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CHAPTER I 

EFFECT OF FOLIAR APPLICATION OF PHOSPHORUS ON WINTER WHEAT 
GRAIN YIELD 

ABSTRACT 

To date, the best phosphorus (P) fertilizer use efficiency is around 16% 

when knifed or applied with the seed in winter wheat. Intuitively, one would 

expect foliar applied P to have higher use efficiencies than when applied to the 

soil, but limited information is available concerning this. Small amounts of P 

required to correct deficiencies could theoretically be introduced to the plant by a 

foliar P application. Six trials were conducted in 2002 and 2003 at Lahoma, Lake 

Carl Blackwell and Perkins, OK to determine whether foliar applications of P can 

result in increased winter wheat (Triticum aestivum L.) grain yields, and to 

determine the appropriate rates required for maximizing yields on P deficient 

soils. A completely randomized block design with three replications was used to 

evaluate varying foliar P rates of 0, 1, 2 & 4 kg ha-1 with and without preplant 

rates of 30 kg ha-1. Foliar application of P at jointing (first hollow stem) was 

generally more efficient than applications after the boot stage. Results from this 

study suggest that low rates of foliar applied P might correct mid-season P 

deficiency in winter wheat, and that might result in much higher P use efficiencies 

when compared to soil applications. Foliar P appeared to be more beneficial 

when yield levels were lower, likely due to moisture stress. 



INTRODUCTION 

In many agricultural production systems, P has been identified as the most 

deficient essential nutrient after nitrogen (N). Nutrient inputs into production 

systems have increased as a result of the need for high yielding crops to sustain 

the growing population around the world. In Oklahoma, phosphate inputs in 

winter wheat production ranged from 37 .91 x 106 kg/ 2.18 x 106 · ha in 1997 to 

29.88 x 106 kg /1.42 x 106 ha in 2002 (NASS, 1998 ; NASS,2003). Even though 

the average is 21 kg ha·1, these inputs may become excessive where there were 

already high levels of soil phosphorus leading to many environmental concerns, 

especially pollution issues. The most essential function of P is storage and 

transfer of energy in the form of ATP (adenosine triphosphate), ADP (adenosine 

diphosphate) and the important structural component of nucleic acids, 

coenzymes, phospholipids, and nucleotides. 

Phosphorus originates from the weathering of soil minerals and other 

stable soil geologic materials and exists in both inorganic and organic forms of 

which the inorganic fraction is dominant. The inorganic forms are dominated by 

hydrous sesquioxides, amorphous crystalline aluminum and iron phosphates in 

acidic soils and as calcium phosphates in alkaline soils. The amount of available 

soluble P depends on pH, extent of contact between the precipitated phosphorus 

and the soil solution, the rate of dissolution and diffusion of solid phase 

phosphorus, time of reaction, organic matter content, temperature and type of 

clay present. When the available Pis less than the crop requirement, Pis applied 

to the soil in the form of both inorganic and organic fertilizer. 
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Although inorganic fertilizers are readily available, they are slowly 

converted to unavailable forms due to precipitation. During early growth stages, 

plants may utilize the readily available form, while they compete for the slowly 

available forms in the later stages of growth. 

Phosphorus fertilizer use efficiency (PUE) averaged 8% when P was 

broadcast and incorporated and 16% when P was either knifed with anhydrous 

ammonia or applied with the seed in winter wheat (Sander et al., 1990; Sander et 

al., 1991). Eghball and Sander (1989) reported that 13.8 to 26.4 kg P ha-1 was 

taken up in corn grain at yield levels between 4.24 and 8.83 Mg ha-1, and a 

concentration of 0.31 % P. Similar results by Raun et al. (1987) showed total P 

taken up in corn grain ranged from 21.4 to 47.4 kg P ha-1 at yield levels from 8.10 

to 14.47 Mg ha-1, or 0.30% P. The diffusion coefficient of P in soil is very low, 

hence the root zone phosphorus is depleted and plants cannot get it when it is 

needed (Clarkson, 1981 ). Therefore, the utilization of Pas a foliar application 

becomes increasingly important. The mechanistic processes by which foliar 

applied nutrients are taken up are through leaf stomata (Eichert and Burkhardt, 

1999) and hydrophilic pores within the leaf cuticle (Tyree et al., 1990). 

In general, P deficient soils require preplant broadcast-incorporated rates 

of 11 to 22 kg P ha-1 to correct the deficiency in either wheat or corn. At a PUE of 

16%, this addition results in only 1.7 to 3.5 kg of fertilizer P taken up in the grain. 

Although the literature does not provide information on relative efficiencies (soil 

applied versus foliar applied P), intuitively, one would expect the foliar applied P 

to be much higher. Thus, small amounts required to correct deficiencies can be 
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easily introduced to the plant by a foliar P application. This approach has been 

overlooked for decades because it was assumed that the amounts of fertilizer P 

required by the crop were too large to be satisfied by a single foliar application. 

That assumption was easily accepted when P fertilizers were first used because 

soil deficiencies tended to be greater than today and solution fertilizers were 

uncommon. 

Leach and Hameleers (2001) reported that there is a significant increase 

in the starch content and cob index but no effect on dry matter production in 

maize due to foliar application of P and Zinc (Zn). Sherchand and Paulsen (1985) 

reported that foliar applications of KH2P04 delayed leaf senescence and 

increased winter wheat grain yields during hot and dry summers, which was 

supported with similar research by Batten et al. (1986). Batten (1987) later 

reported that net CO2 assimilation, N concentration and chlorophyll content 

decreased when wheat leaf P concentration falls below a critical level. Increased 

yields in barley were obtained using dilute solutions of foliar P (Qaseem et al., 

1978). Bare I and Black ( 1979) reported findings in corn that 66% of foliar applied 

P to youngest mature leaf in a pot culture experiment as ammonium 

tripolyphosphate was absorbed within 10 days and 87% of that absorbed was 

translocated within that time. However, Harder et al. (1982) presented 

contradicting results showing that the foliar application of P applied 2 weeks after 

silking, significantly reduced grain yields. 

Foliar fertilization with nitrogen, phosphorus, and potassium (NPK) can be 

supplemented with soil applied fertilizers but cannot replace soil fertilization in the 
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case of maize (Ling and Silberbush, 2002), because demand for P is 1/10 that of 

N foliar application might be beneficial. Therefore, correcting the plant's 

deficiency by foliar application seems plausible. Very little research has been 

conducted on the use of Pas foliar spray at early stages of wheat and corn. 

However, recent work by Benbella and Paulsen (1998) showed that foliar 

applications after anthesis of 5 to 10 kg KH2P04 ha-1 (1.1 to 2.2 kg P ha-1) 

increased wheat grain yields by up to 1 Mg ha-1. Wheat grain yields are hindered 

due to senescence of wheat during grain filling. Therefore, to effectively prolong 

senescence, P has to be applied during later stages of growth, which is why foliar 

application seems particularly promising (Benbella and Paulsen, 1998). 

Elliott et al. (1997) reported that critical P concentration wheat grain to be 

between 0.19 to 0.23% (at 90% maximum grain yield) and 0.21 % to 0.24% (at 

maximum grain yield). Earlier it was reported by Bolland and Paynter (1994) that 

critical P concentration in wheat decreased from 0.91 % to 0.23% (in shoot) with 

the growing season and 0.27% in grain. 

Haloi (1980) reported that when initial P deficiency symptoms appeared 

25 days after sowing in wheat, higher doses of ammonium phosphate as a foliar 

spray gave greatest reduction in P deficiency and highest yields. The efficiency 

of basal and/or foliar application of P was found to be similar (Kalyan Singh et al., 

1981). 

The objectives of this study were to determine whether foliar applications 

of P can result in increased wheat grain yields, and to determine the appropriate 

rates required for maximizing yields on P deficient soils. 
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MATERIALS AND METHODS 

Three experimental sites were established in the fall of 2001 at Lahoma 

(Grant silt loam-fine-silty, mixed thermic Udic Argiustoll), Lake Carl Blackwell 

(Port silt loam-fine-silty, mixed, thermic Cumulic Haplustolls), and Perkins (Teller 

sandy loam-fine-loamy, mixed, thermic Udic Argiustoll), Oklahoma for evaluating 

the response of foliar application of P in winter wheat. Initial soil test data is 

reported in Table 1. 

A completely randomized block design with three replications was used to 

evaluate 14 treatments. Plots were 2.43 m by 3.04 m in size. At all locations, a 

fixed preplant N rate of 80 kg N ha-1 was applied using ammonium nitrate (34-0-0 

N-P-K respectively). Varying foliar Prates of 0, 1, 2 and 4 kg ha-1 were evaluated 

with and without preplant rates of 30 kg P ha-1 at different growth stages at all 

three sites. Preplant P was broadcasted and incorporated using triple super 

phosphate (0-46-0 N-P-K respectively). The treatment structure is reported in 

table 2. Foliar P was applied at Feekes growth stage 7 (second node of stem 

formed), Feekes 10.1 (heads emerging) and Feekes 10.54 (flowering completed) 

(Large, 1954) using KH2P04 solution with a pulse modulated handheld sprayer. 

Field activities are reported in Table 3 and Table 4. Wheat was harvested 

with a Massey Ferguson 8XP experimental combine in June, removing an area 

of 2.0 x 3.04 m from the center of each plot, it was then weighed and sub 

sampled for total P analysis. Grain samples were dried in a forced-air oven at 

66°C, ground to pass a 140 mesh sieve (100 µm), and analyzed for total P 

content. 

6 



The concentration of P in the wheat grain was determined with a wet acid 

digestion procedure (Jones and Case, 1990), and analyzed using a high

resolution inductively coupled plasma spectrophotometer (Thermo-Jarrell Ash 

IRIS ICP). Soft winter wheat flour standard reference material (SRM) (National 

Institute of Standards and Technology) was used to evaluate the wet acid 

digestion procedure of the grain tissue and resulted in 94% recovery of P in the 

grain. 

Analysis of variance and single degree of freedom contrasts were 

performed for evaluating the differences in grain yield, grain P concentration and 

grain P uptake using SAS (2001 ). Regression equations and coefficients of 

determination (R2) values were determined using Microsoft Excel and verified 

using SAS (SAS, 2001) 

RESULTS 

Grain Yield 

A significant treatment effect for grain yield at Lahoma in 2002 and in 

2003, and at Perkins in 2002 (Table 5) was observed. At Lake Carl Blackwell 

(LCB) and Perkins in 2003, some single degree of freedom comparisons at each 

site were also significant (Table 5). Neither overall treatment effects nor single 

degree of freedom contrasts were found to be significant at LCB in 2002. 

At the LCB site, no significant treatment differences were observed in 

either year. Even though this site had high grain yields and the initial soil test 

results showed a low extractable P level, no actual P deficiencies were noted 
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(mean grain yields across 14 treatments are presented in Table 6). Preplant P 

fertilizer grain yields significantly exceeded topdress P grain yields both years at 

the Perkins location (556 and 746 kg ha-1 increases in yield in 2002 and 2003). 

A comparison made between a combination of preplant and foliar P fertilization 

versus only 30 kg P ha - 1 pre-plant incorporated showed a significant increase at 

Lahoma in 2002 (grain yield increased by 630 kg ha - 1,Table 6). 

At Lahoma in 2002 and Perkins 2003, mean grain yields were superior for 

foliar P applied at 2 kg ha-1 at Feekes 7 growth stage compared to foliar P 

applied at Feekes 10.54 (cf. 2485 and 1841 kg ha-1, and 3088 and 2521 kg ha-1, 

respectively). Alternatively, at Lahoma in 2003 the opposite was observed 

whereby foliar P applied at Feekes 7 at 2 kg ha-1 resulted in lower yields than 

same rate applied at Feekes 10.54 (cf. 3443 and 4277 kg ha-1). 

At LCB with no preplant P, 2 kg P ha-1 applied at Feekes 10.54 

significantly increased yields when compared to the check and other O preplant P 

treatments that received Pat Feekes 7. This increase was not noted at all sites. 

At LCB in both years and Lahoma in 2003, it was apparently 

advantageous to delay applying foliar P until Feekes 10.54 when compared to 

Feekes 7(3 vs. 11, Table 6, 0 -P preplant). At Lahoma in 2002, foliar P 

application at Feekes 10.1 increased mean grain yield by 513 kg ha-1 compared 

with that at Feekes 10.54, while at Lahoma in 2003 and LCB in 2003, mean grain 

yield was superior by 1172 and 335 kg ha-1 , respectively at Feekes 10.54 

compared with Feekes 10.1. 
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At Lahoma in 2002, foliar P applied at Feekes 7 vs. flowering (Feekes 

10.1 and 10.54) resulted in increased yields when the foliar rate was 2 kg P ha·1 

with no pre-plant P. Mean grain yields increased by 131,644 kg ha·1 when 

applied at Feekes 7 versus that applied at Feekes 10.1 and 10.54. 

Trend analysis of mean grain yields for foliar P at Feekes growth stage 7 

with no pre-plant P revealed a significant quadratic relationship between foliar P 

rates and grain yield at Lahoma in 2002 (Figure 1) . On the other hand, at a 

preplant rate of 30 kg P ha·1, foliar P at Feekes 7 showed a linear trend at 

Lahoma in 2002 (Figure 2). 

Grain P Concentration 

Grain P concentration was significant in four of six site-year combinations 

(Table 7). Like grain yield, grain P was high (>0.31 %) at LCB in both years and 

low (0.18%) at Perkins in 2003, while it ranged between 0.20 and 0.26% for the 

remaining trials (Table 8). 

At Lahoma in 2002, grain P was higher by 0.017% for P applied preplant 

(Trt-5) compared to topdress (Trt-4). On the other hand, the preplant plus foliar 

treated plots showed a 0.022 and 0.039% lower grain Pat Lahoma in 2002 and 

2003, respectively, compared with only preplant treated plots. Alternatively, at 

LCB in 2003, 0.039% more was observed in preplant plus foliar treated plots. 

At LCB in 2002, foliar P applied at Feekes 7 showed lower grain P 

concentration than rates applied at Feekes 10.1 (0.033%), Feekes 10.54 

(0.031 %) or a combination of both (0.033%). 
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Grain P concentration showed a linear relationship at Lahoma in 2002, 

and a quadratic relationship at LCB and Perkins in 2003 at O kg ha-1 preplant rate 

(Figure 3). At 30 kg P ha-1 preplant, two linear trends, one at LCB 2002 and 

another at Perkins 2003 (Figure 4) were obtained while at Lahoma and Perkins 

(Figure 5) in 2002, a quadratic trend was revealed. 

Grain P uptake 

Grain P uptake was significant and influenced by treatments in three trials 

(Table 9). Grain P uptake was highest {>13.50 kg ha-1) for LCB sites and lowest 

{<4.32 kg ha-1) at Perkins in 2002, while it ranged between 5.29 and 9.80 kg ha-1 

for other sites (Table 10). For all trials, one or more contrasts were significant. A 

trend for increased grain P uptake was observed when foliar P was applied with 

preplant P (treatments 5-8) but this was not consistent over sites. At Lahoma 

2002, 1.17 and 1.68 kg ha-1 more P was taken up when foliar P was applied at 

Feekes 7 than either Feekes 10.1 or 10.54 with O preplant. On the other hand, at 

LCB in 2002, grain P uptake was lower by 2.01 and 2.59 kg ha-1 at Feekes 7 

than Feekes 10.1 and 10.54 respectively. At Lahoma in 2003, grain P uptake 

increased by 2.84 and 3.06 kg P ha-1 at Feekes 10.54 compared to Feekes 7 and 

10.1, respectively (treatments 11, 2 & 9 respectively). 

Phosphorus Use Efficiency (PUE) 

Over all sites and years, PUE was higher when P was foliar applied at 2 

kg P ha-1. PUE was as high as 86, 16, & 159% at LCB (2002), Lahoma (2002), 
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and Lahoma (2003) respectively when 2 kg P was foliar applied at Feekes 10.54 

(Table 11). On an average, PUE was higher when P was foliar applied at 2 kg P 

ha-1 at Feekes 7 (39%) and Feekes 10.54 (47%). 

DISCUSSION 

Conventional P-soil test correlation utilizes knowledge that soil 

deficiencies may be represented as a percentage of the maximum yield when 

there is no P deficiency (Mitscherlich-Sufficiency Concept). Consequently, soil 

test calibrations resulted that identified amounts of fertilizer-P required for 

correcting the plant deficiency for a season, but which had little immediate effect 

on long-term available soil-P. This is appropriate for soil-applied Pas rates do 

not need to be adjusted for yield level. However, rates of foliar P need to 

address uptake deficiencies of the plant, which are influenced both by potential 

yield (biomass) and available soil-P. 

Grain yield and P concentration were not highly correlated. The poor 

correlation between P concentration and grain yield is not surprising since the 

role of foliar P on growth of wheat is more on delaying maturity. P concentrations 

in plants can be affected by limited P uptake due to variations in soil moisture 

stress (Mclachlan, 1984), root temperature (MacKay and Barber, 1984) and 

various other environmental factors (Bates, 1971 ). 

Regardless of the method of P application, response to P fertilization 

should have been observed across all trials. This is because initial soil test P 

levels were all below 100% sufficiency. Despite this, only 50% of the trials 
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showed significant treatment effects. The significant grain yield response to P at 

Lahoma can be explained by the fact that the soil has a relatively low level of 

initial soil P compared to the other two locations. At Lahoma, the number of 

significant single degree of freedom comparisons obtained were more than the 

other two sites (with the exception of Perkins 2003) owing to the low initial soil P 

level. 

Preplant P application consistently increased grain yield compared with 

topdress P. Application of P preplant with supplemental foliar Palso resulted in a 

better grain yield than preplant application in most instances where significance 

was observed. In high yielding environments with sufficient supply of P, 

supplemental foliar P might not be desirable. However, in the same environments 

where soil P supply is limited, foliar application of P might correct deficiencies 

and maintain higher yield (Dixon, 2003). Green and Racz (1999) reported a 300 

kg ha-1 grain yield increment of wheat due to foliar P applied to a P deficient 

wheat crop. 

In plots treated with only foliar rates at Feekes 7 and flowering, there was 

an apparent response which indicates that foliar P in wheat is still a potential 

option to manage P deficiency in wheat. In a different study (Chambers and 

Devos,2003), it was indicated that depending on soil P status, foliar feeding of 

small amounts of P after heading increased yields over no P up to 672 kg ha-1 

and added up to 538 kg ha-1 to the preplant P plots. However, the results were 

from trials conducted on a soil testing low in P and one would not expect to see 

these large yield increases on higher P fertility soils by foliar fertilization. 
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Benbella and Paulsen (1998) also showed that foliar applications after anthesis 

of 5 to 10 kg KH2P04 ha-1 (1.1 to 2.2 kg P ha-1) increased wheat grain yields by 

up to 1 Mg ha-1. 

The foliar rates considered in this study also showed apparent grain yield, 

and phosphorus use efficiency increases. Presumably increasing the foliar rates 

might show a clear difference in grain yield due to applied foliar P since the 

locations under consideration were low in P. The results from single degree of 

freedom comparisons generally lack consistency. 

Foliar application of Pat Feekes 7 was generally better than applied P pre 

or post flowering stages of wheat growth. In a preliminary foliar rate study made 

in Virginia, yield obtained from foliar rates applied at vegetative wheat stages 

surpassed that of the foliar rate applied at reproductive stages (personal 

communication with Steve Phillips, Virginia Tech). In another study (Haloi, 1980), 

it was suggested that the delayed P applications resulted in a "stay green" effect 

whereby photosynthesis continued to take place during grain fill and that without 

the foliar P, more rapid senescence would be present. In order to realize any 

"stay green" benefit, environmental conditions must have been ideal (no moisture 

stress) from post flowering to maturity. Whenever plants are under moisture 

stress P uptake is reduced (MCLachlan 1984; Bollard 1992). 

When looking at Table 6 and 10, data suggests that increases in grain 

yield from foliar P generally took pla9e when yield levels were lower, likely due to 

increased moisture stress. This would make sense since P uptake due to contact 
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exchange would be less under moisture stress, thus enhancing the benefits of 

foliar P in these years. 

CONCLUSIONS 

Although some of the results presented here confirm the beneficial use of 

foliar P fertilization in wheat, the conditions in which this method would be used 

should be sought carefully. For major nutrients like P, the amount that can be 

applied at any one time is small and thus it requires several applications to meet 

the needs of a crop for this nutrient as well as realizing that the rates applied 

here might have been too low and higher rates should be tested. Even the 

method of application can be changed by addition of surfactant which might 

enhance P uptake. Also research has to be directed to see if foliar P applications 

during early stages of plant produce significant results. However, increased P 

use efficiency from low rates of foliar application was encouraging and will be 

pursued further. 
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Table 1. Initial surface (0-15cm) soil test characteristics at Lahoma, Lake Carl 
Blackwell, and Perkins, OK. 

Location pH NH4-N NOrN P K 

--------------------------------mg kg· 1--------------------------------

Lahoma 6.2 8.0 1 5.9 155 

LCB 5.5 8.2 0 10.3 107 

Perkins 5.8 12.7 0 9.2 279 
NH4-N and N03-N- 2 M KCI extraction 
P and K - Mehlich -Ill extraction 
pH - 1: 1 Soil: Water 

Table 2. Treatment structure for foliar P study experimental sites at Lahoma, 
Lake Carl Blackwell, and Perkins, OK. 

Treatment Chemical Prepla Foliar P in kg ha·1 at different growth 
nt P stages 
rate 

kg ha·1 Feekes 7 Pre- Post-
flowering flowering 

1. 0-PP, 0-foliar, KH2P04 0 0 0 
2. 0-PP, 1-foliar, at F7 KH2P04 0 1 0 0 
3. 0-PP, 2- foliar, at F7 KH2P04 0 2 0 0 
4. 0-PP, 4 foliar, at F7 KH2P04 0 4 0 0 
5. 30-PP, 0 foliar, at F7 KH2P04 30 0 0 
6. 30-PP, 1 foliar, at F7 KH2P04 30 1 0 0 
7. 30-PP, 2 foliar, at F7 KH2P04 30 2 0 0 
8. 30-PP, 4 foliar, at F7 KH2P04 30 4 0 0 
9. 0-PP, 2 foliar, F10.1 KH2P04 0 0 2 0 
10. 30-PP, 2 foliar, F10.1 KH2P04 30 0 2 0 
11. 0-PP, 2 foliar, F10.54 KH2P04 0 0 0 2 
12. 30-PP, 2 foliar, F10.54 KH2P04 30 0 0 2 
13. 0-PP, OP, 2.5K Fol F7 KHC03 0 0 0 0 
14. 0-PP, 0.9N Fol,F7 NH4H2P04 0 2 0 0 

Foliar P is applied using a pulse modulated handheld sprayer developed at OSU 
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Table 3. Field plot activities and climatological observations for the foliar P 
experiment at three locations for the crop year 2001-2002. 

Plot Activity 
Preplant N application Date 
Planting date 
Variety 
Seeding rate (kg ha-1) 

1st foliar application date 
2nd foliar application date 
3rd foliar application date 
Harvest 

Lahoma 
09/21/01 
10/03/01 
Jagger 

89.6 
04/15/02 
05/01/02 
05/07/02 
06/25/02 

LCB 
09/25/01 
10/17/01 
Custer 
87.6 

04/04/02 
05/01/02 
05/07/02 
06/29/02 

Perkins 
09/14/01 
10/16/01 
Custer 
87.6 

04/04/02 
05/01/02 
05/07/02 
06/11/02 

Table 4. Field plot activities and climatological observations for the foliar P 
experiment at three locations for the crop year 2002-2003. 

Plot Activity 
Preplant N application date 
Planting date 
Variety 
Seeding rate (kg ha-1) 

1st foliar application date 
2nd foliar application date 
3rd foliar application date 
Harvest 

Lahoma 
09/06/02 
10/08/02 
Jagger 

89.6 
03/25/03 
04/29/03 
05/06/06 
06/15/03 

19 

LCB 
09/05/02 
10/01/02 

2174 
100.8 

03/25/03 
04/22/03 
05/06/03 
06/20/03 

Perkins 
09/12/02 
10/14/02 
Jagger 

89.6 
03/25/03 
04/22/03 
05/06/03 
05/31/03 



Table 5. Analysis of variance and single degree of freedom contrasts for grain 
yields at all locations during 2001-2002, 2002-2003 crop years. 

Source Lahoma LCB Perkins 
2002 2003 2002 2003 2002 2003 

Treatment 
Contrasts 

** ** NS NS *** NS 

Preplant vs. Foliar NS NS NS NS *** 
PP+Foliar vs. PP (30 kg ha-1) ** NS NS NS NS 
F7 @ 0 PP linear NS NS NS NS NS 
F7 @ 0 PP quadratic * NS NS * NS 
F7 @ 30 PP linear ** NS NS NS NS 
F7 @ 30 PP quadratic NS NS NS NS NS 
F7vs F10.1 @ 0 PP,2 kg foliar NS NS NS NS NS 
F7vs F10.54 @ 0 PP,2 kg foliar *** * NS · NS NS * 

*** 
** 
NS 
NS 
* 

NS 
NS 

F10.1 vs F10.54 @O pp,2 kg foliar ** ** NS * NS NS 
F7 vs. flowering @ 0 pp,2 kg foliar * NS NS NS NS NS 
Potassium Vs Others *** NS NS NS ** NS 
Nitrogen Vs Others *** *** NS NS NS * 
*, **, *** and NS - significant at 0.1, 0.05, 0.01 significance level and non-significant; PP is 
preplant of either O or 30 kg ha-1; top-dress denote all foliar rates with no pre-plant rate; F7, F10.1 
and F10.54 denote Feekes growth stages 7, 10.1, and 10.54, respectively. 
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Table 6. Mean wheat grain yields for treatments at Lahoma, Lake Carl Blackwell, 
and Perkins, OK during 2001-2002, 2002-2003 crop years. 

Treatment 

1. 0-PP, 0-foliar, 
2. 0-PP, 1-foliar, at F7 
3. 0-PP, 2- foliar, at F7 
4. 0-PP, 4 foliar, at F7 
5. 30-PP, 0 foliar, at F7 
6. 30-PP, 1 foliar, at F7 
7. 30-PP, 2 foliar, at F7 
8. 30-PP, 4 foliar, at F7 
9. 0-PP, 2 foliar, F10.1 
10. 30-PP, 2 foliar, F10.1 
11. 0-PP, 2 foliar, F10.54 
12. 30-PP, 2 foliar, F10.54 
13. 0-PP, OP, 2.5K Fol F7 
14. 0-PP, 0.9N Fol,F7 
SEO 

Lahoma LCB Perkins 
2002 2003 2002 2003 2002 2003 

------------------------------------kg ha-1--------------------------------

1998 3440 4191 4375 1700 2891 
2126 3535 4211 4291 1906 2672 
2485 3442 4246 4103 1872 3088 
2119 3607 4598 4458 1841 2995 

· 1740 4067 4095 4479 2412 2915 
2416 4484 4238 4579 2337 2754 
2158 3856 4005 4345 2407 2872 
2529 4591 4138 4412 2429 2771 
2354 31 05 4236 3928 1766 2848 
2421 4109 4065 4501 2271 2766 
1841 4277 4603 4263 1816 2520 
2317 4724 4214 4157 2048 3173 
1816 3498 4402 4404 1824 3069 
1809 3078 4573 4036 1935 2406 
362.9 971.9 281.5 291.1 352.0 383.3 

F7, F10.1 and F10.54 are growth stages as defined in materials and methods 
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Table 7. Analysis of variance and single degree of freedom contrasts for grain P 
concentration at all locations during 2001-2002, 2002-2003 crop years. 

Source Lahoma LCB Perkins 
2002 2003 2002 2003 2002 2003 

Treatment ** NS *** * NS ** 

Contrasts 
Preplant vs. Foliar ** NS NS NS NS NS 
PP+Foliar vs. PP (30 kg ha-1) ** ** NS *** NS NS 
F7 @ 0 PP linear NS NS ** NS NS NS 
F7 @ 0 PP quadratic NS NS NS * NS ** 

F7 @ 30 PP linear NS NS ** NS NS *** 

F7 @ 30 PP quadratic ** NS NS NS ** NS 
F7vs F10.1 @ 0 PP,2 kg foliar NS NS ** NS NS NS 
F7vs F10.54@ 0 PP,2 kg foliar NS NS ** NS NS NS 
F10.1 vs F10.54 @O pp,2 kg NS NS NS NS NS NS 
foliar 
F7 vs. flowering @ 0 pp,2 kg NS NS ** NS NS NS 
foliar 
Potassium Vs Others NS NS NS ** NS NS 
Nitrogen Vs Others NS NS NS NS NS NS 
*, **, *** and NS - significant at 0.1, 0.05, 0.01 significance level and non-significant; PP is 
preplant of either O or 30 kg ha-1; top-dress denote all foliar rates with no pre-plant rate; F7, F10.1 
and F10.54 denote Feekes growth stages 7, 10.1, and 10.54, respectively. 
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Table 8. Mean wheat P concentration(%) at Lahoma, Lake Carl Blackwell, and 
Perkins, OK during 2001-2002, 2002-2003 crop years. 

Source Lahoma LCB Perkins 
2002 2003 2002 2003 2002 2003 

------------------------- ~ p ----------------------------
1. 0-PP, 0-foliar, 0.241 0.251 0.324 0.353 0.200 0.165 
2. 0-PP, 1-foliar, at F7 0.234 0.254 0.291 0.324 0.180 0.181 
3. 0-PP, 2- foliar, at F7 0.254 0.261 0.293 0.335 0.202 0.183 
4. 0-PP, 4 foliar, at F7 0.256 0.253 0.286 0.358 0.210 0.167 
5. 30-PP, 0 foliar, at F7 0.273 0.282 0.321 0.315 0.197 0.188 
6. 30-PP, 1 foliar, at F7 0.232 0.240 0.343 0.337 0.205 0.170 
7. 30-PP, 2 foliar, at F7 0.256 0.256 0.315 0.349 0.258 0.202 
8. 30-PP, 4 foliar, at F7 0.270 0.236 0.295 0.347 0.216 0.211 
9. 0-PP, 2 foliar, F10.1 0.240 0.282 0.327 0.347 0.223 0.173 
10. 30-PP, 2 foliar, F10.1 0.262 0.253 0.334 0.382 0.211 0.187 
11. 0-PP, 2 foliar, F10.54 0.254 0.273 0.324 0.333 0.201 0.184 
12. 30-PP, 2 foliar, F10.54 0.239 0.223 0.330 0.357 0.221 0.187 
13. 0-PP, OP, 2.5K Fol F7 0.238 0.255 0.318 0.315 0.216 0.183 
14. 0-PP, 0.9N Fol,F7 0.262 0.283 0.314 0.332 0.204 0.183 
SEO 0.013 0.023 0.015 0.018 0.016 0.011 
F7, F10.1 and F10.54 are growth stages as defined in materials and methods 
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Table 9. Analysis of variance and single degree of freedom contrasts for grain P 
uptake at all locations during 2001-2002, 2002-2003 crop years. 

Source Lahoma Lake Carl Blackwell Perkins 
2002 2003 2002 2003 2002 2003 

Treatment * NS NS * *** NS 
Contrasts 
Preplant vs Foliar NS ** NS NS *** ** 

PP+Foliar vs PP (30 kg ha.1) NS NS NS * NS * 

F7 @ O PP linear NS NS NS NS NS NS 
F7 @ 0 PP quadratic NS NS * ** NS NS 
F7 @ 30 PP linear ** NS NS NS NS NS 
F7 @ 30 PP quadratic NS NS NS NS ** NS 
F7vs F10.1 @ 0 PP,2 kg foliar NS NS NS NS NS NS 
F7vs F10.54 @ O PP,2 kg foliar ** ** ** NS NS NS 
F10.1vs F10.54 @O pp,2 kg foliar NS ** NS NS NS NS 
F7 vs flowering @ 0 pp,2 kg foliar * NS ** NS NS NS 
Potassium Vs Others ** NS NS NS NS NS 
Nitrogen Vs Others * NS NS NS NS NS 
*, **, *** and NS - significant at 0.1, 0.05, 0.01 confidence level and non-significant; PP is preplant 
of either O or 30 kg ha·1; top-dress denote all foliar rates with no pre-plant rate; 
F7, F10.1 and F10.54 denotes Feekes growth stages 7, 10.1, and 10.54, resp. 
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Table 10. Mean grain P uptake (kg ha-1) for treatments at Lahoma, Lake Carl 
Blackwell, and Perkins; OK during 2001-2002, 2002-2003 crop years. 

Treatments 

1. 0-PP, 0-foliar, 
2. 0-PP, 1-foliar, at F7 
3. 0-PP, 2- foliar, at F7 
4. 0-PP, 4 foliar, at F7 
5. 30-PP, O foliar, at F7 
6. 30-PP, 1 foliar, at F7 
7. 30-PP, 2 foliar, at F7 
8. 30-PP, 4 foliar, at F7 
9. 0-PP, 2 foliar, F10.1 
10. 30-PP, 2 foliar, F10.1 
11. 0-PP, 2foliar,F10.54 
12. 30-PP, 2 foliar, F10.54 
13. 0-PP, OP, 2.5K Fol F7 
14. 0-PP, 0.9N Fol,F7 
SED 

Lahoma Lake Carl Blackwell Perkins 
2002 2003 2002 2003 2002 2003 
---. ----------------------------- kg ha-1--------------------------------

4.8 8.7 13.6 15.5 3.6 4.8 
4.9 9.0 12.3 13.9 3.4 4.6 
6.3 9.0 12.4 13.8 3.8 5.7 
5.4 9.0 13.1 15.9 3.9 5.0 
4.8 11.4 13.1 14.1 4.8 6.5 
5.6 10.8 14.5 15.5 4.8 4.7 
5.5 9.6 12.6 15.2 6.5 5.8 
6.9 10.8 12.3 15.2 5.2 5.9 
5.7 8.8 13.9 13.7 3.9 4.9 
6.3 10.1 13.6 17.2 4.8 5.2 
4.7 11.8 15.0 14.2 3.7 4.7 
5.6 10.5 13.8 14.8 4.2 5.9 
4.3 ft8 14.0 13.9 3.9 5.6 
4.8 8.7 14.4 15.2 3.9 4.4 
0. 72 1.28 0.98 1.01 0.49 0. 7 4 

F?, 10.1 and 10.54denotes-Feekes7, 10.1 and 10.54, respectively. 
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Table 11. Phosphorus Use Efficiency (PUE) for treatments at Lahoma, Lake Carl 
Blackwell, and Perkins, OK during 2001-2002, 2002-2003 crop years 

Source Lahoma LCB Perkins 
2002 2003 2002 2003 2002 2003 Average 

----------------------------- -----% --------------------------------------
1. 0-PP, 0-foliar, 
2. 0-PP, 1-foliar, at F7 22 37 0 22 10 11 17 
3. 0-PP, 2- foliar, at F7 77 67 0 23 14 55 39 
4. 0-PP, 4 foliar, at F7 15 28 4 31 8 13 16 
5. 30-PP, O foliar, at F7 0 11 0 1 4 6 4 
6. 30-PP, 1 foliar, at F7 4 8 2 4 4 0 4 
7. 30-PP, 2 foliar, at F7 4 4 0 0 6 3 3 
8. 30-PP, 4 foliar, at F7 6 6 0 1 5 3 4 
9. 0-PP, 2 foliar, F10.1 64 23 22 0 18 19 24 
10. 30-PP, 2 foliar, F10.1 5 5 0 6 4 2 4 
11. 0-PP, 2 foliar, F10.54 16 159 86 0 9 10 47 
12. 30-PP, 2 foliar, F10.54 4 6 0 1 3 4 3 
13. 0-PP, OP, 2.5K Fol F7 

14. 0-PP, 0.9NFol,F7 

SED 19 33 20 16 8 19 

F7, F10.1 and F10.54 are growth stages as defined in materials and methods 
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Figure 1. Relationship between grain yield and foliar P rates applied at Feekes 
7 without pre-plant P at Lahoma, 2002. 
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Figure 2. Relationship between grain yield and foliar Prates applied at Feekes 
7 with pre-plant rate of 30 kg ha-1 at Perkins, 2002. 
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Figure 4. Relationship between grain P concentration and foliar P rates applied at 
Feekes 7 with pre-plant P rate of 30 kg ha-1 at Perkins, 2003. 
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Figure 1. Effect of phosphorus (kg ha-1) on wheat grain yield at Lahoma during 
2001-2002 and 2002-2003 crop years. 
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Figure 2. Effect of phosphorus (kg ha-1) on wheat grain yield at Lake Carl 
Blackwell during 2001-2002 and 2002-2003 crop years. 
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Figure 3. Effect of phosphorus (kg ha-1) on wheat grain yield at Lake Carl 
Blackwell during 2001-2002 and 2002-2003 crop years. 
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Figure 4. Grain yield response to foliar applied phosphorus with O kg ha-1 

preplant at all locations during 2001-2002, 2002-2003 crop years. 
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preplant at all locations during 2001-2002, 2002-2003 crop years. 
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CHAPTER-II 

USEOF IN-SEASON REFLECTANCE FOR PREDICTING YIELD POTENTIAL IN 
BERMUDAGRASS 

ABSTRACT 

Spatial variability of soil nutrients is known to exist at distances less than 1 

meter. This variability in nutrient content must be addressed if fertilizer use 

efficiency has to be maximized in a given field. Plant recovery of applied 

nitrogen (N) fertilizer generally decreases with increasing rates in current 

production systems. This is probably due to the previously mentioned variability 

as well as differences in potential plant use. Recently, an on-the-go system for 

application of N fertilizer based on spectral measurements known as in-season 

estimated yield (INSEY) was developed, which takes into account both temporal 

and spatial variability, and that improved N use efficiency by as much as 17% in 

winter wheat. Six trials were conducted in 2001,2002 and 2003 at Ardmore and 

Burneyville, OK with an objective to develop an index similar to INSEY for use in 

predicting yield potential in bermudagrass and that can be used for adjusting 

fertilizer N rates. Initial results indicate that 55% of variation in predicted 

bermudagrass forage yield was explained by a B-INSEY index and where 54% of 

the variation in forage N uptake was explained using normalized difference 

vegetative index (NOVI). The remaining challenge is to develop appropriate N 

fertilizer rates based on this information and apply these rates using on-the-go 

technology. 
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INTRODUCTION 

Nitrogen (N), Phosphorus (P) and Potassium (K) are the major nutrients 

that play a pivotal role in the growth of all crops. During the past few decades, 

the largest increase in the use of agricultural inputs has been fertilizer N 

(Johnston, 2000). Because many plant nutrients are non-renewable and 

depleting rapidly, efficient use of applied fertilizers is important in these times of 

high production costs and environmental concern. Currently, nitrogen use 

efficiency (NUE) for worldwide cereal production is estimated to be 33% (Raun 

and Johnson, 1999) and for forage production, around 45% .. Bermudagrass is 

classified as warm season forage, which is extensively grown in the central 

plains of North America. The uniqueness of this crop is that it has the potential of 

several harvests (1 to 4) in one year depending on the soil conditions and the 

rainfall in a particular region. The general production practice is to apply most of 

the N based on a yield goal early in the spring. Johnson (1991) suggested that in 

order to take advantage of the above average growing conditions in dryland 

agriculture, it is better to set the yield goal above that of average yields. Yield 

goal is the "yield per acre you hope to grow'' clearly indicating the risk the farmer 

is taking when he calculates the amount of fertilizer for the crop before 

production (Dahnke et al., 1988). Usually, fertilizer rates are defined by a 

specified yield goal, taking into account available soil N (Raun et al., 2001). 

Osborne et al. (1999) reported that though yield increased with increasing 

rates of N fertilizer, N fertilizer recovery levels in bermudagrass were greatest 

(85%) at N rates less than 224 kg N ha-1, and recovery was less than 20% when 
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1344 kg N ha-1 was applied. Mathias et al. (1978) reported that bermudagrass 

yields and N concentration increased while percent recovery decreased with 

rising N applications up to 448 kg N ha-1. 

The presence of spatial variability in agricultural landscapes is an issue 

demanding careful consideration for efficient use of fertilizers. One approach to 

increase fertilizer use efficiency is variable rate technology (VRT). Different 

methods of VRT include the use of satellite imaging, grid sampling, and high 

resolution sensing by ground-based sensors. Spatial variability of crop nutrient 

status can be assessed using aerial or satellite remote sensing and can be used 

to detect N stress for further fertilizer application at variable rates (Ferguson, 

1997; Mangold, 1998). 

Carr et al. (1991) investigated economic efficiency of uniform fertilizer 

rates for the whole field versus variable rates for dryland wheat in accordance 

with soil units that had different crop yield potential. They showed positive returns 

of $21.68- $23.51 ac-1 when optimum treatments for a specific soil were applied 

rather than uniform rates for the whole field. Although soil units and satellite 

images distinguish field elements by nutrient availability, their separation is rather 

poor (coarse scale), which results in low efficiency of variable versus uniform 

application. 

NUE is also complicated by cropland spatial variability that is known to 

exist at resolutions smaller than 1 m2 (Solie et al., 1996, Raun et al., 1998). Raun 

et al. (1998) and Solie et al. (1999) reported that variability exists even in 0.3m by 

0.3m bermudagrass plots with regard to the availability of nutrients. The 
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variability in P and K was not as large when compared to N variability where 

major differences were observed. The same work reported that variable fertilizer 

treatment of crops, where each field element is treated separately, can be an 

effective alternative to the existing uniform fertilizer application practices. 

Nitrogen fertilizer requirements depend on the potential N uptake by the crop and 

are related to the overall yield potential. Potential yield is the yield that can be 

produced on specific soil under specific weather conditions which changes with 

time (Raun et al., 2001). 

It was reported by Makowski and Wallach (2001) that profitable N fertilizer 

recommendations can be made using models that include end of winter soil 

mineral N. Cabrera and Kissel (1988) made fertilizer N recommendations based 

on N mineralized from organic matter. According to Rodriguez and Miller (2000) 

there was a positive linear relationship between total Kjeldahl nitrogen (TKN) and 

near infrared reflectance spectroscopy (NIRS). Spectral radiance measurements 

were evaluated by Sembiring et al. (1998) to identify optimum wavelengths for 

dual detection of N and P status in bermudagrass (Cynodon dactylon L.) when 0, 

112, 224, and 336 kg N ha-1 and 0, 29 or 58 kg P ha-1 were applied in a factorial 

arrangement of treatments. It was found that biomass, N uptake, P uptake, and N 

concentration could be predicted using 695/405 nm, with 435 nm as a covariate. 

Taylor et al. (1998) reported that correlation of forage yield and N removal with 

red, near infrared (NIR), and normalized difference vegetative index (NOVI) were 

best with maximum forage production, however, when forage production levels 
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were low, correlation decreased dramatically for the red wavelength compared 

with NIR and NOVI. 

Overman and Wilkinson (1992) noted the importance of long-term 

experiments and suggested that 3 years of data in yield response trials to applied 

N gives a reasonable first approximation to a steady state in perennial grasses. 

Wiedenfield (1988) reported that N removal increased with an increase in yields 

up to 224 kg N ha·1 in bermudagrass. With a spilt application of N, the N fertilizer 

recovery increased up to 448 kg N ha·1 on perennial grasses compared to early 

spring application (Hanson etal., 1978). Crawford etal (1961) reported that the 

stage of growth, level of N fertilization, plant part, and light intensity all influenced 

N03-N concentration, while cultivar, source, time and method of placement had 

no effect in forages. Overman and Scholtz (2003) reported that in bermudagrass 

short intervals (2 weeks) in cutting produced low yield but resulted in higher 

protein content, where as yields were higher with low protein content with longer 

intervals of more than· 12 weeks. Kincheloe ( 1994) reported that the field 

practices should be site specific and the areas within the field to be categorized 

as best management practices (BMP). He defined BMP's as those practices that 

have been tested in research and proven on the farmers' fields as most effective 

in terms of input efficiency, production potential and environmental protection. 

In-season knowledge of potential yield might be the key to successful 

variable rate fertilizer applications. Raun et al. (2001) demonstrated that the 

estimated yield (EY) index was a good predictor of grain yield over a wide range 

of environmental conditions in winter wheat. They further noted that EY could be 
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used to refine in-season fertilizer N based on predicted potential yield. Raun et 

al. (2001) reported that sensor readings using NOVI (NOVI= (NIR-red)/ 

(NIR+red)) mid-season (Feekes 4 to 6) could predict yield potential in winter 

wheat. This initial work used the sum of two post dormancy NOVI readings 

divided by cumulative growing degree days (I:GDD = {T min+ T max)/2 - 4.4°C). 

Raun et al.(2002) later refined this index where only one NOVI reading is taken 

post dormancy divided by only those days where GDD>O (including this 

environmental factor eliminates the days where growth is not possible) from 

planting to the date of sensing. The same work showed that yield potential based 

on mid-season estimates increased NUE by 15% when compared to the uniform 

rates and this was attributed to collecting readings from each 1 m2 and fertilizing 

each 1 m2, recognizing that the spatial variability exists at 1 m2 resolutions and the 

potential yield of each 1 m2 is different. 

The Response Index (RI) has been used to determine the extent the crop 

will respond to fertilizer application under particular growing conditions, both 

location and year dependent (Mullen et al., 2003). This work showed that RI can 

be calculated by taking the average NOVI from N-rich strips (where N is non

limiting) divided by NOVI or other means of measurement collected from the 

farmer's practice or check plot. RI varies from year to year and is independent of 

whether the yields were low or high during the past year (Johnson and Raun, 

2003). This same work reported that the response to applied N is variable from 

year to year over a period of 30 years in a replicated long term study where the 

same plots received the same amount of N year after year. Differing responses 
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to applied N was attributed to highly variable weather conditions which change N 

mineralization, and atmospheric depositions. Raun et al. (2004b) showed that 

yield potential prediction equations for winter wheat can be reliably established 

with only 2 years of field data. As reported before, the N supplying capacity of the 

soil varies both spatially and temporally. This creates a scope where there are 

cases in which the farmer might not need any external input of nitrogen. 

The objective of this study is to develop an index similar to INSEY for 

wheat for use in predicting forage yield potential in bermudagrass which can later 

be used for adjusting fertilizer N. 

MATERIALS AND METHODS 

Two field experiments with minimum fertilization located at Burneyville, 

(Minco silt loam, coarse-silty, mixed, superactive, thermic Udic Haplustolls) and 

Ardmore, (Wilson silt loam, fine, smectitic, thermic oxyaquic vertic Haplustalfs) 

Oklahoma were initiated in April, 2001. These were previously established 

pastures with "midland" bermudagrass. The experiments were laid out in a 

randomized complete block design with eight treatments and three replications. 

The plots received Urea-N rates of 0, 56, 112, 168 and 224 kg N ha-1 broadcast 

applied early in the spring at the time of breaking dormancy (last week of March 

to first week of April) for the first five treatments and treatments 6, 7 & 8 were 

included for added nitrogen use efficiency evaluation using the Nitrogen 

Fertilization Optimization Algorithm (NFOA) (Appendix). 

40 



Plot sizes were 3.04m x 6.08m with 3.04m alleys. Phosphorus and 

potassium were broadcast applied at both the sites at the initiation of the 

experiment. During early March of each year, a mix of LoVol 6, Pendimax was 

used to control weeds. Initial soil test data is reported in Table 1. Treatment 

structure is reported in Table 2 and dates of activities are reported in Tables 3, 4 

&5. 

Sensor readings were collected for three years at both locations at the 

time of harvest for each cutting and during in-season growth for most cuttings. In

season readings were collected following at least 10-14 days of active growth 

(around 3 inches of height). Spectral reflectance measurements during 2001 

from the bermudagrass canopy was measured using a handheld sensor that was 

developed at Oklahoma State University, which included two upward and two 

downward looking photodiode sensors that collected readings in two bands, red 

(671_! 6nm) and near infrared (780± 6nm) bandwidths during 2001 (Stone et al., 

1996b). The reflectance sensor employed photodiode detectors with inference 

filters. One pair of filters (up-looking) received incoming light from the sun, and 

the other pair (down-looking) received light reflected by vegetation and/or soil 

surface. The instrument used a built-in 16-bit AID converter that converted the 

signals from all four photodiode sensors simultaneously. The ratio of readings 

from down looking to up-looking photodiodes allowed the elimination of 

fluctuation among readings due to differences in atmospheric conditions, and/or 

shadows. During 2002 and 2003, sensor readings were taken using a 

GreenSeeker® Hand Held Optical Sensor (NTech Industries, Inc.) to measure 
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crop reflectance and calculate the NOVI. This sensor is an active sensor (which 

means it has it's own self-contained illumination in the both red (650+ 10 nm full 

width half magnitude) and NIR (770+ 15 nm)) when held approximately at a 

distance of 60cm to 100cm above the crop, it senses an area of 60cm x 10 cm. 

This device measures reflectance which is the fraction of emitted light in 

the sensed area that is returned to the sensor (Raun et al., 2004a). NOVI is 

calculated based on the following formula 

N!Rref REDref 

NDVI = N!Rinc REDinc 
. N!Rref + REDref 

N!Rinc REDinc 

When the bermudagrass was at or near morphological stage of 41 to 49 

(anthesis) as defined by West (1990), the forage was harvested. Caution was 

taken to collect harvest data prior to anthesis since the grass turns a pale color 

after this stage and there are increased opportunities to underestimate N uptake 

thus altering the N content in the grass. Forage was harvested in the center of 

each plot using a John Deere (GT 262) lawn mower with a cutting width of 

96.52cm which has a forage collection device attached. Forage samples were 

weighed for fresh weight and sub-sampled for moisture content at the time of 

harvest. The samples were then dried for 48 hours in a forced air oven at 70°C 

and ground to pass a 0.125mm (120-mesh) sieve. 

The total nitrogen content was analyzed using a Carlo-Erba (Milan, Italy) 

NA-1500 dry combustion analyzer (Schepers et al., 1989). Early-season plant N 

uptake was determined by multiplying dry matter yield by the total N 
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concentration determined from dry combustion. The difference method (N 

removed in the check plot subtracted from the N removed in the fertilized plot 

divided by the amount offertilizer N applied) was used to determine nitrogen use 

efficiency. 

Similar to the steps reported by Lukina et al (2001) who developed a 

nitrogen fertilization optimization algorithm for wheat (NFOA), an NFOA was 

developed for bermudagrass and used for N fertilization rates in treatments 6, 7, 

and 8. Response index (RI) was calculated in-season using NOVI as proposed 

by Johnson et al. (2000) and Mullen et al. (2003). Data was analyzed using 

Microsoft Excel and SAS (SAS, 2001 ). Growing degree days (GOD) was 

calculated by subtracting the base temperature from the daily average minimum 

and maximum temperatures. The minimum temperature at which a plant can 

grow is called the base temperature (Eastin and Sullivan, 1984). 

GDD= TEMPmax+TEMPmin -l00 C 
2 

B- INSEY = NDVI L GDD 

Rl=~~~N_D_V,_I_of~N_-_R_z_·ch~p_lo_t~~
NDVI of Check plot I Farmers practice 

At each trial, an N rich strip (N applied at a rate when N would not be 

limiting through out the growth cycle) was established and 336 kg N ha·1 was 
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applied at the time of breaking of dormancy, followed by 224 kg N ha·1 applied 

after every harvest until September. 

RESULTS AND DISCUSSION 

Crop year 2001 

NOVI measurements collected at the time of harvest were highly 

correlated with forage N uptake (Figure 1 ). This takes into consideration three 

harvests at Burneyville and two at Ardmore. It shows us that the amount of N 

present in forage can be predicted using NOVI at the time of sensing, which is 

consistent with early work by Stone et al. (1996a) who showed that NOVI was 

highly correlated with wheat forage N uptake. 

Sensor readings were taken 15-20 days after breaking dormancy and after 

the 1st cutting when the grass was around 7-9cm high and correlated with forage 

yield. Each crop requires a specific amount of heat and moisture to reach 

maturity, therefore, cumulative GOD was incorporated as an environmental factor 

to strengthen the 8-INSEY index. The 8-INSEY index was positively correlated 

with forage yield (Figure 2). However, it should be noted that this 2001 database 

was not robust. 

Crop year 2002 

The relationship between NOVI and forage N uptake in 2002 is reported in 

Figure 3. The relationship between NOVI and forage N uptake at Ardmore 
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behaved in a different manner due to high weed infestation. When this site was 

removed, the correlation significantly improved (Figure 4). It should again be 

noted that these NOVI readings were collected on the same day that harvest 

data was collected. 

The first cutting came up very early, so it was not possible to correlate B

INSEY with forage yield using the 1st cutting. 8-INSEY was correlated with the 

second harvest, noting that 38% of the variation in bermudagrass forage yield 

was explained (Figure 5). 

Crop year 2003 

Similar to Ardmore in 2002, the first cutting data set behaved a little 

different than the others, having a lower correlation (R2=0.37, Figure 6). When 

this site was eliminated, there was improved correlation with 65% of the variation 

explained by the model (Figure 7). 

Using only data from the first cutting, 8-INSEY was highly correlated with 

forage yield (Figure 8). 

Combined site years 

Over sites and years, these trials demonstrate that spectral reflectance 

measurements taken mid-season (8-INSEY with forage yield across 7 site years 

between harvests) coupled with cumulative GOD (Figure 9) can be used for 

predicting the forage yield in bermudagrass (R2=0.55). This tells us that we can 

predict the forage yield for each harvest when we sense in-season. N uptake with 
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NOVI also showed a positive correlation (R2=0.43) across 12 site years (Figure 

10). Even when problematic weedy site years (Ardmore) were included, 43% of 

variation in N uptake was explained (Figure 11 ). Cumulative growing degree 

days from dormancy to mid-season and mid-season sensing followed by 

subsequent harvests provided a reliable estimate for predicting forage yield in 

bermudagrass after eliminating the problematic 2 site years at Ardmore. rGOO 

worked in bermudagrass contrary to wheat (Raun et al., 2001) because it is a 

warm season crop and most of the days are warmer than the temperature growth 

requirement once it breaks dormancy, and no days are cool enough whereby no 

growth takes place. Either way, it was difficult to use either LGOO or days where 

GOO>O (data reported in Appendix) because if moisture became a limiting factor 

and there is no growth for a long period of time, rGOO or days where GOO>O 

accumulated without concurrent growth in the crop. So, if more in-season sensor 

readings are available along with rainfall and soil moisture data, the prediction 

confidence increases using these components of moisture and temperature. 

Even without the moisture component and enough readings throughout the 

growing season, it was exciting to see that most of the variation in forage yield 

was explained by the model. 

CONCLUSIONS 

NOVI was highly correlated with forage N uptake in bermudagrass for 

most of the harvest dates, excluding the 1st cutting at Ardmore. 8-INSEY 

(calculated using cumulative GOO's) was also highly correlated with final dry 

46 



matter forage yield when evaluated over locations and years. The problem with 

this research is determining the correct time to apply fertilizer. The grass should 

have sufficient growth (at least 2-3 inches of growth) to make accurate 

recommendations. This research shows potential in managing the temporal 

variability that occurs from year to year and harvest to harvest as well as the 

spatial variability within a bermudagrass field. It was exciting to find out that 

prediction of bermudagrass forage yield could be accomplished using a single 

sensor measurement. This research was done under controlled conditions for 

hay production only. Rainfall combined with profile moisture needs to be 

incorporated into the model. Also, added work is needed to document the 

minimum amount of regrowth needed in order to guarantee reliable prediction of 

yield. 
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Table 1. Initial surface (0-15 cm) soil chemical characteristics and classification 
at Ardmore & Burneyville, OK. 

Location pH p K 

-------------------------mg kg· ----------------------------

Ardmore 

Burneyville 

5.2 

5.7 

9.4 

10.5 

NH4-N and N03-N- 2 M KCI extraction 
P and K- Mehlich -Ill extraction 
pH - 1 :1 Soil: Water 

1.5 

2.6 

56 

30 

225 

187 

Table 2. Treatment structure for the bermudagrass NFOA experimental sites. 

Treatment No. Pre-Plant N kg ha· Topdress N 
1 0 0 
2 56 0 
3 112 0 
4 168 0 
5 n4 o 
6 NFOA-1 0 NFOA@ 0.5 
7 NFOA-2 0 NFOA@ 1.0 
8 NFOA-3 0 NFOA@ 1.0 
Preplant N - N applied as urea just before breaking of dormancy during late March and early April 
Topdress N - N applied as UAN using Pulse modulated handheld sprayer 
Algorithm utilizing total N uptake for topdress 
Algorithm using current N uptake for topdress 
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Table 3. Field activities carried at Ardmore & Burneyville, OK during 2001. 

Field Activity 
Dormancy fertilization 
1st sensor reading 
1st harvest 
2nd sensing 
3rd sensing 
2nd harvest 
4th sensing 
5th sensing 
Final harvest 
MM/DD/VY - monthiday/year 

Ardmore 
03/23/01 
05/22/01 
06/20/01 
06/20/01 
07/10/01 
08/10/01 
08/10/01 
10/02/01 
10/02/01 

Burneyville 
03/23/01 
05/22/01 
06/20/01 
06/20/01 
07/10/01 
08/10/01 
08/10/01 
10/02/01 
10/02/01 

Table 4. Field activities carried at Ardmore & Burneyville, OK during 2002. 

Field Activity 
Dormancy fertilization 
1st harvest 
1st sensing 
2nd sensing 
2nd harvest 
3rd sensing 
4th sensing 
1st NFOA 
Final harvest 
MM/DD/YY - month/day/year 

Ardmore 
04/10/02 
05/15/02 
05/15/02 
06/04/02 
10/02/02 
07/12/02 
08/09/02 
06/04/02 

Burneyville · 
04/10/02 
05/15/02 
05/15/02 
06/04/02 
07/12/02 
07/12/02 
08/09/02 
06/04/02 
10/02/02 

Table 5. Field activities at Ardmore & Burneyville, OK during 2003. 

Field Activity 
Dormancy fertilization 
1st sensing 
1st NFOA 
1st harvest 
2nd sensing 
3rd sensing 
2nd NFOA 
2nd harvest 
4th sensing 
5th sensing 
Final Harvest 
MM/DD/VY - month/day/year 

Ardmore 
04/03/03 
05/08/03 
05/08/03 
06/19/03 
06/19/03 
08/01/03 
08/01/03 
10/27/03 
09/03/03 
10/27/03 
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Burneyville 
04/03/03 
05/08/03 
05/08/03 
06/19/03 
06/19/03 
08/01/03 
08/01/03 
09/03/03 
09/03/03 
10/27/03 
10/27/03 



Ta~le 6. Cropping period, GOD, GDD>O data used at Ardmore 

Year 
2001 
2002 
2003 

Cutting 
1 
2 
1 

Cropping period(days) 
66 
57 
65 

GDD>O 
38 
19 
23 

GDD - Cumulative GDD from previous harvesU breaking dormancy until sensing date 

rGDD 
686 
374 
437 

GDD>O-The number of days where GDD>O until the date of sensing from previous harvesU breaking 
dormancy until sensing date 

Cropping period- The time between the 2 harvests 

Table?. Cropping period, GOD, GDD>O data used at Burneyville 

Year Cutting Cropping period(days) GDD>O rGDD 
2001 1 66 38 903 
2001 2 51 20 591 
2002 2 57 19 394 
2003 1 65 23 432 
2003 2 75 43 1377 
GDD - Cumulative GDD from previous harvesU breaking dormancy until sensing date 
GDD>O-The number of days where GDD>O until the date of sensing from previous harvesU breaking 

dormancy until sensing date 
Cropping period- The time between the 2 harvests 
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Nitrogen Fertilization Optimization Algorithm 

Three experimental sites were initiated in 2001 at Burneyville (BUR), 

Ardmore (ARD) and Efaw, Oklahoma. Out these three, Efaw was removed due to 

a heavy weed problem and very low yields as compared to the present varieties. 

In the year 2002, long-term Bermuda NPK study (LT) at Burneyville was also 

included. In the year 2003, one more site at Ardmore (AH-Ardmore hillside) was 

established with an additional 2 treatments, which received 112 kg N ha·1 at 

dormancy. Treatments 6, 7, 8, & 9 were evaluated for determining the 

predictability of bermudagrass forage yield using B-INSEY index. Using the B

INSEY index that was developed and strengthened each year, the Nitrogen 

Fertilization Optimization Algorithm (NFOA) was developed and topdress N rates 

were determined for each 1m2 . Three approaches of NFOA's were employed. 

First Approach (NFOA-1 ): 

This NFOA accounts for the amount of N that is already taken up in the 

forage at the time of sensing. Once the yield is predicted, total N required is back 

calculated and the current N in forage is subtracted from it. This algorithm is 

evaluated in treatment 7. 

Second Approach (NFOA-2): 

This is same as NFOA-1, but the amount of N is applied half the 

amount of that recommended by NFOA-1. This was evaluated in treatment 6. 
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Third Approach (NFOA-3): 

This approach does not take into account the amount of N that is 

already present in the forage at the time of sensing and applies the entire N that 

is required for the predicted forage yield. This is evaluated in treatment 8. 

At Ardmore hillside in treatment 9, NFOA-1 was evaluated where as in 

treatment 10, NFOA-3 was evaluated. 

For predicting the bermudagrass forage yield, spectral readings are 

collected in-season when the forage is around 2-3 inches long and correlated 

with the forage yield ofsubsequent harvest. Activities with dates along with 

GDD's are reported in Table 1. For predicting the amount N present in forage at 

the time of sensing, spectral readings collected at the time of harvest were used 

(activities are reported in Table 3, 4, &5 of chapter-2). 

The various steps and equations that were employed in NFOA in 2002 

and 2003 along with the algorithm that is going to be employed in 2004 are 

discussed below. 

Crop year 2002: 

The predicted forage yield (PFY 0) at the time of sensing without added fertilizer N 

was given by: 

PFYo = 380.46e1543·1 *B-INSEY (Figure 2 of chapter 2) 

B-/NSEY= NDVI L GDD 

Bl - INSEY = NDVI 
GDD>O 
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The predicted forage yield when fertilizer N was applied given by: 

PFYN = PFYo *RI 

Where.RI is Response Index 

Rl=~~~N_D_V._I_of~N_-~R_ic_h_p_lo_t~~
NDVI of Check plot I Farmers practice 

The predicted current forage N uptake (PCNU) was given by: 

PCNU = 0.89e4·8275 * Novi (Figure 1 of chapter 2) 

PNU = PFYN * 0.0134 (Average N content was 1.34% during 2001) 

Topdress N applied (efficiency factor of 0.7) 

'T' d N PNU - PCNU 1op ress = · 
0.70 

Crop year 2003 

The predicted forage yield (PFYo) at the time of sensing without added fertilizer N 

was given by: 

PFYo = 485.6e 1115·7 * B-INSEY (Figure 1) 

The predicted forage yield when fertilizer N applied was given by: 

PFYN = PFYo *RI 

The predicted current forage N uptake (PCNU) was given by: 

PCNU = 0.7674e5.4313 * Novi (Figure 2) 

PNU = PFYN * 0.0145 (Average N content 1.45%) 

Topdress N applied (efficiency factor of 0.7) 

'T' d N PNU - PCNU 1op ress = 
0.70 
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Crop year 2004 

The predicted forage yield (PFY0 which includes predicted yield+1stdev) at the time 

of sensing without added fertilizer N was given by: 

PFYo = 772.9e918·02 • B-INSEY (Figure 3) 

The predicted forage yield when fertilizer is added was given by: 

PFYN = PFYo *RI 

The predicted current forage N uptake (PCNU) was given by: 

PCNU = 1.0993e5·1714 * Novi (Figure 4) 

PNU = PFYN * 0.0145 

Topdress N applied (efficiency factor of 0.7) 

'T' d N PNU-PCNU 
1 op ress = -----

0.70 

rGDD and GDD>O both are tested as a factor which accounts for the 

environment's role in the model. 8-INSEY (Bermuda-lNSEY) which used rGDD 

as denominator was able to better predict bermudagrass forage yield than 8 1-

INSEY (Bermuda one-lNSEY) which used GDD>O as denominator. As discussed 

in chapter 2, rGDD worked in bermudagrass unlike in wheat (Raun et al., 2001) 

because it is a warm season crop and most of the days are warmer once it 

breaks dormancy, and no days are cool enough whereby no growth takes place. 

Table 2 & 3 provides information about how much of nitrogen was applied using 

the corresponding algorithm NUE's was not evaluated as topdress didn't take 

place using algorithm for all the harvests. 
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Table 1. In-season sensing dates and harvest dates for predicting bermudagrass 
forage lield 
Year Cutting Location In- Harvest # Days- rGDD GDD>O 

season date sense to 
sensing harvest 
date 

2001 1st Ardmore 05/22/01 06/20/01 29 686 38 
Burneyville 05/22/01 06/20/01 29 903 38 

2nd Ardmore 07/10/01 10/02/01 84 597 20 
Burneyville 07/10/01 08/10/01 31 591 20 

2002 2nd Ardmore 06/04/02 10/02/02 120 374 19 
Burneyville 06/04/02 07/12/02 38 394 19 
Longterm 06/04/02 07/12/02 38 394 19 

2003 1st Ardmore 05/08/03 06/19/03 45 437 23 
Burneyville 05/08/03 06/19/03 45 432 23 
Longterm 05/08/03 06/19/03 45 432 23 

AH 05/08/03 06/19/03 45 437 23 
2nd Burneyville 08/01/03 09/03/03 34 1377 43 

Longterm 08/01/03 09/03/03 34 1377 43 
AH 08/01/03 09/03/03 34 1364 43 
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Figure 9. Relationship between bermudagrass forage yield and 8 1-INSEY in 
2001 and 2002 at Burneyville (2 sites) and Ardmore, OK except 2nd cutting 
Ardmore, 2001 
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