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PREFACE 

Coalbed methane (CBM) is an important additional supply for meeting the 

increasing demand for natural gas. Moreover, the enhanced CBM recovery technology 

offers realistic opportunities for carbon dioxide (CO2) sequestration. 

Accurate modeling of the adsorption behavior of CBM gases (CO2, methane, and 

nitrogen) is essential in CBM operations and in CO2 sequestration. Further, knowledge of 

the competitive adsorption of mixed coalbed gases is required to elucidate mechanisms 

for the enhanced recovery and CO2 sequestration processes. Among the various theories 

that can be used for describing high-pressure adsorption, the two-dimensional (2-D) 

equations of state (EOSs) are particularly attractive. 

In this study, new temperature relations were developed for the two-dimensional 

(2-D) equation of state (EOS) parameters to facilitate precise representations and accurate 

predictions of high-pressure, supercritical pure-gas adsorption encountered in coalbed 

methane (CBM) recovery and carbon dioxide (CO2) sequestration. One-fluid mixing 

rules and the Wong-Sandler excess Gibbs free energy mixing rules were applied to 

extend the 2-D EOSs to mixture adsorption modeling. In addition, an iteration function 

method (JFM) for mixture adsorption equilibrium calculations was developed for 2-D 

EOSs, and the robustness of the JFM algorithm was evaluated for CBM-type systems. 

Systematically-selected adsorption measurements were conducted to supplement 

existing data on carbon matrices. The measurements were conducted for pure methane, 

nitrogen, CO2, and their mixtures on an activated carbon and on selected coals at 
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temperatures of 319 Kand 328 Kand pressures to 13.8 MPa. These data were used to 

support the model development efforts. 

The new temperature relations for the 2-D EOS parameters appear effective in 

modeling pure-gas adsorption on carbon matrices at supercritical and near-critical 

regions. The 2-D Peng-Robinson (PR) EOS with the new temperature relations can 

represent adsorption on activated carbon and coals within their expected experimental 

uncertainties. Further, the new temperature relations, which are generalized in terms of 

adsorbate properties and accessible adsorbent characterizations, can represent the 

adsorption data on activated carbon within 3% average absolute deviation (AAD) and 

predict the adsorption isptherms on activated carbon within an AAD of 9% or within 

three times the expected experimental uncertainties. Similarly, the 2-D EOS parameters 

are effective in modeling pure-gas adsorption on wet coals with an AAD of 5%, when the 

coal moisture content is above its equilibrium value. 

The 2-D EOSs are capable of predicting binary and ternary gas adsorption within 

twice the experimental uncertainties, on average. Further, the total and individual 

component adsorption can be represented to within the expected experimental 

uncertainties with the use of binary interaction parameters. The 2-D PR EOS with the 

Wong-Sandler mixing rules provide a marginally better quality of fit, which suggests the 

possibility of nonrandom mixing in the adsorbed phase. 

The present results involving many CBM adsorption systems indicate that the 

new IFM algorithm for the 2-D EOSs is effective in performing equilibrium mixture 

adsorption calculations based on feed compositions. 
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CHAPTER 1 

INTRODUCTION 

1.1 Industrial Context and Scientific Significance 

Natural gas provides an alternative to oil or coal as an energy resource. 

According to the United States Department of Energy, in the year 2000, the United States 

consumed 22.5 Trillion cubic feet (Tcf) of natural gas, which was approximately 20% of 

all the fossil fuel used. Further, the demand for natural gas is predicted to rise 

significantly in the future; specifically, more power plants are using natural gas to 

generate electricity, and more factories are using it both as a fuel and as a raw material 

for a variety of chemicals. These expanded operations are motivated by access to 

distributed gas pipelines and practically pollution-free utilization ofthis energy resource. 

The United States has vast resources of natural gas available for extraction. The 

estimate of technically recoverable natural gas resources is 1,190 Tcf according to the 

Energy Information Administration, 1,779 Tcf according to the National Petroleum 

Council, and 1,090 Tcf according to the Potential Gas Committee [NaturalGas.org]. 

However, the estimated recoverable natural gas can only last 50 to 80 years at current 

consumption rate. Coalbed methane (CBM), an unconventional natural gas resource, has 

received significant attention since the 1990's. As reported by the United States 

Geological Survey, the in-place CBM resources of the United States are estimated to be 
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more than 700 Tcf, of which about 100 Tcf may be economically recoverable 

[USGS.gov]. Compared with the recoverable natural gas in the conventional gas 

reservoirs, the amount of recoverable CBM is significant. Currently, CBM constitutes 

about 7% of the natural gas production in the USA. 

The majority of the coalbed methane is adsorbed in coal pore structures. The first 

stage in the production of CBM is called primary recovery and utilizes the high pressure 

in the reservoir to drive the methane out. The second stage is called enhanced coalbed 

methane (ECBM) recovery, which uses nitrogen (N2) or carbon dioxide (CO2) to enhance 

the CBM recovery processes. CO2 enhanced recovery is more promising not only 

because CO2 displaces more methane but also because CO2 can be sequestered in 

coalbeds. CO2 is a well-known greenhouse gas and the CO2 concentration change in the 

atmosphere is believed to be the main cause of global warming; thus, CO2 enhanced 

recovery provides the additional benefit of CO2 sequestration. 

Thermodynamic models for adsorption provide crucial information for designing 

processes to sequester CO2 and recover natural gas from unminable coalbeds. These 

models can describe the quantity of gas initially residing in the coalbeds and how, 

through the process of ECBM recovery, reservoir changes in pressure, temperature, and 

gas composition affect the quantity and quality of the recovered natural gas. 

CBM production and CO2 sequestration are not the only applications of 

adsorption modeling. In industry, adsorption processes are used extensively in fluids 

separation and purification. Thus, research to develop more reliable adsorption models 

may have a significant economic impact. 
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Equilibrium models for gas adsorption relate the amount of adsorption to the 

pressure, temperature, and compositions in the gas phase. In 1918, Langmuir described 

the adsorption equilibrium from a kinetics point of view. The Langmuir model is still 

widely used because of its simplicity and its capability to model gas adsorption behavior 

at low pressures. Since then a number of adsorption models have been developed, 

including the BET (Brunauer, Emmett and Teller) model [Brunauer et al., 1938], the 

ideal adsorbed solution (IAS) model [Myers et al., 1965], the two-dimensional equations 

of state [see, e.g., Zhou et al., 1994], the simplified local density (SLD) model [see, e.g., 

Fitzgerald et al., 2003], the pore filling model [Dubinin, 1966], the local density model, 

and the lattice theory [see, e.g., Sudibandriyo, 2003]. 

The two-dimensional (2-D) equations of state (EOSs) are analogues of three­

dimensional (3-D) EOSs. They depict the adsorbed phase as a two-dimensional interface, 

where the adsorbed molecules are assumed to be mobile and to have lateral interactions. 

In this work, we will focus on the 2-D EOSs because they offer several advantages, 

including: 

1. Ease of implementation of a well-developed framework; the 2-D EOSs are 

analogues of the 3-D EOSs used for pressure-volume-temperature (PVT) behavior 

modeling 

2. Availability of 2-D mixing rules for multicomponent mixtures in direct analogy to 

3-D mixing theories 

3. Similarity of the adsorption algorithms to vapor-liquid equilibrium (VLE) 

algorithms; thus the ability to facilitate CBM process simulations 
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In comparison with the Langmuir model, which calls for the localized adsorption 

assumption, the 2-D BOSs are equipped with better theory and, in practice, provide better 

quality of fit to adsorption data. However, attention to the 2-D BOSs was very limited, 

probably because of failures associated with applying the 3-D BOS parameters in 2-D 

EOS models. Considering that the adsorbent surface has significant interaction with the 

adsorbed molecules, it is quite. understandable that direct application of the 3-D EOS 

parameters with simple modifications would not lead to satisfactory results. 

In 2-D BOS theory, fluid-solid interactions are accounted for indirectly. More 

precisely, the fluid-solid interaction is implied in the regressed 2-D BOS parameters. 

Further, no sound theoretical treatment is currently available to facilitate 2-D EOS 

parameter determination based on 3-D EOS parameters values. 

Our analysis indicates that the 2-D BOSs have the potential to describe the 

adsorption behavior using adsorbent characterization and gas properties. In the present 

work, capabilities of the 2-D EOSs were extended to pure~gas adsorption predictions 

based on adsorbent characterization, and mixture adsorption using Wong-Sandler mixing 

rules. Also, an iteration function method was developed to enhance the multicomponent 

adsorption calculations. 

1.2 Objectives and Plans 

The goal of the present work was to analyze, develop, and evaluate the 2-D EOS 

models and the associated equilibrium algorithms as they apply to pure-gas and 

multicomponent adsorption, especially the adsorption of CO2, methane, and nitrogen on 
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carbon matrices including coals and activated carbons. The specific objectives for this 

project are: 

1. Assemble an adsorption database, including pure-gas and multicomponent 

adsorption isotherms on carbon matrices at various temperatures, pressures, and 

compositions. 

2. Conduct selected adsorption measurements for pure methane, nitrogen, CO2, and 

their mixtures on an activated carbon (AC) and on selected coals at temperatures 

from 304 K to 320 K and pressures to 13.8 MPa. The newly-acquired data are 

used to enhance the assembled adsorption database. 

3. Evaluate the capability of 2-D EOSs to model the pure-gas adsorptions. 

4. Generalize the temperature relations for the 2-D BOS parameters, expecting 

predictions for pure-gas adsorption within three times the experimental 

uncertainties. 

5. Evaluate the capability of one-fluid mixing nil es to model the mixture adsorption. 

6. hnplement the Wong-Sandler mixing rules with Non-Random Two-Liquid 

(NTRL) model to the 2-D EOSs. 

7. Develop a robust iteration function method for multicomponent adsorption 

calculations. 

Chapter 2 contains a review of the fundamentals of adsorption. Chapter 3 outlines 

a number of relevant adsorption models and characterization of carbon adsorbents. 

Chapter 4 provides descriptions of the experimental work and the adsorption database 

used in this work. In Chapter 5, the two-dimensional equations of state are reviewed and 

discussed. In Chapter 6, the capabilities of the 2-D EOSs to model the pure-gas 
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adsorption are evaluated and temperature relationships for the 2-D BOS parameters are 

developed; pure-gas adsorption predictions based on adsorbent structure are also 

suggested in this chapter. Chapter 7 presents an evaluation of the capability of one-fluid 

mixing rules to model the mixture adsorption, and it summarizes the implementation of 

the Wong-Sandler mixing rules within the generalized 2-D BOS. Chapter 8 contains a 

description of a new iteration function method for multicomponent adsorption using 2-D 

BOSs, and Chapter 9 contains the conclusions and recommendations drawn from this 

study. 

This study was part of an extensive research project dealing with high-pressure 

gas-adsorption modeling [Gasem, et al., 2003]. As such, materials included in Chapters 3 

and 4, as well as the adsorption database used in the model development are a product of 

a collective effort involving the author, Mahmud Sudibandriyo (2003), and James 

Fitzgerald (2003). 
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CHAPTER2 

FUNDAMENTALS OF ADSORPTION 

2.1 Phenomenon of Adsorption 

When a certain number of gas molecules strike continually upon a surface and 

stay there for a certain length of time before re-evaporating, the concentration of the gas 

at this surface will be higher than that of the gas in the bulk phase [ de Boer, 1968]. This 

condensed phase is called an adsorbed phase and this phenomenon is called adsorption. 

The cause for the retention of gas molecules on the surface is due to the attractive 

forces provided by the surface. The four basic types of contributions to the adsorbate­

adsorbent interactions are dispersion, repulsion, electrostatic, and chemical bond [Yang, 

2003]. Chemical bonding will lead to chemical adsorption, which is not within the scope 

of this work. For physical adsorption, the adsorbate-adsorbent potential is: 

(2-1) 

where <Dn is dispersion energy, <DR is close-range repulsion energy, <D,nct is induction 

energy (interaction between an electric field and an induced dipole), <DFµ is interaction 

between an electric field (F) and a permanent dipole (µ), <DFQ is interaction between a 

field gradient (F) and a quadrupole with a moment Q [Yang, 2003]. 
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2.2 Fundamentals of Adsorption 

The first and second laws of thermodynamics give the fundamental property 

relations for an adsorption system. Using these relations, the governing equations for 

multicomponent gas adsorption can be derived as [see, e.g., Zhou, 1994]: 

µ g = µa for i=l NC 
I I ' 

(2-2) 

where µf and µ~ are the chemical potentials of the component in the gas phase and the 

adsorbed phase, respectively; NC is the number of components in the adsorption system. 

Equation 2-2 states the equilibrium criteria for a closed adsorption system. Classical 

thermodynamics, statistical thermodynamics, and/or molecular simulations can be 

applied to calculate the chemical potential in the adsorbed phase. In all cases, however, 

knowledge of the interactions in the adsorption system is required for reliable 

descriptions of adsorption equilibria; although, it is often difficult to include all of the 

physical complexity into one model. 

2.2.1 Classical Thermodynamics 

Figure 2-1 illustrates a typical adsorption system, in which the adsorbed phase is a 

interface between the bulk gas phase and the solid adsorbent. To develop the working 

equilibrium equations in terms of fugacity, we employ the constructs of the fundamental 

property relations. The fundamental property relation for the adsorbed phase using the 

Gibbs approach [see, e.g., Zhou, 1994] is: 

d(nG) = -(nS)dT + (na)dn + Iµidni (2-3) 
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where 1t is spreading pressure, a is the molar area of the adsorbate, and the component 

chemical potential in the adsorbed phase may be given as: 

=G~ 
I 

(2-4) 

Gas Phase "g" 

P, V, T,n 

Adsorbed Phase "a" 
1t, A, T, n 

Figure 2-1. Adsorption Equilibrium System 

Equation 2-2 can thus be expressed as: 

Gf =G: (2-5) 

Differentiating Equation 2-5, it leads to: 

dGf =dG: (2-6) 

By definition, the Gibbs free energies in the adsorbed phase and bulk phase are: 

dG~ = RTdlnf.a 
I I (2-7) 

dG~ = RTdlnf.g 
I I (2-8) 

Combining Equations 2-6 to 2-8, it yields: 

(2-9) 

Integrating both sides of Equation 2-9, it results in: 

9 



p 7t 

f dlnf\g = f dlnft (2-10) 
p"' 1t"' 

or, 

(2-11) 

At very low pressure, ft ( n • ) = n i • and f} (P • ) = Pi· . Thus: 

(2-12) 

For vapor-liquid equilibrium, the equal-chemical potential equations lead to the following 

equal-fugacity equations: 

(2-13) 

The difference between Equations 2-12 and 2-13 is in the reference states used. 

Implementation of Equation 2-12 requires a 3-D EOS for the gas phase and a 2-D 

EOS or an adsorption solution model for the adsorbed phase. Detailed discussion of this 

subject is given in Chapters 5 though 7. 

2.2.2 Statistical Thermodynamics 

Partition functions can be used to describe the state of adsorbed molecules. The 

partition function can account for both the adsorbate-adsorbate interaction and adsorbate-

adsorbent interactions. Different assumptions can be made to derive the partition 

function. Once a partition function, Q, of a system containing N molecules occupying an 

area A is constructed, the chemical potential of a molecule is then obtained from the 

following relation [see, e.g., Do, 1998]: 

µa _ (BlnQ) -----
kT aN T,A 

(2-14) 
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As stated earlier, at equilibrium, the chemical potential of an adsorbed molecule is equal 

to the chemical potential of a gas molecule. Thus, using different partition functions for 

the adsorbed phase and different models to calculate the chemical potential in the gas 

phase, various models can be derived. 

2.2.3 Kinetics 

The adsorption process can also be modeled from the point of view of kinetics 

[see, e.g., Zhou, 1994]. At equilibrium, the rate of adsorption, Ra, is equal to the rate of 

desorption, Rd , : 

(2-15) 

The rate of adsorption is: 

(2-16) 

where ka is the adsorption rate constant, and 8 is the fractional coverage. The rate of 

desorption is: 

(2-17) 

where kd is the desorption rate constant. Thus, combining Equations 2-15 through 2-1 7 

yields: 

e = ro = BP 
L l+BP 

(2-18) 

where B is the Langmuir constant, and L is the maximum adsorption capacity. 

Equation 2-18 is the famous Langmuir model. A series of models have been developed 

based on a kinetics point of view, including the BET (Brunauer, Emmett and Teller) 

model [Brunauer et al., 1938]. 
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3 .1 Adsorption Models 

CHAPTER3 

ADSORPTION THEORIES 

Adsorption is determined mainly by the interactions among the gas molecules and 

the surface. The nature of the adsorbent and adsorbate will lead to different adsorption 

behaviors. For example, the characteristic of the adsorbent ( e.g., whether it is porous or 

not) and the conditions of the adsorbate ( e.g., whether it is in sub-critical or supercritical 

region) will affect the shape of the adsorption isotherms. Typically, there are five types 

of adsorption isotherms [Brunauer et al., 1940] as shown in Figure 3-1. 

In 1918, Langmuir derived the first well-known adsorption model - the Langmuir 

model. Although the Langmuir model can only represent Type I adsorption, other 

models were developed based on this theory. In 1938, The BET (Brunauer, Emmett and 

Teller) model was developed, and it has the capability to represent Types I, II, and III 

adsorption. Modified BET models can represent all five adsorption types. 

Although the models based on kinetics had success in representing adsorption 

behaviors, their semi-empirical nature limited their predictive capabilities. 

Thermodynamically rigorous models have also been developed. Models based on 

classical thermodynamics, for example, the ideal adsorption solution (IAS) 
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model, and models based on statistical thermodynamics, for example, the lattice theory, 

not only can represent the adsorption data, but they also have the capability to predict 

adsorption behavior. 

Type I Type II Type III 

Type IV TypeV 

Figure 3-1. Types of Adsorption Isotherm 

In this chapter, a number of adsorption models will be reviewed briefly, followed 

by a brief review of carbon adsorbents. Specifically, in this section, the following 

adsorption models will be outlined: the Langmuir model, the BET (Brunauer, Emmett 

and Teller) model, the ideal adsorbed solution (IAS) model, the two-dimensional 

equations of state, the pore filling model, the lattice theory, and the simplified local 

density model. Since the properties of the gas molecules are well known, they will be 

summarized in a table in Chapter 6 without detailed discussions. 
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The Langmuir Model 

The Langmuir model is derived to describe adsorption on a flat surface as given 

by the kinetic theory. At equilibrium, a continual process of bombardment of molecules 

onto the surface and a corresponding evaporation of molecules from the surface maintain 

a zero rate of accumulation at the surface. The assumptions of the Langmuir model are 

[see, e.g., Do, 1998]: 

1. The surface is homogeneous; that is, the adsorption energy is constant over all 

sites. 

2. Adsorption on the surface is localized, which means that the atoms or molecules 

are adsorbed at definite, localized sites. 

3. Each site can accommodate only one molecule or atom. 

Based on the assumptions above, the Langmuir model can be derived as: 

e =OJ= BP 
L l+BP 

(3-1) 

where 8 is the fractional coverage, OJ is the amount adsorbed, B is the Langmuir constant, 

L is maximum adsorption capacity. When extended to mixture adsorption, the Langmuir 

model becomes: 

(3-2) 

where subscript "i" represents component i, and y is the mole fraction in the gas phase. 

The extended Langmuir is not thermodynamically correct unless the maximum capacity 

Li is the same for each component [see, e.g., Do, 1998]. 

14 



The BET Model 

The Langmuir model is for monolayer coverage. However, in the adsorption for 

sub-critical adsorbates, molecules first adsorb onto the solid surface in a layering process, 

and when the pressure is sufficiently high ( about 0.1 of the vapor pressure) multiple 

layers are formed. The BET theory, which accounts for the layering process, was first 

developed by Brunauer et al. (1938). The assumptions of the BET model are: 

1. The surface is homogeneous; that is, the adsorption energy is constant over all 

sites. 

2. Adsorption on the surface is localized, which means that the atoms or molecules 

are adsorbed at definite, localized sites. 

3. Each site can accommodate only one molecule or atom. 

4. There is no limit to the numbers of layers. 

The first three assumptions are the same as in Langmuir model. The BET model 

can be simplified and written as: 

co CP 

L - (P0 -P)[l+(C-l)(P/PJ] 
(3-3) 

where PO is the vapor pressure, L and C are model parameters. The BET model can 

represent the adsorption isotherms from Types I to III by adjusting the parameters L and 

C. However, it cannot represent the plateau in Types IV and V. Brunauer et al. (1940) 

modified the BET model to represent Type IV and V isotherms. 

The BET model is widely used to determine the surface area for an adsorbent. 

Nitrogen adsorption at 77 K is commonly used to estimate the surface areas for carbon 

matrices. 

15 



The Ideal Adsorbed Solution (IAS) Model 

The ideal adsorbed solution model is for the mixture adsorption only. It was 

developed by Myers and Prausnitz (1965). The IAS is an adsorption analog to the 

Raoult's Law for vapor-liquid equilibrium. The assumptions of the IAS model are [see, 

e.g., Zhou, 1994]: 

1. The adsorbed solutions and the gas phase are ideal. 

2. All activity coefficients in the adsorbed phase are unity. 

The equilibrium condition for the adsorbed phase and the gas phase is: 

Pyi = xiPo,i (n) (3-4) 

where P0 i is the pressure of the equilibrium gas phase, which corresponds to the 

spreading pressure 1t for the adsorption of component i. To perform mixed-gas 

adsorption calculations, a pure-component model is needed. Any pure-component model 

can be utilized in the IAS calculation. 

Two-Dimensional Equations of State 

The 2-D EOS is analogous to the three-dimensional equations of state, simply by 

replacing the pressure, P, with the spreading pressure, n, and the specific volume, v, with 

the specific surface density, cr. The assumptions of the 2-D EOS model are [DeGance, 

1992]: 

1. The actual interfacial region, which itself is three-dimensional, can be treated as 

an imaginary mathematical surface, a two-dimensional phase with its own 

thermodynamic properties. 

2. The adsorbent is supposed to be thermodynamically inert. 
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3. The adsorbent possesses a temperature-invariant area, which is equally accessible 

to all adsorbates. 

4. The surface is homotattic, i.e., it is made up of many homogeneous sub-regions. 

5. The absolute definition of adsorption applies; this definition differs from the 

Gibbs definition, which is the one usually employed for low-pressure data 

collected using volumetric methods, because it accounts for the volume occupied 

by the adsorbed phase. 

The popular generalized cubic 3-D EOS used m vapor-liquid equilibrium 

calculations is given as: 

+ ap 1-b = RT [ 
2 ] 

p 1+ Ubp+ W(bp) 2 [ p] p (3-5) 

where a and b are the traditional EOS parameters, and numerical values of U and W may 

be specified to give various forms of 3-D EOSs. 

The general 2-D analog can be written as follows (with an additional parameter m 

for added model flexibility) [Zhou et al., 1994]: 

(3-6) 

or, [ An+ aro
2 

2 ][1-epror ]= roRT 
1 + U~ro + W(Pro) 

(3-7) 

where A is the specific surface area, n is the spreading pressure, cr is the surface density 

of the adsorbate, ro=crA is the specific amount adsorbed, and a= a 2 / A and ~ = b 2 / A are 

model parameters. 
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The Pore Filling Model 

Most of the models discussed above are based on the flat surface assumption. 

However, most of the adsorbents, especially carbon adsorbents, are porous. The theory 

of volume filling micropores (TVFM) was first introduced by Dubinin (1966). The 

assumptions of the TVFM model are [Dubinin, 1966]: 

1. The adsorbate fills the micropores via a volume filling mechanism. 

2. No discrete monolayer is formed in the pores. 

Pure-component isotherm of Dubinin-Astakhov (D-A) equation 1s given as 

follows [see, e.g., Do, 1998]: 

(3-8) 

where parameter n describes the surface heterogeneity, Vis the adsorption volume, Vs is 

the maximum volume, P o,i is the vapor pressure, E is a characteristic energy, and p is the 

coefficient of similarity. To extend TVFM to multicomponent adsorption, mixture 

equilibrium models such as IAS might be applied. 

The Adsorption Lattice Theory 

The statistical lattice theory concept was first proposed by Ono and Kondo in 

1960. Aranovich et al. (1996, 1997, 2001) recently developed a more general formalism 

of this model, in the context of adsorption of solutes in liquid solutions. The assumptions 

for the lattice Ono-Kondo model are [see, e.g., Sudibandriyo, 2003]: 

1. The fluid systeni is assumed to be composed of layers of lattice cells that contain 

fluid molecules and vacancies. 
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2. Molecular interactions are assumed to exist only between the nearest neighboring 

molecules. 

3. Chemical equilibrium between the adsorbed layers and the bulk is given by the 

equality of the chemical potential in each layer and the bulk. 

When the equilibrium exists between the gas phase and a multilayer adsorbed 

phase, the expression for the configurational free energy of the first and the t1h adsorbed 

layer are: 

n n n n 

Alst = LNfC; Eii +Eis)+ LL Nfxj,2ndf;ij +kTLNf lnxf 
i 

C MsT n n 1/T 

+ P 8 LLL'liixfx~ f (\J'J + \J'i:)d(l/T) 
I J Q 

(3-9) 

and 

n n n n 

A 1th = LN:C; i::iJ++LL N:(xi,t-1 +xi,t+I)tij +kTLNf lnxf 
i i i 

(3-10) 

In these equations, N is the number of adsorbate molecules i, M is total number of lattice 

cells in the corresponding layer, Xi (= Ni,t /M1) is the reduced density or fraction of sites 

occupied by adsorbed molecules i in layer t, and Cp is the coordination number in the 

parallel direction. The adsorbate-adsorbate energy interaction parameter is expressed by 

Eii; the adsorbate-adsorbent surface energy interaction parameter is expressed by Eis, and 

LliJ = 2 &iJ - ( &u + &jj). 'PiJ, is the ratio of the probability for having a molecule i around an 

arbitrary molecule j, to the probability of molecule i occupying the lattice cell. T is the 

absolute temperature and k is Boltzmann's constant. 
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The condition for phase equilibrium between the adsorbed layers and the bulk 

phase is given by the equality of the chemical potential in each layer and the bulk phase, 

(3-11) 

The chemical potential in each layer or the bulk is defined as: 

( 8Ait J µi,t = 8N . 
1, t T ,M ,Nn,t 

(3-12) 

Following the equilibrium expression, the Gibbs excess adsorption is defined as: 

m 

r =C "°'(x -xb ) 1 1~ t, t I , 
(3-13) 

t= l 

Here, the prefactor C represents the maximum capacity of the adsorbent for adsorbent "i" 

and might be presumed to be a parameter taking into account the fraction of the active 

pores of the adsorbent and other structural properties of the adsorbent. The number of 

layers, m, however, is specific to the adsorbate-adsorbent system and needs to be 

determined before the Ono-Kondo model can be applied. This number is usually chosen 

based on the best fit to the experimental adsorption data set [Sudibandriyo, 2003] . 

0 0 
0 

0 0 
0 0 0 

0 0 0 0 0 
C C C C C, C 0 0 

ADSORBENT 

Figure 3-2. Multilayer Adsorption 

Bulk Phase, µb 

3rd Laver Ads. 

2"d Laver Ads. 

I" Laver Ads. 
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A commonly used simplification of the model is the assumption of monolayer 

adsorption. Sudibandriyo et al. (2003) assumed that the adsorption process is directly 

mapped onto the two parallel graphite planes as shown in Figure 3-3. 

Benard et al. (1997, 2001) used this approach for the adsorption of pure methane 

and hydrogen on activated carbon. In this approach, the equilibrium equation becomes: 

(3-14) 

where Cp = 6 , Cv = 1 and c = 8 for the hexagonal lattice cell. 

For the pure adsorption inside the slit approach of Benard et al. (1997, 2001), the 

number oflayers, mis equal to two and Equation 3-13 becomes: 

(3-15) 

where Pads is the adsorbed phase density, and Pmc is the adsorbed phase density at the 

maximum adsorption capacity. Here, the fractional coverage in each phase is related to 

its phase density, i.e., Xads = Pads IPmc and Xb = Pb I Pmc· The bulk density is calculated 

separately using an accurate equation of state. For the homogeneous structure, 2C I Pmc 

represents the specific adsorbed-phase volume of the adsorbent and the 2Cpads I Pmc term 

in Equation 3-15 is the absolute adsorption. 

The Simplified Local Density (SLD) Model 

The local density models describe the adsorption behavior based on fluid-fluid 

and :fluid-surface interactions. The assumptions of the simplified local density model are 

[see, e.g., Fitzgerald, 2003]: 
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1. The chemical potential at any point next to adsorbent surface is equal to the bulk 

phase chemical potential. 

2. The chemical potential at any point above the surface is the sum of the fluid-fluid 

interaction and fluid-solid interaction potentials. 

3. The chemical potential of the fluid for each point in space is estimated from mean 

field theory. 

The SLD model is formulated in terms of the Gibbs excess adsorption (noibbs), 

defined as the excess number of moles per unit mass of adsorbent, or: 

L-crffl2 

nGibbs = A/2 f (p(z)- Pb )dz (3-16) 

For the slit geometry considered and as shown in Figure 3, the lower limit of integration 

crff/2 is the center of the adsorbed molecule on the plane surface, and the upper limit, L-

CJfr/2, is the slit width adjusted by half of the fluid diameter CJff. Chen and Wong, Lee's 

partially integrated 10-4 Lennard-Jones potential is used to describe the fluid-solid 

interactions. The fluid-solid potential, represented by \Jf(Z), is defined on a molecular 

basis by: 

f..lrs (z) =NA · \f/(z) (3-17) 

\fl Z - 4n E 0'2 fs - - fs ( 
(JIO 1 4 (J4 J 

( )- Patoms fs fs S(z')IO 2 ~(z'+(i-l)·crsJ4 
(3-18) 

where l':fs is the fluid-solid interaction energy parameter and Patoms = 0.382 atoms/A2 . 

The molecular diameter of the adsorbate and the carbon interplanar distances are CJ ff and 

crss, respectively. The carbon interplanar distance was adopted to be 0.335 nm [Chen et 

22 



al., 1997]. For convenience, the fluid-solid diameter O"fs and the dummy coordinate z' are 

defined as O'rs = (crff + cr5s}/2 and z'= z + 0'5/2. 

The local density is determined by relating the fluid-fluid chemical potential to 

the fugacity in the gas phase as given by [Fitzgerald et al. 2003]: 

In( fff [a(zi,p(z)]) = -('I'(z) + k~(L- z)) (3-19) 

An equation of state can be used to determine the bulk density, the bulk fugacity and 

fluid fugacity. 

3 .2 Review on Carbon Adsorbents 

Alumina, silica gel, activated carbon, and zeolite are commonly used adsorbents. 

fu this work, coals and activated carbons are of great interest. The following is taken 

closely from our previous work of Sudibandriyo (2003). 

Activated carbon has the ability to adsorb various substances both from gas and 

liquid phases. It is a processed carbon material with a highly developed porous structure 

and a large internal specific surface area. It consists mainly of carbon (87-97%) and, in 

addition, contains such elements as hydrogen, oxygen, sulfur and nitrogen, as well as 

various compounds either originating from the raw material used or generated during its 

production. The pore volume of activated carbons usually greater than 0.2 cm3/g; 

sometimes it even exceeds 1 cm3 lg. The inner specific surface area is generally greater 

than 400 m2/g but in many instances it is greater than 1000 m2/g. 

The principal properties of manufactured activated carbons depend on the type 

and properties of the raw material used. Most important raw materials are wood 
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(sawdust), charcoal, peat, peat coke and coals. Coconut shells are also usually used to 

produce activated carbon with higher surface area. However, hard coals currently are the 

best raw materials. About 60% of activated carbon· production in the United States is 

based on hard coal. 

Among the activated carbon properties, the pore distribution is the most important 

one affecting its gas adsorption behavior. The volume of macropores (>50nm), 

mesopores (<50nm and >2nm), and micropores (<2nm) in activated carbons are usually 

in the range 0.2-0.8 cm3/g, 0.1-0.5 cm3/g and 0.2-0.6 cm3/g. The surface area of the 

micropores, however, might contribute to 99% of the total surface area of the carbon 

[Kadlec et al., 1984]. 

Knowledge of coals is crucial for the adsorption modeling in coalbed methane 

recovery and CO2 sequestration. The physical and chemical structural of coal are 

summarized by Meyers (1982) and listed below. 

Table 3-1. Gross Open Pore Distribution in Coals 

Anthracite Lignite 
% Volume 
>30nm 11.9 77.2 
1.2-30 nm 13.1 3.5 
<1.2 nm 75.0 19.3 

%Area 
>30nm 0.4 7.3 
1.2-30 nm 1.1 1.2 
<1.2 nm 98.5 91.5 

Coal is a porous material. Table 3-1 shows the pore volumes in different diameter 

ranges for the highest (anthracite) and the lowest (lignite) rank of coal [Gan et al., 1972]. 

Pore volume contained in pores > 30 nm in diameter is estimated from mercury 
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porosimetry. Pore volume contained in pores in the diameter range 1.2-30 nm is 

estimated from the adsorption of the nitrogen isotherms using the Cranston and Inkey 

method (1957). Pore volume contained in pores < 1.2 nm in diameter is calculated by 

subtracting the total open volume accessible to helium from the volume obtained from 

both mercury porosimetry and nitrogen adsorption. The results show that the higher the 

coal rank is, the higher percent is the pore volume contained in the micropores (IUP AC 

defined macropores, mesopores, and micropores as pores in the diameter range of> 50 

nm, 2-50 nm and < 2 nm, respectively). These results are also in good agreement with 

the pore size distribution obtained by Medek in 1977, who used the CO2 adsorption 

isotherm in his method. The surface area distribution shown in Table 3-1 also indicates 

that the micropores play a major role for the adsorption of a small molecule. 

The structure of coal at the molecular level of 10-9 -1 o-8 m consists of 

submicroscopic chemical species aggregated into crystalline and amorphous zones in 

both organic and mineral regions. This can be observed only by spectroscopic techniques 

and by effect on chemical reactivity. Listed below is the information observed using X­

Ray diffraction for coals with a carbon content of 65-95% [Ergun et al., 1959]: 

1. Carbon-carbon distances similar to those of graphite, with C-C bands about 0.14 

nm in length 

2. Interlayer distances between lamellae similar to those of graphite 0.343-0.354 nm 

for coals with carbon content of 84-94% 

3. Polynuclear aromatic rings ranging from two to four condensed structures in coals 

with carbon content in the range 65-90% 
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CHAPTER4 

EXPERIMENTS AND ADSORPTION DATA 

4.1 Review of Experimental Techniques 

In this section, four widely used gas adsorption experimental techniques, 

volumetric, gravimetric, gas flow, and chromatographic techniques, are reviewed briefly. 

The volumetric gas adsorption method calls for measuring the gas pressure in a 

calibrated constant volume cell, at a set temperature. The pressure and temperature of 

each dose of gas are measured and the gas is allowed to enter the adsorption bulk. After 

adsorption equilibrium has been established, the amount adsorbed is calculated from the 

change in pressure. This technique can only be used to measure the gas adsorption point­

by-point, which is referred to as a discontinuous procedure. Also, when building a 

complete isotherm, additional successive errors might result from the dosing device. 

Because of its simplicity, however, many researchers use this technique [Reich et al., 

1980; Vermesse et al., 1996; Krooss et al., 2002]. 

The gravimetric technique directly determines the amount adsorbed from the 

increase in mass measured by a balance. A simple gravimetric method uses a spring 

balance to determine the amount of gas adsorbed. However, in recent years spring 

balances have been largely superseded by electronic microbalance [Vaart et al., 2000; 

Salem et al., 1998; Beutekamp et al., 2002; Frere et al., 2002; Humayun et al., 2000]. 
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An extremely sensitive gravimetric technique is based on the effect of change of mass on 

the resonance frequency of vibrating quartz crystal. In this case, the adsorbent must be 

firmly attached to the crystal [Krim et al., 1991]. 

In gas flow techniques, a flowmeter is used to determine the amount of gas 

adsorbed. The flowmeter can be a differential type [Nelsen et al., 1958] or a thermal 

detector [Pieters et al., 1984]. The thermal detector provides a signal, which depends on 

the heat capacity, the thermal conductivity, and the mass flow rate of the gas. These gas 

flow techniques can be used for either a continuous or discontinuous procedure. 

The chromatographic technique involves a column packed with the adsorbent to 

separate the flowing species [Haydel et al., 1967]. The chromatographic analysis method 

is simple and fast in producing data but suffers from inherently larger errors [ de Boer, 

1968]. 

Detailed descriptions of the above experimental methods are given elsewhere 

[Sudibandriyo, 2003]. 

4.2 Experimental Method 

Our experiments are based on the volumetric method. A brief description of the 

apparatus and procedures is as follows. The following is taken closely from our previous 

work of Gasem et al. (2003) and Sudibandriyo et al. (2003). 

The experimental apparatus, shown schematically in Figure 4-1, has been used 

successfully in previous studies [Hall, 1993]. The pump and cell sections of the 

apparatus are maintained in a constant temperature air bath. The equilibrium cell has a 

volume of 110 cm3 and is filled with the adsorbent to be studied. The cell is placed under 
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Figure 4-1. Schematic Diagram of the Experimental Apparatus 

vacuum prior to gas injection. The void volume V void in the equilibrium cell is then 

determined by injecting known quantities of helium from a calibrated injection pump 

(Ruska Pump). Since helium is not significantly adsorbed, the void volume can be 

determined from measured values of temperature, pressure and amount of helium injected 

into the cell. Several injections made into the cell at different pressures show consistency 

in the calculated void volume. Generally, the void volume calculated from sequential 

injections varies less than 0.3 cm3 from the average value based on at least five 

injections. The mass-balance equation, expressed in volumetric terms, is: 

(4-1) 

where t:,. V is the volume injected from the pump, Z is the compressibility factor of 

helium, T is the temperature, P is the pressure, subscripts "cell" and "pump" refer to 
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conditions in the cell and pump sections of the apparatus, respectively, and "1" and "2" 

refer to conditions in the cell before and after injection of gas from the pump, 

respectively. This void volume is used in subsequent measurements of adsorption, as 

follows. 

The Gibbs adsorption ( also known as the excess adsorption) is calculated directly 

from experimental quantities. For pure-gas adsorption measurements, a known quantity, 

ninj, of gas (e.g., methane) is injected from the pump section into the cell section. Some of 

the injected gas will be adsorbed, and the remainder, n~~~;, will exist in the equilibrium 

bulk (gas) phase in the cell. A molar balance is used to calculate the amount adsorbed, 

n Gibbs as· 
ads ' · 

n Gibbs = n .. _ n Gibbs 
ads lllJ unads (4-2) 

The amount injected can be determined from pressure, temperature and volume 

measurements of the pump section: 

(4-3) 

The amount of unadsorbed gas is calculated from conditions at equilibrium in the cell: 

n Gibbs = ( PV void ) 
unads ZRT 

cell 

(4-4) 

In Equations 4-3 and 4-4, Z is the compressibility of the pure gas at the corresponding 

conditions of temperature and pressure. 

The above steps are repeated sequentially at higher pressures to yield a complete 

adsorption isotherm. The amount adsorbed is usually presented as an intensive quantity 

(mmol adsorbed I g adsorbent or mmoVg) obtained by dividing n~d~bs by the mass of 
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adsorbent in the cell. Inspection of Equations 4-2 to 4-4 reveals that the amount adsorbed 

may be calculated in a straightforward manner from experimental measurements of 

pressures, temperatures and volumes, coupled with independent knowledge of the gas 

compressibility factors, Z (from experimental data or a suitably accurate equation of 

state). 

For gas mixture adsorption measurements, a volumetrically prepared gas mixture 

of known composition (zi) is injected; thus, the total amount of each component in the 

cell is known. A magnetic pump is used to circulate the fluid mixture to ensure that 

equilibrium is reached. The composition (Yi) of the gas phase in the cell at equilibrium is 

determined by chromatographic analysis. A pneumatically controlled sampling valve, 

contained in the air bath at cell temperature, sends a 20µL sample to the gas 

chromatograph (GC) for analysis. The amount of each individual component adsorbed is 

calculated using component material balances; for component "i" in the mixture, the 

relations are: 

Gibbs Gibbs Gibbs 
nacts{i) = niaj(i) - nunacts(i) = ninizi - nunacts Yi (4-5) 

where: 

n. ·(·) = (PliV) z. 
llljl ZRT I 

pump 

(4-6) 

and Z is the compressibility of the feed gas mixture at pump conditions, and 

n Gibbs. = (PVvoid) Y· 
unads(1) ZRT 1 

cell 

(4-7) 

where Z is the compressibility of the equilibrium gas mixture at cell conditions. 

Calibrations were performed routinely during the course of the experiments. The 

temperature measuring devices were calibrated against a Minco platinum resistance 
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reference thermometer, and the pressure transducers were calibrated against a Ruska 

deadweight tester with calibration traceable to the National Institute of Science and 

Technology. 

The gas chromatograph was calibrated against volumetrically prepared mixtures 

at the nominal feed-gas concentrations. The GC used for composition analysis is a 

Varian Chrompack CP-3800 with the helium carrier gas maintained at a 0.25-mL/s flow 

rate. A 10-ft Haysep D packed-column was used for CH4+C02 and N2+C02 systems, and 

a molecular sieve 13X column was used for the CH4+N2 system; column temperature was 

353.2 K. A thermal conductivity detector was used for all of the binary systems studied; 

its bath temperature was set at 373.2 K. The chromatographic response factor, defined as 

(A 2 /A1)/(y2 /yi), where A is the GC response area, was found to depend slightly on 

pressure; as such, the GC was calibrated for each nominal composition at pressure 

intervals of 1.4 MPa. 

4.3 Data Reduction 

2-D EOSs model absolute adsorption. Calculations for the Gibbs and absolute 

adsorption differ in the manner by which nunads is calculated. The Gibbs adsorption 

calculation, described above, neglects the volume occupied by the adsorbed phase in 

calculating the amount of unadsorbed gas (i.e., in Equation 4-4, the entire void volume, 

Yvoid, is viewed as being available to the unadsorbed gas). 

Following is a discussion to clarify the relationships between the Gibbs and 

absolute adsorption and to highlight the approximate nature of the calculated absolute 

adsorption. In addition, expressions are presented which facilitate calculation of the 
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absolute component adsorption, n:~:(i), and the adsorbed-phase mole fraction, x~bs, in 

terms of the experimental Gibbs adsorption results. The following is taken closely from 

our previous work of Gasem et al. (2003) and Sudibandriyo et al. (2003). 

In gas adsorption, various volumes can be used to characterize the state existing in 

the equilibrium cell. A representation that envisions two distinct, homogeneous fluid 

phases (bulk gas and adsorbed phase) expresses the total system volume YtotaI of the 

experimental apparatus as the sum of the volumes of solid adsorbent (Vsolid), gas (Vgas), 

and adsorbed-phase (Vads), as follows: 

Ytotal = Ysolid + Ygas + Vads (4-8) 

The void volume, having been determined by helium injection, IS related to these 

quantities as follows: 

V void = V gas + V ads = V total - V solid (4-9) 

Now, consider the amount of material adsorbed at equilibrium, which may be written in 

molar terms as follows: 

nads = ntotal - nunads (4-10) 

The difference in the definitions of the Gibbs and total adsorption resides in the 

manner in which nunads is related to the volume terms. As stated previously, in the Gibbs 

calculation, the volume occupied by the condensed phase is neglected in calculating 

nunads, and the amount of unadsorbed gas is calculated using the entire void volume; thus, 

using Equation 4-9 for V void, Equation 4-10 becomes: 

Gibbs V 
n ads = n total - void p gas (4-11) 

where p donates density. In the calculation of the absolute adsorption, nunads IS 

determined using the volume actually available to the bulk gas phase ( accounting for the 
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reduction of volume accessible to the gas as a result of the volume occupied by the 

adsorbed phase): 

Abs V 
n ads = n total - gas p gas ( 4-12) 

Combining Equations 4-11 and 4-12 and eliminating n1otaI, the following relation between 

Gibbs and absolute adsorption is obtained: 

Gibbs Abs V 
nads = nads - ads Pgas (4-13) 

The volume of the adsorbed phase may be expressed in terms of the amount 

adsorbed and the density of the adsorbed phase as: 

V Abs/ 
ads = n ads pads (4-14) 

Combining Equations 4-13 and 4-14 yields: 

Gibbs V ( ) 
nads = ads Pads - Pgas (4-15) 

Equation 4-15 clearly illustrates the physical interpretation of the Gibbs adsorption, 

namely, the amount adsorbed in excess of that which would be present if the adsorbed 

phase volume were filled with bulk gas. Combining Equations 4-14 and 4-15 leads to: 

n Abs = n Gibbs ( pads J 
ads ads 

Pads - Pgas 

(4-16) 

An important consideration in the calculation of the absolute adsorption is that it 

requires knowledge of the adsorbed phase density, Pads, which is not readily available by 

experimental measurement. Thus, estimates of Pads are usually employed. A commonly 

used approximation is the liquid density at the atmospheric pressure boiling point, as was 

done by Arri et al. (1992). In this work, the adsorbed phase density used is discussed in 

Chapter 5. 
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For mixture absolute adsorption, the component mole fractions in the adsorbed 

phase, x~bs, may be calculated from the component Gibbs adsorption; however, this 

requires some assumption regarding the density, Pads, of the adsorbed phase mixture. In 

the following discussion, Pads is approximated using the assumption of ideal mixing in the 

adsorbed phase, where the pure-component adsorbed-phase density estimates are used to 

calculate the mixture adsorbed-phase density. The component Gibbs adsorption (amount 

of component "i" in the adsorbed phase in excess of the amount that would be present if 

the bulk equilibrium gas mixture occupied the volume of the adsorbed phase) may be 

written using a component material balance as: 

Gibbs Abs Abs V V ( Abs ) 
nads(i) = nads xi - adsPgasYi = ads Padsxi -pgasYi 

For convenience, we define a fractional component Gibbs adsorption, e~ibbs, as: 

n Gib~s 
9Gibbs =~ 

1 n Gibbs 
ads 

(4-17) 

(4-18) 

(Note that, although Equation 4-18 has the appearance of a mole fraction, the Gibbs 

adsorption is an excess quantity, not a total quantity for a specified phase; thus 8, rather 

than x, is used to denote the quantity.) 

Inserting this definition into Equation 4-1 7, we obtain: 

n Gibbs9Gibbs = nAbsxAbs Pgas 
ads 1 ads 1 -yi-- ( 4-19) 

Pads 

Combining Equation 4-16 with Equation 4-19, it yields: 

Abs _ 8 Gibbs (l _ p gas ) p gas xi - i +yi 
Pads Pads 

(4-20) 
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Equation 4-20 reveals that x:bs and e~ibbsbecome identical in the limit of low pressure 

(where Pgas becomes small). 

Inspection of Equation 4-20 reveals that all quantities on the right hand side can 

be obtained directly from experimental measurements except Pads, for which some 

approximation must be made. If ideal mixing is used to represent Pads in terms of the 

pure component adsorbed-phase densities, we have: 

1 NC x:'-bs -=L-1 
Pads i P ads(i) 

(4-21) 

where the subscripts "i" refer to pure component i, NC is the number of components. 

Then, Equation 4-20 may be written as: 

NC XAbs 
;'-bs = e?ibbs - "~ (eGibbs - Y·) 

XI I L_, J-'gas I I 

j P ads(j) 
(4-22) 

x:bs can be solved from Equation 4-22 and the absolute component adsorption can be 

calculated as follows: 

Abs Abs Abs 
nads(i) = nads xi (4-23) 

with Equation 4-16 used to calculate the total mixture adsorption, n ~!s , where the 

densities, Pads and Pgas, refer to mixtures of compositions x:bs and Yi, respectively. 

As indicated by Equations 4-3 and 4-4, accurate gas-phase compressibility (Z) 

factors are required for methane, nitrogen, and CO2 and their mixtures to properly 

analyze the experimental data. The compressibility factors for pure methane, nitrogen, 

and CO2 were determined from highly accurate equations of state [Jaeschke et al., 1990; 

IUPAC, 1978; IUPAC, 1977; IUPAC, 1976]. For void volume determination, the helium 

compressibility factor is given by [ see, e.g., Hall, 1993]: 
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ZHe = 1 + (o.001471- 0.000004779T + 0.00000000492T 2 )/P (4-24) 

where T is in K and P is in atm. 

A careful evaluation of the current literature led us to conclude that an adequate 

predictive capability for the mixture Z factors did not exist. Therefore, we elected to use 

available pure-fluid and binary mixture data to refit the Benedict-Webb-Rubin equation 

of state (BWR EOS) and improve its accuracy significantly. In general, the new BWR 

parameters yield deviations in the Z factors of less than 0.5%. This allowed us to address 

our compressibility factor needs for binary adsorption mixtures. Details of the BWR 

equation expressions are given in Appendix A. 

4.4 Error Analysis 

The uncertainties in the experimentally measured quantities after calibrations 

were estimated as follows: temperatures, 0.1 K; pressures, 7.0 kPa; injected gas volumes, 

0.02 cm3; gas mixture compositions, 0.002 mole fraction. 

A detailed error propagation analysis was performed, which indicates that the 

average uncertainties for the pure adsorption measurements are approximately 1.8% 

(0.065-0.069 mmol/g) for methane adsorption, 2.3% (0.054-0.056 mmol/g) for nitrogen 

and 6.4 % (0.269-0.342 mmol/g) for CO2 adsorption. The higher percentage uncertainty 

for CO2 is due mainly to the lower value of the Gibbs adsorption for CO2 at the higher 

pressure and the higher uncertainty in the CO2 compressibility factor ( due to proximity to 

its critical point). 

The uncertainties for the binary mixture adsorption vary with composition. 

Uncertainties for all the binary gas total adsorption measurements are within 4%. The 
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percentage uncertainty of component gas adsorption, however, can become high at low 

concentrations of the less adsorbed gases (i.e., N2 in the N2+C02 system). 

The detailed error propagation analyses are shown elsewhere [Hall, 1993]. 

4.5 Adsorption Database 

Literature Data 

The data in the literature on gas adsorption primarily concern two adsorbents: 

activated carbon and zeolites. Because the ultimate goal of this study is the modeling of 

gas adsorption on coals, attention is paid mainly to the data on carbon adsorbents (i.e. 

activated carbon). The experimental data for high-pressure gas adsorption on coals are 

scarce and complicated by (a) the difficulty in characterizing the coal matrix adequately 

and (b) assessing the effect of water (found in essentially all coalbeds) on the resulting 

data [Levy et al., 1997; Joubert et al., 1973; Hall et al., 1994]. Therefore, the gas 

adsorption data on activated carbon were used to evaluate the model prior to extending 

the model to include the effects of the complex adsorbent structure of coals and/or the 

presence of water. 

The literature data for gas adsorption on activated carbon and other adsorbent are 

summarized in Tables 4-1 and 4-2. The data cover wide ranges of temperature, pressure 

and most pure and mixture components applicable for coalbed methane study. These 

data provide a useful source to evaluate the adsorption model for the whole range of total 

loadings. In addition, the data can also be used to evaluate the model capability of 

predicting multicomponent adsorption based on the data for pure-gas adsorption. 
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The literature database mainly includes coalbed methane gases, CH4, CO2, and 

N2, adsorption on various activated carbons. It also includes C2H6, C2H4, C3H8, and H2S 

adsorption on various activated carbons. The data cover wide ranges of temperature, 

pressure and provide a useful source to evaluate the adsorption model. 

OSUData 

Table 4-3 documents the OSU CBM gas (CH4, CO2, and N2) adsorption database. 

The database contains the pure, binary, and ternary mixture adsorption measurements 

conducted at Oklahoma State University. Included in the database are details regarding 

the adsorbates, the adsorbent, and the corresponding temperature and pressure ranges for 

each system. The following is taken closely from our previous work of Gasem et al. 

(2003). 

Pure-gas adsorption measurements are reported for CH4, N2, C2H6, and CO2 on 

ten solid matrices comprised of wet Fruitland coal (OSU #1 and OSU #2), wet Lower 

Basin Fruitland coal (OSU #3), wet I dry Illinois #6 coal, wet Tiffany coal, dry 

BeulahZap coal, dry Wyodak coal, dry Upper Freeport coal, dry Pocahontas coal, and dry 

activated carbon. 

Binary adsorption measurements are presented for mixtures of methane, nitrogen 

and CO2 at a series of compositions on four different matrices: Fruitland coal, Illinois #6 

coal, Tiffany coal, and activated carbon. Ternary measurements are also presented for 

CH4+N2+C02 mixtures on wet, mixed Tiffany coal and on dry activated carbon. 
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Table 4-1. Literature Data Used for Pure-Gas Adsorption Model Evaluation 

Adsorbent 
Adsorbent 

Temp. Pressure 
Surf. area Adsorbate Reference 

(m2/g) Range (K) Range (MPa) 

AC, Columbia Grade L 1152 N2 311 - 422 0.028 -1.50 Ray (1950) 
AC, Columbia Grade L 1152 CILi 311 - 422 0.026- 1.48 Ray (1950) 
AC, Columbia Grade L 1152 C2H6 311-478 0.007 -1.49 Ray (1950) 
Charcoal 1157 CH4 283 - 323 0.5 - 13.8 Payne (1968) 
Charcoal 1157 C3Hs 293 - 333 8xl0-4 - 1.35 Payne (1968) 
AC, BPL 988 CH4 213 - 301 0.012- 3.83 Reich (1980) 
AC, BPL 988 C2H6 213 - 301 7xl0-4 - 1.71 Reich (1980) 
AC, BPL 988 C2H4 213 - 301 7xl0-4 - 1.70 Reich (1980) 
AC, BPL 988 CO2 213 - 301 0.003 -3.84 Reich (1980) 
AC, PCB-Calgon Corp. 1150-1250 CH4 296 - 480 0.27 - 6.69 Ritter (1987) 
AC, PCB-Calgon Corp. 1150-1250 CO2 296 - 480 0.11 - 3.67 Ritter (1987) 
AC, F30/470, 993.5 CO2 278 - 328 0.05 - 3.35 Berlier (1997) 
Chemviron Carbon 
AC, Norit Rl Extra 1450 N2 298 0.03-5.98 Dreisbach (1999) 
AC, Norit Rl Extra 1450 CH4 298 0.01 - 5.75 Dreisbach (1999) 
AC, Norit Rl Extra 1450 CO2 298 0.008-6.0 Dreisbach (1999) 
AC, Coconut shell with 3106 CH4 233 - 333 0.09 - 9.40 Zhou (2000) 
KOH activation (CO2 ads.) 
AC, Calgon F-400 850 CO2 303-318 0.02-20.2 Humayun (2000) 
AC, Norit RB 1 1100 CH4 294 - 351 0.05 -0.8 Vaart (2000) 
AC, Norit RB 1 1100 CO2 294 - 348 0.05-0.8 Vaart (2000) 
AC, Coconut shell with 3106 N2 178 - 298 0.44- 9.19 Zhou (2001) 
KOH activation (CO2 ads.) 
AC, F30/470, 993.5 N2 303 - 383 0.39- 9.5 Frere (2002) 
Chemviron Carbon 
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Table 4-1. Literature Data Used for Pure-Gas Adsorption Model Evaluation - Cont'd 

Adsorbent 
Adsorbent Temp. Pressure 
Surf. area Adsorbate Reference 

(m2/g) Range (K) Range (MPa) 

AC, F30/470, 993.5 CH4 303 - 383 0.44- 8.98 Frere (2002) 
Chernviron Carbon 
AC, F30/470, 993.5 C3Hs 303 - 383 0.05-2.20 Frere (2002) 
Chernviron Carbon 
AC, NoritRl 1262 N2 298 0.03 - 14.56 Beutekarnp (2002) 
AC, NoritRl 1262 CO2 298 0.03-6.04 Beutekarnp (2002) 
Zeolite, Linde 13 X 525 N2 298 - 348 0.35 - 8.23 Wakasugi (1981) 
Zeolite, Linde 5A -400 N2 298 - 348 0.60- 17.61 Wakasugi (1981) 
Zeolite, Linde 5A -400 CH4 298 - 348 0.36 - 9. 18 Wakasugi (1981) 
Zeolite, Linde 5A -400 CO2 298 - 348 0.03 -11. 22 Wakasugi (1981) 
Zeolite, Linde 5A -400 C2H6 298 - 348 0.07-5.07 Wakasugi (1981) 
H-Modemite, Norton -300 CO2 283 - 333 3xl0-4 - 0.29 Talu (1986) 
Co: Type Z-900H 
H-Modemite, Norton -300 H2S 283 - 368 4xl0-4 - 0.10 Talu (1986) 
Co: Type Z-900H 
H-Modemite, Norton -300 C3Hs 283 - 324 2x10-:i - 0.21 Talu (1986) 
Co: Type Z-900H 
Zeolite, G5 430 CH4 283 - 303 0.13 - 1.15 Berlier (1995) 
Zeolite, G5 430 C2H6 283 - 303 0.056-1.10 Berlier (1995) 
Zeolite, G5 430 C2H4 283 - 303 0.056 - 1.10 Berlier (1995) 
Zeolite, 13 X 383 CH4 298 0.15 - 15.02 Beutekarnp (2002) 
Zeolite, 13 X 383 C2H6 298 0.14 - 3.95 Beutekarnp (2002) 



Table 4-2. Literature Data Used for Mixed-Gas Adsorption Model Evaluation 

System Adsorbent 
Adsorbent 

Temp. Pressure 
No. Surf. area Adsorbate Reference 

(m2/g) Range (K) Range (MPa) 

39 AC,BPL 988 CH4+ C2H6 301 0.13-2.01 Reich (1980) 
40 AC,BPL 988 CH4+ C2H4 301 0.12-2.03 Reich (1980) 
41 AC,BPL 988 C2H6+ C2H4 301 0.14-1.98 Reich (1980) 
42 AC,BPL 988 CH4+ C2H6+ C2H4 301 0.12-2.97 Reich (1980) 
43 AC, Norit RI Extra 1450 N2+CH4 298 0.03 -6.00 Dreisbach (1999) 
44 AC, Norit RI Extra 1450 CH4+ CO2 298 0.03-6.00 Dreisbach (1999) 
45 AC, Norit RI Extra 1450 N2+ CO2 298 0.03 -6.00 Dreisbach (1999) 
46 AC, Norit RI Extra 1450 N2+CH4+C02 298 0.03 -6.00 Dreisbach (1999) 

~ ...... 



Table 4-3. The OSU Adsorption Database 

System 
Adsorbent Temp. 

Pressure 
No. Adsorbate 

(K) 
Range 
(MPa) 

47 Dry AC, Calgon F 400 N2 318 0.7 - 13.7 
48 Dry AC, Calgon F 400 CH4 318 0.7-13.7 
49 Dry AC, Calgon F 400 CO2 318 0.7-13.7 
50 Dry AC, Calgon F 400 C2H6 318 0.7-13.7 
51 Dry AC, Calgon F 400 N2 +CH4 318 0.7 - 12.4 
52 Dry AC, Calgon F 400 CH4+ CO2 318 0.7 - 12.4 
53 Dry AC, Calgon F 400 N2 + CO2 318 0.7 - 12.4 
54 Dry AC, Calgon F 400 N2 +CH4+ CO2 318 0.7 - 12.4 
55a Wet Fruitland Coal OSU #1 N2 319 0.7 - 12.4 
56a Wet Fruitland Coal OSU #1 CH4 319 0.7 -12.4 
57a Wet Fruitland Coal OSU #1 CO2 319 0.7 -12.4 
55b Wet Fruitland Coal OSU #2 N2 319 0.7 - 12.4 
56b Wet Fruitland Coal OSU #2 CH4 319 0.7 - 12.4 
57b Wet Fruitland Coal OSU #2 CO2 319 0.7 - 12.4 
58 Wet Fruitland Coal OSU #1 N2 +CH4 319 0.7 - 12.4 
59 Wet Fruitland Coal OSU #1 CH4+C02 319 0.7 - 12.4 
60 Wet Fruitland Coal OSU #1 N2 + CO2 319 0.7-12.4 
61 Wet Illinois #6 Coal N2 319 0.7 -12.4 
62 Wet Illinois #6 Coal CH4 319 0.7 - 12.4 
63 Wet Illinois #6 Coal CO2 319 0.7 - 12.4 
64 Wet Illinois #6 Coal N2 +CH4 319 0.7 - 12.4 
65 Wet Illinois #6 Coal CH4+ CO2 319 0.7 - 12.4 
66 Wet Illinois #6 Coal N2 + CO2 319 0.7 - 12.4 
67 Wet Tiffany Coal N2 328 0.7-13.7 
68 Wet Tiffany Coal CH4 328 0.7-13.7 
69 Wet Tiffany Coal CO2 328 0.7-13.7 
70 Wet Tiffany Coal N2 +CH4 328 0.7 - 13.7 
71 Wet Tiffany Coal CH4+ CO2 328 0.7-13.7 
72 Wet Tiffany Coal N2 + CO2 328 0.7 - 13.7 
73 Wet Tiffany Coal N2 +CH4+ CO2 328 0.7-13.7 
74 Wet LB Fruitland Coal N2 319 0.7 - 12.4 
75 Wet LB Fruitland Coal CH4 319 0.7 -12.4 
76 Wet LB Fruitland Coal CO2 319 0.7 -12.4 
77 Dry Illinois #6 Coal CO2 328 0.7 - 13.7 
78 Dry Beulah Zap Coal CO2 328 0.7 - 13.7 
79 Dry Wyodak Coal CO2 328 0.7 - 13.7 
80 Dry Upper Freeport Coal CO2 328 0.7 - 13.7 
81 Dry Pocahontas Coal CO2 328 0.7 -13.7 
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Tables 4-4 and 4-5 present the compositional analyses for the vanous solid 

matrices considered. The activated carbon used was Filtrasorb 400, 12x40 mesh, from 

Calgon Carbon company. The activated carbon was dried under vacuum at 431.5 K for 

two days before the adsorption measurements. The nitrogen BET surface area at 77 K 

has been reported by Humayun et al. (2000) to be 850 m2/g. The surface area value 

provided by the supplier, however, is 998 m2/g. 

Four different wet coals were prepared for adsorption measurements. The 

Fruitland coal is from the San Juan Basin; it is a medium volatile bituminous coal. This 

recently prepared sample (OSU #2) has a slightly different composition from the one 

used in previous measurements (OSU #1). The Lower Basin (LB) Fruitland coal is from 

the same coalbed seam as Fruitland coal, but it was taken from a different location. The 

Illinois #6 coal is a high volatile bituminous coal. Other coal samples are from BP 

Amoco Tiffany Injection Wells #1 and #10. The coal samples were ground to 200µm 

particles and moistened with water. This made the sample moisture content varies from 4 

to 15% (by weight), which is higher than the equilibrium moisture content. Equilibrium 

moisture content was determined gravimetrically by exposing dry coal to 303.1 K air at 

96-99% saturation. 

In addition, five types of coal samples prepared by Argonne National Laboratory 

were used to study CO2 adsorption on dry coals. The coals were dried under vacuum in 

an equilibrium cell at 353 K for 36 hours before being used in the adsorption 

measurements. Complete database is available in our report prepared for the U.S. 

Department of Energy [Gasem et al., 2003]. 
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Table 4-4. Compositional Analysis of Solid Matrices Used in This Study 

Analysis Activated Fruitland Fruitland Fruitland Illinois-6 Lower Lower 
Carbon Amoco OSU#l OSU#2 Basin Basin 

Fruitland Fruitland 
OSU#3a OSU#3b 

Ultimate* 
Carbon% 88.65 68.56 68.63 66.58 71.47 38.92 40.20 
Hydrogen% 0.74 5.74 4.27 4.23 5.13 3.08 3.10 
Oxygen% 3.01 7.19 0.89 5.08 9.85 3.75 2.87 
Nitrogen% 0.40 1.40 1.57 1.47 1.46 0.87 0.89 
Sulfur% 0.73 0.65 4.19 0.72 1.27 1.73 2.14 
Ash% 6.46 16.45 20.45 21.92 10.81 51.66 50.81 

Proximate* 
Vol. Matter% 3.68 19.12 20.2 20.33 30.61 20.01 14.00 
Fixed Carbon 89.86 64.42 59.35 57.75 55.90 28.33 35.19 
% 
Equil. 35 2.3 2.2 2.2 3.9 4.0 4.0 
Moisture 
Content(%) 

* Huffman Laboratories, Inc., Golden, Colorado. 

Tiffany Tiffany 
Well #1 Well #10 

47.78 56.75 
2.62 2.77 
6.19 5.16 
0.92 1.02 
0.57 0.52 

49.71 47.74 

15.48 15.35 
34.82 36.91 

3.8 3.7 



Table 4-5. Compositional Analysis of Coals from Argonne National Laboratory 

Analysis* Beulah Zap Wyodak Illinois-6 Upper Pocahon-
Freeport tas 

Ultimate 
Carbon% 72.9 75.0 77.7 85.5 91.1 
Hydrogen% 4.83 5.35 5.00 4.70 4.44 
Oxygen% 20.3 18.0 13.5 7.5 2.5 
Sulfur% 0.80 0.63 4.83 2.32 0.66 
Ash% 9.7 8.8 15.5 13.2 4.8 

Proximate 
Moisture% 32.2 28.1 8.0 1.1 0.7 
Vol. Matter% 30.5 32.2 36.9 27. 1 18.5 
Fixed Carbon % 30.7 33.0 40.9 58.7 76.1 
Ash% 6.6 6.3 14.3 13.0 4.7 

* Analyses were provided by the Argonne National Laboratory 
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CHAPTERS 

TWO-DIMENSIONAL EQUATIONS OF STATE 

5.1 Review of Two-Dimensional Equations of State 

Although several frameworks are used to describe the adsorption phenomena and 

correlate pure-gas and mixture adsorption isotherms, the 2-Ds EOS offer distinct 

advantages in modeling supercritical, high-pressure adsorption systems. The advantages 

include: 

1. Ease of implementation of a well-developed framework; the 2-Ds EOS are 

analogues of the 3-D EOSs used for PVT behavior modeling 

2. Availability .of 2-D mixing rules for multi-component mixtures in direct analogy 

to 3-D mixing theories 

3. Similarity of the adsorption algorithms to vapor-liquid equilibrium algorithms; 

thus the ability to facilitate CBM process simulations 

Over the years, various researchers have applied the 2-D EOSs to gas adsorption. 

Hill (1946) and de Boer (1968) have used the van der Waals (VDW) EOS to correlate 

pure-gas adsorption. Hoory et al. (1967) extended the 2-D VDW EOS to mixtures by 

introducing mixing rules. More recently, DeGance (1992) used the 2-D virial and Eyring 

EOS to correlate high-pressure pure adsorption isotherms. 
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In early 1990's, we presented a generalized 2-D cubic EOS, which encompasses 

2-D analogs of previous cubic EOS forms [Zhou et al., 1994]. The generalized 2-D EOS 

(with an additional parameter, m, for added model flexibility) is analogous to the popular 

three-dimensional equations of state used in vapor-liquid equilibrium calculations: 

(5-1) 

where a2 and b2 are the 2-D EOS parameters, and numerical values ofU, W, and m may 

be specified to give various forms of two-dimensional equations of state. 

The general two-dimensional analog can be re-written as follows: 

[An+ aco
2 

2 ][1-(pco)m]=coRT 
1 + upco + W(Pco) 

(5-2) 

where A is the specific surface area, n is the spreading pressure, cr is the surface density 

of the adsorbate, co=crA is the specific amount adsorbed, and a= a 2 / A and p = b 2 / A are 

model parameters. The model coefficients, U, W, and m must be specified to obtain a 

specific form of the 2-D EOSs for application. For example, an analog of the van der 

Waals (VDW) EOS is obtained by setting m = 1 and U = W = O; similarly for the Soave-

Redlich-Kwong (SRK) (m = U = 1 and W = O); the Peng-Robinson (PR) (m = 1, U = 2, 

and W = -1 ); and the Eyring (m = 1/2 and U = W = 0) EOS. 

This general 2-D EOS can be used to investigate EOS behaviors by specifying 

various combinations of model coefficients. Selection of the model coefficient m is the 

most important among the EOS model coefficients because it is in the repulsive term and 

has a significant effect on the shape of the pure adsorption isotherm. Based on extensive 
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calculations, Zhou found that an equation with m = 1/3 and U = W = 0 (the Zhou-Gasem-

Robinson (ZGR) EOS) promising [Zhou et al., 1994]. 

Among all the 2-D EOSs, we can divide them to two categories based on the 

value of the exponent m; i.e., m<l or m=l. In this work, we evaluated two typical 2-D 

EOSs, the ZGR EOS and 2-D PR EOS, because each of them can well represent its 

category. 

5.2 Equilibrium Relations 

As elaborated in Chapter 2, at equilibrium, the chemical potential of species i in 

the adsorbed phase, µ~ , is equal to that in the gas phase, µf : 

(5-3) 

Thus, 

7t p 

f dlnf/ = f dlnf/ (5-4) 
7t* p* 

Integrating Equation 5-4, it yields: 

(5-5) 

A ( ·) • A ( ·) * At very low pressure, ft n = ni and (g P = Pi 

(5-6) 

At very low pressure, 2-D ideal gas law applies: 

n~A = co~RT 
I I 

(5-7) 

Henry's constant is defined as: 

• 
k-=~ 

I p_* 
I 

(5-8) 
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So, substitution into Equation 5-6, we obtain: 

(5-9) 

For pure-gas adsorption, Equation 5-9 becomes: 

roZ ,1,.a = k.P a'f' I 
(5-10) 

The fugacity for the2-D EOS is: 

ln~t = i-1_ B(An) - rol }ro-lnZa 
0 RTro Broi TM . 

, s,llJ 

(5-11) 

where ro is the amount adsorbed, Za is the 2-D compressibility factor, ~a is the fugacity 

coefficient using the 2-D EOS, Pis the fugacity for the gas phase. The 3-D PR EOS was 

used to calculate the gas fugacity. Detailed derivation of Equation 5-11 was provided by 

Zhou (1994). 

5.3 Mixing Rules 

One-fluid mixing rules were used in the 2-D EOS to describe mixture adsorption 

data: 

a= ""x-x.a .. and f.l. = ""x-x.r:i. .. L...L... I J IJ I-' L...L... I JI-'\) 
. (5-12) 

i j i j 

The combination rules below are chosen because they work best for adsorbed phase 

[Zhou et al., 1994]: 

a .. = fa. +a. X1 - C.. )! 2 
\J ~ I J IJ (5-13) 

(5-14) 

However, other mixing rules can be applied to 2-D EOS to calculate the mixture 

adsorption. 
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5.4 Equilibrium Calculation Initialization Methods 

Only physically meaningful parameters can serve as a rational basis for parameter 

generalizations. When we perform regressions for pure-gas adsorption using the 2-D 

EOS, random parameterization may lead to trivial solutions. Therefore, the initial 

guesses for a, p, and k are critical since the 2-D EOS parameter regressions involve 

nonlinear equations. For example, Zhou (1994) reported pure nitrogen adsorption on wet 

Fruitland coal at 319.3 K using the ZGR EOS with the percentage average absolute 

deviation (%AAD) of 1.7%. The model parameter a is equal to -1887 (bar cm3 g/mmol I 

mol) and pis equal to 0.001 (mmol/gr1. However, p being equal to 0.001 (mmol/gr1 is 

physically incorrect because it means 1 gram of adsorbent can adsorb 1 mole of gas when 

the pressure is high, which is umealistically high. The umealistic-regressed parameters 

are due to the improper initial guesses. 

The 2-D EOS adsorption calculation is an equal-fugacity calculation. To generate 

initial guesses, one can assume the fugacity in the bulk phase to be ideal. Thus, Gibbs 

isotherm can be derived as [see, e.g., Do, 1998]: 

(~) -~RT 
dlnP T A 

(5-15) 

Applying the generalized 2-D EOS into the above equation, the following expression is 

derived: 

( 
91/m )m ( 91/m ) 

BP= 1_ 811 m exp 1_ 811 m exp(-ce) (5-16) 

where 8 = ro IL; L, B and c are model parameters. Thus, the initial guesses for the 2-D 

EOS can be obtained from Equation 5-16. However, it is still not easy to get the initial 
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guesses from Equation 5-6. The Langmuir model 1s an alternative because of its 

simplicity, where: 

BP=-8-
1-8 

(5-17) 

The empirical initial guesses can be related to Langmuir model parameters of the 

same isotherm: 

a=200 (bar cm3 g/mmol I mol) 

P=l/(2L) (mmol/gr1 

k=5LB (mmol/g bar-1) 

For the example above, by using this initial guess method, we can obtain L = 0.694 

(mmol/g) and B = 0.0102 (bar-1) for the Langmuir model, so the initial guess could be a 

=200 (bar cm3 g/mmol/mol), P=0.72 (mmol/gr1, and k=0.0355 (mmol/g bar-1). Upon 

regression, the parameters are: a=l09450 (bar cm3 g/mmol I mol), P=0.776 (mmol/gr1, 

and k=0.0311 (mmol/g bar-1) with %AAD of 2.6%. Although the %AAD is slightly 

higher, the parameters are meaningful and thus can be used in the temperature 

dependence correlations and mixture calculations. 

5.5 Two-Dimensional Equations of State for Gibbs Excess Adsorption 

As described in the previous chapter, the experiment measures the Gibbs Excess 

adsorption, but the 2-D EOS uses absolute adsorption data in the calculation. The 

relation between Gibbs adsorption ( ro Gibbs) and absolute adsorption ( roAbs) is: 

(!) Gibbs 
(!)Abs=---

}- Pgas 

Pads 
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where p gas and pads are bulk gas density and adsorbed-phase density. 

In our previous calculations, we assumed pads is a known constant for a given 

adsorbate on different adsorbents and that it is pressure independent. The adsorbed-phase 

density is treated as equal to the saturated liquid density. The densities of saturated liquid 

nitrogen and methane at their normal boiling points are known. The saturated liquid 

densities of nitrogen and methane at atmospheric pressure are 0.808 g/cm3 and 0.421 

g/cm3, respectively. For CO2, we used its triple point density 1.18 g/cm3 [Liang, 1999]. 

When Gibbs adsorption goes to zero (at high pressure), the adsorbed-phase 

density is equal to bulk phase density. Experimental results indicate that Gibbs 

adsorption isotherms approach zero when the bulk phase density is high enough. Thus, 

an alternative method to determine the adsorbed-phase density is to treat it as a parameter 

to be regressed from Gibbs adsorption data. 

Even though the adsorbed-phase density can be regressed from experimental data, 

it is very sensitive to the uncertainties in the experimental data. For example, for CO2 

adsorption on dry Illinois #6 coal at 328.2 K, a 1 % change in void volume, which is an 

experimentally measured value, could cause up to 40% difference in maximum adsorbed­

phase density. Meanwhile, for low-pressure adsorption isotherms, Gibbs adsorption data 

do not reach a maximum, making it very hard to regress a reasonable adsorbed-phase 

density in these cases. 

The 3-D VDW covolume for CO2, N2, and CH4 are 0.0429, 0.0386, and 0.0431 

liter/mole. Converted to density, they will be 1.027, 0.725, and 0.371 gram/cm3, 

respectively. The regressed maximum densities for these three gases on activated carbon 

at 318.2 K are 0.982, 0.839, and 0.346 gram/cm3. Thus, the 3-D VDW covolume 
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provides an alternative to estimate the maximum adsorbed-phase density and it 1s 

consistent when we use the EOS to do all the adsorption calculations. 

In this work, when converting the Gibbs adsorption data into absolute adsorption 

data, we used Equation 5-19 with the adsorbed-phase densities being the inverse of the 

3-D VDW covolume, unless mentioned otherwise. 
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CHAPTER6 

MODELING OF PURE-GAS ADSORPTION 

In this chapter, we develop a new approach for estimating the 2-D EOS model 

parameters, and consequently, provide for generalized 2-D EOS pure-gas adsorption 

predictions. Specifically, correlations are developed to describe the temperature 

dependence of the 2-D EOS parameters, and the parameters are generalized in terms of 

adsorbate and adsorbent physical properties. The 2-D EOS correlative capabilities are 

evaluated, especially for coalbed gases, CH4, CO2, and N2 adsorption on carbon 

adsorbents. Two specific 2-D EOS example models, the ZGR EOS and the 2-D PR EOS, 

are evaluated. 

6.1 Database Used 

A literature database (Table 4-1) and the OSU database (Table 4-3) are used to 

evaluate the modeling of pure-gas adsorption. All the systems documented in Table 4-1 

and all the pure-gas adsorption systems from Table 4-3 are used. 

The objective function, S, is used to correlate data with the 2-D EOSs. The 

function minimizes the sum of the squared-percentage deviations in predicted adsorption: 

( 

NPTS 
(6-1) S =100 

54 



where roe and roe are the calculated and experimental adsorption amount, respectively. 

NPTS is the number of data points. When the experimental uncertainties are available, 

the objective function, Sa, is used to correlate data with the 2-D BOS models. The 

function minimizes the sum of the squared weighted deviations in predicted adsorption: 

s = (J 

NPTS 
(6-2) 

where, cre is the expected experimental uncertainty. The percentage average absolute 

deviation (%AAD) and root-mean-square error (RMSB) are used to evaluate the results: 

1 00 NPTS (J) c _ (J) e 

%AAD= I l e l 

NPTS i=1 roi 

NPTS ( )z I (J)~ - (J)~ 

RMSB= i=l 

NPTS 

(6-3) 

(6-4) 

The weighted average absolute deviation (W AAD) is also used to quantify the model 

evaluations when the expected experimental uncertainties are available: 

1 NPTS (J) ~ _ (J) ~ 

WAAD= I I e l 

NPTS i=l cri 

(6-5) 

Typically, literature data do not provide the expected experimental uncertainty for each 

measurement; thus, the W AAD evaluation is not included in the corresponding tables. 

6.2 Correlation of Pure-Gas adsorption 

In this section, the correlative capabilities of the ZGR BOS and 2-D PR BOS are 

evaluated. In this case, the model parameters, a, ~' and k, are regressed for each 
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isotherm. The units for the parameter, a, ~' and k are (bar cm3 mor1 (mmol/g) -1), 

(mmol/gr1' and (mmol/g bar-1), respectively. 

Table 6-1 presents summary results for the ZGR EOS representation of the 

literature data. The overall AAD for the 2363 literature data points is 1.7% and the 

overall RMSE is 0.096 mmol/g. As indicated by the results, N2 adsorption on Columbia 

Grade L activated carbon at 422.0 K (System 1) has the worst quality of fit with an AAD 

of 6.9%, and N2 adsorption on Coconut Shell activated carbon at 178.0 K (System 20) 

has the worst RMSE of0.299 mmol/g. 

Table 6-2 presents summary results for the 2-D PR EOS representation of the 

literature data. The overall AAD is 1.5% and the overall RMSE is 0.097 mmol/g. For 

this model, CO2 adsorption on H-Modemite, Z-900H at 323.0 K (System 31) has the 

worst quality of fit with AAD of 5.9%. CO2 adsorption on F30/470 Chemviron activated 

carbon at 278.0 K (System 12) has the worst RMSE of0.273 mmol/g. 

These results show that both the ZGR EOS and the 2-D PR EOS are capable of 

representing the pure-gas adsorption equilibrium data on the carbon adsorbents, as well 

as other adsorbents. Overall, the two models can represent the experimental data equally 

well. For a complete adsorption isotherm, the ZGR EOS represents the adsorption data 

better than the 2-D PR EOS at high pressures, while at lower pressures the 2-D PR EOS 

represents the data more precisely. Since the amount of adsorption is small at low 

pressure, small absolute errors will lead to large percentage errors. This explains why the 

ZGR EOS represents the data with slightly higher %AAD and a lower RMSE than for 

2-DPREOS. 
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System 
No. 

1 

2 

3 

4 

Table 6-1. Regression Results for Pure-Gas Adsorption Using the ZGR EOS (Literature Data) 

Adsorbent Adsorbate NPTS T(K) 
Parameters 

%AAD 
a 13 -ln(k) 

AC, N2 9 310.9 29044.0 0.1970 -0.1972 4.0 
Columbia 5 338.7 38094.0 0.2317 0.2569 0.9 
Grade L 9 366.5 65053.0 0.3304 0.8711 5.8 

8 394.3 92188.0 0.4234 1.2188 4.6 
5 422.0 165120.0 0.6722 1.5681 6.5 

AC, CILi 12 310.9 12826.0 0.1027 -1.5128 4.6 
Columbia 10 338.7 20396.0 0.1373 -0.9923 3.0 
Grade L 8 366.5 36268.0 0.1938 -0.3557 3.2 

7 394.3 45037.0 0.2327 0.0464 3.4 
8 422.0 68579.0 0.3000 0.5199 3.7 

AC, C2H6 10 310.9 5088.1 0.0786 -4.8089 1.1 
Columbia 9 338.7 8669.9 0.0941 -3.8745 0.4 
Grade L 10 366.5 10854.0 0.0998 -3.0381 1.7 

10 394.3 10597.0 0.0953 -2.4349 2.4 
9 422.0 25601.0 0.1383 -1.6549 1.5 
5 449.8 19902.0 0.1197 -1.2724 0.6 
5 477.6 25903.0 0.1314 -0.6391 0.7 

Charcoal CH4 8 283.2 3213.3 0.0455 -2.3149 0.1 
12 293.2 3499.3 0.0469 -2.0478 0.4 
12 303.2 5048.1 0.0535 -1.7118 0.3 
10 313.2 6795.5 0.0598 -1.2870 0.8 
13 323.2 7282.7 0.0627 -1.1558 0.8 

RMSE 
(mmoVg) 

0.018 
0.021 
0.014 
0.015 
0.051 
0.035 
0.062 
0.063 
0.039 
0.033 
0.107 
0.016 
0.039 
0.022 
0.055 
0.022 
0.020 
0.007 
0.027 
0.022 
0.044 
0.027 
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Table 6-1. Regression Results for Pure-Gas Adsorption Using the ZGR EOS (Literature Data) - Cont'd. 

Adsorbent Adsorbate NPTS T (K) 
Parameters 

%AAD 
RMSE 

a 13 -ln(k) (mmol/g) 

Charcoal C3Hs 10 293.2 8094.2 0.0885 -6.5361 2.9 0.136 
11 303.2 2898.4 0.0769 -7.1687 1.0 0.056 
10 313.2 4564.9 0.0796 -6.4215 0.8 0.039 
11 323.2 6280.1 0.0845 -5.8480 0.6 0.032 
10 333.2 6449.8 0.0874 -5.7200 0.2 0.016 

AC, BPL C!Li 23 212.7 2488.2 0.0581 -4.2230 1.3 0.123 
24 260.2 4649.3 0.0638 -2.3138 1.0 0.039 
25 301.4 9887.4 0.0873 -1.1285 1.1 0.026 

AC, BPL C2H6 18 212.7 4260.2 0.0833 -8.1825 2.6 0.168 
15 260.2 2714.8 0.0752 -6.1280 0.9 0.056 
16 301.4 6583.2 0.0865 -4.1326 0.7 0.031 

AC, BPL C21Li 21 212.7 -1335.4 0.0518 -8.5283 2.9 0.163 
15 260.2 2473.5 0.0674 -5.4529 0.5 0.027 
16 301.4 5703.9 0.0783 -3.6855 0.6 0.028 

AC, BPL CO2 21 212.7 3346.4 0.0481 -5.8453 1.0 0.056 
14 260.2 3944.4 0.0477 -3.5773 0.3 0.020 
25 301.4 5310.8 0.0509 -2.1118 0.9 0.054 

AC, PCB- CH4 7 296.0 7504.7 0.0724 -1.8382 0.2 0.016 
Calgon 8 373.0 10975.0 0.0847 -0.4204 0.7 0.025 

7 480.0 49443.0 0.1952 1.4678 1.5 0.036 
AC, PCB- CO2 4 296.0 4566.7 0.0467 -2.9818 0.1 0.022 
Calgon 4 373.0 9531.0 0.0634 -0.9731 1.1 0.048 

4 480.0 23246.0 0.1057 0.5901 1.2 0.028 
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Table 6-1. Regression Results for Pure-Gas Adsorption Using the ZGR EOS (Literature Data) - Cont'd. 

Adsorbent Adsorbate NPTS T(K) 
Parameters 

%AAD 
RMSE 

a B -ln(k) (mmol/g) 
AC, F30/470 CO2 30 278.0 3770.1 0.0518 -3.8627 1.3 0.274 
Chemviron 19 288.0 2569.9 0.0441 -3.5255 1.1 0.156 
Carbon 19 298.0 4217.3 0.0520 -3.0716 0.3 0.039 

19 303.0 4214.3 0.0520 -3.0045 0.4 0.028 
38 308.0 4193.7 0.0516 -2.9226 0.5 0.047 
19 318.0 4611.1 0.0532 -2.4638 0.5 0.039 
20 328.0 6329.5 0.0619 -2.1993 0.7 0.037 

AC, NoritRl N2 10 298.0 13302.0 0.0999 -0.1924 5.0 0.074 
Extra 
AC, Norit Rl CH4 12 298.0 6276.9 0.0600 -1.6807 2.9 0.028 
Extra 
AC, NoritRl CO2 12 298.0 3957.2 0.0377 -2.5799 3.4 0.042 
Extra 
AC, Coconut CH4 21 233.0 1220.3 0.0191 -3.2053 0.8 0.205 
Shell 19 253.0 1670.1 0.0208 -2.6098 0.8 0.130 

22 273.0 2029.6 0.0228 -2.2061 0.9 0.105 
21 293.0 2648.1 0.0253 -1.7117 1.0 0.070 
20 313.0 3603.l 0.0292 -1.2143 1.5 0.076 
19 333.0 4512.7 0.0323 -0.8048 1.9 0.088 

AC, Calgon CO2 75 303.6 3575.1 0.0443 -2.5517 2.0 0.164 
F-400 74 305.2 4051.9 0.0444 -2.2401 3.1 0.216 

75 309.2 3731.1 0.0426 -2.1518 2.8 0.174 
76 313.2 2894.4 0.0388 -2.1469 2.7 0.126 
76 318.2 4939.2 0.0494 -1.9917 2.7 0.137 
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Table 6-1. Regression Results for Pure-Gas Adsorption Using the ZGR EOS (Literature Data) - Cont'd. 

Adsorbent Adsorbate NPTS T(K) 
Parameters 

%AAD 
RMSE 

a B -ln(k) (mmol/g) 

AC, Norit CH4 16 304.9 7147.5 0.0798 -2.1724 0.2 0.005 
RBl 16 311.4 11509.0 0.1019 -1.6680 0.5 0.008 

16 331.3 17080.0 0.1266 -1.2123 0.7 0.010 
16 350.5 24887.0 0.1604 -0.8182 0.9 0.009 

AC, Norit CO2 16 305.2 4969.1 0.0544 -3.0951 0.1 0.005 
RBl 16 311.2 6392.0 0.0615 -2.5513 0.2 0.007 

16 329.5 8877.3 0.0733 -2.0516 0.5 0.011 
16 348.3 13363.0 0.0951 -1.6172 0.7 0.017 

AC, Coconut N2 10 178.0 619.8 0.0192 -3.8980 1.8 0.299 
Shell 11 198.0 1320.8 0.0233 -3.0557 0.8 0.139 

10 218.0 2044.5 0.0279 -2.3677 0.5 0.061 
10 233.0 2550.2 0.0305 -1.7953 0.2 0.023 
11 258.0 3185.9 0.0333 -1.3115 0.2 0.021 
10 278.0 3213.5 0.0336 -0.9952 0.8 0.060 
9 298.0 4605.2 0.0397 -0.5387 1.5 0.063 

AC F30/470 N2 25 303.0 18796.0 0.1437 -0.1909 1.7 0.072 
19 323.0 22313.0 0.1597 0.1145 1.5 0.052 
24 343.0 28079.0 0.1818 0.5169 1.1 0.036 
24 363.0 34520.0 0.2072 0.8146 1.0 0.024 
24 383.0 38952.0 0.2264 0.9946 0.8 0.017 

AC F30/470 CH4 24 303.0 14642.0 0.1055 -1.1040 2.3 0.133 
24 323.0 15027.0 0.1093 -0.9850 1.9 0.111 
25 343.0 17710.0 0.1203 -0.6642 2.2 0.121 
25 363.0 20496.0 0.1323 -0.4041 2.3 0.111 
24 383.0 24589.0 0.1458 -0.0205 1.5 0.058 
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Table 6-1. Regression Results for Pure-Gas Adsorption Using the ZGR EOS (Literature Data) - Cont'd. 

Adsorbent Adsorbate NPTS T(K) 
Parameters 

%AAD RMSE 
a 13 -ln(k) (mmol/g) 

AC F30/470 C3Hs 11 303.0 -12807.0 0.0197 -8.6208 1.4 0.129 
15 323.0 -10732.0 0.0270 -7.2295 0.8 0.061 
19 343.0 -11627.0 0.0222 -6.4518 0.5 0.037 
23 363.0 156.0 0.0826 -5.7327 0.3 0.021 
34 383.0 12755.0 0.1140 -3.9619 1.1 0.077 

AC, NoritRl N2 31 298.0 11388.0 0.0880 -0.3194 3.5 0.078 
AC, NoritRl CO2 29 298.0 3121.7 0.0325 -2.5906 0.8 0.070 
Zeolite, N2 8 298.0 22294.0 0.1938 -0.1936 1.4 0.032 
Linde 13X 8 323.0 28568.0 0.2166 0.4122 1.6 0.031 

8 348.0 36158.0 0.2412 0.9510 1.9 0.035 
Zeolite, N2 9 298.0 19781.0 0.1930 -0.7314 1.1 0.047 
Linde 5A 9 323.0 19652.0 0.1902 -0.2451 1.0 0.032 

9 348.0 24782.0 0.2067 0.3614 0.8 0.021 
Zeolite, CH4 10 298.0 22175.0 0.1912 -1.2523 0.7 0.033 
Linde 5A 10 323.0 24259.0 0.1993 -0.7701 0.5 0.015 

8 348.0 31317.0 0.2195 -0.0772 0.8 0.027 
Zeolite, CO2 11 298.0 -12794.0 0.1109 -10.5178 1.4 0.101 
Linde 5A 15 323.0 -1151.9 0.1378 -7.9717 1.0 0.077 

15 348.0 9972.5 0.1547 -5.6726 1.1 0.054 
Zeolite, C2H6 9 298.0 66146.0 0.3125 -0.6473 1.0 0.031 
Linde 5A 9 323.0 43444.0 0.3027 -2.9976 1.9 0.053 

9 348.0 43720.0 0.3024 -2.4501 1.6 0.043 
H-Modemite, CO2 18 283.0 -6929.0 0.0724 -6.2860 3.0 0.037 
Z-900H 41 303.0 -4483.4 0.0784 -5.1929 2.9 0.028 

34 323.0 -2785.1 0.0809 -4.1891 4.4 0.042 
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Table 6-1. Regression Results for Pure-Gas Adsorption Using the ZGR EOS (Literature Data)- Cont'd. 

Adsorbent Adsorbate NPTS T(K) 
Parameters 

%AAD 
RMSE 

a 13 -ln(k) (mmoVg) 

H-Modemite, H2S 17 283.0 -6258.7 0.1294 -9.5782 0.6 0.011 
Z-900H 22 303.0 -1703.3 0.0647 -8.5757 0.9 0.017 

23 338.0 -2856.9 0.1389 -6.8738 2.7 0.030 
7 368.0 3036.0 0.1564 -5.6114 1.1 0.020 

H-Modemite, C3Hs 30 283.0 21704.0 0.4829 -8.2104 3.9 0.026 
Z-900H 34 303.0 56053.0 0.5645 -6.4374 5.5 0.044 

28 324.0 37815.0 0.5194 -5.9894 3.1 0.021 
Zeolite G5 CH4 32 283.0 22835.0 0.1720 -1.1616 1.2 0.024 

19 303.0 27753.0 0.1873 -0.5527 2.1 0.021 
Zeolite G5 C2H6 22 283.0 -26948.0 0.0788 -10.9893 0.3 0.013 

18 303.0 27114.0 0.2083 -3.8318 0.5 0.018 
Zeolite G5 C2H4 17 283.0 -10429.0 0.1515 -12.2849 0.2 0.008 

17 303.0 -10351.0 0.1501 -10.5168 0.1 0.006 
Zeolite 13X CH4 18 298.0 25505.0 0.1829 -0.4517 1.2 0.032 
Zeolite 13X C2H6 11 298.0 -32229.0 0.0260 -8.4180 1.0 0.042 

Overall 2363 1.7 0.096 
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Table 6-2. Regression Results for Pure-Gas Adsorption Using the 2-D PR EOS (Literature Data) 

Adsorbent Adsorbate NPTS T(K) 
Parameters 

%AAD 
RMSE 

ex. 13 -ln(k) (mmol/g) 
AC, N2 9 310.9 -5823.9 0.0049 1.0671 1.2 0.010 
Columbia 5 338.7 -5247.7 0.0520 1.5164 1.8 0.022 
GradeL 9 366.5 -4242.8 0.0622 2.0429 1.2 0.010 

8 394.3 -3604.4 0.0676 2.4025 1.3 0.007 
5 422.0 2521.0 0.4125 2.8236 1.7 0.009 

AC, CH4 12 310.9 -2716.9 0.0926 -0.1800 1.8 0.019 
Columbia 10 338.7 -3558.7 0.0677 0.3407 1.5 0.041 
GradeL 8 366.5 -869.5 0.1119 0.9124 1.0 0.010 

7 394.3 -5698.4 0.0448 1.3431 0.6 0.004 
8 422.0 -912.1 0.1134 1.7408 1.3 0.011 

AC, C2H6 10 310.9 -7140.1 0.0959 -3.4615 1.4 0.110 
Columbia 9 338.7 -7520.5 0.1090 -2.0708 1.0 0.032 
Grade L 10 366.5 -8642.1 0.0945 -1.7652 0.7 0.023 

10 394.3 -10455.0 0.0595 -1.1522 1.9 0.035 
9 422.0 -8499.3 0.0552 -0.4691 3.0 0.076 
5 449.8 -8503.0 0.0343 0.1080 0.4 0.016 
5 477.6 -8661.0 0.0484 0.6463 0.7 0.016 

Charcoal CH4 8 283.2 -2417.2 0.0571 -0.7802 0.1 0.007 
12 293.2 -3142.5 0.0550 -0.6690 0.7 0.048 
12 303.2 -2640.0 0.0602 -0.3389 0.8 0.047 
10 313.2 -1858.5 0.0645 0.0765 0.3 0.033 
13 323.2 -1800.8 0.0689 0.2787 0.4 0.028 
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Table 6-2. Regression Results for Pure-Gas Adsorption Using the 2-D PR EOS {Literature Data) - Cont'd. 

Adsorbent Adsorbate NPTS T(K) 
Parameters 

%AAD 
RMSE 

a ~ -ln(k) (mmol/g) 
Charcoal C3Hs 10 293.2 -2956.4 0.1079 -5.0547 2.3 0.133 

11 303.2 -10126.0 0.0964 -5.9586 0.6 0.051 
10 313.2 -7893.2 0.0999 -5.0624 0.7 0.038 
11 323.2 -6510.6 0.1049 -4.4225 0.5 0.032 
10 333.2 -7810.1 0.1080 -4.3602 0.3 0.015 

AC, BPL CH4 23 212.7 -3984.9 0.0652 -2.8962 1.0 0.077 
24 260.2 -3582.1 0.0678 -0.9421 0.5 0.029 
25 301.4 -2928.2 0.0782 0.2505 0.5 0.027 

AC, BPL C2H6 18 212.7 -3799.5 0.1030 -6.6951 2.7 0.177 
15 260.2 -7281.1 0.0967 -4.7486 0.9 0.059 
16 301.4 -5848.5 0.1039 -2.7450 0.6 0.025 

AC,BPL C2H4 21 212.7 -8625.6 0.0724 -7.3931 2.9 0.163 
15 260.2 -6457.1 0.0871 -4.0783 0.4 0.029 
16 301.4 -5615.7 0.0933 -2.2765 0.3 0.017 

AC, BPL CO2 21 212.7 -1195.6 0.0563 -4.4091 1.0 0.071 
14 260.2 -1453.0 0.0551 -2.0637 0.4 0.019 
25 301.4 -2155.4 0.0484 -0.7352 0.4 0.026 

AC, PCB.- CH4 7 296.0 -514.4 0.0890 -0.1958 0.1 0.014 
Calgon 8 373.0 -5613.6 0.0594 0.9424 0.8 0.041 

7 480.0 9130.4 0.1748 2.8932 1.6 0.022 
AC, PCB- CO2 4 296.0 -1177.2 0.0557 -1.4443 0.0 0.005 
Calgon 4 373.0 -2574.4 0.0457 0.3618 0.1 0.004 

4 480.0 -5103.1 0.0341 1.8489 1.1 0.047 
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Table 6-2. Regression Results for Pure-Gas Adsorption Using the 2-D PR EOS (Literature Data) - Cont'd. 

Adsorbent Adsorbate NPTS T(K) 
Parameters 

%AAD 
RMSE 

a 13 -ln(k) (mmol/g) 

AC, F30/470 CO2 30 278.0 -2526.9 0.0639 -2.3348 1.3 0.273 
Chemviron 19 288.0 -3492.1 0.0547 -2.0851 1.1 0.153 
Carbon 19 298.0 -2952.5 0.0606 -1.6232 0.3 0.030 

19 303.0 -2876.2 0.0620 -1.5121 0.3 0.028 
38 308.0 -3126.3 0.0601 -1.3528 0.5 0.044 
19 318.0 -3689.0 0.0574 -1.0777 0.5 0.032 
20 328.0 -3930.5 0.0602 -0.8708 0.5 0.023 

AC, NoritRl N2 10 298.0 -2097.7 0.0854 0.9155 0.7 0.016 
Extra 
AC, NoritRl CH4 12 298.0 -3214.4 0.0540 -0.4825 1.5 0.041 
Extra 
AC, NoritRl CO2 12 298.0 -2257.3 0.0301 -1.4047 2.1 0.086 
Extra 
AC, Coconut CH4 21 233.0 -1234.3 0.0186 -2.0298 1.2 0.262 
Shell 19 253.0 -961.6 0.0221 -1.3383 0.5 0.110 

22 273.0 -876.9 0.0241 -0.7778 0.4 0.145 
21 293.0 -744.8 0.0266 -0.2791 0.4 0.067 
20 313.0 -675.4 0.0281 0.1668 0.3 0.027 
19 333.0 -616.1 0.0282 0.5690 0.2 0.017 

AC, Calgon CO2 75 303.6 -2320.1 0.0545 -1.0368 2.1 0.161 
F-400 74 305.2 -1458.9 0.0548 -0.6420 3.2 0.218 

75 309.2 -1975.7 0.0513 -0.6175 2.9 0.173 
76 313.2 -2869.2 0.0457 -0.6995 2.8 0.128 
76 318.2 -1796.8 0.0587 -0.4876 2.7 0.139 
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Table 6-2. Regression Results for Pure-Gas Adsorption Using the 2-D PR EOS (Literature Data) - Cont'd. 

Adsorbent Adsorbate NPTS T (K) 
Parameters 

%AAD 
RMSE 

a. B -ln(k) (mmol/g) 
AC, Norit CH4 16 304.9 -5487.1 0.0418 -0.8024 0.3 0.006 
RBI 16 311.4 -5340.8 0.0434 -0.2723 0.3 0.005 

16 331.3 -5345.4 0.0450 0.1594 0.6 0.008 
16 350.5 -5233.7 0.0486 0.5498 0.7 0.008 

AC, Norit CO2 16 305.2 -2566.0 0.0571 -1.6572 0.3 0.011 
RBI 16 311.2 -3182.2 0.0507 -1.1489 0.3 0.011 

16 329.5 -4007.2 0.0310 -0.6668 0.3 0.006 
16 348.3 -4290.4 0.0334 -0.2316 0.5 0.009 

AC, Coconut N2 10 178.0 -415.0 0.0273 -1.7709 0.8 0.181 
Shell 11 198.0 -288.2 0.0311 -1.2972 0.8 0.142 

10 218.0 -484.4 0.0325 -0.8288 0.4 0.078 
10 233.0 -341.4 0.0359 -0.1951 0.3 0.039 
11 258.0 -224.7 0.0383 0.2782 0.2 0.027 
10 278.0 -320.5 0.0398 0.6564 0.2 0.019 
9 298.0 -262.5 0.0417 1.0418 0.1 0.009 

AC F30/470 N2 25 303.0 4199.7 0.1709 1.5391 2.1 0.079 
19 323.0 5030.7 0.1909 1.8136 1.7 0.057 
24 343.0 7517.0 0.2136 2.2385 1.7 0.044 
24 363.0 5810.4 0.2260 2.3756 1.4 0.037 
24 383.0 6225.7 0.2480 2.6005 1.3 0.027 

AC F30/470 CH4 24 303.0 6139.7 0.1286 0.8751 2.2 0.129 
24 323.0 2408.0 0.1350 0.7221 1.9 0.110 
25 343.0 5518.8 0.1472 1.2113 2.3 0.121 
25 363.0 2803.0 0.1532 1.2136 2.7 0.122 
24 383.0 4319.2 0.1679 1.5901 1.9 0.069 
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Table 6-2. Regression Results for Pure-Gas Adsorption Using the 2-D PR EOS (Literature Data) - Cont'd. 

Adsorbent Adsorbate NPTS T(K) 
Parameters 

%AAD 
RMSE 

a f3 -ln(k) (mmol/g) 

AC F30/470 C3Hs 11 303.0 -22639.0 0.0380 -8.4472 1.4 0.128 
15 323.0 -21576.0 0.0496 -6.7439 0.8 0.061 
19 343.0 -21591.0 0.0424 -5.9305 0.5 0.036 
23 363.0 -19220.0 0.1051 -4.7216 0.3 0.020 
34 383.0 -5670.3 0.1402 -2.4304 1.0 0.076 

AC NoritRl N2 31 298.0 -2210.9 0.0797 0.8482 1.1 0.063 
AC NoritRl CO2 29 298.0 -1750.1 0.0313 -1.2601 1.1 0.123 
Zeolite, N2 8 298.0 -643.0 0.2221 1.3707 1.3 0.033 
Linde 13X 8 323.0 -703.5 0.2330 1.9173 1.5 0.034 

8 348.0 -1693.1 0.2286 2.3920 1.6 0.041 
Zeolite, N2 9 298.0 -1234.3 0.2366 0.9751 1.1 0.046 
Linde 5A 9 323.0 -4798.5 0.2305 1.3662 1.1 0.033 

9 348.0 -4348.5 0.2462 1.9319 0.7 0.020 
Zeolite, CH4 10 298.0 2821.6 0.2338 0.4996 0.7 0.033 
Linde 5A 10 323.0 1874.2 0.2448 0.9549 0.6 0.016 

8 348.0 3868.1 0.2578 1.5963 0.9 0.031 
Zeolite, CO2 11 298.0 -4528.7 0.1478 -10.3027 1.4 0.107 
Linde 5A 15 323.0 -3483.7 0.1692 -7.4362 1.0 0.077 

15 348.0 -2141.0 0.1866 -4.7231 1.1 0.055 
Zeolite, C2H6 9 298.0 48548.0 0.3594 1.1395 1.0 0.030 
Linde 5A 9 323.0 6541.0 0.3551 -1.5561 1.7 0.054 

9 348.0 22648.0 0.3792 -0.0522 1.5 0.035 



O"I 
00 

System 
No. 

31 

32 

33 

34 

35 

36 

37 
38 

Table 6-2. Regression Results for Pure-Gas Adsorption Using the 2-D PR EOS (Literature Data) - Cont'd. 

Adsorbent Adsorbate NPTS T(K) 
Parameters 

%AAD 
RMSE 

a. ~ -ln(k) (mmol/g) 
H-Modemite, CO2 18 283.0 -22578.0 0.1031 -5.2764 3.4 0.040 
Z-900H 41 303.0 -21586.0 0.1022 -4.1524 4.1 0.037 

34 323.0 -21115.0 0.0999 -3.1440 5.9 0.055 
H-Modemite, H2S 17 283.0 -30904.0 0.1941 -8.4583 0.6 0.011 
Z-900H 22 303.0 -36701.0 0.1507 -7.7711 0.9 0.072 

23 338.0 -30397.0 0.2084 -5.5962 2.6 0.030 
7 368.0 -31427.0 0.1762 -4.3822 1.1 0.018 

H-Modemite, C3Hs 30 283.0 -43102.0 0.6193 -6.6863 3.7 0.030 
Z-900H 34 303.0 -9152.4 0.6941 -4.7923 4.8 0.048 

28 324.0 -37630.0 0.06569 -4.4838 3.0 0.022 
Zeolite G5 CH4 32 283.0 3851.8 0.1791 0.4151 1.0 0.022 

19 303.0 2944.3 0.1620 0.9453 0.4 0.006 
Zeolite G5 C2H6 22 283.0 -60077.0 0.1433 -11.2153 0.3 0.013 

18 303.0 5414.2 0.2498 2.1866 0;6 0.021 
Zeolite G5 C2~ 17 283.0 -57999.0 0.1823 -13.2865 0.2 0.008 

17 303.0 -54555.0 0.1872 -10.6898 0.1 0.006 
Zeolite 13X c~ 18 298.0 6817.9 0.2135 1.2033 1.1 0.041 
Zeolite 13X C2H6 11 298.0 -55086.0 0.08225 -8.9521 1.0 0.042 

Overall 2363 1.5 0.097 



Table 6-3 presents summary results for the ZGR BOS representation of the OSU 

pure-gas adsorption database. The overall AAD for all 549 OSU experimental data 

points is 4.3% and the overall RMSB is 0.075 mmol/g. The overall W AAD is 0.6, which 

means the ZGR BOS can, on average, represent the experimental data within the 

expected experimental uncertainties. As shown in the table, CO2 adsorption on wet 

Illinois #6 coal at 319.3 K (System 63) has the worst quality of fit with an AAD of 10.3% 

(W AAD of 1. 7), and C2H6 adsorption on Calgon F-400 activated carbon at 318 .2 K 

(System 50) has the worst RMSB of0.154 mmol/g. 

Table 6-4 presents summary results of the 2-DPR BOS representation of the OSU 

pure-gas adsorption database. The overall AAD for all 549 OSU experimental data 

points is 4.4% and the overall RMSB is 0.077 mmol/g. The overall W AAD is 0.6, which 

means the 2-D PR BOS can also, on average, represent the experimental data within the 

expected experimental uncertainties. As shown in the table, CO2 adsorption on wet 

Illinois #6 coal at 319 .3 K (System 63) has the worst quality of fit with AAD of 11.5% 

(WAAD of 1.7), and C2H6 adsorption on Calgon F-400 activated carbon at 318.2 K 

(System 50) has the worst RMSB of0.154 mmol/g. 

In general, adsorption on wet coals is more difficult to model than adsorption on 

activated carbons. As shown in Tables 6-3 and 6-4, CO2 adsorption on wet coals, in 

particular, is the most difficult to model. This is attributed in part to how the moisture 

content is accounted for in the adsorption experiments for wet coals. To account for 

moisture effects in the current adsorption data reduction procedures, part of the CO2 is 

assumed to dissolve in water. However, no account is made for how the water molecules 

69 
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Table 6-3. Regression Results for Pure-Gas Adsorption Using the ZGR EOS (OSU Data) 

Adsorbent 
Ads or-

NPTS T(K) 
Parameters 

%AAD 
RMSE WAAD 

bate a 13 -ln(k) (mmol/g) 
AC, Calgon F-400 N2 22 318.2 12520.0 0.1076 0.0110 0.4 0.011 0.3 
AC, Calgon F-400 CH4 22 318.2 8362.7 0.0824 -1.2223 0.5 0.024 0.7 
AC, Calgon F-400 CO2 52 318.2 4732.1 0.0497 -2.1677 2.0 0.110 0.5 
AC, Calgon F-400 C2H6 21 318.2 1829.1 0.0744 -4.4025 6.4 0.154 0.7 
Wet Fruitland Coal N2 37 319.3 109450.0 0.7762 3.4687 2.6 0.006 0.4 
Wet Fruitland Coal CH4 40 319.3 46902.0 0.3988 1.7932 1.1 0.007 0.4 
Wet Fruitland Coal CO2 57 319.3 1050.0 0.0879 0.8713 8.7 0.123 0.9 
Wet Illinois # 6 Coal N2 20 319.3 309330.0 1.9798 4.4610 3.3 0.003 0.1 
Wet Illinois # 6 Coal CH4 20 319.3 104130.0 0.8249 2.6973 1.9 0.005 0.3 
Wet Illinois # 6 Coal CO2 40 319.3 11155.0 0.1324 1.6826 10.3 0.109 1.7 
Wet Tiffany Coal N2 21 327.5 203370.5 1.4192 4.3040 2.3 0.002 0.5 
Wet Tiffany Coal CH4 34 327.5 115540.0 0.8394 2.8661 3.1 0.011 1.1 
Wet Tiffany Coal CO2 16 327.5 62560.0 0.5405 1.2459 4.0 0.026 0.2 
Wet LB Fruitland Coal N2 17 319.3 95972.0 0.7332 4.7916 2.9 0.003 0.2 
Wet LB Fruitland Coal CH4 16 319.3 22837.0 0.3143 3.2584 2.2 0.007 0.4 
Wet LB Fruitland Coal CO2 48 319.3 103750.0 0.7905 1.5904 7.1 0.040 0.5 
Dry Illinois # 6 Coal CO2 11 328.0 5262.1 0.0679 1.0575 2.5 0.034 0.4 
Dry Beulah Zap Coal CO2 22 328.0 374.7 0.0526 0.3864 5.8 0.112 0.7 
Dry Wyodak Coal CO2 11 328.0 3467.4 0.0516 0.8258 6.7 0.123 0.8 
Dry Upper Freeport Coal CO2 11 328.0 -4205.3 0.1049 0.5818 4.2 0.044 0.4 
Dry Pocahontash Coal CO2 11 328.0 -1497.0 0.1077 0.1747 2.7 0.036 0.2 

Overall 549 4.3 0.075 0.6 



Table 6-4. Regression Results for Pure-Gas Adsorption Using the 2-D PR EOS (OSU Data) 

System 
Adsorbent 

Ads or-
NPTS T(K) 

Parameters 
%AAD 

RMSE WAAD 
No. bate a ~ -ln(k) (mmol/g) 
47 AC, Calgon F-400 N2 22 318.2 -1567.6 0.1229 1.5551 0.4 0.015 0.3 
48 AC, Calgon F-400 CH4 22 318.2 -2197.6 0.1004 0.3673 0.5 0.026 0.7 
49 AC, Calgon F-400 CO2 52 318.2 -1781.7 0.0607 -0.5787 2.0 0.113 0.5 
50 AC, Calgon F-400 C2H6 21 318.2 -11251.0 0.0972 -3.1076 6.4 0.154 0.7 
55 Wet Fruitland Coal N2 37 319.3 -22832.0 0.2393 4.8530 2.4 0.006 0.3 
56 Wet Fruitland Coal CH4 40 319.3 -15173.0 0.3381 3.2015 0.9 0.005 0.4 
57 Wet Fruitland Coal CO2 57 319.3 -16950.0 0.0988 2.0134 8.9 0.125 0.9 
61 Wet Illinois # 6 Coal N2 20 319.3 -6047.6 1.1211 5.8409 1.6 0.001 0.0 
62 Wet Illinois # 6 Coal CH4 20 319.3 -18408.0 0.7455 4.1531 1.8 0.006 0.3 
63 Wet Illinois # 6 Coal CO2 40 319.3 -16580.0 0.1221 2.7488 11.5 0.120 1.7 

-..:i 67 Wet Tiffany Coal N2 21 327.5 -43152.0 0.4537 5.7062 2.8 0.003 0.5 - 68 Wet Tiffany Coal CH4 34 327.5 -12437.0 0.7180 4.2980 3.4 0.011 1.2 
69 Wet Tiffany Coal CO2 16 327.5 -2378.7 0.6593 2.9396 4.1 0.026 0.3 
74 Wet LB Fruitland Coal N2 17 319.3 -63209.0 0.4550 5.8280 3.8 0.004 0.3 
75 Wet LB Fruitland Coal CH4 16 319.3 -35702.0 0.2746 4.4951 2.9 0.009 0.5 
76 Wet LB Fruitland Coal CO2 48 319.3 12269.0 0.9151 3.2636 7.0 0.039 0.5 
77 Dry Illinois # 6 Coal CO2 11 328.0 -8979.7 0.0639 2.1918 3.0 0.037 0.5 
78 Dry Beulah Zap Coal CO2 22 328.0 -10799.0 0.0622 1.5280 6.3 0.116 0.8 
79 Dry Wyodak Coal CO2 11 328.0 -8496.1 0.0541 1.7575 7.1 0.134 0.9 
80 Dry Upper Freeport Coal CO2 11 328.0 -27349.0 0.1261 1.7071 4.4 0.044 0.4 
81 Dry Pocahontash Coal CO2 11 328.0 -23825.0 0.1074 1.3737 2.7 0.036 0.2 

Overall 549 4.4 0.077 0.6 



would affect adsorption. This means the current data reduction procedures may not yield 

highly accurate adsorption results on wet coals. 

6.3 Temperature Dependence of2-D EOS Model Parameters 

The results shown in the previous section are based on separate regressions for 

each individual isotherm. The regressed parameters show a definite temperature 

dependence. Therefore, temperature relations for each 2-D EOS parameter, a, ~' and k, 

are essential to facilitate adsorption predictions. 

Temperature relations for the 2-D EOS parameters can be either empirically or 

theoretically based. Empirical correlations (e.g., linear relations) can be used to describe 

the temperature dependence. However, they are rather arbitrary and may not work well 

for a broad temperature range. In this work, the effort was focused on theory-based 

relations. 

de Boer (1968) related 2-D EOS parameters, a2 and b2, with the 3-D EOS 

parameters, a and b, through: 

3a 
a=-

2 8d 

b = 3b 
2 4d 

(6-6) 

(6-7) 

where d is the diameter of the gas molecule. In doing so, he assumed that the adsorbent 

is inert to adsorption. Thus, he could derive the critical temperature, Tc2, for the 2-D 

EOS: 

T = Tc 
c2 2 

(6-8) 
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where Tc is the critical temperature. However, because surface interactions with the gas 

molecules exist in the 2-D phase, the simple transformations of model parameters from 

3-D EOS to 2-D EOS had few successful applications. In other words, the 2-D critical 

properties are not only gas dependent, but also depend on the adsorbent. If the above 

relations are used, we obtain: 

a a 2 a 
-=-=-
p b 2 2b 

(6-9) 

As indicated in Tables 6-2 and 6-4, the value of a for the 2-D VDW-type EOS is 

negative. Although the ZGR EOS forces a to be positive by revising the repulsive term 

in the EOS, Equation 6-9 is still invalid. 

In this work, a different route was taken to generate the temperature relations for 

the 2-D EOS parameters. Here, we rely on the Ono-Kondo lattice theory and other 

theories to generate the temperature relations for the 2-D EOS parameters. 

6.3.1 Temperature Dependence of p 

For the surface density of the adsorbate, CJ m (mmol/m2), the relation below was 

used by Sudibandriyo (2003): 

(6-10) 

where 8 is the thermal expansion coefficient for the adsorbed gas. 

pin the 2-D EOS is the inverse of the maximum adsorption capacity: 

(6-11) 

Combining Equations 6-6 and 6-7 and integrating yields: 
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ln(-1 J-1n(-1 J = -o(T - T ) 
~A ~oA o 

(6-12) 

or 

ln(~) = OT -loTO + ln O" m,O + lnA J (6-13) 

where T0 is set at the normal boiling point of the adsorbate (triple point for CO2), and 

crm,o is the maximum surface density of the adsorbate at T0 [Sudibandriyo, 2003]. 

6.3.2 Temperature Dependence of Henry's Constant 

The Henry's constant k is defined as: 

droAbs 
k=--

d.P P=O 
(6-14) 

From the Ono-Kondo lattice theory [see, e.g., Sudibandriyo, 2003], Xabs is given as: 

where X - pads ads -
Pb xb = - , Pads is the adsorbed phase density, pb is the bulk gas 

Pmc Pmc 

phase density, Pmc IS the maximum density defined as: Pmc = crm,o/d, Eff is the 

adsorbate-adsorbate interaction energy, Ers is the adsorbate-adsorbent interaction energy, 

and cP, cv, and c are model constants. 

The absolute adsorption, roAbs, is defined as: 

O)Abs = Cx d = C Pads 
a s 

Pmc 
(6-16) 

where C is the maximum adsorption capacity. Taking the derivative of Equation 6-15 

with respect to pressure at the zero pressure limit yields: 
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dxads -(Xads dxb J -- - ----
dP P=O Xb dP P=O 

(6-17) 

Thus, Henry's constant is derived as: 

d Abs d dx 1 k =-ro__ = c xads = C xads __ b = C xads __ _ 

dP P=O dP P=O Xb dP P=O Xb PmcRT 
(6-18) 

Meanwhile, Equation 6-15 can be simplified at low pressure to yield: 

ln[xads I Xb ]+ Ers /kT = 0 (6-19) 

Combining Equations 6-18 and 6-19, and identifying that C m the OK model is 

equivalent to 1/P in 2-D EOS yields: 

k = exp __ rs 1 (-E ) 
PPmcRT kT 

(6-20) 

where Ers is the adsorbate-adsorbent or fluid-solid interaction energy. 

The fluid-solid energy parameter, Erslk, may be expressed m terms of the 

interaction of a single molecule with a single lattice plane. If z is the distance between 

the adsorbate molecule i and the lattice carbon plane, the potential energy can be written 

as follows [see, e.g., Do, 1998]: 

(6-21) 

This potential energy has a minimum and its depth is given by: 

(6-22) 
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where p atom is the solid atom density of the adsorbent, cr rs = ( cr ff + cr rJ/ 2 is the fluid-

solid collision diameter, and E;s = ~E~Ess is the fluid-solid well depth potential. For 

carbon adsorbent, Patom = 0.382 atom/A2 [see, e.g., Do, 1998]. 

6.3.3 Temperature Dependence of a 

In 2-D EOS, only the interactions within the adsorbed phase are considered. To 

estimate the attractive term in the 2-D EOS, de Boer (1968) used Equation 6-23 to 

estimate a2: 

N 2004* 6 
a f Eff<Jff 2 d a 2 = -- 6 nr r 

2 r 
O"ff 

(6-23) 

However, in the 2-D phase, the attractive interactions are affected by the attractive force 

from the adsorbent surface. To estimate the attractive energy among the adsorbate 

molecules, a correction for the Equation 6-23 is necessary to discount the influence of the 

surface interactions. 

A method to evaluate a more realistic attractive term for the adsorbed gas is to 

deduct the attractive energy of the adsorbate-adsorbent from Equation 6-23. Although 

this is not a rigorous method, it does provide a reasonable approximation. In this study, 

an expression is derived for the total attractive energy between the adsorbed molecules 

I 

and the solid surface, a 2 , given as: 

(6-24) 

Since a is the total attractive energy per surface area, then after correcting for the surface 

interactions, we obtain: 
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a= a2 -a2' =(N/ r 4E;fcrff6 2nrdr- Na2 r 2npatomE;scrfs6 2rdr) /A (6-25) 
A 2 ff r 6 2 " r 4 / 

1 

or 

(6-26) 

Usually, the adsorbate-adsorbent attractive energy is larger than the adsorbate-

adsorbate attractive energy, which explains why the regressed parameter, a, in the 2-D 

PR BOS is mostly negative. 

However, Equation 6-26 only works for 2-D VDW type of BOS. For the other 

2-D BOS, such as Eyring BOS and ZGR BOS, the repulsive term was revised to obtain 

positive a values. The empirical revision of the repulsive term makes it more difficult to 

estimate a, because in both equations, a is also correlated with 0. That is, empirically, a 

and 0 tend to exhibit a linear relation for a moderate temperate range. 

6.3.4 Results for Generalization of Model Temperature Dependence 

Based on the above analyses, the temperature relations for the 2-D PR BOS 

parameters are generalized, as they relate to some of the gas properties and adsorbent 

characteristics. In this study, the 2-D PR BOS is used to demonstrate the efficacy of the 

new temperature relations for the 2-D BOS parameters. 

Table 6-5 summarizes the physical properties of the adsorbates investigated in 

this work. For the gas adsorption on activated carbons, the solid-solid interaction, Ess, 

the maximum surface density of the adsorbate at TO, cr m O, and the thermal expansion 

coefficient, 8 , are regressed for each adsorption system at various temperatures. The 

specific adsorbent surface area, A, is not a directly measured value. Consequently, it is 

77 



-...J 
00 

Adsorbate MW 

H2 2.02 
N2 28.01 

H2S 34.08 
CO2 44.01 
CILi 16.04 
C2H4 28.05 
C2H6 30.07 
C3Hs 44.10 

i- C~10 58.12 

0 : Triple point temperature 

Table 6-5. Physical Properties of Adsorbates 

Reciprocal 
Pc Tc(K) 

Normal Boiling van der Waals O"rr 
Erf*/k {K) (MP a) Point (K) co-volume (10-10 m) 

(mol/liter) 
1.31 33.19 20.4 38.16 2.827 59.7 
3.40 126.20 77.3 25.89 3.798 71.4 
8.96 373.53 212.8 23.08 3.623 301.1 
7.38 304.21 216.6 a 23.34 3.941 195.2 
4.60 190.56 111.7 23.37 3.758 148.6 
5.04 282.34 169.4 17.39 4.163 224.7 
4.87 305.32 184.6 15.41 4.443 215.7 
4.25 369.83 231.1 11.07 5.118 237.1 
3.65 408.14 261.4 8.60 5.278 330.1 



inferred from adsorption measurements using selected models. In this study, the N2 BET 

surface area at 77 K is used due to availability and standardization. 

Figure 6-1 shows the effect of variation in surface area on the adsorption 

representations. The adsorption in this sample calculation is for CO2 adsorption on 

activated carbon measured at OSU. From the figure, we see that a 10% variation in the 

surface area yields no significant difference in the correlation results; albeit, different 

surface area estimates produce different regressed model parameter values. 

Table 6-6 presents summary results for the 2-D PR EOS representation of the 

pure-gas adsorption data on various activated carbons (Systems 1 to 25 and Systems 47 

to 50). Adsorption on Zeolites was not included here, since characterization data for 

these adsorbents are not available. The overall AAD for the 1922 data points is 2.4% and 

the overall RMSE is 0.199 mmol/g. In comparison, the overall AAD and RMSE for the 

adsorption on activated carbon from Tables 6-2 and 6-4 are 1.4% and 0.108 mmol/g, 

respectively. While the errors have doubled, use of the temperature relations provides for 

adsorption predictions over the desired temperature range. 

Unlike activated carbons, the coals we investigated do not have the commercial 

surface area data available. Since each system includes only one isotherm, we fixed the 

surface density and thermal expansion coefficient for the gas adsorption on coals. Only 

the surface area and the solid-solid interaction are regressed in this case. 

For the maximum surface density, we used the hexagon to represent the minimum 

area occupied by the gas molecules on the adsorbent surface, thus the maximum surface 

density: 
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Figure 6-1. Effect of Surface Area on Pure CO2 Adsorption on Activated Carbon at 318.2 K 
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System 
No. 

1 

2 

3 

4 
5 
6 
7 
8 
9 

10 

11 

12 

13 

14 

Table 6-6. Regression Results for Pure-Gas Adsorption on Activated Carbons 
Using the New Temperature Relations 

Adsorbent Adsorbate NPTS 
Regressed Parameters 

%AAD 
A (m2/g) crm o (mmol/m2) Essfk(K) 8 (1/K.) 

AC, Columbia 
N2 36 1152.0 53.01 0.0168 0.00295 3.7 

Grade L 
AC, Columbia 

CH4 45 1152.0 45.82 0.0158 0.00287 3.1 
Grade L 

AC, Columbia 
C2H6 58 1152.0 49.59 0.0117 0.00317 4.5 

Grade L 
Charcoal CH4 55 1157.0 45.86 0.0275 0.00350 0.9 
Charcoal C3Hs 52 1157.0 45.68 0.0095 0.00248 3.8 
AC, BPL CH4 72 988.0 39.12 0.0189 0.00319 2.5 
AC,BPL C2H6 49 988.0 46.25 . 0.0112 0.00313 4.4 
AC,BPL C2H4 52 988.0 48.43 0.0173 0.00308 4.3 
AC, BPL CO2 60 988.0 47.40 0.0962 0.01100 3.7 
AC, PCB-

CH4 21 1200.0 41.65 0.0166 0.00264 1.8 
Calgon 

AC, PCB-
CO2 12 1200.0 38.85 0.0245 0.00561 1.8 

Calgon 
AC, F30/470 
Chemviron CO2 164 993.5 49.52 0.0340 0.00502 2.6 

Carbon 
AC, Norit Rl 

N2 10 1450.0 57.21 0.0231 0.00476 0.7 
Extra 

AC, Norit Rl 
CH4 12 1450.0 72.63 0.0889 0.01099 1.7 

Extra 

RMSE 
(mmol/g) 

0.029 

0.057 

0.152 

0.053 
0.133 
0.115 
0.207 
0.218 
0.336 

0.059 

0.187 

0.241 

0.016 

0.036 
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Table 6-6. Regression Results for Pure-Gas Adsorption on Activated Carbons 
Using the New Temperature Relations - Cont'd. 

Adsorbent Adsorbate NPTS 
Regressed Parameters 

%AAD 
A (m2/g) cr m,o( mmol/m2) Essfk{K) 8 (1/K) 

AC, Norit Rl 
CO2 12 1450.0 53.32 0.0905 0.01328 2.1 

Extra 
AC, Coconut 

CH4 122 3106.0 23.70 0.0175 0.00277 2.0 
Shell 

AC, Calgon F-
CO2 374 1200.0 43.35 0.0587 0.00994 2.7 

400 
AC, Norit RBl CH4 64 1100.0 48.17 0.0152 0.00295 1.3 
AC, Norit RBl CO2 64 1100.0 47.05 0.0281 0.00570 1.0 
AC, Coconut 

N2 71 3106.0 32.20 0.0183 0.00385 2.1 
Shell 

AC F30/470 N2 116 993.5 60.17 0.0216 0.00373 2.2 
AC F30/470 CH4 122 993.5 46.23 0.0216 0.00307 1.9 
AC F30/470 C3Hs 102 993.5 40.25 0.0102 0.00223 1.5 
AC NoritRl N2 31 1262.0 51.28 0.0188 0.00288 1.1 
AC NoritRl CO2 29 1262.0 40.03 0.0417 0.00489 1.1 

AC, Calgon F-
N2 22 950.0 31.93 0.0089 0.00001 0.4 

400 
AC, Calgon F-

CH4 22 950.0 41.06 0.0180 0.00250 0.5 
400 

AC, Calgon F-
CO2 52 950.0 32.83 0.0175 0.00001 1.4 

400 
AC, Calgon F-

C2H6 21 950.0 40.55 0.0099 0.00146 5.5 
400 
Overall 1922 2.4 

RMSE 
(mmol/g) 

0.086 

0.242 

0.286 

0.026 
0.033 

0.267 

0.065 
0.104 
0.106 
0.064 
0.121 

0.018 

0.025 

0.144 

0.394 

0.199 



cr = 1 I[ 3/3 ( cr ff ) 
2 
N l 

m,O 7 2 2 a 
(6-27) 

The thermal expansion coefficient is fixed to be 0.0024 (1/K), as suggested by 

Sudibandriyo (2003). 

Table 6-7 presents summary results for the 2-D PR EOS representation of the 

pure-gas adsorption on wet and dry coals using the generalized temperature relations of 

Equations 6-13, 6-20, and 6-26. The overall AAD for the 432 data points is 4.7%; the 

overall RMSE is 0.050 mmol/g; and the over W AAD is 0.6. As indicated in the table, 

CO2 adsorption on dry Illinois #6 coal (System 77) has the worst quality of fit with AAD 

of 10.2% and RMSE of 0.155 mmol/g. CH4 adsorption on wet Tiffany coal (System 68) 

has the worst W AAD of 1.3. 

Regressing the surface area of a given matrix using various adsorbates leads to 

different area estimates. In addition, the value of the regressed surface area is affected by 

the values chosen for the maximum surface density and the thermal expansion 

coefficient. The results indicate that among the CBM gases (CH4, CO2, and N2), N2 

accesses the least surface area and has the lowest fluid-solid interaction energy, while 

CO2 accesses the most surface area and has the highest fluid-solid interaction energy. 

Overall, the regression results described above using the temperature relations 

show that the 2-D PR EOS can be applied successfully within the experimental 

uncertainties (W AAD of 0.6). However, CO2 adsorption on coals produces less 

favorable results. As discussed in the previous section, adsorption on wet coals is 

difficult to model, partly because the current procedures do not account effectively for 
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Table 6-7. Regression Results for Pure-Gas Adsorption on Coals Using the New Temperature Relations 

Adsor-
Regressed Parameters 

% RMSE System Adsorbent 
bate 

NPTS T(K) A Essfk O'm,O 0 AAD (mmol/g) 
WAAD 

No. (m2/g) (K) (mmol/m2) (1/K) 
55 Wet Fruitland Coal N2 37 319.3 131.4 16.47 0.0177 0.0024 2.4 0.006 0.4 
56 Wet Fruitland Coal CI!i 40 319.3 158.8 23.85 0.0181 0.0024 1.3 0.007 0.5 
57 Wet Fruitland Coal CO2 57 319.3 211.1 36.63 0.0165 0.0024 6.5 0.075 0.7 
61 Wet Illinois # 6 Coal N2 20 319.3 70.6 11.74 0.0177 0.0024 1.6 0.001 0.0 
62 Wet Illinois # 6 Coal CH4 20 319.3 84.0 19.47 0.0181 0.0024 1.9 0.006 0.3 
63 Wet Illinois # 6 Coal CO2 40 319.3 190.1 24.27 0.0165 0.0024 4.1 0.038 1.2 
67 Wet Tiffany Coal N2 21 327.5 68.1 14.98 0.0177 0.0024 2.8 0.003 0.5 
68 Wet Tiffany Coal CRi 34 327.5 87.6 20.04 0.0181 0.0024 3.7 0.012 1.3 
69 Wet Tiffany Coal CO2 16 327.5 121.5 35.83 0.0165 0.0024 9.5 0.055 0.7 

~ 
74 Wet LB Fruitland Coal N2 17 319.3 54.0 12.55 0.0177 0.0024 4.2 0.004 0.3 
75 Wet LB Fruitland Coal CH4 16 319.3 75.2 16.51 0.0181 0.0024 2.4 0.007 0.4 
76 Wet LB Fruitland Coal CO2 48 319.3 85.1 40.94 0.0165 0.0024 8.9 0.039 0.5 
77 Dry Illinois # 6 Coal CO2 11 328.0 352.5 25.87 0.0165 0.0024 10.2 0.155 0.9 
78 Dry Beulah Zap Coal CO2 22 328.0 363.4 37.29 0.0165 0.0024 4.6 0.080 0.6 
79 Dry Wyodak Coal CO2 11 328.0 403.5 31.17 0.0165 0.0024 3.9 0.067 0.6 

80 
Dry Upper Freeport 

CO2 11 328.0 174.3 48.64 0.0165 0.0024 5.2 0.057 0.4 
Coal 

81 Dry Pocahontash Coal CO2 11 328.0 213.4 49.18 0.0165 0.0024 7.1 0.093 0.5 

Overall 432 4.7 0.050 0.6 



the moisture affects in the data reduction procedures. In this case, it may also be that the 

thermal expansion coefficient for CO2 is underestimated. 

6.4 Predictions for Pure-Gas Adsorption on Activated Carbons 

Predictions of pure-gas adsorption on activated carbon require: the surface area of 

the adsorbent, the solid-solid interaction of the adsorbent, the maximum surface density 

of the adsorbate, and the thermal expansion coefficient of the adsorbate. Surface area of 

the adsorbent was taken as the N2 BET surface area, which was available for each 

activated carbon. 

The solid-solid interaction of the adsorbent is highly dependent on the matrix 

structure. However, for most of the activated carbons with the surface area of about 1000 

m2/g, the solid-solid interaction parameter is approximately 40 K [Sudibandriyo, 2003]. 

However, an activated carbon with higher surface area tends to have weaker solid-solid 

interaction, thus lower values for the solid-solid interaction parameter are used. For 

example, we use a parameter value of 20 K for the activated carbon made from Coconut 

Shell, which has a surface area of 3106 m2 I g. Moreover, for the surface area for Charcoal 

in Systems 4 and 5, we use 45 K for the solid-solid interaction. All these solid-solid 

interaction energy values were fixed empirically from the regressed values in Table 6-6. 

The maximum surface density can be calculated approximately from the 

molecular size. The maximum surface density is defined in previous section as: 

cr = 1/[3-fi(crff)2 N] 
m,O 7 2 2 a 

(6-27) 
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Also, a value of 0.0024 (1/K) is used for the thermal expansion coefficient for all the 

gases considered. 

Table 6-8 presents the 2-D PR EOS summary results for representing the pure-gas 

adsorption on various activated carbons. The overall AAD for the 1922 data points is 

8.6% and the overall RMSE is 0.617 mmol/g. As shown in the table, CO2 adsorption on 

Calgon F-400 activated carbon (System 49) has the worst quality of fit with AAD of 

18.6%, and CO2 adsorption on Norit Rl activated carbon (System 25) has the worst 

RMSE of 1.861 mmol/g. 

Overall, the generalized model predictions yield less than 10.0 %AAD for pure­

gas adsorption data on activated carbons. The results indicate that CO2 adsorption on 

activated carbons are the most difficult to predict. To achieve better prediction for all the 

systems of interest, improved estimates for the fluid-solid interaction and the thermal 

expansion coefficient of the gas are required. 

6.5 Discussion 

Table 6-9 represents the overall results for the pure-gas modeling using 2-D 

EOSs. Indicated by the error profiles for the data regressions, the temperature relations 

for the 2-D PR EOS are effective in representing the pure-gas adsorption data. Further, 

the pure-gas adsorption predictions for activated carbons are reasonably accurate with 

AAD of 8.6%, corresponding to a W AAD less than 3.0. 

Figure 6-2 illustrates the capabilities of 2-D EOS to represent and a priori predict 

pure CO2, CH4, N2, and C2H6 adsorption on activated carbon at 318.2 K. As indicated 

the EOS can describe the experimental data within the expected experimental 
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Table 6-8. Prediction Results for Pure-Gas Adsorption on Activated Carbons 

Adsorbent Adsorbate NPTS 
Parameters 

A (m2/g) Essfk(K) O'mo (mmol/m2) 6 (1/K) 
AC, Columbia 

N2 36 1152.0 40.0 0.0177 0.0024 
GradeL 

AC, Columbia 
CH4 45 1152.0 40.0 0.0181 0.0024 

GradeL 
AC, Columbia 

C2H6 58 1152.0 40.0 0.0130 0.0024 
GradeL 
Charcoal CH4 55 1157.0 45.0 0.0181 0.0024 
Charcoal C3Hs 52 1157.0 45.0 0.0098 0.0024 
AC,BPL c~ 72 988.0 40.0 0.0181 0.0024 
AC,BPL C2H6 49 988.0 40.0 0.0130 0.0024 
AC,BPL C2~ 52 988.0 40.0 0.0148 0.0024 
AC,BPL CO2 60 988.0 40.0 0.0165 0.0024 
AC,PCB-

CH4 21 1200.0 40.0 0.0181 0.0024 
Calgon 

AC,PCB-
CO2 12 1200.0 40.0 0.0165 0.0024 

Calgon 
AC, F30/470 
Chemviron CO2 164 993.5 40.0 0.0165 0.0024 

Carbon 
AC, NoritRl 

N2 10 1450.0 40.0 0.0177 0.0024 
Extra 

AC, NoritRl c~ 12 1450.0 40.0 0.0181 0.0024 
Extra 

%AAD 
RMSE 

(mmol/g) 

17.8 0.106 

8.0 0.074 

14.7 0.292 

6.5 0.501 
4.5 0.154 
9.6 0.346 
11.6 0.546 
13.9 0.572 
16.9 1.092 

6.9 0.296 

12.7 0.550 

10.8 0.945 

8.3 0.318 

11.4 0.639 
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Table 6-8. Prediction Results for Pure-Gas Adsorption on Activated Carbons - Cont'd. 

Parameters RMSE 
Adsorbent Adsorbate NPTS %AAD 

A (m2/g) Sssfk(K) O'm,o (mmol/m2) 8 (1/K.) (mmol/g) 

AC, Norit Rl 
CO2 12 1450.0 40.0 0.0165 0.0024 14.8 0.553 

Extra 
AC, Coconut 

CH4 122 3106.0 20.0 0.0181 0.0024 4.2 0.428 
Shell 

AC, Calgon F-
CO2 374 1200.0 40.0 0.0165 0.0024 7.4 0.739 

400 
AC, Norit RBI CH4 64 1100.0 40.0 0.0181 0.0024 8.5 0.122 
AC, Norit RBI CO2 64 1100.0 40.0 0.0165 0.0024 5.3 0.216 
AC, Coconut 

N2 71 3106.0 20.0 0.0177 0.0024 7.4 0.971 
Shell 

AC F30/470 N2 116 993.5 40.0 0.0177 0.0024 6.2 0.153 
AC F30/470 CH4 122 993.5 40.0 0.0181 0.0024 4.4 0.194 
AC F30/470 C3Hs 102 993.5 40.0 0.0098 0.0024 4.9 0.262 
ACNoritRl N2 31 1262.0 40.0 0.0177 0.0024 12.3 0.250 
AC NoritRl CO2 29 1262.0 40.0 0.0165 0.0024 16.1 1.861 

AC, Calgon F-
N2 22 950.0 40.0 0.0177 0.0024 7.2 0.189 

400 
AC, Calgon F-

CH4 22 950.0 40.0 0.0181 0.0024 1.1 0.061 
400 

AC, Calgon F-
CO2 52 950.0 40.0 0.0165 0.0024 18.6 0.500 

400 
AC, Calgon F-

C2H6 21 950.0 40.0 0.0130 0.0024 11.5 0.707 
400 
Overall 1922 8.6 0.617 



uncertainties. Similarly, excellent predictions are obtained for CH4, N2, and C2H6 

adsorption on activated carbon. However, accurate predictions for CO2 can be obtained 

when the surface area is increased form 950 to 1200 m2/g. 

Table 6-9. Summaries of the Results for Pure-Gas Adsorption 

Cases NPTS %AAD RMSE WAAD 

Regressions Based on Individual Isotherms 

ZGR BOS for Literature Data 2363 1.7 0.096 

2-D PR BOS for Literature Data 2363 1.5 0.097 

ZGR BOS for OSU Data 549 4.3 0.075 0.6 

2-D PR BOS for OSU Data 549 4.4 0.077 0.6 

Regressions Based on Systems 

2-D PR BOS for Activated Carbons 1922 2.4 0.199 

2-D PR BOS for Coals 432 4.7 0.050 0.6 

Predictions 

2-D PR BOS for Activated Carbons 1922 8.6 0.617 

A sample calculation is given to demonstrate the 2-D PR BOS predictions 

involving different isotherms. In this case, CH4 adsorption data (System 16, 12 data 

points) up to 5.7 MPa at 233 K were regressed to obtain the BOS parameters, the surface 

area and fluid-solid interaction. Using this information, the model predicted, as shown in 

Figure 6-3, the higher-pressure adsorption of the same isotherm as well as the other 

adsorption isotherms over the full pressure range (System 16, 110 data points). The 

overall AAD and RMSB of 3.0% and 0.361 mmol/g, respectively, were obtained 

compared to 2.0% and 0.242 mmol/g, using parameters regressed from all the data. 

These preliminary results indicate the effectiveness of the (a) newly-developed 

2-D PR BOS temperature relations, and (b) parameter-calibrated predictions. 
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Figure 6-3. 2-D PR EOS Prediction of CH4 Absolute Adsorption on Activated Carbon (Zhou, 2000) 



Figure 6-4 shows the representation and prediction results for pure CO2 

adsorption on activated carbon at four different temperatures. Both methods are capable 

of accurately representing the experimental data; however, the EOS predictions 

underestimate the adsorption for low-temperature isotherms, and overestimate the 

adsorption for high-temperature isotherms. This is primarily due to the value used for the 

thermal expansion coefficient. As can be seen from Table 6-6, the regressed thermal 

expansion coefficient for this system is 0.0057, but a smaller value of 0.0024 is used in 

the prediction. 

Figure 6-5 shows the representation results for the pure CO2, CH4, and N2 

adsorption on wet Fruitland coal at 319 .3 K. The representations are within the expected 

experimental uncertainties. 

The results of this study indicate that the surface area, fluid-solid interaction, 

maximum surface density, and thermal expansion coefficient provide effective input for 

EOS parameter generalization, which could facilitate a priori adsorption predictions. 

Although the surface area for an individual adsorbent should be a unique value, 

different adsorbates may access different surface areas; especially when the adsorbent is 

porous. From the data regressions for gas adsorption on coals, we obtain similar surface 

areas for N2 and CH4 while surface areas regressed from CO2 adsorption are usually 

much higher. This may also explain, in part, why the CO2 adsorption predictions are less 

satisfactory compared to the other gases. 

The maximum surface density of the adsorbate is relatively independent of the 

adsorbent. However, the thermal expansion coefficient is highly dependent on the 
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characteristics of the adsorbent and adsorbate. In the present predictions, a fixed value of 

0.0024 is used. Thus, to predict adsorption with higher accuracy, the thermal expansion 

coefficient should be derived based on both the adsorbent and adsorbate properties. 

For the fluid-solid interaction, we only considered the interaction of the adsorbate 

with carbon atoms in the adsorbent. However, different activated carbons have different 

additional functional groups, which may have significant impact on the adsorption. 

In addition to the four model parameters discussed above, other adsorbate and 

adsorbent characteristics are also important for accurate adsorption predictions. For 

example, the carbon atom density in the adsorbent will influence the fluid-solid 

interaction. In this work, the carbon atom density is set to the value of graphite; albeit, 

this property varies for different carbon adsorbents. 

Although a generalized capability has not been fully developed for wet coals the 

results obtained for the activated carbon are encouraging. However, to realize this 

objective, attention is required to address the effect of moisture on coalbed adsorption 

behavior. We believe developing reliable generalized models is not complete without a 

proper understanding of, and rigorous accounting for, the effects of moisture on 

adsorption capacity, adsorbed-phase densities, and the competitive adsorption in 

mixtures. In fact, as stated earlier, we need to address this issue before we can develop 

structure-based characterizations. At present, confusion relating to the proper accounting 

for moisture content significantly limits the value of the existing literature data for 

developing generalized predictions. 

In summary, the 2-D EOS modeling results for pure-gas adsorption indicate that: 
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1. In general, both the ZGR EOS and the 2-D PR EOS can represent the pure-gas 

adsorption precisely within the expected experimental uncertainties of about 2%. 

Overall, the new temperature relations for the 2-D PR EOS enable us to represent 

the pure-gas adsorption within the expected experimental uncertainties without 

the need to regress each isotherm. 

2. The revised attractive term for the 2-D PR EOS works well for all the data 

considered in this work; however, it does not account for temperature variations. 

To describe the molecular attraction more accurately, we need to delineate 

temperature dependence of the a function. 

3. On average, the 2-D PR EOS is capable of predicting pure-gas adsorption on 

activated carbons with AAD of 9%. The results are comparable to the 

predications using the OK model, which yields 8 %AAD [Sudibandriyo 2003]. 

Moreover, improved estimates for the surface area and fluid-solid interaction 

could be helpful in achieving higher prediction accuracy. 

4. Although a generalized capability to predict CBM-type adsorption on wet coals 

has not been fully developed, the results obtained for the activated carbons 

demonstrate a realistic potential for doing so. 
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CHAPTER 7 

MODELING OF MULTICOMPONENT ADSORPTION 

In this chapter, we incorporated the excess Gibbs free energy mixing rules in the 

2-D EOSs. In so doing, we recognize differences in the molecular affinity between the 

adsorbate and the adsorption surface, which can result in non-random mixing. One-fluid 

mixing rules are also evaluated for comparison purposes. 

7.1 Case Studies Conducted 

Four cases were studied as follows: 

1. Prediction capability (Cij=Dij=O) of the ZGR EOS and the 2-D PR EOS using 

one-fluid mixing rules 

2. Representation capability (Cij and Dij are regressed) of the ZGR EOS and the 2-D 

PR EOS using one-fluid mixing rules 

3. Prediction capability of the ZGR EOS and the 2-D PR EOS using Wong-Sandler 

mixing rules, where the binary interaction parameter, Cij, and three parameters in 

NTRL (a12, 't12, and 't21) are set to zero 

4. Representation capability of the ZGR EOS and the 2-D PR EOS using Wong­

Sandler mixing rules, where all four adjustable parameters are regressed 

In addition, two prediction cases were performed for ternary mixtures: 
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5. Prediction capability of the ZGR EOS and the 2-D PR EOS using one-fluid 

mixing rules, where Cij and Dij are from Case 2 

6. Prediction capability of the ZGR EOS and the 2-D PR EOS using Wong-Sandler 

mixing rules, where all four adjustable parameters are from Case 4 

The mixture adsorption data are listed in Tables 4-2 and 4-3. In Table 7-1 these 

mixture adsorption systems are relisted to include the feed molar compositions. Systems 

39 through 46 and 51 through 54 are gas adsorption on dry activated carbons; Systems 58 

through 60, 64 through 66, and 70 through 73 are gas adsorption on wet coals. These 

data cover a wide pressure range at temperatures close to typical CBM reservoir 

temperatures. 

The objective function, S, was used to correlate the data. The function minimizes 

the sum of the squared-percentage deviations in predicted adsorption: 

(7-1) 

where co j and co; are the experimental and calculated adsorption amounts for component 

j, respectively, NC is the number of gas components in the mixture, and NPTS is the 

number of data points for each component. In addition, the percentage average absolute 

deviation (%AAD COj) and root-mean-square error (RMSE COj) are presented to assist in 

evaluating the results: 

100 NPTS CO t: (i)- CO~ (i) 
%AAD (0. = I J J 

J NPTS i=l coj(i) 
(7-2) 

NPTS( ) 2 I coj(i)-co;(i) 
RMSE co.= 

J 
i=l 

NPTS 
(7-3) 
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\0 

Table 7-1. Data Used for Mixed-Gas Adsorption Model Evaluation 

System 
Adsorbent Adsorbate 

Temp. Pressure Feed Molar 
No. (K) Range (MPa) Composition 
39 AC,BPL C~+C2H6 301 0.13-2.01 0.267 ,0.499,0. 745* 
40 AC,BPL C~+C2~ 301 0.12-2.03 0.260,0.534,0. 745* 
41 AC,BPL C2H6+C2H4 301 0.14-1.98 0.240,0.472,0.682* 
42 AC,BPL CH4+ C2H6+ C2H4 301 0.12-2.97 0.624+0.l 74+0.202* 

0.230+0.520+0.250* 
0.200+0.192+0.608* 

43 AC Norit Rl Extra N2+CH4 298 0.03-6.00 Not available 
44 AC Norit Rl Extra CH4+C02 298 0.03-6.00 Not available 
45 AC Norit Rl Extra N2+ CO2 298 0.03-6.00 Not available 
46 AC Norit Rl Extra N2+C~+C02 298 0.03-6.00 Not available 
51 DryAC-F400 N2+CH4 318 0.7 - 12.4 0.2, 0.4, 0.6, 0.8 
52 DryAC-F400 CH4+C02 318 0.7 -12.4 0.2, 0.4, 0.6, 0.8 
53 Dry AC-F 400 N2+ CO2 318 0.7 - 12.4 0.2, 0.4, 0.6, 0.8 
54 Dry AC-F 400 N2+CH4+C02 318 0.7 - 12.4 0.1 +0.4+0.5 
58 Wet Fruitland Coal N2+CH4 319 0.7-12.4 0.2, 0.4, 0.6, 0.8 
59 Wet Fruitland Coal C~+C02 319 0.7 - 12.4 0.2, 0.4, 0.6, 0.8 
60 Wet Fruitland Coal N2 +CO2 319 0.7 - 12.4 0.2, 0.4, 0.6, 0.8 
64 Wet Illinois #6 Coal N2+C~ 319 0.7 - 12.4 0.2, 0.4, 0.6, 0.8 
65 Wet Illinois #6 Coal C~+C02 319 0.7 - 12.4 0.2, 0.4, 0.6, 0.8 
66 Wet Illinois #6 Coal N2 + CO2 319 0.7 - 12.4 0.2, 0.4, 0.6, 0.8 
70 Wet Tiffany Coal N2 +CH4 328 0.7-13.7 0.2, 0.4, 0.6, 0.8 
71 Wet Tiffany Coal C~+C02 328 0.7-13.7 0.2, 0.4, 0.6, 0.8 
72 Wet Tiffany Coal N2 + CO2 328 0.7-13.7 0.2, 0.4, 0.6, 0.8 
73 Wet Tiffany Coal N2+C~+C02 328 0.7-13.7 0.1 +0.4+0.5 

* Gas-phase mole fraction of the first-named component at equilibria 

Sources 

Reich (1980) 
Reich (1980) 
Reich (1980) 
Reich (1980) 

Dreisbach (1999) 
Dreisbach (1999) 
Dreisbach (1999) 
Dreisbach (1999) 
osu 
osu 
osu 
osu 
osu 
osu 
osu 
osu 
osu 
osu 
osu 
osu 
osu 
osu 



The weighted average-absolute deviation (W AAD COj) is also used to evaluate results 

when the expected experimental uncertainties, crj , are available: 

1 NPTS (0 ~ (i )- (0 ~ (i) 
WAADro. = I 1 1 

1 NPTS i~i crj (i) . 
(7-4) 

7.2 One-Fluid Mixing Rules 

Mixing rules for the model parameters are crucial for extending the 2-D BOS 

from pure-gas adsorption to mixture adsorption. One-fluid mixing rules are widely used 

in 3-D BOS applications, where the 3-D BOS parameters, a and b, for mixtures are given 

by: 

(7-5) 
i j i j 

and: 

aij =~aiaj(1-cij)12 (7-6) 

bij =(bi +bjXl+Dij)/2 (7-7) 

where Cij and Dij are binary interaction parameters. 

However, the combination rule for "a" of Equation 7-6 is not applicable in 2-D 

BOS because a values can be either positive or negative. Thus, based on practical 

considerations, Zhou et al. (1994) used an arithmetic mean for parameter a and geometric 

mean for p. The one-fluid mixing rules used are expressed empirically as: 

(7-8) 
i j i j 

and: 
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a .. ='a. +a-X1-c .. )12 
lJ ~ 1 J 1J (7-9) 

(7-10) 

7.3 Wong-Sandler Mixing Rules to 2-D EOS 

As indicated in the previous section, in order to represent mixture adsorption, a 

set of non-conventional combination rules (Equations 7-9 and 7-10) were used in the one-

fluid mixing rules. In the regression cases, geometric or arithmetic mean for the 

combination rules work identically, except that the values of the regressed interaction 

parameters, Cij and Dij, are different. For the prediction cases (Cij=Dij=O), however, 

different combination rules will lead to different results. Moreover, we recognize 

differences in the molecular affinity between the adsorbate and the adsorption surface, 

which can result in non-random mixing. Thus, we applied the Wong-Sandler mixing 

rules to the 2-D EOSs. 

Wong-Sandler mixing rules were developed for 3-D cubic EOSs. They equate 

the excess Helmholtz free energy at infinite pressure from the chosen equation of state to 

that from an activity coefficient model. Use of the Helmholtz free energy ensures that the 

second virial coefficient calculated from the equation of state has quadratic composition 

dependence, as required by statistical mechanics [Wong et al., 1992]. 

The Wong-Sandler mixing rules for 3-D cubic EOSs are [Wong et al., 1992]: 

(7-11) 

(7-12) 
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where the cross term: 

(b-~) =![(b- -~)+(b- -~)](1-c .. ) RT .. 2 1 RT i RT IJ 
IJ 

(7-13) 

and Fin Equation 7-12 is a constant specific to the EOS chosen. 

The Wong-Sandler mixing rules for 2-D EOS are listed below. (Details are in 

Appendix B.) 

A;, a ~ ai ( 1 l)~ 1 P 
RT= - FRRT + L..xi FR.RT+ ---' ~xi n~ 

JJ I J--'1 m I J--'1 

where: 

(P-~) =![(P· -~)+(P· _2)](1-c..) RT .. 2 1 RT i RT IJ 
IJ 

and F = ~U2 -4W /1n[ 1+ U-~U 2 
- 4W V2J I 1 + u + ~u2 - 4 w 2 

If U=W=O, then F=l. 

(7-14) 

(7-15) 

(7-16) 

The Non-Random Two-Liquid (NRTL) model [see, e.g., Tester, 1996] was used 

to estimate the Helmholtz free energy, A;, for the adsorbed phase: 

NC 

ro. ~ -c ·1G ·1m · 
NC I Li J J J 

= _!_ L _N_j~-' ---

0) J;1 ~G 
Li k!O)k 

(7-17) 

k;] 
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7.4 Results for Mixture Adsorption on Activated Carbons 

This section presents the results of the ZGR EOS and 2-D PR EOS modeling of 

mixture adsorption on three dry activated carbons. 

Tables 7-2 through 7-4 show the prediction results for binary mixture adsorption 

on activated carbons using Case 1. On average, both the ZGR EOS and 2-D PR EOS 

predict the component and total adsorption within three times the expected experimental 

uncertainties using one-fluid mixing rules. However, the ZGR EOS yields larger errors 

than the 2-D PR EOS. Typically, for the lower-adsorption component, the errors are 

larger than those of the higher-adsorption component. 

Tables 7-5 through 7-7 show the representation results for binary mixture 

adsorption on activated carbons using Case 2. As expected, by regressing two binary 

interaction parameters, Cij and Dij, both EOSs yield better results than those in Case 1. 

The binary interactions, Cj and Dij, are larger in the 2-D PR EOS than in ZGR EOS, 

especially for Cij· However, even with the large regressed values for Cij, the results do 

not show significant improvement over the prediction mode. This indicates the 

calculated mixture adsorption is insensitive to the binary interaction parameters using the 

2-D PR EOS for these systems. 

Tables 7-8 through 7-10 show the prediction results for the ternary mixtures on 

activated carbons using Case 1 and Case 5. As expected, the prediction results for the 

ternary mixture are worse than those for binary mixture. Unexpectedly, the prediction 

results based on the pure-gas adsorption parameters and binary interaction parameters 

(Case 5) are worse than the prediction based only on pure-gas adsorption parameters 

(Case 1). 

103 



Table 7-2. The 2-D EOS Predictions of Binary Mixture Adsorption on Activated 
Carbon at 301.4 K (Reich, 1980)- One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/g) 

ZGREOS 

CH4+C2H6 
Methane 14 38.0 0.328 -

Ethane 14 2.6 0.097 -

Total 14 5.2 0.269 -

CH4+C2H4 
Methane 15 31.8 0.289 -

Ethylene 15 3.1 0.111 -

Total 15 4.7 0.212 -

C2H6+C2H4 
Ethane 12 4.1 0.097 -

Ethylene 12 6.5 0.184 -

Total 12 4.1 0.214 -

2-DPREOS 

CH4+C2H6 
Methane 14 37.4 0.323 -

Ethane 14 2.5 0.095 -

Total 14 5.0 0.257 -

CH4+C2H4 
Methane 15 30.5 0.284 -

Ethylene 15 2.8 0.105 -

Total 15 4.7 0.209 -

C2H6+C2H4 
Ethane 12 4.3 0.091 -

Ethylene 12 7.4 0.193 -

Total 12 4.1 0.208 -
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Table 7-3. The 2-D EOS Predictions of Binary Mixture Adsorption on Activated 
Carbon at 298.0 K (Dreisbach, 1999)- One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD (mmol/g) 

ZGREOS 

CH4+N2 
Methane 24 6.8 0.224 -

Nitrogen 24 16.5 0.143 -

Total 24 4.9 0.154 -

CH4+C02 
Methane 24 10.1 0.291 -

CO2 24 22.6 0.362 -

Total 24 3.6 0.323 -

N2+C02 
Nitrogen 24 44.3 0.308 -

CO2 24 3.7 0.376 -

Total 24 5.3 0.478 -

2-DPREOS 

CH4+N2 
Methane 24 9.2 0.255 -

Nitrogen 24 11.8 0.112 -

Total 24 3.5 0.174 -

CH4+C02 
Methane 24 9.9 0.310 -

CO2 24 20.2 0.302 -

Total 24 3.3 0.313 -

N2+C02 
Nitrogen 24 10.4 0.064 -

CO2 24 3.0 0.238 -

Total 24 2.9 0.264 -
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Table 7-4. The 2-D EOS Predictions of Binary Mixture Adsorption on 
Activated Carbon at 318.2 K- One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD (mmol/g) 

ZGREOS 

CH4+N2 
Methane 40 5.2 0.172 2.0 
Nitrogen 40 4.7 0.063 1.1 
Total 40 3.4 0.149 1.4 

CH4+C02 
Methane 40 6.3 0.156 1.3 
CO2 40 11.4 0.277 2.9 
Total 40 2.5 0.155 0.8 

N2+C02 
Nitrogen 40 13.1 0.132 2.1 
CO2 40 11.9 0.233 2.7 
Total 40 6.9 0.306 2.1 

2-D PREOS 

CH4+N2 
Methane 40 6.5 0.188 2.5 
Nitrogen 40 4.9 0.056 1.2 
Total 40 3.8 0.164 1.6 

CH4+C02 
Methane 40 4.6 0.123 1.0 
CO2 40 7.4 0.188 1.8 
Total 40 1.4 0.090 0.4 

N2+C02 
Nitrogen 40 5.5 0.068 1.0 
CO2 40 5.3 0.120 1.2 
Total 40 3.3 0.148 1.0 
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Table 7-5. The 2-D EOS Representations of Binary Mixture Adsorption on 
Activated Carbon at 301.4 K (Reich, 1980) ~ One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD C12 D12 (mmol/2) 

ZGREOS 

CH4+C2H6 
Methane 14 15.0 0.105 - 0.6072 -0.4775 
Ethane 14 2.7 0.100 -

Total 14 2.6 0.129 -

CH4+C2H4 
Methane 15 7.6 0.061 - -0.0615 -0.1028 
Ethylene 15 3.4 0.115 -

Total 15 2.2 0.104 -

C2H6+C2H4 
Ethane 12 4.6 0.096 - 0.4573 -0.2039 
Ethylene 12 5.4 0.160 -

Total 12 3.2 0.157 -

2-D PREOS 

CH4+C2H6 
Methane 14 8.1 0.070 - -0.2291 -1.0485 
Ethane 14 4.7 0.195 -

Total 14 2.9 0.163 -

CH4+C2H4 
Methane 15 6.6 0.045 - 0.0459 -0.6458 
Ethylene 15 3.7 0.146 -

Total 15 2.2 0.109 -

C2H6+C2H4 
Ethane 12 4.5 0.092 - -0.2398 -0.3148 
Ethylene 12 6.1 0.142 -

Total 12 2.5 0.111 -
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Table 7-6. The 2-D EOS Representations of Binary Mixture Adsorption on 
Activated Carbon at 298.0 K (Dreisbach, 1999) - One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD C12 D12 (mmol/g) 

ZGREOS 

CH4+N2 
Methane 24 9.0 0.219 - 0.3335 -0.1926 
Nitrogen 24 6.6 0.094 -

Total 24 5.6 0.201 -

CH4+C02 
Methane 24 19.6 0.437 - 0.9357 -0.5183 
CO2 24 14.3 0.254 -

Total 24 4.6 0.339 -

N2+C02 
Nitrogen 24 9.9 0.099 - 0.4180 -0.2567 
CO2 24 3.2 0.298 -

Total 24 3.6 0.348 -

2-DPREOS 

CH4+N2 
Methane 24 10.8 0.262 - -0.2546 -0.0516 
Nitrogen 24 4.5 0.081 -

Total 24 4.6 0.225 -

CH4+C02 
Methane 24 19.5 0.485 - 0.1131 0.5462 
CO2 24 13.5 0.226 -

Total 24 4.6 0.451 -

N2+C02 
Nitrogen 24 5.8 0.043 - -0.9042 -1.4192 
CO2 24 3.1 0.224 -

Total 24 2.6 0.227 -
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Table 7-7. The 2-D EOS Representations of Binary Mixture Adsorption on 
Activated Carbon at 318.2 K- One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD C12 D12 (mmol/2) 

ZGREOS 

CH4+N2 
Methane 40 5.3 0.165 2.1 0.0753 -0.0309 
Nitrogen 40 2.7 0.055 0.7 
Total 40 4.0 0.169 1.7 

CH4+C02 
Methane 40 7.9 0.174 1.8 0.2271 -0.0779 
CO2 40 8.1 0.201 2.0 
Total 40 0.7 0.058 0.2 

N2+C02 
Nitrogen 40 5.3 0.058 0.8 0.2851 -0.1200 
CO2 40 9.5 0.207 2.2 
Total 40 3.7 0.171 1.1 

2-DPREOS 

CH4+N2 
Methane 40 6.8 0.169 2.5 -0.6386 -0.1277 
Nitrogen 40 2.7 0.036 0.6 
Total 40 4.0 0.154 1.6 

CH4+C02 
Methane 40 4.3 0.091 0.9 -0.6382 -0.1470 
CO2 40 4.8 0.140 1.2 
Total 40 1.0 0.075 0.3 

N2+C02 
Nitrogen 40 5.0 0.071 0.9 -1.0744 -0.2790 
CO2 40 4.6 0.154 1.2 
Total 40 3.0 0.167 0.9 
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Table 7-8. The 2-D EOS Predictions of Ternary Mixture Adsorption on Activated 
Carbon at 301.4 K (Reich, 1980)- One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/g) 

ZGR EOS Based on Pure Gas Parameters 

Methane 14 49.4 0.461 -

Ethane 14 4.4 0.079 -

Ethylene 14 3.8 0.120 -

Total 14 6.2 0.459 -

2-D PR EOS Based on Pure Gas Parameters 

Methane 14 49.1 0.450 -

Ethane 14 5.1 0.090 -

Ethylene 14 3.6 0.120 -

Total 14 6.0 0.438 -

ZGR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 14 29.5 0.206 -

Ethane 14 5.2 0.096 -

Ethylene 14 3.9 0.125 -

Total 14 2.6 0.226 -

2-D PR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 14 25.7 0.189 -

Ethane 14 7.7 0.170 -

Ethylene 14 3.9 0.099 -

Total 14 2.6 0.170 -
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Table 7-9. The 2-D EOS Predictions of Ternary Mixture Adsorption on Activated 
Carbon at 298.0 K (Dreisbach, 1999)- One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/g) 

ZGR EOS Based on Pure Gas Parameters 

Methane 40 17.9 0.767 -

Nitrogen 40 36.1 0.436 -

CO2 40 22.8 0.673 -

Total 40 4.9 0.594 -

2-D PR EOS Based on Pure Gas Parameters 

Methane 40 17.3 0.733 -

Nitrogen 40 47.0 0.562 -

CO2 40 19.4 0.581 -

Total 40 5.6 0.696 -

ZGR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 40 21.7 0.915 -

Nitrogen 40 73.0 0.811 -

CO2 40 21.2 0.739 -

Total 40 9.3 0.835 -

2-D PR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 40 21.1 0.912 -

Nitrogen 40 43.6 0.519 -

CO2 40 17.7 0.560 -

Total 40 7.1 0.818 -
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Table 7-10. The 2-D EOS Predictions of Ternary Mixture Adsorption on 
Activated Carbon at 318.2 K- One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD (mmol/g) 

ZGR EOS Based on Pure Gas Parameters 

Methane 11 3.6 0.024 0.3 
Nitrogen 11 13.2 0.272 2.3 
CO2 11 13.6 0.646 3.5 
Total 11 5.8 0.370 1.9 

2-D PR EOS Based on Pure Gas Parameters 

Methane 11 3.8 0.023 0.4 
Nitrogen 11 18.7 0.358 3.4 
CO2 11 11.7 0.595 2.8 
Total 11 3.5 0.237 1.0 

ZGR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 11 8.9 0.053 0.8 
Nitrogen 11 24.0 0.398 4.6 
CO2 11 13.9 0.701 3.5 
Total 11 3.7 0.257 1.1 

2-D PR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 11 6.2 0.039 0.5 
Nitrogen 11 19.7 0.360 3.7 
CO2 11 13.7 0.683 3.3 
Total 11 4.5 0.294 1.3 
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Tables 7-11 through 7-13 show the prediction results for binary mixture 

adsorption on activated carbons using Case 3. The results are similar to those obtained 

using one-fluid mixing rules; the ZGR EOS has larger errors than the 2-D PR EOS. The 

2-D PR EOS predicts the lower-adsorption component with better accuracy than the ZGR 

EOS. 

Tables 7-14 through 7-16 show the representation results for binary mixture 

adsorption on activated carbons using Case 4. In this case, both EOSs can represent most 

of the systems within AAD of 10%. However, the NTRL parameters are not the same as 

those from the vapor-liquid equilibrium (VLE) calculations. This is due largely to the 

presence of the adsorbent surface, which changes the local densities in the adsorbed 

phase. In other words, the NTRL parameters for the 2-D EOS are no longer dependent 

only on the gas molecules but also depend indirectly on the properties of the adsorbent. 

Tables 7-17 through 7-19 show the prediction results for the ternary mixture 

adsorption on activated carbons using Case 3 and Case 6. Similar to the study using one­

fluid mixing rules, the prediction results based on the pure-gas adsorption parameters and 

binary parameters (Case 6) do not improve predictions over those based only on the pure­

gas adsorption parameters (Case 3). 

7 .5 Results for Mixture Adsorption on Coals 

This section presents the results of the ZGR EOS and 2-D PR EOS modeling of 

mixture adsorption on three wet coals. 

Tables 7-20 through 7-22 show the prediction results for binary mixture 

adsorption on wet coals using Case 1. Both EOSs predict the lower-adsorption 
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Table 7-11. The 2-D EOS Predictions of Binary Mixture Adsorption on Activated 
Carbon at 318.2 K (Reich, 1980)- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/2) 

ZGREOS 

CH4+C2H6 
Methane 14 38.3 0.330 -

Ethane 14 2.6 0.097 -

Total 14 5.2 0.270 -

CH4+C2H4 
Methane 15 39.5 0.344 -

Ethylene 15 3.1 0.123 -

Total 15 5.2 0.250 -

C2H6+C2H4 
Ethane 12 4:0 0.096 -
Ethylene 12 6.6 0.185 -

Total 12 4.2 0.218 -

2-D PREOS 

CH4+C2H6 
Methane 14 38.5 0.332 -

Ethane 14 2.5 0.095 -

Total 14 5.1 0.266 -

CH4+C2H4 
Methane 15 35.7 0.316 -

Ethylene 15 2.8 0.113 -

Total 15 4.9 0.232 -

C2H6+C2H4 
Ethane 12 4.3 0.091 -

Ethylene 12 7.4 0.193 -

Total 12 4.1 0.208 -
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Table 7-12. The 2-D EOS Predictions of Binary Mixture Adsorption on Activated 
Carbon at 298.0 K (Dreisbach, 1999)- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/2) 

ZGREOS 

CH4+N2 
Methane 24 9.7 0.237 -

Nitrogen 24 5.9 0.068 -

Total 24 6.3 0.240 -

CH4+C02 
Methane 24 10.9 0.307 -

CO2 24 21.4 0.344 -

Total 24 3.7 0.335 -

N2+C02 
Nitrogen 24 25.2 0.123 -

CO2 24 3.2 0.278 -

Total 24 3.3 0.332 -

2-D PREOS 

CH4+N2 
Methane 24 9.1 0.252 -

Nitrogen 24 12.5 0.126 -

Total 24 3.6 0.164 -

CH4+C02 
Methane 24 10.7 0.318 -

CO2 24 19.7 0.295 -

Total 24 3.4 0.319 -

N2+C02 
Nitrogen 24 11.5 0.067 -

CO2 24 2.9 0.233 -

Total 24 2.9 0.262 -
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Table 7-13. The 2-D EOS Predictions of Binary Mixture Adsorption on 
Activated Carbon at 318.2 K- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/g) 

ZGREOS 

CH4+N2 
Methane 40 5.4 0.169 2.1 
Nitrogen 40 2.6 0.059 0.7 
Total 40 4.2 0.179 1.8 

CH4+C02 
Methane 40 5.3 0.159 1.2 
CO2 40 9.8 0.237 2.5 
Total 40 1.5 0.097 0.4 

N2+C02 
Nitrogen 40 8.7 0.081 1.2 
CO2 40 8.7 0.195 2.0 
Total 40 2.9 0.123 0.8 

2-D PREOS 

CH4+N2 
Methane 40 6.4 0.186 2.5 
Nitrogen 40 5.3 0.057 1.3 
Total 40 3.7 0.156 1.6 

CH4+C02 
Methane 40 4.3 0.119 1.0 
CO2 40 7.1 0.181 1.8 
Total 40 1.3 0.085 0.4 

N2+C02 
Nitrogen 40 5.9 0.078 1.1 
CO2 40 5.2 0.120 1.2 
Total 40 3.6 0.162 1.1 
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Table 7-14. The 2-D EOS Representations of Binary Mixture Adsorption on 
Activated Carbon at 301.4 K (Reich, 1980)- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
C12 't'12 

(mmol/g) a.12 't'21 

ZGREOS 

CH4+C2B6 
Methane 14 14.5 0.118 - 0.4387 -0.2614 

Ethane 14 3.0 0.116 - 0.1851 -0.5461 

Total 14 2.3 0.120 -

CH4+C2B4 
Methane 15 5.1 0.042 - 0.0784 -0.2540 

Ethylene 15 3.3 0.119 - 0.9573 -1.1439 

Total 15 2.5 0.123 -

C2H6+C2B4 
Ethane 12 3.0 0.060 - -0.2835 -0.3029 

Ethylene 12 2.2 0.062 - 12.932 -0.2098 

Total 12 1.8 0.104 -

2-DPREOS 

CH4+C2B6 
Methane 14 8.3 0.074 - 0.2124 0.4684 

Ethane 14 4.6 0.192 - 1.0316 -3.6814 

Total 14 2.9 0.161 -

CH4+C2B4 
Methane 15 6.5 0.042 - 0.2447 0.0282 

Ethylene 15 3.6 0.132 - 0.3000 -1.9522 

Total 15 2.1 0.099 -

C2B6+C2H4 
Ethane 12 3.7 0.079 - -0.0349 -0.7695 

Ethylene 12 3.4 0.079 - 8.9906 0.0116 

Total 12 2.5 0.122 -
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Table 7-15. The 2-D EOS Representations of Binary Mixture Adsorption on 
Activated Carbon at 298.0 K (Dreisbach, 1999)- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD C12 't12 
(mmol/g) <X,u 't21 

ZGREOS 

CH4+N2 
Methane 24 7.9 0.183 - 0.4169 -0.0029 

Nitrogen 24 6.6 0.062 - 0.5827 5.8449 

Total 24 6.4 0.211 -

CH4+C02 
Methane 24 9.8 0.305 - 1.1056 4.2900 

CO2 24 6.9 0.202 - 0.2437 -0.0034 

Total 24 4.0 0.287 -

N2+C02 
Nitrogen 24 6.5 0.050 - 0.7672 -0.5311 

CO2 24 3.5 0.310 - 0.2682 0.7104 

Total 24 3.3 0.336 -

2-DPREOS 

CH4+N2 
Methane 24 8.6 0.238 - -0.1490 -2.0331 

Nitrogen 24 3.3 0.065 - 0.1749 14.477 

Total 24 5.2 0.233 -

CH4+C02 
Methane 24 10.5 0.376 - 0.0912 9.1701 

CO2 24 7.5 0.235 - 0.1437 -0.9318 

Total 24 4.0 0.354 -

N2+C02 
Nitrogen 24 5.9 0.045 - -0.0076 -11.141 

CO2 24 3.1 0.220 - 0.4456 -0.7837 

Total 24 2.6 0.226 -
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Table 7-16. The 2-D EOS Representations of Binary Mixture Adsorption on 
Activated Carbon at 318.2 K- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD C12 't12 
(mmol/g) a.12 't21 

ZGREOS 

CH4+N2 
Methane 40 1.8 0.042 0.6 -0.2502 -0.1743 

Nitrogen 40 2.7 0.048 0.8 20.0 -0.2677 

Total 40 0.9 0.041 0.4 

CH4+C02 
Methane 40 3.0 0.060 0.6 -0.4465 -0.0028 

CO2 40 4.0 0.092 1.0 20.0 -0.3256 

Total 40 2.1 0.134 0.6 

N2+C02 
Nitrogen 40 5.0 0.052 0.8 -0.1000 -0.0949 

CO2 40 8.6 0.179 2.0 20.0 -0.1500 

Total 40 4.2 0.174 1.2 

2-DPREOS 

CH4+N2 
Methane 40 4.2 0.091 1.5 -0.1206 -0.0988 

Nitrogen 40 1.9 0.027 0.5 20.0 -0.2643 

Total 40 2.0 0.081 0.8 

CH4+C02 
Methane 40 3.0 0.069 0.6 -0.1405 -0.0947 

CO2 40 2.7 0.074 0.7 20.0 -0.2448 

Total 40 1.3 0.099 0.4 

N2+C02 
Nitrogen 40 3.4 0.041 0.5 -0.1194 -0.1314 

CO2 40 5.1 0.165 1.3 20.0 -0.0056 

Total 40 2.8 0.151 0.9 
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Table 7-17. The 2-D EOS Predictions of Ternary Mixture Adsorption on Activated 
Carbon at 301.4 K (Reich, 1980)- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmoVg) 

ZGR EOS Based on Pure Gas Parameters 

Methane 14 50.4 0.473 -

Ethane 14 4.5 0.082 -

Ethylene 14 3.6 0.119 -

Total 14 6.4 0.470 -

2-D PR EOS Based on Pure Gas Parameters 

Methane 14 49.8 0.459 -

Ethane 14 5.1 0.089 -

Ethylene 14 3.7 0.120 -

Total 14 6.1 0.446 -

ZGR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 14 31.6 0.239 -

Ethane 14 10.4 0.204 -

Ethylene 14 3.3 0.121 -

Total 14 3.9 0.233 -

2-D PR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 14 26.2 0.195 -

Ethane 14 10.3 0.252 -

Ethylene 14 4.1 0.117 -

Total 14 2.8 0.195 -
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Table 7-18. The 2-D EOS Predictions of Ternary Mixture Adsorption on Activated 
Carbon at 298.0 K (Dreisbach, 1999)- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/g) 

ZGR EOS Based on Pure Gas Parameters 

Methane 40 16.8 0.705 -

Nitrogen 40 53.8 0.656 -

CO2 40 20.8 0.634 -

Total 40 5.8 0.705 -

2-D PR EOS Based on Pure Gas Parameters 

Methane 40 17.3 0.734 -

Nitrogen 40 46.9 0.562 -

CO2 40 19.0 0.571 -

Total 40 5.6 0.703 -

ZGR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 40 20.9 0.844 -

Nitrogen 40 48.9 0.584 -

CO2 40 29.3 0.852 -

Total 40 5.9 0.585 -

2-D PR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 40 16.7 0.700 -

Nitrogen 40 41.9 0.553 -

CO2 40 22.6 0.665 -

Total 40 4.7 0.565 -
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Table 7-19. The 2-D EOS Predictions of Ternary Mixture Adsorption on 
Activated Carbon at 318.2 K- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/e) 

ZGR EOS Based on Pure Gas Parameters 

Methane 11 3.8 0.022 0.4 
Nitrogen 11 28.2 0.468 5.4 
CO2 11 13.4 0.676 3.4 
Total 11 3.1 0.210 0.9 

2-D PR EOS Based on Pure Gas Parameters 

Methane 11 3.8 0.023 0.4 
Nitrogen 11 17.8 0.343 3.2 
CO2 11 11.7 0.596 2.8 
Total 11 3.7 0.252 1.1 

ZGR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 11 5.9 0.037 0.6 
Nitrogen 11 22.0 0.398 4.1 
CO2 11 12.0 0.613 3.0 
Total 11 3.0 0.197 0.9 

2-D PR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 11 7.1 0.048 0.6 
Nitrogen 11 21.5 0.396 4.0 
CO2 11 13.6 0.688 3.3 
Total 11 3.7 0.252 1.0 
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Table 7-20. The 2-D EOS Predictions of Binary Mixture Adsorption on Wet 
Fruitland Coal at 319.3 K- One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/2) 

ZGREOS 

CH4+N2 
Methane 41 5.3 0.022 0.6 
Nitrogen 41 20.9 0.022 1.5 
Total 41 2.3 0.011 0.3 

CH4+C02 
Methane 40 24.4 0.062 2.2 
CO2 40 10.8 0.062 1.5 
Total 40 9.4 0.103 1.8 

N2+C02 
Nitrogen 50 109.5 0.113 3.5 
CO2 50 15.4 0.115 1.9 
Total 50 22.7 0.225 3.2 

2-DPREOS 

CH4+N2 
Methane 41 4.0 0.017 0.4 
Nitrogen 41 23.0 0.027 1.7 
Total 41 3.4 0.014 0.4 

CH4+C02 
Methane 40 8.6 0.021 0.8 
CO2 40 5.6 0.044 0.8 
Total 40 3.7 0.046 0.7 

N2+C02 
Nitrogen 50 25.2 0.028 0.9 
CO2 50 5.9 0.037 0.6 
Total 50 3.1 0.025 0.3 
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Table 7-21. The 2-D EOS Predictions of Binary Mixture Adsorption on 
Wet Illinois #6 Coal at 319.3 K- One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/~) 

ZGREOS 

CH4+N2 
Methane 40 24.7 0.028 0.6 
Nitrogen 40 29.7 0.012 0.4 
Total 40 15.2 0.034 0.5 

CH4+C02 
Methane 40 11.7 0.019 0.5 
CO2 40 18.2 0.090 1.4 
Total 40 13.0 0.091 1.2 

N2+C02 
Nitrogen - - - -

CO2 - - - -

Total - - - -

2-D PREOS 

CH4+N2 
Methane 40 14.9 0.017 0.4 
Nitrogen 40 15.3 0.005 0.3 
Total 40 7.9 0.016 0.3 

CH4+C02 
Methane 40 17.7 0.021 0.7 
CO2 40 11.7 0.054 0.8 
Total 40 6.4 0.050 0.6 

N2+C02 
Nitrogen 40 69.1 0.017 0.7 
CO2 40 10.4 0.046 0.7 
Total 40 8.0 0.046 0.5 
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Table 7-22. The 2-D EOS Predictions of Binary Mixture Adsorption on Wet Tiffany 
Coal at 327.6 K- One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/g) 

ZGREOS 

CH4+N2 
Methane 11 10.7 0.024 1.6 
Nitrogen 11 5.5 0.004 0.4 
Total 11 9.0 0.025 1.5 

CH4+C02 
Methane 11 26.6 0.037 4.4 
CO2 11 12.7 0.057 2.7 
Total 11 3.1 0.021 0.7 

N2+C02 
Nitrogen 11 33.9 0.012 1.2 
CO2 11 5.9 0.043 1.0 
Total 11 4.4 0.032 0.9 

2-DPREOS 

CH4+N2 
Methane 11 12.3 0.025 1.8 
Nitrogen 11 4.4 0.004 0.3 
Total 11 10.5 0.028 1.7 

CH4+C02 
Methane 11 24.1 0.036 3.7 
CO2 11 10.0 0.052 1.9 
Total 11 3.1 0.018 0.7 

N2+C02 
Nitrogen 11 52.8 0.019 1.8 
CO2 11 7.5 0.049 1.4 
Total 11 5.4 0.033 1.2 
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component with larger error in terms of AAD and W AAD. On average, the 2-D PR EOS 

can predict the component and total adsorption within two times the expected 

experimental uncertainties except for the methane adsorption in CH4+C02 mixture on 

wet Tiffany coal. Overall, the ZGR EOS has a worse quality of fit than the 2-D PR EOS. 

The ZGR EOS cannot predict N2+C02 mixture adsorption as well as CH4+N2 and 

CH4+C02 mixture adsorption on wet Fruitland coal. This is because pure N2 and CO2 

parameters are substantially different using the ZGR EOS. The pure-gas adsorption 

parameters, a and p, for N2 are about ten times larger than those of CO2 in the ZGR EOS. 

In other words, the ZGR EOS interprets N2 and CO2 as a highly non-ideal pair, which 

leads to large errors in the adsorption prediction. In fact, the calculations failed to 

converge for the N2+C02 mixture on the wet Illinois #6 coal, where the pure-gas 

adsorption parameter, a, for N2 is about thirty times larger than that of CO2. This 

disparity in parameter values caused the lack of convergence in adsorption predictions. 

Tables 7-23 through 7-25 show the representation results for binary mixture 

adsorption on wet coals using Case 2. By regressing two binary interaction parameters, 

Cij and Dij, the ZGR EOS can represent the experimental data within three times the 

expected experimental uncertainties for the adsorption on wet Tiffany coals and two 

times the expected experimental uncertainties for the adsorption on wet Fruitland coal 

and wet Illinois #6 coal. The 2-D PR EOS can represent the experimental data within 

two times the expected experimental uncertainties for the adsorption on wet Tiffany coal 

and within the expected experimental uncertainties for the wet Fruitland coal and wet 

Illinois #6 coal. However the binary interaction parameters are umealistically large for 

the 2-D PR EOS. 
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Table 7-23. The 2-D EOS Representations of Binary Mixture Adsorption on Wet 
Fruitland Coal at 319.3 K- One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD C12 D12 (mmol/g) 

ZGREOS 

CH4+N2 
Methane 41 7.6 0.029 0.8 0.5263 -0.4743 
Nitrogen 41 8.2 0.009 0.6 
Total 41 3.8 0.025 0.5 

CH4+C02 
Methane 40 5.2 0.015 0.5 0.3769 -0.0985 
CO2 40 5.5 0.041 0.7 
Total 40 2.8 0.040 0.5 

N2+C02 
Nitrogen 50 12.0 0.013 0.5 0.2291 0.0364 
CO2 50 7.4 0.054 0.9 
Total 50 5.0 0.052 0.7 

2-D PREOS 

CH4+N2 
Methane 41 4.6 0.016 0.5 1.9927 1.8136 
Nitrogen 41 7.6 0.010 0.5 
Total 41 3.1 0.017 0.4 

CH4+C02 
Methane 40 3.7 0.013 0.4 -0.1725 0.0159 
CO2 40 4.4 0.040 0.6 
Total 40 2.5 0.043 0.4 

N2+C02 
Nitrogen 50 15.4 0.014 0.4 0.2649 0.2556 
CO2 50 6.0 0.038 0.6 
Total 50 3.3 0.031 0.4 
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Table 7-24. The 2-D EOS Representations of Binary Mixture Adsorption on Wet 
Illinois #6 Coal at 319.3 K- One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD C12 D12 (mmol/2) 

ZGREOS 

CH4+N2 
Methane 40 19.6 0.020 0.5 0.5478 -0.3753 
Nitrogen 40 20.9 0.008 0.4 
Total 40 7.6 0.014 0.2 

CH4+C02 
Methane 40 11.9 0.016 0.5 0.4422 -0.3346 
CO2 40 12.7 0.087 1.4 
Total 40 12.0 0.083 1.1 

N2+C02 
Nitrogen - - - - - -

CO2 - - - -

Total - - - -

2-DPREOS 

CH4+N2 
Methane 40 14.2 0.016 0.4 3.7989 1.2195 
Nitrogen 40 14.9 0.007 0.3 
Total 40 6.6 0.013 0.2 

CH4+C02 
Methane 40 15.0 0.021 0.6 -0.0314 0.4156 
CO2 40 11.8 0.054 0.8 
Total 40 5.3 0.041 0.4 

N2+C02 
Nitrogen 40 51.7 0.034 0.9 -0.7207 0.7357 
CO2 40 9.9 0.043 0.7 
Total 40 4.0 0.016 0.3 
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Table 7-25. The 2-D EOS Representations of Binary Mixture Adsorption on Wet 
Tiffany Coal at 327.6 K- One-Fluid Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD C12 D12 (mmol/g) 

ZGREOS 

CH4+N2 
Methane 11 10.3 0.023 1.5 0.0265 -0.0392 
Nitrogen 11 6.1 0.004 0.4 
Total 11 7.9 0.022 1.3 

CH4+C02 
Methane 11 7.6 0.011 1.4 -0.1116 -0.0170 
CO2 11 13.3 0.057 3.0 
Total 11 8.3 0.051 2.1 

N2+C02 
Nitrogen 11 10.2 0.003 0.4 0.2548 -0.2723 
CO2 11 5.9 . 0.043 1.0 
Total 11 5.4 0.041 1.0 

2-DPREOS 

CH4+N2 
Methane 11 7.0 0.011 1.0 -1.0973 -3.0000 
Nitrogen 11 5.5 0.004 0.4 
Total 11 4.7 0.010 0.8 

CH4+C02 
Methane 11 7.2 0.014 1.0 4.9538 0.03890 
·CO2 11 7.7 0.038 1.6 
Total 11 5.0 0.029 1.3 

N2+C02 
Nitrogen 11 6.7 0.002 0.3 0.6113 -0.4547 
CO2 11 7.4 0.048 1.3 
Total 11 6.9 0.048 1.3 
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Table 7-26 shows the prediction results for the ternary mixture on wet Tiffany 

coal using Case 1 and Case 5. As expected, because of the presence of methane, the 

prediction results for nitrogen and CO2 component adsorption results in this ternary 

mixture are worse than those in N2+C02 binary mixture adsorption. Similar to the 

ternary adsorption results on activated carbons, the prediction results based on the pure­

gas adsorption parameters and binary interaction parameters do not show much 

improvement over the prediction based on pure-gas adsorption parameters only. 

Tables 7-27 through 7-29 show the prediction results for binary mixture 

adsorption on wet coals using Case 3. The results are similar to those obtained using 

one-fluid mixing rules; the ZGR EOS has larger errors than the 2-D PR EOS. The 2-D 

PR EOS predicts the lower adsorbed component better than ZGR EOS does. The ZGR 

EOS does not converge for N2+C02 adsorption on wet Fruitland coal and wet Illinois #6 

coal. This failure to converge is partly due to reasons discussed in the one-fluid mixing 

rules for the adsorption and to other causes, which will be addressed in the discussion 

section. 

Tables 7-30 through 7-32 show the representation results for binary mixture 

adsorption on wet coals using Case 4. The results are similar to those obtained using 

one-fluid mixing rules (Case 1). 

Table 7-33 shows the prediction results for the ternary mixture on wet Tiffany 

coal using Case 2 and Case 6. These results also indicate that use of the binary mixture 

information does not improve the ternary mixture adsorption results. 

130 



Table 7-26. The 2-D EOS Predictions of Ternary Mixture Adsorption on Wet 
Tiffany Coal at 327.6 K- One-Fluid Mixing Rules 

Systems NPTS %AAD RMSE 
WAAD (mmol/2) 

ZGR EOS Based on Pure Gas Parameters 

Methane 11 24.4 0.007 1.0 
Nitrogen 11 46.2 0.030 3.0 
CO2 11 19.4 0.075 3.6 
Total 11 6.6 0.038 1.4 

2-D PR EOS Based on Pure Gas Parameters 

Methane 11 19.3 0.006 0.8 
Nitrogen 11 57.3 0.040 3.5 
CO2 11 15.9 0.074 2.8 
Total 11 5.2 0.031 1.1 

ZGR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 11 16.2 0.005 0.6 
Nitrogen 11 29.8 0.019 2.0 
CO2 11 20.1 0.076 3.7 
Total 11 11.4 0.062 2.6 

2-D PR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 11 44.1 0.018 1.3 
Nitrogen 11 20.9 0.011 1.5 
CO2 11 15.6 0.068 2.8 
Total 11 12.1 0.076 2.8 
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Table 7-27. The 2-D EOS Predictions of Binary Mixture Adsorption on Wet 
Fruitland Coal at 319.3 K- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/g) 

ZGREOS 

CH4+N2 
Methane 41 3.9 0.019 0.5 
Nitrogen 41 29.9 0.034 2.1 
Total 41 3.8 0.019 0.5 

CH4+C02 
Methane 40 41.9 0.087 3.6 
CO2 40 10.9 0.063 1.5 
Total 40 8.8 0.095 1.5 

N2+C02 
Nitrogen - - - -

CO2 - - - -

Total - - - -

2-DPREOS 

CH4+N2 
Methane 41 4.1 0.018 0.5 
Nitrogen 41 22.9 0.026 1.7 
Total 41 3.3 0.014 0.4 

CH4+C02 
Methane 40 5.7 0.018 0.6 
CO2 40 4.9 0.042 0.7 
Total 40 3.4 0.045 0.6 

N2+C02 
Nitrogen 50 25.8 0.029 0.9 
CO2 50 5.9 0.037 0.6 
Total 50 3.2 0.025 0.4 
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Table 7-28. The 2-D EOS Predictions of Binary Mixture Adsorption on 
Wet Illinois #6 Coal at 319.3 K- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD (mmol/g) 

ZGREOS 

CH4+N2 
Methane 40 19.6 0.020 0.5 
Nitrogen 40 21.5 0.008 0.4 
Total 40 8.0 0.016 0.3 

CH4+C02 
Methane 40 13.1 0.022 0.5 
CO2 40 19.2 0.090 1.5 
Total 40 15.0 0.101 1.4 

N2+C02 
Nitrogen - - - -

CO2 - - - -

Total - - - -

2-D PREOS 

CH4+N2 
Methane 40 14.9 0.018 0.4 
Nitrogen 40 15.4 0.005 0.3 
Total 40 8.0 0.017 0.3 

CH4+C02 
Methane 40 15.5 0.021 0.6 
CO2 40 11.7 0.053 0.8 
Total 40 5.6 0.042 0.5 

N2+C02 
Nitrogen 40 49.1 0.027 0.7 
CO2 40 10.3 0.045 0.8 
Total 40 4.5 0.023 0.4 
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Table 7-29. The 2-D EOS Predictions of Binary Mixture Adsorption on 
Wet Tiffany Coal at 327.6 K- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/2) 

ZGREOS 

CH4+N2 
Methane 11 11.2 0.025 1.7 
Nitrogen 11 7.0 0.006 0.5 
Total 11 10.4 0.030 1.7 

CH4+C02 
Methane 11 34.2 0.048 5.5 
CO2 11 12.7 0.058 2.7 
Total 11 2.0 0.012 0.5 

N2+C02 
Nitrogen 11 69.4 0.023 2.4 
CO2 11 6.6 0.049 1.2 
Total 11 4.4 0.029 1.0 

2-DPREOS 

CH4+N2 
Methane 11 11.9 0.024 1.7 
Nitrogen 11 4.2 0.004 0.3 
Total 11 10.1 0.026 1.6 

CH4+C02 
Methane 11 24.6 0.037 3.8 
CO2 11 10.0 0.052 1.9 
Total 11 3.0 0.018 0.7 

N2+C02 
Nitrogen 11 43.4 0.015 1.5 
CO2 11 7.7 0.050 1.4 
Total 11 5.8 0.037 1.2 
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Table 7-30. The 2-D EOS Representations of Binary Mixture Adsorption on Wet 
Fruitland Coal at 319.3 K- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD C12 't12 
(mmol/g) a12 't21 

ZGREOS 

CH4+N2 
Methane 41 5.8 0.021 0.6 1.0552 -1.0275 

Nitrogen 41 6.4 0.007 0.5 7.3922 -0.1558 

Total 41 3.3 0.021 0.4 

CH4+C02 
Methane 40 5.4 0.016 0.6 0.6039 -0.4831 

CO2 40 5.5 0.039 0.6 0.9791 -0.9208 

Total 40 2.8 0.041 0.5 

N2+C02 
Nitrogen - - - - - -

CO2 - - - -

Total - - - -

2-DPREOS 

CH4+N2 
Methane 41 5.7 0.023 0.6 0.4095 4.3366 

Nitrogen 41 7.8 0.008 0.5 0.6000 1.9299 

Total 41 3.8 0.023 0.5 

CH4+C02 
Methane 40 3.3 0.012 0.4 -0.0814 0.8474 

CO2 40 4.2 0.040 0.6 0.2000 -0.9230 

Total 40 2.5 0.043 0.4 

N2+C02 
Nitrogen 50 15.2 0.014 0.5 0.1853 4.4766 

CO2 50 6.0 0.038 0.4 0.0117 0.3705 

Total 50 3.3 0.031 0.2 
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Table 7-31. The 2-D EOS Representations of Binary Mixture Adsorption on 
Wet Illinois #6 Coal at 319.3 K- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
C12 't12 

(mmol/g) <X12 't21 

ZGREOS 

CH4+N2 
Methane 40 19.4 0.019 0.5 0.7060 4.4244 

Nitrogen 40 19.8 0.008 0.4 0.2688 -2.1379 

Total 40 7.8 0.014 0.2 

CH4+C02 
Methane 40 11.3 0.019 0.4 0.5460 -0.8312 

CO2 40 7.9 0.031 0.5 6.1977 0.2455 

Total 40 3.8 0.021 0.3 

N2+C02 
Nitrogen - - - - - -

CO2 - - - -

Total - - - -

2-D PREOS 

CH4+N2 
Methane 40 13.4 0.016 0.4 0.9307 6.6286 

Nitrogen 40 13.9 0.007 0.3 0.2942 1.4992 

Total 40 6.9 0.013 0.2 

CH4+C02 
Methane 40 14.9 0.021 0.6 -0.0177 1.8158 

CO2 40 11.9 0.054 0.8 0.2104 6.4210 

Total 40 5.3 0.040 0.4 

N2+C02 
Nitrogen 40 51.8 0.033 0.9 -0.1918 -6.0733 

CO2 40 9.0 0.037 0.6 1.6000 1.9089 

Total 40 3.4 0.014 0.3 
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Table 7-32. The 2-D EOS Representations of Binary Mixture Adsorption on Wet 
Tiffany Coal at 327.6 K- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD C12 't12 
(mmol/g) a.12 't21 

ZGREOS 

CH4+N2 
Methane 11 3.7 0.008 0.6 0.1615 -0.0009 

Nitrogen 11 5.5 0.004 0.4 5.9316 -0.6006 

Total 11 3.2 0.008 0.5 

CH4+C02 
Methane 11 8.7 0.012 1.5 -0.8419 0.2038 

CO2 11 4.9 0.019 1.2 3.6242 -1.2087 

Total 11 3.0 0.016 0.9 

N2+C02 
Nitrogen 11 7.1 0.002 0.3 0.5544 -0.3085 

CO2 11 6.2 0.045 1.1 2.2711 -2.4618 

Total 11 5.7 0.044 1.1 

2-DPREOS 

CH4+N2 
Methane 11 9.0 0.016 1.3 0.1468 -7.1169 

Nitrogen 11 4.4 0.003 0.3 5.3000 -0.4682 

Total 11 7.0 0.016 1.2 

CH4+C02 
Methane 11 4.9 0.009 0.8 0.5815 0.5183 

CO2 11 7.7 0.041 1.6 0.9097 1.0000 

Total 11 5.5 0.034 1.3 

N2+C02 
Nitrogen 11 6.8 0.002 0.3 0.5430 1.1419 

CO2 11 7.4 0.049 1.4 0.0135 0.3716 

Total 11 6.9 0.048 1.3 
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Table 7-33. The 2-D EOS Predictions of Ternary Mixture Adsorption on 
Wet Tiffany Coal at 327.6 K- Wong-Sandler Mixing Rules 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/~) 

ZGR EOS Based on Pure Gas Parameters 

Methane 11 30.9 0.010 1.2 
Nitrogen 11 69.4 0.048 4.3 
CO2 11 19.8 0.078 3.6 
Total 11 4.2 0.024 0.9 

2-D PR EOS Based on Pure Gas Parameters 

Methane 11 19.7 0.006 0.8 
Nitrogen 11 53.3 0.037 3.3 
CO2 11 16.5 0.077 2.9 
Total 11 6.1 0.037 1.3 

ZGR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 11 15.0 0.004 0.8 
Nitrogen 11 17.9 0.009 1.3 
CO2 11 18.0 0.068 3.3 
Total 11 10.5 0.059 2.4 

2-D PR EOS Based on Pure Gas and Binary Mixture Parameters 

Methane 11 37.5 0.016 1.1 
Nitrogen 11 21.3 0.012 1.5 
CO2 11 31.1 0.144 5.5 
Total 11 23.4 0.149 5.3 
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7.6 Discussion 

Because of the extra exponent (1/m) in the repulsive term in the ZGR BOS, the 

ZGR BOS is not actually cubic in nature. The second virial coefficient calculated from 

the ZGR BOS is infinite in the limit of low pressure, which is shown in the following 

discussion. For the generalized 2-D BOS: 

(7-18) 

Re-writing the above equation yields: 

(7-19) 

Taking the derivative of Z with respect to cr gives: 

oZ mb2 mCTm-l a2 azCT Ub2 + 2Wb/CT 

oCT = [1-(bzCT t ]2 - RT[l + Ub2CT + W(b 2CT) 2] + RT 1 + Ub 2CT + W(b 2CT) 2 

For the 2-D BOS where m=l: 

B _oz -b -~ 
- - 2 

OCT cr=O RT 

However, for the ZGR BOS where m=l/3: 

Thus, when using the ZGR BOS with Wong-Sandler mixing rules, the ZGR BOS does 

not meet the quadratic composition dependence for the second virial coefficient, although 

reasonable results are obtained for most mixture calculations. 

Equation 7-15 relates the Helmholtz free energy with the generalized 2-D BOS: 
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(7-15) 

Again, because of the exponent 1/3 in the ZGR EOS, the term, ( __!_ -1) L xi ln 1_, will be 
m . r:t_ 

I 1-'1 

large if values of Pi differ significantly from each other, which may cause the calculation 

to diverge. This term is the main reason why N2+C02 mixture adsorption on wet 

Fruitland coal and wet Illinois #6 coal failed to converge using the ZGR EOS with 

Wong-Sandler mixing rules. 

To summarize the results of mixture adsorption using different mixing rules and 

different EOSs, Table 7-34 compares the results for binary mixture adsorption on 

activated carbons. Overall, the ZGR EOS with Wong-Sandler mixing rules predicts 

mixture adsorption better than that with one-fluid mixing rules. For 2-D PR EOS, the two 

mixing rules do not show significant difference. For the data correlation, Wong-Sandler 

mixing rules show better results than one-fluid mixing rules for both EOS, but they have 

more regressed parameters. Overall, the 2-D PR EOS show better results than the ZGR 

EOS in predicting and representing the mixture adsorption for both one-fluid mixing 

rules and Wong-Sandler mixing rules. 

Table 7-35 compares the results for the binary mixture adsorption on wet coals. 

The results of N2+C02 adsorption data on wet Fruitland coal and wet Illinois #6 coal are 

excluded because ZGR EOS failed to converge in the calculation. Overall, the ZGR EOS 

with Wong-Sandler mixing rules provides worse predictions for mixture adsorption than 

that with the one-fluid mixing rules. These ZGR EOS predictions may be attributable to 

the Pi parameter values for pure gases, which are significantly different. For the 2-D PR 
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Table 7-34. Summary of Mixture Adsorption on Activated Carbons 

L.A. C. * H. A. C. * Total 

%AAD RMSE %AAD RMSE %AAD RMSE 

Predictions Using One-Fluid Mixing Rules 

ZGREOS 16.0 0.202 9.0 0.253 

2-DPREOS 10.3 0.166 7.3 0.199 

Predictions Using Wong-Sandler Mixing Rules 

ZGREOS 12.2 0.180 8.3 0.224 

2-DPREOS 11.1 0.173 7.2 0.196 

Regressions Using One-Fluid Mixing Rules 

ZGREOS 8.1 0.171 7.3 0.206 

2-DPREOS 6.3 0.169 6.4 0.186 

Regressions Using Wong-Sandler Mixing Rules 

ZGREOS 5.5 0.113 5.0 0.164 

2-D PREOS 4.6 · 0.131 4.7 0.165 

*L.A. C. means lower-adsorption component (233 data points) 

* H. A. C. means higher-adsorption component (233 data points) 
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Table 7-35. Summary of Mixture Adsorption on Wet Coals 

L.A. C. * H.A. C. * Total 

%AAD RMSE %AAD RMSE %AAD 

Predictions Using One-Fluid Mixing Rules 

ZGREOS 21.7 0.033 13.9 0.055 

2-D PREOS 18.0 0.021 9.2 0.038 

Predictions Using Wong-Sandler Mixing Rules 

ZGREOS 28.4 0.045 12.8 0.055 

2-D PREOS 16.5 0.020 9.0 0.038 

Regressions Using One-Fluid Mixing Rules 

ZGREOS 10.9 0.012 11.1 0.050 

2-D PREOS 9.6 0.013 8.5 0.036 

Regressions Using Wong-Sandler Mixing Rules 

ZGREOS 10.1 0.013 8.8 0.029 

2-D PREOS 9.2 0.012 8.7 0.037 

*L.A. C. means lower-adsorption component (194 data points) 

* H. A. C. means higher-adsorption component (194 data points) 
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EOS, the Wong-Sandler mixing rules predict slightly better than one-fluid mixing rules. 

In the regression mode, however, the two mixing rules show comparable quality of fit. 

Figures 7-1 through 7-3 show the comparison of one-fluid mixing rules and 

Wong-Sandler mixing rules for representing the C~+C02 mixture adsorption on 

activated carbon at 318.2 K using the ZGR EOS. From Figures 7-2 and 7-3, it can be 

seen that Wong-Sandler mixing rules represent the component adsorption better than one­

fluid mixing rules. Using one-fluid mixing rules, the model underestimates the 

adsorption for CH4 and overestimates CO2. More generally, one-fluid mixing rules tend 

to underestimate the lower adsorption component and overestimate the higher adsorption 

component. 

Figures 7-4 through 7-6 show comparisons of the ZGR EOS and 2-D PR EOS 

representation of N2+C02 mixture adsorption on activated carbon at 318.2 K using 

Wong-Sandler mixing rules. The figures indicate that both models represent the 

adsorption with no significant difference. 

In summary, the results of mixture adsorption modeling using 2-D EOS indicate: 

I. Overall, both the ZGR EOS and the 2-D PR EOS can represent the binary mixture 

adsorption sets within an AAD of 12% using Wong-Sandler mixing rules and 

one-fluid mixing rules. Among the cases studied, 2-D PR EOS with Wong­

Sandler mixing provides marginally better quality of fit, which suggests that the 

mixing in the adsorbed phase may be non-random, or that the additional model 

parameters in these mixing rules provide better precision. 
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2. 2-D PR EOS predicts the binary adsorption better than ZGR EOS. Further, for all 

the cases studied, the 2-D PR EOS with Wong-Sandler mixing rules provides 

more accurate binary mixture adsorption predictions. However, both EOSs 

predict the lower-adsorption component with higher AAD than the higher­

adsorption component. 

3. Use of both pure-gas and binary mixture parameters does not result in any 

improvement in the prediction of the ternary mixture adsorption, when compared 

to using only pure-gas parameters. 

4. Because of the revised repulsive term ih ZGR EOS, mixture calculations may fail, 

especially when the model parameter, Pi, varies significantly among the mixture 

components. This may limit the use of ZGR EOS in calculating mixture 

adsorption. 
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CHAPTERS 

ALGORITHM FOR MULTICOMPONENT ADSORPTION 

8.1 Multiphase Calculation Algorithms 

Mixture adsorption calculations are essential in CBM recovery operations and 

CO2 sequestration processes. In addition to accurate adsorption models, implementations 

of these processes require robust computational algorithms. For multiphase calculations, 

three methods maybe used [see, e.g., Sofyan et al. 2003]: 

1. Simultaneous solution of mass and equilibrium relations 

2. Iteration function method (IFM) 

3. Gibbs energy minimization (GEM) method 

In our previous studies involving adsorption mixtures, the simultaneous solution 

method was used to perform such calculations based on experimental gas-phase 

compositions, Yi [Zhou, 1994]. However, in many mixture adsorption calculations, the 

bulk phase compositions are not available. Moreover, the use of experimental gas phase 

compositions leads to some inconsistency in the equilibrium calculations attributed to 

errors in the experimental gas compositions. 

The most commonly used algorithm for a known phase distribution is the equal­

chemical potential or equal-fugacity iteration function method, where feed gas 

compositions, Zi, are used to perform the calculations. In this chapter, an iteration 
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function method (IFM) for mixture adsorption equilibrium calculations is developed for 

2-D EOS, and its robustness is evaluated for CBM-type systems. 

8.2 IFM for Mixture Adsorption Calculations 

In principle, the Rice-Rachford iteration function, or a similar function, can be 

used to perform two-phase equilibrium calculations. However, when dealing with 

adsorption systems, an additional degree of freedom is imposed by the presence of an 

adsorption matrix. For example, Smith et al. (1975) provided a phase rule for gas 

adsorption equilibrium to account for the spreading pressure: 

F=N-n+3=N-2+3=N+l (8-1) 

where F is the degrees of freedom, N is the number of components, and n is the number 

of the phases. The phase number n for a gas adsorption system is two. However, a more 

generalized point of view regards the adsorbed phase as an interface [Ross et al., 1964], 

where: 

F=N-n+2+i (8-2) 

and i is the number of interfaces. Thus, for a pure-gas adsorption on one adsorbent, there 

are two degrees of freedom, which means, two variables, for example, T and P must be 

fixed independently to establish an equilibrium state. Similarly, for a binary gas 

adsorption system, the degrees of freedom are three, and so on. 

The total and component mass balances for a two-phase, gas-adsorption system 

are as follows: 

N = Ngas + Nads 
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where N is the total number of moles in the system, Nacts and Ngas are the number of 

moles of the adsorbed phase and gas phase, respectively. Zi, Yi, and Xi are the mole 

fractions of the feed, equilibrium gas phase, and equilibrium adsorbed phase, 

respectively. 

The equilibrium requirements for a closed system at given temperature and 

pressure maybe expressed as [Zhou, 1994]: 

(8-5) 

where, Zais the compressibility factor for the adsorbed phase, ~~ and ~f are the fugacity 

coefficient for the adsorbed phase and the gas phase, respectively, ki is Henry's constant, 

and m is the total amount adsorbed per mass of adsorbent. 

By definition the equilibrium constant (K-value) is: 

(8-6) 

Now, we use Equations 8-3, 8-4, and 8-6 to solve for Xi and Yi: 

zi d Kizi x. = an y. =--------

' N ads + (1 _ N ads JK. 1 N ads + (1 _ N ads JK. 
N N I N N I 

(8-7) 

Similar to vapor-liquid equilibrium, we obtain the equivalent to the VLE Rice-Rachford 

iteration function [see, e.g., Sofyan et al., 2003]: 

(8-8) 

For the adsorbed phase, the number of moles adsorbed, Nacts, is calculated as: 

Nads = mMS (8-9) 
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where co is the total amount adsorbed per mass of the adsorbent, and Ms is the mass of 

adsorbent. The number of moles in the gas phase, Ngas, is: 

N gas = Pgas Vgas (8-10) 

where Pgas and Vgas are the density and total volume of the gas phase, respectively. In 

adsorption systems, the total volume available for the gas phase is affected by the amount 

adsorbed [Sudibandriyo et al., 2003]; specifically, 

Vgas = Vvoid -coMs/Pads (8-11) 

where V void is the total volume available for the gas phase when there is no adsorption, 

and Pads is the adsorbed-phase density. 

Expressing the adsorbed-phase molar ratio in terms of the amount adsorbed, 

densities and volumes, we get: 

N ads = N ads = co Ms - co Ms 

N Nads +Ngas coMS +Pgasvgas - coMS +Pgas(vvoid -coMs/Pads) 
(8-12) 

Now, if we define the void volume per mass of adsorbent as: 

V _ Vvoid 
void - M 

s 

(8-13) 

Equation 8-12 can be rewritten as: 

Nads _ (0 

N - CO + P gas ( V void - co/Pads ) 
(8-14) 

and, the working iteration function becomes: 

(8-15) 
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This means that having the feed composition at a given temperature and pressure, we can 

solve iteratively for the adsorbed-phase molar ratio, provided we have an adequate 

adsorption model for calculating the K-values. 

The IFM iterative scheme for an adsorption equilibrium calculation is as follows: 

1. Set initial estimates for Xi, Yi and the total adsorbed amount co 

2. Calculate the component fugacity coefficients of the adsorbed phase and the 

vapor phase 

3. Use a numerical method to solve for NadslN from Equation 8-8 

4. Calculate Xi, Yi and the total adsorbed amount co 

5. Calculate Ki for each component 

6. If JK~ -K~+1 J > E, where E =0.00001, go back to Step 2; otherwise print results 

8.3 Algorithm Robustness Analyses 

The Newton-Raphson approach is used to solve for the molar adsorption ratio, 

Nads/N, in Equation 8-8 using the iteration expression: 

(NadsJ. =(NadsJ. 
N !+I N I 

F 

F' 
(8-16) 

(8-17) 

However, implementation of the IFM iterative scheme outlined above using the 

Newton-Raphson method resulted in poor convergence characteristics; i.e., frequent 

convergence failures. Our analysis indicates that the iterative values generated by the 

algorithm for the total amount adsorbed, co, are the main cause for calculation failure. In 
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the adsorption IFM scheme, unlike the VLE IFM, an estimate for the total amount 

adsorbed is required to initiate the calculations. Unfortunately, an error in the ro estimate 

is magnified in each iteration loop resulting in divergence and, thus, calculation failure. 

Accordingly, a new robust algorithm was developed as outlined below. 

Following extensive analysis of several iterative schemes, we propose the 

following new iteration function for multicomponent adsorption equilibrium calculations: 

(8-18) 

In this scheme, we solve for ro instead of the Naas!N ratio. Thus, ro is the iteration 

variable, which we found to have excellent convergence characteristics. 

Figure 8-1 shows a typical variation of the iteration function F( ro) with the 

amount adsorbed ro. As indicated, F(ro) is a monotonic function. Although the Newton-

Raphson method could be used, we elected instead to use the secant method to avoid 

deriving the iteration function derivative, F'(ro). As such, the iteration step for solving 

Equation 8-18 is: 

(8-19) 

The algorithm for implementing the new IFM iterative scheme for adsorption 

equilibrium calculation is as follows: 
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1. Set the initial values of Xi, Yi and the total adsorbed amount co; initial values of Xi 

NC 

and Yi are set equal to Zi, and that of co as L z jco j , where NC is the number of the 
j=l 

components, and COj is the pure-gas adsorption for component j. 

2. Calculate the component fugacity coefficients of the adsorbed phase and the 

vapor phase 

3. Use a numerical method to solve for co from Equation 8-18 

4. Calculate Naas!N 

5. Calculate Xi, Yi and the total adsorbed amount co 

6. Calculate Ki for each component 

7. If IK; - K;+1 I > E, go back to Step 2; otherwise print results 

8 .4 Results and Discussion 

The 2-D PR EOS with one-fluid mixing rules was used to demonstrate the 

effectiveness of the new IFM algorithm for adsorption. Several case studies were 

conducted involving EOS predictions (Cj=Dij=O) and model parameter regressions 

(regressed Cij and Dij), Following our previous study, the following mixture adsorption 

data were selected to assess the robustness of the new IFM for CBM-type systems: 

1. System 51 to 54: OSU data for mixtures of methane, nitrogen, and CO2 on 

activated carbon at 318.2 K 

2. System 58 to 60: OSU data for mixtures of methane, nitrogen, and CO2 on wet 

Fruitland coal at 319.3 K 
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3. System 64to 66: OSU data for mixtures of methane, nitrogen, and CO2 on Wet 

Illinois #6 Coal 319 .3 K 

4. System 70 to 73: OSU data for mixtures of methane, nitrogen, and CO2 on wet 

Tiffany coal at 328.2 K 

fu the IFM scheme, we need the feed gas compositions and Vvoid in the 

calculation. Only the systems summarized above were used because they included that 

information. Equation 7-1 was used as the objective function. Equations 7-2 through 7-4 

were used to evaluate the results. 

Tables 8-1 to 8-8 present the results for each system using the IFM algorithm. 

For all the systems considered totaling 404 data points, the equilibrium adsorption 

calculations were successful. 

Typically, fewer than ten iterations are required to solve F( co) for co using the 

secant method; two iterations for adsorption at pressures less than 1.0 MPa and about 

twenty iterations at pressures greater that 12.0 MPa. 

Table 8-9 presents the overall comparison of the two calculation schemes: the 

simultaneous solution method using the gas phase compositions, and the IFM method 

using the feed compositions. Overall, the IFM algorithm produces slightly better results 

than the simultaneous solution method because it avoids errors introduced by imprecise 

gas-phase compositions. Figure 8-2 shows the comparison of the experimental and the 

calculated gas-phase composition for the CH4+C02 mixture adsorption on activated 

carbon at 318.2 K. Excellent agreement is observed for all feed compositions. 
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Table 8-1. The 2-D PR EOS Predictions of Binary Mixture Adsorption on 
Activated Carbon at 318.2 K -IFM Calculations 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/g) 

CH4-N2 
Methane 40 3.9 0.137 1.6 
Nitrogen 40 2.9 0.052 0.8 
Total 40 3.1 0.139 1.3 

CH4-C02 
Methane 40 2.5 0.064 0.5 
CO2 40 3.3 0.104 0.8 
Total 40 1.0 0.076 0.3 

N2-C02 
Nitrogen 40 5.2 0.064 1.0 
CO2 40 2.8 0.104 0.8 
Total 40 3.1 0.151 1.0 

Table 8-2. The 2-D PR EOS Representations of Binary Mixture Adsorption on 
Activated Carbon at 318.2 K- IFM Calculations 

Systems NPTS %AAD 
RMSE 

WAAD C12 D12 (mmol/g) 

CH4-N2 
Methane 40 3.8 0.132 1.5 -0.0801 -0.0425 
Nitrogen 40 3.6 0.047 0.9 
Total 40 2.6 0.117 1.1 

CH4-C02 
Methane 40 2.6 0.074 0.6 -0.0856 0.0192 
CO2 40 2.3 0.077 0.6 
Total 40 0.6 0.052 0.2 

Ni-CO2 
Nitrogen 40 4.1 0.043 0.6 -0.1213 0.0243 
CO2 40 2.5 0.106 0.7 
Total 40 2.1 0.106 0.7 
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Table 8-3. The 2-D PR EOS Predictions of Binary Mixture Adsorption on 
Wet Fruitland Coal at 319.3 K-IFM Calculations 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/g) 

CH4-N2 
Methane 41 3.2 0.009 0.3 
Nitrogen 41 25.9 0.033 1.9 
Total 41 7.8 0.040 1.0 

CH4-C02 
Methane 40 7.6 0.019 0.7 
CO2 40 5.5 0.042 0.8 
Total 40 4.3 0.049 0.8 

N2-C02 
Nitrogen 50 30.2 0.038 1.1 
CO2 50 2.3 0.033 0.3 
Total 50 4.7 0.051 0.6 

Table 8-4. The 2-D PR EOS Representations of Binary Mixture Adsorption on 
Wet Fruitland Coal at 319.3 K- IFM Calculations 

Systems NPTS %AAD 
RMSE 

WAAD C12 012 (mmol/2) 

CH4-N2 
Methane 41 3.4 0.013 0.3 0.7344 -0.0202 
Nitrogen 41 6.6 0.007 0.4 
Total 41 3.0 0.015 0.4 

CH4-C02 
Methane 40 3.8 0.014 0.4 -0.1154 0.2582 
CO2 40 4.0 0.038 0.6 
Total 40 2.4 0.040 0.4 

N2-C02 
Nitrogen 50 14.4 0.013 0.4 0.0361 -0.0968 
CO2 50 3.0 0.037 0.4 
Total 50 2.0 0.038 0.3 
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Table 8-5. The 2-D PR EOS Predictions of Binary Mixture Adsorption on 
Wet Illinois #6 Coal at 319.3 K-IFM Calculations 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/g) 

CH4-N2 
Methane 40 13.4 0.017 0.4 
Nitrogen 40 14.9 0.005 0.3 
Total 40 7.1 0.016 0.3 

CH4-C02 
Methane 40 13.0 0.017 0.5 
CO2 40 9.5 0.054 0.7 
Total 40 6.4 0.053 0.6 

Ni-CO2 
Nitrogen 40 49.4 0.024 0.7 
CO2 40 5.1 0.025 0.4 
Total 40 2.7 0.019 0.3 

Table 8-6. The 2-D PR EOS Representations of Binary Mixture Adsorption on 
Wet Illinois #6 Coal at 319.3 K-IFM Calculations 

Systems NPTS %AAD 
RMSE 

WAAD C12 D12 (mmol/g) 

CH4-N2 
Methane 40 13.7 0.017 0.4 0.2223 0.1834 
Nitrogen 40 15.3 0.005 0.3 
Total 40 7.0 0.014 0.2 

CH4-C02 
Methane 40 11.7 0.017 0.4 -0.1598 0.0979 
CO2 40 9.2 0.053 0.7 
Total 40 4.8 0.043 0.4 

N2-C02 
Nitrogen 40 50.3 0.033 0.9 -0.5296 0.4556 
CO2 40 4.9 0.024 0.4 
Total 40 2.3 0.021 0.3 
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Table 8-7. The 2-D PR EOS Predictions of Binary Mixture Adsorption on 
Wet Tiffany Coal at 327.6 K- IFM Calculations 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/g) 

CH4-N2 
Methane 11 13.2 0.029 1.6 
Nitrogen 11 4.8 0.005 0.4 
Total 11 11.3 0.033 1.6 

CH4-C02 
Methane 11 27.2 0.041 3.6 
CO2 11 9.0 0.047 2.0 
Total 11 2.6 0.012 0.8 

Ni-CO2 
Nitrogen 11 54.4 0.019 1.9 
CO2 11 7.6 0.051 1.4 
Total 11 5.2 0.034 1.1 

Table 8-8. The 2-D PR EOS Representations of Binary Mixture Adsorption on 
Wet Tiffany Coal at 327.6 K- IFM Calculations 

Systems NPTS %AAD 
RMSE 

WAAD Cu Du (mmol/g) 

CH4-N2 
Methane 11 11.8 0.025 1.4 0.1205 -0.3286 
Nitrogen 11 7.5 0.005 0.4 
Total 11 8.2 0.021 1.1 

CH4-C02 
Methane 11 15.0 0.023 2.7 0.5129 -0.1328 
CO2 11 9.7 0.050 2.2 
Total 11 4.6 0.028 1.1 

Ni-CO2 
Nitrogen 11 23.5 0.008 0.8 0.2398 -0.4310 
CO2 11 7.4 0.050 1.3 
Total 11 6.1 0.043 1.2 
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Table 8-9. Comparison of Mixture Adsorption Using Simultaneous Solution Method and IFM 

L.A. C. * H. A. C. * Total 

%AAD RMSE WAAD %AAD RMSE WAAD %AAD RMSE WAAD 

Predictions 

Sim. Sol. 20.1 0.051 1.0 8.1 0.097 1.1 4.7 0.081 0.7 

IFM 18.2 0.039 0.9 5.7 0.070 0.7 4.6 0.077 0.7 

Regressions 

Sim. Sol. 12.8 0.041 0.6 7.4 0.090 1.0 3.8 0.079 0.6 

IFM 12.8 0.034 0.6 5.5 0.065 0.7 3.2 0.059 0.5 

*L.A. C. means lower-adsorption component (404 data points) 

* H. A. C. means higher-adsorption component (404 data points) 
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Figure 8-3 provides an IFM algorithm sample calculation involving the 

80%N2+20%C02 mixture adsorption on activated carbon at 318.2 K. The results indicate 

that the IFM calculations provide smooth predictions (the solid line) in comparison to 

comparable results from the simultaneous solution method using experimental vapor 

compositions (the dash line). 

fu summary, analysis of results involving many CBM adsorption systems indicate 

that the new IFM algorithm for the 2-D EOS is effective in performing equilibrium 

mixture adsorption calculations based on feed compositions. Further, use of an 

equivalent formulation to the Rice-Rachford VLE iteration function, where the molar 

adsorption ratio is the iteration variable, leads to frequent adsorption calculation failures. 

Excellent convergence characteristics are obtained using the new IFM. 
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CHAPTER9 

CONCLUSIONS AND RECOMMENDATIONS 

The main goal of this work was to evaluate and extend the capability of 2-D 

EOSs to represent and predict the pure-gas and mixture adsorption on carbon matrices. 

Investigation of generalized temperature relations for the 2-D EOS parameters was 

undertaken to make the 2-D EOSs more attractive in CBM process calculations. New 

mixing rules and a new computational algorithm for the mixture adsorption were also 

developed to enhance its applications. Following are the specific conclusions and 

recommendations made based on this work. 

9 .1 Conclusions 

The conclusions from this work are: 

1. In general, regressing the model parameters for each isotherm, both the ZGR EOS 

and the 2-D PR EOS can represent pure-gas adsorption precisely (within the 

expected experimental uncertainties of about 2%). Overall, the two EOSs can 

represent the experimental data equally well. For a given adsorption isotherm, the 

ZGR EOS represents the adsorption data better than the 2-D PR EOS at high 

pressure, while at lower pressures the 2-D PR EOS represents the data more 

precisely. 
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2. Temperature relations for the 2-D PR EOS parameters were developed. Overall, 

the new temperature relations for the 2-D PR EOS enabled us to represent the 

pure-gas adsorption within the expected experimental uncertainties without the 

need to regress each isotherm. More importantly, the temperature relations for the 

2-D PR EOS parameters are related to the properties of the adsorbent and 

adsorbate, thus facilitating generalized adsorption predictions. 

3. On average, the 2-D PR EOS is capable of predicting pure-gas adsorption on 

activated carbons within AAD of 9%. However, improved estimates for the 

surface area and fluid-solid interaction are needed to achieve better accuracy. 

4. Currently, the revised attractive term for the 2-D PR EOS works well for all the 

data considered in this work; however, it does not account for temperature 

variation. Moreover, the temperature relations for the 2-D PR EOS could not be 

applied to the ZGR EOS because of the empirical revision of the repulsive term in 

theZGREOS. 

5. One-fluid mixing rules can represent the total adsorption precisely, but they do 

not represent the component adsorption equally well. 

6. Wong-Sandler mixing rules provide an effective formulation for extending 2-D 

EOS models to mixtures. These mixing rules produce slightly better results than 

those obtained using the one-fluid mixing rules. 

7. Because of the revised repulsive term in ZGR EOS, mixture calculations may fail, 

especially when the model parameter, Pi, varies significantly from component to 

component. This may limit the use of ZGR EOS in calculating mixture 

adsorption. 
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8. An iteration function method (IFM) was developed. Our analysis and the 

preliminary results indicate that the new IFM algorithm for the 2-D BOS is 

effective in performing equilibrium mixture adsorption calculations based on feed 

gas compositions. 

9 .2 Recommendations 

The recommendations for future work are: 

1. Investigative and rigorously account for the presence of moisture on adsorption 

behavior. 

2. Further develop the a function in 2-D PR BOS to delineate the temperature 

dependence of the 2-D BOS. 

3. Explore the potential use of NRTL parameters from VLE data for adsorption 

calculations. 
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APPENDIX A 

Benedict-Webb-Rubin (BWR) Equation of State for Mixture Compressibility Calculation 
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A.1 Introduction 

Adsorption equilibrium models are essential in process simulators used to 

optimize coalbed methane production and carbon dioxide (CO2) sequestration processes. 

To develop reliable adsorption models, accurate pure and mixture adsorption data are 

required. In turn, proper reduction of experimental adsorption data requires accurate gas­

phase compressibility (Z) factors for methane (CH4), nitrogen (N2), CO2 and their 

mixtures. 

A careful evaluation of the current literature led us to conclude that an adequate 

predictive capability for mixture compressibility factors does not exist. Therefore, we 

elected to develop such a capability using the Benedict-Webb-Rubin (BWR) equation of 

state. 

Specifically, .we have used the available pure-fluid and binary mixture data to 

refit the parameters in the BWR equation to improve its compressibility factor predictions 

based on (a) the available experimental volumetric data from the literature, and (b) 

supplementary measurements we have conducted. Experimental data at temperatures 

from 300 to 350 Kand pressures to 20 MPa were used to evaluate and further develop the 

BWR EOS. These data reflect coalbed reservoir temperature and pressure conditions. 

A.2 Background 

Our experimental technique for measuring adsorption isotherms employs a mass 

balance method, utilizing volumetric accounting principles; therefore, accurate gas-phase 

compressibility (Z) factors from outside sources are required for methane, nitrogen and 

CO2 and their mixtures to properly analyze our experimental adsorption data [Hall, 
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1993]. Our objective has been to minimize the uncertainties in our reported adsorption 

results that are caused by errors in the input information on compressibility factors. 

To illustrate the need for accurate compressibility factors, Figures A-1 and A-2 

show the impact of uncertainties in the compressibility factor on the adsorption results for 

both pure CO2 and CO2 component adsorption in a CH4+C02 binary mixture adsorbing 

on activated carbon at 318.2 K. The figures present, as a function of pressure, the effects 

of uncertainties in Z on the uncertainty in the amount adsorbed. Figure A-1 presents 

results for pure CO2, and Figure A-2 shows similar results for the amount of CO2 

adsorbed from a CH4+C02 mixture at a feed gas composition of 60% CO2. These figures 

reveal that significant errors begin to occur in the amount adsorbed when the 

compressibility factor errors are as low as about 0.5%. The apparent "breaks" in the 

smoothness of the curves as a function of pressure are the result of the detailed 

experimental protocol used in the experiments illustrated; e.g., the point at which the 

injection pump had to be refilled part way through the experiment. 

Since we are engaged in adsorption measurements involving pure, binary and 

ternary gas systems, we require compressibility factors of such gas systems. Following is 

a brief description of how we met our needs in recent studies. 

For pure methane, nitrogen and CO2, we employ highly accurate equations of 

state from the literature [Jaeschke et al., 1990; TIJPAC, 1978; TIJPAC, 1977; TIJPAC, 

197 6]. These EOS models predict the compressibility factors within O .1 % AAD. 

For gas mixtures, we have used available pure-fluid and binary mixture data to 

refit the BWR equation and improve its accuracy significantly; in general, the new BWR 
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EOS parameters yield deviations in the compressibility factor within 0.5%. This level of 

accuracy is deemed satisfactory for our needs. 

The present study was motivated by our need to reduce adsorption data for ternary 

gas systems, where we encountered the fact that ternary Z data were extremely scarce. 

As a result, we decided to perform a limited number of binary (CH4+N2) and ternary 

(CH4+N2+C02) compressibility factor measurements at 326.7 K and pressures to 13.8 

MPa. These newly acquired data were combined with available data from the literature 

on pure substances and binary systems to improve the BWR EOS compressibility factor 

predictions. 

A.3 Model Development 

The BWR EOS is widely used in the hydrocarbon industry for correlating and 

predicting fluid densities [Bishnoi et al., 1972]. In this study, we employ the eight-

parameter BWR EOS to correlate the PVT data of coalbed gases methane, nitrogen, CO2 

and their mixtures [Bishnoi et al., 1972]: 

Z=l+ B __ o __ o_ p+ b-- pz +-ps +-- l+ypz -yp ( A C ) ( a ) aa cp 2 
( } 2 

0 RT RT 3 RT RT RT 3 
(A-1) 

where T is temperature, p is density, R is the universal gas constant, and a-c, Ao-

Co, and a and y are EOS parameters. To apply the BWR to mixtures, mixing and 

combination rules are required. A variety of combinations rules were evaluated, including 

those employing composition-dependent interaction parameters [Lielmezs, 1989]; 

however, for simplicity, we have used the following mixing rules suggested by Bishnoi et 

al. (1972): 
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n n 

Bo= LLxixjBoij 
i=l j=l 

n n 

Ao= LLxixjAoij 
i=l j=l 

n n 

C0 = LLXixjCoij 
i=l j=l 

n n n 

b = LLLxixjxk(bijbjkbik)113 
i=l j=l k=l 

n n n 

a= LLLxixjxk(aijajkaik)113 
i=l j=l k=l 

n n n 

a= LLLxixjxk(aijajkaik)113 
i=l j=l k=l 

where bij = ~bibj 

where aij =~aiaj(l-ki) 

where a .. =~ IJ '\JVuiVuj 

where Yij = ~YiYj (A-2) 

Here, n is the number of components, Xi is the mole fraction of component i in the gas 

phase, and kij is the binary interaction parameter. Following customary notation, for a 

given parameter f3, f3ii=f3i, and the pure-fluid interaction parameters are equal to zero (or 

A.4 Database Used and Data Reduction 

Literature Data: Table A-1 presents the literature data used in this work. Pure-

gas and mixture data ranging in temperature from 279 to 350 K and pressures to 20.4 

MPa are included. 
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Table A-1. Experimental Data Used 

System System Temperature Pressure Range, Composition NPTS Reference 
No. Range, (K) (MP a) Range, 1st 

Component 
1 CH4 300.0 - 350.0 0.03 - 15.01 1.0000 27 [IUP AC, 1978] 

2 N2 300.0 - 350.0 0.01 - 20.01 1.0000 68 [Younglove, 1982] 

3 CO2 300.0 - 350.0 0.01 - 15.01 1.0000 55 [IUPAC, 1976] 

4 CH4 + N2 327.6 3.78 - 13.44 0.1912 - 0.8237 12 [This Work] 

5 308.4 - 330.0 0.39 - 12.00 0.1354 - 0.8976 391 [Jaeschke, 1990] 

6 CH4 + CO2 315.0 - 330.0 2.45 - 19.31 0.0205 - 0.1011 57 [Magee, 1994] 

7 300.0 - 350.0 2.11 - 13.87 0.0989 - 0.9017 38 [Hwang, 1997] 

8 300.0 - 330.0 0.08 - 12.00 0.5239 - 0.8052 200 [Jaeschke, 1990] -00 9 300.0 - 310.0 2.25 - 15.65 0.0205 - 0.1011 34 [Magee, 1994] +>, 

10 320.0 0.19 - 9.47 0.0999 - 0.9001 80 [Brugge, 1989] 

11 N2 + CO2 300.0 - 350.0 1.11 - 17.66 0.0908 - 0.8944 130 [Brugge, 1997] 

12 273.1 - 330.0 0.09 - 11.91 0.5530 - 0.8990 168 [Jaeschke, 1990] 

13 320.0 0.84 - 16.24 0.0908 - 0.8944 71 [Duarte-Garza, 1995] 

14 305.0 - 330.0 2.26 - 15.05 0.0180 - 0.8237 48 [Ely, 1987] 

15 Ternary 327.6 6.27 - 13.89 0.1510 - 0.4520 14 [This Work] 

16 279.4 - 308.4 3.73 - 6.27 0.2482, 0.2497* 33 [Jaeschke, 1990] 

17 300.0 - 340.0 3.99 - 20.41 0.9595, 0.0201 * 16 [Magee, 1994] 

* Single measurement compositions: Ycoz, YNz 



New Measurements: Our experimental Z factor measurements were done in the 

same apparatus used for adsorption studies (but with no adsorbent in the equilibrium 

cell). The technique employs a mass balance method, utilizing volumetric accounting 

principles. The experimental apparatus, shown schematically in Figure A-1, has been 

used successfully in our previous adsorption measurements [Hall, 1994]. Brief 

descriptions of the experimental apparatus and procedures follow. 

The entire apparatus (both Pump and Cell sections) is maintained in a constant 

temperature air bath. A highly accurate variable-volume Ruska pump is used for the 

injections of the pure gases from the Ruska pump into the equilibrium cell (EC, Figure 

4-1); the injections are made at constant pressure and temperature. A magnetic pump 

circulates the gas to ensure proper mixing. The temperature and pressure are recorded at 

equilibrium. 

The equilibrium cell is placed under vacuum prior to gas injection. The volume 

of the equilibrium cell and associated tubing, Veen, is then determined by injecting a 

known quantity of helium from a calibrated injection pump, as follows: 

vcell = nH 'zH RT IP) 
e \ e cell 

(A-3) 

(A-4) 

In these equations, nHe is the number of moles of helium injected into the cell, V 

is the volume of gas injected from the pump, ZHe, is the compressibility factor of helium, 

R is the universal gas constant, T is the temperature, P is the pressure, and the subscripts 

"cell" and "pump" refer to conditions in the cell and pump sections of the apparatus, 

respectively. In these calibration measurements, values of ZHe were taken Equation 4-24. 
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Once Veen was determined from multiple replications of the experimental 

technique, the targeted gas(es) was injected and allowed to reach equilibrium. For the 

mixtures, pure gases were injected in sequence, with the pump cleaned and evacuated 

prior to introduction of each gas. The total amount of each gas injected was thus known, 

and the gas composition in the equilibrium cell could be calculated by mass balance, 

based on the amount of each gas injected. For example, in the CH4+N2 system, CH4 

might be injected first to reach some desired initial pressure in EC, and then sequential 

injections of N2 could be made, with equilibrium established after each injection. Thus, 

the pressure would increase after each N2 injection, as would the total amount of gas, 

ntotal, and the mole fraction of N2 in the EC mixture. The compressibility factor for the 

mixture in the EC was calculated after each injection step as: 

Z = PVcell 
ntota1RT 

(A-5) 

The estimated uncertainties in each of the experimentally measured quantities are 

as follows: temperature 0.1 K, pressure 0.1 bar, injected gas volumes 0.02 cc, gas-phase 

composition 0.001 in mole fraction. The expected uncertainties in the compressibility 

factors are estimated using error propagation in all the measured variables and confirmed 

by duplicate runs. 

The newly acquired PVT measurements for the selected mixtures and the 

associated expected experimental uncertainties appear m Table A-2. (Note that the 

experimental technique used leads to changing gas composition (mole fraction) as the 

pressure changes.) These data, combined with the literature data, were used to regress 

the BWR parameters and conduct our model evaluations. 
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Table A-2. Experimental Compressibility Factors for Mixtures at 327.6 K 

Pressure YcH4 Yco2 YN2 Zexp Experimental 
(Psia) Uncertainty in Z 

(%) 
CH4+N2 System 

3.776 0.6662 0.0000 0.3338 0.9764 0.6 
5.569 0.4548 0.0000 0.5452 0.9831 0.5 
8.492 0.3013 0.0000 0.6987 0.9932 0.5 
11.284 0.2296 0.0000 0.7704 1.0056 0.4 
13.713 0.1912 0.0000 0.8088 1.0176 0.4 
3.982 0.2964 0.0000 0.7036 0.9942 0.6 
6.133 0.6422 0.0000 0.3578 0.9731 0.5 
10.721 0.7530 0.0000 0.2470 0.9400 0.4 
13.438 0.8064 0.0000 0.1936 0.9234 0.4 
5.085 0.8237 0.0000 0.1763 0.9571 0.5 
6.425 0.6555 0.0000 0.3445 0.9623 0.5 
9.020 0.4727 0.0000 0.5273 0.9743 0.5 

CH4+C02+N2 System 
6.487 0.4800 0.5200 0.0000 0.86446 0.5 
6.929 0.0000 0.7897 0.2103 0.81313 0.5 
6.884 0.0000 0.5164 0.4836 0.90761 0.5 
6.479 0.2428 0.7572 0.0000 0.80687 0.5 
6.482 0.0000 0.5840 0.4160 0.89179 0.5 
8.236 0.2322 0.7678 0.0000 0.74606 0.5 
6.275 0.4092 0.4883 0.1024 0.88580 0.5 
7.855 0.4010 0.4345 0.1645 0.87463 0.5 
11.666 0.4053 0.4696 0.1251 0.81424 0.4 
9.006 0.4520 0.4582 0.0898 0.84397 0.5 
8.283 0.1755 0.4258 0.3987 0.90046 0.5 
10.282 0.1610 0.5020 0.3371 0.84894 0.4 
8.416 0.2371 0.4455 0.3174 0.88338 0.5 
13.894 0.1510 0.4994 0.3496 0.81858 0.4 
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Data Reduction: The percentage root-mean-square error (%RMSE) was used as 

an objective function to correlate the data with the BWR EOS. The function minimizes 

the sum of the squared-percentage deviations in compressibility factors: 

ls(zexp -Zcalc J2 

i=l zexp . 
%RMSE =100 1 

NPTS 
(A-6) 

Here, NPTS is the number of data points, Zcalc and Zexp are the calculated and the 

experimental compressibility factor for datum point "i". The average absolute deviation 

(%AAD) and the root-mean-square error (RMSE) are also presented to further quantify 

our regressed parameter evaluations: 

%AAD = I 00 Is Zeal - Z exp 
NPTS i=t Z exp 

(A-7) 

NPTS 

L (zexp -Zcalc X 
RMSE= i=l 

NPTS 
(A-8) 

A.5 Case Studies 

Four different parameter-optimization scenarios were evaluated to ensure the best 

BWR quality fit for the data. Specifically, we conducted the following case studies: 

Case 1: This is the base case; the original BWR model parameters were used, as reported 

by Bishnoi and Robinson (1992). Both their pure component parameters and 

binary interaction parameters were employed. 

Case 2: Sequential parameter regressions were conducted. First the pure-component 

BWR parameters were regressed from pure PVT data for each of the Systems 1, 
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2 and 3; then the binary interaction parameters were regressed using both binary 

and ternary data simultaneously (Systems 4 to 17). 

Case 3: Simultaneous parameter regressions were conducted. Both the pure-component 

BWR parameters and the binary interaction parameters were regressed 

simultaneously using all the data (Systems 1 to 17). 

Case 4: Regressions were done for a restricted range of conditions. Simultaneous 

parameter regressions were conducted covering only the temperature range of 

primary interest (307 to 338 K). Both pure-component BWR parameters and 

binary interaction parameters were regressed from all data points at 

temperatures from 307 K to 338 Kand pressures up to 13.7 MPa. 

A.6 Results and Discussion 

The BWR EOS parameters for the various case studies are listed in Table A-3. 

An overall summary of results generated by these parameters is presented in Table A-4. 

These results indicated that the overall %AAD range from 0.1 to 0.4 for the cases 

considered and the maximum percentage deviations range from-5.9% to 14.6% (Case 2). 

As expected, Case 4, where we conducted simultaneous regression of pure, binary, and 

ternary data covering our experimental temperature and pressure range, produces the best 

overall fit and the least maximum deviation (0.07 %AAD and -1.5% maximum 

deviation). 

Tables A-5 to A-8 present detailed results for Cases 1-4. The three binary systems 

show comparable quality of fit for the best cases (Cases 3 and 4). The largest errors tend 

to occur at high CO2 compositions, particularly at conditions near the CO2 
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-'° 0 

Component 

CH 4 

CO2 

N2 

CH4 

CO 2 

N2 

CH4 

CO2 

N2 

CH4 

CO 2 

N2 

*k13, k12, k23 

T:K 
P: atm 
p: mol/liter 

8 0 x102 Ao 

4.3203 1.8712 

3.2015 1.8367 

4.0743 1.0536 

4.3658 1.7825 

3.1735 1.9668 

4.0681 0.9599 

4.4122 1.8538 

3.2649 1.8396 

4.2007 1.0946 

4.8871 2.0094 

3.2518 1.8450 

4.3979 1.1378 

Table A-3. BWR EOS Parameters for Pure Gases 

C0 x10-5 bx10 3 a ax10 5 

Case 1 
0.2350 3.9787 0.0692 9.6836 

1.7603 6.2536 0.2420 4.8784 

0.0806 2.3277 0.0251 12.7200 
Case2 

0.3034 3.4320 0.0728 39.7800 

1.6296 2.8034 0.0844 10.4177 

0.1386 2.0797 0.0279 29.0908 
Case 3 

0.2407 4.7569 0.1128 11.0522 

1.7706 6.2334 0.2441 5.3636 

0.0466 2.6731 0.0374 7.8119 
Case4 

0.2042 4.0428 0.0943 22.2778 

1.7621 6.2767 0.2450 5.3354 

0.0414 2.0963 0.0244 20.4833 

ex 10-4 yx 10 3 k .. X 102 * IJ 

0.3018 5.7118 3.0000 

1.9008 4.2808 3.0000 

0.0728 5.3000 3.0000 

0.4220 14.4131 3.1025 

1.2458 5.0744 8.4725 

0.1107 0.0000 -2.2938 

0.4852 6.3824 2.4740 

1.9339 4.5487 2.8084 

0.0868 4.4634 -5.5230 

0.4791 10.4556 2.0940 

1.9330 4.5528 1.2785 

0.0668 9.0570 -6.7309 



Table A-4. Overall Quality of BWR Compressibility Factor Predictions 

Errors in Predicted Z Factor 

Case RMSE %RMS %AAD Range of 

(XIOOO) % Deviations 

1 5.0 0.84 0.38 -3.3 to 7.5 

2 5.1 1.10 0.41 -5.8 to 14.6 

3 1.3 0.18 0.10 -1.4 to 1.4 

4 1.0 0.13 0.07 -1.5 to 0.8 
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Table A-5. Quality of BWR Compressibility Factor Predictions: Case 1 

Errors in Predicted Z Factor 

System System RMS %RMS %AAD Range of 

No. (XlOOO) % Deviations 

1 CH4 1.6 0.18 0.17 -0.3 to 0.0 

2 N2 1.6 0.16 0.14 -0.3 to 0.0 

3 CO2 3.2 0.70 0.35 -3.1 to 0.5 

4 CH4 + N2 4.0 0.41 0.33 -1.0 to 0.0 

5 1.8 0.19 0.18 -0.5 to 0.4 

6 CH4 + CO2 2.7 0.53 0.41 -1.9 to 0.9 

7 2.4 0.34 0.27 -1.2 to 0.4 

8 0.6 0.08 0.05 -0.3 to 0.1 

9 3.2 0.83 0.54 -3.3 to 1.0 

10 0.8 0.09 0.06 -0.3 to 0.1 

11 N2 + CO2 12.4 2.25 1.48 -0.6 to 7.5 

12 5.4 0.62 0.39 0.0 to 2.8 

13 9.3 1.44 0.93 -0.5 to 4.1 

14 3.2 0.94 0.69 -1.3 to 2.6 

15 Ternary 5.3 0.62 0.53 -0.9 to 1.4 

16 1.0 0.11 0.10 0.1 to 0.1 

17 2.9 0.77 0.57 -0.8 to 1.9 

Overall 5.0 0.84 0.38 -3.3 to 7.5 
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Table A-6. Quality of BWR Compressibility Factor Predictions: Case 2 

Errors in Predicted Z Factor 

System System RMS %RMS %AAD Range of 

No. (XlOOO) % Deviations 

1 CH4 0.3 0.03 0.02 -0.1 to 0.0 

2 N2 0.2 0.02 0.01 0.0 to 0.0 

3 CO2 1.1 0.18 0.12 -0.5 to 0.7 

4 CH4 + N2 2.6 0.27 0.21 -0.7 to 0.2 

5 0.5 0.05 0.03 -0.3 to 0.6 

6 CH4 + CO2 3.2 0.62 0.51 -1.8 to 1.5 

7 4.9 0.70 0.52 -1.4 to 1.9 

8 4.3 0.54 0.34 0.0 to 2.2 

9 7.2 2.03 1.38 -5.9 to 3.3 

10 2.7 0.33 0.20 0.0 to 1.2 

11 N2 + CO2 11.8 2.75 1.40 -2.5 to 14.6 

12 4.5 0.53 0.33 -2.8 to 0.0 

13 7.3 1.35 0.73 -1.6 to 7.3 

14 7.3 2.25 1.48 -1.1 to 5.9 

15 Ternary 6.0 0.70 0.54 -1.5 to 0.1 

16 1.9 0.21 0.20 0.1 to 0.3 

17 6.4 1.96 1.38 -0.4 to 4.3 

Overall 5.1 1.10 0.41 -5.9 to 14.6 
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Table A-7. Quality of BWR Compressibility Factor Predictions: Case 3 

Errors in Predicted Z Factor 

System System RMS %RMS %AAD Range of 

No. (XIOOO) % Deviations 

1 CH4 0.7 0.08 0.07 -0.1 to 0.2 

2 N2 0.5 0.05 0.04 -0.1 to 0.1 

3 CO2 2.0 0.30 0.21 -0.6 to 0.9 

4 CH4+N2 2.7 0.28 0.21 -0.8 to 0.2 

5 0.5 0.06 0.03 -0.3 to 0.6 

6 CH4 + CO2 2.0 0.28 0.22 -0.7 to 0.6 

7 1.6 0.25 0.15 -1.0 to 0.5 

8 0.5 0.06 0.05 -0.1 to 0.2 

9 2.0 0.47 0.35 -1.2 to 1.4 

10 0.6 0.08 0.05 -0.1 to 0.2 

11 N2 + CO2 2.1 0.25 0.18 -0.7 to 0.7 

12 0.7 0.07 0.05 -0.1 to 0.2 

13 1.2 0.14 0.10 -0.5 to 0.2 

14 1.3 0.30 0.24 -0.7 to 0.5 

15 Ternary 5.3 0.63 0.56 -1.4 to -0.2 

16 0.7 0.08 0.08 0.1 to 0.1 

17 1.5 0.32 0.23 -0.8 to 0.4 

Overall 1.3 0.18 0.10 -1.4 to 1.4 
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Table A-8. Quality of BWR Compressibility Factor Predictions: Case 4* 

Errors in Predicted Z Factor 

System System RMS %RMS %AAD Range of 

No. (XlOOO) % Deviations 

1 CH4 1.1 0.12 0.10 -0.1 to 0.3 

2 N2 0.7 0.07 0.04 -0.3 to 0.1 

3 CO2 1.9 0.29 0.21 -0.4 to 0.8 

4 CH4 + N2 2.7 0.27 0.22 -0.7 to 0.2 

5 0.5 0.05 0.02 -0.3 to 0.6 

6 CH4 + CO2 1.8 0.26 0.20 -0.6 to 0.6 

7 1.7 0.23 0.19 -0.7 to 0.4 

8 0.4 0.05 0.03 -0.2 to 0.2 

9 2.6 0.68 0.49 -1.7 to 1.9 

10 0.4 0.05 0.03 -0.2 to 0.2 

11 N2 + CO2 2.6 0.41 0.25 -2.3 to 0.8 

12 0.4 0.04 0.03 -0.1 to 0.2 

13 1.2 0.13 0.09 -0.6 to 0.2 

14 1.1 0.25 0.19 -0.6 to 0.7 

15 Ternary 6.0 0.71 0.65 -1.5 to -0.2 

16 0.1 0.02 0.01 0.0 to 0.0 

17 1.5 0.35 0.27 -0.8 to 0.4 

Overall 1.4 0.22 0.10 -2.3 to 1.9 

*Results for predictions for complete T, P ranges of data, based on parameters from fits 
to reduced ranges of Case 4 
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critical point. The ternary data is also well represented, with data from the present work 

showing the highest deviations (about 0.6 %AAD). This is not unexpected, since those 

data covered the widest composition range and had higher estimated experimental 

uncertainties than the other two sources of ternary data. 

Figures A-3, to A-6 show deviation plots for the Z factors for the various mixtures 

for each of the case studies. A gradual improvement in the quality of fit is observed 

proceeding from Case 1 to Case 4. The figures indicate that the N2+C02 binary data tend 

to exhibit the largest deviations, although this is less pronounced in the best cases ( cases 

3 and 4). 

Figures A-7 to A-10 show the deviation plots for the pure components for the 

various case studies. These plots are useful in comparing the quality of the fit for the 

pure components, and especially to reveal potential loss of accuracy when conducting 

simultaneous regressions (Cases 3 and 4). Our objective was to gain model flexibility 

through simultaneous treatment of all data, but not at any significant expense to the pure­

component predictions. 

The pure-component deviation plots indicate that CO2 (System 3) consistently 

exhibits the largest deviations in all scenarios. For pure gases, the BWR EOS can predict 

compressibility factors for CH4 and N2 within 0.3% for all four cases. However, for CO2, 

the absolute deviations are as much as 3% for Case 1 and within 0.8% for Cases 2 to 4. 

The CO2 Z factors are most difficult to represent as a result of the near-critical behavior 

of CO2 in the range of temperatures and pressures of interest in this work. 

Our recent adsorption isotherm measurements for the CH4+C02 binary on dry 

activated carbon are used to demonstrate how compressibility factors in the bulk phase 
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affect the total adsorption as well as the component adsorption in mixtures [Sudibandriyo 

et al., 2003]. The molar feed composition of the mixture is 40% methane, and the 

equilibrium temperature is 3318.2 K. Figure A-11 shows the effect of 0.5%, 1.0% and 

2.0% change in the compressibility factor on the total and the component CO2 Gibbs 

adsorption. The observed percentage change in the amount adsorbed ranges 

corresponding to 0.5 and 2.0% variability in the compressibility factor are: from 1.6 to 

6.2% in total adsorption, from 0.9 to 3.7% in CO2 component adsorption and from 5.9 to 

23 .1 % in CH4 component adsorption. 

Similar plots are given in Figure A-12 for the effect of 0.5%, 1.0% and 2.0% 

change in the compressibility factor on the total and the component CO2 absolute 

adsorption. The observed percentage change in the amount adsorbed ranges 

corresponding to 0.5 and 2.0% variability in the compressibility factor are: from 1.4 to 

5.4% in total adsorption, from 0.9 to 3.6% in CO2 component adsorption and from 2.8 to 

11.1 % in CH4 component adsorption. 

A. 7 Conclusions 

The major conclusions of this study are: 

1. Mixture adsorption calculations are sensitive to the accuracy of compressibility 

factor predictions. 

2. Regressing the BWR BOS parameters using both pure and mixture PVT data 

simultaneously yielded improved compressibility factor predictions without the 

need for complicated combination and/or mixing rules. 
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3. The modified BWR parameters (Cases 3 and 4) yield Z factors that are adequate 

for coalbed adsorption data reductions. 
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APPENDIXB 

Fugacity Derivation for the Generalized 2-D EOS with Wong-Sandler Mixing Rules 
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B.1 Wong-Sandler Mixing Rules for 3-D Cubic EOS 

Wong-Sandler mixing rules were developed for 3-D cubic equations of state. It 

equates the excess Helmholtz free energy at infinite pressure from the chosen equation of 

state to that from an activity coefficient model. Use of the Helmholtz free energy ensures 

that the second virial coefficient calculated from the equation of state has quadratic 

composition dependence, as required by statistical mechanics [Wong et al., 1992]. 

The Wong-Sandler mixing rules for 3-D cubic EOS are [Wong et al., 1992]: 

(B-1) 

(B-2) 

Where the cross term: 

(B-3) 

F is constant specific to the EOS chosen. 

B.2 Wong-Sandler Mixing Rules for the Generalized 2-D EOS 

For 2-D EOSs, the parameter definitions (b = PA and a= aA) assume the 

surface area is same for different components. Accordingly, the Wong-Sandler mixing 

rule can be extended to the generalized 2-D EOS as follows: 

(B-4) 

(P-~) =![(P· -~)+(P· -~JJ(1-c .. ) RT .. 2 1 RT J RT !J 
!J 

(B-5) 
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Helmholtz free energy departure function, A E' is the difference between the molar 

Helmholtz free energy of pure species i and the ideal gas at the same temperature and 

pressure. Therefore, if we let S be the specific area of the molecule on the surface, we 

obtain: 

(B-6) 

For the generalized 2-D EOS, Equation B-6 becomes: 

A; (T, n)-A;0 (T, n) = 

[ r'i [ RT a2 JdsJ ( fRT RT dSJ - 1 S-bli_msl-1/m -s2 + Ub .S+ Wb2. - - 7t B 
2,1 2,1 2,1 

= -RTln ' - ' ln ---'-----r----====t-, [
n(sm-b~i)l/mJ a2i (S;+b2i U-~U2 -4wV2J 

RT b 2,i~u2 -4w si + b 2,i u +~u2 -4W V2 
(B-7) 

If U=W=O, then 

( 
(Sm bm )Jim J 

A.(T n)-A10 (T n)=-RTln n - 2,i - a 2,i 
1 ' 1 ' RT S. 

1 

(B-8) 

Where a2,i and b2,i are 2-D parameters for component i. 

Similarly, the mixture Helmholtz free energy departure function, which is the 

difference between the molar Helmholtz free energy of a mixture, Am, and that of the 

same mixture as an ideal gas, A~M, at the same temperature, pressure, and composition 

1s: 
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[ 
(Sm bm )1/m J 

A (T TC x)-AIGM(T TC x)= -RT In TC m - 2,m 
m , , m , , RT 

(B-9) 

If U=W=O, then 

[ 
(Sm bm )1/m J 

A (T TC x)-AIGM(T TC x)= -RT In TC m - 2,m - a 2,m 
m ' ' m ' ' RT S 

m 

(B-10) 

Thus, the excess Helmholtz free energy for mixing at constant spreading temperature and 

pressure, A E (T, TC, x), is: 

Thus, 

A E (T, TC,x) = Am (T, TC,x)-A~M(T, TC,x) 

= Am(T,TC,x)- IxiAi(T,TC)-RTLxi lnxi 
i i 

AE(T TC x)=AIGM(T TC x)-RTln TC m - 2'm - a 2,m - '°'x.A1G(T TC) [ 
(Sm bm )1/m J 

, , m , , RT S L_; I I , 

ill I 

(B-11) 

A~M(T,TC,x)- IxiA;G(T,TC)= RTL xi lnxi (B-12) 
i 

[ 
(Sm bm )Jim J [ (sm bm )Jim J AE(T TC x)=-RTln TC m- Z,m - aZ,m +RT'°'x.ln TC i - Z,i 

' ' RT s L..i I RT 
ill I 

'°' x.a 2 . +L..._1_,1 

i Si 

a x.a . o- - . 
[ 

(nm bm )1/m J 
AE(T,TC,x)= -~+ L ~+RTixi In ( 1 2 '1 rm s . s. . sm bm 

m I I I m - 2,m 
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Expressions for the excess Helmholtz free energy of liquid mixtures have usually 

been derived using lattice models with the assumption that there are no free sites on the 

lattice. This is approximately equivalent to the assumption that in a liquid solution the 

molecules are so closely packed that there is no free volume, this limit in an equation of 

state is: 

From the 2-D EOS: 

[ a 2 ] RT n+ ------
S2 + Ub S+ Wb 2 S-b mgJ-m 2 2 2 

Thus, 

( 
(S~ _ bm. )1/m J (b Jll,m-I lim 1 2,1 = ~ 

1t---->OO (sm - bm )1/m b . m 2,m 2,1 

Therefore, the access Helmholtz free energy at infinite spreading pressure, A;, , is: 

E ( ) a2,m " a2,i 1 " b2,m A 00 x =---+ .L..xi-+(--l)RT.L.,xiln--
bz,m i b2,i m i b2,i 

For 2-D, b2,m = Pm A' a2,m = am A. To simplify, let p = Pm and a =am' then: 

A;,=-~+ Ix. ~+(_!_-l)Ix-ln!_ 
RT PRT i 1 PiRT m i 1 Pi 

if U cf:. 0 and/or W cf:. 0, then: 

A;, a L ai 1 L P = + x. + (--1) x. ln-
RT FR.RT . I pR..RT . 1 R.. I-' 1 1-'1 m 1 1-'1 

where: 
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F=-Ju2 -4w/1n[1+ u-)u' -4W ~J 
/ 1+ u +-Ju2 -4W 

(B-20) 

lfU=W=O, then F=l. 

B.3 Fugacity Calculation 

Based on Equations B-4 and B-19, P and a, thus, can be expressed as: 

where numerical methods can be used to solve for p and 

(B-22) 

Fugacity in the adsorbed phase for the generalized 2-D EOS can be expressed as [Zhou, 

1994]: 

ln~i = 1{-1 [B(An)J _ _!_rro-lnZa 
0 RTro 8roi r M . ro 

, S'llJ 

(B-23) 

where Ms is the mass of the adsorbent. 

An= roRT - aro2 = S + S 
1-(pror 1+ upro+ W(Pro)2 I 2 (B-24) 

(B-25) 

Where F1 = 1{-1 [~] _ _!_rro 
0 RTro Broi r M . ro 

' s,nJ 

(B-26) 

F _ 1{-1 [ as2 J Lro 
2 - 0 RTro Broi T,M,,nj r (B-27) 
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[ 8S1 ] _ RT mroRT(prot-1 (a(pro)J 
Oroi T,M,,ni - 1- (pro r + (1- (pro r )2 Oroi 

(B-28) 

Where: 

(B-29) 

(B-30) 

(B-31) 

(B-32) 

The NTRL model [see, e.g., Tester, 1996] is used to account for the Excess 

Helmholtz free energy in the adsorbed phase: 

(B-33) 

where 't .. = 0 G .. = exp·(- a .. 't .. ) , and a .. = a .. 
Il ' JI JI JI JI IJ " 
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where: ~ij = 0 when j =t:- i 

~-- = 1 when J. = i 
1J 

a(pro) = aTI _1 _ ~ aTz 

8roi 8roi T2 Tf Broi 

where: aTz = - BQ1 + 8Qz - 8Q3 
aro. aro. aro. aro. 

l 1 1 1 

So: 

0) 

(B-34) 

(B-35) 

(B-36) 

(B-37) 
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(B-38) 

where numerical methods can be used to solve for a(pro) and let Mi = a(pro), So: 
QO). QO). 

I I 

F -1{-1 [~] _ _!_ LO) 
1 - 0 RTro OO)i T,M,,nj 0) r 

a(pm' -~~m,m{P- :Tl] 
~~~~~~~~~J-RT 

oroi 
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(B-40) 

(B-41) 



1 8(aro 2 ) 

m R1:"' f{i+ U~m~ W(~m)' ~m 

1 8(aro 2 ) 

-; aroi 1 [2WBro+ u-~u 2 -4WJ(ll 

= RTB~U 2 -4W n 2WBro+ U +~U 2 -4W 0 

1 8(aro 2 ) 

-; awi 1 (2+roB u +~U 2 -4W ~ 
= RTB~U 2 -4W n 2+roB U-~U2 -4W 1) 

(B-43) 

(B-44) 
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So: 

aro(u +2wpro) 8(j3ro) 
1 00 8ro. 

R - f ' ro 
2 

- RT O (1 + Uj3ro + W(l3ro) 2 )2 

aMi 1{ ro(U + 2Wj3ro) L 
= RT O (1+ Uj3ro+ W(j3ro)2)2 fro 

_ aMi 1{ ro(up + 2Wj3 2ro) Lro 
- j3RT O (1 + Uj3ro + W(j3ro )2 )2 r 

aM. 00f{ ro r( 2 ) =-' 1+ Uj3ro+ W(j3ro) 
j3RT o (1 + Uj3ro + W(j3ro) 2 )2 

_ -aMi 1rod( 1 ) 
- j3RT O 1 + Uj3ro + W(j3ro) 2 

-aMi ( ro ) 00 aMi 00r( 1 } 
= j3RT 1 + Uj3ro + W(j3ro) 2 

0 + j3RT }l 1 + Uj3ro + W(j3ro)2 ro 

-aMi ro aMi 1 (2+roj3 U +~U2 -4W J - + n ---t-----,==='I 
- j3RT 1+ Uj3ro+ W(l3ro) 2 RTj3 2 ~U2 -4W 2+roj3 U-~U2 -4W 

(B-45) 

(B-46) 

The values of U and W must satisfy the following constraints in the above 

fugacity expressions: 

U 2 -4W>0 

lfW=U=O: 
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