INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the original
submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1.

The sign or “‘target”” for pages apparently lacking from the document
photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you complete continuity.

. When an image on the film is obliterated with a large round black mark, it

is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the adjacent frame.

.When a map, drawing or chart, etc.,, was part of the material being

photographed the photographer followed a definite method in
"’sectioning”” the material. It is customary to begin photoing at the upper
left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is
continued again — beginning below the first row and continuing on until
complete.

. The majority of users indicate that the textual content is of greatest value,

however, a somewhat higher quality reproduction could be made from
"’photographs’’ if essential to the understanding of the dissertation. Silver
prints of ‘‘photographs’’ may be ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

.PLEASE NOTE: Some pages may have indistinct print. Filmed as

received.

Xerox University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106



- TR —I Sp— ——— ——— a—— ——— ———— — —— — —— ———— — —— —

7817889
ARIFI, NAGMEDDIN ABDALLA
PREGSURE TRANSIENT ANALYSIS OF WELLS WITH
PARTIAL PLUID®INJECTION IN AN ANISOTROPIC
PETROLEUM RESERVOIR,

THE UNIVERSITY OF OKLAHOMA, PHeDqs

Universi
Microfilms
International 300N ZEEBHOAD. ANN ARBOR. M1 48106

I e e T U U ——

() 1978

NAGMEDDIN ABDALLA ARIFI

ALL RIGHTS RESERVED



THE UNIVERSITY OF OKLAHOMA

GRADUTATE COLLECE

PRESSURE TRANSTIENT ANALYSIS OF WELLS WITH PARTIAL-
FLUID-INJECTION IN AN ANISOTROP1C

PETRCLEUM RESERVOIR

A DISSERTATICN
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
degree of

DOCTOR GF PHILOSOPHY

By
NAGMEDDIN ABDALLA ARIFI
Norman, Oklahoma

1978



PRESSURE TRANSIENT ANALYSIS OF WELLS WITH PARTIAL-

FLUID-INJECTION IN AN ANISTROPIC

-PETROGLEUM RESERVOIR

ii

APPROVED BY

[ E G e

b Dens,

/

5?71/'777 Qw

/
//Y?—x { /v(_‘i-v,'t‘-—‘-

WWM

DISSERTATION COMMITTEE



ACKNOWLEDGEMENTS

The author is entirely grateful to Dr. D. E. Menzie,
Professor of Petrcleum Engineering, for his careful review,
helpful guidance. continuous encouragement, and for
generously giving his knowledge and time throughout this
work as chairman of the author's Graduate Conmittee.

The author wishes to express his sincere appreciation
to Dr. H. B. Crichlow, Associate Professor and Chairman of
the Department of Petroleum Engineering; Dr. A. W. McCray,
Professor of Petroleum Engineering, for their review of
this work, for their guidance and encouragements.

Particular thanks are also extended to Dr. A. F.
Berrhart, Professor of Mathematics; Dr. M. Townsend, Pro-
fessor of Chemical Engineering, for their cooperation and
for serving as members of the author's Graduate Committee.

The author gratefully acknowledges The University of
Alfateh, Tripoli, Libya for their finmancial support.

The auvthor wishes to express his love to his wife,
Naima, his daughter Na'hla and his son, Usama for their
patience, understanding. and devction.

The author is deeply indebted to his mother and
father for their inspiration, encouragement, and the many

sacrifices during the course of study.

iii



TABLE CF CONTENTS

ACKNOWLEDGEMENTS . . . ¢« ¢« « + o o « o o &
LIST OF TABLES . & ¢« ¢« & 4 v« o o o o o o o
LIST GF ILLUSTRATIONS . . . .+ « ¢ « « o« o« &
Chapter
I. INTRCDUCTION e e o & s e s e o o o
II. LITERATURE SURVEY

Partial Penetration Effects

Vertical Permeability Determination

I1I. TRANSIENT PRESSURE ANALYSIS

The Differential Equation for Fluid

Flow in Porous WMedia . e e
The Ideal Reservoir Medel . . . .
Solutions to Diffusivity Equation

Bounded Circular Reservoir . .

Infinice Reservoir with Line
Source Well . . . . . + « =«

Semi-Steady State Solution . . .

Skin Effect . . + . + ¢« « ¢ o o .
Effective Well-Bore Radius . . .
Radius of Investigation . . . . .
Principle of Superposition . . .

IV. PRESSURE FALL-OFF ANALYSIS OF WATER
INJECTION WELLS . . . . « . « « o« .

Quantitative Analysis of Pressure
Off Tests . . . . .« . .+ . .

Pressura2 Eise During Injection
Injective Capacity . . . . .

iv

f=

m

-~
N

17

18
19
20
22

23
26

30
31

32
33

37

38
39

43



Pressure Fall-0ff During Shut-In .
Calculation ¢f Skin Factor . .

Qualitative Analysis of Pressure Fall-
Off Tests « « o o o« o« o o o o« oo o o

V. MATHEMATICAL MODEL . . . ¢ ¢ +« ¢ o « « o &

Partially Injecting Source in a Thick
Formation of Infinite Radial
Direction. . « &+ ¢ ¢ & 4 o o o o o o

VI. NUMERICAL CALCULATIONS . . . . . . .
VII. DISCUSSION AND RESULTS . . . . . « - . .

imited Entry Effects . .
Effect of Permeability Anlsotropy
Determination of Skin Effect in a Well

of Limited Entry . . o o .
Determination of Vertlcal Permeablllty .
Method of Calculating Vertical Per-

meability and Skin Factor of

Parti41-Fluid-Injection Wells
Partial Injection Ratio Calculation
Example Calculations . . . . . .« . . .

VIII. CONCLUSIONS v v ¢ ¢« o o o o o o o o o o o
NOMENCLATURE . v ¢« 4 & « o s o o o s o o s o o =
BIBLIOGRAPHY . . &+ ¢« v ¢« « o o o o o o o o o o o o
Appendix

A. Practical Units . ¢ . ¢ & o ¢« ¢« « o s o =

B. Tables . . . ¢ ¢ ¢« « o o o o o o o o o o

C. Mathematical Derivations Showing that
Equation 4.2 is a Solution to the

Partial Differential Equation 4.1 . . .

D. Details of Integration Program . . . . . .

43

46

49

53

60
66

77

78
85

88
91

92
99
103
105
107

109

112

114

120

124



LIST OF TABLES

Page

L. Tabulation of Ei-Function e e e e e e e e 115

2. Tabulation of ERF Function . . « « « +« o & 116

3. Basic Reservoir Data Used in This Study . . 71
4, Dimensionless Pressure vs. Dimensionless

Time for Different Injection Ratios

= 50 0 . 0 e b e e e e e e e e e

and hD 5 72
5. Dimensionless Pressure vs. Dimensionless

Time for Different Injection Ratios

and hD = 100 . . . 0 e e e e e e e e e 73
6. Dimensionless Pressure vs. Dimensionless

Time for Different Injection Ratios

and hD = 200 & v e e e e e e e e e e e 74
7. Dimensionless Pressure vs. Dimensionless

Time for Different Injection Ratios

and hD = 500 . . 4 e i e e e e e e e e 75
8. Dimensionless Pressure vs. Dimensionliess

Time for Different Injection Ratios

and hD = 1000 . . ¢« . 4 . e e e e e e 76
g. Pseudo-Skin Factor as a Function of

Injection Ratio and Dimensionless

Wellbore Thickness . . . . . « <« « .+ . . 8%
10. Impairmen% Ratio I as a Function of

b,hD,?§=l320............ 93

w
11. Impairmen% Ratio I as a Function of
K e = 2 .

b, by, T 2640 . . 0 . - e e e e e e g5
12. Impairmeng Ratio I as a Function of

b, hD, ?s = 3000 e e e e e e e e e e 97



FIGURE

1.

10.

11.

12.

13,

LIST OF ILLUSTRATIONS

Steady-State Homogenous~Fluid Production
Capacities of Partially Penetrating
Wells as a Function of the Permeability
Ratio Ka/Kh’ Reference 21 . . . . . . .

Comparison Eetween Fractional Loss of
Productivity Calculated by Brons et al
and Muskat2l . . . . . . . . . . . ...

Log-Log Type Curve of Dimensionless
Press. vs. Dimensionless Time,
Reference 2 . . . . . .« « . 4 4 4 . . .

Schematic Drawing of Geometry and
Boundary Conditiomns for Radial Flow . .

The Line Source Solution, Reference 28 .

The Finite Wellbore Radius Solution,
Reference 20 . . . ¢« « ¢ « + o 4 . .

Production History of a Well With
Stepwise Increasing Rate History . . .

Pressure History of a Well with Stepwise
Increasing Rate History . . . . . . . .

Superposition of Flow Rate for
Closing-In a Well . . . . . .+ « « . « .

Horner Fall-0ff Type PFlot . . .

Miller-Dyes-Hutchinson Fall-Off Type Plot
Diagram of the Geometry of the Problem .

Partially Injecting Line Source in a
Reservoir Infinite in Radial Direction
but Semi-Infinite in the Vertical
Direction . . . . « ¢ « « v e e + 4 e

Page

13

21

27

28

35

35

45
47
47

56

59



15.

16.

17.
18.
19.
20.
21.
22.

23.

25.

26b.

26¢c.

27.

Images Used to Satisfy No-Flow Boundary

Conditions for a
Well in an Infin

Flow Lines of Part

Schematic Graph of Function U vs Dimensionless

Time . . . . . .
Flow Chart of the

bPD vs t, for, h

D D

PD vs tD for, hD =

Pseudo-Skin Factor
Pseudo-Skin Factor

bPD vs tD for Vari
Impairment Ratio I
h., L& = 1320 .
Ds T
W
Impairment Ratio I
h., —C = 2640 .

D, r
‘W
Impair@ent Ratio I
h., —& = 8000 .
D" r
w

Partial Injection
Partial Injection

Partial Injection
the Formation .

Flow Chart Outlini
Calculating Vert
Skin Factor of P
Wells . . . . .

Partially Injecting
ite Thick Formation . . . .

ially Injecting Well . . .

Integration Program . . . .

1000 . . « .+ o v 4 e e

1000 & & v ¢ ¢ v e 4 e e
vs Partial Injection Ratio
vs Dimensionless Thickness

ous hDvand b Values . . . .

as a Function of b,

. . . - - . . . -~ - . . . .

as a Function of b,

as a Function of b,

. . . - . . . . . - - . - .

in Top of Formation . . . .
in Center of Formation . .

at Various Intervals in

ng the Method of
ical Permeability and
artial-Fluid-Injection

viii

61

67

70

125

79

81

84

87

94

96

98

101

101

101

102



PRESSURE TRANSIENT ANALYSIS OF WELLS WITH PARTIAL-
FLUID-INJECTION IN AN ANISOTROPIC

PETROLEUM RESERVOIR

CHAPTER I

INTRODUCTION

Petroleum reservoirs are those rock farmations or
portions of rock formations within the earth wherein
hydrocarbons have been accumulated locally. Three physical
properties are inherent to any petroleum reservoir. First,
it must possess porosity. Second, the reservoir must
possess permeabilicty. Third, the reservoir must be a
fluid trap of some sort.

Because a reservoir has permeability, the space
occupied by the reservoir fluids is an interconnected
network. The fluids within this continuous pore space are
therefore a common composite mixture and they will possess
some common character. Another consequence of the continuity
of the fluid containing pore space is that there will be a
continuity of hydraulic conditions within the reservoir.

The recognition of such characteristics of petroleum

reservoirs has led to an understanding that the fluid



behavior in one portion of a reservoir cannot be considered
separately from the fluid behavior inm amother part of the
reservoir. A reduction of pressure at one point is felt in
2ll portions of the reservoir. The speed of transmission

of such effects is, of course, dependent upcn the individual
characteristics of the reservoir and reservoir fluids.

The interdependence between reservoir behavior and
well behavior is quite brcad. The type fluids injected
into or produced from a well and the rate at which they
will be injected or produced depend upon reservoir
characteristics such as pressure, temperature, permeability
properties, and the type of displacement mechanism in
action, as well as, upon the number of wells which penetrate
the reservoir and the manner in which thewells are completed.
Conversely, the operation of wells can control the mechanism
by which o0il is produced from a given rescrvoir. Whether
a reservoir is under control of a water drive or solution
gas drive, for example, may depend upon the manner in
which wells are completed and operated.

In considering well behavior one ordinarily thinks
of 2 producing well. Present technology often requires for
many purposes the use of injection wells. Engineering
calculations for such wells may appear to require new con-
cepts or different approaches. So far as the mechanism
of reservoir fluid flow is considered, it is of no con-

sequence whether fluid may be flowing into or from the



well. Therafore, the engineering techniques which are
applicable to producing wells ought also to be applicable to
injection wells.

One of the commonly used measures of performance
on a producing well is the productivity index. The
corr;sponding measure on the injectior well has been termed
injectivity index. Either can be defined as the rate of
liquid transfer through the well in barrels per day per
pound pressure drop between the flowing bottom-hole pressure
and the formation pressure. Another useful test on
producing wells has been the bottom-hcle pressure buildup
curve. This is observed by shutting in production and
recording as a function of time the pressure readings
opposite the production formation. An analogous test for
injection wells is the bottom-hole-pressure fall-off test.
During flow, the injection well is a formation pressure
source. When the injection stream is cut off, the pressure
opposite the formation in the well tends to fall to some
equilibrium value. This pressure history can be recorded
in the same manner as in the case of pressure buildup.
Information of this nature can be analyzed to yield the same
type reservoir quantities as bottom~hole-pressure buildup
data.

Concluding from the above analogies that the
individual factors which apply for producing wells may

differ from those which apply to injection wells, but one can

'



nevertheless apply the same general engineering techniques
to both situations.

It is of considerable interest and importance to be
able to determine the characteristics of the reservoir in
an area surrounding an injection well. These include the
relative amount of damage or improvement existing in the
formation immediately at the wellbore. One of the factors
controlling injectivity of water, for example, in a water
flooding recovery program is the resistance of the formation
in the first few feet around the wellbore. A comparison
of tests before and after workovers will indicate the
degree of success accomplished by the well treatment.
Similarily, determination of the effective permeability
of the formation around the injection well in conjunction
with skin effect, the injection rate, and the injection pres-
sure will allow a better understanding of the well's performance.

Since pressure analysis is a well developed tech-
nique in the industry, it was desired to find methods that
apply to injection wells which would utilize previous
knowledge and data of this sort.

In using pressure buildup equations in the analysis
of producing wells, we have dealt exclusively with the case
of wells that completely penetrate an isotropic formation.
Two-dimensional radial symmetry was achieved, thereby, and
the problem was greatly simplified.

This ideal situation is seldom encountered in



practice. Therefore, we wust ask how different would the
results be of such cases when wells penetrate an aniso-
tropic reservoir and fluids are effectively injected through
only a portion of the formation in question.
Thus, the purpose of this study is to utilize
information obtained from injection wells to:
1. Investigate the effect of partial fluid
injection on pressure fall-off curves
in the presence of permeability anisotropy
2. Estimate the vertical and horizontal
permeabilities.
3. Estimate the injectivity ZImpairment due to

partial injection and permeability anisotropy.



CHAPTER 11X
LITERATURE SURVEY

In many petroleum reservoirs, it is a common
occurrence that a well is completed as partially pene-
trating, that is, only a portion of the zone is open to
flow. It is often desirable and necessary to complete
a8 well with restricted fluid entry. This may be done for
many reasons; one would be to deliberately produce from
only a portion of a formation when hottom waters underlie
the o0il zone and the difficulties ¢f premature water break-
through would ensue from high well penetrations. Another
common reason 1is to prevent undesirable zones or channels
from thieving injection water in water flooding programs.

Another important fact that is normally ancountered
in petroleum reservoirs is the existence of vertical
permeability. Vertical flow 1s an important mechanism in
many petroleum reservoirs. The knowledge of the average
vertical permeability of a formation is sometimes necessary
to anticipate properly the production or injection perfor-
mance of a reservoir.

In this chapter a close look is taken at the



information concerning the effects of restricted fluid
entry and the existence of vertical permeability on pressure
buildup analysis. Methods of vertical permeability deter-

minations are also discussed,

Partial Penetraticn Effects

The problem of fluid flow to wells with partial

penetration or restricted entry has received much attention
21, 24 25

in the last few years. A number of steady state ’

3, 4, 22, 30

and unsteady statez’ solutions have appeared

in the literature, and methods for analyzing pressure data

have been proposed by several authors 2, 5, 26, 27,

Although many different techniques have been used

for solving the partial penetration problem (namely, the

22
point source solutiong‘ 2, 9, 10, ,Fourier24 and Laplace

13, 30,Hankel and Laplace transforms8

25 17). The analytical

transforms , Green's
functionslo; finite differences
expressions and the numerical results obtained for
reservoir pressures by the different methods were identical.
The partially-penetrating well problem was first
studied by Muskat21 for steady~state conditions. He
calculated pressure distributions and productive capacities
for an anisotropic system in which the horizontal and
vertical permeabilities are not equal and concluded that the
productivity depended slightly on the permeability ratio

(Ke/Kr>0'1)’ Fig. 1. He also showed that the steady state

problem ic identical between a well in an isotropic and an
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anisotropic medium, with the only change that the radius
of the well and the external radius have to be multipled
by (K_/K ).

Nisle22 studied the effect of partial penetration
on pressure buildup curves. He discussed mainly the effect
of partial penetration, assuming that the formation would
be open from its top to some depth within the formation.

He used the instantaneous point source solution to the
diffusivity equation to solve the constant flux, isotropic
problem. He constructed synthetic pressure buildup

curves for various penetration ratios, and found that the
extrapolated buildup curves show two semilog straight line
portions for the case of partial penetration. Generally

an early slope and a late slcpe may be recognized. The
early slope is always steeper than the late slope. It
follows that if one uses the early slope to calculate the
transmissibility, one will find a lower transmissibility
when using the late slope. This means that the early slope
reflects the transmissibility near the wellbore only, where
the late slope represents the transmissibility of the total
formation. Nisle suggested that it was theoretically
possible to calculate the penetration ratio from the ratio
of the slope of the late portion to that of the slope of the
early portion of the buildup curve.

Brons and Marting4 supplemented the findings of

Nisle and concluded that partizl penetration gave



1c¢

rise to a pseudo damage, which reflected itself gs a sgkin
factor in pressure buildup calculations, Using the

pseudc skin, they calculated the impairment of productivity
of the production wells, which agreed well with the results
of Muskat, Fig. 2.

Odehz4 used a finite cosine transfoxm to arrive
at a solution for the steady state flow problem where the
open interval was located anywhere within the producing for-
mation. Odeh25 also used the finite cosine transform to
derive an analytic solution for pseudo steady-state flow
of an 0il well with limited entry and with an altered zone.
He found that the effect of the limited entry and altered
zone can be accounted for by a skin factecr., The componrent
of the skin factor due to the altered zone can be calculated
by a simple equation. This component is mainly a function
of the permeabilities of the formation and the altered
zcne, the total thickness of the productive sand, the
length and location of the open interval, the radius of the
well, the radius of the altered zone, and the ratio of the
horizontal to the vertical permeability.

Hantush13 solved the transient, anisotropic,
partial-penetration problem by the successive use of LaPlace
and Fourier transforms for the infinite reservoir case.

In his work he assumed the wellbore radius was vanishing
and the flow rate was uniform for each point along the

. 3Q
vertical sand section open to flow. Seth extended
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. . 17
Hantush's work to bounded reservoirs. Kazemi and Seth

investigated the combined effects of anisotropy, stratifi-
cation with crossflow, and restricted flow entry on pressure
transient analysis of flow and buildup tests. They solved

the partial-penetration problem by using a numerical finite
difference model. They reproduced Hantush's solution for

the case of an infinite conductivity inner boundary condition.
They found that the productivity impairment chart of Brons

and Marting can be extended to include the effect of aniso-
tropy. They also found that the conventional interference

test analysis, which are based on total well penetyration,

are also applicable to reservoirs with restricted flow

entry. Gringarten and Rameyll solved the infinite conductivity
partial penetration problem analytically by use of Green's
functions. The method used was to superimpose a number of
discrete flux segments of different strengths such that the
pressure at the center of each segment was the same, This
approach was first suggested by Muskat, and again later by
Burns in a discussion of the paper by Kazemi and Seth 17.
Clegg and M11138 applied Laplace and Hankel transforms to
arrive at an approximate solution to the problem of the
pressure distributions arising from the production of a
compressible liquid in a partially penetrating well, They
concluded that the effects of partial penetration, as
reflected in the pressure observations at the wells, are

such that the unperficrated zone will appear to behave as a



1z

zone with permeability~thickness product Keh’ and this
K h characterizes the unperforated section of the formation.
2

Finally, despite the number of studies of the partial

-

. ' , 9
penetration problem, there is only one recent study that

has combined the effects of a finite-radius well, wellbore
storage, wellbore damage, and the infinite conductivity source
condition. Bilhartz and Ramey2 usad a twc-dimensional,
single~phase finite difference numerical model to generate
dimensionless pressure vs. dimensionless time graphs for a
closed, anisotropic (r-z) circular model. The inner boundary
condition consisted of a partially-penetrating, infinite
conductivity (hollow socurce) well influenced by a flux
dependent infinitesimal skin effect, and wellbore storage.
They concluded that the flux-dependent infinitesimal skin
effect changes the zero skin curve bv an additional amount
equal to the dimensionless skin factor for all times. And
wellbore storage causes two periods of flow prior to joining
the zero storage curve, Fig. 3. The first period is the
storage control period. For this period, the pressure
response for partial and complete penetration is the same.
After the inicial period, a transition from wellbore storage

control to the usual zero storage curve takes place.

Vertical Permeability Determination

The formation vertical permeability is often a

dominant influence in reservoir recovery processes with
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vertical fluid flow such as water or gas coning, gravity
drainage of high relief reservoirs, and displacement by
water or gas in a heterogeneous formation. How reliably
numerical reservoir simulators can predict the recovery
performance of these processes depends upon how
accurately the significant reservoir parameters are
estimated. Core measurements of vertical permeability do
not necessarily represent effective in-situ values. Cores
may be representative of only localized pockets of high
cr lcw petrmeability, and total reliance on cores might cause
one to overlook the presence of vertical fractures altogether.
Transient pressure techniques for a2stimating
in-situ vertical permeability have been intrcduced by
Burns5 and by Prats 26. Both techniques require injection or
production at a constant rate from a short perforated inter-
val and measurement of the pressure response at another
perforated interval that is isclated from the first by a
packer. The interpretation technique of Burns required a
computer-generated type curve or a single-phase numerical
reservoir simulator. This type-curve approach is applicable
for an anisotropic, homcgeneous, infinite reservoir model,
and the numerical simulator with a regression analysis
program is needed for finite or layered reservoir models.
The technique presented by Prats did not require a computer
program because the result of the analysis was presented on

a single grapt. The horizontal and vertical permeabilities
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could be estimated from the slgpe and the intercept of the
pressure response and the appropriate value from the graph.
The method of Prats was based on an infinite, anisotropic
homogeneous reservoir model.

Both the Burns and Prats methods require two-point
well testing. That is, they require injecting or producing
at a constant rate through one set of perforations while
measuring the pressure response opposite another set of
perforations isolated from the first by a packer, Perhaps
because of this elaborate procedure, two-point vertical
permeability tests are seldom performed.

Raghavan and Clark27 examined the applicability of
the spherical flow equatiocns to a well producing from a
limited section of a thick anisotropic formation. They
concluded that the vertical permeability may be obtained
using the spherical flow approximation from the slope of the
pressure drawdown and/or buildup graphs if the horizontal
permeability is known. This calculation is unaffected by
the magnitude of the Van Everdingen and Hurst skin effect.
However, time checks are essential to insure that the proper
straight line was chosen. And the horizontal permeability
may be obtained using the spherical flow approximation if
the skin effect is negligible, or if the skin effect can
be determined by an independent study.

Finally, Bilhartz and Ramey's study suggests that

vertical permeability can be evaluated from a drawdown test.
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They emphasize, however, that the procedure depends upon
early time drawdewn data for small wellbore storage effects.
Thus the method may be difficult or impossible to apply if

wellbore storage is significant.



TRANSIENT PRESSURE ANALYSIS

CHAPTER III

Pressure testing of wells was generally limited
to the determination of producing and static mean formation

pressures. In this so-called '

'static" measurements, a
pressure-measuring device was lowered to the bottom of a
well which had been closed for a period of time. These
static measurements sufficed to indicate the pressure in
permeable, high productivity reservoirs. However, it was
soon recognized that in most formations the static pressure
measurements were very much functions of closed-in time.

The lower the permeability, the longer the time required for
the pressure in a well to equalize at the prevailing
reservoir pressure. Thus, it was realized very early that
the rapidity with which pressure buildup or falloff occurred
when a well was closed-in was a reflection of the permeability
of the reservoir rock around that well., This qualitative
observation was an important step in developing an under-
standing of well pressure behavior. This understanding led
to the other basic type of measurement, called transient
pressure testing. In this type of measurement, the pressure

variation with time is recorded after the flow rate of the

17
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well is changed. Tt is this type of measurement which is

mainly our concern.

In this chapter a presentation of basic principles

and theoretical equations used in the analysis of well
tests will be made.

Basic to this discussion is understanding of t
theory of fluid flow in porous media. Review of the
fundamental concepts is contained within this chapter,
largely in summary form.

The Differential Equation for
Fluid Flow in Porous Media

Flow in porous media is a very ccmplex phenome
and cannot be described as explicitly as fiow through
pipes and conduits.

A mathematical description of fluid flow in a
porous medium can be obtained by a combination of the
following physical principles

(1) The law of conservation of mass:

(2) Darcy's law which states that the rate of
flow of a homogenous fluid per unit cross
sectional area at any point in a uniform

. . - 3
porous medium is: u =-52g—jL, where u =
T u 9r r
velocity in positive r; K = permeability;

® = potential; p = density; g = gravitatio

acceleration.

(3) Equation(s) of state.

he

non

nal

(3.1)
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This is known as the diffusivity equation, and in
this generzl form » describes the flow potential generated
by the movement of a fluid through a porous medium subject
only to the restrictions cited for the continuity equations
and Darcy's law. However, in this general form, the
equation is nearly impossible to solve for the potential.
Various simplifying assumptions and boundary conditions are
used depending upon the type of reservoir procblem to be
studied. Soluticn to all reservoir engineering problems
which involve the flow of fluids in the reservoir are based

on a solution to some form of the diffusivity equation.

The Ideal Reservoir Model

Several simplifying assumptions about the well and
reservoir to be modeled must be made before development,
analysis, and design techniques of pressure testing. These
assumptions are needed to combine the above mentioned
physical principles in order to obtain simple and useful
solutions to the equations describing our situation.

The assumptions made in the development of pressure
analysis theory are summarized as follows:

1. Radial flow into a well opened over

entire thickness of formation;
2. Homogeneous and isotropic porous media;
3. Porosity and permeability constant

(independent of pressure);
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4., Fluid of small and constant compressibility;

5. Constant fluid viscosity;

6. Small pressure gradients;

7. Negligible gravity forces; and

8. Rock and fluid prcperties are independent

of pressure.

The details of this work are only outlined here
but can be found in reference 18. Emphasis will be only
on the results of this analysis.

Now consider radial flow toward a well in 2 circular
reservoir. If we combine the law of conservation of mass
and Darcy's law for the isothermal flow of fluids of small
and constant compressibility--a highly satisfactory model
for single phase flow--we cbtain a partial differential

equation which simplifies to:

P 13p _ _  ¢uc 3P (3.2)
3 2 r or .000264K 9t :
r
This equation, named the diffusivity ecquation, is written in
terms of field units, the term 499%%%i§ is called the

. . e . . . 2
hydraulic diffusivity, which is in ft"/hr. Pressure, P,
is in psi; distance, r, is in ft.; porosity, ¢, is a
fraction; viscosity, p, is in cp; compressibility, c, is in

1 cq s . . . . .
psi ~, permeability, K, is in md; and time, t, is in hours.

Solutions to Diffusivitv Equation

There are three solutions to equation (3.2)which

are particularliy useful in well pressure testing (see Fig. 4).
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and boundary condition for radial flow
constant rate case, Matthews
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(1) The sclution for a becunded cylindrical
reservoir with a well assumed to be
located in the center of a cylindrical
reservoir with no flow across the exterior
boundary, and

(2) The solution for an infinite reservoir
with a well considered tc be a "line
source" with zero wellbore radius, and

(3) The semi-steady-state solution.

Bounded circular reservoir. The analytical solution of

equation (3.2) requires the existence of at least two
boundary coanditions and an initial condition. A realistic
and practically useful solution is obtained if the following
assumptions are made:
1. A well is producing at constant rate,
3P - 4quB

gB, into the wellbore, . T = ST RL

-

1
T
Ty
2. The well, with wellbore radius rw, is
centered in a cylindrical reservoir of
radius re, and that there is no flow across
oP .
the outer boundary; 37 1o = 0: and finally
3. The reservoir is at uniform pressure, Pi’ at
time = 0.
The most useful ferm of the desired solution relates
flowing pressure, ow, at the sandface, to time and to
reservoir rock and fluid properties is given by Russell and

Mathewsl8;
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o p 141.2 qus [ 2 ‘pw .1 3., ;
P = Fy Kh Z nTe 4 -
- e D n—-l
\ D
2 2
r
exp [“an tDW')J]. an eD)
5 - 5 (3.3)
an[Ei(an re )-Jl(an)]
D
where,
r =r /r
ep e
£ = 0.000264 Rt/oéu cr>
Dw - w

and where the an are the roots of

Jl(an reD) fl (an) - Jl (an) Yl (an reD) = 0

and where Jl and Yl are Bessel functions.

The most important fact about equation (3.3) is to
note that it is an exact solution to equation (3.2) along with
the assumption made.

It is not necessary to use equation (3.3 in its
complete form to calculate the aumerical values of ow;
instead, limiting forms of the solution are used for

computations.

Infinite Reservoir With Line Source Well

The solution to this case is an approximate solution
to the exact solution above. The simplest system one can
visualize is a uniform, homogeneous, infinitely large
reservoir, i.e., P->Pi as r * © penetrated by a single well
of radius o In most cases the wellbore radius is very

small compared to both the dimensions of the reservoir as
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well as the distance between wells. Thus the wellbore may

be considered to have a vanishing small radius.

leads to the concept of a "line-source" well.

This

Assume that we produce a well at a constant rate

qB; that before production begins, the reservoir is at

uniform pressure, Pi' Under these conditiouns,

to equation (3.2) is:

i Kh i "4zt
where,

P, the pressure at distance r from the

0.000264K
duc

mathematical function known as the exponential

T, hydraulic diffusivity ( )3 and - Ei

and is given by
®© -u

--Ei (-x) =‘{ % du
X

A tabulation of this function is given

If the argument of the exponential integral is

the solution

well at time t,
(-x) is a

integral

(3.5)

in Table 1.

small enough

(x < 0.5), then the exponential integral may be replaced

by the following relation:
-Ei(-x) ~ 1n(x)+.80907

where 1n (x) is the natural logarithm of x.

In terms of dimensionless variables Eq.

. 1
written as 7: 2

F2)
il\4 ty

+ 0 80902]'

Py (rps tp)

I
i
0o
" m

I
J
o
o
t
w]
v

~
o~
(e

(3.6)

(3.4 may be

(3.7)
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where, the dimensionless pressure is

Kh £. - P(r, t) (3.8)

Pp(rps €p) = 71.7 aqnBl i

the dimensionless time is

¢ G.000264Kt (3.9)
D QHc T 2
w
The dimensionless radius is
r. =rl/r (3.16)
D w

1n Eq. (3.9):1'w is the well radius (feet), and t is the time
(hrs.). Equations (3.8) and (3.9) are in field units (psi,
hours, md, STB/day, cp, RB/STB, psi-l). The definition of
dimensionless pressures pD, and dimensionless time, tD’ in
equations (3.8) and (3.9) are commonly referred to as the
Van Everdingen and Hurst definitions. Note that all
dimensionless groups are directly proportional to the named
real variable.

A table of dimensionless pressure and dimensionless
time for a given problem is an easy way of providing a
solution to the problem of interest without going into
complex mathematical details. If real time data behave in

a manner analogous to the Pp VS t data selected, then the

D
model formulation is a correct one.
The line source solution28 is shown graphically in
Fig. 5. Though the above solution corresponds to a
vanishing small radius, Mueller and Witherspoonzo have

shown that this solution is also applicable for a well of

finite radius. They concluded that the line source solution
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is an adequate approximation for locations r .i 20 for all

D

2 2 > . : .
‘| -
tD/rD and for all T, for tD/LD 725, Their solution is

shown in Fig. 6.

Semi~-Steady~-State Solution

The semi-steady-state solution is simply a limiting
form of equation (3.3), which describes pressure behavior
with time for a well centered in a cylindrical reservoir of
radius r .

e

The o values in equation (3.3) take on monotonically

increasing values as n increases; i.e., al<a2<u3....

Thus, for a2 given value of t the exponentials decrease

2 2
monotonically (;al tDw>;a2 tDw

Dw’

Also, the Bessel

> LL0a)7

function portion of the terms of the series becomes less

as n increases. Thus, as tDw becomes large, the terms for

large n become progressively small. For tDw sufficiently

large, all the terms of the summation become negligibly

small and equation (3.3) becomes:
2t

- _ quB Dw _ 3
ow Pi 141.2 <h ( rez + 1n r, 4) (3.11)

D
D
Note that, during this time period (which turns out to be,

2
¢ucre

(4)(0.000264) K
well during semi-steady flow can be found by differentiating

(t> ), the rate of pressure decline at the

equation (3.11) with respect to time,

“Puf _ 3ps _ 3 | ., , auBf0.000528ke ., Te 3
at at ot " Kh duc r< r 4
e w
*Pag _ L0745 o B
at dc b r 2 (3.12)
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Since the fluid-filled pore volume of the reservoir, V_,
is
vV = H¢hr2
P e

then

apwf

at

= —0.234qB/cVP (3.13)

Thus, the rate of pressure decline is inversely
proportional to the fluid-filled pore volume. This fact
is the basis for so-called '"reservoir limit tests," which
seeks to determine reservoir size from the rate of pressure
decline in a wellbore with time.

Another interesting fact is that the difference
between the average reservoir pressure and the flowing
wellbore pressure is constant during semi-steady-state
flow. The volumetric average pressure within the drainage
volume of the well is

= _ 5.615 quB t/24
i 2
1 ;
H¢cre h

(3.14)

Substitution of equation (3.14) into equation (3.11) gives:

r
5 _ 141.2 qud Te _ 3
- (ln - 4) (3.15)
w
Since the productivity index of the well is defined as
J = :f—iL———— (3.16)
P-P
wf

Equation (3.16) implies that during semi-steady state flow

the productivity index is constant.
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Skin Effect

In practice, we find that most wells are either
damaged or stimulated. Equation (3.4) fails to model such
wells properly; explicit in its derivation was the assumption
of uniform permeability throughout the drainage area of the
well up to the wellbore. 1In many cases, it has been found
that the permeability of the formation near the wellbore
is reduced as a result of drilling and completion practices.
Invasion by drilling fluids, dispersion of clays, presence
of a2 mud cake and of cement, and plugging of perforations are
some of the factors respomsible for this reduction in
permeability.

Thus the sand-face pressure of damaged or stimulated
wells can be modelled using the logarithmic approximation
for the Ei—function in equation (3.4) and by introducing an
additional pressure drop APS, reflecting either damage or

stimulation. 2

G uB 1.78 r,
ow = Pi + 70.6 T(?— 1n (‘T) - APS (3.17)

This additionally pressure drop is proportional to the

rate, qB; and a skin factor, s, can be quantitatively
defined, after Van EverdingenBl, as a constant which relates
the pressure drop in the skin to the dimensionless rate of
flow:

_ qUB ‘3 181
APS 141.2 Kh (s) {3.18)
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Thus equation 3.12 can be written as

2
- quB _ﬂi_rsL -
P =P, +70.6 WE (1, 25 ) (3.19)

If the damaged or stimulated region near a wellbore is
considered to be an "altered zomne" of uniform permeability

Ks and radial extent ros the skin factor, s, is related to

these altered zone properties by14:
T
s = (__ - 1) 1n (3.20)
Ks “w

Some physical significance of the sign of the skin
factor may be obtained from equation (3.20): If a well is
damaged (KS<K), s will be positive. It should be noted
that there is no upper limit for s; some newly drilled
wells may not flow at all prior to stimulation, for example;
for these wells Ks* 0, and s » ©». If a well is neither
damaged nor stimulated, that is the permeabilities are
equal (K = Ks), s = 0. Finally, if the permeability in
the skin is greater than that in the formation (KS> K),
as from stimulation, s will be negative.

It is very important to point out that existence
of an altered zone near a particular well affects only the
pressure near that well, i.e., the pressure in the

unaltered formation away from the well is not affected by

the existence of the altered zone.

Effective Wellbore Radius

Noting that it is not possible to obtain both

the radius of the skin and its permeability from equation
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(3.20) even if K, s and r are known, an effective wellbore

radius can be defined in order to alleviate this difficulty.
7

This radius, T would be such that it makes the calculated

pressure drop in an ideal reservoir equal to that in an

actual reservoir with skin. Thus,
r r
e e
In —,= ln — + s
r T
w w
or
4 -
r =r_ e (3.21)
w w

’
If s is positive, the effective wellbore radius T, is smaller

than T If s is negative, the effective wellbore radius

is larger than T,

Radius of Investigation

The radius of investigation is simply the distance
that a pressure transient has moved into a formation
following a rate change in a well. To show the significance
of this radius, consider the following example:

A volume of liquid is injected instantaneously

into a well. From the solution to the diffusivity equation
for an instantaneous line source in an infinite reservoir(e’ 22).
¢ucr2
. _ _ _ —Q(épc) 4 Kt
AP (line) Bwf Pi a1 ke © (3.22)

Where Q is a constant related to the strength of the in-
stantaneous source.
The distance, r, at which the pressure disturbance

is a maximum at time t can be obtained by differentiating the
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above equation with respect to time and setting the

derivative equal to zero:

—jmﬁii 2 2 123253
3P _ , Qéuc 4Kt - Q(bue)Trl 4Rt 0
t 2 - =
4 [Kt (GK)Z Ht3
2 Kt
r = 4 -
dlc
: Kt
r = ;
and in field units it is; r =V4 ¢t (3.23)

Equation (3.23) can also be modified to estimate
the length of time required to achieve the maximum pressure
disturbance at radius r for an instantaneous source
2
t = [b4¢g (3.24)
From equation (3.24), the time required for a pressure
transient to reach the boundaries of a reservoir where

stabilized conditions prevail can also be determined.

For example, if a well has a drainage radius L then
if r = re and time t = tb’ the time required to reach the
boundary, then
_ 2
tb = re /Z&c (3.25)

tb can be described to be the time at which semi-steady-
state flow begins. It must be pointed out now that
equation (3.22) is correct only for a homogeneous and iso-

tropic cylindrical reservoir,

Principle of Superposition

The solution to the diffusivity equation presented



34

earlier "was applicable only for describing the pressure
distribution in a reservoir for the case of a constant
volumetric rate of flow at flowing bottom hole conditions
beginning at time zero. In general, however, a well will
not have produced or injected into at constant rate through-
out its life. For this situation, a very powerful
mathematical technique commonly referred to as the principle
of superposition is used.

To develop the principle of superposition and
gain an understanding of its use, consider the simple case
cf a well which flows at three different flow rates as
shown in Fig. 7. In this case, the well produces at rate

at t

ql, from time 0 to time t the rate is changed to

1} 1°
and, at time t2, the rate is changed to 9q-

The first pressure drop in reservoir pressure is

q2;

contributed by producing the well at rate ql’ starting at

t = 0. Assuming that the well has skin, then from equation
(3.19):
~ q,uB ( 0.4457 2 3
AP, = (Pi-ow)l = =70.6 —=— {1ln -—-—————W;t -2s 526

Stating at time tf the new total rate is q,- In
order that the total rate after tl is the required q,, 2
well 2 located at the same position in the reservoir will be
turned on to flow at rate (qz—ql) starting at tl.

Thus the pressure drop in the reservoir due to

well 2 is:
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-70.6 (q,-q,)uB 445 2
AP - - _ ? 1D 1 .
(4R}, = (P -P (ln = 25>

p (e-t,

wf)2 Kh
(3.27)

Note that the total time since well 2 started flowing ac
q, is (t-tl),
Similarly the pressure drop in the reservoir due to

a third well is:

(AP)3 = (Pi-P

~70.6(a;-q,) kB .445c 2
y. = in Y- - 2
wi’3 Kh ( t(t-t,) S)

(3.28)

Therefore, the total pressure drop in the reservoir due to

a well that flows at three different flow rates is:

P - = :
( i ow)total APl * APZ * AP3
~-70.6 qluB/( 445y 2 70.6 (a,-q.)uB
= ——=f1pg T w5 ). 21
Kh L zt S Kh

In

2
.445T ) 70.6 (q5-9,)u3B
_—-————i- —— S —

C(t—tl) Kh

445y 2
-—--————H— —
ln z(t-t,) =S (3.29)

Concluding from the above example, the principle
of superposition can be stated, for practical purposes, in
the following manner: "The total pressure drop at any point
in a reservoir is the sum of the pressure drops at the
point caused by flow in each ¢f the wells in the reservoir

as if each well were alone in the reservoir,"



CHAPTER IV

PRESSURE FALL-OFF ANALYSIS

OF WATER INJECTION WELLS

Unsteady-state pressure analyses of buildup tests
have long been recognized as a valuable and reliable tool
for determining reservoir flow characteristics. This one
topic has received much essentizl research for the last 20
vears. As similar information about water injection is
equally useful in operating water-flooding and pressure main-
tenance projects, several investigationslz’ 1>, 16, 23
studied the application of the fluid flow equations which have
been developed for producing wells to injection wells.
These authors have confirmed that these same equations are
also applicable to injection wells providing suitable modifi-
cations are made for the differences in the direction of flow
and in the physical characteristics of the fluids.

Nowak and Lester23 reported that, theoretically,
in an injection well the flow of water into the formation
wili continue as long as the sand-face pressure is greater

than the reservoir pressure. They also observed that, in

practice, upon stopping injection and opening the wellhead

37
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to atmospheric pressure, some wells backflow water for
time intervals ranging from several seconds to several
hours although the sand-face pressure, as calculated from
the hydrostatic head, is considerably greater than the
static reservoir pressure. Further, field observations
indicated that upon shutting in a water injection well, the
wellhead pressure does not drop off immediately, but a
pressure decline occurs lasting from several seconds to
several days. These observations make it evident that when
an injection well is shut in, a residual pressure lingers
in the vicinity of the wellbore which is greater than the
average reservoir pressure. This residual pressure declines
first rapidly, then more slowly to the static reservoir
pressure; thus it is called pressure fall-off.
Quantitative Analysis of Pressure
Fall-Off Tests

The mathematical analysis of pressure fall-off curves

involves consideration of two distinct processes:
1. Pressure-rise during injection, and
2. Pressure fall-off during subsequent shutin.

In the first, the pressure will rise similar to the
lowering of the pressure in o0il producing wells. In the
latter, the pressure fall-off is similar to pressure build-

up in an o0il producing well.
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Pressure Rise During Injection

For a homogeneous infinite reservoir, the pressure
distribution satisfying the basic governing differential
equation can be obtained by integrating a unit impulse point
scurce with respect to time and space.

The basic governing differential equation is:

2 2 2
K—a—-—g-+1<—-—3‘§+1<—-—af?_’=<i>uc-3—lti (4.1)
X ax y 3y % de

The solution to equation (4.1) is given in the Kelvin

. 6,15,
instantaneous point source s
3/2 1y 2
-Q (duc -buc f(x-x")
AP(x,y,2,t) = L (91C) exp +
3.3 1/2 4t K
g(I"t K K K ) x
Xy
2 2
(yoy') o (2-2)) 57 (4.2)
K K ,
y 2 _

"here Q is a constant related to the strength of the
instantaneous source,

The solution to the partial differential equation
represented by equation (4.2) is called the pressure due to
an instantaneous point source of strength Q at (x', y', z')
at t = 0. Inspecting equation (4.2), it is found that as
t »»> 0, the expression tends to zero at all points except
at (x', y', z') where it becomes infinite.

In Appendix (C), it is shown the solution (4.2) satis-
fies the partial differential equation (4.1).

In crder to obtain the continuous infinite line source,

we must integrate equation (4.2) with respect to the space
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variable, thus:

: 2
AP(line) = L(JC) 5 exp [((X;X +

4 ¢c (H t K K )

G=v)? mﬂ

2
i (g-2')
*fﬁ—-f ( O )<.,Kt>1/z (4-3)
2

dpuc

we have,

erf x = 2 , and
e
2
erf » = f:_Jf d§ =1
T

A tabulation of this function is given in Table (2)

22

Let ¥ =[4 K t)l/z
duc

then df = dz

(4Kzt)l/2
duc
Therefore,

-]

2
1 2 ~(z-2") 1 %2 £
2 *‘/—H—'j_me}{p( 4K _t } éK t 1/2 - 2 fﬁj_e df

pue ¢uc

g2
['/_; d;+g/—__—fo Z§ df] 4.4)
I

Since the error function is symmetric, equation (4.4) is unity;

and equation (4.3) becomes:
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w12 vy 2}/ ¢uc
AP(line) = = 9 v 73 172 eXP ((XK“ ) . (JI’Y))(_ it )
4 (I°t°K K ) “x “y
Xy
.5)
Which is the solution for the instantaneous infinite line
source.

If the 1iquid injection rate 1is q;5 the total injection,
Q, in the time interval, dt, is
Q= qidt
2 2
let r = (x—x')2 + (y-y")
The reservoir is homogeneous by definition, then inte-

grating equation(4.5) with respect to time

“q.u T ‘ 2y L.
= i (. buerfyde —
AP 11K exp U sRe ‘)t (4.6)
(o)

let t = T-t'

2

q.u O '
i -¢ucr dt
= + =
ar K J, P o= Tev
- - a0 T eA —¢>UCr2 at’ 4.7
- 4HKf P GR(T-t') T-t' (4.7)
(o]
2
_ duer .
lee v = (Tt ’
- Suer 1
dv. 4K(T—t')2 dt
dv dt'

i\ T-t'
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¢ucr2

As t' »> 0, v > AKT

t' > T, v > =

Equation (4.7) becomes

@

"4 " v 4
AP = ZIK e L 4.8y

¢uCr2

4Kt
The integral in equation(4.8) is by definition the

exponential function Ei’ where

-]

e” U
~E. (-x) = /[ du
1 u

X

In equation (4.8), q; is the injection rate per unit

length of the infinite line source, hence

qi = "C]_/h,

where -q is the total injection over a portion, h, of the

infinite line source. Equation(4.8) can be written

2
_9u _ ducr”
8P = Jaxn (7 By O g ) (4.9)

and in o0il field units

2
70,6 B r
AP = —"_EESA— (: Ei (— T ) (4.10)

hal

Therefore the theoretical rise in pressure ? at radial
distance r from an injection well caused by injecting at rate
-q intoan infinite reservoir of uniform thickness and permea-

bility can be calculated by equation (4.10).



43

Equation (4.10) may then be approximsted as shown

2
earlier if values of E?iare relatively small, e.g., when r
is equal to the wellbore radius Lo
Thus:
P _(t)-P = -70.6 B 14 1445 ;%) (4.11)
wf Kh e J
2
- quB _ 445 rw_)J
ow(t)—Pi 162.6 Xh [;og t log (}_—E“— (4.12)

2
P _(t)-P. = 162.6 quB log t - log (1.68*103 ¢”£5z);]
i
(4.13)

In equation (4.13) the slope of the straight line plot
is represented by the quantity on the outside of the brackets.
Usually the unknown factorsoccurring in the slope of the line

are K and h.

Injective Capacity

Estimation of the injective capacity of the reservoir,
the product Kh, is possible by plotting the observed injec-

tion pressure P against log t and evaluating the slope of
w

£

the resulting straight line (equation 4.13) to calculate Kh.

Pressure Fall-0ff Durine Shut-in

Consider the case of a well that is charging our in-
finite acting reservoir, that the formation and fluids have
uniform properties so that the Ei function solution applies.

It is assumed that the well is inside a zone of altered per-
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meability and that the well has been injecting at a constant
flow rate, -q, during a considerable time, t, prior to shut
in., If the pressure decline upon closing in is recorded as

a2 function of the closed in time, At, and only those pressure
declines are used after the effects of storage have died
down. By superposing a positive rate, +q, so that the rate

of injection to the formation becomes zero, see Figure 9,

then: 2
445 T
Pos = %4 70.6 %% (ln L (crar)  ~ 28
+ 445 r 2
" +qllB : w )
- w - S
70.6 —— <1n Y 2 . (4.14)

lav}
1

o
]

-qu B t+ﬁt)
.6 —— {1ln -
ws i 70 Kh <~n At

)
}
o]
[l

ws i 162.6 EE_ log T

o

~qu g t+it> (5.15)

Because the injection rate is not held constant over
the injection history up to the time of shut-in, use of
Horner's approximation will facilitates this problem. The
stabilized injection rate q, is substituted for q and the

pseudo-injection time, tp, for t in equation(4.14).

Cunulative volume of water injected STB*g%hz
t (hr) = STB
P Stabilized injection rate q_ 3~
Therefore, equation (.15) becomes
P -~ P = 162.6 log —2—— (4.16)

wS i Kh At
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Injection

Rate
+q [ _I —r— —
l
| |
|
| |
!
0 / | TIME
|
shut in |
time
-q
e L e At e

Fig. 9. Superposition of flowrate for
shutting in a well.
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From equation (4.16), a plot of shut-in bottom hole

pressure, P

ws * versus the logarithm of time after a well is

shut in yields a curve with a straight line section, Figure
10, Further, the absolute value of the slope, m, of this

straight line should be:
= 1 quB
m 162.6 Kh .17)

The slope of the straight liné can be determined by
measurement. As values for q, B, m, and h are known or can
be estimated, the permeability may be calculated from equa-
tion(4.17). The calculated effective permeabilities when
compared with permeability values obtained by other means,
as from core analyses and injectivity indices, have been
useful in evaluating well completicns. Effective permea-
bility values calculated from pressure fall-off curves are
particularly useful hecause they represent the actual
effective permeability to the flowing liquid of the forma-
tion away from the wellbore to the boundary of the reservoir.

If, for example, a permeability value indicated by
injectivity index for a given well is lower than that indi-
cated by an analysis of a pressure fall-off curve, the well

evidently has been damaged by completion or injection

methods.

Calculation of Skin Factor

The skin factor, s, can be determined from the ideal-

ized pressure fall off test theory. At shut~in time, the
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Fig. 10. Hormer Fall-0ff Type Plot

Distortion caused by storage
and/or skin effects
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Fig. 11. Miller-Dyes-Hutchinson Fall-0ff Type Plot
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flowing bottom hole pressure,vPﬁf ¢ is

, 2
B .4451‘W )
= - . - in —— - 23
Put,s Fo” 700 T (PP Tre
or 2
= 62.6" uB lo ;iiizn_ - 87i) (4.18)
Pog,s Fi ~ 162:6 7y (tee — ¢ -87s
From equation (4.15)
~ -q uB t+ At
Pws = Pi + 162.6 Xh log it
Combining (4.15) and (4.,18)
.445rLi 87 1 t+A t
- P = - m log ——%— + ,87s -~ m log
Futis = Tus & Tk At
. 2
P -P 445 E+A T
s= 1,151 _wif,s ws + 1.151 1log —_—¥ . + 1,151 log Zt
m t _
2
wf,s =~ gm .445rw
s = 1,151 > + 1,151 log ——— + 1,151
m gAL
t+At
log tA (4.19
It is conventional practice to choose a fixed shut-in
time, At, of one hour and the corresponding shut in pressure,
Plhr’ to use in equation ¢.19). Using this simplification, log
ttAt is negligible. Thus,
P - P
s = 1,151 wf,s lhr—log —-—}3—2-+3.23 (4.20)
m uer
\
The additional pressure drop, (AP)S, across the altered
zone

since (8P)_ = 141.2 3%%(5)

Thus, in terms of m

(AP)s = ,87 ms

can be obtained using the slope, m:

(4.21)
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In addition to determination of formation permeability
and skin factor, the straight line portion of the fall-cff

curve may be extrapolated to infinite shut in time, i.e.,

E%éi = 1 to obtain the original formation pressure, Pi.
Conventional practice in the industry is the use of
either the Horner or Miller-Dyes-Hutchinson (MDH) semi-log
graphs. For buildup or fall-off the Horner method involves
plotting the shut in pressure, Pws versus (t+At)/At where t
is the "producing or injecting time" and At is the shut in

time (Figure 10), 1In the MDH method the shut in pressure is

graphed as a function of shut in time, At, Figure 11,

Qualitative Analysis of Pressure Fall-Off Tests

In order that the foregoing pressure fall-off equa-

tions apply, the following well-fluid-reservoir conditions
were imposed:
1. A single well of infinitesmal diameter pene-
trates the entire thickness of the reservoir,
2, The well is charging the reservoir at a constant
rate during injection;
3. The fluid is a single phase of constant viscosity
and of constant small compressibility; and
L. The reservoir is homogeneous of infinite radial
extent.

The restrictions cited above have varying degrees of
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importance and effect in actual practice. Some of these
limitations can be handled by incorporating suitable modifi-
cations in the mathematical analysis, or by choosing suitable
portions of the data which predominantly reflect the behavior
in the region of the reservoir under investigation.

A study of the literature assures that the size of the
wellbore diameter can be considered negligible. The effect
of the variation in injection rate and of other wells in the
reservoir can be considered by use of the superposition
principle.

In water injection operations, the restriction of a
single phase fluid is flowing offers fewer uncertainties.

If the fluid mobility and compressibility are considerably
different ahead of the flood front from those in the watered
out region, a change of the pressure fall-off curve should

be observed in the latter part of the shut in time, If
liquid and gas are flowing simultaneously, equations describ-
ing two phase flow must be used in the analysis. They ﬁave
been discussed by Miller, Dyes, and Hutchinson 19, A method
which would apply when there is a gas saturation was developed
for pressure behavior in water injection wells by Hazebrock,
Rainbow, and Matthews 15.

The restriction on the size of the reservoir can be
overcome since if the data are obtained during early injec-
tion history, the reservoir will behave as if it were infinite

in size.
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Another important consideration that is necessary for
the pressure fall-off curve to reflect the permeability of the
formation to water, enough water must have been injected be-
fore the test to insure that the pressure drop as reflected
in the measurements will occur entirely in the water phase.
Moreover, the liquid saturation of the formation should be
high enough to preclude the possibility of a continuous gas
phase, Hence, this technique applies to liquid filled re-
serveirs with mobility of the injected fluid essentially equal
to the mobility cf the in-situ fluid, If the unit mobility
ratio condition is not satisfied, results of this technique

may not be valid. However, if the radius of investigation 1is

not beyond the water (injected fluid) bank, valid analysis
can be made for permeability and skin, but not for static

reservoir pressure.

Aside from the skin effect, another factor causing a
deviation between observed and theoretical pressure fall=-off
behavior. This factor is a function of fluid compressibility
as well as the storage capacity of the well for the flowing
fluid. Because the conditions giving rise to the factors
occurs in the wellbore region, they affect the shape of the
pressure fall-off curve in the early portion of the shut in
time.

In fall-off tests on water injection wells, the

storage frequently changes from compressive wellbore storage
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to falling fluid level. One of the best methods for elimi-
nating this problem is to go to a two-rate fall-off test.

A two-rate fall-off test is run by injecting at a relatively
high rate and then decreasing the injection rate while
observing the pressure decrease as a result of the rate
decrease. If rates are chosen correctly, surface pressure
is maintained and changing wellbore storage effects are

eliminated.



CHAPTER V

MATHEMATICAL MCDEL

The assumption of an isotropic porous medium has been
in most of the applications of the diffusivity equation.
This was because solutions are much easier to obtain if the
permeability, viscosity, and density terms can be removed from
the left side of equation (3.1).

Since the viscosity can be considered constant, as
in the case of Newtonian fluidsS,the density can be replaced
with potential or pressure in many systems of interest,
where the fluid is slightly compressible, the diffusivity
equation for an isotropic porous media will be chosen such
that the permeability will be included on the left side of
the equation. Thus, for a homogeneous medium with small and

constant compressibility, and unsteady state fluid flow:

57 K 39 tar R o2+ - x 2B -0 2B o6y

The form of equation (5.1) can be simplified using
Muskat'521 change of variables. The change of variables
will amount to the transformation of this equation to a new

coordinate system in which the axes are still orthogonal



but are functions of the old axes and the proper permeability
term. This can be done by defining a new Cartesian coordi-

nate system (x, y, z) such that:

- X
X = — 3
YK
X
; B ; and
YK
y
- 2
g = 3

With first partial derivatives:

3x _ 1 . 5x _ 3% _
3x © — 0 3y a= °
VK y 2
X
3y _ 1, 3v _2¥y _,
dy > 3x 23z
Y X
_ y
3z _ 1 3= _ 3z _
de S 3x 5y - 0
Ve y
2

Because the medium is homogeneous by definition, K , K and
X y

K will be considered constants (although presumably unequal).
2

Therefore, they can be moved outside the parentheses in each

term to obtain a slightly different form of equation (5.1):

3 2P a2 5 3By _ .. 3P
R.o3x G 7 Ky y (By) K57 (550 T ¢dwe g7 (5.2)

Using the chain rule for differentiation and substi-
tuting for the partial derivatives with respect to x, y and

g2 such as:
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5% 3 P 9x, 9%
Kodr (oo "% D CC DR
X Ix * 9x 9x
9 P 1
Sk (Rl o
X 3x  ax /E; /K
P 3P, 1
=K — (2 ¢~
9xX 93x X
5 9P, _ 3’p
- 225 - 5
9x 9% ax"~
it follows at once:
2 2 2
8“? + 3 P + 9B duc Ch (5.3)
2 -2 —2 et
X 3y ag

This equation now locoks exactly like the equation for
an isotropic porous medium for sclution purposes. It is a
second order, linear partial differential equation.

It thus appears that the effect of anisotrepy in the .
permeability can be replaced by an equivalent shrinking
or expansion of the coordinates.

The general solution would give P as a function of ;,
; and 2. It would be necessary to change the boundary condi-
tions using the transform equations before the constants of
integration could be evaluated once obtained as a complete
selution, however, the transform equations may be again used
to place the solution in terms of the axes of the anisotropic

porous medium.

e
Hs

In equation(5.2), the gravity effect is ignored. The

geometry of the problem is shown in Figure 12,
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No flow upper boundary

Opened interval

A

| Closed interval

No flow lower
boundary

Fig. 12. Diagram of the geometry of the
problem.
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The initial and boundary conditions are as follows:

1, The initial reservoir pressure is constant

P (x: Y, 2, 0) = Pi (5.4)
2, The reservoir is infinite, the pressure remains

unchanged at infinity.
— (m’ tx:’ 2’ t) = P. (5-5)

3. ©No flow of fluids across the upper or lower
boundaries.

3P 2P
é—; (X, Yy, 0, t) = 3—5 (x, y, h, t) =0 (5.6)

4, The flow into the open interval is constant.

r 53¢ ﬁﬂk 0 <2 <n
r=r v G.7)

s h < & < h
w
For injection, q, is positive (+).
From Chapter IV, the instantaneous point source solu-

tion to the partial differational equation 5.2 is:

3/2
8P (xy,e,c) = S he) 173 exP EWC((X-*) v (Y-Y) % )ﬂ

8(HtKKK)
5.8

Ir order to obtain the instantaneous line source of

length h | we must integrate equation (5.8) along this line.
W

The boundary condition to be satisfied is %g = 0 in the

boundary plane, taken to be the x-~y plane. Introduction of
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the imagef Q of length hw and located as shown in Figure 13
accomplishes this result, thus integrating along this line

source from -h to +h :
w w

AP _Q (d:uc) [—MC((x—X')Z + (y-Y')z )
4 sc/rx x 22 R Kot Ke 5
ouc (- e') ) d=
exp (5.9)
/— f (&

-

Let 2=(z—2)¢¢c

41\ t
i} = -ds' [duc
JéK t
Thus, as ' > h , I~ (z-hv) b uc
hd \/Z;Kz't

g' > -h , ¥ > (e+h ) [_¢uc
v v \jéKﬁt

Therefore, equation 5.9 becomes:

)
AP =’+ Qyu [ —MC((X X ) (v;v ) ) *
_ln/I_IztszKy y

+The method of images which yields closed form solutions
by deductive reasoning requires that we define an image
singularity or point source across the boundary in question
from the fundamental singularity. The image singularity
must have just the strength, location, and character to
successfully oppose the orlglnal one at the boundary
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Fig. 13. Partially injecting line source well
in a reservoir infinite in radial extent but semi-
infinite in the vertical direction.
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ZE;t
L exp ) dt (5.10)
VI
(2+h_)|_suc
A
£
—Quw e f(x=x")? (v—v')z) %
AP = + — exp 4t K + X
QHtY&”K} X
X .
(2-h ) A - (eth )[duc
A YA T
o 2 2
%;: exp (-§)d% - exp (~§)d$§
v o o

2 T2
AP = - —Q exp [’.@g (e=x")” | Cy-vy") )

8Tt/ X 4t K X
Xy ¥
z+h z-h
erf —L - erf —Y (5.11)
4K t 4K t
t &
¢uc ¢uc

Partially Injecting Source in a Thick
Formation of Infinite Radial Direction

The no~flow boundary conditions specified by equation
(5.5) may be satisfied by adding an infinite series of image
Sourceszz to the solution of equaticn (5.11), as illustrated
in Figure 14. Each of these images may be represented by an
integral of the type used in equation (5.9). Each of these
integrals may be transformed as in equation (5.10) and the

results expresseaed as equation (5.11).

Assume that the permeability is uniform and homogeneous
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Fig. 14. 1Images used to satisfy no-flow boundary

conditions for a partially injecting well in an
thick formation. :
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in the radial direction, i.e., K =K =K :

K = Kv;
-

Kv # Kr; and

2

r (va‘)2 + (y«y‘)z

Then the resulting expression for the partially injecting

case is:
(-'Cbl-lcrz )
4Krt z+h T
AP = - 2 TIK e erf —¥— . erf —%— } 4+
T LKvt '4Kvt
puc dbuc
z+(2nh—hw) z-(2nh+h_)
z erf — - erf —fﬁ————_ﬂ_ +
_ ,4Kvt ’4Kvt
n=1
puc prec
2+(2nh+h ) z+(2nh-h )
i ) (5.12)

erf erf
‘ggxg 4Rvt
dbuc bue

It is noted that in equation (5.12) when hw = h, the
integration extends from -« to +», This case reduces in the
limit to a continuous infinite line source, as shown in
Chapter IV. This situation assures the convergence of the
summation because the error function is known to converge
for the limits -o and +=,

Finally the solution for the continuous partially
injecting infinite line source can be obtained by integrat-
ing the latter solution (512) over the interval 0 tc T. For
convenience the following substitutions are made:

b =nh /h

w

e = u/h
D
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, 1/2 B , o 1/2
quB 3 ¢ucr (e +b) h ((: p®) b 1
4F = 8K h ‘f EEy {lrf ( 4KV ) T eril TRy j
o duc ¢uc
. 1/2 1/2
((2n+b-eD)2h2) /(Zn-b—zn)zhz
X - -
+ - erf A lerf( TGKY
(2n+b+zD)~h / (2n~b+e ) h at
erf e ~erf — D —
4Ry 4Ky t
$uc duc
(5.13)
or T
&P = Z%%EE" U(t) de (5.14)
r W
o
where,

"ﬂﬁﬁii) (2 +b)h (2.~b)h
U(t)-—-!‘—e éKt ( —erf—-—-D‘———)

4Kvt 4Kvt
puc duc

(2n+b—zD)h (2n—b—2D)h
+ = erf ~ erf +

n=1 ' 4Kvt 4Kvt
J duc J duc
(2n+b+g )h (2n-b+e= )h.;]
—erf ) (5.15)
!éKvt ldet
duc duc

In order to make the results of this study generally

useful, the problem will be converted to dimensionless vari-
ables. The variables are:

Dimensionless time:

Krt
ty = T (5.16)
948 ¢ucrw
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imensionless Pressi

_ Kgh 4P

Py T 141.2 quB (5.17)
Dimensionless radius;
= .
- (5.18)
W
Dimensionless thickness:
_ h Ky
hy = % RV (5,20)
W
and,
Ml(n) = 2n + b - £
M,(n) = 2n « b - g
2 D
= - (5.21)
M3(n) 2n + b + 2
Mé(n) = 2n - b + 25
The quantity vt )1/2 can now be rearranged:
948 %uc
h - h
Kvt 1/2 Kvt EL Tyl 1/2
948¢uc) 948 K. dpcr 2
W
P ——
b |51
L V Kv ’tD
= by /JtD
Also,

2
_ 948 duc ry,
dt = K dtD
T
Equation 5.15 becomes:
K ket 8
D 2 t D

: 2
D 948¢ucr



et /t t
D D a=1 )]tD
M.h M_h M h
2D
- erf + erf —-2 _ erf 41)) (5.22)
t Y
D ) b

and equation 5.13 becomes:

2
. T - _
L D (’rD ) (2.+b)h (2 -bYh
P = —_— D D D D
o tD tD

-]

M_h M.h M_h
+ I érf LD _ erf 2D + erf 3D _
. -1
n VtD ey VtD
M
erf 4hD) tp (s )
f{g ztD .23

and equation (5.14) becomes:

1 TD
PD =53 8 (tD) dtD (5.24)

It is therefore apparent that Nisle's study becomes
a special case of this formulation, i.e., if we have

complete isotropy (K. = K_ = K:), we obtain Nisle's results.
X y z



CHAPTER VI
NUMERICAL CALCULATIONS

In order to investigate how partial injection and
the existence of vertical permeability affect pressure tran-
sient curves, numerical calculations must be performed over a
suitable range of values of these parameters. More realistic
conditions would also, consider wellbore storage and skin
effecg. The purpose of this study is to develop a method of
determining horizontal to vertical permeability ratio and
skin regardless of the existence of wellbore storage. The
line source well was considered because a study by Agarwal
et a11 showed that wellbore storage causes time delays
sufficient that the line-source assumption is usually valid.
It is now important to note that equation (5.24)
is valid only in an approximate way. The dimensionless

pressure P_ is constant throughout the borehole, i.e.,

D
in reality we expect the injection pressures to be
independent of 2 and they would differ only by virtue

of the potential head of flowing fluid and friction over

the injection interval, assuming the wellbore is open.

However, the flowlines (see Fig. 15) diverge away from the

66
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N

Fig. 15. Flow lines of a partially injecting
well in a homogeneous medium.
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penetrated part of the formation and consequently the flow
rate per unit thickness, gq/h, changes with depth. The
integral therefore must be a function of the vertical
position of the point of reference, which is expressed by
ZD = 2/h.

To express PD as a function of the total (constant)
rate of flow, which is the integrated value of the varying
rates per unit thickness, an averége value of the integral
must be used. If the assumption that fluid enters the
open interval at a constant flux is made, an unreal

pressure distribution along the interval is caused. The

problem faced, therefore, is to decide what pressure to

take as the correct borehole pressure in the uniform flux
solution. MuskatZl was the first to point out this problen.
He made a comparison between uniform flux and infinite
conductivity line-source solutions at steady state. Infinite
conductivity implies that the pressure in the wellbore is
uniform and the integral of the flux over the open interval
is equal to the constant specified rate. Muskat determined
the exact infinite conductivity solution by breaking the well
into discrete elements and adjusting their strength by

trial and error until the potential at the well surface was
found to be uniform, to as high an accuracy as desired. He
concluded that the exact steady-state wellbore pressure for

a partially penetrating well (infinite conductivity), could
be obtained within 0.5 percent, assuming a uniform flux

distribution at the wellbore, by computing the pressure at
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a lccation three-fourths of the distance frem the top of the
open interval to the bottom of the well. In another study,
Gringarten and Rameyll computed an approximate infinite
conductivity line-source unsteady-state solution and compared
the results with the usual uniform flux line-source solution.
Their results showed that the simpler uniform flux unsteady-
state solution of the problem of a partially penetrating
well yields the value of the transient wellbore pressure
corresponding to the theoretical case of uniform wellbore
potential, when computed at an effective average pressure
point within the wellbore. This point is located about

70 percent of the well length from the reservoir impermeable
boundary when the oper interval is at the top or bottom

of the formation, and about 70 percent of the well
half-length from the center of the open interval if the well
is open at the center of the formation.

It was decided to use fhe selected value 6f the
integral at 2D = .75b because a recent result for transient
flow, obtained by Bilhartz and Ramey2 agreed with Muskat's.

The calculation of the function U (tD) and its
subsequent integration was programmed for the IBM 370.

Fig. 16 is an illustration of UG&Q vs t and Fig. (17) 1is
a flow chart of the calculation procedure.

The basic reservoir data used to generate the dimen-
sionless pressure vs dimensionless time Tables (4-8) are
shown in Table 3. Details of the integration program are

included in Appendix (D).
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TABLE 3

BASIC PARAMETERS USED TO GENERATE DIMENSIONLESS
PRESSURE VS DIMENSIONLESS TIME FOR A PARTIALLY
INJECTING WELL

R, = 5, 20, 80, 500, 2000, 200000 md
Kv = 20 md
r  =0.25 ft.
w
h = 25 ft.
b < 100
r
w
K 1/2
K /Kv (x /Kv)1/? R S -
E r D I, Kv
0.25 0.5 50
1 1 100
4 2 200
25 5 500
100 10 1000

10000 100 10000
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TABLE 4

DIMENSIONLESS PRESS VS DIMENSIONLESS TIME
FOR A PARTTALLY INJECTING WELL

Py (t), By b) hy = 50
b= .2 b = .4 b= .6 b = .8
1E02 13.5356 6.7689 4.5119 3.3839
14.8718 7.4751 4.9837 3.7378
16.2238 8.1996 5.4675 4.1006
17.5850 8.9376 5.9607 4.4705
.03 18.0243 9.1775 6.1212 4.5909
19.3910 9.9290 6.6244 4.9683
20.7585 10.6884 7.1336 5.3502
20.8249 10.7013 7.6479 5.4861
4 20.8742 10.9260 7.8583 5.6110
20.9108 11.0699 8.0275 6.0012
21.2574 11.2726 8.1187 6.3941
21,6039 11.4167 8.1957 6.7799
21.7155 11.5280 8.2741 6.8915
22.0621 11.8746 8.3207 7.2388
22.4087 12.2212 8.8582 7.5846
22.7553 12.5678 9.0275 7.9312
22.8668 12.6793 9.1143 8.0428
22.2134 13.025¢ 9.4719 8.3894
23.5599 13.3725 9.8185 8.7359
24.9065 13.7190 10.1551 9.0825
24,0181 13.8306 10.2657 9.1941

PRESSURE
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TABLE 5

DIMENSIONLESS PRESS VS DIMENSIONLESS TIME
FOR A PARTIALLY INJECTING

. .. WELL
Py (f;D, hy, B) b, 100
b = .2 b = .4 b = .6 b = .8
13.5356 6.7678 4,.5119 3.3839
14.9512 7.4756 4.9837 3.7378
16.3992 8.2012 5.4675 4.1006
17.8752 8.9411 5.9607 4.4705
18.3551 9.1818 6.1212 4.5909
19.8531 9.6366 6.6244 4.9683
20.3765 9.7005 7.1336 5.2503
20.9071 10.1108 7.3349 5.5061
21.4010 10.1221 7.8147 5.6310
2 21.9453 10,9024 7.8409 5.9112
4 22.2919 11.5883 7.8588 5.4041
8 22.6385 11.9237 8.2632 6.8899
05 22.7501 12.0353 8.3748 6.9035
2 22.0966 12.3819 8.7214 7.1481
4 23.4432 12.6285 9.0679 7.6146
8 23.7898 13.0751 9.4145 7.9412
1E06 23.9014 13.1867 9.5261 8.0548
2 26,2479 13.5332 9.8726 8.3994
4 24,5945 13.9807 10.2192 8.7459
8 24,9411 14,2253 10.5658 9.1025
1E07 25.0526 14,3379 10.6774 9.2104
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TABLE 6

FOR A PARTIALLY INJECTING WELL

DIMENSIONLESS PRESS VS DIMENSIONLESS TIME

(tD, hD, b) h 200
tD b —».2 b= .4 b —.'6 6 = .8
1E02 13.5356 6.7680 4.5119 3.3839
2 14,9512 7.4756 4.9837 3.7378
4 16.4024 8.2012 5.4675 4.1006
8 17.8821 8.9411 5.9607 4.4705
1E03 18.3636 9.1818 6.1212 4.5909
2 17.8731 9.9366 6.6244 4.9683
4 21.4008 10.7005 7.1337 5.3503
8 22.9439 11.4722 7.6481 5.6261
1EO4 23.4436 11.7221 7.8147 5.7410
2 23.4624 12,3998 8.4282 6.1312
4 23.5535 12.4910 8.5668 6.5241
8 23.6974 12.6349 8.7107 6.9099
1EO05 23.8089 12.7464 8.8699 7.0235
2 24.1555 13.0930 9.1688 7.3681
4 24.5021 13.4396 9.5154 7.7146
8 24,8486 13.7862 9.9620 8.0612
1E06 24.9603 13.8977 9.8736 8.1748
2 25.3068 14.2443 10.3201 8.5194
4 25.6534 14.5908 10.6667 8.8659
8 25.999 14.9375 11.0133 9.2225
1E07 26.1115 15.0490 11.1282 9.3301
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TABLE 7

DIMENSIONLESS PRESS VS DIMENSIONLESS TIME
FOR A PARTIALLY INJECTING WELL

PD (tD, hD’ b) = 500
tD b = (2 b = .4 : b = .6 b= .8
1E02 13.5356 6.7680 4.5119 3.3839
2 14,9512 7.4756 4.,9837 3.7378
4 16.4024 8.2012 5.4675 4,100¢
8 17.8821 8.9411 5.9607 4.4705
1E03 18.3636 9.1818 6.1213 4,.5909
2 19.8731 9.9366 6.6244 4.9683
4 21.4008 10.7005 7.1337 5,3503
8 22.9439 11.4722 7.6481 5.7361
1E04 23.4436 11.7221 7,8147 5.8610
2 24,0042 11.9024 8.3349 6.2512
4 25.5760 12.6883 8.8588 6.6441
8 25,9226 13.1774 9.1106 7.0299
1ECS 26.0341 13.2889 9.2223 7.1415
2 26.3807 13.6355 9.568¢8 7.4881
4 26.7273 13.9821 9.9154 7.8346
8 27.0738 14.3286 10.2620 8.1812
1EQ6 27.1854 14.4402 10.3735 8.2928
2 27.5320 14,7868 10.7201 8.6294
4 27.8786 15.1334 11.0667 8.9859
8 28.2251 15.4799 11.4133 9.3325
1E07 28.3367 15.5915 11.5248 9.4441
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TABLE 8

DIMENSIONLESS PRESS VS DIMENSIONLESS TIME
FOR A PARTIALLY INJECTING WELL

Py c;D, B> b) h, = 1000
& b = .2 b = 4 b.= .6 b = .8
1E02 13,5356 6.7678 4.5119 3.3839
2 14.95117 7.4756 4.9837 3.7378
4 16.4024 8.2012 5.4675 4,1006
8 17.8821 8.9411 5.9607 4.4705
1E03 18.3636 9,1818 6.1212 4.,5909
2 14.8731 9.9366 6.624¢4 4.9683
4 21.4008 10.7005 7.1337 5,3503
8 22.9439 11.4722 7.6481 5.7361
1E04 23.4436 11.7221 7.8147 5.8610
2 25.0042 12.5024 8.3349 6.2512
4 26.5760 13.2883 8.8588 6.6441
8 27.3191 13.9931 9.3560 7.0395
1805 27.4307 14.1047 9.4626 7.1511
2 27.7772 14,4513 9.8091 7.4977
4 28.1238 14,7978 10.1557 7.8442
6 28.4704 15,1444 10.5023 8.1908
1r06 28.5819 15.2560 10.6138 8.3024
2 28.9285 15.6026 10.9604 8.6489
4 29.2751 15.94913 11.3070 8.9955
8 29.6217 16.2957 11.6536 9.3421
1E07 29,7333 16.4073 11.7651 9.4537




CHAPTER VII
DISCUSSION AND RESULTS

In Chapter VI, a mathematical model was devised
to study the effect of permeability anisotropy and of limited
entry to flow on the pressure distribution resulting from
injecting a compressible liquid at a constant rate. The
mathematical analysis was simplified by considering the
case of a well located in an infinite reservoir of constant
thickness, and it was assumed that this well is open over
an interval adjacent to the upper (or lower) impereable
toundary of the formation. A well injecting into an
arbitrary interval within the bulk of the formation could
be treated in a similar way.

The effect of taking permeability anisotropy into
account was dealt with by a simple transformation of the
coordinates. The equation describing the pressure distri-
bution for a well in a porous medium of uniform but unequal
horizontal and vertical permeabilities was reduced to the
equation for an isotropic medium making the introduction of
anisotropy equivalent to a contraction or expansion of the

coordinates. Obtaining an analytical solution to the

77
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problem of a well partially injecting into an anisotropic
medium was therefore greatly simplified.

It was not apparent how the combination of aniso-
tropy and limited entry affected a pressure transient curve
from an examination of equation (5.23), hence, numerical
calculations were employed over a suitable range cf values.
The integral in equation (5.23) was calculated numerically.
Synthetic dimensionless pressure - dimensionless time data
were obtained from these calculations. Graphs 18 and 19
are semi-logarithmic presentation of PD vs tD for a few

particular cases. The symbol in these graphs refers to a

dimensionless injection pressure.

Limited Entry Effects

In Figure 18, a dimensionless pressure quantity

based on the injection interval, h is plotted vs dimen-

w?
sionless time. The abcissa is the product of b and PD.
It is noted that all of the curves of different injection
ratios have two features in common:

(1) At early times the slope of the first semi-log
straight line approaches that for 100 percent
injection, and

(2) At late times the slope of the second straight
line becomes very nearly b times the
slope for 100 percent injection.

However, by plotting dimensionless pressure P_ Vs

D

dimensionless time tD for a certain value of hD and
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different injection ratios, Figure 19 illustrates that at
early times the slope of the first semi-log straight line
differ from the slope of the line obtained when the total
formation thickness is effective to flow by the reciprocal
of the injection ratio and at late times the slopes of

the second semi-log straight line segments are equal to the
slopes of totazl injection, but the curves for each in-
jection ratio are parallel to the curve of total injection,
i.e., each of the curves obtained for different injection
ratios is displaced from the curve of total imjection by

a constant amount at late times. This constant pressure

drop, pseudo-skin, S may be caused by divergence of flow

b’
out of the open interval as seen in Fig. 15 where near the
wellbore a smaller thickness of the formation is effective
to flow and a lower transmissibility exists than further
out in the reservoir. This also follows since the effect
of both limited entry and an anisotropic formation would
tend to create a hinderance to the flow of fluids into the
formation. The pseudo-skin factor may be found by sub-
tracting the usual semi-logarithmic form of the radial-
flow dimensionless pressure at large dimensionless time
from values in Tables 4 through §.

In Tablie (9), the pseudo-skin factors for various
values of partial injection ratios and dimensionless thick-
ness are given. These values are shown graphically as

Figures (20) and (21).
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TABLE 9
PSEUDO-SKIN FACTOR FOR TABULATED
b, h, VALUES
\b

D 0.2 0.4 0.6 0.8
50 15.5545 5.3670 1.8021 .7305
100 16.5890 5.8743 2.2138 .7468
200 17.6479 6.5854 2.6646 0.8665
500 19.8731 7.1279 3.0612 0.9805
1000 21.2697 7.9437 3.3015 0.9901
5000 25.9166 9.5166 3.9785 1.1777
10,000 26.2208 9.6257 4.0112 1.1837
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Thus, it can be concluded that flow into the wellbore
when only a fraction of the formation is open to flow
produces a characteristic shape of pressure-time data.

There exists two distinct flow periods: a radial flow

period occurs at early time and after a period of transition,
there is a pseudo-radial flow period. These flow periods
are evident in Figure 18 where the curves for the different
injection ratios merge because the apparent early radial
flow period is the same for all injection ratios. The
second semi-log straight line is reached when pseudo-radial
flow is fully developed. It must also be pointed out that
the time the second straight line begins decreases as the
injection ratio increases.

In conclusion, limited entry to flow affects pressure
transient curves such that at early times the slope of the
first straight line, radial flow period, is inversely preo-
portional to the injection interval thickness and formation
horizontal permeability, Krhw' At the late times the slope
of the second straight line, pseudo-radial flow period,
is inversely proportiomnal to the total formation thickness

and the formation horizontal permeability, Krh'

Effect of Permeability Anisotropy

The assumption of complete isotropy of petroleum
reservoir strata is as much an idealization as that of
strict permeability uniformity. While the consensus that

permeability may vary very slightly in different directions



86

in the planes of bedding, core analyses show that exact
equality between the permeability in the bedding plane and
normal to it is the exception rather than the rule.

When the flow is two-dimensional in the bedding
plane, as in the case of completely injecting wells, the
permeability normal to that plane does not enter the
problem, whether or not the medium is isotropic as shown in
chapter IV, On the other hand this permeability must be
taken into account when there is a flow component normal to
the bedding planes. The values of K}/Ks = 1 and Ka =0
correspond, respectively, to the case of an isotropic forma-
tion, and to the case of strict radial flow confined to
the part of the formation actually penetrated by the well
where limited entry effects would vanish and the well
would tehave as though the full formation thickness were hw.

Thus the dimensionless thickness parameters, hD,
equation (5.20), represents an anisotropic effect. The
limiting condition of hD + = would correspond to zero
vertical permeability. This dimensionless thickness
influences the pressure-time response such that it deter-
mines the time at which the first radial flow period of
the limited entry curve diverges from the total injection
curve, It also determines the time at which the
pseudo-radial flow period begins. Fig. (22) shows this
observation. It is also observed in Fig. (22) that as hD

increases, i.e., vertical permeability decreases, the
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transition between the two straight lines is delayed in
time. It must also be noted that pseudo-skin effect, Sb’
is also a function of hD. These results verify Bilhartz's
findings.

Determination of Skin Effects in a Well
of Limited Entry

In chapter ITII, it was found that the presence of
a low permeability skin around the wellbore results in a
loss of injectivity. Since limited entry also contributes
to the loss of injectivity, therefore, if pressure fall-
off data obtained on a well with limited entry are used
to establish the presence or absence of skin (i.e., for-
mation damage), and a correction is not made for this loss
of injectivity, the calculations would result in an
erroneous skin value. They might indicate the presence
of formation damage when there is none, or they might
indicate a value larger than the true value. This could
lead to an erroneous decision for planning remedial work.
From the above analysis of dimensionless pressure
vs dimensionless time data for an injecting well the
pPressure response for the early time period is given by

equation (4.11) where the slope is proportional to 1/b,

. .,2
<445 ¢
P.. (t) ~ P = -70.6 38B__ 1n<—cT‘l—) 7.1)

wE i K h b
T

where ow(t) and t correspond to any point on the initial

semi-log straight line.
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If wellbore damage exists, the pressure drop due

to skin will be related to the injection thickness, hw'

(ap) = 141.2 SEE_ /oy (7.2)
s K h
I w
~ UB |
(4P)_ = 141.2 —‘1—————Kr = (s) (7.3)
Equation (7.1) becomes:
2
445
- = - quB____ Ty )
Poe = By 70.6 = [1n o 2s (7.4)
r
P - p. = 162.6 B [ Kt
wE " 6 T b(‘og g;f;*j + .87s-3.23
r W (7.5)

The slope of the first semi-log straight line is:

uB
m, = 162.6 %FE G.6)
Y

If the formation thickness, h, is unknown, then

B
m, = 162.6 I{‘lﬁg— (7.7)
r w

The radial permeability can be calculated from:

B
k_ = 162.6 g—“h— G.8)
1l w

The skin effect can be calculated by rearranging equation

(7.5),
P7f(t) - P K t
s = 1,151<.“ L - log e 3.23) (7.9)
m 2
1 cbucrw

From a practical standpoint, the early slope will
not always be observed since it occurs in most cases during
the very first seconds, or possibly, minutes of a test.
Further, the early slope is readily obscured by effects

such as afterflow or physical wellbore damage. The late
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slope is normally used to calculate the total formakion
transmissibility.

As it was previously noted the slope of the late
times second semi-log straight line, pseudo-radial flow

period, is equal to the slope of a totally injecting

well, but the curve is displaced by a constant amount. This

constant pressure drop due to pseudo-skin effect, Sb’ is:

= qeB
(AP)Sb 141.2 5 (s,) (7.10)
Thus, the pressure response for the late time period is:
2
.445r
P t) - P, = - . S_‘_‘_E( —_—
wf( ) : 70.6 K _h 1n s 2 Sb (7.11)

where Pw (t) and t correspond to any point on the second

f
semi~log straight line.
If wellbore damage exists, the pressure drop due

to skin will still be related to the injection thickness

h .
w

Equation (7.11) becomes:

t - = . T -
P (1) P, 162.6 " h(log - 5 + .875, + .87s 3.23)

dierx b /
Y 12)
The slope of the second semi-log straight line is: (7.
_ quB
m2 = 162.6 krh (7.13)

The radial permeability can be calculated from:

k_ = 162.6%‘% (7.14)
2

If both of the semi-log strazight lines are present,

then the partial injection ratio, b. can be obtained by com-

bining equations (7.7) and (7.13).
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m h
2 Y. .- p - (7.15)

m1 h

The skin effect can be calculated by rearranging equation (7.12)
P __(t) - P, K t
wf i r
- —_— - . +3.
log ¢ucrd 87Sb 3 23)

(7.16)

s = 1.151(b)(
m
2

However, the skin effect is now a function of the

pseudo-skin, Sb’ which is a function of the injection ratio,

and dimensionless radius hD

b,
Determination of Vertical Permeability
At the stabilized state (often described as the
mi-steady-state) the equation for the ideal flow into a
well is:
o) T
*
7.07*%10 QJI‘jL B .75) (7.17)
W
The injectivity index is:
Q.UB KX "3 K
i1 = Pl — = 7.07r10 +h (7.18)
wf i in -& - .75

Ty
Thus the impairment of injectivity due to partial injec-

tion effects and due to the difference in the vertical and

horizontal permeabilities may be given by:
r

ln ¥~ - .75
I = - = - (7.19)
9 10 =% - .75 + 8
T b

w
Using the dimensionless variables of Table (3)

a generated set of tables and/or plots will give the
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ability to determine the dimensionless thickness
easily and accurately.

The impairment ratio, I, can be calculated as a
function of hD and b for different drainage radii. The
results are shown in Tables (10-12), and graphically in

Figures (23-25).

METHOD OF CALCULATING VERTICAL PERMEABILITY AND

SKIN FACTORS OF PARTTIAL-FLUID-INJECTION WELLS

Before proposition of this method, it must be pointed

out that limited entry to flow decreases well injectivity
as does permeability anisotropy. Decrease in vertical
permeability lowers I. As a limit when the vertical per-
meability is zero (hD + o), I becomes equal to b, where b
is the fraction of thickness open to flow. Since some
degree of anisotropy is the usual case, injectivities
calculated on the basis of complete isotropy usually will
be higher than actual injectivities. This is true since
K2 < Kr in most practical cases.

The terms needed in this simple approach are easily
obtained. They are the wellbore radius, the radius of
drainage, the formation thickness, the thickness of the
interval open to flow, the actual injection rate and the
ideal injection rate. In order to calculate the vertical
permeability, the injection ratio can be calculated from

the ratio of the slopes of the early and late straight
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TABLE 10
IMPAIRMENT RATIO I AS A FUNCTION OF b,
Te
-hD, ;; = 1320
e a e in e g5 1l
hD b Sb 5 In < 1n - - 75 lnr -,75+sb I
\24 \ w A
50 .2 15.5545 1320 7.1854 6.4354 21,9899 .2927
.4 5.3670 11.8024 5453
.6 1.8021 8.2375 .7812
.8 .7305 7.1659 .8681
100 .2 16.5890 23.0244 .2795
b 5.8743 12,3097 .5228
.6 2.2138 8.6492 7440
.8 .7468 7.1822 .8960
200 .2 17.6479 24,0833 .2672
4 6.5854 13,0208 4942
.6 2.6646 9.100 .7072
.8 .8665 7.3019 .8813
500 .2 19.8731 26.3085 L2446
.4 7.1279 13.5633 L4745
.6 3.0612 9.4966 6777
.8 . 9805 7.4159 .8678
1000 .2 21.2697 27.7051 .2323
y 7.9437 14.3791 L4476
.6 3.3015 9.7369 .6609
.8 .9901 7.4255 .8667
10000.2 26.2208 32.6562 <1971
4 9.6257 16.0611 .4007
.6 4.,0112 10.4466 .6160
.8 1.1837 ¥ } ! 7.6191 .8446
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TABLE 11

IMPAIRMENT RATIO I AS A FUNCTION OF b.
r

ho. =% = 2640
D T, S
r T T r
By b S . = i1n — 1n —= -.75 ln—= -.75+$ I
b T : o o r . A b
\°4 \04 w w
50 .2 15.5545 2640 7.8785 7.1285 22.6830 .3143
4 5.3670 12,4953 .5705
.6 1.8021 8.9306 .7982
.8 .7305 | ‘ 7.8590 .9070
100 .2 16.5890 23.7175 .3006
4 5.8743 13.0028 .5482
.6 2.2138 9.3423 .7630
.8 .7468 7.8753 .9052
200 .2 17.6479 24.7764 .2877
4 6.5854 13.7139 .5198
.6 2.6646 9.7931 7279
.8 8665 7.9950 .8916
500 .2 19.8731 27.0016 2640
.4 7.1279 14.2564 .5000
.6 3.0612 10.1897 .6996
.8 .9805 8.1090 .8791
1000 .2 21.2697 28.3982 .2510
A 7.9437 15.0722 L4730
.6 3.3015 10.4301 .6835
.8 .9901 8.1186 .8780
10000 .2 26.2208 33.3493 .2138
A 9.6251 16.7542 L4255
.6 4.0112 11.1397 .6399
.8 1.1837 | ‘ } 8.3122 .8576
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TABLE 12

IMPAIRMENT RATIO T AS A FUNCTION OF b,

T
e
hD, - 000
woo.
r r .r
h, b S —£ a2 1n=2 75 1n=2 .75+g I
D b r T r . T b
w w w w
50 .2 15.5545 8000 8.9872 8.2372 23,7917 .3462
o4 5.3670 13,6042 .6055
.6 1.8021 10.0393 .8205
. 8 .7305 8.9677 .9185
100 .2 16.5890 24,8262 .3318
<4 5.8743 14,1115 .5837
.6 2,2138 10.4510 .7882
.8 7468 8.9840 .9169
200 .2 17.6479 25,8851 .3182
<4 6.5854 14,8226 .5557
.6 2.6646 10.9018 .7556
.8 .8665 9.1037 .9048
500 .2 19.8731 28.1103 .2930
.4 7.1279 15.3651 .5361
.6 3.0612 11.2984 .7291
.8 .9805 9.2177 .8936
1000 .2 21.2697 29.5069 2792
b 7.9437 16.1809 .5091
.6 3.3015 11.5387 .7139
.8 .9901 9.2273 .8927
10000 .2 26,2708 34,4580 .2391
b 9.6257 17.8629 4611
.6 4,0112 12.2484 .6725
.8 1.1837 f ! | 9.4209 .8744
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lines if both are present or estimated as shown below.
The radial permeability can be calculated from either
straight line portions.

Fig. 27 is a flow chart outlining the proposed
.method. Based on this outline an example calculation

will be used to illustrate the use of this method.

Partial Injection Ratio Calculation

In studying the effect of partial penetration, the
mathematical derivation was based on the assumption that the
part of the open hole is near the top of the formation, such
as in the case of partial injection with open hole completicn.
However, by making use of symmetry consideration, the methods
and curves can also be used if the open interval 1s somewhere
else in the well4,

1. Figure 26a represents the case of a well which

penetrates a fraction hw = 20 ft. of a formation of thickness

h = 100 fc.

2. In Figure 26b, the wellbore is open to the formation
over an interval of 20 feet in the middle cf the formation.
Using symmetry consideration, it is seen that the same theory
applies if the effective h is half the total formation

thickness and consequently,

- 10
50

3. In Figure 26c, the wellbore is open to the

b = 0.2
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formation in five intervals, totaling 20 feet. Symmetry con-
siderations again show that the same theory applies if the

effective h is half the total sand thickness divided by the

number of intervals, and consequently,

.
b=75=0.2
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Calculate radial permeability,
Kr’ from the semi-log straight

line portion of the fall-off
curve using equation (7.13)

<

Calculate thé impairment Ratio, I.

Determine the value of partial
injection Ratio, b.

Determine the value of the dimensionless
thickness, hD, from Figures 23-25.

Calculate the value of vertical
permeability, Kv from equation(5.20)

j!

Determine the value of the pseudo-skin
factor, Sb, from Figures 20-21.

1

Calculate the skin factor, s,
from equation (7.16)

Fig. 27. Flow Chart Outlining the Method of Calculating
Vertical Permeability and Skin Factor of
Partial~-Fluid-Injection Wells.
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EXAMPLE CALCULATION

A water injection well has been injecting at constant
rate; q = 103 BPD, then it was shut-in for pressure fall-

off analysis.

Data
ow,s = 2200 psi, Pi = 1200 psi, p =1.0 ¢cp
B = 1.05, c = 3., %10°° psi'l, h =20", h=40"
rw = 0.25°%, re = 660", ¢ = .18, q = 103 BPD

Procedure
1. From the fall-off curve, the absolute value

of the slope of the straight line segment,

m, = 84.5
2. Using equation(7.14):
K = 162.6 348
r m,h
2
_ (162.6)(103)(1.)(1.05)
Ky (84.5) (40) .55 md

3. Using equation(7.17):
(7.07)(10'3)(4.55)(40)(2200—1200)

9 T (1.05)(1.)(1n 2640-.75)
= 172 BBL/D
- .9 _ 103 _
4 I 1 .6

From Fig. 24, we obtain hD = 500

5. The vertical permeability can be calculated using

equation (5.20):
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h
hD T or

w
40 5.55
300 = =3 ,/Kv

Kv = 0.47 md

wl =
<|n

From Fig. 20 we obtain the amount of pseudo-
skin

Sb = 4
Using the fall-off curve, at shut-in time of
(10) hours ow from the straight line portion

is 2000 psi. Thus we can now calculate the

skin from equation 7.16.

2000-1200

(1.151)(.5) ( (4.55)(10)

Il

lo

(.87) (4) + 3.23)
+0.0505

If we increase the ratio from 0.5 to 0.75, with-
out further damage to the wellbore, therefore,
from Fig. 24:

I = .79
and q = (.79) q; = (.79)(172) = 135.88 BBL/D
Thus, the injection rate can be increased by

135.88 - 103 ,
103

100 = 327%

84.5 T 08 (L18)(1.)(3%10-6)(.25)2



CONCLUSIONS

The work represented here may be summarized as
follows:

1. From the mathematical analysis of the pressure
behavior of an injection well in a liquid-filled unit-mob-
ility- ratio reservoir, it has been demonstrated that the
reservoir pressure, the potential injection capacity of the
formation and the degree of formation damage in the immediate
vicinity of the wellbore can be estimated.

2. A mathematical model was derived and numerical
calculations were used to study the effect of anisotropy
on the pressure behavior of wells with partial-£fluid-
injection.

3. From the theoretical results of this study,
partial injection produces a characteristic shape of the
pressure transient curve which differs from the classic
form, and this difference may be utilized to estimate the
partial injection ratio. However, it does not appesar
feasible to estimate the amount of partial injection from
actual fall-off curves due to skin and storage effects.

4. The effect of partial injection is similar to

that of wellbore damage. This additional pressure drop
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may be estimated by procedure outlined in this study.

S. The amount of wellbore damage may also be
approximated for both isotropic and anisotropic media by
procedures outlined in this study.

6. Injectivity impairment chart similar to pro-
ductivity impairment chart of Brons and Marting was extended
to include the effect of anisctropy.

7. A simple method of determining vertical perv-
meability in partially injecting wells is proposed. This
method utilized information from pressure transient testing

and injectivity impairment charts.



NOMENCLATURE

formation volume factor, rub/STB

partial injection ratdio

, ir s -1 -1
isothermal compressibility, psi or atm
formation thickness, ft or cm

length of line source or perforated thickness,

dimensionless thickness

3
cm” /sec
atm

injectivity index, BPD/psior
impairment ratio
permeability, md or umz
radial permeability, md or umz
permeability in the x-direction, md or umz
permeability in the y-~direction, md or umz
vertical permeability, md or umz

vertical perméability, md or um2

natural logarithm, base e

slope of early-time semi-log straight line
slope of late-time semi-log straight line
pressure, psi or atm

dimensionless pressure

surface flow rate, cm3/sec or STB/D

radial direction, ft or cm

wellbore radius, ft or cm

127

ft or cm



108

re = external boundary radius, ft or cm

LN = dimensionless radius

s = true skin effect

Sb = pseudo skin effect

t = time, sec or hr or days

tD = dimensionless time
X,¥.,2 = Cartesian coordinates

z = vertical direction

¢ = fractional porosity

u = viscosity, cp

z = hydraulic diffusivity, 0'282264K in ii?
% = a variable of integration

= 3.14159

e = 2.,71828

Ei = exponential function, equation (3.5), Table
erf = error function, Table 2

# = multiplication sign
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PRACTICAL UNITS USED IN THIS STUDY

Variable Units
c vol/vol/psi
¢ fraction
h ft
K md
H cp
P psia
q STB/day
t days
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TABLE 2

. +
The probability integral, erf (x) vs x, (After Pierce )
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TABLE 2-Continued
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TABLE 2-Continued
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MATHEMATICAL DERIVATIONS SHOWING THAT EQUATION
4.2)IS A SOLUTION TO THE PARTIAL DIFFERENTIAL

EQUATION (4.1)

A solution of a partial differential equation in
some region R of the space of the independent variables is
a2 function which has all the partial derivatives appearing
in the equation is some domain containing R, and satisfies
the equation everywhere in R. (Often ome merely requires
that the function is continuous at the boundary of R, has
those derivatives in the interior of R, and satisfied the
equation in the interior of R.)

Applying this concept to the problem at hand; we
have:

The differential equation is:

2 2 2
3P 3 P a P 3P
Rx =5 + Ky —5 + Kz —5 =¢uc =—— (C1)
8x2 Byz 322 at
The solution is:
AP (X,Y,E,t) = - Q ((bBPC; }/2 exp "¢4UtC (
(Mt Kxhy&z
2
(x-x')” (y=v')? (2—2)2)
K 3’ + K / (CZ)
X ~y 2

Differentiate{C2) twice with respect to x, y, and 2:
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- ) )
S 3P _ _“Q(Quc)3/ . =2(x-x"douc eA
.3 3 ' 1/2 K )t
x Bt K K Ky) / 4( x)
2 2 2
_ x-x') (y~-y") (2-8")
where, A = K o« X + K
x y 2
32P - =2(4uc) ngyc)3/2 eA + -2 (x-x")éuc .
2 4K t ' 3.3 1/2 4K t
Ix x 8(n~t kaykz) X
=2 (x-x"duc . CL(QUc:)B/Z ' oA
4th 8(n3t3K XK )1/2
Xy 2
Therefore,
g - 32P _-1. 9(¢uc)5/2 AL Q(éuc)7/ . (x-x")
X 2 16 3.5 1/2 32 3.7 1/2 K
3x (177K KyKy) (n"t'K K K_)
(€3)
Similarily,
o 3% _ -1 GGue)®’? AL L otene/? . L=y ")
2 16 3.5 1/2 32 37 1/2 K
y n 'd 7
dy (Tt KXK Kz) ('t I‘xKyI‘z) y
(C4)
And,
K 22p - -1 Q(@uc)slz AL L Q(mm)”z -(2-2')2
2 ae2 16 (H3t5K K K )1/2 32 (n3t7K K K )1/2 K2
Xy 2 Xy &
(C5)
Therefore, the left hand side of equation(Cl) is:
-3 QCoue)®’? AL 8 Gpe’’? A ((x-x')2 +
16, 3. 5, 1/2 32 3.7 1/2 K
(I"e"K X K (It ReKoKg) X
! 2 —a! 2
(yxj )7, (e=2') ) (c6)
y K
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Now .differentiating equation{C2) with respect to t, we obtain

the right hand side of equation(Cl):
5/2

9P _ =3 Q (suc) eA L 9 (¢UQl?/2 eA
t 16 (H3t5K'K X )1/2 32 (H3t7K X K )1/2
Xy 2 Xy 2

o,
((x;') p Lze? | Gemel) ) @

X y -]

From equations (C6) and (C7), the left hand side of equation (C1l)

is equal to the right hand side, i.e., equation (C? is a soclu-

tion to equation (CI).



APPENDIX D



125

Fig. 17. Flow chart of computer program.
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9,
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FORTRAN IV G LEVEL 21 MAIN DATE = 78337 11732724

0001 DIMENSION BB(S5),SETA( £} sFRZSS( S) +0I6)eTF(S)WLT(S)

0002 EXTERNAL U
Cc BB IS PENETRATION RATICEBETA IS DIMENSIONLESS THICKNFSS

0003 FEAD(S+1)(BE(F)sK=14I1)

0004 1 FORMAT(4F10.2)

000s READ(S»2)(BETA(KK) o KK=13JJ}

0000 2 FCRMAT(2F1042)
c TI+TFLAND DT £C2 THE INITI3L TIME, THE FINAL TIME AND IMCSSMINT
c OF INTEGRATIUN RISPICTIVSELY.
c THE PROCESS OF INTEGRATICZN HaS EEEN CIVIDED INTG FCUR PAFTS,

3237 READ(S+20)(DT(J) s TF(J} e 3=2:5)

goos8 20 FOFMAT(SE7«0)

0009 PEAD(S+33IMyN,TI,11,J44ERS

0010 33 FORMAT(I2:12sFSe0s2124F1047)

0011 DO 3 K=1,11
c D 1S 20=Z/H

Qo112 D(K}=0e7548B(K)

0013 DO 3 KK=14JJ

3214 A=2LAG(TI)

001S J=1
< SINCE THE INTEGRATIGN CANMNIT 8BE STARTED AT TIME 2FrC o THZ INSTAMT
c ~ANEQUS INFINITE LINZ S2USTZ E@ FUNCTION APFROXIVMATIOCON IS USSD
Cc THZ AREA UNCE® THT CUIVI CF THE FUNCTIOM U(T0D) IS FQUAL TO THE
c DIMENSICNLESS PRSYIURS JRIPe

0016 PFEESS(JI={ALOG{ T ) +.82307)/(BE(KI*2.0)

oCc17 D0 3 J=2,4

J)ts WEITE(6423))

0019 200 FORMAT(*1' ,4X,!* 28 *41CXe? BIZTA'L18Xe'DIMENSIONLESS PRESSY,

ELOX, *DINMENSEONLESS TIMEY ,/7)

0020 PRESS(J)=PRESS(J~1)
C DETCRMINII THE NUMSIR QF INTESGRATIONS oNF

21 NF=(TF(J)-TI1)/DT(J)

0022 B0 30 I=14NF

Q023 TO=FLCAT(I)4DT(J)

)24 8=ALCG(TD)

0025 F=Q(D+BBBETA MK KKLTC)
Cc FUNCTION Q IS USEC TO CETERMINE THS VALUE JF FUNTICN U .

0026 IF(F.LE.EPS) GO T2 257
C THZ VALUE OF F D=TIRMINIS Tro TIMS AT WHICH ThHE INTEGRAL (S NO
c LONGER A FUNCTION 1JF THE PEINSETFATION RATIQ AND/QR THE AMISOTROPY.

o027 GO TO 268

o028 297 P=PRESS(J)+0e5*(B~-1)

3329 WRITE(E+300) BEB(K)WBETA(KK) sPeTD

0030 GO TO 30

3331 258 PRESS(JIISPRESI(IIISINP(A, B N,UILIiBBBETA (MK KKI/Z(BB{K)*2.0)

0032 237 WRITZ(64300) PBIK)+BLTA(KK) yPCTSS(JI) T

0033 300 FOCMAT(IXFl0.248X+F104238XeF252S518XsF15e9)

234 A=8

0035 30 CONTINUZ

0036 3 CONTINUE

3237 sSTOP

0038 END
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FORTRAN IV G LEVEL 21 SIun DATE = 773¢€1 11733741

3311 FUNCTION SIMP(A;BsMeUsDeBB¢BETAMyK KK)

0062 DIMENSICON D(6)«BB(6) BETA( 6)
C THE FUNCTION SIMP USES N ASPRPLICATIONS NOF SIMPSON®'S RULE TO
[« CALCULATE NUMERICALLY THE INTEGRAL QOF U(T)*DT SETWEEN INTEGRATION
[« LIMITS A AND B . SUMEND IS THE SUM CF ALL U{T(I)) FCF EVEN I
c (EXCEPT FOR U(T(2%N)) WiHILE SUNNMID IS THZ SUM CF ALL U(T(I1) €0P
c I ODDe H 1S THE STEPSIZE BETWEEN ADJACENT T(I) AMD TWCH IS THE
[ LENGTH OF THZ INTERVAL OJF INTEGRATIGN FOR EACH INDIVIDUAL
[ APPL ICATION OF SIMPSON“S RULE, LL IS THE ITERATICN COUNTERe.
[ eoee s INITIALIZE PARAMZ 'ERS eece

0032 TWOH=(B=-4)/N

0004 H=TwOH/2.0

0005 SUMENDO=0.0

326 SUMMID=2.)
c esese EVALUATE SUMEND AND SUMMID ceee

o007 DQ 200 LL=1sN

3338 T=A+FLCAT{LL~1)*TwdH

0009 TH=T+H

3010 SUMEND=SUMEND+U{ C+3B+s3:TAsMeKsKK,T)

0011 200 SUMMIC=SUMMID+U(D 8343 TAsMesKsKKsTH)
[o4 eoee e RETURN ESTIMATED (ALUE OF THE INTEGRAL eescece

9312 AAA=U(D 3B +s8ETAL MeKe KK 1 A)

0013 BEB=U(D+3B8+BETAe MaKeKK+3)"

co14 SIMP=(2.0%SUMEND +3 025 MMID-AAA+EBB) 3H/3¢3

3315 RETURN

0016 ) END



FORTRAN IV G LEVEL

331
0902

0603
0324
0005
0006
2337
cocs
0009
0010
oo11
12

0013
co14
cQ1sS
2216
0017
co18

NoOnNNO

192

1390

21 U DATE = 77351 11731741

FUNCTION U(DBEsSETAsMKsKK.TD}

DIVMENSION BBl61+BETA( ) ¢D(O)+EMI(20)+EM2{20)+EM3(20)+EMI(20)
U IS A FUNCTICN OF PENETRATION RATIO o DIMENSIONLESS WELLBQORE
THICKNESS o+ AND DIMENSICONLESS TIME,

FUNCTION U IS USED TO EZ INTEGRATED WHERE THE LIMITS CF INTEGPAT-
ION ARS IN THE FCRM OF NATURAL LGOGS.

TD IS DIMENSIONLESS TIMSeM IS THZE NUMBER OF SOURCE IMAGES USEDe
TDS=SCRT{TD)

BTD=BETA(KKX)/TDS

SUM=0.0

00 100 J=1.M

Y=FLOAT(J)

EMI(J)=2.0%Y+8B(K)~-D(K]

EM2( J)=2.)2Y-BB(K)~D(K)

EM3(JI=2.0%Y+BR{K)+D(K)}

EMA(J)=2.0*Y3B(K)+D{(K)

SUM=SUM+ERF (EM1( J) xSTD )} ~ERF(EM2{J ) *BTD) +ERF(EMI (- J)*BTD)—ERF(

& EMA(J)}*#BTD)

E=EXP(~140/TD)

G=ERF {.{D(K)}+BB(K))*BTD)

H=ERF{(D(K)-BB{K) )*BTD!

U= (Ex((G-H)+SUM) ) /(243)

RETURN

END



FORTRAN IV C LEVEL

9321
Q002
023133
0004
000S
9326
0007
0008
22239
0010
001t
0012

L3
Qo114
0015
16
0017
o018

100

=
»
[

21 Q ' DATYE = 773¢ 11731741

FUNCTION Q(D+BEsBETA MK KKsTD)
DIMENSIOM BB(6)BETAL 6)+0(6)1EMI(20}EM2(20)+EM3(20),EME(20)
TOS=SCRTITD)
BTD=BETA(KK)/TOS
SUM=0.0
00 1320 J=1.M
Y=FLOAT(J)
EMI(J)=2.0=Y+BB(K)~-D(K)}
EM2(J)=2.0%Y~BB(K)-D(K}
EMI(JII=2.0%xY+BBIKI+D(K)
EMAL JI)I=24 IxY~-BBIK)+D(K]}
SUM=SUM+ERF {(EMI( J) *BTD) ~ERF(EM2(2) *BTD)+ERF(EM3{ J) *8TD)-ERF(
& EMA(J)*BTD)
=EXP(~1e)/TD}
G=ERF({D(K)+B8B(K) }*3TD;
H=ZRF {{D(K)—B88(K) )}=BYD})
Q=(EX({(G-H)+SUM) )/ {2.0%YD)
FETURN
END



