of mapping is marked 'CD' in Figure 2.4. Methods performing mappings 

between the measurements spaces are further divided into: 

1) Methods for the selection of the relevant process variables 

2) Methods for noise reduction and removal of outliers. 

These methods are very important, but, for some reason, they were given very little attention in 

the surveys on fault detection and diagnosis. 
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2.2.2.1 Methods for the Selection of Relevant Process Variables. Supervised selection 

of the process variables most relevant to the monitored faults should be performed when there are 

too many process variables in the monitored block and when a first-principle process model is 

unknown (see Section 3.2.4). Variable selection can be performed in two general ways. One way 

to do variable selection is to identify a crude relationship between all the process variables and 

faults and see what variables have the greatest weights in this relationship. The reported schemes 

of the weight-based selection of process variables for process fault detection and diagnosis used a 

classification and regression tree (Mastrangelo and Porter 1998) and a neural network (Lezanski 

2001) to create this crude relationship between the process variables and the fault. 

Another way to select input variables is to use a discrete search technique, such as 

forward selection backward elimination, or a genetic algorithm, that finds a set of input variables 

that optimizes a certain criterion indicating the amount of information about the monitored faults 

contained in the selected process variables. Reported process fault detection applications optimize 

the mean distance between historical data points belonging to different process modes (Oyeleye 

and Lehtihet 1998) and the Kullback-Leibler discrimination information (Sadegh, Madsen et al. 

1995). 

2.2.2.2 Methods for Noise Reduction and Outlier Removal. There are three 

approaches to reduce the noise and remove the outliers and biases from the process data: 

traditional time-series analysis, direct removal of outliers, and data reconciliation. 

The traditional time-series analyses are performed using linear or nonlinear filters that de­

noise trends of a single process variable. Filters map the process measurements to maximize the 

retention of the relevant filter-dependent process information while minimizing the noise content. 

Process monitoring applications of linear filters, e.g. of the conventional finite impulse response 

filter (Davis, Piovoso et al. 1999) or the Kalman Filter (Qiu, Wen et al. 1995) use certain linear 

transformations of process measurements over a certain time horizon. 
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Linear filtering is not demanding to the computational resources of the computer. 

However, the nonlinear filters are more common in the reported process monitoring applications, 

especially the wavelet transform, because they are better suited to model the nonlinear nature of 

the process systems. Since classical continuous wavelet transform is significantly more 

computationally expensive than the linear filters, several applications of the faster discrete 

wavelet transform have been reported, e.g., (Aretakis and Mathioudakis 1996; Koh, Shi et al. 

1999; and Shao, Jia et al. 1999). The coefficients of the discrete wavelet transform can be further 

refined using different techniques, e.g. the commonly known Principal Component Analysis as 

was suggested by (Bakshi 1998), before being put in use to de-noise the trends of the monitored 

variables. 

Data reconciliation consists in correcting the biased values of the process variables. Data 

reconciliation maps the current measurements of the process variables into the measurements that 

simultaneously minimize the deviation of the new variables from the measured readings and the 

errors in the conservation laws that apply to the monitored process system (Crowe 1996). 

The removal of outliers is performed by statistical tests for a trend in the measurements 

of the process variables. A sharp increase in the value of a monitored variable without an upward 

trend for this variable indicates an outlier that should be removed (Tham and Parr 1994). 

2.2.3 Methods for the Mapping between the Measurement and Feature (Residual) 

Spaces (O~Eand 04EMappings) 

This type of mapping is marked '@' in Figure 2.4. Methods performing the mapping of 

the "0-...:;E' type can be divided into those based and those not based on a model of the monitored 

process. 
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2.2.3.1 Residual-Generating Methods Based on the Monitored Process Model. 

Methods based on a model of the monitored process use process models that express relations 

between the variables of the monitored process. The argument variables are "inputs" and the 

dependent variables are outputs. These methods calculate model residuals: the differences 

between the outputs of these models and the actual process variables predicted by the model. The 

applicable models can be first-principle-based, linear, or nonlinear ones. A simplistic structure of 

the residual generating model-based methods for fault detection attributed to Frank and his 

colleagues (Frank, Ding et al. 2000) is shown schematically in Figure 2.5 below. 

measurements 
of the input 
variables 

Process 
Model 

calculated 
output 

variables 

Monitored 1-------m-e_a_s_u-re_d _ __.~ 

Process output 
variables 

calculated 
residuals 

Figure 2.5. A simplistic structure of the residual generating model-based methods for fault 
detection 

The use of first principle-based models for residual generation is justified only for easy-

to-model process systems. For these systems, detailed first-principle models of each process 

device are created and combined to simulate the monitored process system. The model runs in 

real time, along with the monitored process, and outputs the residuals: differences between the 

actual and simulated values of the measured process variables. Modeling of process systems for 

fault detection and diagnosis has been implemented in various pieces of software a long time ago, 

e.g., (Kelly and Lees 1986). 
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Generation of residuals for fault detection using a data-driven linear dynamic model of 

the monitored process is also a well-researched mature area. The reason is that linear models are 

used for fault detection in the dynamic systems with a small number of process variables, such as 

machinery and electronics. The conventional methods for generating residuals from a linear 

process model are observers (Clark 1979) and parity relations (Willsky 1976). Newer methods for 

residual generation using linear models include the generation of directional residuals (Gertler 

and Monajemy 1995) and the generation of structured residuals (Gertler, Fang et al. 1990). 

Kavuri and Venkatasubramanian reported an application of an observer to monitoring a chemical 

process (Kavuri and Venkatasubramanian 1992). 

The downside of these methods is that the number of residuals they generate is equal to 

the minimal number of the variables necessary to identify the state of the monitored process 

uniquely. In the process industries, the number of such variables can be very large, so the number 

of residuals will also be large, which is inappropriate for further mapping of these residuals to the 

space of the monitored process modes. As a result, it makes sense to model relationships not 

between the "input" and "output" process variables, but between the linear combinations of these 

variables. The method called Projection to the Latent Structures (PLS) creates a linear 

relationship between a few best-correlated linear combinations of the "input" variables and a few 

linear combinations of the "output" variables (Chiang, Russell et al. 2001c ). Similar to the PLS is 

the Canonical Variate Analysis ( CV A) that creates the linear combinations of the input and output 

variables to maximize the covariances between these combinations (Chiang, Russell et al. 2001a). 

If the number of "output" variables is small, they are used in the PLS regression as they are and 

this method is called Principal Component Regression. Advanced multi-block versions of the 

projection to the latent structures are especially well suited for the monitoring of batch processes 

(Kourti, Nomikos et al. 1995). The Multi-block PLS adds another dimension to the process data, 

indicating the batch number, before decreasing the number of the "input" and "output" variables. 
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Monitored processes can also be modeled using nonlinear relationships, such as neural 

networks. Several neural network-based approaches to modeling the monitored processes have 

been proposed, e.g., (Tsai and Chang 1995). 

2.2.3.2 Residual-Generating Methods not Based on the Monitored Process Model. 

Both linear and nonlinear non-model based methods for residual generation can be used in fault 

detection and diagnosis. The linear methods are based on the linear transformations of the 

original process variables into their uncorrelated principal components that explain most of the 

variance in the original process variables (Jackson 1991). Numerous variations of this method 

have been reported applicable to fault detection and diagnosis, e.g., the Principle Component 

Analysis or PCA, (Dunia, Qin et al. 1996), Multi-Way PCA (Nomikos and MacGregor 1994), 

Dynamic PCA or DPCA (Luo, Misra et al. 1999), and fudependent Component Analysis or ICA 

(Hyvarinen and Oja 2000). Essentially, all these methods are similar to PCA modified to process 

input variables in steps or/and in blocks. The Multi-Way PCA, developed specifically for batch 

processes, adds another dimension, batch number, to the process data. The DPCA augments the 

value of each input variable with the time-delayed values of this variable. The ICA is a more 

general form of PCA. The ICA is a linear transformation of input variables into a set of 

components that are not only uncorrelated, but are statistically independent in other ways 

specified by the user. Essentially, ICA is a large family of methods. 

There are a number of nonlinear methods for generating residuals for fault detection and 

diagnosis. These residuals can the coefficients of the wavelet transform methods discussed in 

Subsection 2.2.2.2. However, this is not a very good idea because the residuals generated this way 

do not take advantage of the interaction between the process variables. Other nonlinear methods 

group together the process data points located close to each other. Reported applications of these 

methods to fault detection and diagnosis include the k-nearest-neighbor and k-nearest prototype 

clustering algorithms (Guglielmi, Parisini et al. 1995) and the Self-Organizing Feature Map 
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(Pantoni and Mazzola 1996). Similar to these two methods is an application of the nonlinear PCA 

to generate residuals out of the process variables (Kramer 1991 ). In the nonlinear PCA, the inputs 

are nonlinearly mapped into a small number of variables used as the features. To train the 

nonlinear mapping, the features are mapped back onto the process variables. The nonlinear 

mapping is trained to minimize the difference between the values of the process variables used as 

the inputs and the values of the process variables mapped from the features. 

2.2.4 Methods for the Mappings from the Space of Process Measurements onto the 
Decision Space (~Lt, 0--?Ll, and O ~Lt) 

This type of mapping is marked '®' in Figure 2.4. Two major classes of methods 

performing this type of mapping: trend analyzers and neural networks are used in fault detection 

and diagnosis. 

Different methods performing this mapping can partition the input space corresponding 

to the monitored faults and the normal operating state into bounded (local) or unbounded (global) 

sectors. As shown in Figure 2.6, there may be four possible situations of how the input space 

sectors corresponding to different operating states of the monitored process can be bounded or 

unbounded. 

2.2.4.1 Trend Analyzers. Trend analyzers perform a mapping from the space of trended 

variables, such as process variables or residuals. The most common trend analyzers are control 

charts. 

Control charts are supervised data-driven methods. Control charts (Xie, Goh et al. 2002) 

process sequences of the monitored process variables ( or features/residuals extracted from these 

variables) sampled over time. The control charts used in the process fault monitoring are, in 
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essence, two-sided statistical hypotheses tests for the consistency in the statistical characteristics 

of the process variables. 
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VARIABLE 2 

TYPE 4. UNBOUNDED FOR BOTH FAULTS AND NORMAL OPERATION 

Figure 2.6. Types of partitioning the input space into classes 

For each input variable, univariate control charts test the null hypotheses that the variable 

is not significantly shifted from its median value (X and X charts) and/or whether its variance 
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does not significantly exceed the variance observed during the normal process operation (Rm, R, 

ands charts). Thus, control charts map input variable values to a decision space consisting of the 

categorical parameters indicating if each of the input variables is consistent with the normal 

operation of the monitored process or if there is a certain type of inconsistency, e.g., the variable 

value is too high or the variable's variance is too large. 

To diminish the errors caused by the outliers and noise, control charts may pre-filter the 

trends of the input variables. Filtering the trends by using a moving average filter makes a 

Cumulative Sum (CUSUM) control chart (Woodward and Goldsmith 1964) and an Exponentially 

Weighted Moving Average filtering makes an EWMA control chart (Roberts 1959). Multivariate 

control charts have the capability to test for inconsistencies in a combination of input variables. 

The use of multivariate analogs of the X-chart: the Hotelling Chart (Phatak and Sparks 1995), 

CUSUM chart (Healy 1987), and EWMA chart (Lowry, Woodall et al. 1992) is reported in the 

technical literature. The above-mentioned control charts perform the Type 3 partitioning of the 

space of the input variables. 

More sophisticated control charts test several statistical hypotheses. Each of these 

hypotheses corresponds to a specific monitored mode of the process (Al-Ghanim and Jordan 

1996Raich and Cinar 1996). A similar idea is behind the proposed testing of sensor faults based 

on the so-called "sensor validity index" that uses test the hypotheses that the current 

measurements have been sampled from a hypothetical distribution describing a sensor failure 

(Dunia, Qin et al. 1996). More sophisticated reported approaches to statistical fault identification 

involve using angular discriminants based on Machalanobis angles between trend points (Raich 

and Cinar 1997). 

The qualitative trend analysis (QT A) is an alternative to the control charts based on 

"common" first principles. This approach serves for generating qualitative information describing 

faults. QT A is generally not suitable for the E-+Ll mappings as it takes advantage of the 

information encoded in the process variable trends. This technique analyzes process variables and 
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residuals and finds certain patterns, called primitives, specific for the monitored faults. Each 

process variable trend can be characterized by a combination of these primitives (Janusz and 

Venkatasubramanian 1991). Thus, the variables spanning the decision space would be sets or 

meaningful combinations of such primitives for each process variable. Recent papers on the 

application of the QTA to the process fault detection and diagnosis report extraction of primitives 

using neural networks (Rengaswamy and Venkatasubramanian 1995), wavelets (Vedam and 

Venkatasubramanian 1997), dynamic time warping techniques (Kassidas, Taylor et al. 1998), and 

the dyadic B-Splines (Vedam, Venkatasubramanian et al. 1998). 

2.2.4.2 Neural Networks. Neural networks are combinations of multiple transforms of 

the same type or of few similar types performed in parallel and sequentially. A great number of 

neural-network-based applications for fault detection and diagnosis have been reported. The 

simplest neural networks for modeling process faults are feed-forward multiplayer perceptrons 

(Hoskins and Himmelblau 1991), a Hamming network (Marcu and Mirea 1997), a Group 

Methods of Data Handling (Korbicz and Kus 1998), and a Leaming Vector Quantization network 

(Wang and Xu 1996). 

Most other neural networks applicable for modeling faults in the process industries are 

either kernel-based or Adaptive Resonance Theory-based. The kernel-based networks create 

several kernels that span sectors of adjustable shape and size that cover the area of the input space 

corresponding to a fault. Applications of a number of different types of a kernel-based neural 

network have been reported for fault detection. These applications include the networks that 

create round Gaussian kernels (Tzafestas and Dalianis 1996), elliptical Gaussian kernels (Kavuri 

and Venkatasubramanian 1993), and non-orthogonal wavelet-sigmoid kernels (Zhao, Chen et al. 

1998). The Adaptive Resonance Theory-based networks create densely packed hyper-spherical 

shapes that cover the input space corresponding to a fault. Reported applications of these 

networks in process fault detection used the ART2 (Whiteley and Davis 1994), a cascade of 
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ART2 networks (Yamashita, Komori et al. 1999), the Fuzzy ART (Roehl 1995), and the Fuzzy 

ARTMAP (Aldrich, Moolman et al. 1995). 

2.2.5 Methods for the Mapping onto the Monitored Mode Space (~.Q, O"""?.Q, and 

0 40 Mappings) 

These mappings are marked '®' and '®' in Figure 2.4. To perform this type of mapping 

for fault diagnosis, two basic approaches have been devised: tables and semantic networks. A 

table is a one-level symbolic mapping. A fault-diagnostic table lists all possible diagnostic 

symptoms, including the detected faults, against possible root causes of these faults. Semantic 

networks consist of nodes representing process entities (units and concepts) and relationships 

between these nodes. Three basic types of semantic network are used for fault diagnosis: 

digraphs, fault trees, and event trees. 

Diagraphs (Kramer and Palowitch 1987) are process-specific, first-principle-based 

graphical methods that generally perform the mapping from the space of measurements onto the 

space of root causes. To create a digraph, the user should create a mathematical and logical first 

principle model of the monitored process. Then he or she should create nodes out of the important 

variables of the model, faults and possible root causes of the faults. After that, the user should 

connect the nodes with arcs representing the known relationships between these variables. Use of 

digraphs in fault diagnosis in a whipped topping manufacturing process is illustrated in (Rich and 

Venkatasubramanian 1987). 

Fault trees (CCPS 2000b) are similar to digraphs. The difference is that a digraph 

processes quantitative information and converts it to the qualitative one. A fault tree connects 

qualitative symptoms, faults, and their root causes with logical relationships (fault trees perform 

the ~.Q mapping). Figure 2.7 shows an example of a fault tree (Davis, Piovoso et al. 1999). 
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This fault tree connects a fault located at the top node "High Catalyst Loss in the Reactor," fault 

symptoms located at the bottom nodes and possible root causes of a fault: "Cyclone Damage," 

"Cyclone/Dipleg Damage," and "Hole in Reactor Plenum" Fault tree nodes are connected with 

"and" and "or" arcs. Thus, the "High Catalyst Loss in the Reactor" can be caused by any of the 

root causes, whereas the "Hole in Reactor Plenum" would require that the "Rates of Loss 

Increasing" and "Fines Content Decreased Slightly" occur simultaneously. 

CYCLONE 
DAMAGE 
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SHOWS TRACES 
OF REFRACTORY 

High Catalyst Loss in the Reactor 

CYCLONE/DIPLEG 
DAMAGE 

HOLE IN REACTOR 
PLENUM 

FINES CONTENT 
DECREASING 

WITH TIME 

RATES OF LOSS 
INCREASING 

FINES CONTENT 
DECREASED 

SLIGHTLY 

Figure 2.7. A fault tree for high catalyst loss in a reactor (Davis, Piovoso et al. 1999) 

Event trees (CCPS 2000a) are graphical logical models that identify possible outcomes 

following an initiating event along with the probabilities of those outcomes. Just like fault trees, 

event trees connect qualitative symptoms, faults, and their root causes. Figure 2.8 shows a scheme 

of a reactor that can have coolant failures during which the coolant is no longer supplied to the 

reactor. Figure 2.9 shows an event tree connecting a coolant failure and an accident, a runaway 

reaction that can result from this failure for this reactor. In the case of a coolant failure, a runaway 

reaction can be prevented if the reaction temperature alarm or the coolant flow alarm or both are 

operational at the time of a failure. Once the coolant is no longer supplied to the reactor, either the 
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reaction temperature alarm or the coolant flow alarm goes on. As a result, the reactor dump valve 

is opened and the reagents drained from the reactor. The event tree in Figure 2.10 illustrates how 

different conditions of the alarms and the dump valve can lead to a safe shutdown of the reactor 

or to a runaway reaction in the absence of a fault model that would monitor the reactor coolant 

failures. The probabilities of these two outcomes are calculated using the probabilities of the 

conditions shown in the event tree. 
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Figure 2.8. A simplified scheme of monitoring re.actor coolant failure (CCPS 2000a) 
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REACTION REACTOR 
TEMPERATURE DUMPVALVE 

ALARM WORKING 
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P(SAFE SHUTDOWN)=0.856995+0.026505+0.064505=0.948005 
P(RUNAWAY REACTION)=0.045105+0.001395+0.003395+0.0021 =0.051995 

Figure 2.9. An event tree for a reactor coolant failure (CCPS 2000a) 
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2.3 The Proposed Fault Model Template 

2.3.1 General Structure of the Template 

As can be seen from the previous section (Section 2.2), design and selection of 

mathematical models for monitoring a specific process fault naturally yields itself to: 

1) Combining different methods for fault monitoring into a model structure that maps 

data from the measurement space onto the root cause space; 

2) Identifying the parameters of the designed model; 

3) Evaluating the model performance. 

As was discussed before, finding fault root causes in real time (i.e., performing both fault 

detection and full fault diagnosis) using fault models alone is too challenging a task. Therefore, in 

this work, it makes more sense to limit the concept of a fault-monitoring model to a set of 

mathematical methods that map data from the space of monitored process variables onto the 

decision space that may include only fault states and a ''no fault" state even though there are 

methods, described in Subsection 2.2.5, which perform identification of fault root causes. As 

follows from the previous section (Section 2.2) fault models can be represented as a sequence of 

steps, each step pursuing a specific goal. 

At the first step, Input Variable Selection, the first part of the mapping marked 'Q)' in 

Figure 2.4, the set of model input variables is formed out of the set of all the process variables 

that the operator thinks may be associated with the fault for which the model is being created. At 

the second step, the second part of the mapping marked 'Q)', Data Smoothing, the process data 

are cleared of noise and outliers. At the third step, Feature Generation, the mapping marked 

'@', a few inputs that concentrate fault-sensitive information, are generated. At the fourth step, 

Classification (Interpretation), the mapping marked '®', the fault model determines whether 

there is a fault in the monitored process. A similar generic fault model structure consisting of the 

noise reduction, residual generation, and classification steps has been proposed previously (Davis, 
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Piovoso et al. 1999), however it is not generic enough to describe all the models that have been 

used and can be potentially applied in process fault monitoring. 

Figure 2.10 below is a graphical illustration of the data processing steps in a fault model 

with examples of the data processing techniques that can be used at each step. The process 

parameters that should be used in discovering a fault (or faults) can be selected, e.g., with the 

Sequential Forward Floating Search (Pudil, Novovicova et al. 1994) abbreviated SFFS or with the 

exhaustive search. After that, a model can be created to use, e.g., the Haar Transform or a linear 

filter, to clean noise from the sequential readings of the process variables inside the monitoring 

window. The PCA or the Canonical Variate Analysis or other similar residual generation 

techniques can then create a few variables that concentrate fault information out of those cleaned 

readings of the process variables. Finally, the Hotelling SPC chart (Xie, Goh et al. 2002), the 

Fuzzy ARTMAP network (Carpenter, Grossberg et al. 1992), or another classifier can be used to 

monitor these few variables. If the classifier determines that the set of the monitored principal 

components scores is out of the statistical process control, it is assumed that the process has 

faults, whereas if the monitored principal components are in the statistical process control, it is 

assumed that the process is operating normally. 

DATA PROCESSIN"G 
STEPS (LAYERS) 

Classification 

Feature Generation 

Data Smoothing 

Selection of Input Variables 

EXAJY.IPLES 

Multivariate Hotelling SPC Chart 
Fuzzy ARTMAP Neural Network 

Principal Component Analysis 
Canonical Variate Analysis 

Haar Transform 
Linear Filter 

Sequential Forward Floating Search 
Exhaustive Search 

Figure 2.10. Data processing steps in a fault model with examples 
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This sequence of data processing steps forms a fault model template. Filling this template 

with structural components representing methods performing different types of data mapping 

creates a fault model. Each data processing step (mapping) is optional, except for the 

Classification. 

2.3.2 Further Decomposition of Fault Models 

To make it possible to select fault models out of a set of very diverse alternatives that 

may include all the methods for fault monitoring proposed in the technical literature and to use 

the minimum possible number of different methods as structural components of the models at the 

same time, this work partially adopts additional model decomposition similar to the one proposed 

by many authors, e.g. (Bradley and Smyth 1997). In this approach, methods for data classification 

are viewed as a combination of three components: 

1) Representation 

2) Optimized criterion 

3) Search technique. 

"Representation" is the functional form of a model also known as a basis or link 

function ( different disciplines use different names for this function: statisticians prefer using the 

term "link" and engineers prefer "basis"). "Optimized criterion" is a certain measure of model 

performance whose maximization or minimization guides the selection of model parameters 

during the model identification. "Search" is a search technique employed by the model to find 

the values of the model parameters corresponding to the best possible value of the optimization 

criterion. Thus, under this framework, a conventional logistic regression (y=exp(xY(l +exp(x))) 

described in the Introductory Categorical Analysis textbooks, e.g., (Agresti 1996), would be 

represented as a combination of a logit basis function (representation), a sum of squared errors 

( optimized criterion), and the direct calculation of model parameters using the multiple linear 
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regression formula (search). A more complex multi-layer perceptron would be a combination of 

several (usually, two) consecutive linear functions (representation), a sum of square errors 

(optimized criterion), and back-propagation (search) (Hagan, Demuth et al. 1995). 

Using an approach similar to the one described by Bradley and Smyth, each of the data 

processing stages can be in turn decomposed into a set of structural components as shown in 

Figure 3.3. "Selection of Input Variables" is a discrete optimization, so it can be viewed as a 

combination of a discrete search algorithm ("Search Method"), e.g., the Exhaustive Search, and a 

"Search Criterion," such as the distance between the data points belonging to different classes. 

This criterion can be shared with the classification step, and then each step of the discrete 

optimization would require performing a separate identification of a fault model. Data Smoothing 

should be viewed as a combination of a representation function and an optimized criterion. In 

most cases, the optimized criterion is already encoded in that representation as is the case in a 

simplest moving average filter. Feature Generation methods can also be presented as 

combinations of a basis function and an optimized criterion, e.g., the PCA can be viewed as a 

linear transform combined with a minimization of the pairwise cross products of the outputs. 

The purpose of the proposed decomposition is to represent a very large pool of various 

model types suitable for fault monitoring as a much smaller number of model components. These 

components can make up a fault model component library. Ideally, the decomposition should 

create as few components as possible out of the set of all the candidate fault models. Therefore, it 

is proposed not to split the Data Smoothing and Feature Generation steps into components 

because a combination of randomly chosen structural components for Data Smoothing and 

Feature Generation is much less likely to produce a valid data processing method than a 

combination of randomly chosen structural components for Input Variable Selection and 

Classification. Likewise, it is proposed that "Basis Functions" for Classification methods also 

include the parameter value search technique. 
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Another reason for not separating the search techniques from the basis functions is that 

many search techniques are specifically tailored for certain basis functions and optimized criteria. 

A good example of such a search technique is the commonly known relationship for finding the 

vector b of multiple linear regression parameters: 

(2.2) 

In this, X is the model training set presented in the matrix form and y is the vector of outputs 

corresponding to the input data vectors (prototypes) of matrix X. Equation (2.2) is created to find 

the values of b that optimize the sum of squared errors between the outputs produced by the 

regression and the values of y and not any other criteria, e.g., the sum of absolute values of the 

errors or the number of erroneous classifications. Hence, in the proposed decomposition, the 

methods for basis function parameter search are limited only to those that can accommodate a 

wide range of optimized criteria. Thus, some methods for basis function parameter search cannot 

be used in the proposed fault model decomposition and this sacrifice is made for the sake of 

flexibility. 

Then the resulting fault model template will look like the one shown in Figure 2.11. 

PREDICTED PROCESS STATE ·~ 
I. Classification 11. Basis Function rH 2. Optimized I Criteron 

II. Feature I 3. Representaton I 
Generation .. 

I 
Ill. Data I 4. Representaton I 

Smoothing 

IV. Input I 5. Search I'~ 6. Search 

I Varible Selection Criterion Method 

PROCESS DATA 

Figure 2.11. The proposed fault model template (generic structure of fault models) 
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The proposed template may be branched to allow several fault monitoring methods to run 

in parallel. It was found that application of several methods in parallel significantly increases the 

performance of automated fault monitoring (Mylaraswamy and Venkatasubramanian 1997). A 

fault model template in Figure 2.12 uses two classifiers in parallel and averages the classifier 

outputs. In a similar manner, one can propose a fault model template that uses several residual 

generation techniques. A more detailed discussion of fault model templates more complex than 

the one in Figure 2.11 is beyond the scope of this work. 

PREDICTED PROCESS STATE 
• 

1-1. Classifier-1 1-2. Classifier-2 

1-1 . 2-1. 1-2. 2-2. 
Basis Optimized Basis ,- Optimized 

Function Criteron Function ' Criteron 

I 

II. Feature 3. Representaton I 
Generation + 

I 

Ill. Data 4. Representaton I 
Smoothing 

J 

IV. Input 
I 

5. Search ~ ~ 6. Search 

I Varible Selection Criterion Method 

PROCESS DATA 

Figure 2.12. A Fault model template with two classifiers 

2.3.3 The Need to Try Different Optimized Criteria in Fault Models 

The need to try different optimized criteria in the classifiers of designed fault models 

contradicts common sense. It may seem that the optimized criterion should be the model 

performance metric: the model parameters should be set to the values that optimize the model 
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performance metric. This is not the case because the number of fault instances available for fault 

model identification is small, frequently ten or fewer. As a result, any fault model with a classifier 

basis function with more than one parameter will usually over-fit the data no matter how large 

the sample of process data vectors (also known as prototypes) used for fault model identification. 

Minimizing the effect of this over-fitting can be achieved by trying different optimized criteria. 

Suppose, that the model performance metric is a combination of the fault detection lag 

(the time between fault inception and model-based fault detection) and the rate of false alarms. If 

we created a model for monitoring this fault and set the classifier basis function parameters to 

minimize the detection lag, the model might effectively mark small regions of the input variable 

space, where the historicized fault instances started, as faulty. At the same time, the rest of the 

space of the input variables would be assumed by the model to correspond to the normal 

operation, which is incorrect. 

Figure 2.13 shows process data points connected with arrows in the order in which these 

data points were observed when three instances of the same fault occurred. 

INPUT 
VARIABLE2 

REGION OF THE 
,,------------ NORMAL OPERA T/ON 
' ·-: ............... _.,. ___________ ...... ... 

,..J TRUE FAULT\ 
_,/ REGION l 

/, jREGIONS 
\ / MARKED 
',,. / "FAULT" 

'',,, 1 BY THE 
\ FAULT 
\ MODEL 
\ 

PATH TO '\.,, ,,,,' 

FAULT ---·' 
INSTANCE2 

~ 
REGION OF THE 

NORMAL OPERA T/ON 

PATH TO 
FAULT 

INSTANCE 1 

INPUT VARIABLE 1 

Figure 2.13. Incorrect mapping of faults by a fault model 
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This fault model cannot detect the third fault instance whose data were not used for 

model identification because the model marked only two small regions, where the first two fault 

instances started, as faulty. The reason why the "faulty" regions are small is because the user. also 

wants as few false alarms as possible, so the optimization to reduce the number of false alarms 

would squeeze the faulty regions around the points where fault inceptions were observed and 

historicized. Therefore, fault model parameters should be identified using various optimized 

criteria, e.g., the simple error rate or the conventional Bayesian Risk (Johnson 1998b) and find 

the one which is the best at alleviating the effects of data over-fitting by fault models. 

2.3.4 An Example of Assembling a Fault Model from Structural Components 

If a fault model is a set of components filling the above-proposed template, then fault 

model selection is equivalent to filling the template "slots," at each data processing step, with 

certain components suitable for these slots. If no method is selected for a certain step, the "slots" 

at that step remain unfilled. 

An example of how model slots can be filled to create a rather complex fault model is 

given in Figure 2.14. The monitored process is determined to be operating normally ("in control") 

by using a Hotelling control chart. In this model, the basis function is the Hotelling transform that 

calculates the r statistics and the associated p-value. The level of significance a is set for the 

chart to have the lowest estimated probability of misclassifying the faulty and normal operating 

states. This probability is the optimized criterion. The inputs for the Hotelling chart are the PCA 

scores that explain 95% of the variation among the process data points of the training set created 

out of the available historical process data. The PCA fills the only slot of the Residual Generation 

step. No smoothing of the process data is performed, so the slot of the Data Smoothing method 

remains empty. 
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PREDICTED PROCESS STATE 

I. Classification 1.Basis Function: 2.0ptimized Crterion: -- f-- f--

"Hotelling" transform ' Overall Classification Error 

II. Feature 
3. Representaton: 

Principal Component Scores Explaining 95% of the Total 
Generation Variation in the Process Variables Being Input to the Model ,. 

III. Data 4. Representaton: 

Smoothing Empty ,. 

IV. Input 5.Search Method: 6. Search Criterion: 

Selection 
Sequential Backward .... ,- Shared with the I+- -

Floating Search • Optimization Criterion 

PROCESS DATA 

Figure 2.14. An example of the decomposition of a complex fault model 

This combination of fault model components is nested inside the Stepwise Floating 

Forward Search (Pudil, Novovicova et al. 1994) of the process variables that will be optimal 

inputs to the process model. The Stepwise Floating Forward Search is the "Search Method" used 

in the model. The optimality of the set of variables selected as fault model inputs is determined by 

the optimized criterion used in the classifier of the fault model. Thus, the "Search Criterion" slot 

in the model is shared with the "Optimized Criterion." So, a separate fault model is identified for 

each set of input process variables tested by the "Search Method." Alternatively, the search for 

input variables could optimize the pairwise distance between the process data vectors sampled 

during the occurrence of faults and the process data vectors sampled during the normal process 

operation, then this distance would be the Search Criterion and the Search Criterion slot would 

not share the same component with the Optimized Criterion slot. 
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Note that each data-processing method uses the input data modified by the methods 

located below it, except the Input Variable Selection that has the lowest position in the hierarchy. 

In addition, the operator should determine the sampling period for the Residual Generation and 

Classification from the characteristics of the monitored process while the Data Smoothing uses 

the sampling period (interval) of the process data historian. 

2.4 Construction of Fault Models 

From Section 2.3, it may seem that using arbitrary model components to fill slots in the 

proposed template can generate valid and universally suitable fault models. This is not the case 

because not all the model components are compatible with each other and not all the resulting 

fault models are appropriate for solving each specific fault-monitoring problem. Hence, a rule­

based approach, an expert system, is needed to determine if a combination of fault model 

components on the proposed template makes a model design suitable for solving a user-specified 

fault-monitoring problem. 

2.4.1 Attribute-Based Selection of Fault Models 

Until the present, all the algorithms proposed for selecting models for process fault 

monitoring have been limited to those that identify a small group of methods or a single method 

suitable for predicting the user-specified fault. In these algorithms, the characteristics of the fault­

monitoring problem and properties of the data being input to fault models are formalized in terms 

of attributes. These conventional algorithms apply production rules that determine the 

compatibility of different methods for fault monitoring with the attributes of the input data and 

the monitoring problem. 
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2.4.1.1 Selection of Univariate Control Charts. One such algorithm determines if a 

univariate control chart is suitable for monitoring a certain process (Brassard and Ritter 1994). 

This algorithm checks the attributes of the input data and tells what chart should be used to 

monitor the process producing this input data. The algorithm is shown below in Figure 2.15. 

The charts among which the selection is performed are X (Shewhart) that checks if the 

mean of variable values recorded sequentially is within a certain range, Rm that checks if the 

modulus if the observed fluctuation in the monitored variable value is within a certain threshold, 

X that checks if the mean of a sample of values of the monitored variable is within the a certain 

range, R that checks if the average fluctuation between the sample values is within the a certain 

range, s that checks if the sample variance is within a certain range, c I u charts that check if the 

number of defects per unit product is within certain limits and p I np charts that check if the 

number of defective units in a sample is within certain bounds. The attributes of the input data 

that determine selection of the best control chart are the data scale type ( continuous or 

categorical), sample size, type of the data for the chart, and the variability of the sample size. 

X (Shewhart) 
and Rm 

continuous 
measurements 

2 to 10 

greater 
than 10 

attribute 
(categorlcal) data 

c-chart u-chart np-chart p-chart 

Figure 2.15 An algorithm for selecting an appropriate control chart (Brassard and Ritter 1994) 
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The algorithm shown in Figure 2.15 is of great utility, but it is limited to a few 

conventional control charts. A very large amount of experience in using univariate control charts 

has been accumulated. This is not the case with the other methods for fault monitoring. In 

addition, characteristics of the monitored process and user preferences should also be considered 

in model selection. It would be nice to have a register that lists applicability of all known fault 

model types depending on all possible values of the input data attributes, but as was shown above, 

the number of different possible fault model types is immense. It would be even better if an 

algorithm for fault model selection could handle generic attributes of fault models. 

2.4.1.2 Selection Among Different Groups of Fault Monitoring Methods. Another 

algorithm known to the author has been proposed for selecting methods (Dash and 

Venkatasubramanian 2000) for fault detection and diagnosis based on the attributes of both 

different method groups and fault monitoring problems. This algorithm is presented as Table 2.1. 

To apply this algorithm, the user should first determine what attributes of those located in the 

leftmost column of the table are applicable to his or her problem. Then, a method type with the 

highest number of ' 11 's ( a method of this type should be a good solution for a problem with the 

corresponding attribute) or with the lowest number of 'x 's ( a method of this type should not be a 

good solution for a problem with this attribute) corresponding to the selected criteria should be 

chosen. A method of the type with at least one '-' corresponding to any of the selected criteria 

should be discarded. A dash in the table means that the.methods of the corresponding type cannot 

be used for solving problems with the corresponding attribute altogether. The question marks in 

the table mean that the ability of the methods of this type to solve problems with the 

corresponding attributes is unknown and situation-dependent. 

The criteria or attributes of Table 2.1 have the following meanings: "isolability" is the 

ability to distinguish one fault from the other faults possible in the process, "robustness" is the 

lack of sensitivity to the noise and uncertainty in the input variables, "novelty identifiability" is 
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the ability to identify new faults, "adaptability" is the ability to operate well despite the drift in 

the process parameters, "explanation facility" is the ability to tell the user how the solution was 

obtained, "modeling requirement" is the need to manually identify the component of a fault 

model based on this method, "storage and computation" means that the method does not use a 

lot of processor time and computer memory, "multiple fault identifiability" is the ability of a 

model to monitor and distinguish several different process faults. 

Table 2.1 Table for selecting various types of methods for fault detection and diagnosis 
(Venkatasubramanian, Rengaswamy et al. 2003b) 

Methods for Fault Detection and Diaanosis 
Method Attributes Parity-space 

Digraphs 
First-principle Expert 

QTA PCA 
Neural 

& observers hierarchical systems Networks 
Early detection and diagnosis II ? ? II II II II 

Isolability II X X II II II II 

Robustness II II II II II II II 

Novelty identifiability ? II II X ? II II 

Classification error low X X X X X X X 
Adaptibility X II II X ? X X 

Explanation facility X II II II II X X 
Modeling requirement ? II II II II II II 

Storage and computation II ? ? II II II II 

Multiple fault identifiability II II II X X X X 

One problem with the algorithm shown in Table 2.1 is that it is limited to several classes 

of fault models and does not span all the known methods for fault monitoring. The second 

problem is that the classes represented by the columns of Table 2.1 may contain a number of very 

different methods that may have different attributes. For example, Table 2.1 shows that neural 

networks are not good at identifying multiple faults (the cell in the lower right comer of the table 

contains symbol 'x'). This is true for most neural networks, but not for the Probabilistic Neural 

Network or ARTMAP/Fuzzy ARTMAP. The third problem is that it is unrealistic to expect the 

process operators to specify some attributes listed in Table 2.1 for their monitoring problems. For 

example, all process faults should preferably be detected and diagnosed early. Likewise, it is 
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always desirable to have a low classification error in the fault models as well as detection 

robustness. The tradeoff between these three attributes can only be determined numerically by 

using a statistical analysis of the user-specified fault-monitoring problem and creating a problem­

specific performance metric, as will be shown in Chapter ill. This third problem also makes the 

other existing attribute-based algorithms for classifier selection, e.g., (Henery 1994), not quite 

suitable for finding the best-performing fault models. 

2.4.1.3 The Proposed Attribute-Based Selection of Fault Model Components. To 

overcome the problems with the attribute-based selection of fault models described in Subsection 

2.4.1 it is proposed to take advantage of the fault model decomposition proposed in Section 2.3 

and assign component compatibility attributes to fault model components that can fill the slots of 

the template shown in Figure 2.11. These attributes are logical or quantitative variables that do 

not include information about detection timeliness, robustness and other quantitative 

characteristics of fault model performance. Quantitative performance of fault models is estimated 

separately. Different attributes would describe the properties of fault model components, 

monitoring problem, input data, and user preferences. 

Some model component attributes, like minimum required size of the training data set, 

may depend on the properties of the real-time and historical data that will be used by the model. 

For those attributes, it is important to provide a method for initializing the attributes depending on 

the attributes of the monitoring problem, input data, and user preferences. 

A list of proposed attributes is presented in Table 2.2 below. The attributes characterizing 

the properties of the real-time data start with letter 'D', the attributes specifying the properties of 

the historical data start with letter 'H', the attributes specifying the solution requirements start 

with letter 'S', and the attributes describing the properties of model components start with letter 

'C'. In addition, there is an attribute describing a characteristic of complete fault model designs, 

this attribute starts with letter 'M'. Real-time data attribute have subscripts specifying the data 
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processing step whose input data the attribute describes (the reader is reminded that in the 

proposed fault model template there are four data processing steps). The attributes with subscript 

'A' refer to the data available for the input variable selection method, the attributes with subscript 

'B' refer to the data available for the data smoothing method, the attributes with subscript 'C' 

refer to the data available for the feature generation method, and the attributes with subscript 'D' 

refer to the data available for the classifier. The pound sign following the attribute indicates that 

the attribute is a variable that assumes real values while the absence of the pound sign indicates a 

Boolean-valued attribute. All the listed attributes for a component or a problem must be assigned 

values before the selection can start. 

In addition to the attributes, fault model components added to the component library 

described above in Subsection 2.3.2 should have data attribute modifiers that reflect changes in 

the input data properties as a result of being processed by different parts (methods) of the fault 

model. For example, if an input variable selection method is designed to select one third of the 

available process variables, then the attribute D2B specifying the number of variables in the data 

that will enter the data smoothing should be one-third of D2A, which is the number of process 

variables related to the fault according to the user. 
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Table 2.2. The proposed attributes for determining the compatibility of fault model components 

Attributes Attributes of the Dlx# Average number of single variable measurements in the monitoring window 
of the data process data D2x# The number of variables in the data 
streamX vector D3x Data vector consists of combinations of process variables (X=D or E) 
processed D4x Monitored process variables are strongly correlated 

by the 
D5x No sensor noise in all the monitored process variables model 
D6x# Maximum number of different measurements of a single process variable in the 

monitoring window 
Attributes of the Hl# Number of process data vectors (prototypes) selected for model identification 
historical data H2# Smallest number of historicized instances of a monitored fault for all the 
used for model monitored faults in the specified historical data 
identification H3 Contains a variable believed to be most closely related to the monitored fault 

Attributes Process model Sl Monitored process input and output variables specified 
of the availability S2 Monitored process model not available 

monitored Solution S3 Monitoring multiple fault modes 
process and requirements S4 Fault model output must be a fault score 

user 
preferences: S5 Fault model output must be categorical 

S6# Log10 of the upper limit on the CPU time, sec., allowed for model identification 

Attributes Basis function Cl Requires original process variables 
of fault C2 Requires uncorrelated inputs 
model C3 Creates an unbounded region for the normal operation 

components C4 Generates binary output 

CS Fixed number of basis function parameters (excludes C7) 
C6 Requires identification of a variable most closely related to the monitored fault 
C7 The size of the input data vector alone determines the number of the parameters 

CS Generates continuous output 
C9 Generates crisp categorical output 
ClO# Minimum number of process data vectors (prototypes) for model identification 
Cll Noise-sensitive basis function 
Cl2 Univariate basis function 
Cl3 Outputs fuzzy membership in one of several classes 
Cl4 Unlimited number of basis function parameters 

Optimized Cl5 Distance-based optimized criterion 
criterion Cl6 Count-based optimized criterion 

Cl7 "Parsimonious" optimized criterion that penalizes for the number of basis 
function parameters 

Cl8 "Monotonic" optimized criterion: the more basis function parameters the better 

Feature generator Cl9 Based on a process model generating residuals 
C20 Identifies an empirical process model generating residuals 
C21 Useful only when the inputs are correlated 
C22 Feature generator that models data variability 
C23# Minimum number of input variables 
C24# Minimum number of process data vectors for model identification 

Data smoothing C25 Smoothens out only noisy variables 
Input variable C26# The number of user-selected fault-related process variables must exceed N 
search method C27# The number of user-selected fault-related process variables must not exceed N 

C28 All the user-selected fault-related process variables can be chosen as model 
inputs 

C29 Not designed to retain a specific variable as model input 
Variable C30 Monotonic search criterion (the more input variables the better) 

selection criteri011 C31 The optimized criterion is separate from the variable selection criterion 
Fault model attributes Ml Minimum CPU time required to identify and evaluate the model 
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Three different sets of rules would determine compatibility of model components with 

the monitoring problem and user requirements, with the input data, and with each other. For a 

certain attribute or group of attributes these rules would specify attributes of fault model 

components that cannot be used in this design. fu addition, fault model components should have 

data modifiers describing how each sequential data processing step of the fault model changes the 

input data. Finally, each component should have an associated training time attribute that would 

allow performing an approximate estimation how long it would take to train a model that includes 

this component. The proposed rules are listed in Tables 2.3, 2.4, and 2.5. They specify if fault 

model designs are valid by themselves and valid for solving user-specified problems. If the 

antecedent of a rule is evaluated as TRUE, then the consequence of this rule does not allow 

selection of the components with the attributes listed in the rightmost column of the tables. If the 

proposed algorithm is found useful, additional model component screening rules may be added in 

the future to the set of the 23 proposed rules. These rules also work for the fault model templates 

that combine different classifiers, feature generators, and/or data smoothers, like the one shown in 

Figure 2.12. For those templates, one additional rule that will require different classifiers included 

in the same model to produce the outputs of the same type is needed. 

This approach minimizes the effort needed to specify the necessary attributes for each 

model, since the set of attributes of a single component will be used in all the designs that include 

this component. For large component libraries containing dozens of fault model components, this 

allows reducing the total number of attributes to be specified for the components of this library by 

several orders of magnitude compared with the case when attributes are specified for each 

complete model design. 
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2.4.2 Compatibility of Fault Model Components with the Solution Requirements 

Table 2.3 below lists the rules of this class. 

Table 2.3. Rules specifying fault model component compatibility with the characteristics of 
monitored process and user preferences 

Rule Rule statements 
num- Verbal Symbolic 
her Antecedent(s) Restrictions on 

the component 
attributes 

1 If the types (input/output variables) of the monitored process NOT(SJ) C20=FALSE 
variables are not specified, then the feature generation techniques 
creating empirical process models and using their residuals are not 
annlicable 

2 If an input-output model of the monitored process is not available, NOT(S2) · Cl9=FALSE 
the techniques that use monitored process models are not AND 
annlicable NOT(C20) 

3 If a fault model is intended to distinguish several fault modes, S3 C4=FALSE 
then the basis functions that create binary or continuous outputs AND 
are not applicable CB=FALSE 

4 If the user wants the fault scores displayed, the basis functions S4 C4=FALSE 
creating crisp categorical or binary output cannot be used in the AND 
fault model C9=FALSE 

5 If the user wants the fault model to display only if there is a S5 CB=FALSE 
certain fault or there is no fault, the basis functions that create AND 
continuous output or output class memberships are not applicable CJ3=FALSE 
in the fault model 

23 Model identification time should not exceed the value specified by S6=N Ml<N 
the user 

2.4.2.1 Requirements Based on Predefined Conditions. Each fault-monitoring problem 

has its own characteristics. Likewise, process operators have preferences that should be accounted 

for when selecting fault models. These characteristics and preferences can be formalized as 

attributes of solution requirements. The base solution requirements may be the availability and 

ability to use a model of the monitored process for feature generation, the ability of a model to 

monitor more than one fault, the required form of presenting the model output to the user, and the 

maximum computation time that can be allotted for training a single fault model. Additional 

solution requirements are the need to use adaptable fault models due to irreversible process 
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changes, the ability of fault models to monitor batch processes and many others. These additional 

solution requirements are not essential to illustrate the proposed concept of attribute-based 

selection of model components and are beyond the scope of this work. 

Some feature generation techniques create empirical models of the monitored processes 

and output model residuals as the features. However, process models require the knowledge 

which process variables measure process inputs and which variables measure outputs. In addition, 

these variables must be in the block of variables selected by the user for fault monitoring. Hence, 

Rule I says that without the selection and marking of process input and output variables, the 

use of process model residual generation techniques is impossible. The selection and marking 

of process variables as process inputs and outputs is the attribute SJ and the feature generation 

techniques that identify a model of the monitored process are considered to have attribute C20. 

Some classifier basis functions, e.g., parity-space methods or observers, expect process 

model residuals as inputs. This means that there should be a model of the monitored process 

which is a part of the fault model (attribute C20) or which runs independent of the fault model 

(attribute S2). Hence, Rule 2 says: if an input-output model of the monitored process is not 

available, the techniques that use monitored process models are not applicable. 

As shown in Figure 2.3, fault models normally tell the operator that something is wrong 

with the monitored process (see Section 2.3.1). After that, either the operator performs fault 

diagnosis or a fault diagnosis is performed automatically. In some cases, however, the fault 

diagnosis can be significantly simplified if the model designed for fault detection distinguishes 

different faults. Although this will cause a substantial loss of flexibility, a fault model can be 

trained to distinguish different faults if there is more than one historicized instance of each fault 

available. If this is the case, the user can assign TRUE to attribute S3 meaning that the fault 

model should distinguish multiple faults. However, not all the basis functions can map data into 

more than two classes: some basis functions output continuous variables (these basis functions 

have attribute C8) that can only be interpreted as membership in one of two possible categories, 
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while some other basis functions create binary outputs (these basis functions have attribute C4). 

Thus, Rule 3 states that if a fault model is intended to distinguish several fault modes, then 

the basis functions that create binary or continuous outputs are not applicable. 

Fault models should present information to the user in the way the user prefers. Fault 

classifier basis functions can produce either categorical outputs clearly stating existence or non­

existence of the monitored faults (these basis functions have either attribute C4 or attribute C9) or 

a fault score informing the operator of the possibility and extent of the monitored fault (these 

basis functions have either attribute CB or attribute CJ 3). The basis functions creating crisp 

categorical outputs are usually preferred for abrupt clearly defined faults, such as sudden failures 

of process equipment. Fault score-producing basis functions are better suitable for the cases 

where a large number of false alarms are inevitable and where the impact of the same fault may 

vary significantly from one fault instance to another. This consideration gives birth to Rule 4 

saying that if the user wants the fault scores displayed, the basis functions creating binary or 

crisp categorical outputs cannot be used in the fault model and Rule 5 stating that if the user 

wants the fault model to display only if there is a certain fault or there is no fault, the basis 

functions that create continuous output or class memberships outputs are not applicable in 

the fault model. 

2.4.2.2 Limits on the Model Identification Time. An analysis involving all the 

components of the generated model is needed to roughly estimate the identification time for a 

data-driven model. To provide a simplistic estimate of the identification time for a fault model, it 

is convenient to view each data processing step of the model as a unit. The number of times 

(iterations) this unit is run during the model identification is determined by the 

representation/basis function component except for the Input Variable Selection for which this 

number is determined by the by the Variable Search Method component. Then the estimate of the 

order of the amount of time O(T) needed to identify a model would be approximately equal to the 
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supreme of the orders of time tu it takes to run unit u multiplied by the number of times 

(iterations) nu that this unit will be run during the model identification: 

O(T )=sup{O[tunull (2.3) 
u 

If the Variable Search Criterion is the same as the Optimization criterion, then running each 

evaluation of the Search Criterion requires identifying an entire model with a new set of input 

variables, so tu then would be equal to the model identification time. 

As an illustration, let us suppose that it takes approximately tu1=0.002 seconds to perform 

one Hotelling transform in the model in Figure 2.14 and it takes tu2=0. 7 seconds to run an 

identification of the principal components for this model. Let us also suppose that the classifier 

parameter identification would take nu1=101 iterations and the input variable search would take 

nu3=ld iterations. The principal components are calculated in a single iteration (nu2=l) Then the 

order of time taken by the identification of the fault model for each tested set of input variables 

would be calculated as follows: 

0( T )=sup[O(tu1 ·nu1 ),O(tu2 ·nu2 )]=sup[0(0.002· JO ),0(0. 7· 1)]=10° (2.4) 

By multiplying this expression by the number of iterations that will be taken by the input variable 

search, we obtain that it will take on the order of I a2 seconds to identify the fault model in 

question. Then, if the user-specified limit on the model identification time is below I a2 seconds, 

the model in Figure 2.14 is valid or suitable for solving problem, otherwise it is not. 

Estimation of the model identification time should be performed only after invoking all 

the other proposed rules defining fault model component compatibility. This is why the rule 

limiting the model training time is the last one in the sequence of the proposed rules. This rule 

number 23 says that model identification time (attribute Ml) should not exceed the value 

(attribute S6) specified by the user. 
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2.4.3 Rules Specifying Fault Model Component Compatibility with Each Other 

Table 2.4 below lists the rules of this class. 

Table 2.4. Rules specifying fault model component compatibility with each other 

Rule Rule statements 
num- Verbal Symbolic 
her Antecedents Restrictions on 

the component 
attributes 

6 The basis functions generating categorical ( crisp or membership C40RC90R Cl5=FALSE 
in several classes) or binary outputs are not compatible with the Cl3 
distance -based optimized criteria 

7 The basis functions producing continuous outputs are not C8 Cl6=FALSE 
compatible with the count-based optimized criteria 

8 "Parsimonious" optimized criteria cannot be used if: C5 Cl7=FALSE 
1) The basis function has a fixed number of parameters OR OR 
12) The input variable search criterion is separate from the (C31 AND C7) 

optimized criterion AND the size of the input data vector alone 
determines the number of basis function parameters 

9 "Monotonic" optimized criteria cannot be used if: Cl40R Cl8=FALSE 
1) The number of parameters in the basis function is not limited [NOT(C31) 
12) OR the size of the input data vector alone determines the AND 

number of parameters in the basis function AND the input C28ANDC7] 
variable search criterion is the same as the optimized criterion 
AND all the user-selected fault-related process variables can be 
chosen as model inputs 

10 "Monotonic" criteria for searching input variables are not C31 ANDC28 C30=FALSE 
applicable if the input variable search criterion is separate from 
the optimized criterion AND all the user-selected fault-related 
process variables can be chosen as model inputs by the selected 
input variable search method 

11 The input variable search methods not designed to retain a C6 C29=FALSE 
specific variable as model input are not compatible with the basis 
functions that require specification of the process variable 
believed to be most closely related to the monitored fault 

2.4.3.1 Count and Distance-Based Optimized Criteria. There are two types of 

optimized criteria that can be used in mathematical models. The criteria of the first type are 

distance-based and they are assumed to possess attribute Cl 5. They measure how far the values 

predicted by the model are from the actual ones. This distance can only be defmed for basis 

functions producing the outputs on the continuous scale (attribute C8). The other basis functions 

that can be used in the classifiers, i.e., the basis functions generating categorical or binary 
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outputs (and possessing attributes C4, C9, and CJ3) are not compatible with the distance­

based optimized criteria. This is Rule 6. 

The optimized criteria of the second type are count-based and they are assumed to 

possess attribute CJ6. These criteria are functions of the number of correct and incorrect 

classifications of different states performed by the classifier. This number can only be defined for 

the basis functions producing categorical or binary outputs. Alternatively, continuous outputs can 

also be converted into categorical ones; however, this converter would be external to the fault 

model defined by the template in Figure 2.11. Hence, the basis functions producing continuous 

outputs (and possessing attribute C8) are not compatible with the count-based optimized 

criteria. This is Rule 7. 

2.4.3.2 "Parsimonious" and "Monotonic" Optimized Criteria. Some optimized 

criteria, e.g., the Akaike Information Criterion or Divergence Information Criterion, can be 

considered "parsimonious" and they are assumed to have attribute CJ7. These criteria penalize 

models for the number of basis function parameters. However, it does not make sense to penalize 

basis functions for the number of parameters if this number is fixed, like it is in a control chart. 

The basis functions of this type are characterized by attribute C5. For some basis functions, the 

number of basis function parameters may not be fixed, but may be determined by the number of 

classifier inputs alone (attribute C7), like it is with the first-order multiple linear regression 

(without the interaction terms). In this case, a "parsimonious" Optimized Criterion does not affect 

the number of parameters in the identified model unless it can change the number of classifier 

inputs. The Optimized Criterion can change the number of classifier inputs only when this 

criterion is also used for selection of process variables for the fault model, which is the case only 

when the Optimized Criterion is shared with the Input Variable Search Criterion. This means that 

"parsimonious" optimized criteria cannot be used if: 

1) The basis function has a fixed number of parameters OR 
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2) The input variable search criterion is separate from the optimized criterion 

(attribute C3J) AND the size of the input data vector alone determines the 

number of basis function parameters (attribute C7). 

This is Rule 8. 

The other optimized criteria, e.g., error rate, sum of square errors, are monotonic and 

these optimized criteria have attribute Cl 8. With these optimized criteria, the more parameters 

the classifier has, the better (smaller or larger) is the value of the optimized criterion because with 

a greater number of parameters a model can fit the training data better. Then, if these optimized 

criteria are used with a basis function (with attribute Cl4) whose number of parameters is not 

limited in any manner, the size basis function of the resulting fault model may grow unbounded 

during model identification and the identification procedure may never end. Even if the number 

of basis function parameters is determined by the number of classifier inputs alone, but the 

number of input variables may grow until all the available process variables may be selected as 

model inputs because the input variable search criterion is the same as the optimized criterion and 

the input variable search method is such that all the user-selected fault-related process variables 

can be chosen as model inputs (attribute C28). In this case, use of input variable selection is 

meaningless and the inclusion of an input variable selection technique in the model design makes 

the design invalid. Hence, Rule 9 states that "monotonic" optimized criteria cannot be used if: 

1) The number of parameters in the basis function is not limited OR 

2) The size of the input data vector alone determines the number of parameters in 

the basis function AND the input variable search criterion is the same as the 

optimized criterion AND all the user-selected fault-related process variables can 

be chosen as model inputs. 

2.4.3.3 Incompatibilities of the Input Variable Search Criteria. Similar to optimized 

criteria, input variable search criteria can also be "monotonic," so the more variables are selected, 
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the better is the value of the criterion. These criteria have attribute C30. Same as in the case 

described in the second part of the antecedent of Rule 9, such "monotonic" search criteria are 

incompatible with the input variable search methods that can potentially choose all the available 

variables as model inputs. Again, this makes the use of input variable selection methods 

meaningless because in those cases all the available process variables will be selected as model 

inputs anyway. Thus, Rule JO states that ''monotonic" criteria for searching input variables 

are not applicable if the input variable search criterion is separate from the optimized 

criterion AND all the user-selected fault-related process variables can be chosen as model 

inputs by the selected input variable search method 

Some basis functions, e.g., those used in the Quantitative Trend Analysis, may require the 

process variable believed most closely related to the monitored fault as model input. In the 

proposed register of attributes, these basis functions have attribute C6. However, most input 

variable search methods are not preprogrammed to surely keep this key process variable as fault 

model input (and these search methods have attribute C29). So, the input variable search 

methods not designed to retain a specific variable as model input are not compatible with 

the basis functions that require specification of the process variable believed to be most 

closely related to the monitored fault. This is Rule 11. 

2.4.4 Rules Specifying Fault Model Component Compatibility with the Input Data 

Table 2.5 below lists the rules of this class. 
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Table 2.5. Rules specifying fault model component compatibility with the properties of input data 

Rule Rule statements 
num- Verbal S •mbolic 
her Antecedents Restrictions on 

the component 
attributes 

12 The basis functions that require original process variables for the D3v Cl=FALSE 
classifier input data cannot process combinations of these 
variables 

13 Certain basis functions cannot be used in fault models to classify D4v C2=FALSE 
strongly correlated data 

14 If the number of historicized instances of a fault is smaller than H2<4 C3=FALSE 
four then the basis functions creating unbounded regions for the AND 
normal operation and the feature generation techniques that model C22=FALSE 
variability of the input data are not applicable in the model that 
monitors this fault 

15 Certain basis functions require historicized values of the process NOT(H3) C6=FALSE 
variable believed to be most closely connected with the monitored 
fault for fault model identification 

16 Basis functions impose a lower limit on the number of process Hl=N N~CJO 
data vectors (prototypes) required for model identification: this 
number is the minimum number of different process data vectors 
the fault model must be able to create from the historical data 

17 Noise-sensitive basis functions are not applicable if there is noise NOT(D5v) Cll=FALSE 
in any of the processed variables 

18 The feature generation techniques that de-correlate input variables NOT(D4c) C21=FALSE 
should not be used if the input variables are not correlated 

19 Some feature generation techniques should not be used if the D2c=N N~C23 
number of input variables does not exceed the technique-specific 
numberN 

20 Some feature generation techniques impose a lower limit on the Hl=N N~C24 
number of process data vectors (prototypes) required for model 
identification: this number is the minimum number of different 
process data vectors the fault model must be able to create from 
the historical data 

21 Data smoothing techniques that remove noise and outliers should D5B C25=FALSE 
only be applied to noisy variables 

22 Input variable search techniques require the number of user-selected D2A=N C26 <N< C27 
!Process variables to be within certain limits 

2.4.4.1. Rules Specifying the Compatibility of Basis Functions. Some fault classifiers 

with attribute Cl, e.g., control charts for the process variables believed most closely related to 

faults, require original process variables in the available input data. These classifiers, or, to be 

more exact, the basis functions of these classifiers, cannot be used with combinations of process 

variables (attribute D3v), which may be features generated from the original variables by the 

feature generation techniques used by the fault model. Hence, Rule 12 states that the basis 
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functions that require original process variables for the classifier input data cannot process 

combinations of these variables. Basis functions of some classifiers (possessing attribute C2), 

e.g., those of the classification and regression trees, are usually inefficient if the input variables 

available to them are correlated, i.e., the input data has attribute D4v. This is due to the fact that 

they perform partitions on the variables whose values are most closely related to the changes 

from the normal operation to the faulty ones. If classifier inputs are strongly correlated, all the 

variables display some, usually small, changes when the monitored process passes between the 

normal and faulty states. So, in those cases, it would be hard for the classification and regression 

tree to find the key variables most closely connected to the fault and perform partition of the input 

space on those variables. Therefore, certain basis functions cannot be used in fault models to 

classify strongly correlated data. This is Rule 13. 

Some classifiers, e.g., Fisher Discriminant or Multi-layer Perceptron, assign unbounded 

regions of the input variable space (partitions of Type 1 and Type 4 in Figure 2.6) to the normal 

process operation. Because of that these classifiers are characterized by attribute C3. If only few 

instances of the monitored fault have been historicized (attribute H2 less than four), then this 

extrapolation of the normal operation state to unknown regions of the input space is dangerous 

and the unbounded region will likely include both faulty and non-faulty states of the monitored 

process. Similar considerations apply to the feature generation techniques that model data 

variability, e.g., PCA or ICA. These feature generation techniques are assigned attribute C22. 

MacGregor and Kourti have noted (MacGregor and Kourti 1995) that if the faulty operation is not 

very well represented in the training set, then most of the variability modeled by these techniques 

will be the variability within the normal operation and the variability due to the occurrence of 

faults will be suppressed and not reflected in the features input to the classifier. As a result, the 

normal operation regions formed by the classifier in the space of inputs will very likely include 

faults as well and the fault model performance will be low. Hence, Rule 14 states that if the 

number of historicized instances of a fault is smaller than four then the basis functions 
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creating unbounded regions for the normal operation and the feature generation techniques 

that model variability of the input data are not applicable in the model that monitors this 

fault. Chapter ill suggests using the jackknifing for estimating classifier performance. To 

estimate the performance of the resulting fault models, the proposed jackknifing technique 

removes one fault instance from the set used for model identification. Therefore, the number of 

historicized instances of each fault to be monitored should be reduced by one when assigning the 

value to attribute H2. 

As was discussed in Subsection 2.4.3.3, some basis functions, e.g., those used in the 

Quantitative Trend Analysis, may require the process variable believed most closely related to the 

monitored fault as model input. This means that the process data historian must have logged the 

values of this variable for the historicized fault instances. This fact is described by attribute H3. 

Thus, Rule 15 states that certain basis functions require historicized values of the process 

variable that the user believes is most closely connected with the monitored fault for fault 

model identification. 

Sometimes, the historical data that the operator set aside for fault model identification 

may be very small. The number of different process data vectors that can be extracted from the 

historical process data allotted by the user for model identification is characterized by attribute 

HJ. However, this number must be large enough to allow identification of basis function 

parameters. The minimum number of different data vectors required for model identification is 

described by attribute CJO and it depends on the basis function. For example, linear models 

require that the number of data vectors for data identification be at least as large as the number of 

basis function parameters. Control charts typically need about 300 historicized data vectors for 

parameter identification. As a result, Rule 16 says that basis functions impose a lower limit on 

the number of process data vectors (prototypes) required for model identification: this 

number is the minimum number of different process data vectors the fault model must be 

able to create from the historical data. This rule is true not only for basis functions, but also for 
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feature generators, especially for those that model the monitored process. The lower limit 

imposed on the number of input for a feature generator is described by attribute C24. 

Consequently, Rule 20 is that some feature generation techniques impose a lower limit on the 

number of process data vectors (prototypes) required for model identification: this number 

is the minimum number of different process data vectors the fault model must be able to 

create from the historical data. 

Some classifier basis functions perform very poorly on noisy data. This is particularly 

true for the basis functions with a large number of parameters, such as neural networks. They 

require data cleaned of noise and outliers. In this work, "clean" data entering fault classifiers have 

attribute D5v. The noise-sensitive basis functions are characterized by attribute Cl 1. Hence, Rule 

17 precludes the use of the noise-sensitive basis functions with noisy data by stating that noise­

sensitive basis functions are not applicable if there is noise in any of the processed variables. 

2.4.4.2. Rules Specifying the Compatibility of Feature Generation Techniques. A 

number of feature-generation techniques, like PCA and PLS are based on de-correlating input 

variables and then operate with a few uncorrelated variables. These feature generators are 

assumed to have attribute C21. However, process variables selected by the user for fault 

monitoring may not always be correlated (and described by attribute D4 within this work). This is 

true if the user-selected variables describe very different points in the monitored process and have 

very different nature. For example, ambient temperature is usually not correlated with any 

process flow rates. In those cases, the use of the de-correlating feature generation techniques is 

meaningless because these feature generators will not reduce the number of variables in the data 

and will possibly remove features critical for fault detection from the input data. Therefore, the 

feature generation techniques that de-correlate input variables should not be used if the 

input variables are not correlated. This is Rule 18. 
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The purpose of most feature generation techniques is to reduce the number of variables in 

the data. However, if this number is small, these feature generators are useless. Hence, in the 

library of fault model components, each feature generation technique should have an attribute 

C23 specifying the minimum number of inputs required for this technique. Therefore, some 

feature generation techniques should not be used if the number of input variables does not 

exceed the technique-specific number N. This is Rule 19. 

2.4.4.3. Rules Specifying the Compatibility of Data Smoothing and Input Variable 

Selection Techniques (0~0' Mappers). Most data smoothing techniques remove noise and 

outliers from process variables. These data smoothers have attribute C25. However, if the 

variables in the model input data are not noisy and do not have uncertainties (such data are 

characterized by attribute D5), no data smoothing is necessary. In those cases, data smoothing 

may even hurt by removing the features important for fault detection from the input data. Data 

noise is primarily due sensor noise. However, with the installation of better sensors, especially 

those for measuring temperature and pressure, sensor noise becomes negligible. Therefore, the 

data smoothing techniques that remove noise and outliers should only be applied to noisy 

variables. This is Rule 21. 

The number of variables selected by the user for fault monitoring and made available to 

the variable selection technique is the only factor that limits the use of different variable selectors. 

For example, exhaustive search tries all possible combinations of the input variables. The number 

of these combinations is equal to the factorial of the number of available process variables. Thus, 

if the number of available variables exceeds ten, the exhaustive search is not applicable under any 

circumstances. Likewise, selection of input variables only makes sense when the total number of 

the user-selected variables is sufficiently large, otherwise there is nothing to select from. In 

addition, many input variable selection techniques have a lower limit on the required number of 

input variables. For example, if the sequential floating forward search mentioned in Subsection 
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2.3.1 requires at least four available variables to select from. otherwise it will not run. Hence, 

each variable selection method in the library of fault model components should have an attribute 

C26 specifying the minimum number of variables among which it can perform the selection and 

the attribute C27 specifying the maximum number of variables available for selection. So, Rule 

22 says that input variable search techniques require the number of user-selected process 

variables to be within certain limits. 

Data smoothing techniques require a certain number of sequentially recorded data points 

to work well. For example, the simple averaging requires at least two points to find the average. 

There is no rule that limits application of data smoothing techniques due to the fact that the 

monitoring windows may be too narrow because the data smoothing techniques can theoretically 

operate with monitoring windows of any length. Despite that, when specifying the monitoring 

window widths, the user should keep in mind that the performance of data smoothing techniques 

seriously deteriorates if the monitoring window is made too narrow. 

2.SSummary 

2.5.1 Statement of the Proposed Algorithm for Fault Model Design 

The proposed algorithm for creating model designs appropriate for use in automating the 

detection of user-specified process faults can be summarized as follows. Before using the 

algorithm for designing fault models, a developer or an advanced user: 

a) Creates a library of fault model components 

b) Specifies component attributes, data modifiers, and the time it takes to identify fault 

models that use these components 

After that, for each fault to be monitored: 
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1) The process operator formalizes the solution requirement in terms of the proposed 

attributes and the process data historian assigns values to the process data attributes 

2) The algorithm creates all the possible combinations of the library components from 

the proposed fault model template and lists the attributes of the components for each 

combination 

3) For each model design, the algorithm identifies the attributes of real-time data 

available for each method, which is a part of the design, using the data modifiers of 

the included components 

4) The algorithm invokes all the rules defining model component compatibility rules 

and finds which combinations of fault model components (model designs) are not 

suitable for monitoring the fault 

5) The algorithm estimates the time required for identification of each suitable model 

design and marks the designs whose parameter identification time will exceed the 

user-specified limit as unsuitable 

6) Discards all the model designs found not suitable. 

After that, the parameters of the remaining fault model designs are identified and the best-

performing models are selected according to the guidelines of the next chapter. 

2.5.2 Advantages and Disadvantages of the Proposed Algorithm for Fault Model 
Design 

This proposed approach to fault model design makes it possible to: 

1) Decompose into components and design out of components any mathematical model 

whose application to fault detection has been discussed in the technical literature to 

date ( except for those that do not allow separation of the optimized criterion and the 

basis function), 
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2) Represent a large number of different fault models as a smaller number of separate 

model components, 

3) Search through large libraries of very diverse mathematical methods (perform 

mathematical method mining), which is extremely important in the cases when the 

shape of the modeled relationship is very hard or impossible to determine a priori. 

Very unusual fault models can also be designed from the proposed fault model template. 

A human being may never come up with these models. The conventional wisdom may also say 

that these "strange" models will never produce good results, but this may not be the case for 

certain fault-monitoring problems. 

The proposed approach to fault model design will also be helpful when the class of the 

methods most suitable for a certain data processing step in monitoring a specific fault is known. 

The user would simply add all the available methods of this class to the model component library 

and remove the other components performing the same function. An example of such a situation 

would be the one where one or several "good" models of the monitored process have been 

developed. Then the choice of the feature generation techniques for the model that monitors faults 

in this process would be limited to these "good" process models. 

The downside of the proposed set of the model component compatibility rules is that this 

set must be amended to allow designing models for monitoring batch processes and the processes 

that constantly undergo irreversible changes. Unfortunately, no guidelines on how to create new 

rules can be presented at that point. In addition, as was noted before, the methods that do not 

allow the separation of the optimized criteria and the basis function linked with the parameter 

search technique cannot be decomposed for the use in the model component library. 
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Chapter III. Evaluation of Fault Model Performance 

Chapter II has proposed an approach to designing fault models that are operable and 

formally suitable for user-specified fault-monitoring applications. However, the fault model 

performance may differ very greatly from one model design to another. This chapter discusses 

how to estimate the performance of different models in terms of the potential monetary benefit 

associated with the application of these models in real-time process fault monitoring. Section 3.1 

reviews the state of the art in the selection of models for fault monitoring and points out the 

deficiencies of the conventional approaches. Section 3.2 proposes a net economic benefit-based 

metric for estimating the performance of fault models. Section 3.3 explains how to evaluate this 

metric for different combinations of process faults and models intended to monitor these faults. 

3.1 State of the Art in Evaluating the Performance of Methods for Fault Monitoring 

3.1.1 The Need for Performance-Based Model Selection 

Different model types suitable for monitoring the faults forming a set should perform 

differently when monitoring different faults from this set. For example, the simple methods for 

fault monitoring, like univariate control charts, are very good at detecting faults characterized by 

a clear change of the statistical characteristics of a single variable, but they often fail when 

detecting faults that manifest themselves in small concerted changes of several process variables. 

It is not true that complex methods are always better than the simple ones either. Figure 

3.1 shows a likely partition of the process variable measurement or residual space by a kernel­

based neural network with elliptical kernels, the one presented by Kavuri and 

Venkatasubramanian (Kavuri and Venkatasubramanian 1993). Figure 3.2 shows how the same 

space will be partitioned using two univariate X control charts. In both figures, normal operation 

of the monitored process is inside the dashed ellipsoid and the abnormal operation is outside of it. 

As seen fr()m the figures, the partition of a residual or measurement space by the control charts is 
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more accurate than the partition of the input space by the neural network. 

unknown 

Figure 3.1. Partition of process variable space by a neural network with elliptical kernels 
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Figure 3.2. Partition of the process variable space by two X (Shewhart) charts 
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In practice, the absolute and even relative performance of a particular class of fault 

models in monitoring a particular fault is often unknown a priori. Hence, when automating the 

monitoring of a fault it is important to be able to: 

1) Identify fault models of different types, 

2) Evaluate the potential performance of these different fault models in monitoring the 

fault, 

3) Select the best-performing model. 

3.1.2 Conventional Measures of Fault Model Performance and Their Drawbacks 

Several research papers compare the quantitative performance of different types of fault 

models for fault monitoring and describe how to select the model with the best performance 

measure. The paper by Kano et al. (Kano and Nagao 2000) measures the performance of fault 

models using the so-called "reliability index." This index is the ratio of the number of process 

data points classified as faulty to the total number of process data points sampled during the 

faulty operation of the process. Two papers (Keyvan, Durg et al. 1993) and (House, Lee et al. 

1999) gauged the fault model performance using the percentage of fault instances detected on 

time by the model. Frank and Ding (Frank and Ding 1997) proposed to measure the performance 

of fault models based on how far apart the process data points belonging to the normal operation 

from the data points belonging to the monitored faults are. Finally, the book by Chiang et al. 

(Chiang, Russell et al. 2001d) used detection lags (i.e., the time from fault inception to fault 

detection) and misclassification rates (the percentage of times when the classifier confused one 

fault with another) as measures of fault model performance. Other research papers used similar 

criteria to evaluate the quality of fault models. While the above performance measures may 

provide an idea of how good a fault model is, these inducators may not be very useful in practice 

for the following reasons. 
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First, some of these performance indicators are applicable only for the fault models based 

on certain classes of models of the monitored process. For example, the criterion proposed by 

Frank and Ding (Frank and Ding 1997) assumes that the fault model uses the residuals of a linear 

model emulating the monitored process. Hence, the performance indicator by Frank and Ding is 

not suitable for the arbitrary fault model types generated from the template proposed in 

Section2.3. 

Second, use of different measures for selecting fault models may lead to completely 

dissimilar results. Let us suppose, the fault monitoring performance of two valid fault models: 

Model 1 and Model 2 is measured. Both models try to detect a fault nine times during its 

existence. Model 1 correctly detects the fault during six detection attempts and Model 2 correctly 

detects the fault during four detection attempts as shown in Figure 3.3. Hence, the error rate of 

Model 1 is 113 and the error rate of Model 2 is 5/9. Model 2 makes errors more frequently and 

emulates the fault worse than Model 1. However, Model 2 detected the fault earlier than Model 1: 

Model 1 detected the fault at 4:20 and Model 2 detected the fault at 4:00, hence the detection lag 

for Model 2 is shorter than for Model 1. fu this case, the user would be puzzled which of the 

proposed performance measures to choose for the selection of fault models. 

normal operation fault 

111111111111111,,,, 1,,,,, 1,,, 1, 1,,,,, 1, .. 
o:oo 1 :00 2:00 3:00 4:00 5:00 6:00 TIME 

model 1 

model 2 

PREDICTIONS BY MODELS: 

D - normal operation I - fault 

Figure 3.3. Classifications of the process condition (fault or normal operation) by two models 

63 



Third, the authors, who evaluated and compared the performance of different fault 

models in the technical literature, treated the observed measures of fault model performance as 

deterministic variables. However, the fault model performance measures observed during model 

tests are random variables affected by a number of factors not accounted for. Such factors may be 

changes in the quality of the supplies, fluctuations in the ambient conditions, or changes in the 

monitored process system. As a result, the true performance of a fault model may be somewhat 

different from the measured one. For example, if a fault model never output false alarms during 

the test, it does not mean that this model will never tell the user that there is a fault in the 

monitored process when the process operates normally. In reality, there is still a certain 

probability that this model will generate false alarms when monitoring the process in real time. 

Finally, the conventional measures of fault model performance may not be practical 

because these measures are some abstract quantities. The relationships of these quantities with the 

reason for operating the monitored processes, namely, generating as much profit as possible, may 

seem unclear. The previously mentioned criteria for gauging the performance of fault monitoring 

are not expressed in terms of economic benefits and costs. The reason is that the conventional 

methods for economic modeling of continuous processes consider the possibility of faults as 

constraints that must be met in order to stay in business (Keats, Castillo et al. 1997). Thus, fault 

monitoring is usually implemented to meet quality operation standards, e.g., the famous Six 

Sigma (Shina 2002), which sets an upper bound on the probability of out-of-control states, 

including those caused by faults. This approach completely disregards the fact that, in the process 

industry, the potential costs of different faults may vary by many orders of magnitude. Fault 

occurrences may lead only to slight losses in the product output rate or may cause Chernobyl-type 

disasters. This fact must be accounted for in the evaluation of the performance of fault 

monitoring. 

As was stated in Subsection 2.1.2, the whole purpose of using fault models is to reduce 

the risk of the losses associated with the fault consequences. Therefore, an applicable measure of 
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model performance should indicate by how much a certain fault model reduces this risk and, 

more generally, what the incremental net benefit of using a specific fault model for monitoring a 

specific fault will be. Estimation of such a measure would also give the user an idea whether 

computerization of fault monitoring using the available methods makes sense or not in each 

particular case. After selecting the fault model that is expected to add value to the process, the 

user must also check if the new process setup will meet the quality standards. This procedure is 

outlined in detail in numerous textbooks and manuals and is outside of the scope of this work. 

3.2 Fault Model Performance Metric in a General Form 

3.2.1 The Theory of Model Selection 

Performance of mathematical models (including those used for real-time monitoring) is 

their predictive capability. Therefore, as a rule, model performance is calculated in terms of 

model-data discrepancy measures. Discrepancy measures characterize the difference or distance 

between the actual values of the modeled variables and predictions of these values made by the 

models. For each set of model arguments, the value of the discrepancy measure is calculated 

using a problem-specific loss function that maps a set of pairs of the predicted and actual values 

of the modeled variable onto discrepancy measure values. A model with the lowest overall value 

of the discrepancy measure is considered the best-performing one and thus it should be selected 

for solving the problem. 

Depending on the problem being solved, some discrepancy measures, e.g., the Bayes 

Risk, may be quantifications of the cost associated with incorrect predictions. The performance 

measures of this type are called model performance metrics. Model performance metrics have a 

semantically linear nature, i.e., a model with an overall discrepancy measure equal to one is twice 

as good as a model with an overall discrepancy measure of two. Model performance metrics are 
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preferred over other discrepancy measures. The applicable model performance metric should be 

used for model selection whenever it can be estimated. Otherwise, the model developer has to 

come up with a good measure of model-data mismatch to estimate the performance of his or her 

mathematical model. 

3.2.2 The Performance Metric as a Net Benefit of Automating Fault Monitoring 

To derive a metric for estimating the performance of different fault models, let us 

suppose that the user wants to find and utilize a model that monitors fault X in real time. The 

"best" fault model would be the one that adds the maximum possible value to the process 

(increases the process profitability to the maximum possible extent). Such a model would: 

1) Always detect X before it causes any undesirable consequences, 

2) Produce no false alarms, 

3) Never confuse other fault modes with fault X, 

4) Require no effort to develop and run. 

Other requirements to an ideal fault model can be defined, but for now we consider the four listed 

above to be the most important, base ones and neglect the other possible requirements. In 

practice, no fault model can be expected to fully satisfy any of these four requirements. In 

addition, different models will satisfy these requirements to different extents. 

As was discussed in Section 3.1.2, evaluation of fault models should be tantamount to the 

estimation of the potential net economic benefit that the model can add to the monitored process. 

Then for a fault X, the proposed performance metric would be the economic benefit of early 

detection expected from the model minus the potential costs of an incomplete compliance of with 

the four base requirements listed previously. 

The benefit expected from the automation of monitoring fault X is the benefit associated 

with performing automated detections of fault X faster than it takes the operator to detect fault X 
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manually. This benefit Bd(X) will be called henceforth the potential benefit of early detection. 

The potential costs associated with the automation of process fault monitoring are: 

1) The cost C1a(X) of the false alarms warning the user of the existence of fault X during 

the normal operation of the monitored process, 

2) The cost Cm(Y.X) associated with the possibility of misclassifying other faults Y as 

faultX, 

3) The cost Ct1m(X) of developing and running a fault model to monitor fault X. 

The cost associated with misclassifications of other faults as fault X has two summands: 

the first one is the cost of a single false alarm of fault X produced in the absence of fault X and in 

the presence of fault Y and the second summand is the cost of not detecting fault Y on time. The 

cost Cm(Y.X) includes only the first summand (the cost of a single false alarm) as the second 

summand is accounted for in the benefit Bd(Y) of early detection of fault Y. For most faults, the 

cost of a single false alarm should be considered constant regardless of the occurrence of other 

faults, i.e., Cm(Y.X)=C1a(X) for any Y:;t:X. The cost of developing and running a fault model to 

monitor fault X includes the labor that must be spent to develop the model, the expenses 

associated with the hardware that runs model M, and the cost of collecting additional process 

measurements (if required). In this work, this cost is the same for all the models because they are 

all trained on the same labeled (tagged) historical data. The proposed benefit and cost measures 

are calculated per unit time of fault model operation. 

Costs and benefits are semantically linear measures. A fault-incurred cost of two units is 

two times as bad as a fault-incurred cost of one unit. Moreover, suppose we need to monitor a 

single fault that occurs once a year. For this case, a model that always detects the monitored fault 

immediately after its occurrence, but every month issues false alarms that cost $500 per alarm is 

as good as a model that never produces any false alarms, but detects the fault late and the average 

cost of this lateness is $6000 per fault. Thus, for fault X, the benefit and cost-based model 

performance metric would be the potential net benefit B(X) of automating the monitoring of fault 

67 



X: 

B(X )=Bd (x )-C fa (X )-Cm (X )-Cdm (X) (3.1) 

It is not quite correct to call the potential net benefit B(X) a "model-data discrepancy" because the 

net benefit is lower for the models that fit the fault data poorly and is higher for the models that 

fir the fault data well. In addition, the net benefit may be both positive and negative. However, 

the proposed measure B(X) does have the same properties as any other performance metric. The 

proposed net benefit measure does gauge the model-data fit, and it does quantify the cost 

associated with incorrect predictions, same as the mean square error and other similar criteria 

applicable in the simpler cases. 

If the net benefit B(X) is negative or only slightly above zero for all the tested fault 

models, automation of the fault monitoring that uses any of these models is not justified unless 

model-based monitoring is absolutely necessary to meet the process quality standards. For the 

rare cases when a single model M is set up to monitor nf different fault modes, the net benefit of 

implementing this model will be a sum of the net benefits calculated for each fault monitored by 

model M and the cost Cam(X) of developing and running fault model M to monitor fault X is 

calculated as a fraction of the cost Cam(M) to develop and run M: 

(3.2) 

3.2.3 Expectation of the Fault Model Performance Metric 

3.2.3.1 Estimating Expectations of Model-Data Discrepancies Model-data discrepancy 

measures cannot be calculated in a straightforward manner because the actual values of the 

modeled variables are not known for all the circumstances where the model will be used. 

Otherwise, there would be no need to use any mathematical models. Because of that, it is often 

assumed that the best model is the one whose statistically estimated expectation ( denoted by the 
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operator E) of the applicable model-data discrepancy is the optimal. Estimation of the 

discrepancy expectation for a model requires running the model on a sample of object data 

consisting of the values of the model inputs (prototypes) and the associated true values of the 

modeled variable. After the model runs, an "unbiased" statistical estimator (i.e., an estimator 

whose expectation is equal to the expectation of the estimated variable) of the applicable 

discrepancy measure maps a set of pairs of the actual and model-predicted values of the modeled 

variable onto the discrepancy expectation. 

In the most common case, these estimators simply average the loss function values 

calculated for each point of the sample. For example, when the sample is random and the loss 

function is the square of the distance between the actual and model-predicted values, the 

discrepancy measure is estimated as the average squared error for the sample. The simple 

"averaging" estimators are not applicable when the data sample used for model evaluation is not 

random. This is the case in the evaluation of fault models because selection of historical process 

data for fault model evaluation at random will not produce a good estimate of how the model will 

perform in the future. To carry out this evaluation, the operators must select and mark the non­

random historical data describing the monitored fault(s) from fault inception to fault rectification. 

This data must not be omitted because, obviously, fault model behavior during the occurrence of 

the monitored fault matters most in the evaluation of the model performance. 

3.2.3.2 Expanding the Summands of Equation (3.1) Since the historical process data 

describing faults and normal operation are sampled using different schemes, the expectation of 

the net benefit of fault monitoring automation B(X) should be estimated as a function of 

indicators characterizing the model performance only during the occurrence of faults or only 

during the normal operation. Thus, to obtain an estimator for the model performance metric, the 

summands of Equation (3.1) should be expanded and the resulting factors classified as random 

and fixed. Each random factor should describe the model performance during a specific 
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monitored mode of the process operation. For each fault model, each of these factors should be 

evaluated separately. 

The summands of Equation (3.1): the costs and benefits Bd, C1a, and Cm are associated 

with specific process and model operation events. The benefit BJX) is associated with 

occurrences of fault X, the cost C1a(X) is associated with incorrect warnings of fault X produced 

by the fault model, the cost Cm(Y.X) is associated with misclassifications of fault Y as fault X by 

the fault model. These costs and benefits are naturally viewed as products of the average cost or 

benefit of a single instance of the associated event and the rate of the occurrence of the events of 

this type during the model operation. 

Thus, the potential benefit of early detection of fault X can be calculated as a product of 

the frequency rf..X) of occurrences of fault X and the average benefit Bdx associated with early 

detection of a single instance of fault X: 

(3.3) 

In Equation (3.3), rf..X) is the frequency of occurrences of fault X, Lt1u(Xj) is the cost of the 

consequences of fault instance Xj when Xj is detected manually by the operator, Lt1m(Xj) is the cost 

of the consequences of Xj if Xj is detected by the model, and nx is the number of historicized 

instances of fault X. The benefit associated with the detection of a fault instance early using a 

fault model is estimated as a difference between these costs. Operator poslin() performs an 

identity mapping for positive arguments and returns zero for the other arguments. Equation (3.3) 

states that the benefit of early detection is zero for the fault instances detected by the operator 

ahead of the fault model. Evaluation of Lt1u(Xj) and Lt1m(Xj) using user and model detection lags is 

described in detail in Subsection 3.3.2.2. 

The cost associated with false warning of fault X can be viewed as a product of the 

frequency r1a(X) of false warnings of fault X produced by the model during normal operation and 
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the average cost L fa (x) of a single false warning of fault X produced by the fault model during 

normal operation: 

(3.4) 

The cost associated with misclassifications of fault Y as X can be considered a product of 

the average cost L fa (Y, X) of a single false warning of fault X during the existence of fault Y, the 

frequency rJY) of occurrences of fault Y, and the time from fault inception to fault detection of 

instance Y; of fault Y, l(Y;), multiplied by the frequency r1a(Y;,X) of false warnings of fault X 

produced by the model during the existence of fault instance Y;. 

- 1 nx 
cm(Y,X)= L1a(Y,X)· r1 (Y)·-I~(Yi )· r1a(Yj,x)] 

nx i=l 
(3.5) 

Using the expansions proposed in Equations (3.3)-(3.5), the net benefit of automating fault 

monitoring is represented as follows: 

(3.6) 

Among the variables on the right hand side of Equation (3.6), some variables should be 

considered fixed while the others should be deemed random 

3.2.3.3 Fixed and Random Variables in Equation (3.6) Even though the occurrences of 

process faults of types X, Y, ... are random events, the frequencies of these events (rJX), rJY), ... ) 

should be hard set by dividing the number of times Nz that the fault of type Z has been observed 

by the total time tpo the plant has been in operation: 

(3.7) 
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Following the industrial engineering practice, the distribution of the time between faults 

of the same type can be approximated with the distribution functions, like Exponential, Weibull, 

Lognormal, etc., commonly used in the survival and reliability analyses. Consequently, fault 

frequencies can be approximated as the expectations of the distributions of the inverse survival 

functions (inverse Exponential, inverse Weibull, inverse Lognormal) obtained by inverting the 

approximations of the time between faults of the same type. 

In the reality, the rate of fault occurrences in the process industries is a function of the 

plant age, maintenance schedule, and current costs of the products generated and raw materials 

used by the plant. Hence, the survival function approximations proposed here would only 

represent marginal distributions of the fault rates averaged over the plant life to date, but these 

approximations would be grossly inaccurate for each particular moment of plant operation. In 

addition, for any process plant, the number of faults of the same type observed during the plant 

history is often rather small and not sufficient to accurately approximate any joint distributions of 

the time between faults, time since last maintenance, plant age, and commodity costs. The very 

rare cases when process faults of the same type are frequent enough to enable the user to find a 

good approximation of a joint distribution of the time between faults, plant age, and time since 

last maintenance are beyond the scope of this work. 

The user is also expected to specify the average cost I fa (x) of a single false alarm 

mistakenly warning the user of fault X and the average costs I fa (Y,X) of a single 

misclassification of each fault Y as fault X. Just like the rates of the monitored process faults, the 

actual costs of fault misclassifications and false alarms depend on the time since the last 

maintenance, the plant age, the costs of the products generated and raw materials used by the 

plant at the time of a false alarm or fault misclassification. In addition, these costs depend on the 

experience of the plant personnel and other human factors changing with time. The cost of fault 

misclassification may also depend on the time since the inception of the misclassified fault. 
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Accounting for all these factors may be a challenge for the future, but at this point in time, it is 

unrealistic to expect either the operation personnel or plant management to come up with the false 

alarm and misclassification costs as functions of these factors. Hence, the costs of a single false 

alarm and a single fault misclassification of each type should be specified as fixed deterministic 

numbers. 

Finally, the cost Ct1m(X) of developing and running the fault model to monitor fault Xis a 

fixed deterministic value for each "fault" -"fault model" pair. This cost can be estimated from 

prior experience. 

The remaining variables on the right hand side of Equation (3.6): Lt1m(Xj), Lt1u(Xj), r1a(X), 

l(Yi), and r1a(Y,X) are viewed as random. One reason for this is that these variables are affected not 

only by the monitored fault type and the type of the model used to detect the fault, but also by a 

great number of other factors that cannot be accounted for, e.g., the varying composition of the 

feeds or changes in ambient conditions. Another reason is that these variables are not hard set by 

the user and random samples of the values of these variables can be obtained. Because of that, it 

is possible to estimate statistical characteristics of these five variables. 

With the assumptions listed in this subsection, the expectation of fault model 

performance metric: the net benefit of monitoring automation can be calculated by applying the 

expectation operator to both sides of Equation (3.6) as follows: 

i: 

i:[n(x)]= 

nx 
rf (X)· I{poslin[Lau (x j )-Lam (x j )»-rfa (x)-I1a (x) 

j=l 

- L {rfa (Y,X)·r1 (Y)·I~(Yi )·r1a (Yj,x)]l-cdm (x) 
Y,Y¢X i=l J 

= Nz ·E{poslin[Lau (x j )-Lam (x j )Il-Ita (X)·E~fa (x)] 
tpo 

- I(r1 (Y)-Lfa (Y,x)-{i:[z(Yi )].i:ba (Y,x)]+cov~(Yi ),rfa (Y,X)~-Cam (x) 
Y,Y¢X 
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Then, as proposed at the beginning of Subsection 3.2.3.2, estimation of the expectation of fault 

model performance metric would require: 

1) Estimation of the expectation of the benefit of early detection of a single fault 

instance E[Bax ]=E{poslinlLau (x j )-Ldm (x j )f from the historical data describing 

the monitored fault X, 

2) Estimation of the expectation of the rate of false alarms E~ fa (x )J from the historical 

data recorded during the normal operation of the monitored process, 

3) Estimation of the expectation E[l(Yi )] of the duration of a single fault instance Y; of 

fault Y, the expectation E~ fa (Y,X )J of the rate of false alarms during fault Y, and the 

covariance cov~(Yi ),r fa (Y,X )J of the duration of Y; and the rate of false alarms 

during fault Y from the historical data describing the faults other than the monitored 

fault X (multiple-fault case). 

Since this work is the first one to propose a general method for evaluating the net benefit of 

automating the process fault monitoring, it is assumed that faults of only one type are possible in 

the monitored process. If the results of this work are found applicable, future research will 

consider estimation of the net benefit for more complex cases. For the case when faults of only 

one type are possible in the process, r1aCX)=0, Cm(Y,X)=O, and Equation (3.8) simplifies to: 
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3.3 Estimating the Expectation of the Fault Model Performance Metric 

3.3.1 Sampling the Historical Data to Identify and Evaluate Fault Models 

This section describes how to estimate the proposed performance metric for the data­

driven fault models. "Data-driven models" are those whose identification requires a set of values 

of the model inputs (prototypes) and the associated true values of the modeled variable. Fault 

models are almost always data-driven. The models that require no data for the parameter 

identification are beyond the scope of this work. 

The object data used for model identification cannot be reused for estimating the model 

discrepancy expectation. The reason is that any data-driven model is expected to imitate (fit) the 

data used for its identification better than the rest of the object data. There are two conventional 

approaches to sample the available data and estimate the discrepancy expectations for the data­

driven models (Linhart and Zuccini 1986). 

The first conventional approach is complexity penalization. fu this approach, the 

discrepancy expectation is estimated implicitly or explicitly as a sum of the model-data 

discrepancy due to estimation and the model-data discrepancy due to approximation. The first 

discrepancy decreases as the observed goodness-of fit of the training data by the model and the 

model complexity increase. At the same time, the second discrepancy gets larger following 

increases in the number of the model parameters or the complexity of the basis function shape. 

The model discrepancy measure is evaluated as a sum or product of these two discrepancies. This 

approach finds the best compromise between the models that are too simple and inaccurate and 

the models that are too complex and that over-fit the training data. One famous use of the 

complexity penalization approach for estimating the performance of simple models consists in the 

evaluation of the Akaike fuformation Criterion (Akaike 1973). Complexity penalization is hard to 

apply in the evaluation of fault models because they are combinations of different mathematical 

methods and because of the complexity of the profit-based performance measure proposed for 

these models. 
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When calculation of discrepancy measures due to the estimation and approximation is 

complicated, another approach called "minimization of the generalization error" is used. This 

minimization is performed consistently with the "bootstrap" and "cross-validation" -type methods. 

The bootstrap-based methods select several random independent samples of fixed size out of the 

object data. Each sample is divided into two parts of fixed size. The data in one part of the sample 

must be independent on the data in the other part. For each sample, the parameters of a data­

driven model are identified using the first part of the sample and then the average model-data 

discrepancy is calculated for the elements of the second part of the sample. The model's 

discrepancy measure is evaluated as a function of the average model-data discrepancies for the 

second parts of each selected sample. 

The bootstrap-based methods work well when the pool of the data available for model 

identification and evaluation is large. This is the case with the data describing normal operation of 

the monitored process. The data collected during this mode of process operation is used to 

evaluate the expectation of the rate of false alarms E~ fa (X )] . At the same time, the bootstrap­

based methods are not applicable for the evaluation of the other four statistical quantities listed at 

the end of Section 3.2.3. The reason is that these quantities require the historical data describing 

faults. This type historical data is usually very limited. The operator can generally be expected to 

label only a very limited number of instances of the monitored fault and several instances of the 

other faults in the historical data. Each fault instance is unique and different from other fault 

instances, plus the process data points describing a single fault instance are collected during a 

relatively small time interval and hence related to each other. In addition, evaluation of the cost of 

fault consequences during the automated fault monitoring requires full historical data sets 

describing each fault instance. The full historical data sets are needed to find out when the fault 

model would have detected the fault instances used for fault evaluation. These facts seriously 

complicate creation of two independent random samples of historicized fault data, as required for 
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the bootstrap. 

The cross-validation-type methods are based on several repeated divisions of the entire 

set of the modeled object's data into two independent fixed-size parts: the data set for model 

identification and the holdout data set for calculating the average model-data discrepancy. The 

divisions are performed in such a way that each available object data point is included in the 

holdout data set only once. The discrepancy expectation is evaluated as the average over the 

model-data discrepancies calculated for each division. 

The cross-validation-type methods are good when the pool of the data available for 

model identification and evaluation is small. As was discussed, this is typically the case with the 

historical data describing faults. If the data describing each fault instance is assumed independent 

of the other historicized fault instances, the cross-validation can identify several fault models 

using all the historicized fault instances except for a randomly chosen one placed in the holdout 

data set. If an instance of the monitored fault X is held out, this instance would be used for the 

evaluation of the benefit of early detection. In addition, the training set (the set of data prototypes) 

should include randomly sampled sections of the data historicized during the normal operation of 

the monitored process. The proposed sampling scheme is illustrated in Figure 3.4 where solid 

rectangles denote the process data historicized during the normal operation and the white 

rectangles denote the data describing process faults. 
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Figure 3.4. The sampling scheme proposed for fault model identification and evaluation 

3.3.2 Estimating the Random Quantities of the Model Performance Metric 

3.3.2.1 Types of Fault Consequences. The total damage caused to a process by a process 

fault can be viewed as an aggregate of the different effects resulting from each fault consequence. 

With respect to the consequence dynamics, fault consequences can be divided into: 

1) Fixed-cost consequences 

2) Accumulating-cost consequences. 
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Each process fault may be associated with a set of consequences of different types. 

If a fault is associated with fixed-cost consequences, these consequences cannot be 

avoided once the fault occurs. As suggested by their name, correction of fixed-cost consequences 

costs a fixed price (effort). For example, a broken valve actuator or compressor impeller will 

require a fixed amount of cash to purchase a replacement, a fixed amount of labor to replace the 

actuator (impeller), and a fixed amount of process downtime (if applicable) to perform the 

replacement. Real-time fault monitoring does not affect the fixed-cost consequences. 

The impact of the faults associated with the accumulating-cost consequences grows 

from the moment of fault inception until the fault rectification. With some simplifications, the 

accumulating-cost consequences can be further srlbdivided into: 

a) Consequences with the costs accumulating at a constant finite rate, 

b) Consequences with the costs accumulating at a variable finite rate, 

c) Delayed consequences with the costs accumulating in one discrete step. 

Common examples of a consequence with the costs accumulating at a constant finite rate 

are the manufacturing of a substandard product that will be sold at a discounted price or leak­

related losses of utilities or chemical reagents. For a process operated out-of-control due to a 

fault, the rates of product, reactant, and utility losses are usually finite and variable. The most 

common example of a fault-related loss accumulating in one discrete step is process shutdown 

due to an out-of control operation caused by faults. Certain process variables must be within the 

specified limits. When a process is operated out-of-control, the values of these variables may 

move outside of these limits, as a result, the control system may force the process to shut down. 

Other examples of a fault-related loss accumulating in one discrete step are failures of the process 

equipment, conflagrations, explosions and sudden releases of toxic gases or fluids caused by 

process faults. Figure 3.5 below illustrates how the costs of different consequences of a fault may 

accumulate. 
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Figure 3.5. Accumulated cost of fault consequences as a function of time since fault inception 

3.3.2.2 Tracing the Dynamics of Fault Consequences in the Historical Data 

Evaluation of the expectation E[ B d ( X )] of the benefit of detecting fault X early requires the 

operator to specify the total cost Ldu(Xj) of the consequences associated with each historicized and 

labeled instance Xj of the monitored fault X. In addition, for each historicized and labeled fault 

instance Xj, it is necessary to estimate the imaginary cost Ldm(Xj) of the associated consequences 

were these fault instances detected by the evaluated model. Then the expectation of the benefit 
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Bi.Xi) of early detection of a single instance of the monitored fault X can be estimated as follows: 

nx 
Lposlin[Ldu (x j )-Ldm (x j )] 

E[BdX ]=E{poslin[Ldu (x j )-Ldm (x j )]}=-i=_l ------
nx 

(3.10) 

In Equation (3.10), nx is the total number of historicized and labeled instances of fault X. The 

mean of a sample is an unbiased estimator for the mean of the population from which this sample 

was obtained. This equation neglects the possibility of irreversible changes in the monitored 

process and treats all the historicized fault instances equally. 

It is proposed to evaluate Lam(Xj) by recovering the dynamics of the consequence cost 

accumulation for the historicized instances of the monitored fault(s). To accomplish this task, the 

operator must be able to find in the historical data and mark the moments of time when fault 

consequences with the costs accumulating in one discrete step have occurred. It is assumed that 

the operator can also specify the rates of cost accumulation for the fault consequences whose 

costs grew at finite rates during the historicized faults. If the consequence costs accumulated at 

variable rates, these rates must be specified for each point of the historical process data describing 

the monitored fault. This procedure can be automated if the rates of consequence cost 

accumulation are specified as functions of the historicized process variables. For example, if a 

fault results in a loss of a reagent, the rate of cost accumulation associated with the reagent loss 

would be calculated as the difference between the base-case and the historicized rate of the 

reagent consumption by the process multiplied by the cost of this reagent. The functions relating 

the costs of different types of fault consequences should be collected in a library. From this 

library, the operator would pick functions that describe the consequences observed during the 

historicized fault instances and identify the parameters of these functions according to the 

existing plant records. 

Once the operator provides the historical information on the fault consequences, it is 

possible to recover the accumulated cost of the consequences of the historicized faults as a 

81 



function of time. Using the automated (model-based) detection lag as an argument of this 

function returns the consequence cost that would have been accumulated by the imaginary 

moment of automated detection. To determine the detection lag tvL for a model-fault instance 

pair, the moment t0 of this fault instance inception should be subtracted from the time stamp tv of 

the latest process measurements used by the model when the fault was detected. This difference 

should be further augmented by the time tp it would take to pass the process data from the sensors 

or analytical devices to the computer running the fault model and by the time tc it would take the 

fault model to perform a single classification of a process data vector plus the average time t8 

between model runs: 

(3.11) 

Of course, this procedure is valid only for the historicized fault instances placed in the holdout set 

and hence not used for the model identification. 

3.3.2.3 Estimating the Post-Detection Cost. Knowing the consequence cost 

accumulated by the imaginary moment of fault detection is not sufficient to estimate the total cost 

Ldm(Xj) of the consequences of fault instance Xj if this fault instance were detected by the 

evaluated model. Unfortunately, faults are rarely corrected instantaneously, so the consequence 

costs continue accumulating after the detection as well. Estimation of the cost that would have 

been accumulated after the model-based fault detection for the historicized fault instances is a 

difficult task. To make this task tractable, the operator must mark the moments when the 

historicized instances of the monitored faults were detected manually and fault rectification 

sequences initiated. Then Ldm(Xj) can be calculated as a sum of the consequence cost that would 

have been accumulated until the model-based fault detection and the consequence cost 

accumulated after the manual detection of fault instance Xj as shown in Figure 3.6 below. This 

method for estimating Ldm(Xj) carries with it a very strong assumption that for each historicized 
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fault instance the cost accumulated after fault detection does not depend on the detection lag. The 

estimates of Ldm(Xj) obtained using this method may be very crude. 
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Figure 3.6. Estimating the consequence cost for the automated detection by assuming the cost 
accumulated after the detection does not depend on the detection lag 

Two approaches for refining the estimation of the imaginary post-detection cost for the 

case of automated detection are proposed here. In the first approach, the operator approximates 

the cost accumulated after fault detection (no matter manual or automated) using a relationship 

known from the first principles of the operation of the monitored process. The operator may know 

that the post-detection cost does not depend on the detection lag or that certain consequences will 

not occur after the start of the fault rectification sequence, or that certain consequences will stop 

accumulating once the fault recovery begins. It is unreasonable to expect the operator to enter any 
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complex functions when identifying fault models. Instead of that, the operator would create a 

simple table specifying the intervals of detection lags, accumulated consequence costs, 

occurrence of different consequences, or other process variables and providing either one or more 

historicized fault instances falling into each specified interval or the expected value of the post­

detection consequence cost. For the generic fault instance whose consequence cost dynamics is 

shown in Figures 3.5 and 3.6, the cost of consequences may be specified as follows. If the 

consequence cost accumulated before detection is less than $500 or if Consequence I has 

occurred, the cost of the post-detection consequences is $900 with the 95% confidence interval of 

($700, $1100). Otherwise, the post-detection consequence cost is $1700 with the 95% confidence 

interval of ($1300, $2100) because in this case Consequence I is not likely to be avoided. 

The second proposed approach can be considered empirical and it is used when the 

operator does not know how the post-detection consequence cost is related to other fault and 

process parameters. The first step in the second approach is finding which variable has a greater 

correlation with the post-detection cost: the consequence cost accumulated by the manual fault 

detection or the manual detection lag. For the faults that can develop at variable rates or are 

associated with the consequences whose costs accumulate in one single step, the former variable 

is usually related closer to the consequence cost accumulated after the fault detection than the 

latter one. For the other faults, the post-detection consequence cost is usually determined by the 

detection lag except for the cases when the fault inception time cannot be determined accurately. 

Thus, one advantage of the proposed fault model evaluation method is that it does not require an 

accurate identification of the time of fault inception to evaluate the performance of fault models. 

The second step is dividing the more correlated variable into frequencies spanning all the 

values that this variable can take for the monitored fault. Each frequency contains at least three 

detection lags or pre-detection costs, depending on which variable is related closer to the post­

detection cost, for three different instances of the monitored fault. The boundaries between the 

frequencies are averages between the smallest observed value contained in the higher frequency 
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and the largest observed value contained in the lower frequency. 

At the third step, the conditional expectation of the consequence cost Ldma(J) accumulated 

after the detection is estimated for each frequency f as the average of the post-detection 

consequence costs LdmaCXj) for the manual monitoring of the NJ historicized fault instances Xj 

whose manual detection lag or the consequence cost accumulated before the manual detection 

belongs to that frequency: 

NJ 

LLdma(x j) 
j=l 

XjEf 
(3.12) 

The same relation is used to calculate the expectation of the post-detection cost for interval 

specified by the user in the first approach. This idea is visualized in Figure 3.7 below. 
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Figure 3. 7. Approximation of the conditional expectations of the pre-detection consequence cost 

The expectation of the post-detection consequence cost is assumed to be the same 

function of the detection lag or pre-detection consequence cost for both manual and automated 
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detection. Then, as required by Equation (3.10), the total consequence cost Lt1m(Xj) for the case of 

automated detection of fault instance Xi is estimated as a sum of: 

1) The imaginary pre-detection consequence cost Ldmb()0) for the model-assisted 

monitoring estimated using the cost dynamics AND 

2) The estimated expectation of the post-detection cost Ldma[f(Xj)] for the frequency .f(Xj) 

of the model-based detection lags or the imaginary pre-detection consequence costs 

for the fault instance Xi. 

Ldm (x j )=Ldmb (x j )+ E[Ldma (x j )x j E f] (3.13) 

The final form of the estimator for evaluating the expectation of the benefit BJX) of early 

detection of fault X will then be as follows: 

nx 
Iposlin{Ldu (x j )-Ldmb (x j )-E[Ldma (x j ) X j E f n 

E[Bd(x)] j=I _Nx 
nx tpo 

(3.14) 

This equation tacitly assumes that poslin is a linear function. This is not true for negative values 

of the argument of poslin. However, the well-performing fault models should almost always 

detect faults ahead of the operator, thus the argument of the poslin used in Equation (3.14) should 

be positive for the overwhelming majority of instances of the monitored fault. 

3.3.2.4 Confidence Interval for the Benefit of Early Detection. Often, it is important to 

know how accurate an estimation of the net benefit of fault monitoring automation is for each 

evaluated fault model. For the model performance metric proposed in this chapter, it is possible to 

estimate an approximate standard deviation and a 95% or 99% confidence interval. Estimation of 

this standard deviation and confidence interval would require estimation of these statistical 

quantities for each random variable included in the metric on the right hand side of Equation(3.9). 

For the benefit of early detection it is proposed to estimate an approximate standard 

deviation as follows. The user specifies standard deviations SC; for the cost L; of each 
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consequence C;. This specification may be performed implicitly, e.g., the operator may state that 

the cost of a plant shutdown is $100,000±20,000 or that the cost of one shutdown is estimated 

with a 20% accuracy. This would mean that the shutdown cost has a normal distribution with the 

mean of $100,000 and that the value of the shutdown cost falls into the ($80000; $120000) 

interval with the probability of 95%, so the standard deviation for the shutdown cost distribution 

would be $20,000. Assuming independence of the operator's errors for the cost of each 

consequence, the variance for the estimated cost of all Nq consequences actually incurred by fault 

instance Xj would be approximately estimated as follows: 

(3.15) 

In Equation (3.15), S is the standard deviation operator, S2 is the variance operator, and L,ij is the 

total cost of consequence Ci for fault instance Xj. 

The same procedure can be applied to evaluate the standard deviation of the estimated 

imaginary cost accumulated by the imaginary time of automated fault detection. However, this 

source of variance can be neglected because for good models that detect faults much earlier than 

the operator does, the variance of this indicator is much smaller than the variance due to an 

incorrect specification of the total cost of fault consequences. 

As far as the conditional expectation E[Lama(XJXief] of the post-detection 

consequence cost for the imaginary automated detection of fault instance Xj is concerned, its 

variance can be estimated as the variance of the mean of the sample of the measured post-

detection costs for the frequency of detection lags or pre-detection costs where the detection lag 

or pre-detection cost of Xj belongs: 

NJ 2 

82 {L [r(x .)n I(Lama(xz)-E{Lama[r(xi)~ 
s2 IE[L (x . )1 X . E in= dma J !if= l=l (3.16) 

1: dma J J lf N f N f (N f -1) 
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In this equation, N1 is the number of historicized fault instances placed in frequency f (see 

previous section), X1 is an instance of fault X placed in the frequency f, and S 2 {Ldma [r(x j )Dis 

the variance of the sample of post-detection consequence costs for the manual detection case and 

the fault instances included in frequency f 

Equations (3.15) and (3.16) describe the variance in the expectation of the net benefit due 

to the specification error. Another source of variance in this expectation is due to the differences 

in the measured pre-detection cost Lbk for the model-based detection for different instances of the 

same fault estimated as follows: 

[ 1
2 

nx 1 nx 

~ Lbkj -" n X ~ (Lbkj ) 

2 ( ) J=l J=l 
S Lbk = ( ) 

nx -1 
(3.17) 

In Equation (3.17), Lbkj is the measured total cost of the consequences of fault instance Xj 

accumulated by the imaginary time of the automated detection of Xj and nx is the total number of 

instances of fault X. 

By assuming independence of the deviations calculated in Equations (3.15, 3.16, and 

3.17), averaging the variances of Ldu over different fault instances, and making a correction for 

the fault instances during which the model detected the fault later than the operator did, the 

variance of the expectation of the benefit of early detection for a random single instance of fault X 

can be approximately calculated as a sum of these three variances: 

nxN 

(3.18) 
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fu this equation, nXN is the number of the instances Xj of fault X for which Ldu (x j )- Ldm (x j) is 

non-negative. Equation (3.18) effectively calculates a weighted average of the post-detection 

costs for each frequency of detection lags or pre-detection costs and assumes that each frequency 

contains the same number of post-detection costs. The standard deviation of the total benefit 

Bd (x) of early detection of fault Xis calculated as follows: 

(3.19) 

Equation (3.19) assumes that the exact number nx of faults of type X occurred over the time 

period tpo is known. 

3.3.2.5 False Alarm-Associated Cost. Evaluation of the model performance metric 

requires estimation of the rate of false alarms ft[r fa (x )] . To perform this evaluation, the model is 

run on the historical data recorded during the normal operation of the monitored process and not 

used for model identification. The interval between the latest data points used during consecutive 

classifications of the monitored process mode should be the same as the time intervals between 

the model runs when the fault model will be operating in real time. The fault warnings produced 

by the tested model are considered false alarms. False alarms separated by the time interval 

longer than the monitoring window are considered separate false alarms. If the time interval 

between two false alarms is shorter than the monitoring window, they are considered the same 

false alarm. 

To represent the normal operation well, the test data samples should be collected at 

different randomly chosen intervals of normal operation of the monitored process. For each 

interval, the number of false alarms is counted. Then the expectation of the rate of false alarms is 

estimated by dividing the number of false alarms N1a observed during the test by the total 

effective length L of the normal operation intervals selected for model evaluation: 
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(3.20) 

This estimator is unbiased because its expectation matches the definition of the average rate of 

false alarms. 

Each selected interval representing normal operation must be several times longer than 

the monitoring window width. The first reason for this is that a single run of the tested model 

requires an interval of historical data as long as the monitoring window. To run more than once 

during the same test interval, this interval must be even longer. The second reason is that some 

process data points at the beginning of a data sample collected during the normal operation may 

be within the monitoring window of a false alarm that would have been produced if the model 

were run on the data immediately preceding the sample. As a result, false alarms issued during 

the beginning of some normal data samples may be false alarms initiated earlier. It is proposed 

not to count false alarms within one monitoring window of the beginning of each selected interval 

of normal operation of the monitored process. Thus, the total effective length L of the normal 

operation intervals selected for model evaluation is calculated as follows: 

NN 
L= L(Li -2W) (3.21) 

i=l 

In Equation (3.22), NN is the number of test intervals selected for model evaluation, L; is the 

length of the fh selected interval, and Wis the monitoring window width. 

To estimate the standard deviation of the expectation E~ fa (X )] of the rate of false 

alarms for each tested model, the entire test set representing normal operation of the monitored 

process can be partitioned into intervals of the length equal to the monitoring window width W. 

Each interval can either contain or not contain a single false alarm. Then the rate of false alarms 

can be considered as the probability of a randomly chosen interval of historical data recorded 

during the normal operation and equal in length to the monitoring window width to contain a 

false alarm. This probability is further divided by the monitoring window width measured in 
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years to obtain the rate of false alarms. Then estimation of the confidence interval for the rate of 

false alarms will be equivalent to the well-studied problem of estimating the interval for a 

binomial proportion. 

3.3.2.6 Confidence Interval for the Rate of False Alarms. There exist a number of 

different techniques for estimating this confidence interval; the most common ones are 

summarized in recent surveys on the subject, e.g., (Brown, Cai et al. 2001). The most 

recommended technique is the Wilson or score interval. For the rate of false alarms, this 

confidence interval will be as follows (given the assumptions listed in the previous paragraph): 

( L)o.s 
2 Zosa· - 2 o.s 

r a(X)=!._· N fa +0.5Zo.sa ± · W ·[W·N fa ·(l W·N faJ+W·Zo.sa] 
fi W ~+z2 (~)+z2 L L 4-L 

W 0.5a W 0.5a 

(3.22) 

In this equation, ZR is the Rth percentile of the standard normal cumulative distribution function 

and a is the level of confidence for the interval. The Wilson interval becomes very inaccurate for 

the values of the number of false alarms N1a close to zero or n=~. Figure 3.8 below shows w 

apparent downward spikes in the estimated interval coverage probability for the values of 

" W·N fa W·N fi 
p L very close to zero or n. It means that for these values of p L a the estimated 

confidence interval will be much smaller than the actual one. Good fault models should produce 

false alarms very rarely, so N1a should be close to zero. 
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Figure 3.8. Wilson interval coverage probability for n=50 (Brown, Cai et al. 2001) 

For those cases, it was proposed (Brown, Cai et al. 2001) to replace the lower bound of the 

confidence interval (3.22) with A·W. In this ratio, A solves Equation (3.24): 
L 

(3.23) 

It is hard to incorporate this proposed interval into Equation (3.20) to calculate the 

confidence interval for the proposed performance metric, the net benefit of automating the 

process fault monitoring. The reason is that the confidence interval for the rate of false alarms 

specified by Equation (3.23) is asymmetric. However, it is possible to reduce the contribution of 

the incorrect estimation of the rate of false alarms in the model performance metric estimation 

error by increasing the size of the part of the test set recorded during the normal operation of the 

monitored process. If the contribution due to an incorrect estimation of the rate of false alarms is 

smaller than the contribution of the error in the benefit of early detection by at least an order of 

magnitude, the former error can be neglected. Then, taking into account Equations (3.22) and 

(3.23) and assuming that a fault model makes 5-30 false alarms a year, the minimal length LM of 

the process data recorded during the normal operation and required for testing the model would 

be approximately the average cost 5 · [ fa (X) of five false warnings of fault X divided by the 

standard deviation sliau (x j )J of the previous annual loss due to the consequences of fault X: 
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(3.24) 

Equation (3.24) assumes that the total consequence cost estimation error dominates or is 

approximately equal to the other errors accounted for by Equation (3.18). 

3.4. Summary 

This chapter introduces a method for evaluating fault models. This evaluation is the 

second part of the model selection procedure described in Chapter II. The method proposed in 

this chapter evaluates the potential monetary benefit of implementing a fault model for 

monitoring a specific fault. Current procedures for evaluating fault models focus on satisfying the 

quality standards and do not consider the potential costs associated with this satisfaction. The 

proposed procedure is based on estimating an expectation of the net benefit of fault model 

implementation. The procedure assumes that no irreversible changes occur in the process with 

time. This expectation is represented as a combination of fixed and random variables. The 

operator's expertise and plant records are used to assign values to the fixed variables. Values of 

the random variables are estimated by testing the model performance on the available historical 

data. A scheme for sampling this data is proposed. This custom scheme, a combination of 

bootstrapping and cross-validation, is tailored for evaluating the performance of process fault 

models operating in real time given the structure of the process data. This chapter also discusses 

how to carry out estimation of the consequences of historicized faults and how to find what the 

cost of these consequences would have been were the monitoring of the historicized faults 

automated. The estimated net benefit also includes an approximate variance and confidence 

interval that gives the user an idea of how precise the estimate of the net benefit of implementing 

different fault models is. 
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Chapter IV 

Implementation and Application of the Algorithm for Designing Process Fault Models 

This chapter proposes and demonstrates a complete algorithm for designing optimal 

mathematical models for process fault monitoring. The proposed algorithm involves constructing 

valid model designs out of fault model components, as proposed in Chapter II, and evaluating the 

resulting valid model designs to select the ones that perform best, as described in Chapter Ill. 

While Chapters II and Ill focus on the theory of selecting models for monitoring process faults, 

this chapter is devoted to the implementation of this theory. Chapter IV illustrates and documents 

the proposed algorithm's application in designing optimal models for monitoring faults in a 

commonly known simulation of a chemical process .. 

4.1 The Sequence of Steps in Constructing Good Monitoring Models 

4.1.1 Model Selection Algorithm Outline 

The proposed algorithm for designing optimal models for process fault monitoring 

consists of three parts: 

1) Creating a reusable library of fault model components for designing different models 

for monitoring different faults in different processes, 

2) Putting the components together to create fault model designs capable of properly 

addressing the user preferences, specifics of the monitored process and capable of 

processing the fault-related variables for the user-specified faults 

3) Identifying the parameters of the fault models whose designs have been found 

suitable for monitoring the user-specified faults, evaluating the performance of the 

resulting models and selecting the best model. 

A flowchart of the proposed algorithm is shown below in Figure 4.1. 
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Figure 4.1. The algorithm for constructing models for fault monitoring 

4.1.2 Interaction with the User 

In our proposed algorithm, the sequence of steps performed by the user is as follows. 

The steps performed by an advanced user one time for all fault models that will be 

created later: 

1) Specifying reusable components for creating fault models and providing the 

computer code for each fault model component, 

2) Specifying the attributes and parameter identification time for each model component 

placed in the library, using the list of possible attributes provided in Table 3 .1, 

3) Specifying additional attributes and component compatibility rules for the 
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components placed in the library ( optional) 

The steps performed by the process operator for creating a single fault model are as 

follows: 

4) Specifying the monitored fault(s), a list of associated fault consequences, the 

consequence types, the consequence costs, and the costs of false alarms and fault 

misclassifications (Type I errors); 

5) Selecting the monitored process variables and specifying their characteristics: the 

historian sampling period, presence of noise and outliers in the variables, process 

variable type (process input variable, process output variable, or neither), and the 

need to smooth the variables; 

6) Specifying the user preferences for the characteristics of the generated models and 

the characteristics of the monitored process: the output indication, maximum 

allowable time for creating and evaluating a single model, the monitoring window 

width, the maximum expected process delay, the process time constant, and the 

model execution frequency; 

7) Providing optional information about the fault and fault models: specifying the 

variable most closely related to the monitored fault, providing a first-principle model 

of the monitored process and custom fault classifiers, and specifying if the user 

deems there are enough process variables and data to identify a good model of the 

monitored process empirically; 

8) Selecting the historical data required for model identification and specifying the 

chronology for each fault instance included in this data: the earliest and the latest 

time of fault inception, the time stamp of fault detection, an approximate time of fault 

rectification, and the occurrence/duration of fault consequences. 
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4.1.3 Generating Model Designs Suitable for the User-Specified Problem 

Once the Steps 4-8 have been performed for a specific fault-monitoring problem, our 

proposed algorithm identifies the attributes of the real-time process data (DJ-D6) using the 

information obtained from the user and process data historian at Step 5. The attributes of process 

model availability and solution requirements are initialized using the information specified by the 

user at Steps 6 and 7, and the historical data attributes are calculated using the input obtained 

from the user at Step 8. 

Once all the problem attributes have been initialized, our proposed algorithm screens out 

individual model components incompatible with the specifics of the monitored process and user 

preferences using Rules J-5 listed in Table 3.2. After that, the algorithm generates all the possible 

combinations of the remaining fault model components and uses the rules specifying 

compatibility of fault model components with each other to screen out the designs where certain 

components are not compatible with one another. For all the remaining fault model designs, the 

algorithm identifies the properties of the data streams processed by each fault model component 

and screens out the designs where the components are found incompatible with the input data. For 

the remaining designs, an approximate time for identifying each model is estimated and the 

models whose identification time exceeds the user-specified limit are screened out. The model 

designs that have passed all the screenings are considered suitable for solving the user-specified 

fault-monitoring problem. 

4.1.4 Evaluating Model Designs Suitable for the User-Specified Problem 

Once the suitable fault model designs have been found, it is possible to identify the 

parameters of these models from the user-specified historical data. The historical data is prepared 

for model identification by extracting fault model input data vectors at specified sampling periods 

calculated from the monitored process delay and the longest time constant by the custom 
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methods, similar to those used for calculating sampling periods for the process control. After that, 

the model expected to be the most efficient in reducing the risk associated with the consequences 

of the monitored fault should be selected. 

The procedure for selecting the best-performing fault model is described in Chapter ill. If 

there are N historicized instances of the monitored fault(s), the algorithm identifies N models for 

each suitable fault model design. For each design, the kth model is identified using the data from 

which the kth historicized instance of the monitored fault(s) and a randomly selected fraction of 

the historical data recorded for the normal operation mode is excluded. After that, the 

expectations of the benefit of earlier fault detection due to the automation of fault monitoring and 

of the cost of false alarms per unit time are calculated for each resulting model from the historical 

data not used for the identification of this model. These two expectations are averaged for each 

model design. 

Then, for each model design, the resulting expectation of the cost of false alarms and the 

cost of creating and running the fault model per unit time are subtracted from the resulting 

expectation of the benefit of earlier fault detection due to the automation of fault monitoring. This 

results in the expected net benefit of fault automation for each suitable fault model design. The 

parameters of the model design associated with the highest expected net benefit of fault 

automation are then identified with all the user-specified historical data and used for monitoring 

the user-specified fault. 

4.2 Creating a Library of Fault Model Components 

In the algorithm for fault model design and selection, the models are assembled out of 

functional components using the proposed component compatibility rules. These functional 

components reflect the state of the art in mathematical modeling and process fault detection. 
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Hence, generating models monitoring user-specified faults will be possible only after creation of 

a library of fault model components and specifying their attributes. 

Ideally, creation of a very good model for monitoring faults in industrial processes would 

require a very large library of model components shaped as a relational database. An expert 

system would pick model components for the proposed fault model template and automatically 

check if the resulting model is a valid one for the fault-monitoring problem. However, so far such 

an expert system has not been created. Therefore, for this example, the creation of a library of 

model components and generation of fault models out of these components will be performed 

manually. 

In addition, this chapter is intended to pi'6vide a detailed account of implementation and 

application of the proposed algorithm. Every possible combination of the fault model components 

added to the component library will be listed and analyzed. Hence, the library of available 

components should be very small, so that the number of possible combinations of these 

components would be reasonable and all the steps of the model generation procedure can be fully 

documented in a reasonable amount of time. For this reason, the library consists only of eleven 

components. To demonstrate the proposed algorithm better, the library has at least one 

component of each of the six types. The total number Ne of possible model component 

combinations can be calculated as a function of the number components of each type placed in 

the library: 

Ne =Nb ·No ·(N f +l}(Nds +1),(Nvsm ·Nvsc+l) (4.1) 

In Equation (4.1), Nb is the number of basis functions, N0 is the number of optimized criteria, N1 is 

the number of feature generators, Nt1s is the number of data smoothing techniques, Nvsm is the 

number of variable selection methods, and Nvsc is the number of variable selection criteria 

available in the component library. 

Table 4.1 below lists all the components selected for the library, with the associated 
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attributes given in curly parentheses ' {}', modifiers of the real-time data attributes given in angle 

parentheses '<>', and formulas for estimating approximate model identification time. The library 

contains three basis functions, two optimized criteria, two feature generators, two data smoothing 

techniques, one variable selection method, and one variable selection criterion. Hence, according 

to Equation (4.1), the total number of combination of these components is 108. The remainder of 

Section 4.2 gives a description of the eleven members of the model component library. 

Table 4.1. The demo library of the available fault model components used in Chapter N 

Component Com- Component name Component Minimal estimated CPU time, 
type po- {attributes} and seconds, needed for model 

nent <data modifiers> identification, 
num-
her 

[1] 1 S control chart for the {Cl}, {C4 }, {CS}, 3·104 ·D6v 
Classifier process variable assumed {C6}, {C9}, 

basis most closely related to the {C10=300}, {C12} 
function fault 

2 Probabilistic neural {C9}, 10-9 • (Cl0Dlv·D2v/ 
network identified using {C10=Dl0 ·D2o}, ::::10-9 {Dlv·D2v/ 
the DOE algorithm {C11} 

3 Multilayer perceptron {C3}, {C8}, 10-8 · (CIO·Dlv·D2v)2 

{C10=D10 ·D2o}, ::::]0-8 • (DlvD2v)4 

{C11} 
[2] 4 Mean square error {ClS}, {C18} 

Optimized 5 Error rate {C16}, {Cl8} 
criterion 

[3] 6 PCA, outputs being the {C21}, {C22}, sup( 10-9 D2c 2Cla2;10-10D2c 5) 

Feature principal component {C23=10}, 
generator scores that explain 95% <D1o=D6o=D6c>, 

of the variance in the <D2o=D2d3>, 
input process variables <D30 =TRUE >, 

<D40 =FALSE> 
7 PCA residuals, principal {C21 }, {C23=10}, sup( 10-9 ·D2c 2Cl d; 1 o-10D2c 5) 

component scores explain <D l 0 =D6o=D6c>, 
95% of the variance in <D2o=D2d3>, 
the input process <D30 =TRUE >, 
variables <D40 =FALSE> 
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Table 4.1. The demo library of the available fault model components used in Chapter IV 
(continued) 

[4] 8 Single-level (scale) Haar {C25}, 3· 10-5 • ClO·DlB if {C12=TRUE}, 
Data function-based wavelet <D5c=TRUE> otherwise 

smoothing filter for process variables 3· 10-5 • ClO·DlBNs 
techniques (the number of smoothed 

process variables is Ns) 
9 Single-level (scale) {C25}, 104 · ClO·DlB if {Cl2=TRUE}, 

biorthogonal bior3.1 <DSc=TRUE> otherwise 
function-based wavelet 104 · ClO-DlB·Ns 
filter for process variables 
(the number of smoothed 
process variables is Ns) 

[5] Input 10 Forward Search that {C26=4 }, r2A/2 } 
variable selects as model inputs no {C27=516}, {C29}, sup t'i(D2rd}sup~B(d),tp(d)!ts 

search more than 50% of the <D2B=D2A/2> 
method user-specified process Time to identify the basis function 

parameters with d input variables is 
variables appx. tB(d) seconds, the time to 

identify parameters for the feature 
generator with d input variables is 

appx. tp(_d) seconds, and the time to 
smooth all the process variables is 

annx. ts seconds 
[6] Input 11 Same as the optimized 0 
variable criterion 
search 

criterion 

4.2.1 Optimized Criteria 

The optimized criteria are discussed before the classifier basis functions because the 

subsequent discussion of the basis functions refers to the optimized criteria. Two optimized 

criteria are used in our demo library of fault model components: 

1) Error rate 

2) Sum of square errors. 

These two optimized criteria are by far the most commonly used ones in various mathematical 

models. 

Definitions of the error rate may vary. Essentially, the error rate calculated for various 

classifiers is a statistical estimator of how often the classifier will make errors in the future. For 

the demo library of fault model components presented in this chapter, the estimated error rate R is 
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defined as the average likelihood (not the probability) of incorrect classification of a training set 

input data vector (prototype) belonging to each class: 

(4.2) 

In Equation ( 4.2), K is the number of classes distinguished by the classifier, Ni is the number of 

the training set data vectors (prototypes), belonging to class i, and Mi is the number of incorrectly 

classified training set prototypes belonging to class i. Error rate is a count-based optimized 

criterion: Cl6=TRUE and it is monotonic meaning that it not a function of the number of model 

parameters: Cl8=TRUE. 

The sum of square errors (sometimes called a sum of squared residuals) SSE is defined as 

the sum of squares of the differences between the vector of model outputs z and the vector of 

actual values y of the variable that the model emulates: 

HJ 

SSE= I(zi -yi )2 

i=l 

(4.3) 

In Equation (4.3), HJ is the historical data attribute (defined in Table 2.2) specifying the number 

of process data vectors used for model identification. The sum of squared errors is a distance-

based optimized criterion as it optimizes the distance between the actual and model-predicted 

values: Cl5=TRUE and it is a "monotonic" criterion as it is not a function of the number of 

model parameters: Cl8=TRUE. 

In this demonstration, the differences in the time required to evaluate different optimized 

criteria during the model identification is neglected, so this time is included in the model 

identification time for the classifier basis functions. 

4.2.2 Classifier Basis (Link) Functions 

The model component library used in this chapter has three classifier basis functions 
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mentioned in Chapter II: 

1) S control chart for the process variable assumed most closely related to the fault, 

2) Probabilistic neural network trained using the DDE algorithm, and 

3) Multi-layer perceptron. 

4.2.2.1. S Control Chart. The S control chart (Xie, Goh et al. 2002) is a rather simple 

univariate method: it is based on measuring a variance of the sample of several recent 

measurements and establishing if this variance is within the confidence interval determined for 

the normal operation of the monitored process. In this example, the S chart uses all the 

measurements of the key fault variable captut~d by the monitoring window to calculate the 

variance. However, the lower limit on the variance is set to zero and the upper limit is determined 

not by the limits of a confidence interval for a specific level of significance, but by minimizing 

the optimized criterion selected for the other slot of the classifier. The S control chart is by nature 

very easily compatible with different optimized criteria. 

From its description, we can establish that this component requires the original process 

variables: Cl=TRUE, generates binary outputs: C4=TRUE, has a fixed number of basis function 

parameters: C5=TRUE (the only parameter is the upper limit on the variance), requires 

identification of a variable believed most closely related to the monitored fault C6=TRUE (this 

requirement has been imposed voluntarily), generates crisp categorical output C9=TRUE, and it 

is a univariate basis function: C12=TRUE. Furthermore, the upper limit on the sample variance 

for the normal operation should be calculated using at least 300 process data vectors: Cl0=300 

according to the control chart parameter identification guidelines. All the other basis function­

related attributes for this component are set to "FALSE." For this demo library, the upper limit for 

the sample variance calculated by the control chart is determined by the Golden Section 

univariate optimization with 10 iterations. Hence, according to Subsection 2.4.2.2, the minimal 

time required to identify the parameter of the control chart is proportional to the size of the input 
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data vector D6v times the minimal number of data vectors required for model identification times 

ten. It was found approximately equal to 3 ·104 ·D6v seconds. 

4.2.2.2 Probabilistic Neural Network Trained with a Dynamic Decay Adjustment. 

Specht (Specht 1990) introduced neural networks of this type fifteen years ago. These networks 

have two hidden layers. When presented with an input data vector x, the first hidden layer 

calculates the probability that this data vector belongs to class k according to Equation (4.4): 

mk wkj ·exp[-0.s-a-2 -(x-µj r -(x-µj )] 
Pk(x)=L ( )°"5d d 

j=l 2tr ·a 
(4.4) 

fu this equation, mk is the number of network neurons belonging to class k, wkj is the weight of }th 

neuron belonging to class k, a is the neuron spread, µ/ is the center of jth neuron belonging to 

class k, and d is the dimensionality of the network inputs (in fault models, d is the dimensionality 

of process data vectors serving as classifier inputs). After that, the second "competitive" layer 

selects the class where the data vector x has the highest probability of membership calculated by 

the first layer. 

fu the original work by Specht, the network neurons centers µ/ are the data points of the 

training set, each neuron weight Wkj is set to the reciprocal of the number of data points of class k 

in the training set, and the spread is specified by the user. This makes the total number of neural 

network parameters equal to the number of data vectors in the training set times the number of 

dimensions in the input data vectors. Obviously, the algorithm for identifying neural network 

parameters proposed by Specht is not acceptable to create a classifier for real-time fault 

monitoring from training sets that contain several thousands data points or more. fu those cases, 

the number of data neurons should be several times smaller than the number of data points 

available for model identification. Then the neural network parameters must be identified using 

the algorithms that create neurons sequentially, starting from a single neuron and ending when the 
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neural classifier performance does not improve significantly with the addition of new neurons. A 

training algorithm of this type, the Dynamic Decay Adjustment (DDA), is used with the 

probabilistic neural network in the proposed library of fault model components. The work by 

Berthold and Diamond (Berthold and Diamond 1998) gives the details on what the DDA 

algorithm is and how it is used to train probabilistic neural networks. For this library, the two 

sensitivity thresholds are set to 0.4 and 0.2 respectively. The MATLAB code for the probabilistic 

neural networks trained with the DDA is available in the public domain library of additional 

MATLAB applications. This code is given in the Appendix. 

The probabilistic neural network creates crisp categorical output: C9=TRUE, it is 

sensitive to the noise in the input data (unlike the control charts): CJ I =TRUE, and the minimum 

number of data vectors (prototypes) required for the training set is set to the size of the input data 

vectors: ClO=Dlv·D2v. All the other basis function-related attributes for the probabilistic neural 

network were set to "FALSE." It was found empirically that the time required for model 

identification grows as the square of the size of input data vectors times the square of the number 

of training data vectors (prototypes) times 10-9• Given the restriction on the minimum number of 

data vectors (prototypes) in the training data set, the minimum time required for identifying the 

probabilistic neural network is approximately 10-9 • (Dlv·D2v)4 seconds. 

One important issue for the probabilistic neural network is its compatibility with different 

optimized criteria. The DDA algorithm is tailored to minimize the error rate, not any other 

quantities. Combining the DDA-trained probabilistic neural network with the count-based 

optimized criteria (count and distance-based optimized criteria are defined in Subsection 2.4.3.1) 

other than the error rate is achieved by modifying the training data set. Suppose, the component 

library contains the criterion specifying that the cost of misclassifying faults as normal operation 

is ten times as high as the cost of misclassifying normal operation as faults. Then the training set 

for the probabilistic neural network will be modified to contain ten times as many process data 
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points sampled during faults as the number of process data points sampled during normal 

operation. If the optimized criterion is the error rate, the number of "faulty" and ''normal" process 

data points in the training set should be equal. As far as the distance-based optimized criteria are 

concerned, they are incompatible with all the basis functions producing categorical outputs, 

including the probabilistic neural network. This fact is stated by Rule 6 introduced in Subsection 

2.4.3.1. 

4.2.2.3 Multi-layer Perceptron. Multi-layer perceptrion is the oldest and most 

commonly used neural network and the first one explained in the neural network textbooks 

(Hagan, Demuth et al. 1995). It consists of several layers of parallel linear transformations with 

additional transform functions for each layer. The multi-layer perceptron used as a component of 

the demo library consists of two layers and does not use any nonlinear transforms. The output 

scalar y of this perceptron is calculated from input data vector x using the following equation: 

y = log sig{W2 [log sig(W1x + b1 )] + b2} (4.5) 

In this equation, logsig is the log-sigmoid function, W1 and W2 are the matrices of network 

weights for the first and second layers respectively, and vectors b1 and b2 contain network biases 

for the first and second layer respectively. 

The network parameters W1, W2, b1, and b2 are identified using the commonly accepted 

technique called the Steepest Descent Optimization. Compliant with the requirements to fault 

model components outlined in Subsection 2.3.2, the Steepest Descent search technique can 

optimize any distance-based criteria, e.g., the Eulerian Distance, for which derivatives can be 

estimated. As far as the count-based criteria are concerned, they are not compatible with the 

multi-layer perceptron according to Rule 7 introduced in Subsection 2.4.3.1 because the 

perceptron produces continuous outputs and hence the attribute C8 for the multi-layer perceptron 

is equal to TRUE. 
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The other attributes of the multi-layer perceptron are creation of unbounded regions for 

the normal operation: C3=TRUE, and sensitivity to noise in the input data Cll=TRUE. For this 

component, the minimum number of historicized process data vectors (prototypes) required to 

identify the multi-layer perceptron parameters is set to the input vector size (same as for the 

probabilistic neural network): C10=Dlv·D2v. The relationship between the size of the training 

data set and the time required to identify the network parameters is the same as for the 

probabilistic neural network. However, the steepest descent-based training of a multi-layer 

perceptron is about ten times as long as the DDA-based training of a probabilistic neural network 

given the same dimensionality of the input data vectors and the .number of prototypes in the 

training set. Hence, the parameter identificatiori time for the multi-layer perceptron used in the 

demo library is approximately 10-s · (Dlv-D2v>4 seconds. 

4.2.3 Feature Generation Techniques 

The feature generation techniques in this library are based on the Principal Component 

Analysis (PCA). Karl Pearson introduced this technique more than a hundred years ago (Pearson 

1901). For an arbitrary multivariate data sample X, this technique creates a matrix V of loading 

vectors. Matrix Vis created to transform X into principal component scores Y=ZV where Z is a 

normalized data matrix X. Geometrically, the vector in the first column of Z specifies the 

direction of the greatest variance in matrix X; the second column of Z specifies the direction of 

the greatest variance in X perpendicular to the first column of V, the third column of Z specifies 

the direction of the greatest variance in X perpendicular to the first and second columns of Z, etc. 

The resulting number of principal component scores is equal to the number of input variables. 

The sample variance of the principal component scores monotonically decreases from the first 

principal component score to the last. Many practical applications of the PCA reduce the 
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dimensionality of the original data by using only the first nx% component scores that "explain" x% 

of the variance in the original data matrix: 

(4.6) 

In Equation (4.6), Si is the sample variance for the set of measurements of the i111 principal 

component score obtained from the data matrix X and d is the number of variables in X. 

Component 6 of the proposed demo library creates a PCA loading matrix V out of a 

sequence of process data points in the training set selected by the user to identify the fault model 

parameters. Component 6 performs feature generation by multiplying separate process data points 

by matrix V95% that includes only the first n95% columns of the full loading matrix V. As a result, 

the resulting principal component scores explain 95% of the variance in X. Component 7 of the 

proposed demo library generates features by multiplying separate process data points by matrix 

C95% that consists of the columns of the full loading matrix V not included in V9s%· Component 7 

exemplifies a numerical method not typically used in process monitoring. In the models that 

include Components 6 and 7, process data vectors are formed not out of the measured process 

data points, but out of the process data points transformed using the PCA. 

Components 6 and 7 are useful only when the process variables used as fault model 

inputs are correlated: C21=TRUE, the outputs of Component 6 model process data variability: 

C22=TRUE (while the outputs of Component 7 model deviations from the data variability 

observed for the training set), and Components 6 and 7 need at least five input variables to 

perform an efficient data dimensionality reduction: C23=5. Components 6 and 7 apply PCA-

based conversions to all the process variables available to the feature generators, as a result, after 

this transformation, all the PCA-converted variables have the same sampling period. 

Consequently, the number of different measurements in the monitoring window is the same for 

all the converted variables, hence Dlv=D6v=D6c. It was found empirically that the proposed 

PCA conversion cuts the number of input variables approximately in half: D2v=D2c/2. This 
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applies to both Component 6 and Component 7 because the number of output variables produced 

by the former plus the number of output variables produced by the latter component is equal to 

the number of the original variables. Component 6 and Component 7 create combinations of the 

original variables: D3v=TRUE and the outputs produced by these components are not correlated: 

D4v=FALSE. 

In the MATLAB implementation of the PCA, the loading matrix Vis calculated as 

follows. First, the correlation matrix R of the input data matrix X is calculated. Then the 

eigenvalues A of matrix R are found by solving the following equation: 

IR-AII =0 (4.7) 

For each eigenvalue Ai, an eigenvector vi of matrix R is estimated by solving the equation: 

Rvi=O (4.8) 

The columns of the loading matrix V are the calculated eigenvectors vi of the correlation matrix 

R. 

If the number of process data points in the training data set is much greater than the 

number of the converted variables, then the limiting stage in the calculation of the loading matrix 

is the estimation of the correlation matrix R. Since this estimation involves multiplication of the 

data matrix X by itself, the time needed to calculate the correlation matrix grows proportional to 

product of the squares of the dimensions of X: D2c 2 ·HJ2. Equations (4.7) and (4.8) are solved by 

the Singular Value Decomposition. Solution of these equations involves d+J multiplications of 

the d-dimensional matrix R by itself, d being the number of the converted input variables. Hence, 

the time needed to calculate the eigenvectors of R is proportional to D2c 5• With these 

considerations, it was found that the time required for identifying the parameters of Component 6 

and Component 7 is approximately equal to 10-9 ·D2c 2 • CHI seconds or of 10-10 -D2c 5 seconds, 

whichever is greater. 
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4.2.4 Data Smoothing Techniques 

In the library of fault model components used in this work, the data smoothing techniques 

are represented by two wavelet transforms: the Haar transform and the bi-orthogonal bior3.1. A 

wavelet is a waveform of effectively limited duration that has an average value of zero. Wavelet 

analysis is decomposing a signal into shifted and scaled versions of the original (or mother) 

wavelet. Wavelet shifting and scaling is illustrated in Figures 4.2 and 4.3 respectively. 

Wavelet function 
\II( t) 

Shifted wavelet function 
'V(t-k.) 

Figure 4.2. Wavelet shifting (from the MATLAB User Manual) 

f ( t) = \jl( t) a= 1 

f(L) = \j/(2 t) 

f ( t) = \jf( 4 t) 1 a= 4 

Figure 4.3. Wavelet scaling (from the MATLAB User Manual) 

Usually, the signal is divided into intervals of equal length. Then signal at each interval is 

approximated by a wavelet function. Then each interval is divided in halves and the residuals of 

the first approximation are again approximated on each of the resulting smaller intervals with the 
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same wavelet condensed twofold. The procedure is repeated n times and results in an n-level 

wavelet decomposition of the original signal. Interval length at the first level of the 

decomposition is 2n-1. The decomposition results in a set of coefficients specifying the wavelet 

amplitudes for each interval at each scale. The output of the wavelet smoothing techniques is the 

original signal restored using only the wavelet coefficients and disregarding the residuals 

obtained at the last level of the decomposition. The procedure of signal decomposition and 

restoration using wavelet transforms is called wavelet filtering. 

The demo library has two data-smoothing components: Component 8 and Component 9. 

Component 8 is a 3-level wavelet filter that uses the Haar wavelets shown in Figure 4.4, and the 

Component 9 is a 3-level wavelet filter that uses the bior3.1 wavelets shown in Figure 4.5. The 

time scale for data filtering is measured in seconds. Component 8 and Component 9 perform 

wavelet filtering of the readings of each noisy variable inside the monitoring window plus 8 

consecutive readings collected after the last time stamp inside the monitoring window. As a 

result, fault detection is delayed by 8 sampling intervals of the noisy variable with the longest 

sampling period. The reason is that the marginal values of the monitored variables are distorted 

by the wavelet transform. 

The proposed filters should only be applied to noisy process variables; otherwise these 

filters may erase important fault information from the smoothed readings. Hence for Components 

8 and 9, C25=TRUE. These components almost completely remove noise from the process 

variables, so D5c=TRUE. For both Component 8 and Component 9 the time it takes to create 

"filtered" process data vectors is proportional to the number of consecutive measurements of the 

smoothed variable inside the monitoring window and the number of process data vectors. Thus, if 

Ns is the number of process variables smoothed by the model, then for Component 8 this time will 

be approximately 3.10-5 • Ns CJOD18 seconds and for Component 9 this time will be 

approximately 104 Ns·CJO·Dl8 seconds. 
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0 0.5 

Figure 4.4. Haar wavelet (from the MATLAB User Manual) 

0 1 .2: 

Figure 4.5. Bior3.1 wavelet (from the MATLAB User Manual) 

4.2.S Input Variable Search 

The demo library presented in this work has only one input variable search method 

component (Component 10): a forward search that selects as model inputs no more than 50% of 

the user-specified process variables. No specific input variable search criteria are added to the 

library, it is assumed that whenever input variable search is used, the input variable search 

criterion is the same as the optimized criterion. Hence, each iteration of the input variable search 

requires identification of a new fault model. The forward search technique is commonly used for 

selecting model inputs and it is described in many textbooks, e.g., (Johnson 1998a). The 

technique is so simple that it is described below in full. 
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At the first step, each candidate input variable is evaluated individually as the only model 

input. After that, the variable whose model resulted in the best value of the variable selection 

criterion is selected. Then this selected variable is used in combinations with all the remaining 

variables to create models with two input variables. After that, the variable whose addition to the 

one selected at the first step results in the best value of the variable selection criterion is added to 

the pool of model inputs. The procedure is repeated until either the value of the variable selection 

criterion starts getting worse with the addition of any new input variable to the model or the 

number of input variables selected for the model exceeds one half of the total number of the 

available variables. 

Application of this variable selection technique makes sense when the number of 

available input variables is at least four: C26=4. If n input variables are available, the number of 

iterations I for this variable selection technique is calculated as follows: 

l=n+(n-1 )+(n-2)+ ... +int(n/2):::{).375n2 (4.9) 

It is reasonable to set the upper limit on the number of iterations performed during the forward 

search at Hf, therefore Component JO can be used if no more than C27=516 input variables are 

available. In addition, Component JO is not designed to retain a user-specified variable in the pool 

of selected input variables. The number of process variables selected by the component is one 

half of the total number of the available variables: D2B=D2,12. The time it takes to identify a 

model that uses forward selection is hard to estimate because the time required for model 

identification at each iteration of the search is different. This time depends on the number of input 

variables already added to the pool of input variables. If we assume that the smoothing of input 

variables precedes the input variable search (i.e., the selection is performed among smoothed 

process variables), the time to identify the basis function parameters with d input variables is 

estimated at Md) seconds, the time to identify parameters for the feature generator with d input 

variables is estimated to be tp(d) seconds, and the time to smooth all the process variables is 

approximately ts seconds, then an approximate time t1 to identify a model that uses forward search 
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will be as follows: 

(4.10) 

4.3 Formalization of a Fault Monitoring Problem for a Simulated Chemical Process 

4.3.1 Tennessee-Eastman Process Simulation 

The remainder of this chapter demonstrates how the proposed algorithm finds the best-

performing model for monitoring a fault in a simulated chemical process called Tennessee-

Eastman (TE) challenge problem (Downs and Vogel 1993). The code emulating the TE process is 

available in the public domain. This code, provided by Downs and Vogel, runs the TE process 

simulation in the open-loop mode. The user must add a regulatory control system. A number of 

academic workers used this simulation to test various approaches to process control. Also, several 

research papers reported applications of the TE simulation for testing various methods of fault 

detection (Akbaryan and Bishnoi 2001; Chen and Howell 2002; Chiang, Russell et al. 2001b; 

Gertler, Li et al. 1999; Kano and Nagao 2000; Oh, Mo et al. 1997; Raich and Cinar 1997; and 

Wilson and Irwin 2000). 

As shown in Figure 4.6, the process involves coordination of five unit operations: an 

exothermic two-phase reactor, a product condenser, a flash separator, a stripper, and a recycle 

compressor. The process consists of producing two products from four reactants by the following 

reactions: 

A(g) + C(g) + D(g) ~ G(liq) 
A(g) + C(g) + E(g) ~ H(liq) 
A(g) + E(g) ~ F(liq) 
3D(g) ~ 2F(liq) 
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Streams J, 2, and 3 supply pure substances A, D, and E respectively. Stream 4 supplies a nearly 

equimolar mixture of A and C. Stream 9 removes the unconverted reactants and byproducts, and 

stream 11 removes the products G and H from the process. 

In Figure 4.6, (Fl) denotes a flow rate indicator, (XI) stands for a composition analyzer, 

(LI) is a level indicator, (Pl) is a pressure indicator, (Tl) is a temperature indicator, (JI) is an 

ampermeter, and (SC) is an agitator speed controller. 
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Figure 4.6. Flowchart of the simulated TE process (Downs and Vogel 1993) 

In the process, there are 41 measured process variables with added measurement noise. In 

addition, 19 composition measurements from gas chromatographs are sampled at two different 

rates with delays due to the composition analyses. There are 12 manipulated variables: flow 

though 11 control valves, and the reactor agitator speed. Downs and Vogel provide a steady-state 

material and energy balance, some physical property data, qualitative information on the reaction 
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kinetics and list specifications for the setpoint tracking. Downs and Vogel also list the costs of the 

components, steam, and unit time of compressor operation. The simulation includes 20 potential 

disturbances listed in Table 4.2, which can be invoked by changing the corresponding disturbance 

flag from zero to one. Some of these disturbances can be assumed caused by faults, so the ability 

of applicable fault models to detect those faults can be tested. Downs in Vogel provided a more 

detailed description of the TE simulation in their original work (Downs and Vogel 1993). 

Table 4.2. Disturbances preprogrammed in the TE Process 

Number Disturbance description Disturbance type 
1 A/C Feed Ratio Changes, B Feed Constant in Stream 4 Step 
2 Molar Fraction ofB Changes, A/C Ratio Constant in Stream 4 Step 
3 D Feed Temperature Changes in Stream 2 Step 
4 Reactor Cooling Water Inlet Temperature Step 
5 Condenser Cooling Water Inlet Temperature Step 
6 Feed Loss in Stream 1 Step 
7 Pressure Loss in Stream 4 Step 
8 Composition of Stream 4 Random variation 
9 Temperature of Stream 2 Random variation 
10 Temperature of Stream 4 Random variation 
11 Reactor Cooling Water Inlet Temperature Random variation 
12 Condenser Cooling Water Inlet Temperature Random variation 
13 Reaction Kinetics Slow drift 
14 Reactor Cooling Water Valve Sticking 
15 Condenser Cooling Water Valve Sticking 
16 Unknown Unknown 
17 Unknown Unknown 
18 Unknown Unknown 
19 Unknown Unknown 
20 Unknown Unknown 

The authors of the TE simulation have also included the costs of the reagents and 

products involved in the TE process. These costs are summarized in Table 4.3. 

Table 4.3. Costs of the substances involved in the Tennessee-Eastman Process 

A C D E F G H 
2.206 6.177 22.06 14.56 17.89 30.44 22.94 
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4.3.2 Proposed Control and Fault Monitoring in the TE Process 

This work uses the control strategy proposed for the TE simulation by Lyman and 

Georgakis (Lyman and Georgakis 1995). The code implementing this control scheme called by 

the authors "Control Structure 2" was written by the authors of (Chiang, Russell et al. 2001b) 

and it is available in the public domain at http://brahms.scs.uiuc.edu/. The original TE process 

simulation by Downs and Vogel is contained in the file named TEPROB.F. The code that 

implements the "Control Structure 2" is contained in TEMAJ:N_MOD.F. A flowsheet of the TE 

process incorporating this structure is shown in Figure 4.7 below. fu this figure, (YC) denotes a 

device controlling quantity Y where Y can be T (temperature), P (pressure), L (level), X 

(composition), and F (flow rate). 

Most disturbances in Table 4.2 do not produce serious economic consequences. 

Disturbances 1 to 12 are external to the TE simulation. Disturbances 16-20 are not documented, 

so no meaningful analysis of these disturbances can be performed. Monitoring the cases of the 

reactor cooling water valve sticking (Disturbance 14) is fairly straightforward. This failure almost 

immediately causes very significant changes in the reactor temperature. No other disturbance out 

of the 20 causes similar effects. Disturbance 15 by itself is very unlikely to cause any serious 

consequences. It was observed that this disturbance has a limited effect because the condenser 

cooling water valve is almost always fully open. Hence, out of the disturbances preprogrammed 

in the TE simulation, the reaction kinetics drift (Disturbance 13) is the most suitable one for 

demonstrating the proposed algorithm for fault model selection. This fault can be due to 

impurities suddenly appearing in the process feeds or, much less likely, failures of the reactor 

agitator. Reaction kinetics drifts affect many process variables simultaneously. Most affected are 

the concentrations of the products G and H in Stream 11. 
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It is assumed that the product Stream 11 is directed to a "day tank" with a capacity on the 

order of 1000 cubic meters and the contents of this tank are supplied to a product purification 

process located downstream of the TE process. Because of this, the concentrations of G and H 

supplied to the downstream process can be kept close to the specified values by blending any 

substandard product in the mixture of G and H. However, the kinetics drifts also reduce the rates 

of production of either G or H and this insufficient production cannot be corrected by dilution. 

Reaction kinetics drift may also cause the reactor pressure, not controlled directly in the 

control structure proposed by Lyman and Georgakis, to increase to the shutdown threshold and 

stop the operation of the TE process. The kinetics drifts simulated in the original code of the TE 

process cause process shutdowns only very rarely; the expected time from fault inception to a 

shutdown is in the order of months. The original TE code was modified as shown in Figure 4.8 to 

create a process where the risk of shutdowns due to the kinetics drifts is higher and the expected 

time from fault inception to a shutdown is about 1.1 days. In addition, when emulating each 

historicized fault instance, the TE code is run using a new value of the random seed G initialized 

in the function TEINIT. 

Line 1529: 
Line 1530: 

Original code: 

S1=SSPAN*TESUB7(I)*IDVFLAG+SZERO 
S1P=SPSPAN*TESUB7(I)*IDVFLAG 

Modified code: 

Line 1529: S1=SSPAN*TESUB7(I)*l.475*IDVFLAG+SZERO 
Line 1530: S1P=SPSPAN*TESUB7(I)*l.475*IDVFLAG 

Figure 4.8. Modification of the TE simulation 

To avoid a process shutdown due to kinetics drift, the operator starts decreasing the 

Stream 11 flow rate (XMEAS(l 7)) set point in 1 % increments every 15 minutes, as soon as a 

119 



reaction kinetics drift is detected, by a total value of 10% of the original set point. This action 

reduces the reaction rates, decreases the reactor pressure, and effectively reduces the risk of 

process shutdown. After detecting the reaction kinetics drift, the plant personnel also perform a 

root-cause analysis of the fault, following which the fault is rectified. It takes from 10 to 24 hours 

from fault detection to fault rectification. At the end of fault rectification the flag of Disturbance 

13 in the TE computer code is changed back to zero and the set point for the flow rate of Stream 

11 is returned to its original value in 1 % increments. These actions are programmed in a modified 

version of the control code TEMA:IN_MOD. F given in Appendix 1. 

4.3.3 Specifying the Monitored Faults and Fault Consequences 

Before our proposed algorithm starts generating models to monitor the "Reaction 

Kinetics Drift", the conditions of this problem must be specified and formalized in terms of the 

attributes proposed in Chapter II and listed in Table 3.1. 

At the starting point (Step 4 in Section 4.1.2), the user specifies the faults whose 

monitoring he or she wants to automate and names the models whose design and parameters must 

be identified. In addition, the user specifies possible consequences associated with these faults 

and their costs. Finally, the user specifies the costs of a single false alarm for each monitored 

fault. These costs may vary depending on when the false alarm is produced: during the normal 

operation of the monitored process or during the occurrence of other listed faults. 

In the problem of monitoring the reaction kinetics drift, there is only one fault ("Reaction 

kinetics drift"). There are two possible consequences of this fault: one is the loss of the products 

and reagents plus an incomplete process capacity utilization, and the other one is a possible 

process shutdown. The "Process shutdown" cost is fixed at $25,000 and the cost of a single false 

alarm of the Reaction Kinetics Drift is assumed to be $200. The cost CRj of the "Reagent & 

product loss plus an incomplete capacity utilization" for instance j of the "Reaction Kinetics 
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Drift" is calculated as the fault-related change in the cost of the raw materials and utilities 

consumed plus the market value of the pure products not manufactured as a result of the fault. 

The resulting equation for calculating this cost will consist of a difference of two costs: 

(4.11) 

The first part of the difference is the expected cost Cnj of the final products that would 

have been manufactured minus the cost of the inputs consumed during the time span of the fault 

instance j if the TE process had operated normally during that period: 

(4.12) 

In Equation 4.12, tij is the earliest time when the fault instance j started; trj is the time the fault 

instance j was fully corrected, Kin is the average cost of reagents and utilities supplied per unit 

time to the TE process during the normal operation, and K:J:,1 is the average market price of pure 

G and H produced by the TE process per unit time. 

The second part Caj of Equation ( 4.11) is the difference of the cost of the final products 

actually manufactured during the time span of the fault instance j and the cost of the inputs 

actually consumed during the fault instance j: 

(4.13) 

In Equation 4.13, V11(t) is the volumetric flow rate of the output Stream 11, Xk is the molar 

fraction of component kin Stream 11, A is the molar density of component k, Kl!} and K'Ji are 

the costs of one molar unit of pure products G and H respectively, Qit) is the flow rate of input 

stream k, CFk is the factor to convert the flow rate, and Kk is the cost of a unit of mixture supplied 

to the process by input Stream k. The integral in Equation 4.13 is estimated using the method of 

rectangles with the step equal to the difference between the sample interval of product 
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concentration measurements (15 minutes). 

This algorithm for calculating the cost of the "Reagent & product loss plus an incomplete 

capacity utilization" assumes: 

1) Full recovery of the products G and H during purification 

2) Constant cost of the utilities at the purification stage that follows the TE process. 

These two assumptions are purely due to the lack of information about the purification process. 

These assumptions would not be needed if the historicized values of the purification process 

variables were available. The characteristics of the variables of Equations 4.6 and 4.7 are given in 

Table4.4. 

Table 4.4. Summary of the variables in Equation 4.13 

Variable QA(t) Qit) Qr(t) QD(t) CF AKA CFBKB 
TE variable (if annlicable) KMEAS(l) XMEAS(2) XMEAS(3) XMEAS(4) 
Constant value (if annlicable) 98.62 0.6894 
Units kscmh Kg/h Kg/h kscmh $-Kmole/kscm $-Kmole/kg 

Variable CFcKc CFnKD Kin K"'out Vn(t) XD XE 
TE variable (if annlicable) XMEAS(17) XMEAS(37) XMEAS(38) 
Constant value (if anolicable) 0.3164 188.5 5745 7379 
Units $-Kmole/kg $-Kmole/kscm $/h $/h mj/h 

Variable XF XG Xn PD PE PF Pa 
TE variable (if aoolicable) rxMEAS(39) XMEAS(40) XMEAS(41) 
Constant value (if aoolicable) 9.3438 7.935 6.833 9.871 
Units Kmole/kg Kmole/kg Kmole/kg Kmole/kg 

Variable PH K?} K'{} 
TE variable (if aoolicable) 
Constant value (if aoolicable) 8.118 40.59 30.58 
Units Kmole/kg $/Kmole $/Kmole 

Figure 4.9 shows how a software implementation of our proposed algorithm would 

prompt the user to specify the information on the monitored faults and their consequences and 

how the user would respond to the "Reaction Kinetics Drift." 
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List of Monitored Faults 

Fault Number Fault Name Automated monitorin2 
1 Reaction kinetics drift ONo ® Yes, using model A 
2 All the other possible faults ®No OYes 
3 ADD ANOTHER FAULT 

List of Consequences and Their Costs 

Consequence name Consequence cost accumulates: Accuracy This 
of consequence 

estimation is associated 
with faults: 

1 Reagent & D In one discrete step with one-time cost: $ 5% 0 Reaction 
product loss plus D At a constant rate of $Is kinetics drift 

an incomplete 0 As the following function of process variables: 
capacity utilization CRj =Cnj-Caj 

2 Process shutdown 0 In one discrete step with one-time cost: 20% 0 Reaction 
$25,000 kinetics drift 
D At a constant rate of $Is 
D As the following function of process variables: 

Costs of a Single False Alarm 

Cost of model implementation and operation ($/yr.): $300 
Cost of During the normal operation $100 
false During All the other 0 Same as during the normal operation 0$_ 
alarms the faults 

occurren 
ce of: 

Figure 4.9 User menus for specifying the monitored faults and their possible consequences 

4.3.4 Identifying the Monitored Process Variables and Their Characteristics 

After the user specifies the faults he wants to monitor and possible fault consequences, he 

or she should select a block of the monitored process variables that will serve as inputs to the 

fault model and the characteristics of these variables. For this block, the user should specify the 

variables related to the monitored fault (Step 5 in Section 4.1.2). 
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Since the "Reaction kinetics drift" occurs in the reactor, it makes sense to select the 

reactor variables (pressure, temperature, level, input flow rate, input component concentrations, 

and the reactor cooling water temperature) as the fault model inputs. In addition, the reaction 

kinetics drift affects the reactor outputs, therefore, it also makes sense to monitor process outputs: 

the concentrations of the components in the output Streams 9 and 11 as well as the flow rate of 

the stream exiting the reactor. The reactor exit flow rate is approximately a sum of the flow rates 

in Streams 8, 9 and 10. The block of the monitored process variables is contoured in Figure 4.10 

below. 

Figure 4.10. Process variables believed to be affected by Disturbance 13 

124 



Table 4.5. The list of monitored process variables and their characteristics 

Instrument Text TE variable Algo- Process data historian information Smooth the Process 
tag and descriptor ritbm on the selected process variables process variable vari-
stream variable Units Historian Noisy measurements able 
number number sampling period, signal type 

Ts seconds 
XI-1 6 Reactor A XMEAS(23) 1 mol% 360 YES @Yes ONo input 

feed: molar B XMEAS(24) 2 mol% 360 YES @Yes 0 No input 
fractions of C XMEAS(25) 3 mol% 360 YES @Yes 0 No input 
the D XMEAS(26) 4 mol% 360 YES @Yes ONo input 
components E XMEAS(27) 5 mol% 360 YES @Yes 0 No input 

F XMEAS(28) 6 mol% 360 YES @Yes 0 No input 
XI-2 9 Purge gas: A XMEAS(29) 7 mol% 360 YES @Yes ONo output 

molar B XMEAS(30) 8 mol% 360 YES @Yes ONo output 
fractions of C XMEAS(31) 9 mol% 360 YES @Yes ONo output 
the D XMEAS(32) 10 mol% 360 YES @Yes ONo output 
components E XMEAS(33) 11 mol% 360 YES @Yes ONo output 

F XMEAS(34) 12 mol% 360 YES @Yes ONo output 
G XMEAS(35) 13 mol% 360 YES @Yes 0 No output 
H XMEAS(36) 14 mol% 360 YES @Yes 0 No output 

XI-3 11 Product: D XMEAS(37) 15 mol% 900 YES @Yes 0 No output 
molar E XMEAS(38) 16 mol% 900 YES @Yes 0 No output 
fractions of F XMEAS(39) 17 mol% 900 YES @Yes 0 No output 
the G XMEAS(40) 18 mol% 900 YES @Yes 0 No output 
components H XMEAS(41) 19 mol% 900 YES @Yes 0 No output 

FI-1 6 Reactor feed XMEAS(6) 20 kscmh 15 YES @Yes 0 No input 
rate 

FI-2 8 Recycle flow XMEAS(5) 21 kscmh 15 YES @Yes ONo 
FI-3 10 Product XMEAS(14) 22 m"/h 15 YES @Yes ONo output 

separator 
underflow 

FI-4 9 Purge rate XMEAS(lO) 23 kscmh 15 YES @Yes 0 No output 
TI-1 Reactor XMEAS(9) 24 oc 15 YES @Yes 0 No 

temperature 
TI-2 Reactor cooling XMEAS(21) 25 oc 15 YES @Yes 0 No 

water outlet 
temperature 

LI-1 Reactor level XMEAS(S) 26 % 15 YES @Yes ONo 
PI-1 Reactor XMEAS(7) 27 Kpa 15 YES @Yes 0 No 

pressure 

For each selected variable, the process data historian provides the measurement units, the 

sampling period, and whether the variable is noisy or not. After viewing this information, the user 

would specify the process variable types and the need to smooth the variables. Table 4.5 below 

shows the list of the process variables selected for monitoring the "Reaction Kinetics Drift" and 

their characteristics. In addition to the characteristics listed in Table 4.5, it can be added that the 

selected process variables are strongly correlated. For the normal operation of the monitored 
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process, about 95% of the variance in the selected process variables can be explained by at most 

14 principal components. 

4.3.5 Entering User Preferences and the Characteristics of the Monitored Process 

The next step after specifying the monitored process variables and their characteristics is 

indicating the user preferences and identifying the characteristics of the monitored process (Step 

6 in Section 4.1.2). 

For this version of the fault model selection algorithm the user is expected to indicate in 

what form he or she expects to receive the model output: as a fault score or as a binary signal 

assuming values ''fault" and "no fault." In the TE simulation the Reaction Kinetics Drift is 

initiated in an abrupt fashion by setting a fault flag to one, hence, the output should also be in a 

binary form. In addition, this version of the algorithm expects the user to specify the maximum 

time for creating and evaluating a single fault model and the frequency of fault model execution 

during the real-time fault monitoring. For the model monitoring the "Reaction kinetics drift" 

these two values are set at one hour and ten minutes, respectively. 

The characteristics of the monitored process consist of the monitoring window width, 

maximum expected process delay and the longest time constant of the monitored process. It is 

recommended to set the former value to the sum of the two latter ones. The maximum expected 

process delay and the longest time constant of the monitored process are usually known from the 

tests performed to tune the process control system. Figure 4.11 shows a graph reproduced from 

(Lyman and Georgakis 1995). This graph indicates the response of the monitored process to the 

step change in the set points for the product composition (ratio of variables 18 and 19). These 

variables produce the slowest response to the set point change among those selected for the 

monitored variable block. The required characteristics of the monitored process have been 

identified using this step response as shown in Figure 4.11. Figure 4.12 shows how the user 
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would fill an interactive software menu to specify the user preferences and monitored process 

characteristics to monitor the "Reaction kinetics drift." 
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Figure 4.11. Heuristic identification of the monitoring window width using a step response 
(Lyman and Georgakis 1995) 

Detection and Reporting of "Reaction kinetics drift" 

Fault name Kinetics Drift 
Desired output indication 0 Fault I No Fault D Fault Score 
Maximum allowable time for creating and 

0 5 minutes ® 1 hour 0 10 hours 0 3 days evaluating a single model 
Application execution frequency ® Every 10 minutes 0 As often as possible 
Monitoring window width 14400 seconds 
Maximum expected process delay 5400 seconds 
Longest time constant for the monitored process 9000 seconds 
Number of process data points sampled during the 

20 longest time constant 

Figure 4.12. User menu for specifying the user preferences and process characteristics for 
monitoring the "Reaction Kinetics Drift" 

127 



4.3.6. Providing Optional Information about the Fault and Fault Models 

At this step (Step 7 in Section 4.1.2), the user provides a priori information about the 

monitored process and fault. The user may want to provide a first-principle process model whose 

residuals reflect the monitored fault better than the selected process variables by themselves. The 

user may also provide a specific classifier, as an additional fault model component that he or she 

believes will perform better than the existing library components in monitoring the fault. Some 

fault model components require specifying the process variable that the user believes is most 

closely related to the monitored fault. Finally, the user should indicate whether the block of the 

process variables selected at Step 5 could be used by the fault model components to create an 

empirical process model. 

Figure 4.13 below shows how the user would specify the optional information for 

monitoring the "Reaction Kinetics Drift" for a software implementation of our fault model 

selection algorithm. In this example, no first-principle model of the monitored process is 

available and no user-specified classifier that may perform very well when monitoring this fault is 

available. However, since the process variable types have been specified for the monitored 

process, it is assumed that an input-output process model is identifiable. The user also believes 

that the concentration of product Hin the product stream (Variable 19) is most closely related to 

the monitored fault. Indeed, reaction kinetics changes should primarily affect the concentrations 

of the products in the product streams. 

Optional Information on Fault-Monitoring Models 

Adding a user-specified fault classifier ®No O Yes, empirical 0 Yes, first-principle 
Using a monitored process model ®No 0 Yes (provide the module, inputs, and outputs) 
Can identify input-output model of the ONo ®Yes 
monitored process 
Process variable assumed most closely 

®_19 0 Unknown related to the fault -

Figure 4.13. Providing optional information about the fault and fault models for the "Reaction 
Kinetics Drift" 
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4.3. 7 Selecting and Marking Historical Data for Model Identification 

Fault model identification usually requires historical data that describes the fault to be 

monitored. With the help of a process data historian, the operator should find and label the 

historical data intervals corresponding to the previous instances of the fault(s) to be monitored. 

As was described in Chapter ill, estimation of fault model performance also requires that the user 

identify points in time associated with fault inception, fault detection, fault rectification, and fault 

consequences for each instance of the monitored fault(s). Since the exact time of fault inception is 

usually unknown, the user should specify the earliest and the latest possible time of fault 

inception for each historicized instance of the monitored fault. The average of these two values 

will be assumed to correspond to time of fault inception. Also, fault model identification requires 

the user to specify several additional intervals of historical data recorded during the absence of 

the monitored faults. It is very desirable to include the instances of the faults not monitored by the 

generated model in these additional historical data; however, this work considers only a single-

fault case. 

Historicized Intervals of Normal Operation 

Interval beginning Interval end 

1 Date/Time Date/Time 
2 Date/Time Date/Time 
3 

Total length of the selected I Required 0.31 years 
normal operation data I Actual 

Tagging Historicized Instances of "Reaction kinetics drift" 

Chronology of faults historicized over the period of (yrs.): 10 Fault consequences 
Earliest possible Latest possible Fault detection Fault was mostly "Off-spec "Process 

time of fault time of fault occurred at rectified after product & shutdown" 
inception inception reagent loss" occurred 

started to at 
occur at 

1 Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time 
2 Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time 
3 

Figure 4.14. Specification of historical data for creating models for automated monitoring of the 
"Reaction kinetics drift" 
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Figure 4.14 on the previous page shows a menu that the operator will need to complete to 

prepare the historical data for identifying fault models that monitor the "Reaction kinetics drifts" 

in the TE process. For the example described in this chapter, six instances of the "Reaction 

kinetics drift" have been simulated. These instances assumed to have occurred over the period of 

ten years are summarized in Table 4.6. Hence, according to the scheme described in Section 

3.3.1, six different models should be identified for each valid and suitable model design. The 

training data for each of these six models includes a unique combination of five of the six 

available historicized instances of the "Reaction Kinetics Drift." 

Table 4.6. Simulation of "Reaction Kinetics Drifts" in the TE process 

Fault Random Time (s) since the beginning of Detec- Accumulated Cost of Fault 
ins- seed Gin the simulation until: tion Consequences($) .•• 

tance TEI NIT fault fault fault process lag, s ... from fault ... from fault ... total Stan-
incep- detec- recti- shut- inception till detection till dard 
tion tion fication down fault fault devi-

detection rectification ation 
1 4651207995 18000 80000 210000 - 62000 449 5508 5957 298 
2 9873223412 36000 58750 - 58750 22665 25053 0 25053 5000 
3 3485834345 24000 90000 210000 - 66000 1773 6051 7824 391 
4 4346024432 45000 103200 -- 103200 58200 25770 0 25770 5000 
5 7984782901 51000 90000 240000 - 39000 326 4425 4751 238 
6 8934302331 6000 207750 - 207750 201750 26553 0 26553 5001 

For each of the six fault instances, the costs of fault consequences have been calculated 

using the methodology described in Section 4.3.3. For the cases when the process shutdown 

preceded the detection, the pre-detection consequence cost included the cost of a process 

shutdown. The average standard deviation of the accumulated cost of fault consequences is $2655 

or $1593 when calculated on the annual basis. This is 1600% of the cost of a single false alarm. 

Hence, according to Equation (3.24), for the error of estimation of the cost associated with false 

alarms to be sufficiently small, the test data set should include at least 5/16=0.31 years or 

approximately six million seconds of the normal operation. To comply with this requirement, 
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twenty simulations 300,000 second long were performed for the normal operation of the TE 

process. For each model, two of these simulations were randomly chosen for model identification 

and the remaining eight were held out for model evaluation. The total length of the historical data 

is 7,029,700 seconds and it contains 468,647 different process data points recorded during the 

operation of the TE process. Of these points, 374,000 are used for the model testing and the 

remaining 95,000 are used for model testing. Figure 4.15 below shows the accumulated cost 

trajectory for Instance 1 of the "Reaction Kinetics Drift." 
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Figure 4.15. Accumulated cost of the consequences of Instance 1 of the "Kinetics Drift" 

4.3.8 Estimating the Expectation of the Benefit of Early Detection of a Single 

Instance of "Reaction Kinetics Drift'' 

As outlined in Chapter III, the benefit of early fault detection is estimated as an average 

difference between the costs that have actually been incurred for the historicized fault instances 
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and the costs that would have been incurred if these instances had been detected using the 

proposed models. The latter is hard to estimate even if estimates of the consequence costs are 

available for every moment of the historicized fault instances. The reason is that the costs 

incurred from the time of fault detection until fault rectification are not fixed and they may 

depend on the timeliness of fault detection and the actions of the operators. As a rule, the later a 

fault is detected, the greater is the expected consequence cost that will be incurred from fault 

detection till fault rectification. 

To estimate the consequence costs incurred during fault recovery, it can be assumed that 

these costs do not depend on the detection lag if the detection occurs early enough to avoid the 

process shutdown. Furthermore, no process shutdowns have been observed during the fault 

rectification procedures, so, it is assumed that the only consequence occurring during the 

recoveries is the "Off-spec product & reagent loss." It is also assumed that the ability of fault 

models to detect the "Reaction Kinetics Drift" ahead of the operator is not affected by the 

variations in the potential costs incurred during the fault recovery from one fault instance to 

another. Then, if a fault model detected a historicized instance of the "Reaction Kinetics Drift" 

earlier than the operator, the expected cost of the consequences to be incurred after the model­

based detection would be the average post-detection cost for the historicized instances with no 

process shutdown (instances 1, 3, and 5), which is $5328 according to Table 4.6. The standard 

deviation of the post-detection cost for instances 1, 3, and 5 is $828. For the cases when a fault 

model did not detect a historicized fault instance before, the benefit of fault model-based early 

detection is assumed zero. 

The after-the-detection costs can also be estimated using the empirical frequency 

histogram-based "quick and dirty" method outlined in Chapter ill. Since the post-detection 

consequence cost depends more on the pre-detection cost than on the detection lag, an empirical 

distribution of the pre-detection costs (and not detection lags for manual fault detection) for the 

"Reaction Kinetics Drift" is approximated using the proposed histogram. 
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Each frequency of the histogram includes the costs incurred between fault inception and 

fault detection for at least three fault instances. Hence, two frequencies are created: the first one 

includes the pre-detection costs for fault instances 1, 3 and 5 and the second one includes the pre­

detection costs for kinetics drift instances 2, 4, and 6. The boundary between these frequencies is 

the average between the largest pre-detection cost of the first frequency and the smallest pre­

detection cost of the second frequency, which is $13,413. The lower limit of the first frequency is 

the smallest possible pre-detection cost, which is zero and the upper limit of the second frequency 

is the largest possible pre-detection cost, which is positive infinity. The expectation of the post­

detection cost for cases when the pre-detection cost is in the first frequency, i.e., below $13,413, 

is the average of the post-detection costs for the kinetics drift instances 1, 3, and 5 falling into this 

first frequency. This average is identical to the analytical result shown in the previous paragraph. 

For the six fault instances in Table 4.6, the pre-detection cost being in the second frequency 

effectively means that the model did not detect the fault before the process shutdown, and for 

those cases the benefit of fault model-based early detection is assumed zero. 

4.3.9 Attributes of the Reaction Kinetics Drift Monitoring Problem 

At this point, all the preparations for generating models for monitoring "Reaction 

Kinetics Drift" are complete. Table 4. 7 below summarizes the information introduced in Sections 

4.3.2 to 4.3.7 in terms of the attributes (listed in Table 2.3) that determine the compatibility of the 

fault model components. 

In Section 4.3.5, the user has set the sampling period for the process data variables at 450 

seconds according to the process characteristics. The feature generation and classification parts of 

the fault model use this sampling period. However, the data smoothing parts of the fault models 

use the highest possible resolution available for this data in the process data historian, which is 15 

seconds. In addition, for variables 15-19 the sampling period of the data historian is 900 seconds, 
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which is greater than the 450 seconds inferred from the process characteristics. To avoid the 

redundancies in the process data vector, these variables are supplied to the feature generator at the 

sampling interval of 900 seconds. Table 4.8 summarizes how the monitored process variables are 

sampled for the fault model and explains the origin of the attributes DIA, Dlc, D6A, and D6c. 

Table 4.7. Attributes identified for the fault "Reaction kinetics drift" 

Attribute List of attributes 
types Symbolic form Verbal form 

Attributes of D1A=358 Average number of different measurements of a single 
the process variable in the monitoring window available for data 
data vector smoothing is 358 

Dlc=29 Average number of different measurements of a single 
variable in the monitoring window available for feature 
generation and classification is 29 

D2A=27 The number of variables in the data is 27 
D3A=FALSE Data vector consists of original process variables 
D4A=TRUE The elements of the process data vector are strongly 

correlated 
D5A=FALSE There is noise in the user-specified process variables 

D6A=960 Maximum number of different measurements of a single 
variable in the monitoring window available for data 
smoothing is 960 

D6c=32 Maximum number of different measurements of a single 
variable in the monitoring window available for feature 
generation and classification is 32 

Historical H1=95000 The number of different process variable measurements in 
data the training data is 95000 

properties H2=4 The smallest number of instances is historicized for the 
"Reaction Kinetics Drift," this number is four 

H3=TRUE Contains a variable believed to be most closely related to 
the monitored fault 

Specifics of Sl=TRUE Monitored process model not identifiable (input & output 
the monitored variables not specified completely) 
process and S2=TRUE Monitored process model not available 

user S3=FALSE Designed fault model monitors a single fault 
preferences S4=FALSE The fault score-type output is not acceptable 

S5=TRUE Fault model output must be categorical 
S6=3.5 Log10 of the upper limit on the computer time required for model 

identification is 3 .5 
Ns=27 The number of process variables to smooth is 27 
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Table 4.8. Sampling process measurements for the fault model 

Process Data smoothinl! Feature 2eneration and classification 
variable Sampling period, Number of measurements Sampling period, Number of measurements in 

seconds in the monitorilll! window seconds the monitoring window 
1 360 40 450 32 
2 360 40 450 32 
3 360 40 450 32 
4 360 40 450 32 
5 360 40 450 32 
6 360 40 450 32 
7 360 40 450 32 
8 360 40 450 32 
9 360 40 450 32 
10 360 40 450 32 
11 360 40 450 32 
12 360 40 450 32 
13 360 40 450 32 
14 360 40 450 32 
15 900 16 900 16 
16 900 16 900 16 
17 900 16 900 16 
18 900 16 900 16 
19 900 16 900 16 
20 15 960 450 32 
21 15 960 450 32 
22 15 960 450 32 
23 15 960 450 32 
24 15 960 450 32 
25 15 960 450 32 
26 15 960 450 32 
27 15 960 450 32 

4.4. Creation and Selection of Fault Models for Monitoring Reaction Kinetics Drift 

As discussed previously, selection of fault models consists of two stages: generation of 

valid fault model designs and selection of the best-performing valid design. 

4.4.1 Generating Valid and Suitable Fault Model Designs 

First, Rules 1-5 screen out individual model components incompatible with the process 

specifics and user requirements. At this stage, Rule 5 screens out Component 3 because its 

outputs are continuous and hence it possesses attribute C8. After that, Rules 6 to 11 screen out the 
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designs where the components are incompatible with each other. Finally, Rules 12 to 23 

invalidate the designs incompatible with the properties of the input data. 

Table 4.9 summarizes the screening of unsuitable fault model designs using Rules 6 to 

23. The first column of this table shows the order numbers of the fault model designs that passed 

the check for the compatibility with the process specifics and user requirements. The second, 

fifth, seventh, and ninth columns list the attributes of the real-time data used by the input variable 

selection methods, data smoothing techniques, feature generators and fault classifiers 

respectively. The attributes of the real-time data change as the input data are processed by fault 

model components as specified by the data modifiers of the fault model components listed in 

Table 4.1. The attributes equal to FALSE are omitted, the attributes equal to TRUE are listed 

without the '=' sign following the attribute. The third and fourth columns list the input variable 

search criteria and search method numbers respectively used in the model designs undergoing the 

compatibility screening. These numbers are order numbers of the fault model components listed 

in Table 4.1 above and used in the screened model designs. The sixth column lists the numbers of 

the data smoothing components, the eighth column lists the numbers of the residual generators, 

the tenth column lists the numbers of the optimized criteria, and the eleventh column lists the 

numbers of the basis functions. The 12th column lists the decimal logarithm of the estimated time 

in seconds required to identify the fault models for monitoring the Reaction Kinetics Drift. This 

time is estimated only for the designs where the components are compatible with each other and 

the input data. The 13th column shows if the corresponding model design is found suitable, and 

the subsequent columns show the reasons why the model was found unsuitable. The 14th column 

shows the number of the incompatible components, the 15th column shows the attribute of those 

components found incompatible, and the 16th column shows the number of the rule (as listed in 

Tables 2.3, 2.4, and 2.5) that specifies the incompatibility of the component possessing the 

attribute listed in column 15. 
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Table 4.9. Screening out invalid fault model designs using the component compatibility rules 

Mo- Attri- Input Input Attri- Data Attri- Fea- Attri- Optim- Basis Log10 of Mo- Incompatibility 
del butes vari- vari- butes smooth- butes ture butes ized Fune- estimated del Com- Compo- Rule 

design of data able able of ing of gene- of Crite- tion CPU time, de- po- nent or 
num- stream search search data data rator data rion s., needed sign nent model 
her A crite- me- stream stream stream for model valid attri-

rion thod B C D ulenti- bute 
fication 

1 {DIA - - {Dla - {Dlc - {Dlo 4 1 NIA NO 4 C15 6 

- =358} -358} -29} ,__ =29} 
2 {D2A - - {D2a - {D2c {D2o 4 2 NIA NO 4 C15 6 

~ =27} -27} -27} ,__ =27} 
- - - - {D4o} 5 1 -2.0 (1) YES 

- {D4A} {D4a} {D4c} ,__ {D6o 
4 {D6A - - {D6a - {D6c - =32} 5 2 NIA NO 2 cu 17 

- =960} =960) =32} 
_.L_ - - - ,-L {Dlo 4 1 NIA NO 4 Cl5 6 
____§_ - - - ,-L =32} 4 2 NIA NO 4 C15 6 
__]_ - - - ,-L {D2o 5 1 NIA NO 1 Cl 12 
__L_ - - - ~ 

=9} 5 2 NIA NO 2 cu 17 
___.2.._ - - - ,-1...._ {D3o} 4 1 NIA NO 4 C15 6 

{D6o 
-1Q_ - - - ,-1...._ =32} 4 2 NIA NO 4 C15 6 
-1.L - - - ,-1...._ 5 1 NIA NO 1 Cl 12 
-1L - - - 7 5 2 NIA NO 2 cu 17 

13 - - 8 {Dlc - {Dlo 4 1 NIA NO 4 C15 6 
=29) =29) - ,__ 

{D2o J4 - - 8 {D2c 4 2 NIA NO 4 C15 6 
-27} =27) - - {D4o} 

15 - - 8 {D4c} - {D5o} 5 1 0.5 (8) YES 
{D5c} - {D6o 16 - - 8 {D6c - =32} 5 2 3.6 (2) NO - Ml 23 - =32} 

.....1L - - 8 ___.!._ {Dlo 4 1 NIA NO 4 C15 6 
-1.L - - 8 ___.!._ =32} 4 2 NIA NO 4 C15 6 
._!2_ - - 8 ___.!._ {D2o 5 1 NIA NO 1 Cl 12 
.......lQ_ - 8 ___.!._ =9} 5 2 1.9 (8) YES 
--1L 8 _J_ {D3o} 4 1 NIA NO 4 C15 6 
--1L 8 _J_ {D5o} 4 2 NIA NO 4 C15 6 {D6o 

i; 8 _J_ =32) 5 1 NIA NO 1 Cl 12 
- - 8 7 5 2 1.9 (8) YES 
- - 9 - {Dlo 4 1 NIA NO 4 C15 6 

- =29) 
26 - - 9 {D2o 4 2 NIA NO 4 C15 6 

~21} - -
27 - - 9 {D4o} 5 1 1.0 (9) YES 

{D5o} - - {D6o 
28 - - 9 - =32} 5 2 3.6 (2) NO - Ml 23 - {Dlo ..._lL - - 9 ___.!._ 4 1 NIA NO 4 C15 6 

,_JQ_ - - 9 ___.!._ =32} 4 2 NIA NO 4 C15 6 
......JL_ - - 9 ___.!._ {D2o 5 1 NIA NO 1 Cl 12 
.....J.L - - 9 ___.!._ =9} 5 2 2.4 (9) YES 
_lL_ 9 _J_ {D3o} 4 1 NIA NO 4 Cl5 6 
,......JL - - 9 

~ 
{D5o} 4 2 NIA NO 4 C15 6 {D6o 

,.....22- - - 9 =32} 5 1 NIA NO 1 Cl 12 

-1L - - 9 5 2 2.4 (9) YES 
37 11 10 {Dla - {Dlc - {Dlo 4 1 NIA NO 4 C15 6 - 358} 29) - =29} 
38 11 10 {D2a - {D2c {D2o 4 2 NIA NO 4 C15 6 

- - =14} 
39 11 10 =14} - =14) - {D4o} 5 1 NIA NO 10 C29 11 

- {D4a} {D4c} - {D6o 40 11 10 {D6a - {D6c - =32} 5 2 NIA NO 2 cu 17 
- =960} =32} {Dlo _iL 11 10 - ___.!._ 4 1 NIA NO 4 C15 6 
____il._ 11 10 - ~ =32) 4 2 NIA NO 4 C15 6 
___il_ 11 10 - ~ {D2o 5 1 NIA NO 10 C29 11 
___M_ 11 10 - ~ 

=5} 5 2 NIA NO 2 cu 17 
___&_ 11 10 - ,-1...._ {D3o} 4 1 NIA NO 4 C15 6 {D6o 
--1L 11 10 - _J_ =32} 4 2 NIA NO 4 C15 6 
_£L 11 10 - ,-1...._ 5 1 NIA NO 10 C29 11 

48 11 10 - 7 5 2 NIA NO 2 Cll 17 
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Table 4.9. Screening out invalid fault model designs using the component compatibility rules 
( continued) 

Model Attri- Input Input Attri- Data Attri- Fea- Attri- Optim- Basis Logzoof Mo- Incompatibility 
nwn- butes vari- vari- butes smooth- butes ture butes ized Fune- estimated del Com- Attri- Rule 
her of data able able Qf ing of gene- of Crite- tion CPU time, de- po- bute 

stream search search data data rator data rion s., needed sign nent 
A crite- me- stream stream stream lformodel valid 

rion thod ~ £ ~ identi-
fication 

49 {DIA 11 10 {Dia 8 {Dlc - {Dln 4 1 NIA NO 4 ClS 6 

50 
=358} =358} =29} - =29} 
{D2A 11 10 {D2e 8 {D2c {D2n 4 2 NIA NO 4 ClS 6 

~ 
=27} =14} =14} - =14} 
{D4A} 11 10 {D4e} 8 {D4c} {D4n} 5 1 NIA NO 10 C29 11 
{D6A {D6e {D5c} - {D5n} 

52 =960} 11 10 =960} 8 {D6c - {D6n 5 2 4.3 (10) NO - Ml 23 
=32} =32} -......2L 11 10 8 ......L {Dln 4 1 NIA NO 4 ClS 6 

.....2L 11 10 8 ......L =32} 4 2 NIA NO 4 ClS 6 

........2L 11 10 8 ......L {D2n 5 1 NIA NO 10 C29 11 
--1§._ 11 10 8 ......L =5} 5 2 2.6 (10) YES 
,_...XL_ 11 10 8 _1_ {D3n} 4 1 NIA NO 4 ClS 6 

~ 11 10 8 _1_ {D5n} 4 2 NIA NO 4 ClS 6 
,-...22.... 11 10 8 _J_ {D6n 5 1 NIA NO 10 C29 11 

60 11 10 8 7 =32} 5 2 2.6 (10) YES - {Dln 4 NIA NO 4 ClS 6 61 11 10 9 - 1 
=29} - - {D2n 62 11 10 9 
=14} 

4 2 NIA NO 4 ClS 6 - 9 - {D4n} 5 1 NIA NO 10 C29 11 63 11 10 
{D5n} - - {D6n 64 11 10 9 5 2 4.3 (10) NO - Ml 23 

=32} -,......QL 11 10 9 ......L {Dln 4 1 NIA NO 4 ClS 6 
.......&L 11 10 9 ......L <=32} 4 2 NIA NO 4 ClS 6 
....§1_ 11 10 9 ......L {D2n 5 1 NIA NO 10 C29 11 
JL 11 10 9 ......L =5} 5 2 2.6 (10) YES 
......fil_ 11 10 9 _J_ {D3n} 4 1 NIA NO 4 ClS 6 
,.....1Q_ 11 10 9 _J_ {D5n} 4 2 NIA NO 4 ClS 6 

--1L 11 10 9 + {D6n 5 1 NIA NO 10 C29 11 
72 11 10 9 ""' 5 2 2.6 (10) YES 

Table 4.10 below lists the valid fault model designs. These designs are presented both as 

a sequence of numbers and as verbal descriptions. Figure 4.16 summarizes the results of applying 

the selection rules proposed in Chapter II to all the 108 possible combinations of fault model 

components listed in Table 4.1. This figure shows how many fault model designs have been 

deselected by each group of rules. 
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Table 4.10. Valid model designs suitable for monitoring the "Reaction Kinetics Drift" 

Can- Input Input Data Fea- Opti- Basis Verbal description of the model 
di- vari- vari- smoo- ture mized func-

date able able thing gene- crite- tion 
mo- search search rator rion 
del# crite- me-

rion thod 
3) - - - - 5 1 s control chart with the out-of-control bounds determined by 

minimizing the rate of erroneous identification of the monitored 
process modes 

15) - - 8 - 5 1 s control chart with the out-of-control bounds determined by 
minimizing the rate of incorrect identification of the monitored process 
modes; the process variable for the chart is smoothed using the Haar 
function-based wavelet transform 

20) - - 8 6 5 2 Probabilistic neural network created by minimizing the rate of 
incorrect identification of the monitored process modes; the process 
variables for the network are smoothed using the Haar function-based 
wavelet transform and converted to PCA scores accounting for 95% of 
the variance in the oricinal smoothed variables 

24) - - 8 7 5 2 Probabilistic neural network created by minimizing the rate of 
incorrect identification of the monitored process modes; the process 
variables for the network are smoothed using the Haar function-based 
wavelet transform and converted to PCA residuals with the PCA scores 
accounting for 95% of the variance in the oricinal smoothed variables 

27) - - 9 - 5 1 s control chart with the out-of-control bounds determined by 
minimizing the rate of incorrect identification of the monitored process 
modes; the process variable for the chart is smoothed using the 
bior3.l wavelet transform 

32) - - 9 6 5 2 Probabilistic neural network created by minimizing the rate of 
incorrect identification of the monitored process modes; the process 
variables for the network are smoothed using the bior3.1 wavelet 
transform and converted to PCA scores accounting for 95% of the 
variance in the original smoothed variables 

36) - - 9 7 5 2 Probabilistic neural network created by minimizing the rate of 
incorrect identification of the monitored process modes; the process 
variables for the network are smoothed using the bior3.1 wavelet 
transform and converted to PCA residuals with the PCA scores 
accounting for 95% of the variance in the original smoothed variables 

56) 11 10 8 6 5 2 Probabilistic neural network created by minimizing the rate of 
incorrect identification of the monitored process modes; the network 
uses the PCA scores that explain 95% of the variance in the process 
variables selected using the floating forward search for the optimal 
fault model and smoothed using the Haar-function based wavelet filter 

60) 11 10 8 7 5 2 Probabilistic neural network created by minimizing the rate of 
incorrect identification of the monitored process modes; the network 
uses the residuals for the PCA scores that explain 95% of the variance 
in the process variables selected using the floating forward search for 
the optimal fault model and smoothed using the Haar-function based 
wavelet filter 

68) 11 10 9 6 5 2 Probabilistic neural network created by minimizing the rate of 
incorrect identification of the monitored process modes; the network 
uses the PCA scores that explain 95% of the variance in the process 
variables selected using the floating forward search for the optimal 
fault model and smoothed using the bior3.1 wavelet filter 

72) 11 10 9 7 5 2 Probabilistic neural network created by minimizing the rate of 
incorrect identification of the monitored process modes; the network 
uses the residuals for the PCA scores that explain 95% of the variance 
in the process variables selected using the floating forward search for 
the optimal fault model and smoothed using the bior3.1 wavelet filter 
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Figure 4.16. A summary of the screening of the candidate fault model designs 

Figure 4.17 graphically illustrates how a fault model design was found incompatible due 

to the incompatibility of the components used in this design with each other. This figure shows 

that Rule 11 has found the "S Control Chart" and "Forward Search" incompatible. This rule 

specifies incompatibility of fault model components whose attribute C6 is equal to TRUE (this is 

the case for the "S Control Chart" that requires the variable believed most closely related to the 

monitored fault) with the components whose attribute C29 is equal to TRUE (this is the case for 

the "Forward Search" that is not designed to retain this variable in the input data). 

Figure 4.18 graphically illustrates how a fault model design was found incompatible due 

to the incompatibility of the components used in this design with the input data. Application of 

Rule 17 has revealed that the "Probabilistic Neural Network" is an invalid component in the 

Design number 44 because this component's attribute CJ ]=TRUE (i.e., this basis function is 
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noise-sensitive) and the inputs to the "Probabilistic Neural Network" ("data stream D") are noisy 

(D5v=FALSE). 

FAULT MODEL 
-------------------------, I CLASSIFICATION 

I Basis Function 
I S SPC Chart: 

Optimized Criterion 
Error Rate: 

I {C1} {C4} {C5} {C6 {C9 {C10=1000} {C12} {C13} {C16} I {C18} 
L ____ _ _________________ _J 

----------, 
I FEATURE GENERATION I 
I Feature Generator I 
I I 
I I c ________ _J 

----------, 
I DATA SMOOTHING I 
I Data smoothing technique I 
I Bior 3. 1 Wavelet Transform: I 
I {C25} I <D5> I I c ________ _J 

RULE 11 

THE INCOMPATIBILITY OF THE "S 
Control Chart" AND "Forward Search" 

ESTABLISHED BY RULE 11 

-------------------------, 
I INPUT VARIABLE SELECTION I 
I Input variable search method Input variable search criterion I 
I Forward Search: Error Rate: I 
I {C26=4} {C27=500} {C 9} <D2 =D2 /2> {C14} I {C16} I I 
L:: _____ _ 

Figure 4.17. Invalidating fault model design number 63 because of the fault model component 
incompatibility with each other 
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Figure 4.18. Invalidating fault model design number 44 because of the incompatibility of a fault 
model component with the input data 
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4.4.2 Estimation of the Performance of Suitable Fault Model Designs 

Identification of the parameters for the fault model designs found suitable for monitoring 

the "Reaction Kinetic Drifts" has been performed according to the guidelines of Chapter ill. As 

was described in Section 4.3.7, the historical data selected for model identification and evaluation 

covers six fault instances and four intervals of normal process operation. Following the cross­

validation procedure described in Chapter ill, six models have been identified for each suitable 

model design. Each model used five historicized instances the "Reaction Kinetic Drifts" out of 

the six available and two intervals of normal operation out of the four available for identifying the 

model parameters. Each of the six models used a unique combination of five out of the six 

available historicized fault instances and randomly chosen two intervals of normal operation ( out 

of the four available) for the parameter identification. 

The performance of the valid fault designs was evaluated with the test data sets: the 

fractions of the historical data selected by the operator for model identification and not used for 

identifying fault model parameters. For each model, this evaluation data consisted of measuring: 

1) The model-based fault detection lag for the fault instance not used for the model 

identification 

2) The rate of false alarms for the normal operation data not used for model 

identification. 

The results of estimating the performance of the suitable fault model designs and the standard 

deviation of the performance measure using Equations (3.8) and (3.19) respectively are given in 

Table 4.11. The expected performance indicators of different fault model designs in monitoring 

the "Reaction Kinetics Drift" are compared in Figure 4.19 below. 
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Table 4.11. Evaluation of fault model designs suitable for monitoring "Reaction Kinetics Drifts" 

Fault model desi1ms 3 5 19 24 27 32 36 56 60 68 72 
Expected benefit of early detection, $/yr 561 573 1657 2031 866 695 1270 1942 2381 2289 2221 
Expected cost of false alarms. $/yr 4081 3726 1315 1536 0 657 219 657 439 1753 876 
Estimated net benefit of fault monitoring -720 -853 42 195 -1066 262 752 985 1642 1236 1345 
automation, $/year 
Approximate standard deviation of the 1651 1609 1295 1209 1563 1376 1324 1303 1481 1267 1271 
net benefit estimate, $/year 
Performance rank 11 10 7 6 5 9 4 3 1 8 2 
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Figure 4.19. Estimated performance of different valid problem-compatible fault model designs 

4.4.3 A Brief Discussion of the Results 

Most combinations of fault model components were suitable for monitoring the 

"Reaction Kinetics Drift". Out of 108 possible combinations, only 11 survived the screening. In 

Figure 4.16, most designs were deselected due to the incompatibility of the participating model 

components. In fact, these designs can be screened out at the time when the library of model 

components is being created. 
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An analysis of the numerical results reveals that the control chart-based fault models do 

not perform very well in monitoring the "Reaction Kinetics Drift" and an implementation of these 

models will probably not have a positive economic effect on the monitored process. Most 

probabilistic neural network-based methods ended up in the positive territory. The errors of the 

net benefit estimates are quite large (as shown by the error bars in Figure 4.19). This is mostly 

due to the realistically chosen 20% error in the estimation of the cost of plant shutdowns. Design 

60 ''probabilistic neural network created by minimizing the rate of incorrect identification of the 

monitored process modes; the network uses the residuals for the PCA scores that explain 95% of 

the variance in the process variables selected using the floating forward search for the optimal 

fault model and smoothed using the Haar-function based wavelet filter' was found the best­

performing among the eleven tested fault model designs. 

4.5 Summary 

Chapter IV has illustrated in detail a practical application of the theory of selecting 

models for automating process monitoring. It guided the reader step-by-step through a complete 

procedure of fault model design and evaluation. Chapter IV has shown by example how to 

perform the four separate steps in creating and selecting fault models: 

1) Creation of a reusable library of fault model components out of the numerical 

methods described in the literature; 

2) Specification of the attributes of the user-specified fault monitoring problems; 

3) Screening out fault model designs not suitable for the user-specified fault monitoring 

problems; 

4) Evaluation of the performance of suitable fault model designs. 
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The demonstration in Chapter IV describes an automation of the monitoring of only one fault and 

uses the fault model template with the slots for only one data processing method of each type 

used in fault models. Despite this fact, the illustration can be easily extended to the case where 

several faults are monitored simultaneously and fault models are designed from more complex 

templates allowing the use of different data processing methods in parallel. The illustration 

provided in Chapter IV is very important for understanding the proposed approach, encoding this 

approach in software, and applying this software in the industry. 

Chapter IV does not contain any evaluations of the proposed approach, as these 

evaluations must be performed using real-life process data that have a proprietary nature, so these 

data cannot be published in the open-source literature. These evaluations must be separate for 

each fault. The evaluations should be carried out by comparing the estimated model performance 

with the model performance measured on the fault data not included in the training and testing 

sets. It is also important to note that the relative and absolute performance indicators estimated in 

this work cannot be projected to, extrapolated to or factored in the expected performance of the 

tested fault models in the industrial practice. Each real-world problem will require a separate 

estimation and comparison of the performance of different fault models. 

146 



ChapterV 

Conclusions 

5.1 An Outline of the Contributions Made by this Work 

This work has made four important contributions. 

First, this work has documented the reasons why despite the superabundance of different 

computer-based techniques that can take over many routine human activities, the automation of 

the real time fault monitoring in the process industries has been so difficult. This work has also 

systematized different existing methods for fault monitoring as different stages in the mapping 

from the space of the monitored variables to the space of faults. 

Second, this work has proposed a new expert system-type approach for designing fault 

models suitable for solving user-specified fault-monitoring problems. This approach decomposes 

fault models into a library of components that perform specific functions. In the library, each 

component has a set of characteristic attributes. This work has also defined a set of rules 

determining the compatibility of different model components with the user requirements, 

characteristics of the monitored process, monitored faults, properties of the input data, and the 

other components participating in the fault model. By placing different subsets of model 

components on the proposed template and verifying the validity of the resulting combinations, 

various fault models, both conventional and new, can be designed. 

Third, this work has proposed a method for selecting the best fault model design. This 

method specifies how to sample the available historical data and how to quantify the cost of fault 

consequences and their dynamics. The proposed measure of fault model performance is the 

potential increase in the profitability of the monitored process due to the implementation of this 

model. In addition, evaluation of the confidence interval for this performance measure has been 

described. 

Fourth, this work has included a comprehensive example of an application of the 

proposed methodology. This application has used a small library of fault model components to 
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design models suitable for monitoring faults in a well-known public-domain simulation of a 

chemical process. The example has also included evaluation of the suitable model designs. Using 

this demonstration it will be easier to implement the proposed algorithm in the industry. 

5.2 Advantages and Disadvantages of the Proposed Method 

Modeling process faults is a very difficult problem because each fault-monitoring 

problem has specific, sometimes unique conditions. In addition, it is difficult to create a good data 

sample for the fault model identification as all the process data points historicized during the 

occurrence of the same fault instance are related to each other and the number of historicized fault 

instances is usually small. Hence, the suitability of different models for monitoring different 

faults in the process industries is often unknown a priori. This work has proposed an efficient · 

method for designing and evaluating mathematical models for real-time process fault monitoring. 

Although other simple algorithms for selecting methods for fault detection and. diagnosis have 

already been proposed, this approach is the first to attempt covering all the possible methods for 

process fault monitoring ( except for the few classifiers that do not allow the separation of the 

basis function linked with the parameter search technique and the optimized criterion), including 

those that have never been discussed and those that will be proposed in the future. As was stated 

in Chapter II, this approach allows: 

1) Potential use of components from any mathematical model whose application to fault 

detection has been discussed in the technical literature to date (including even the 

aggregated models), 

2) Making the problem of fault model search tractable by representing a large number of 

different fault models as a much smaller number of separate model components, 
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3) Searching through large libraries of very diverse mathematical methods, which is 

extremely important in the cases when the shape of the modeled relationship is very 

hard or impossible to determine a priori. 

Even for the cases when the applicable model design is approximately known, (e.g., it 

may be known that monitoring specific faults is done best with control charts) the proposed 

method can be used for refining the design further (e.g., it may find out how to select the input 

variables, smooth the data, and generate the residuals for these charts best). 

Although this proposed approach for fault model selection is so universal, its practical 

application may seem difficult because of the requirement to decompose the known methods for 

process fault monitoring into components. However, creation of libraries of fault model 

components is a straightforward task as long as the methods to be decomposed allow separation 

of the optimized criteria and the basis functions linked with the parameter search methods. 

Sometimes, one must perform this task creatively, as was done in Subsection 4.2.2.2 to 

decompose a probabilistic neural network that, in its original implementation, can only minimize 

the misclassification rate for the training set. It is also important to initialize all the component 

attributes. This procedure may be complicated for some "opaque" numerical methods supplied 

with various software packages. For the libraries containing many fault model components, the 

number of possible combinations of these components is extremely large. However, as was 

shown in Chapter N, the proposed component compatibility rules select only very few model 

designs that are valid and suitable for the specified problem. 

This work is also the first one to propose to evaluate the economic effects of 

implementing real-time fault monitoring in the process (continuous-stream) industry. Unlike the 

conventional approaches for estimating the fault model performance based on how likely these 

models are to help in meeting the quality and safety standards, this proposed estimator evaluates 

how different implementations of fault monitoring reduce the fault-related economic losses. This 

new approach also has a clear advantage over the other methods for estimating the performance 
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of fault models in that it does not require the operators to fmd the exact inception time of the 

historicized fault instances. However, for the sake of the simplicity and clarity, the proposed 

approach is based on the assumption of no irreversible changes in the monitored process. At this 

point it is unknown how valid this underlying assumption is for evaluating the economic effect of 

monitoring the real-world processes most of which do undergo irreversible changes during their 

lifetime. In addition, tracing fault consequences in the historical data may sometimes be difficult. 

5.3 The Impact of this Work Beyond the Scope of the Process Fault Monitoring 

Advances in computer hardware allow creation of very large mathematical models with a 

great number of parameters, massively parallel processing and a great degree of structural 

redundancy. These models can often imitate very complex phenomena, e.g., meteorological 

events, nuclear explosions, etc. However, in many cases, simpler models have a clear advantage 

over the complex ones. This is the case when: 

1) The amount of independent data points to train and validate a model is very limited 

2) A transparent and/or adaptable model is preferred 

3) The model has to operate in real time using a limited amount of computing resources. 

All these three conditions apply to the models designed to detect and identify faults in the process 

industries in real time. 

To perform the task of modeling faults, this work has proposed to optimize a selection of 

model components, or to be more exact, the components of the algorithm according to which a 

fault model is trained and run. Different from the conventional approaches where the number of 

the degrees of freedom in a model is equal to the number of parameters, the proposed approach 

uses additional degrees of freedom in the selection of model components making it possible to 

build smaller, simpler, and well-generalizing models. The suitability of such an approach is 
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confirmed by the fact that the number of model parameters did not determine model performance 

in monitoring the TE process: some neural-network based models did not perform well. In 

addition, the model selection algorithm proposed in this work can be extended to allow model 

selection for the other application where the above-mentioned conditions 1) to 3) exist. This is the 

case primarily in the analyses of small samples or samples with interdependent data often 

encountered in the Bioinformatics, predicting major stock and commodity market events, 

marketing research and many others. 

5.4 Future Work 

There are at least three directions for the future work that will improve the method for 

designing optimal models for fault detection. 

The first direction is automation of the proposed method for fault model design. This 

requires creation of a relational database containing different model components with attributes 

required by the production rules that design fault model out of these components. In this work, 

fault model design was performed manually. In the future, an expert system-approach should be 

used to generate fault models suitable for solving specific user-defined process-monitoring 

problems. Experienced industrial users are expected to add a lot more fault model design rules in 

addition to those proposed in this work. If the number of components is relatively large, it is 

impossible to estimate the performance of every problem-suitable combination of these 

components, so this proposed method should also incorporate an appropriate discrete search 

algorithm. This algorithm would allow finding the best-performing fault model by testing only a 

subset of all the possible combinations of the available fault model components. 

The second direction is extending this approach to the cases when no historical data for 

the fault to be monitored are available. This would require extrapolation of the historical data 
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recorded for other similar faults onto the fault that the user wants to monitor. This method would 

rely on the "data farms" that share recorded fault data among different factories and enterprises, 

such as the Process Equipment Reliability Database (Thomas and Moosemiller 2001). 

The third direction is the inclusion of the cost of fault misclassifications and the effects of 

slow irreversible changes in the monitored process in the proposed estimator of fault model 

performance. In addition, it may be important to be able to use the statistical inference to decide 

whether an adaptable fault model is needed to monitor a specific process and when the model 

updates should occur. 
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Appendix. Modified Code of the Tennessee-Eastman Control Algorithm 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

Appendix. Modified code of the Tennessee-Eastman control Algorithm 
Last modification March 31, 2004 

Tennessee Eastman Process Control Test Problem 

original codes written by 

James J. Downs and Ernest F. Vogel 

Process and Control systems Engineering 
Tennessee Eastman Company 

P.O. Box 511 
Kingsport, Tennessee 37662 

c--------------------------------------------------------------------
c 
c New version is a closed-loop plant-wide control scheme for 
c the Tennessee Eastman Process control Test Problem 
C 
c The modifications are by: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

Evan L. Russell, Leo H. Chiang and Richard D. Braatz 

Large scale systems Research Laboratory 
Department of Chemical Engineering 

University of Illinois at Urbana-Champaign 
600 south Mathews Avenue, Box c-3 

Urbana, Illinois 61801 
http://brahms.scs.uiuc.edu 

c The modified text is cop¥right 1998-2002 by The Board of Trustees 
c of the university of Illinois. All rights reserved. 
C 
c Permission hereby granted, free of charge, to any person obtaining a copy 
c of this software and associated documentation files (the "software"), to 
c deal with the software without restriction, including without limitation 
c the rights to use, copy, modify, merge, publish, distribute, sublicense, 
c and/or sell copies of the Software, and to permit persons to whom the 
c software is furnished to do so, subject to the following conditions: 
c 1. Redistributions of source code must retain the above cop¥right 
c notice, this list of conditions and the following disclaimers. 
c 2. Redistributions in binary form must reproduce the above 
c copyright notice, this list of conditions and the following 
c disclaimers in the documentation and/or other materials 
c provided with the distribution. 
c 3. Neither the names of Large Scale Research systems Laboratory, 
c university of Illinois, nor the names of its contributors may 
c be used to endorse or promote products derived from this 
~ software without specific prior written permission. 
C 
C THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 
C OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
C FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 
C THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 
COTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 
C ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 
C DEALINGS IN THE SOFTWARE. 
c----------------------------------------------------------------------
c 
c users should cite the original code using the following references: 
C 
C 
C 
C 
C 
C 
C 
C 
C 

J.J. Downs and E.F. Vogel, "A plant-wide industrial process control 
problem." Presented at the AIChl: 1990 Annual Meeting, session on 
Industrial challenge Problems in Process control, Paper #24a 
Chicago, Illinois, November 14, 1990. 

J.J. Downs and E.F. Vogel, "A plant-wide industrial process control 
problem," computers and chemical Engineering, 17:245-255 (1993). 

c users should cite the modified code using the following references: 
C 
C 
C 
C 
C 
C 

E.L. Russell, L.H. Chiang, and R.D. Braatz. Data-driven Techniques 
for Fault Detection and Diagnosis in Chemical Processes, springer-Verlag, 
London, 2000. 

L.H. Chiang, E.L. Russell, and R.D. Braatz. Fault Detection and 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

Diagnosis in Industrial systems, Springer-Verlag, London, 2001. 

L.H. Chiang, E.L. Russell, and R.D. Braatz. "Fault diagnosis in 
chemical processes using Fisher discriminant analysis, discriminant 
partial least squares, and principal component analysis," Chemometrics 
and Intelligent Laboratory systems, 50:243-252, 2000. 

E.L. Russell, L.H. Chiang, and R.D. Braatz. "Fault detection in 
industrial processes using canonical variate analysis and dynamic 
principal component analysis," chemometrics and Intelligent Laboratory 
systems, 51:81-93, 2000. 

c Main program for demonstrating application of the modified Tennessee Eastman 
c Process control Test Problem 
C 
C 
c this code requires a configuration file te_config.dat to run 
C 
C the 
C the 
C 

configuration file contains: 
number of seconds to run the simulation 
(last byte's offset=7) 

fault inception time since the start of the simulation, seconds 
(last byte's offset=14) 

C 
C 
C 
C 
C 
C 
C 
C 

disturbance number 
(last byte's offset=21) 

sampling period 

C 
C 

(last byte's offset=28) 
time of manual fault detection 

(last byte's offset=35) 
file to output the simulated values of process variables 

(last byte's offset=47) 
example: C 

C 
C (START OF FILE)450000 6000 13 
c remove the words in the parentheses 
C 

150 300000 faul130.dat(END OF FILE) 

c The simulation also logs the cost of "product loss and incomplete capacity 
c utilization" in file cost.dat that must be erased each time before the 
c start of the simulation 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(12) 

C 
C DISTURBANCE VECTOR COMMON BLOCK 
C 

C 

INTEGER IDV 
COMMON/DVEC/ IDV(20) 

C CONTROLLER COMMON BLOCK 

C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
INTEGER FLAG 
COMMON/FLAGG/ FLAG 

DOUBLE PRECISION GAINl, ERROLDl 
COMMON/CTRLl/ GAINl, ERROLDl 
DOUBLE PRECISION GAIN2, ERROLD2 
COMMON/CTRL2/ GAIN2, ERROLD2 
DOUBLE PRECISION GAIN3, ERROLD3 
COMMON/CTRL3/ GAIN3, ERROLD3 
DOUBLE PRECISION GAIN4, ERROLD4 
COMMON/CTRL4/ GAIN4, ERROLD4 
DOUBLE PRECISION GAINS, TAUIS, ERROLDS 
COMMON/CTRLS/ GAINS, TAUIS, ERROLDS 
DOUBLE PRECISION GAIN6, ERROLD6 
COMMON/CTRL6/ GAIN6, ERROLD6 
DOUBLE PRECISION GAIN7, ERROLD7 
COMMON/CTRL7/ GAIN7, ERROLD7 
DOUBLE PRECISION GAINS, ERROLD8 
COMMON/CTRL8/ GAINS, ERROLD8 
DOUBLE PRECISION GAIN9, ERROLD9 
COMMON/CTRL9/ GAIN9, ERROLD9 
DOUBLE PRECISION GAIN10, TAUI10, ERROLD10 
COMMON/CTRL10/ GAIN10, TAUI10, ERROLD10 
DOUBLE PRECISION GAINll, TAUill, ERROLDll 
COMMON/CTRLll/ GAINll, TAUill, ERROLDll 
DOUBLE PRECISION GAIN13, TAUI13, ERROLD13 
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C 

COMMON/CTRL13/ GAIN13, TAUI13, ERROLD13 
DOUBLE PRECISION GAIN14, TAUI14, ERROLD14 
COMMON/CTRL14/ GAIN14, TAUI14, ERROLD14 
DOUBLE PRECISION GAINlS, TAUilS, ERROLDlS 
COMMON/CTRLlS/ GAINlS, TAUilS, ERROLDlS 
DOUBLE PRECISION GAIN16, TAUI16, ERROLD16 
COMMON/CTRL16/ GAIN16, TAUI16, ERROLD16 
DOUBLE PRECISION GAIN17, TAUI17, ERROLD17 
COMMON/CTRL17/ GAIN17, TAUI17, ERROLD17 
DOUBLE PRECISION GAIN18, TAUI18, ERROLD18 
COMMON/CTRL18/ GAIN18, TAUI18, ERROLD18 
DOUBLE PRECISION GAIN19, TAUI19, ERROLD19 
COMMON/CTRL19/ GAIN19, TAUI19, ERROLD19 
DOUBLE PRECISION GAIN20, TAUI20, ERROLD20 
COMMON/CTRL20/ GAIN20, TAUI20, ERROLD20 
DOUBLE PRECISION GAIN22, TAUI22, ERROLD22 
COMMON/CTRL22/ GAIN22, TAUI22, ERROLD22 

c Local variables 
C 

C 

C 

C 

C 

INTEGER I,NN,NPTS,TEST,TEST1,TEST3,TEST4,DN,SMPI,SSPTS,DET 

DOUBLE PRECISION TIME, YY(SO), YP(SO), LOSS, DXl, DX2 

CHARACTER*ll IFL 

NN = 50 
LOSS=0.0 

c Read simulation parameters from a file: 
C 

OPEN(UNIT=140,FILE='te_config.dat',STATUS='old') 
READ(l40,55) NPTS,SSPTS,DN,SMPI,DET,IFL 
CLOSE(UNIT=140) 
PRINT*, NPTS,SSPTS,DN,SMPI,DET,IFL 

55 FORMAT(1X,S(I6,1X),All) 
DELTAT = 1. / 3600. 

C 
c Initialize Process 
c (Sets TIME to zero) 
C 

CALL TEINIT(NN,TIME,YY,YP) 
C 
c set Controller Parameters 
c Make a Stripper Level Set Point change of +15% 
C 

SETPT(1)=3664. 0 
GAINl=l.0 
ERROLD1=0.0 
SETPT(2)=4509.3 
GAIN2=1.0 
ERROLD2=0.0 
SETPT(3)=. 25052 
GAIN3=1. 
ERROLD3=0.0 
SETPT(4)=9.3477 
GAIN4=1. 
ERROLD4=0.0 
SETPT(5)=26.902 
GAINS=-0.083 
TAUIS=l./3600. 
ERROLD5=0.0 
SETPT(6)=0. 33712 
GAIN6=1.22 
ERROLD6=0.0 
SETPT(7)=50.0 
GAIN7=-2.06 
ERROLD7=0.0 
SETPT(8)=50.0 
GAIN8=-1. 62 
ERROLD8=0.0 
SETPT(9)=230.31 
GAIN9=0.41 
ERROLD9=0.0 
SETPT(l0)=94.599 
GAIN10= -0.156* 10. 
TAUI10=1452./3600. 
ERROLD10=0.0 
SETPT(l1)=22.949 
GAINll=l.09 
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C 

TAUI11=2600./3600. 
ERROLD11=0.0 
SETPT(13)=32.188 
GAIN13=18. 
TAUI13=3168./3600. 
ERROLD13=0.0 
SETPT(14)=6.8820 
GAIN14=8.3 
TAUI14=3168.0/3600. 
ERROLD14=0.0 
SETPT(l5)=18.776 
GAIN15=2.37 
TAUI15=5069./3600. 
ERROLD15=0.0 
SETPT(l6)=65.731 
GAIN16=1. 69/ 10. 
TAUI16=236./3600. 
ERROLD16=0.0 
SETPT(17)=75. 000 
GAIN17=11. l/ 10. 
TAUI17=3168./3600. 
ERROLD17=0.0 
SETPT(l8)=120.40 
GAIN18=2.83* 10. 
TAUI18=982./3600. 
ERROLD18=0.0 
SETPT(19)=13.823 
GAIN19=-83.2 / 5. /3. 
TAUI19=6336./3600. 
ERROLD19=0.0 
SETPT(20)=0.83570 
GAIN20=-16.3/ 5. 
TAUI20=12408./3600. 
ERROLD20=0.0 
SETPT(12)=2633.7 
GAIN22=-1.0 * 5. 
TAUI22=1000./3600. 
ERROLD22=0.0 

c Example Disturbance: 
c change Reactor cooling 
C 

C 

XMV(l) = 63.053 + 0. 
XMV(2) = 53.980 + 0. 
XMV(3) = 24.644 + 0. 
XMV(4) = 61.302 + 0. 
XMV(S) = 22.210 + 0. 
XMV(6) = 40.064 + 0. 
XMV(7) = 38.100 + 0. 
XMV(8) = 46.534 + 0. 
XMV(9) = 47.446 + 0. 
XMV(lO)= 41.106 + 0. 
XMV(ll)= 18.114 + 0. 

C SETPT(6)=SETPT(6) + 0.2 
C 
c set all Disturbance Flags to OFF 
C 

C 

DO 100 I= 1, 20 
IDV(I) = 0 

100 CONTINUE 

OPEN(UNIT=2111,FILE=IFL,STATUS='new') 
OPEN(UNIT=2112,FILE='cost.dat',STATUS='new') 

C 
C 
c Simulation Loop 
C 

COST=0.0 
COSTl=0.0 
COST2=0.0 
COST3=0.0 
LL=O 
DO 1000 I= 1, NPTS 

IF (I.GE.SSPTS) THEN 
IDV(DN)=l 

ENDIF 
IF (I.GE.(NPTS-80000)) THEN 

IDV(DN)=O 
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C 

ENDIF 
TEST=MOD(I,3) 
IF (TEST.EQ.2) THEN 

CALL CONTRLl 
CALL CONTRL2 
CALL CONTRL3 
CALL CONTRL4 
CALL CONTRLS 
CALL CONTRL6 
CALL CONTRL7 
CALL CONTRL8 
CALL CONTRL9 
CALL CONTRL10 
CALL CONTRLll 
CALL CONTRL16 
CALL CONTRL17 
CALL CONTRL18 

ENDIF 
TESTl=MOD(I,360) 

IF (TESTl.EQ.2) THEN 
CALL CONTRL13 
CALL CONTRL14 
CALL CONTRLlS 
CALL CONTRL19 

ENDIF 
TESTl=MOD(I,900) 

c Fault recovery actions 
C 

C 

IF (TESTl.EQ.2) THEN 
CALL CONTRL20 
IF ((I.GE.DET).AND.(I.LE.(NPTS-80000))) THEN 

IF (SETPT(ll).GE.20.65) THEN 
SETPT(ll)=SETPT(ll)*.99 

ELSE 

ENDIF 

ENDIF 

IF (SETPT(ll).LE.22.94) THEN 
SETPT(ll)=SETPT(ll)/.99 

ELSE 
SETPT(ll)=22.949 

ENDIF 

c calculation of the cost of "reagent loss and incomplete cap. utilization" 
C 

C 

C 

C 

IF ((I.GE.SSPTS).AND.(XMEAS(7).LE.0.3E+04)) THEN 
CIN=98. 62*XMEAS(l)+0. 6894*XMEAS(2)+0. 3164''XMEAS(3)+188. 5''XMEAS( 4) 
FR=XMEAS(38)/7.935+XMEAS(39)/6.833+XMEAS(40)/9.87l+XMEAS(41)/8.118 
FR=FR+XMEAS(37)/9.3438 
COSTl=COSTl+XMEAS(40)*XMEAS(17)*30.44/FR 
COST2=COST2+XMEAS ( 41) ''XMEAS (17) *22. 94/FR 
COST3=COST3+CIN 
COST=(COST3-5745.0)/4.+(5534.5-COST1-COST2)/3. 
PRINT '', XMEAS(40)*XMEAS(l7)*30. 44/FR,XMEAS(4l)"'XMEAS(l7)*22. 94/FR 
WRITE(2112,*) COST 
ENDIF 
ENDIF 

TEST3=MOD(I,5000) 
IF (TEST3.EQ.0) THEN 

PRINT'', 'simulation time (in seconds) I 
ENDIF 

TEST4=MOD(I,SMPI) 
IF (TEST4.EQ.0) THEN 
CALL OUTPUT 
ENDIF 

CALL INTGTR(NN,TIME,DELTAT,YY,YP) 

CALL CONSHAND 

1000 CONTINUE 
C 

C 

CLOSE(UNIT=2112) 
STOP 

END 

C============================================================================= 
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C 
SUBROUTINE CONTRLl 

C 
c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(12) 

C CONTROLLER COMMON BLOCK 
C 

C 

C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAINl, ERROLDl 
COMMON/CTRLl/ GAINl, ERROLDl 

DOUBLE PRECISION ERRl, DXMV 

c Example PI controller: 
c Stripper Level controller 
C 
c calculate Error 
C 

ERRl = (SETPT(l) - XMEAS(2)) * 100. / 5811. 
C 
c Proportional-Integral Controller (Velocity Form) 
c GAIN= controller Gain 
c TAU!= Reset Time (min) 
C 

C 

C 

C 

C 

DXMV = GAINl * ( ( ERRl - ERROLDl)) 

XMV(l) = XMV(l) + DXMV 

ERROLDl = ERRl 

RETURN 
END 

C========================================== ================================== 
C 

SUBROUTINE CONTRL2 
C 
c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(l2) 

C CONTROLLER COMMON BLOCK 
C 

C 

C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAIN2, ERROLD2 
COMMON/CTRL2/ GAIN2, ERROLD2 

DOUBLE PRECISION ERR2, DXMV 

C Example PI Controller: 
c Stripper Level controller 
C 
c calculate Error 
C 

ERR2 = (SETPT(2) - XMEAS(3)) * 100. / 8354. 
C 
c Proportional-Integral controller (Velocity Form) 
C GAIN= controller Gain 
c TAU!= Reset Time (min) 
C 

C 

C 

C 

C 

DXMV = GAIN2 * ( ( ERR2 - ERROLD2)) 

XMV(2) = XMV(2) + DXMV 

ERROLD2 = ERR2 

RETURN 
END 
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C============================================================================= 
C 

SUBROUTINE CONTRL3 
C 
c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(12) 

C CONTROLLER COMMON BLOCK 
C 

C 

C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAIN3, ERROLD3 
COMMON/CTRL3/ GAIN3, ERROLD3 

DOUBLE PRECISION ERR3, DXMV 

c Example PI Controller: 
c Stripper Level controller 
C 
c calculate Error 
C 

ERR3 = (SETPT(3) - XMEAS(l)) * 100. / 1.017 
C 
c Proportional-Integral controller (Velocity Form) 
c GAIN= controller Gain 
c TAU!= Reset Time (min) 
C 

C 

C 

C 

C 

DXMV = GAIN3 * ( ( ERR3 - ERROLD3)) 

XMV(3) = XMV(3) + DXMV 

ERROLD3 = ERR3 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE CONTRL4 
C 
c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(l2) 

C CONTROLLER COMMON BLOCK 
C 

C 

C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAIN4, ERROLD4 
COMMON/CTRL4/ GAIN4, ERROLD4 

DOUBLE PRECISION ERR4, DXMV 

c Example PI controller: 
c stripper Level Controller 
C 
c calculate Error 
C 

ERR4 = (SETPT(4) - XMEAS(4)) * 100. / 15.25 
C 
C Proportional-Integral Controller (Velocity Form) 
C GAIN= Controller Gain 
c TAU!= Reset Time (min) 
C 

C 

C 

C 

DXMV = GAIN4 * ( ( ERR4 - ERROLD4)) 

XMV(4) = XMV(4) + DXMV 

ERROLD4 = ERR4 

RETURN 
END 

169 



C 
C============================================================================= 
C 

SUBROUTINE CONTRL5 
C 
c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(12) 

C CONTROLLER COMMON BLOCK 
C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAINS, TAUI5, ERROLD5 
COMMON/CTRL5/ GAINS, TAUI5, ERROLD5 

C 
DOUBLE PRECISION ERRS, DXMV 

C 
c Example PI Controller: 
c Stripper Level controller 
C 
c calculate Error 
C 

ERRS= (SETPT(5) - XMEAS(5)) * 100. / 53. 
C 
c Proportional-Integral controller (Velocity Form) 
c GAIN= Controller Gain 
c TAU!= Reset Time (min) 
C 
C PRINT *' I GAINS= I ' GAINS 
C PRINT ,, , 'TAUI5= ', TAUI5 
C PRINT * I I ERRS= I ' ERRS 
C PRINT*, 'ERROLD5= ', ERROLD5 
C 

C 
DXMV = GAINS '' ((ERRS - ERROLD5)+ERR5''DELTAT''3./TAUI5) 

XMV(5) = XMV(5) + DXMV 
C 

C 

C 

ERROLD5 = ERRS 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE CONTRL6 
C 
c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(12) 
INTEGER FLAG 

COMMON/FLAG6/ FLAG 

C CONTROLLER COMMON BLOCK 
C 

C 

C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAIN6, ERROLD6 
COMMON/CTRL6/ GAIN6, ERROLD6 

DOUBLE PRECISION ERR6, DXMV 

c Example PI Controller: 
c Stripper Level controller 

IF (XMEAS(l3).GE.2950.0) THEN 
XMV(6)=100.0 
FLAG=l 
ELSEIF (FLAG.EQ.l.AND.XMEAS(l3).GE.2633.7) THEN 
XMV(6)=100.0 
ELSEIF (FLAG.EQ.l.AND.XMEAS(l3).LE.2633.7) THEN 
XMV(6)=40.060 
SETPT(6)=0.33712 
ERROLD6=0.0 
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FLAG=O 
ELSEIF (XMEAS(13).LE.2300.) THEN 
XMV(6)=0.0 
FLAG=2 
ELSEIF (FLAG.EQ.2.AND.XMEAS(l3).LE.2633.7) THEN 
XMV(6)=0.0 
ELSEIF (FLAG.EQ.2.AND.XMEAS(13).GE.2633.7) THEN 
XMV(6)=40.060 
SETPT(6)=0.33712 
ERROLD6=0.0 
FLAG=O 
ELSE 
FLAG=O 

C 
c calculate Error 
C 

ERR6 = (SETPT(6) - XMEAS(lO)) * 100. /1. 
C 
c Proportional-Integral Controller (Velocity Form) 
c GAIN= controller Gain 
c TAU!= Reset Time (min) 
C 

C 

C 

C 

C 

DXMV = GAIN6 * ( ( ERR6 - ERROLD6) ) 

XMV(6) = XMV(6) + DXMV 

ERROLD6 = ERR6 
ENDIF 

RETURN 
END 

C=============================== ============================================= 
C 

SUBROUTINE CONTRL7 
C 
c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(12) 

C CONTROLLER COMMON BLOCK 
C 

C 

C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAIN?, ERROLD7 
COMMON/CTRL7/ GAIN?, ERROLD7 

DOUBLE PRECISION ERR?, DXMV 

c Example PI Controller: 
c Stripper Level Controller 
C 
c calculate Error 
C 

ERR?= (SETPT(7) - XMEAS(l2)) * 100. / 70. 
C 
c Proportional-Integral controller (Velocity Form) 
c GAIN= Controller Gain 
c TAU!= Reset Time (min) 
C 

C 

C 

C 

C 

DXMV =GAIN?* ( ( ERR? - ERROLD7) ) 

XMV(7) = XMV(7) + DXMV 

ERROLD7 = ERR? 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE CONTRL8 
C 
c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
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C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(12) 

C CONTROLLER COMMON BLOCK 
C 

C 

C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAINS, ERROLDS 
COMMON/CTRLS/ GAINS, ERROLDS 

DOUBLE PRECISION ERRS, DXMV 

c Example PI Controller: 
c stripper Level controller 
C 
c calculate Error 
C 

ERRS= (SETPT(S) - XMEAS(lS)) * 100. / 70. 
C 
c Proportional-Integral controller (Velocity Form) 
c GAIN= Controller Gain 
c TAUI = Reset Time (min) 
C 

C 

C 

C 

DXMV = GAINS* ( ( ERRS - ERROLDS)) 

XMV(S) = XMV(S) + DXMV 

ERROLDS = ERRS 

RETURN 
END 

C 
C============================================================================= 
C 

SUBROUTINE CONTRL9 
C 
c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(12) 

C CONTROLLER COMMON BLOCK 
C 

C 

C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAIN9, ERROLD9 
COMMON/CTRL9/ GAIN9, ERROLD9 

DOUBLE PRECISION ERR9, DXMV 

c Example PI Controller: 
c stripper Level controller 
C 
c calculate Error 
C 

ERR9 = (SETPT(9) - XMEAS(l9)) * 100. / 460. 
C 
c Proportional-Integral controller (Velocity Form) 
c GAIN= controller Gain 
c TAUI = Reset Time (min) 
C 

C 

C 

C 

C 

DXMV = GAIN9 * ( ( ERR9 - ERROLD9)) 

XMV(9) = XMV(9) + DXMV 

ERROLD9 = ERR9 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE CONTRL10 
C 
c Discrete control algorithms 
C 
C 
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C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(12) 

C CONTROLLER COMMON BLOCK 
C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAINlO, TAUI10, ERROLD10 
COMMON/CTRL10/ GAINlO, TAUI10, ERROLD10 

C 
DOUBLE PRECISION ERR10, DXMV 

C 
c Example PI controller: 
c Stripper Level controller 
C 
c calculate Error 
C 

ERR10 = (SETPT(lO) - XMEAS(21)) * 100. / 150. 
C 
c Proportional-Integral controller (Velocity Form) 
c GAIN= controller Gain 
c TAU!= Reset Time (min) 
C 

C 
DXMV = GAIN10*((ERR10 - ERROLD10)+ERR10*DELTAT*3./TAUI10) 

XMV(lO) = XMV(lO) + DXMV 
C 

C 

C 

ERROLD10 = ERR10 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE CONTRLll 
C 
c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(l2) 

C CONTROLLER COMMON BLOCK 
C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAINll, TAUill, ERROLDll 
COMMON/CTRLll/ GAINll, TAUill, ERROLDll 

C 
DOUBLE PRECISION ERRll, DXMV 

C 
c Example PI controller: 
c stripper Level controller 
C 
c calculate Error 
C 

ERRll = (SETPT(ll) - XMEAS(l?)) * 100. / 46. 
C 
c Proportional-Integral controller (Velocity Form) 
c GAIN= controller Gain 
c TAU!= Reset Time (min) 
C 

C 

C 

C 

DXMV = GAINll*((ERRll - ERROLDll)+ERRll*DELTAT*3./TAUill) 

XMV(ll) = XMV(ll) + DXMV 

C 

ERROLDll = ERRll 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE CONTRL13 
C 
c Discrete control algorithms 
C 
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C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(l2) 

C CONTROLLER COMMON BLOCK 
C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAIN13, TAUI13, ERROLD13 
COMMON/CTRL13/ GAIN13, TAUI13, ERROLD13 

C 
DOUBLE PRECISION ERR13, DXMV 

C 
c Example PI controller: 
c Stripper Level Controller 
C 
c calculate Error 
C 

ERR13 = (SETPT(l3) - XMEAS(23)) * 100. / 100. 
C 
c Proportional-Integral controller (velocity Form) 
c GAIN= Controller Gain 
c TAU!= Reset Time (min) 
C 

DXMV = GAIN13 1' ((ERR13 - ERROLD13)+ERR13*DELTAT*360./TAUI13) 
C 

C 

C 

SETPT(3) 

ERROLD13 

SETPT(3) + DXMV 1' 1. 017 / 100. 

ERR13 

C 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE CONTRL14 
C 
c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(l2) 

C CONTROLLER COMMON BLOCK 
C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAIN14, TAUI14, ERROLD14 
COMMON/CTRL14/ GAIN14, TAUI14, ERROLD14 

C 
DOUBLE PRECISION ERR14, DXMV 

C 
C Example PI Controller: 
C Stripper Level Controller 
C 
c calculate Error 
C 

ERR14 = (SETPT(l4) - XMEAS(26)) ;, 100. /100. 
C 
c Proportional-Integral controller (velocity Form) 
c GAIN= controller Gain 
c TAU!= Reset Time (min) 
C 

DXMV = GAIN14 * ( (ERR14 - ERROLD14) +ERR14;'DEL TAT;'360. /TAUI14) 
C 

SETPT(l) SETPT(l) + DXMV * 5811. / 100. 
C 

C 

C 

ERROLD14 ERR14 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE CONTRL15 
C 
c Discrete control algorithms 
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C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PY/ XMEAS(41), XMV(l2) 

C CONTROLLER COMMON BLOCK 
C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAINlS, TAUilS, ERROLDlS 
COMMON/CTRLlS/ GAIN15, TAUilS, ERROLDlS 

C 
DOUBLE PRECISION ERR15, DXMV 

C 
c Example PI controller: 
c Stripper Level Controller 
C 
c calculate Error 
C 

ERRlS = (SETPT(lS) - XMEAS(27)) * 100. / 100. 
C 
c Proportional-Integral controller (Velocity Form) 
c GAIN= Controller Gain 
c TAUI = Reset Time (min) 
C 

DXMV = GAINlS * ((ERR15 - ERROLD15)+ERR15*DELTAT*360./TAUI15) 
C 

SETPT(2) SETPT(2) + DXMV * 8354. / 100. 
C 

C 

C 

ERROLD15 ERR15 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE CONTRL16 
C 
c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(12) 

C CONTROLLER COMMON BLOCK 
C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAIN16, TAUI16, ERROLD16 
COMMON/CTRL16/ GAIN16, TAUI16, ERROLD16 

C 
DOUBLE PRECISION ERR16, DXMV 

C 
c Example PI Controller: · 
C Stripper Level Controller 
C 
c Calculate Error 
C 

ERR16 = (SETPT(l6) - XMEAS(18)) * 100. / 130. 
C 
c Proportional-Integral controller (Velocity Form) 
c GAIN= controller Gain 
c TAUI = Reset Time (min) 
C 

DXMV = GAIN16 * ((ERR16 - ERROLD16)+ERR16*DELTAT*3./TAUI16) 
C 

C 

C 

C 

SETPT(9) SETPT(9) + DXMV * 460. / 100. 

ERROLD16 ERR16 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE CONTRL17 
C 
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c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PY/ XMEAS(41), XMV(12) 

C CONTROLLER COMMON BLOCK 
C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAIN17, TAUI17, ERROLD17 
COMMON/CTRL17/ GAIN17, TAUI17, ERROLD17 

C 
DOUBLE PRECISION ERR17, DXMV 

C 
c Example PI controller: 
c Stripper Level controller 
C 
c calculate Error 
C 

ERR17 = (SETPT(l?) - XMEAS(8)) * 100. / 50. 
C 
c Proportional-Integral controller (velocity Form) 
c GAIN= Controller Gain 
c TAU!= Reset Time (min) 
C 

DXMV =GAIN17*((ERR17 - ERROLD17)+ERR17*DELTAT*3./TAUI17) 
C 

C 

C 

SETPT(4) SETPT(4) + DXMV * 15.25 / 100. 

C 

ERROLD17 ERR17 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE CONTRL18 
C 
c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PY/ XMEAS(41), XMV(l2) 

C CONTROLLER COMMON BLOCK 
C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAIN18, TAUI18, ERROLD18 
COMMON/CTRL18/ GAIN18, TAUI18, ERROLD18 

C 
DOUBLE PRECISION ERR18, DXMV 

C 
c Example PI controller: 
c stripper Level controller 
C 
c calculate Error 
C 

ERR18 = (SETPT(18) - XMEAS(9)) * 100. / 150. 
C 
c Proportional-Integral controller (Velocity Form) 
c GAIN= controller Gain 
c TAU!= Reset Time (min) 
C 

C 

C 

C 

C 

DXMV = GAIN18 * ((ERR18 - ERROLD18)+ERR18*DELTAT*3./TAUI18) 

SETPT(lO) = SETPT(lO) + DXMV * 150. / 100. 

ERROLD18 = ERR18 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE CONTRL19 
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C 
c Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(l2) 
DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAIN19, TAUI19, ERROLD19 
COMMON/CTRL19/ GAIN19, TAUI19, ERROLD19 

C 
DOUBLE PRECISION ERR19, DXMV 

C 
c Example PI controller: 
c Stripper Level Controller 
C 
c calculate Error 
C 

ERR19 = (SETPT(l9) - XMEAS (30)) t, 100. / 26. 
C 
c Proportional-Integral Controller (velocity Form) 
c GAIN= controller Gain 
c TAU!= Reset Time (min) 
C 

DXMV = GAIN19*((ERR19 - ERROLD19)+ERR19*DELTAT*360./TAUI19) 
C 

C 

C 

SETPT(6) SETPT(6) + DXMV t, 1. / 100. 

C 

ERROLD19 ERR19 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE CONTRL20 
C 
C Discrete control algorithms 
C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(12) 

C CONTROLLER COMMON BLOCK 
C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAIN20, TAUI20, ERROLD20 
COMMON/CTRL20/ GAIN20, TAUI20, ERROLD20 

C 
DOUBLE PRECISION ERR20, DXMV 

C 
c Example PI controller: 
c Stripper Level controller 
C 
c calculate Error 
C 

ERR20 = (SETPT(20) - XMEAS(38)) * 100. / 1.6 
C 
C Proportional-Integral Controller (Velocity Form) 
c GAIN= controller Gain 
c TAU!= Reset Time (min) 
C 

C 

C 

DXMV = GAIN20* ( (ERR20 - ERROLD20)+ERR20t'DEL TAT*900. /TAUI20) 

SETPT(l6) = SETPT(l6) + DXMV * 130. / 100. 

ERROLD20 = ERR20 
C 

RETURN 
END 

C 
C============================================================================= 
C 

SUBROUTINE CONTRL22 
C 
c Discrete control algorithms 
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C 
C 
C MEASUREMENT AND VALVE COMMON BLOCK 
C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PY/ XMEAS(41), XMV(12) 

C CONTROLLER COMMON BLOCK 
C 

DOUBLE PRECISION SETPT, DELTAT 
COMMON/CTRLALL/ SETPT(20), DELTAT 
DOUBLE PRECISION GAIN22, TAUI22, ERROLD22 
COMMON/CTRL22/ GAIN22, TAUI22, ERROLD22 

C 
DOUBLE PRECISION ERR22, DXMV 

C 
c Example PI controller: 
c Stripper Level controller 
C 
c Calculate Error 
C 

ERR22 = SETPT(l2) - XMEAS(13) 
C 
c Proportional-Integral Controller (Velocity Form) 
c GAIN= controller Gain 
c TAU!= Reset Time (min) 
C 

C 

C 

C 

DXMV = GAIN22*((ERR22 - ERROLD22)+ERR22*DELTAT*3./TAUI22) 

XMV(6) = XMV(6) + DXMV 

C 

ERROLD22 = ERR22 

RETURN 
END 

C============================================================================= 
C 

C 
C 

SUBROUTINE OUTPUT 

C MEASUREMENT AND VALVE COMMON BLOCK 
C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PY/ XMEAS(41), XMV(12) 
WRITE(2111,100) XMEAS 

100 FORMAT(4l(El3.5,1X)) 
C 

C 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE INTGTR(NN,TIME,DELTAT,YY,YP) 
C 
c Euler Integration Algorithm 
C 
C 

INTEGER I, NN 
C 

C 

C 

C 

DOUBLE PRECISION TIME, DELTAT, YY(NN), YP(NN) 

CALL TEFUNC(NN,TIME,YY,YP) 

TIME TIME+ DELTAT 

DO 100 I= 1, NN 
C 

YY(I) = YY(I) + YP(I) * DELTAT 
C 

100 CONTINUE 
C 

C 

RETURN 
END 

C============================================================================= 
C 

SUBROUTINE CONSHAND 
C 
C Euler Integration Algorithm 
C 
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C 

C 

C 

C 

DOUBLE PRECISION XMEAS, XMV 
COMMON/PV/ XMEAS(41), XMV(i2) 

INTEGER I 

DO 100 I=l, 11 
IF (XMV(I).LE.0.0) XMV(I)=O. 
IF (XMV(I).GE.100.0) XMV(I)=100. 

100 CONTINUE 

RETURN 
END 
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