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Chapter 1 

Introduction 

Great interest in the scattering of microwave signals from random rough surfaces 

began in World War II. Understanding of rough surface scattering has applications 

to remote sensing, oceanography, communications, material science, and optics. Mi

crowave frequency scattering from the sea surface is of particular interest since it 

appears as clutter which can mask the target signals. Understanding the surface scat

tering process will aid in the development of methods to detect target signals from 

within the clutter. On the other hand, the sea surface scattering itself is the signal 

in remote sensing applications. The backscattering is correlated with meteorological 

and oceanographic conditions such as wind speed, wave state, and temperature. Un

derstanding of the scattering mechanisms facilitates the extraction of oceangraphy 

and meteorology conditions from the measured scattering [3] [4] [5] [6] [7]. 

Sea surface backscattering is reasonably well understood when the radar wave is 

incident on the surface at moderate incidence angles (30° - 60°). The scattering is 

dominated by the Bragg scattering mechanism in this region [8]. However as the 

incidence approaches grazing, the backscattering shows different characteristics. In 

particular, it is characterized by brief bursts of backscattering known as "sea spikes" 

[9]. Several scattering mechanisms have been proposed as the cause of sea spikes 

[10][11][12][13][14][15]. One of the most successful models is the back-reflection from 
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breaking waves [11 ][16]. The direct and multipath quasi-specular reflections from 

the overturning crest and the front face of breaking waves were thought to be an 

important factor to cause sea spike phenomena [14][2]. Studying on the mechanisms 

that lead to sea-spike scattering from breaking wave crests is the subject of this paper. 

1.1 Sea Spike Phenomena 

Bursts of strong backscattering often dominate the radar returns from sea surface 

when the incidence approaches grazing. This is termed the sea-spike phenomenon 

[17] [18] [19]. The target detection and tracking performance of high resolution radars 

is seriously affected by the sea spikes as strong radar clutter. Therefore, the efforts on 

clutter cancellation require good understanding of sea spike scattering mechanisms. 

When looking upwave, the horizontally polarized (HH: transmit/receive) backscatter

ing differs from the vertically polarized (VV) backscattering by being sharper, spikier, 

and more intermittent [20][21][22][23]. Sea-spike returns can give HH scattering cross

sections up to 10 dB greater than the corresponding VV cross sections. This behavior 

usually is termed a "super event". 

The practical radar experiments usually provided upwave looking backscattering 

from real sea surfaces. The experimental data showed that VV's sensitivity to surface 

features such as the small waves (ripples) associated with the wind-dependent fine 

structures of the sea, and HH's sensitivity to surface features such as smooth reflecting 

surfaces (facets) associated with sharp wave crests (wedges) [23]. However, the condi

tions under which the experiments are performed cannot be controlled. The reliable 

ground truth measurements of the scattering surface are extremely difficult to obtain. 

Also, it is difficult to clearly identify the involved physical scattering mechanisms from 

the radar experimental results due to lots of surface features being included in its large 

observation view. Some laboratory test radar systems were developed to measure the 

backscattering from the water tanks which were specially designed to generate spe-
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cific wave features [24][25][26]. Although the laboratory experiments were helpful to 

recognize the scattering mechanisms, they were expensive and inflexible compared 

with theoretical analysis using analytical models or numerical simulations. 

Various analyses have been attempted to explain sea spike phenomena and the 

polarization-dependent contrast between VV and HH upwave backscattering (super 

event). Bragg resonance [27] is believed to be the mechanism which leads to strong 

backscattering from electromagnetically small-scale roughness surface at low grazing 

incidence. However, standard Bragg theory can not explain sea-spike phenomena, 

particularly when super-events occur. Experimental studies [27] have shown a corre

lation between sea spikes and wave breaking. Quasi-specular reflection from breaking 

waves was believed to be a major contributor to the backscattering at grazing in

cident angles [11][16]. On the other hand, as Trizna [15] pointed out, the different 

decorrelation times of the horizontal polarization and vertical polarization sea spikes 

suggests different sources of scattering for HH and VV. Several models have been 

presented to describe sea-spike scattering mechanism, such as wedge diffraction from 

steep wave crests [10], specular reflection from overturning waves [11 ][12], bounded 

and tilted Bragg-resonant waves on the crest of waves [13], and the interference of 

multipath scattering from the steep crest and tilted wave face [14] (including Brewster 

angle damping of the vertically polarized reflection from the wave face [15]). West's 

numerical backscattering from LONGTANK model wave crests indicated that the 

interference between the reflections from the convex and concave reflection points on 

an overturning wave crest can also lead to super events [2]. 
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1.2 Theoretical Analysis of Surface Scattering 

1.2.1 Analytical Models and Numerical Techniques 

Generally speaking, theoretical scattering investigation includes the development of 

both analytical models and numerical simulation methods. Existing analytical models 

include the Kirchhoff approximation (KA) [8], the small-perturbation model (SPM) 

[28], the two-scale mode (TSM) [29], the small slope approximation (SSA) [30][31], 

and the phase perturbation technique (PPT) [32] [33] [34] [35] etc. Analytical scattering 

theories are of great importance since they not only show how the variation of surface 

parameters will affect scattering behavior, but also provide physical insight that may 

not be available from experimental data alone. However, the approximations inherent 

in the development of the models lead to relatively strict application conditions. To 

overcome this limitation, numerical methods have been developed. The popularity of 

numerical methods has increased with the improvements of computer technology. 

Numerical methods include both differential equation methods (DEM) and inte

gral equation methods (IEM). As implied, DEM methods solve Maxwell's equations 

directly in differential form, usually yielding the electromagnetic fields directly. Typ

ical examples are the finite difference time domain method (FDTD) [36] and the 

finite-element method (FEM) [37] [38] [39]. As a time domain method, FDTD has an 

advantage of directly obtaining broadband information about the scattering prop

erties of a surface. However, to obtain the far scattered fields, a near- to far-field 

transformation must be employed since the fields are only available directly in the 

region of discretization [40]. FEM is well suited to inhomogeneous problems with 

complex geometries [37][38][39]. FEM requires the solution of a linear system with 

a sparse matrix. As with FDTD, special treatments must be used to find the far

field scattered fields away from the surface region [41][42][43][37]. The artificial mesh 

truncation (boundary) condition is an inherent problem for these techniques when 
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treating the scatterers with open geometries. Also, a drawback common to all DEM 

methods is the grid dispersion error incurred [44][45][46]. For example, in FDTD ap

plications, the grid dispersion error causes a wave to have an incorrect phase velocity 

on a grid. This is a severe limitation for computation over large scatterers because 

the dispersion error is cumulative. The dispersion error can be suppressed using a 

higher grid density or choosing a higher order solver [47][48]. However, both measures 

will lead to higher computation cost. 

IEM methods solve an equivalent integral equation representation of the fields. 

The moment method (MM) is the most common IEM technique, which is based on 

the electromagnetic equivalence theorem. The equivalent surface currents are the 

direct solutions of an IEM solver. The far scattered fields are then obtained through 

the radiation principle. An MM treatment of the field integral equation leads to a 

dense matrix system that must be solved. Direct solution of the linear system is of 

order O(N3), where N is the number of unknowns to be found. Iterative solution 

of the system can reduce the operation count to O(N2). However, the computation 

cost of even iterative solution is very high when a large surface scattering problem 

is solved. The required matrix-vector multiplies are the major computation load of 

an iterative solution. Therefore, algorithms to accelerate the matrix-vector multiply 

have been developed, including the fast multipole method (FMM) [49][50][51], the 

multi-level fast multipole algorithm (MLFMA) [52][53][54], the fast steepest descent 

path algorithm (FASDPA) [55][56], and the adaptive integral method (AIM) [57]. 

These acceleration methods improve the order of the MM solution stage to as low 

as O(Nlog2 N), thus giving very efficient tools for large surface scattering computa

tion. In practical applications, the MM-based solutions usually are thought of as the 

"exact" reference used to verify the validity of the analytical models. 
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1.2.2 Test Surface Models 

Initial analytical studies of rough surface scattering focused primarily on single-valued 

surfaces derived from linear wave spectra. These are, in some sense, an approxima

tion of the true ocean surface when a valid spectrum is used. Sample surfaces are 

easily generated using standard Fourier techniques. A popular wave spectrum is that 

introduced by Pierson and Moskowitz [58]. It is superior to the simpler Gaussian 

and power-law spectra that were previously used in that it accounts for wind speed. 

Analytical models may be formulated to give a statistical representation of the field 

scattered from a typical wave spectra, or the deterministic field associated with a 

particular sample surface. In the latter case, the statistics are estimated using the 

Monte-Carlo method applied to the fields scattered from the individual surfaces over 

an ensemble of realizations [59] [60]. Numerical methods only yield deterministic 

fields, so Monte-Carlo methods must be used. As the ensemble size increases, the 

results should converge to a desired statistical moment [61]. Note that since the in

dividual sample surfaces are independently generated, the fields scattered from them 

are incoherent. 

Recently, both analytical and numerical scattering models have been applied to 

non-linear, multivalued surfaces that were obtained through numerical hydrodynamic 

models [62] and direct measurement [63]. These non-linear surfaces typically provide 

a time-history of the wave evolution. The coherent fields scattered from these sur

faces can therefore be used to find the Doppler shift in the backscatter. Moreover, 

the multivalued nature of the surfaces allow the prediction of quasi-specular back

reflection from steep and overturning features that are absent from linearly generated 

surfaces. These are thought to be particularly important at low-grazing angle illumi

nation. The non-linear surfaces (both measured and generated) therefore provide a 

more realistic representation of the scattering. 
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1.2.3 Previous Work 

Considerable work has previously been performed at Oklahoma State University ad

dressing rough surface scattering, particularly focusing on the breaking wave scatter

ing mechanism. A series of moment method (MM)-based numerical scattering codes 

have been implemented. These include a periodic surface solver MM (64] and a hybrid 

MM/GTD technique (65](66](65] for 2-D scattering, and a multilevel fast multipole 

algorithm (MLFMA) [67](68] technique for 3-D scattering. Special surface treatments 

were developed for application of these techniques to rough surfaces. For example, 

the application of the impedance boundary condition to both the electric field integral 

equation (EFIE) and the magnetic field integral field (MFIE) reduces the computa

tional load when treating finite conductivity surfaces (69](70]. Edge extension of the 

surface was used with MM/GTD to suppress artificial edge diffraction from the mod

eled surface [71]. Resistive loading of the edges has also been implemented to control 

edge diffraction [1] [72]. Numerous numerical preconditioners have been implemented 

to accelerate the convergence of iterative solution methods. The numerical codes 

have been applied to several different types of surfaces, including random rough sur

faces generated from linear roughness spectra [1], breaking wave histories generated 

from numerical hydrodynamic codes [70] [73] [2] [1], and measured plunging and spilling 

breaker waves [7 4]. The validity of analytical models and scattering mechanisms has 

been discussed through comparison of the results of analytical models with the nu

merical "exact" results. Limitations of the standard two-scale model when surface 

self-shadowing occurs was identified [75]. Multi-path scattering was modeled using 

ray-optical techniques [76] [l]. The scattering from breaking jets was modeled using 

an extension of geometrical optics [2]. Finally, the time dependence of the Doppler 

shift of the backscattered fields from crests was used to identify the "fast" and "slow" 

scattering mechanisms [7 4]. Overall, the work has focused on characterizing the lim

itations of classical approximate scattering models, and identifying and modeling the 
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scattering mechanisms for breaking waves. 

1.3 Study on Scattering from Breaking Wave Crests 

As mentioned before, strong sea spikes always appear in radar returns at low grazing 

angle, and are typically associated with breaking waves. The complicated backscat

tering is therefore due to a combination of various scattering mechanisms such as 

quasi-specular reflection, multipath scattering with Brewster angle dumpling effect, 

and distributed-surface roughness. An example situation is shown in Figure 1.1, 

which represents a radar resolution cell in which several crests are breaking. The 

scattering from the entire surface may include direct quasi-specular back-reflection 

from individual jets, and also be affected by the multipath reflection between a jet 

and other surface points. Due to the complexity of the scattering process, predicting 

the backscattering is very difficult even when the exact scattering surface is known. 

Analytical models are formulated with approximations that limit their application 

to specific classes of surface features. For example, the Kirchhoff approximation can 

only be applied to surfaces where the radius of curvature is large compared to a 

radar wavelength, and distributed-roughness models assume single-valued surfaces 

that do not introduce multipath. As the sea surface includes features of all these 

types, no analytical model can alone predict the full scattered signal. On the other 

.. ~ .. "·-._~<..... 
···· .. ~ 

~. 
. ... I. 

Figure 1.1: An example surface with multiple wave crests. 
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hand, numerical methods can treat any surface features simultaneously. However, 

computational resources greatly limit the size of the surface that can be modeled. It 

therefore is not possible to model full radar resolution cells at one time. 

In stead of attempting to model the full surface simultaneously, a typical approach 

is to model individual scattering mechanisms separately with appropriate models. 

The results of each model can then be appropriately combined to predict the entire 

signal. This approach obviously requires that both the individual mechanisms and 

approprite models be identified. Previous work toward this goal has been performed 

at Oklahoma State University. Figure 1.2 shows the two-dimensional wave profiles 

that were considered by West and Zhao[l]. Shown in part (a) is the direct quasi

specular back reflection, as well as a multipath reflection from the crest of the wave 

to the front face, and then back to the radar. Part (b) shows the multipath from 

the front face to the crest, back to the front face, and then to radar. West and 

Zhao analyzed these waves by isolating the crest scattering from the multipath by 

truncating the surface as show by the long-dashed line. The bi-static crest scattering 

was then found using the MM/GTD numerical techniques. This yielded the quasi

specular back reflection as well as the fields scattered toward the front face. The 

multipath effects were then included by applying the physical optics approximation 

to the scattered front-face field, and radiating the PO current to yield the single-

,, ····::::::: .. i::::::::~:.·.·.·.·.·.·.·.·.·.·.·.·." ... "' '' •" •" •"'" •" •" ............. '' 

............................................ 

(a) Single-bounce reflection path (b) Double-bounce reflection path 

Figure 1.2: Illustration of the multiple reflection paths[l] 
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bounce multipath signal. Two consecutive applications of PO yielded the double

bounce multipath signal. Coherent addition of the direct and multi-path signals 

yielded scattering cross-sections that agree very well with those given by MM/GTD 

when applied to the full wave surface. Recently, experimental confirmation of the 

scattering mechanisms has been achieved [26). The scattering from several waves can 

be coherently added to model the scattering from a full radar resolution cell. 

The work of West and Zhao was limited to two-dimensional wave profiles that 

were uniform in the azimuthal direction. The results were therefore limited to up

wave/ downwave looking scattering and cannot predict cross-polarized scattering. The 

breaking-wave scattering therefore is not fully modeled. It is therefore desireable to 

extend the techniques of West and Zhao to the full 3-D problem. Due to the complex

ities of the 3-D surfaces, it will be considerably more difficult to accurately represent 

the crest scattering even in the absense of multipath effects. The azimuthal non

uniformities of the crests lead to several scattering mechanisms. Thus, this paper 

will focus on understanding the 3-D wave crest scattering. MLFMA will be used to 

provide reference scattering from the crest. This will predict all scattering effects, 

including arbitrary azimuth and elevation illumination direction and cross-polarized 

scattering. The MLFMA scattering will then be compared to the analytical scat

tering model results to identify the scattering mechanisms. The multiple scattering 

points on single crests will also be isolated and characterized using geometrical op

tics. Ultimately, it is expected that the results will be combined with a 3-D multipath 

model. 

Sample crests will be derived from the numerically generated LONGTANK series 

of 2-D profiles representing the time-evolution of a 1 m wavelength breaking wave. 

Each LONG TANK profile has a different crest shape which describes a specific stage of 

the wave formation. The scattering analysis begins by using the existing MM/GTD 

method to calculate the backscattering from each 2-D profile. This gives general 
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insight to the backscattering features of the sample two-dimensional profiles. The 

LONGTANK profiles are used to synthesize 3-D test surfaces. MLFMA using resis

tively loaded edges is used to find the scattering from these surfaces. The relationship 

between the original LONGTANK profile scattering and the 3-D surface scattering 

is then discussed. In particular, the effects of the radius of curvature of the wave 

in the azimuthal dimension on the Fresnel interference between the back-reflections 

from the jet and cavity region are considered. The 3-D extended geometrical optics 

(EGO) model is then applied on a test crest surface in order to verify the scattering 

mechanism. 

Simple single-jet 3-D test surfaces based on LONGTANK model are first analyzed. 

The scattering from this type of surface is generally dominated by the reflection from 

a few specular points. In particular, super events may occur when the back-reflections 

from the convex jetting region of the surface and the concave cavity region under the 

jet interfere constructively at HH but destructively at VV, provided that the surface 

radii of curvatures at the specular reflection points are somewhat smaller than the 

electromagnetic wavelength [2]. For more complex wave crest cases, however, sev

eral jets may exist simultaneously, and the scattering phenomena will become more 

complicated. The interference between the back-reflections from many different jets 

or cavity regions between. jets may play a significant role under specific geometri

cal conditions. Some 3-D multiple-jet test surfaces are also synthesized using the 

LONGTANK profiles, including the crests with multiple identical jet structures and 

the crests with random-jet ripples. The scattering from individual jet regions and 

the multiple interactions between different jet regions will be considered based on the 

associated computational results. 

In Chapter 2, background material regarding the scattering geometry, breaking 

wave surfaces, scattering mechanisms, and polarimetric description of scattering is 

introduced. Chapter 3 gives a summary of the traditional analytical models used 
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for surface scattering analysis. In Chapter 4, the numerical techniques to be used 

are reviewed, including MM, MM/GTD, FMM, and MLFMA. The surface edge ex

tension approaches and the resistive loading technique are also reviewed, which are 

applied in these numerical techniques to eliminate unexpected multipath reflections 

and attenuate the diffraction from surface edges. The scattering from a flat plate 

test case is then used to confirm the validity of the numerical routines. The analysis 

of the scattering from the 2-D LONGTANK model profiles, and synthesized single

jet 3-D crest test surfaces when looking upwave is given in Chapter 5. In Chapter 

6, the scattering when looking away from the upwave direction is examined. Both 

monostatic and bistatic cases are considered. Various multiple-jet wave crests are 

synthesized in Chapter 7, the backscattering from these complex multiple-jet surfaces 

is then examined. 
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Chapter 2 

Background 

This chapter explains the terminologies and concepts used in this paper. First 

the breaking wave surfaces used to develop test cases are introduced, which are 

the breaking-wave series generated by the LONGTANK hydrodynamic code. This 

is followed by a description of the surface scattering geometry. Then known sea 

surface scattering phenomena and scattering mechanisms are summarized, includ

ing Bragg scattering, quasi-specular reflection, multipath reflection, and the surface 

self-shadowing effect. The concept of polarimetric scattering also is introduced. 

2.1 Terminology 

Historically, numerical treatment of rough surface scattering was first applied to sur

faces that were uniform in the azimuthal dimension. This allows a two-dimensional 

(2-D) electromagnetic problem to be solved, which is computationally much less 

expensive than the 3-D problem. When single valued surfaces are considered, the 

roughness displacement for these surfaces can be expressed by z = f ( x), leading to 

the terminology "one-dimensionally rough" surface. Single-valued surfaces that are 

not azimuthally uniform may be described by z = f(x, y), leading to the terminology 

"two-dimensionally rough". This terminology is not meaningful for multivalued sur-
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faces that cannot be described by a functional dependence. Instead, a terminology is 

adopted based on the order of the electromagnetic problem that must be solved. The 

2-D problem treats surfaces that are uniform in one dimension, giving a 2-D scatter

ing cross-section [77]. The 3-D problem, with a corresponding 3-D cross-section, is 

applied to the most general surfaces that have no assumption of uniformity. 

2.2 LONGTANK Model Breaker Waves 

The LONGTANK wave series to be used was generated numerically using a compu

tational hydrodynamics technique by Wang et al. [62]. The LONGTANK code was 

developed to study wave groups, wave-wave interactions, wave deformation, wave 

breaking, and other nonlinear effects. The generated wave shapes are consistent with 

tank experiments and ocean observations. The case 2.4 series represents the temporal 

evolution of 2.3 m wavelength sea wave. The peak wave in the group, which is in the 

deformation phase of wave breaking, is followed for a time interval (180 ms) beginning 

close to the inception of the breaking process and ending with jet initiation at the 

crest of the wave. The first numerical study of the backscattering from this wave 

series was performed by Holliday et al. [78]. Figure 2.1 shows the 18 profiles in the 

case 2.4 series. Figure 2.2 shows an expanded view of the crests. Wave 1 shows some 
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Figure 2. 1: Breaking wave surfaces generated by the LONGTANK hydrodynamic 
code (Full profiles). 
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Figure 2.2: Breaking wave surfaces generated by the LONGTANK hydrodynamic 
code (Expanded view of crests). 

steepening, while wave 12 shows the initial jet formation. The jetting and overturning 

occurs in wave 13 through 18. These profiles have been used in several electromag

netic studies [78] [2], and have become a standard test for breaking-wave scattering 

studies. 

2.3 Surface Scattering Problem Definition 

Scattering takes place when an electromagnetic (EM) wave propagates and impinges 

on a target surface with constitutive properties that differ from that of the incident 

medium. The target is termed the scatterer. The three-dimensional scattering geom

etry is shown in Figure 2.3. In this figure, ~ and ks are the incident and scattering 

direction vectors respectively, ((}i, 'Pi) give the elevation and azimuthal angles to the 

transmitter ( incident source), while ( (} s, <p8 ) correspond to the receiver direction ( ob

servation point). vi and hi are unit vectors in the vertical and horizontal directions 

along the incident wave direction. Similarly, v 8 and h8 are the vectors along the 

scattered wave direction. Also, v r and hr give the vectors at the receiver antenna. 

The polarization of an EM wave is defined according to the direction of its electric 

field. If the electric field is perpendicular to the plane of incidence containing the 
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Figure 2.3: Surface scattering geometry in 3-D. 

direction of propagation of the field and the mean surface normal, the polarization is 

termed horizontal (H-pol). The polarization is vertical (V-pol) if the electric field lies 

in the plane of incidence. In a scattering analysis, the polarization of the incident and 

scattered fields are usually to be specified together by HH, HV, VH, and VV. The 

first letter denotes the polarization of the incident field, and the second letter denotes 

the polarization of the scattered field. HH and VV give co-polarized scattering at 

horizontal and vertical polarization, while HV and VH give the cross-polarization 

scattering. When the scattering is treated as a 2-D electromagnetic problem (uniform 

in one dimension), no cross-polarized scattering is generated. Therefore, to observe 

the cross-polarization phenomena, the 3-D scattering problem must be solved. 

The radar cross-section (RCS) is the equivalent area that intercepts the amount 

of incident power that when scattered isotropically produces the same power density 

at the receiver as that scattered by the actual scatterer. In a 2-D electromagnetic 

analysis, the RCS is defined by [77] 

(2.1) 

where p is the distance between scatterer and receiver, and the Ei and E 8 are the 
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incident and scattered field respectively. The 3-D RCS is 

(2.2) 

where r is the distance from scatterer to observation point. Note that (2.2) is 

polarization-dependent for 3-D surface scattering, which is decided by the polariza

tion of the electric fields Ei and E 8 • When the transmitter and receiver are co-located, 

the scattering is usually called backscattering, and the RCS is referred to as monos

tatic. The RCS is bistatic when the source and the observation point are at different 

locations. Scattering when the observations follow the direction that locally satisfies 

Snell's law of reflection is usually referred to as specular reflection. 

2.4 Sea Surface Scattering Mechanisms 

Sea-spike and super-events described in previous chapter are common scattering phe

nomena in breaking wave backscattering analysis when low grazing angle (LGA) 

incidence occurs. Several mechanisms have been identified as potential contributors 

to sea surface backscattering. 

• Bragg Scattering 

Bragg scattering is a rough surface scattering phenomenon whose physical mech

anism is similar to that of the Bragg resonance x-ray scattering from a crystal lattice. 

As shown in Figure 2.4, Bragg backscattering comes from the portion of the 2-D 

surface with a surface wavelength A such that 2A sin ()i is equal to an electromagnetic 

wavelength ,,\ (or integer multiples of,,\). The resonance may be expressed by the 

Bragg condition 

K = 2n / A = 2k sin ()i , (2.3) 

where K is the Bragg-resonant surface wave number, k = 2n/J\ is the radar wave 

number and ()i is the incident angle. For a general bistatic 3-D surface case, the 
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Figure 2.4: Bragg resonance principle. 

Bragg-resonant surface wave number in x and y direction can be written as 

(2.4) 

Note that the round trip scattering from the crests of the resonant wave add con

structively, giving the strong resonant scattering. The resonance condition acts as a 

filter which selects the matched surface component from the continuous spectrum of 

the target surface. Because of this, Bragg scattering can be quite strong even though 

the Bragg-resonant wave energy is of very small amplitude. 

The Bragg scattering is directly predicted by the small perturbation model, and 

second order Bragg resonance gives cross-polarized scattering. The sea surface scat

tering is dominated by Bragg scattering at moderate angles [27]. Bragg scattering 

from roughness that is bound to the crests of steep waves has been suggested as one 

of the mechanism which produce sea-spike events [79] [80], although this model has 

been recently questioned [81]. 

• Quasi-specular Reflection 

According to Snell's reflection law, most of the energy incident upon a slightly 

rough surface will be reflected in the specular direction. Therefore, when the incidence 

illumination is not normal to the mean surface, the backscattered energy is usually 

much smaller than the scattering in the specular-reflection direction. However, if the 
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surface is very rough or the slopes at some points are sufficiently large, there may 

be points where the incident direction is approximately parallel to the local surface 

normal vector even with off-normal incidence. This leads to strong backscattering 

known as quasi-specular reflection (also termed as quasi-specular scattering) [82]. 

Overturning crests on breaking waves can lead to quasi-specular scattering even at 

high incidence angles. This has been suggested as a mechanism that leads to sea 

spikes [15] [29]. The quasi-specular reflection usually assumed to be independent of 

polarization (that is, HH=VV), but recent work by West [1] showed they are different 

when an overturning jet exists with radii of curvature smaller than the EM wavelength 

on a breaking wave surface. 

• Multipath Reflection 

Experimental studies have shown that quasi-specular reflection can be related to 

wave breaking events, and can be a major contributor to the backscattering at grazing 

incidence angles [ 11 ][ 16]. However, traditional specular reflection models only predict 

HH/VV ratios up to O dB, but not the super-events where the HH/VV ratio can 

exceed 10 dB. However, overturning surface points can also introduce multi-path 

reflections. Figure 2.5 shows the multi-path reflections that lead to backscattering. 

The "single-bounce" multipath is shown as A-Al-A2 and the "double-bounce" path 

is B-Bl-B2-B3. The quasi-specular reflection shown as C-Cl. Experimental [83][84] 

studies have indicated that interference of the multi-path reflections can lead to sea

spike events. Wetzel [79] applied the multi-path interference model to analyze the 

scattering from the overturning section of the wave crest at LGA incidence. Trizna 

[15] added Brewster angle effects to the multipath at the bounce points and found 

that VV multipath is greatly damped due to the finite conductivity of the surface. 

This leads to reduced interference at VV compared to HH at low grazing angles, 

contributing to the sea spike effect. West [85] confirmed this numerically using the 

moment method with optical techniques to describe the multipath reflection. 
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Figure 2.5: Multipath reflection. Path A - A1 - A2 is 'Single-bounce' interactions; 
Path B - B1 - B2 - B3 is 'Double-bounce' interactions; Path C - C1 is the quasi
specular reflection. 

• Surface Self-shadowing 

As the incidence angle increases ( the grazing angle decreases), sections of the 

surface may be shadowed from the illumination by other more forward surface sec

tions. Scattering models typically assume that the field within the shadowed region 

is exactly zero (86]. This results from the geometrical optics (or ray-optical) approx

imation. However, as shown in Figure 2.6, the shadow-region fields are not zero due 

to diffraction over the shadowing obstacle, due to either edge [87] or creeping wave 

diffraction (88]. To take the shadowing effects into consideration, some attempts based 

on optical shadowing functions have been used in the scattering models [89] [90] [79]. 

Figure 2.6: Surface self-shadowing effect. Solid line is the incident ray; Dashed lines 
are the diffraction rays; Bold-faced section of the surface stands for the creeping 
waves. 
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These simple corrections show acceptable results for the slightly shadowed cases since 

the dominant scattering is from the directly illuminated surface features. However, 

when the incidence approaches grazing, much of the surface is shadowed, and the rel

ative contribution of the diffraction into the unlit regions becomes more significant. 

Simple corrections then fail to give good predictions. West et al. [75][71] numerically 

examined the effects of surface self-shadowing. They showed that shadowed rough

ness can significantly contribute to backscattering from perfectly conducting surfaces. 

Weakly shadowed roughness contributes to both HH and VV backscatter in that case, 

but deeply shadowed roughness only contributes to the vertically polarized backscat

tering. As the conductivity of the surface is reduced, the VV contribution of deeply 

shadowed roughness drops rapidly. Weakly shadowed roughness is still important, 

however. 

2.5 Polarimetric Study 

In 3-D surface scattering, cross-polarization components arise since the induced sur

face currents may flow in any direction. Therefore, depolarization is a typical phe

nomenon in 3-D surface scattering. In order to characterize depolarization phenom

ena, the polarimetric signature is defined to describe the different polarization states. 

The polarimetric signature can be described using different methods. Here, we follow 

the method presented by Airiau et al. [91] based on the description of average received 

power. In the scattering geometry shown in Figure 2.3, the perpendicular polarization 

vector pair (hr, vr) is defined as the receiving basis, and (hs, v 8 ) is defined as the 

scattering basis. The average received power is P =< IVl2 >. The received voltage 

at the receiving antenna is expressed as 

(2.5) 
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where at and 3-r are the polarization vectors of the transmitting antenna and of the 

receiving antenna respectively, and [SA] represents the scattering matrix written in 

the receiving basis. Because a transform relationship exists between the receiving and 

scattering polarization bases [92] as 

(2.6) 

the scattering matrix [SA] can be expressed in the scattering basis [SJ as 

[
-1 0 ] . [-Shh - Shv ] [SA]= [SJ= . 
0 1 Svh Svv 

(2.7) 

Then the expression for the average received power is given by 

(2.8) 

This expression is general for any target and any polarization. The expression for the 

received power is the polarimetric signature at a particular condition. For example, 

the co-polarization power is defined when ar = at, and the cross-polarization power 

is defined when 3-rj_at. 

In analytical scattering theory, the scattering cross-sections usually are defined 

as CYpq =< JSpql 2 > and CYpqp'q' =< Spqs;'q' >, where p, q, p' and q' represent the 

polarization direction h or v. The definition of the scattering cross-section (RCS) in 

( 2 .1) and ( 2. 2) shows that the polarization dependent scattering cross sections have 

the same physical significance as the polarimetric signature. Therefore, the concept of 

the scattering cross section is still used to discuss depolarization effects in this paper. 
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Chapter 3 

Review of Analytical Scattering 

Models 

As mentioned in Chapter 1, a common method to describe scattering from a random 

roughness surface is the two-scale model (TSM), ( also called the composite surface 

model ( CSM)). This model is the combination of two different scattering models: 

the Kirchhoff approximation (KA) and the small-perturbation method (SPM). KA 

predicts quasi-specular reflection, while Bragg-resonant scattering results from SPM 

scattering. KA is suitable for high frequency applications such that a surface appears 

smooth on the scale of the wavelength of the incident wave. SPM is applied to small

displacement, rapidly-changing surfaces. Therefore, the roughness on an arbitrary 

surface must first be separated into electromagnetically large-scale and small-scale 

components prior to the application of TSM. This is the primary limitation of TSM. 

The results of TSM have been shown to depend upon the roughness-separation ap

proach used [93] [94] [95] [96]. Additional methods have been introduced to overcome 

this limitation. Two to be considered here are the small-slope approximation (SSA) 

and the phase-perturbation technique (PPT). Brief overviews of KA, SPM, TSM, 

SSA, and PPT are given below. 

23 



3.1 Kirchhoff Approximation 

The Kirchhoff approximation (KA) is a scattering model based on the physical optics 

approximation. It approximates the current at a surface point by that which would 

be induced by the incident field on an infinitely extending plane of the same dielectric 

properties that is tangential to the surface at that point. The equivalent electric and 

magnetic surface currents are therefore approximated by 

{ 
-(1 + r)n x Ei 

MKA= 
0 

illuminated area, 

shadowed area, 

illuminated area, 

shadowed area, 

(3.1) 

(3.2) 

respectively, where r is the surface reflection coefficient at normal incidence. For a 

perfectly conducting surface r = -1. These currents are then re-radiated into the far 

field to give the scattered field. 

KA is valid only for gently undulating surfaces which have large radii of curvature 

relative to the electromagnetic wavelength so that the tangential plane approximation 

is valid. KA predicts quasi-specular reflection. Thorsos [97] investigated the validity 

of KA for random, one-dimensionally rough surfaces (the 2-D electromagnetic prob

lem) with Gaussian roughness spectra. He showed that KA performs well with near 

normal incidence where quasi-specular reflection dominates, but performs poorly at 

low grazing. 

3.2 Small Perturbation Model 

The small perturbation model (8PM) was first developed by Rice [28] in 1951. 8PM 

may be used for rough surface scattering analysis when the surface height variation is 
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much smaller than the incident wavelength. This algorithm treats the scattered fields 

as functions of the surface height and expands them in a perturbation series in the 

surface wave-number domain. When the roughness is sufficiently small, the fields may 

be accurately represented by a truncated perturbation series. The first-order SPM is 

widely used, which includes both the zeroth and first order terms of the perturbation 

series. SPM predicts the Bragg scattering. 

For a one-dimensional randomly rough surface with dielectric constants Er and 

µr = l, the mean scattering cross-section per unit length ( the backscattering coeffi

cient) for horizontal (HH) or vertical (VV) polarizations are given by [8] 

(3.3) 

where the subscript pp stands for VV or H H, k is the wave number of the incident 

field, and a is the standard variance of the surface height. W is the normalized 

roughness spectrum that is the Fourier transform of the surface correlation coefficient 

and cxPP is a polarization term [8] [98] which depends on the physical characteristics 

(permittivity, conductivity) of the surface and on the incidence and observation angles 

( ()i ,<Pi,() s ,c/>s) · 

Equation (3.3) shows that only roughness energy at a specific wave number con

tributes to the backscattering. This wave satisfies the Bragg resonant condition since 

its wave number is 2k sin ()i· Therefore, it is the Bragg resonance incited by the inci

dent fields that generates the backscattering, so the first-order perturbation solution 

of SPM explicitly expresses the Bragg scattering phenomena. 

3.3 Two-Scale Model for Deterministic Surfaces 

The two scale model (TSM), also termed composite surface theory, was first sug

gested for acoustic scattering by Kur'yanov [99] and then applied to electromagnetic 
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scattering from rough surfaces. This model requires that the entire surface-roughness 

spectrum be decomposed into small-scale and large-scale roughness surface compo

nents. Scattering from small-scale disturbances can be described by 8PM, whereas 

quasi-specular reflections from undulating large-scale roughness is described by KA. 

The large-scale components therefore act locally as planar, tilted facets. 

The two-scale model is typically applied to rough surfaces after the statistical 

analysis applies the ensemble averaging to yield a scattering coefficient. The scale

separation is applied to the surface roughness spectrum, typically through low- and 

high-pass linear filtering. KA and SPM are statistically applied to the resulting large

and small-scale roughness, yielding scattering coefficients that are incoherently added 

to give the composite surface scattering coefficients. The tilting of the small-scale 

roughness by the large-scale roughness, which changes the local Bragg resonance 

condition, is usually included in the SPM analysis. 

Brown (93] presented a deterministic representation of the zero order KA field and 

the first-order SPM field based on the boundary perturbation approach of Burrows 

[100]. In this, individual realizations of the rough surface are separated into large-scale 

and small-scale roughness components via some criteria. The zeroth-order scattering 

is computed from the large-scale surface using the deterministic KA which yields a 

coherent field. The first-order SPM result is calculated by perturbing the field from 

large-scale surface using the small-scale surface displacement, also giving a coherent 

field. Unlike the statistical SPM analysis, the deterministic TSM field is found from 

the coherent (phase-preserved) addition of the KA and SPM fields. This allows a 

direct comparison of the TSM result with the reference numerical field found from 

the same sample surface. 

Deterministic TSM is applied by separating the composite surface ((x, y) into 

large- and small-scale components so that 

((x, y) = (z(x, y) + (s(x, y) . 
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For a perfectly conducting surface, the large-scale scattered (KA) field is given by 

while the first order SPM field is 

where 

(3.7) 

n is the unit vector normal to the unperturbed large-scale surface, r 0 = xax+Yay+(iaz 

is the position vector of a point on the unperturbed surface, ki is the incident wave 

vector, ep and ep, are the polarization unit vectors for the scattered and incident fields 

respectively, ( ep and ep, are identical for co-polarized scattering and are orthogonal 

for the cross-polarized case), and Opp' is the Kronecker delta function. 

The backscattered electric field from a perfectly conducting surface with polariza

tion p' for an incident field with polarization p is 

(3.8) 

Typically p / p' correspond to vertical or horizontal polarization, although ep can take 

any value orthogonal to the incident vector. 

For an imperfectly conducting surface, the scattered fields are modified by multi

plying by a factor dependent upon the material properties: 

(3.9) 
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where O:pp' is a polarization dependent coefficient given by [101] 

(3.10) 

(3.11) 

where Bi is the local incident angle with respect to the external normal vector of the 

large-scale surface defined by cos ei = -n. ki. 

As mentioned earlier, the surface separation is a critical step in the TSM imple

mentation. Linear low-pass and a high-pass filters are usually employed to yield the 

large-scale and small-scale surface, respectively. A surface wave number threshold is 

used as the cutoff parameter for these filters. Unfortunately, a threshold that yields 

components that simultaneously meet requirements for KA and 8PM does not al

ways exist. Errors arise when inexact thresholds are used. This is one of the inherent 

drawbacks of TSM. 

Despite the limitations, TSM has proven effective in predicting the scattering 

from rough surfaces at moderate grazing angles. However, the absence of surface 

self-shadowing is assumed in TSM, which leads to poor performance at small grazing 

angles where surface self-shadowing becomes significant. Various shadowing functions 

and iterative corrections have been proposed to improve LGA TSM [102]. However, 

both analytical and numerical investigation [103] [104] have shown that shadowing 

correction based on geometrical optics fails to properly account for both diffraction 

and multipath scattering into shadowed regions. 

3.4 SSA and PPT 

The small-slope approximation model (SSA) [105] is based on expansion of the field 

equations with respect to the slope of the surface. It reduces to KA and SPM when 
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applied to large-scale or small-scale surfaces individual, and gives a continuous tran

sition between each. SSA therefore avoids the artificial scale-separation required by 

TSM. Hence, SSA is particularly appropriate for multi-scale surfaces. 

Application of SSA requires that the incident angle and the scattering angle of all 

waves with significant amplitudes exceed RMS slope of the roughness. Modulation of 

Bragg scattering by large-scale tilt implicitly included in SSA (106]. Both the first- and 

second-order expansions in slope have beeri implemented in SSA. Detail derivations of 

SSA are found in [106] (107]. Broschat etal. [108] numerically investigated the range 

of validity of SSA when applied to surfaces whose roughness spectra were described 

by a Gaussian function. 

SSA underestimates HH backscattering from the sea surface at large incidence 

angles when looking in the upwind and cross-wind directions. This is believed to 

result from scattering from steep breaking waves, which give large surface slopes. 

To compensate this, Voronovich and Zavorotny [109] added an additional term to 

the backscattering cross-section based on geometrical optics approximation. This 

assumes that breaking waves specularly reflect some energy back. This requires an 

estimate of the probability density function of steep waves, which is not well known. 

It also does not account for multipath scattering from the steep crests. 

Another recently introduced scattering model is the phase perturbation technique 

(PPT) (32]. PPT is based on a perturbation expansion of a function related to the 

complex phase of the surface current density induced on the surface by the incident 

field. The truncated phase perturbation series expansion provides an approximation 

to all the higher-order terms of the classical perturbation expansion. The phase

perturbation expression for the reflected and backscattering coefficients also reduces 

to SPM and KA in the appropriate surface roughness limits [34]. However, PPT does 

not satisfy reciprocity, which compromises its validity at low grazing angles. Details 

of the complete derivation and numerical examples can be found in (33] [34] [110]. 
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3.5 Optical Models 

8PM is a low-frequency asymptotic model for rough surface scattering computation, 

while KA is a high-frequency model based on the physical optics approximation. Ge

ometrical optics (GO) ( or ray optics) arises as the infinite-frequency limit of physical 

optics. GO predicts only specular reflection, so that the application of GO is limited 

only to those surface sections which have large radii of curvature compared to the 

electromagnetic wavelength. 

According to GO theory, the reflected electric field at a distance r from the re

flection point QR can be expressed as [77] 

(3.12) 

where Ei (QR) is the incident field at the reflection point, r is the reflection coefficient 

at the reflection point, and p1 and p2 are the principal radii of curvature of the 

reflected wave front at the point of reflection. These principle radii of curvature are 

related to the curvature of the reflection surface at QR and the principal radii of the 

curvature of the incident wave front. For plane wave incidence, the principal radii of 

curvature of the incident wave front are infinite. Then, p~ can be expressed as 

r Pan COS (Ji 
Pn = 2 ' n=l,2, (3.13) 

where ()i is the incident angle, Pan is the radius of curvature of the reflection surface 

at QR. The radii of curvature are defined to be positive for convex curvature and 

negative for concave curvature at the reflection point. (3.12) is the electric field 

reflected by the specular reflection point on a 3-D surface. For a 2-D surface, one 

dimension of the surface is uniform, so the radius of curvature in this dimension is 
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infinity. (3.12) then reduces to 2-D GO: 

(3.14) 

Classical GO is valid only when the curvature of the surface is large compared 

with the incident field wavelength. The correction factor to GO reflected fields pro

posed by Voltmer [111] and used by Stutzman and Thiele [112] allows the model to 

maintain accuracy as the radii of curvature decreases somewhat below a wavelength 

[111]. The corrected method was called as the extended GO (EGO) by West [2]. For 

backscattering from a PEC cylinder, the correction factor is 

1 · 11 353 + J 16(kpa) - 512(kpa) 2 

1 . 5 127 
- J 16(kpa) + 512(kpa) 2 

where k = 21r / A is the electromagnetic wave number. 

vv 
HH 

(3.15) 

The geometrical theory of diffraction (GTD) is the ray optical model that predicts 

the diffractive scattering from discontinuities in surface derivatives [77]. According 

to G TD theory, the diffracted field scattered by the discontinuities is given by 

(3.16) 

where Ei ( Q D) in the incident field at the diffraction point Q D, D is the diffraction 

coefficient and A is a spatial attenuation factor. For plane wave incidence on a 2-D 

surface, A= 1/ ft. GTD diffraction coefficients have been derived for diffraction from 

the edges [2], curvature discontinuities[87], and creeping diffraction around smooth 

cylinders [113]. 

West [2] included the diffractive backscattering from the inflection point between 

the jet and cavity regions of the LONG TANK series profiles where the curvature tran

sitions from convex to concave. When combined with EGO reflection, this represented 
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the dominant scattering mechanisms through profile 12. 
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Chapter 4 

Moment Method-based Numerical 

Techniques Review 

The moment method (MM) is commonly applied in surface scattering numerical com

putations. MM obtains the induced current distribution by solving a linear system 

of equations which is set up through an approximate expansion based on a set of 

basis functions. A simple subdomain basis function set can be used for 2-D sur

face scattering. Non-physical edge diffraction incited by surface truncation is one 

of critical factors that affect surface scattering analysis. A modified basis function 

set was developed in MM/GTD to avoid the edge diffraction problem. The RWG 

vector basis function was specially defined for 3-D surface scattering problems. In 

order to reducie computational complexity of solving the dense matrix linear system 

that results from an MM expansion, the fast multipole and multilevel fast multipole 

expansion techniques have been developed. In this chapter, these techniques and 

surface edge treatment approaches derived to avoid non-physical edge diffraction are 

reviewed. A brief introduction of iterative solvers and the preconditioning approaches 

used to solve the MM linear system is also presented. The induced current distri

bution on a flat plate and its scattering phenomena are then considered in order to 

examine the validity of the numerical techniques and formulate the concepts involved 
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in bistatic electromagnetic scattering. 

4.1 Preliminary Electromagnetic Theory 

The electromagnetic fields within a homogeneous medium are radiated by electric 

and magnetic current sources, designed J and M respectively. Vector potentials are 

defined within the region to relate the current sources to the radiated fields. The 

magnetic vector potential A and the electric vector potential F are defined by the 

integration of Green's function over the current sources as 

1 -jkR 1 
A(r) = ~ s J(r')T dS' = µ s J(r')G(r, r') dS', (4.1) 

1 -jkR 1 
F(r) = 4~ s M(r')T dS' = E s M(r')G(r, r') dS', (4.2) 

where 
-jkR -jklr-r'I 

( ') e e 
G r, r = 4nR = 41rlr - r'I ' 

k = w.jiif., R = Ir - r'I, and r, r' are vector positions of source and observation point 

respectively. The radiation fields are found from the vector potentials A and F using 

. 1 
E = -JwA- v'<I>e - -v' X F, 

E 

. 1 
H = -JWF - v'<I>m + -v' X A, 

µ 

where <I>e = --. 1-v' · A and <I>m = --. 1-v' · F are called scalar potentials. 
JWµE JWµE 

(4.3) 

(4.4) 

The source of a scattered field is the re-radiation of the current induced on or 

within the scatterer by the incident field. With a perfect electric conductor, an elec

tric surface current is induced on the surface. With a general finite conductivity scat

tering medium, a physical surface current does not exist. Instead a volume current is 

induced throughout the scatterer. Although the numerical techniques are available, 
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(a) (b) (c) 

Figure 4.1: Electromagnetic equivalence for finite conductivity scatter . 

the calculation of the volume current induced within a scatterer is numerically ex

pensive. Instead, an electromagnetically equivalent problem is usually solved. The 

equivalence theorem is applied as shown in Figure 4.1. Part (a) of the figure shows 

the electric and magnetic source current J and M radiating into free space, thus pro

viding the incident field Ei and Hi. The scattering surface added in part(b) induces 

the scattered field Es and Hs. Part ( c) shows the equivalent problem, in which iden

tical constitutive parameters (permittivity E1 and permeability µ 1) appear above and 

below the interface, so that the physical boundary disappears. Instead, equivalent 

surface currents on the virtual boundary that meet the boundary conditions 

(4.5) 

(4.6) 

are found, where J s and Ms are the equivalent electric and magnetic surface currents. 

These equivalent surface currents, as well as original source currents ( J and M), give 

the total (incident plus scattered) fields above the surface and zero fields within the 

scatterer. Once the equivalent surface currents are known, the scattered fields, and 

thus the RCS is easily computed. Therefore, the goal of the surface scattering problem 
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becomes finding the equivalent surface currents. The equivalent boundary condition 

described in ( 4.5), ( 4.6) can be expressed by the electric field integral equation (EFIE) 

and the magnetic field integral equation (MFIE). Moment method-based numerical 

techniques are suitable solvers for these integral equations. Note that the equivalence 

principle can only be applied to homogeneous scatterers, which always holds for the 

rough surface scattering cases considered in this paper. 

Various methods have been developed to reduce the computational complexity of 

finding the surface currents. Glisson (114) showed that if the scatterer has a large 

dielectric constant and conductivity, the impedance boundary conditions of Senior 

(115) can be used to directly relate the magnetic surface current to the electric surface 

current. When the conditions 

INI » 1, 1Im(N)kpzl » 1 (4.7) 

are met everywhere on the surface, where k is the electromagnetic wave number, 

N is the complex refractive index of the scattering medium, and Pl is the radius of 

curvature of the surface, the energy refracted into the scatterer will propagate nearly 

normal to the surface. The surface current densities can then be related by 

(4.8) 

where Zs is the intrinsic wave impedance of the lossy dielectric, n is the unit vec

tor normal to the surface, J s and Ms are the electric and magnetic surface current 

densities respectively. Since Ms and Js are now related only by a constant, one 

need only solve for one (typically, Js for high conductivity surfaces). West [66)[116) 

implemented impedance boundary conditions in the MM/GTD code. 
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4.2 Electromagnetic Field Integral Equations 

Once the equivalent surface current Js and Ms have been found, the scattered fields 

Es and Hs can be calculated via the equations (4.1) to (4.4). Now substituting ES, 

Hs into the electromagnetic field boundary conditions of ( 4.5) and ( 4.6) gives 

n x Ei = n x {jwA+ v'<I\ + !v x F}, (4.9) 
E 

n x Hi(r = r') = Js(r') - lim{n x (!v x A) - n x [jwF-v'<I>m]}. (4.10) 
r-+S µ 

Equation (4.9) is termed the electric field integral equation (EFIE), and (4.10) is the 

magnetic field integral equation (MFIE). The MFIE is valid only for closed surfaces. 

When PEC surfaces are under consideration, Ms=O, thus F=O, <I>m=O. The integral 

equations therefore reduce to 

n X Ei = n X {jwA + v'<I>e}, (4.11) 

n X Hi(r = r') = Js(r') - lim{n X ( !v X A)}. 
r-+S µ 

(4.12) 

The simpler two-dimensional scattering geometry is first considered, the geometry 

of which is shown in Figure 4.2. The 2-D surface is in the XY plane. The incident field 

can be either horizontally or vertically polarized. For horizontally polarized incidence 

(T Mz mode), the corresponding induced surface currents are Jz in the transverse di

rection and M1 in the tangential direction respectively, where the transverse direction 

is normal to the XY plane, the tangential direction is in the XY plane and tangential 

to the surface at the points in question. The scattered electric fields are expressed as 

( 4.13) 

E!(Mz(Z'), p) = ~Mz(l') + j~i Mz(l')[n' · ( ,; = ;:, )]H?(klp - p'I) dl', (4.14) 
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( a) Horizontal polarization (b) Vertical polarization. 

Figure 4.2: Scattering geometry of 2-D surface. 

·where p' is the vector from the origin to a source point on the surface, p is the 

observation point vector, k is the electromagnetic wave number, 'TJ is the intrinsic 

irnpedance of the medium above the surface. n' is the unit vector normal to the surface 

at source point. f represents the principal value integral around the singularity at 

l = l'. 111\
2) is the nth-order Hankel function of the second kind, which results from 

the infinite azimuthal integration of the 3-D Green's function, and represents the 

outward traveling EM waves. 

\Vhen the impedance boundary condition ( 4. 7) is satisfied, the relationship be

tween l\!I 8 and J8 in (4.8) can be applied into (4.14) to give 

E!(lHi(l'), p) = -tZslz(l') - j1i Zslz(l')[n'. ( 1: = ;:I )JH?\klp - p'I) dl' 

= -ZsLM[Jz(l')]. 

( 4.15) 

Inputing the scattered fields ( 4.13) and ( 4.15) into the electric field boundary condi

tion ( 4. 6) yields the EFIE 

( 4.16) 

For vertically polarized incidence (T Ez mode), the induced surface currents are 

]z and Mz respectively. Following similar procedures, the 2-D MFIE for impedance 
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boundary conditions is found to be 

(4.17) 

Note that Zs = 0 for PEC surfaces, so the second terms on the right hand side of 

( 4.16) and ( 4.17) disappear. 

4.3 Moment Method for 2-D Scattering Problem 

The EFIE of ( 4.16) and the MFIE of ( 4.17) can be generalized as 

(4.18) 

where F stands for the incident field E! or H!, subscript s denotes the transverse 

direction z or the tangential direction l, and L[] is the linear integral operator. The 

moment method is applied by expanding the unknown current Js as a weighted sum 

of known basis functions fn(l) [117] 

N 

Js(l) ~ L Infn(l), (4.19) 
n=l 

where the In's are the unknown coefficients to be found via the moment method. 

Substituting (4.19) into (4.18) gives 

N 

F;(l) ~ L In{L[fn(l)]}. (4.20) 
n=l 

The residual error is defined as 

N 

R(l) = F;(l) - Lln{L[fn(l)]}. (4.21) 
n=l 
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A set of N weighted residuals are obtained by applying N testing functions to ( 4.21) 

N 

< Wm,R(l) >=< Wm,F;(l) > - Lln{< Wm,L[fn(l)] >}, (4.22) 
n=l 

where the inner product is defined as < f(l), g(l) >= J f (l) · g(l) dl . 

The moment method assumes that the residual error is minimized by setting 

< Wm, R >= 0, giving 

N 

Lln{< Wm,L[fn(l)] >} =< Wm,F;(l) >. (4.23) 
n=l 

( 4.23) can be written in a matrix form 

(4.24) 

(4.24) is now solved by using standard linear algebra techniques, yielding the approx

imate solution to the current. The far zone scattered fields can be found via the 

radiation equations as 

E 8 = - k4rJ 1 Jz(l')H62) (kip - p'I) dl', H H pol. (4.25) 

Hs = j~ 1 J1(l')[n' · ( 1; = ;:1 )JH?\klp- p'I) dl', VV pol. (4.26) 

The 2-D radar cross-section is then obtained from (2-1). 

Equation ( 4.24) is a linear system of equations with a dense coefficient matrix. 

The system can be solved directly using LU factorization, requiring O(N3) operations, 

where N is the number of unknowns. Iterative solution requires O(N2) operations 

each iteration. Therefore, iterative solvers are often employed when the scattering 

from a large surface is computed using the moment method. 

The choice of basis function sets is an important step in determining the final 
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accuracy of the moment method solution. Piecewise constant subdomain (pulse) 

functions are a common choice for the 2-D problem. The basis function in each 

subdomain is defined as 

{ 
1 ln-1 < l < ln , 

fn(l) = - -
0 elsewhere. 

(4.27) 

Dirac delta functions are typically used as testing functions applied at the center 

of each basis function. This forces the residuals to be exactly zero at discrete points, 

so this is often termed point matching. Figure 4.3 shows the piecewise constant ap

proximation of current using the subdomain basis function. The far field scattering is 

found by integrating the currents. The accuracy improves with decreasing subdomain 

length. Basis function lengths of 0.05.X have been shown to give sufficient accuracy, 
' 

even with small scattering cross-sections[65] [118]. 

(a) 

, r-----1--- P(x-x,..) = f'n(!) 

.-----1 (b) 

X 

l I . . 
(c) 

X ------ '-.. / match points -------
Figure 4.3: The approximation using piecewise constant subdomain functions. (a) 
Points and subdomains on the surface. (b)Pulse function. (3) Current approximation 
using pulse basis function. 
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4.4 Hybrid MM/GTD Technique 

As mentioned, finite computer resources always require that the modeled surface be 

somehow truncated in a numerical scattering study. The truncation leads to non

physical edge diffraction, which both gives undesirable backscatter as well as affects 

the current across the surface. Therefore, the edge effects must somehow be reduced. 

Different approaches have been used to suppress edge effects in moment method

based analyses. For example, Chen and West [64] used a periodic surface implemen

tation of the moment method, which is well suited to 2-D periodic surface scattering 

analyses. West et al. [ 65][71] adapted the hybrid method that extends the moment 

method by using basis functions derived from the geometrical theory of diffraction 

(GTD) first developed by Burnside et al. [119] to scattering from rough surfaces with 

finite conductivity. This method allows the 2-D modeled surface to be extended to 

infinity, eliminating the edge effects. A brief overview is given here. 

Figure 4.4 shows a surface that has been extended for the application of MM/GTD. 

The dotted line shows the truncated original rough surface, while the solid line repre

sents interim curves and half-plane extensions. The modified surface does not include 

the non-physical edges. Standard MM pulse basis functions are used to represent the 

induced. current in the MM region (between point A and point D). A single basis 

function derived from the GTD field is used to describe the unknown current in each 

... ·. . ... 

. .. · · · MM region 

To infinity 

Figure 4.4: Infinity edge extension in MM/GTD technique. 
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of the GTD regions (outside of points A to D). 

The total current in the GTD region is due to both the directly incident field Hi 

and the fields diffracted from the connecting points Band C. The diffraction current is 

obtained by recognizing that far enough away from the diffraction point the diffracted 

field is ray optical [71]. The current in GTD regions can therefore be written as 

(4.28) 

where J d is the current induced by the diffraction, and p is the distance from the 

diffraction point to the .observation point in the GTD region. J PO is the induced 

physical optics current due to the incident field Hi ( usually assumed to be zero in 

the shadowed region), r is the surface reflection coefficient at the interface, and J0 is 

an unknown coefficient that needs to be found by using the moment method. Hence, 

the current on the entire extended surface can be expressed as 

for HH a = <iz; for VV a = al, MM region, 

GTD regions. 
(4.29) 

Substitution of (4.29) into an appropriate integral equation ((4.16) or (4.17)), and 

using point matching gives the moment method linear system to be solved to complete 

the solution. 
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4.5 RWG Vector Basis Function and 3-D MM 

4.5.1 RWG Vector Basis Function 

In Section 4.3, the moment method was introduced to numerically find the induced 

current along 2-D surface profiles. For 2-D problems, the currents may be treated as 

unknown scalar functions. A simple scalar basis function set can therefore be chosen. 

The 3-D problem requires that the current be treated as a vector function since the 

current is not constrained in one dimension. An appropriate vector basis function set 

must therefore be used in the moment method solution of the integral equation( 4.9) 

or (4.10). 

The surface of a 3-D target is usually well represented using a triangular patch 

discretization. An example of a spilling breaker surface [63] is shown in Figure 4.5. 

Rao-Wilton-Glisson (RWG) basis functions were specially developed by Rao et al. 

[120][121] for use with triangular patch surface models. Each RWG basis function fn 

is associated with a pair of adjacent triangles, as shown in Figure 4.6. The triangles 

are referred to as T;t and T;;, and the length of the common edge ( the n-th edge of 

the complete patch model) is ln. P! is the vector from the free vertex of T;t to the 

position vector r on T;t, and p;;, is the counterpart on T;;, directed to the free vertex 

Figure 4.5: Triangular patch surface meshing. 
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Figure 4.6: Triangular pair associated with RWG basis function definition. 

of T;:. The RWG vector basis function fn is defined with respect to the common n-th 

edge as 

--1.n_p+ 
2A;t n' 

. r+ r 1n n' 

ln - · T 
2A;, Pn ' r m ;: ' ' 

0 elsewhere. 

(4.30) 

where A; is the area of triangle T.;. This definition of the RWG basis function forces 

the component of current normal to the n-th edge to be a constant associated with 

the size of the triangle pair connected by the edge, and the current is continuous 

across the edge. 

The complete current on surface S thus can be approximated in terms of an 

expansion of the RWG basis functions for all interior edges 

N 

J ~ L lnfn(r), (4.31) 
n=l 

where N is the total number of interior edges of surface S, and the unknown coefficient 

In represents the normal component of the current density flowing across the n-th 

edge. The current tangential to the edge is approximated from the basis functions 

associated with the other two edges of triangular patch T;t and T;:. The total current 

on a triangular patch is the vector sum of three different basis function components 

associated with the three edges. Therefore, the current distribution over the entire 

surface can be described using these patch-based vector currents. 
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4.5.2 3-D Surface Moment Method 

To apply the moment method to an impedance surface, the EFIE of ( 4.9) is rewritten 

as 
. 1 

EJan(r) = [jwA(r) + V<P(r) + -V X F(r)]tan, r---+ s-, (4.32) 
E 

where r ---+ s- means that the equation is valid in the limit as r approaches the 

surface S from the inside of the scatterer. From Glisson [114], 

lim [!v X F(r)] = lim [41 V X r MGdS'] = !n X M- 41 1 M X GdS', (4.33) 
r->S- E r->S- 7r 1 s 2 7r Ts 

where f represents the Cauchy principal value integral, G is the free-space Green's 

function e-jkR / R, R = Jr - r'J, and r is a vector position on the surface. Applying 

the equivalent surface current relationship for an impedance boundary n x M = Z8 J 

and substituting ( 4.33) into ( 4.32), yields 

Eian = [jw 4µ f JG dS' + 41 V f [V' · J]G dS']tan 
1r ls 7rE ls 

+ [!ZsJ + I_ r Zs(n' X J) X VG dS']tan· 
2 41rls 

( 4.34) 

In order to suppress the edge diffractions, a resistive loading technique was in

troduced by Oh and Sarabandi[l22]. An evaluation of resistive loading R(r) was 

given in [123], and will be introduced later. The addition of the resistive loading is 

accomplished by simply adding R(r)J(r) to the right hand side of equation (4.34). 

The moment method is applied by substituting (4.31) into (4.34). Galerkin's 

method, where the same function set used as the basis functions is used as the testing 

functions, is typically applied to RWG basis functions. The testing inner product is 

therefore defined as 

< f, g >= 1 f · g dS. (4.35) 
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The definition in ( 4.30) leads to the useful approximate relationship 

{ fn dS ~ l; (p~+ + p~-) = ln(r~+ + r~-), 
lr;t+r;; 

(4.36) 

where p~± is the vector between the free vertex and the centroid of T;:= with p~

directed towards and p~+ directed away from the vertex. r~± is the position vector of 

the centroid of T;:=. After applying ( 4.36) and some approximations derived in [121 J 

and [114], the corresponding testing terms can be obtained. Although the terms in 

( 4.34) are complicated, they are linear integrodifferential operators, so each reduces to 

the sum of the products with respect to the unknown coefficient In after application of 

the RWG basis functions and Galerkin's method. Therefore, when setting the tested 

residual to zero, a linear system of equations is formed as 

where 

and 

c+ c-
17 _ Ei f _ z (E+ Pm + E- Pm ) 
Vm -< , m >- m m' 2 m' 2 ' 

Zmn = < jw;f; fs JG dS' + 4;E v7 f8 [v7' · JJG dS', fm > + < !ZsJ, fm > 

+ < J,,Js Zs(n' X J) X VG dS', fm > 

= I::=1 In{lmjw(A!n · ¥- + A;n · 6f-) + <P;n + <P!n} 

+ ! I::=1 In {fr;:; Zs [fn · fm] dS + Jr;;, Zs [fn · fm] dS} 

+ lm _1__ ,;;;;:-,N I {f. z (n' X f ) X v7G(rc+ r') dS'. pc+ 
2 41r L...,n=l n s s n m , m 

+ fs Zs(n' X fn) X v7G(r;;' r') dS'. p;,;,-}, 

-1 1 e-jkR$. 
<P!n = 4 . v: · fn(r') R± dS', 

1f'JWE s m 

47 

(4.37) 

(4.38) 

( 4.39) 



R± = Ire± - r'I m m , 

and r~ are the centroid position vectors of T~, p~ is the vector P! ( r) when r is 

located at r~. Ei ( r~) is the incident electric field at r~. lm is the length of the 

m-th edge. 

With PEC surface scattering applications, Zs = 0 so the 3rd and 4th terms in the 

right side of ( 4.34) disappear. The integrations in the above equations are performed 

using the numerical quadrature techniques in [120]. 

Once the current distribution has been determined, the scattered fields are com

puted by the radiation equations. The far-field scattered electric field may be ex

pressed as 
1 A 1 A 

Es= (-jwAe - -jkF¢)() + (-jwA</J + -jkFe)</J, 
E E 

( 4.40) 

where A¢, Ae and F</J, Fe are the components of A and F in the ¢ and () direction 

respectively. The scattered electric field components are therefore given by 

Es= -jkrJ-e - J. [19 + ~(n' x ¢)Jejk(r'·r) dS', 
-jkr j z . 

8 41rr s rJ 
( 4.41) 

EJ = -jkrJ-e - J. [¢- ~(n' X B)Jejk(r'·r) dS', 
-jkr j z . 
41rr s rJ 

( 4.42) 

where r is the unit vector pointing in the direction of the observation point. The 

polarization-dependent three-dimensional scattering cross-section then is found from 

[114] 

(4.43) 

where a and (3 represents either () or ¢. 
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4.6 Fast Multipole Method 

4.6.1 Introduction 

The moment method described in the previous section yields a system of N linear 

equations and N unknowns, where N is the number of interior edges in the triangular 

patch model. O(N3) operations and O(N2) memory storage are required to solve 

the matrix equation directly by LU factorization. Iterative solution requires O(N2 ) 

operations per iteration. Doubling the dimensions of the 3-D scatterer increases the 

number of unknowns by a factor of four, thus increasing the number of interaction 

terms in the matrix by a factor of 16. The direct-solution order increases by a factor 

of 64, while iterative solution order increases by a factor of 16. 

The primary computation expense of iterative solution is the evaluation of matrix

vector multiplies. Therefore, reduction of the complexity of this step yields more 

efficient solution. Wavelet transforms have been used in the moment method by 

choosing the multiresolution (MR) wavelet function to build the basis function set of 

MM [124] [125] [126]. The MR wavelet expansion can adaptively fit itself to the various 

length scales associated with the scatterer geometry. So this approach is best suited to 

the analysis of scatterers that contain a broad spectrum of length scale ranging from 

a subwavelength to several wavelengths. The moment-method matrix is sparsified by 

applying a threshold. Below the threshold, the elements of the matrix are set zero. 

Having a sparse matrix is appealing for linear system solutions to decrease storage 

requirements and execution time. However, there is no clear advantage to applying a 

wavelet transform on wavelike problems where the associated integral equations have 

an oscillatory kernel [127] [126]. Therefore, the applications of wavelet transform in 

the methods of moment is usually related to the electrostatic problems [128] [129]. 

For general scatterers, Coifman and Rokhlin et al. [50] proposed the fast multipole 

method (FMM) to reduce the computational expense of evaluating matrix-vector 
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multiplies. It divides the interaction matrix into near and far terms. The near terms 

are stored directly in a sparse matrix as in the standard moment method. The far 

interactions are computed each iteration using a multipole expansion that greatly 

reduces the number of computations and the memory needed to store the matrix 

information. A brief review of the fast multipole method is given here. 

4.6.2 Element Grouping and Far Interaction Approximation 

The implementation of FMM is based on element grouping. The elements on a scat

terer are first separated into different groups. The elements located in each group are 

electromagnetically near one another so the interaction between a pair of elements 

within the group is treated by the standard moment method. Two groups may also 

be near each other according to a specific criteria, so the interactions between ele

ments which belong to two different near groups are also treated by standard MM. 

Otherwise, two groups are far from each other. The interactions between the elements 

of these groups are treated using a multipole expansion. The radiated fields from all 

elements within a group are simultaneously expanded in a plane wave expansion, rel

ative to the center of the group. The entire expansion is then translated to the center 

of the other group simultaneously. Translating numerous elements simultaneously 

rather than individually gives FMM its speed advantage. Note that the radiation of 

an element must first be shifted to the center of the group before translation, and 

after translation is shifted to the desired receive element. This three step procedure is 

shown in Figure 4. 7. The mathematical derivation of this procedure is now reviewed. 

FMM is most easily introduced assuming scalar interactions between elements. 

The vector interactions will be added later. The scalar MM interaction matrix entry 

for two elements located at r and r' is 

Zmn = A j drfm(r) j dr' fn(r')G(r, r'), (4.44) 
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Figure 4.7: Vector relationship among elements and groups. 

where G(r, r') is the scalar Green's function in (4.33), and A is a constant, fm(r) and 

fn(r) are the weighting and testing functions respectively. Using 

r-r'=x+d (4.45) 

as defined in Figure 4.8, the Green's function is 

e-jk)r-r'I e-jk)x+dl 

G(r, r') = Ir - r'I = Ix+ di . (4.46) 

X 

Figure 4.8: Relationship between vector r', r, x and d. 
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The last term in ( 4.46) can be expressed by a series expansion in the form of Gegen

bauer's addition theorem as [50] [130][131] 

where hf2) is the spherical Hankel function of the second kind, and P1 is the Legendre 

polynomial. (4.47) is valid when JdJ < JxJ. In a numerical implementation, only a 

finite number terms of the expansion are kept. Note that the series is a function 

of klxJ and k · x. The truncated multipole series expansion is therefore denoted as 

TL(klxJ, k · x), and termed the translation operator. Thus, 

L 

TL(kJxJ, k; · x) = 1)-j)1(2l + l)h;2)(kJxJ).Pz(k; · x), (4.48) 
l=O 

where Lis the number of terms retained. Applying (4.48) into (4.47) yields 

( 4.49) 

Substituting (4.49) into (4.46), then into (4.44), yields 

Zmn =BJ drfm(r) J dr' fn(r') J d2ke-jk·dTL(kJxJ, k · x), (4.50) 

where B is a constant. 

( 4.50) only represents the interaction between two far elements since it applied 

the approximation relationship of ( 4.49), so it is also denoted as Z/n°:,. 

Referring back to Figure 4.7, letting 

x = rcA - rcB (4.51) 
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in ( 4.45) gives 

d = r - r' - x = r - r' - (rcA - rcB) = (r - rcA) - (r' - rcB), ( 4.52) 

Substituting d in ( 4.52) into ( 4.50) yields 

Zmn = B j d2k[j dr(f m(r)e-jk-(r-rcA))] 

[j dr'(fn(r')ejk-(r'-rcB))]TL(klrABI, k · rAB), 
(4.53) 

Shifting operators are now defined as 

( 4.53) can now be written as 

(4.54) 

( 4.54) shows the three-step procedure FMM uses to represent the interactions 

between the source element at r' in group B to the observation element at r in group 

A. The shift from the source element to the source group center rcB is represented 

by the shifting operator Vsmcl(k), the translation from rcB to the observation group 

center rcA is represented by the translation operator TL(klrABI, k · rAB), and the 

shift from rcA to the observation element r is represented by the second shifting 

operator Vfma(k). Note that the translation operator need be applied once for all 

elements in two far groups, and the same translation operator can be used for all 

group pairs that are spaced same, giving the computational advantage of FMM. This 

advantage together with the sparsity of the near-interaction matrix greatly reduces 
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both the computational complexity and the memory. As mentioned before, FMM 

also includes near element interactions z::r separately, which can be obtained as 

the standard moment method does. Therefore, the final linear system of an FMM 

scheme can be described as 

near elements 

znear l + 
mn n 

far elements 

ziar1 
mn n ( 4.55) 

There is a tradeoff between the size of the groups and the computational efficiency. 

Larger groups force more interactions into the near/sparse matrix, which do not ben

efit from the FMM improvement. Large groups also require more terms be included 

in the multipole expansion since the coefficients of the combined multipole expansion 

at the group center need to preserve enough accuracy to represent the specific contri

bution from the individual elements. This requires the number of coefficients in the 

multipole expansion corresponding to each element be increased. A semi-empirical 

formula for the number of terms needed in the expansion was determined in [54]. 

D 
L = 2kPmax + 1.6 ln(2kPmax + 1r), (4.56) 

where k is the wave number, Pmax is the maximum group radius among all groups, and 

D is the desired number of significant digits of accuracy. The criteria for determining 

if groups are near or far is 

{ 
> L, 

klrABI -
<L, 

=} group A and group B are far groups , 

=} group A and group B are near groups, 

where lrABI denotes the distance between the centers of group A and B. 
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4.6.3 Physical Insight of FMM 

The translation operator TL() and the shifting operators V/ma:O and Vsma:'O are 

functions of the vector wave number k, over which a continuous integration must 

be evaluated to obtain Zmn in (4.54). The integration is numerical performed in 

FMM by Gauss-Legendre quadrature in the spherical () coordinate and by trapezoidal 

quadrature in the ¢ coordinate [132). In this, the function is sampled at discrete wave 

number samples of k. The samples of wave number k are uniformly spaced in the 

azimuthal dimension ( ¢ coordinate), allowing a trapezoidal quadrature rule on the 

interval [O, 211']. In the elevation dimension (0 coordinate), the samples of k relate to 

the nodes of a Gauss-Legendre quadrature polynomial [132), allowing the Gaussian 

quadrature. Sampling theory requires at least 2£ samples in ¢ dimension and L 

samples in() dimension [54). The integration (4.54) is numerically evaluated as 

(4.58) 

where ()i is a Gauss-Legendre point, c/Ji is an equally spaced point, wf and wj are 

their relative quadrature weights, respectively. The integration over ¢ can therefore 

be implemented using an FFT, and the remaining part with respect to () requires 

explicit evaluation [54). 

As mentioned, the derivations provided so far assumed a scalar Green's function. 

The radiated vector electric field is related to the vector current through the vector 

Green's function. (4.1) to (4.4) show that the vector fields are described by both 

vector and scalar potentials, and the potentials relate to vector current via scalar 

Green's function G(r, r'). The vector Green's function can therefore be expressed [50) 

as 

(4.59) 

where the indices j, j' label Cartesian components. Substituting ( 4.49) into ( 4.59) 
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yields 

-jk J 2A A A •kd A G(x + d) ~ 47r d k(8jj' - kjkj')e-J . TL(klxl, k · x). ( 4.60) 

Furthermore, replacing the scalar Green's function with ( 4.60) into ( 4.44) and ap

plying RWG vector basis function fm(r) and fn(r) simultaneously gives the vector 

expression of the MM interaction matrix entry as 

Zmn =BJ d2 k {! dr[fm(r) - k(k · fm(r))]e-jk·(r-rcA)} 

{! dr'[fn(r') - k(k · fn(r'))]eik·(r'-rcB)} TL(klrABI, k · rAB). 
(4.61) 

From (4.61), the vector shifting operator is therefore defined as 

V fma(k) = J dr[fn - k(k · fn(r))]eik·(r-rcm), (4.62) 

and Vsma(k) = [V/ma(k)]* is still valid. 

When finite conductivity surfaces are treated using impedance boundary condi

tions, the EFIE in ( 4.34) yields 

Vsma(k) = J dr[fn - k(k · fn(r))]e-ik,(r-rcm), (4.63) 

where f,, is the unit vector external normal to the surface of the triangle over which 

the integration is being performed. The translation operator TL ( ) remains unchanged 

for a PEC or an impedance surface. 

FMM can now be summarized as a sparse decomposition of the dense moment 

method impedance matrix Z given by 

Z=Z'+UTV (4.65) 
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where Z',U,T and Vall are sparse matrices. Z' includes the interaction between near 

elements. The matrix UTV is the FMM decomposition of the far terms of Z. U 

and V are both block-diagonal matrices [133]. V translates the plane waves from the 

individual elements to their group center, and U translates the waves from the center 

of group to individual elements which belong to this group. The sparse matrix T 

translates the plane waves of all elements in one group to another group only once. 

When the total number of unknowns is N, it can be shown that the cost of FMM 

is minimized by choosing the number of groups M ~ ,vN, giving a total cost of 

O(N312) for the FMM matrix-vector multiply [133]. This is a significant improvement 

compared to O(N2) cost of standard dense moment method iterative solutions. 

4.7 Multilevel Fast Multipole Algorithm 

4. 7.1 Introduction 

Multilevel Fast Multipole Algorithm (MLFMA) is the natural extension of the FMM 

technique when large surfaces are under consideration. The concept of levels is used 

in MLFMA to describe the relationship between groups. In fact, in the FMM imple

mentation discussed in the previous section can be thought of as two levels as shown 

in Figure 4.9. The upper level (L1) includes the FMM groups, and the lower level 

(Lo) includes the individual FMM elements. MLFMA extends the level concept. 

In MLFMA, the groups in the original level L1 are combined into larger parent 

groups at the next higher level, similar to the grouping of the elements into groups 

at the lowest level. This can continue upward to still higher levels, forming a tree as 

shown in Figure 4.10. The advantage of this approach is that the translation matrix 

T becomes more efficient as the level increases since more elements are translated at 

once. Also, elements which are contained within groups that are too close together 

at the highest level may be translated at a lower level where the groups are smaller. 
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Figure 4.9: Two levels structure in FMM technique. 

As mentioned in FMM grouping, larger groups require more terms be included in the 

multipole expansion. Following the upward tree, the groups in a level are formed by 

combining the smaller groups at the next lower level. To preserve the accuracy of the 

source expansion as groups are combined, the combined multipole expansion at the 

group center requires more higher-order multipole expansion terms be used. This is 

accomplished through interpolation. On the other hand, when the plane waves follow 

the downward tree after translation, the multipole expansion at each smaller group 

center requires fewer terms than in the parent group. The parent group expansion is 

therefore filtered into lower-order expansions centered at each child group. 

new grouping 

l Upward 
tree 

Figure 4.10: Upward tree multilevel structure in MLFMA technique. 
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4.7.2 Mathematical Derivation 

The multilevel grouping structure is built using the aforementioned re-grouping method. 

If there are n FMM levels in the tree, the indices of the FMM levels are numbered 

from L1 to Ln. The lowest level (Lo) is the element level, in which FMM is not used. 

Following the FMM principle, a series of plane waves are synthesized associated 

with discrete sampling of k. In level L1 , the plane wave of group m~1 is expressed as 

(4.66) 

where a~1 stands for the elements which belong to group m~1 , Gm'r,1 is the set of 

all groups near to group m~1 , ML1 is the total group number at level L1. Im' cl 
L1 L1 

is the contribution from the element a~1 , V sm' o.' () is the shifting operator that 
L1 L1 

translates the plane wave from the individual elements to the group center. Therefore, 

Sm, (kL1 ) represents the plane wave at the group center. It is the coherent sum of 
L1 

the contributions from the individual elements that belong to the near groups. Using 

translation operator TL(), Sm' (kL1 ) can be mapped onto other groups which belong 
L1 

to the same level. 

At higher level L1 (Ln ~ L1 ~ L2), the multipole expansion may be synthesized 

from the plane wave multipole expansion of its child groups at the next lower level. 

This is mathematically written as 

(4.67) 

where Sm'L (kL1_J is the plane wave component of a child group in the kL1_ 1 di-
1-1 

-jk(fcm1 -fem' ) 
rection, e Lz Lz-1 is a shifting factor which shifts the plane wave reference 

from the child group center rem' to the parent group center rem' , and WL1_ 1 Li is 
Lz-1 Lz ' 

a transform coefficient which interpolates the plane waves in the directions kL1_ 1 into 
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the directions kL1• Note that more plane waves are needed at the higher level due 

to the larger group size, as explained in Section 4.6.2, thus giving the need for the 

interpolation. The interpolation in the ¢ direction is performed using an FFT, while 

the () interpolation is performed using a discrete Legendre transform. The formation 

of multipole expansions moving up the tree is termed the aggregation process. 

At the highest level (Ln), the translation operator TL() is used to translate the 

references of the plane waves from the center of the source group to the center of the 

observation group using 

(4.68) 

where Sm' (kLn) is the plane wave radiated from group m~ , 9mL (kLn) is the received 
Ln n n 

plane wave by group mLn, and DmLn is the group set consisting of all groups far from 

group ffiLn· 

The plane waves at the observation group at the highest level 9mLn (kLJ must 

be decomposed and mapped on the child groups level by level. A process similar to 

the aggregation process is employed on the downward tree, termed disaggregation. 

Mathematically it is given by 

(4.69) 

where 9m' (kL1) is the plane wave from the group m~1 at parent group level L1, 
Lz 

-jk-(fcm1 -fcm1 ) 

e L1-1 Lz is a shifting factor which shifts the plane wave from the parent 

group center rem' to a child group center rem' , W£1 L,_1 is a transform coefficient 
L1 L1-1 ' 

which transforms the plane waves in the directions kL1 into the directions kL1_ 1 • Since 

fewer plane-wave components are needed at the lower level, the resampling operation, 

termed filtering, is used in the disaggregation stage. The filtering operation is also 
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implemented using an FFT in the ¢ dimension and a discrete Legendre transform in 

the () dimension. 

Once the disaggregation process reaches the finest group level (L1), the plane 

wave of the observation group at level £ 1 must be transformed onto the individual 

observation element through the shifting operator V /ma(). Hence, the final expression 

of MLFMA can be written as 

(4.70) 

where Vma =< Ei, fma > is the MM test term with respect to the incident field, and 

Em is the set of all groups near to group m'. Therefore the first term of (4.70) stands 

for the near element interactions, while the second term represents the interaction 

between far elements. 

As levels are added, the computational cost of MLFMA converges to 0( N log N) 

[134]. However the interpolation and filtering operations add overhead so that MLFMA 

may be at a disadvantage to the O(N(3/ 2)) FMM when small N systems are consid

ered. However the advantage of MLFMA is considerable when N is large. 

4.8 Surface Truncation and Edge Treatment 

As mentioned in Section 4.4, finite computer resources limit the size of the surface 

that can be modeled. Thus, the surface must be truncated, giving artificial edge 

diffraction that affects the calculated cross-section if the edges are not treated. In 

this work, resistive loading of the edges was used to suppress edge effects. This was 

first used by Oh and Sarabandi [122], who applied a power-law taper to the edges of 2-

D surfaces. West [123] used the Taylor weighting taper of Haupt and Liepa [135], and 

found it is superior to the power-law weighting and also showed that this approach 

is best suited to the surfaces whose end section can be tilted away from horizontal 
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without significantly affecting the dominant scattering mechanisms. Finally, Zhao 

and West [72] extended the resistive tapering approach to the 3-D MLFMA surface 

scattering problem. That is the approach used here. 

The resistive loading R( r) for the Taylor loading taper takes the form 

where 

R(r) -{ 
TJo { J&) - ! } loading area, 

0 otherwise 

J(r) - 2~ [1+ 2 ~f(n) cos ( irnlr a- rol)] , 

Jn= 1--
[(n - 1)!]2 ( n2) 

( ) ( n - 1 + n) ! ( n - 1 - n) ! II w~ ' 

A2+(m-0.5)2 
A2+(n-0.5)2 lnl < n, 

lnl ~n. 

(4.71) 

and r,0 is the intrinsic impedance of free space, n is the number of sidelobes desired 

in the scattering pattern at a level of q dB below the main reflection, 

a is the distance over which the loading is applied, and r 0 is the position where the 

loading begins. 

Figure 4.11 shows the geometry of the resistive loading applied to a flat plate. The 

loading is applied entirely around the perimeter of the surface. As the thick arrows 

show in Figure 4.11, the taper of ( 4. 71) is applied with increasing d from the inner 

edge of the loaded region to the outer edge. This scheme ensures that the loading is 

continuous everywhere. As introduced in [72], a Taylor-based weighting with q = 90 
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Figure 4.11: Illustration of 2-D resistive loading. 

and n = 9 are used here. The loading tapers smoothly from O n at the inner edge 

and reaches the maximum at the outer edge. 

4. 9 Iterative Solver and Preconditioning 

The far interactions in an MLFMA expansion are implemented using (4.70). The 

interactions are not stored as in the standard MM as this would remove the advan

tages of MLFMA. Instead, ( 4. 70) is used to find the interactions between groups 

of elements as that are needed in an iterative solution procedure. Thus, MLFMA 

is used to dramatically accelerate the matrix-vector product used by the iterative 

solvers. Several iterative solution algorithms are available for the complex non

Hermetian matrices that result from RWG basis functions, including generalized con

jugate gradient(GCG), conjugate gradient-normal equation (CGNR), biconjugate gra

dient (BICG), quasi-minimum residual (QMR), biconjugate gradient-stable (BICGSTAB) 

and general minimum residual (GMRES) etc. The details of these algorithms are 

found in [136] [137]. Here we use GMRES since it requires only one matrix-vector 

multiply per iteration and converges more quickly than the others for general prob

lems [138]. 

The EFIE of equations ( 4.9) possess a strong singularity. This leads to a poorly 

conditioned interaction matrix, which leads to slow convergence of the iterative al-
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gorithm. Preconditioning is therefore widely used to improve the iterative efficiency. 

Preconditioning improves the condition of the system matrix by changing the sin

gularity distribution [139]. Incomplete LU factorization with a dual threshold drop 

strategy and pivoting (ILUTP) is chosen due to its robustness and efficiency [136] 

[140]. The preconditioner can be simply set up based on the incomplete LU factor

ization of the near-interaction sparse matrix. However, an additional reduction of the 

computational complexity is achieved by dropping preconditioner matrix element if 

its two related elements are spaced greater than a distance parameter d. A smaller 

value of d increases the sparsity of the preconditioning matrix, giving more rapid ILU 

factoring. Larger d may be used with particularly badly conditioned linear systems, 

increasing the factoring time and decreasing the required number of iterations. 

Zhao and West [141] developed the 3-D MLFMA routines and applied them to 

analyze the backscattering from the spilling breaker crest of Figure 4.5. All 3-D 

scattering results provided in this paper are computed using this MLFMA codes. 

4.10 Cube Element Grouping 

Figure 4.12 shows the cubical grouping scheme used with MLFMA. The synthesis of 

the 3-D plunging breaker test profile is described in Section 5.1. The size of the surface 

18 is about 11 .\ 15 ..\ and 5 ..\ in x, y and z directions, respectively. There are about 

109100 interior edges (unknowns) when the surface is meshed using the triangular 

patch model. The element grouping is formed by dividing space into cubical regions, 

as shown in the figure. Edges falling within the same cube are included within the 

same FMM group at that level. 

Note that the elements on the overturning section of the wave are very close 

to one another. Therefore, numerous elements are contained within a single group. 

Other groups contain fewer elements, and cubes that contain no elements are ignored. 

Note that smaller cubes are combined into larger cubes as the level of the MLFMA 
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Figure 4.12: Demonstration of the cube grouping scheme. 

expansion increases. 

4.11 Test Case: Scattering from Impedance Flat 

Plate 

In this section, the scattering from an impedance boundary flat plate is discussed 

to confirm the validity of the numerical technique and to establish some basic vector 

scattering concepts, including the induced current distribution and the corresponding 

polarimetric scattering cross-sections. As shown in Figure 4.13, the test truncated 

impedance flat plate is of 12 >. by 9 >. in area. The impedance was determined 

from a complex dielectric constant of 65 - j40 that of sea water at 10 GHz. The 

resistive loading to suppress the edge diffraction was applied over widths of 2 >. on 

each side. The scattering geometry is shown in the left upper corner of Figure 4.13. 

The scattering when <Pi = <l>s = 0° and (Ji = ()5 is termed on-axis backscattering. 

"Off-axis" backscattering occurs when <Pi = <l>s -=J. 0°, and (Ji = () s. Bistatic scattering 

occurs when either <Pi -=J. <Ps or ()i -=J. ()s· 
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V 

Figure 4.13: The truncated flat sea surface. 

• Induced Currents 

As mentioned, MLFMA finds the current induced on the scatterer that is then 

re-radiated to give the scattered field. Errors in the current distribution therefore 

yield errors in the calculated scattering cross-section. Figure 4.14 shows the induced 

current distributions along two central lines (AA' in X direction, BB' in Y direction) 

when a plane wave is incident on the plate at <Pi = 0° (on-axis) and fh = 0°, 60° 

and 80°. Both vertical and horizontal polarizations are shown. The currents are 

normalized to the level that would flow on an infinitely extending planar impedance 

boundary (i.e. the physical optics current). 

As expected, the currents in Figure 4.14 are strongest in the direction of an applied 

electric field component (the X direction along AA' for vertical polarization and 

the Y direction along BB' for horizontal polarization). As a reference, the current 

distribution on the same impedance plate, without edge resistive loading, is shown 

in Figure 4.15. Part(a) is the current along AA' for vertical polarized incidence and 

part(b) is the current along BB' for horizontal polarized incidence, they correspond 

to part(a) and part(d) in Figure 4.14, respectively. Figure 4.15 shows that the edge 

diffraction induced current oscillations in each case, and the induced currents are 

strongest near the edges. The resistive loading reduced the oscillations and forced 

the currents to zero at the edges. 
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Figure 4.14: Current distribution on the flat impedance plate with resistive edge 
loading 
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Figure 4.15: Current distribution on the flat impedance plate with no resistive edge 
loading. 
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• On-axis Backscattering 

Incidence angles (Oi) are usually divided into three ranges, small incidence (Oi = 0° 

to 30°), moderate incidence ( ()i = 30° to 60°), and grazing incidence ( ()i = 60° to go0 ). 

Figure 4.16 shows the on-axis backscattering cross-section for ()i ranging from 0° to 

go0 • Part(a) used a sea surface impedance plate, while part(b) used a PEC surface. 

VV indicates that both the transmit and receive polarizations are vertical, while HH 

shows the horizontal polarization transmit/receive. VH and HV represent the cross

polarizations. At small incidence case, co-polarization backscatter is much stronger 

than cross-polarization, typically 50 dB or more. The ratio of VV /HH is O dB, which 

the physical optics model (PO) predicts [142]. At normal incidence (Oi = 0°) the 

reflection is specular, so PO is accurate. The sea water specular reflection is 2 dB 

below that with the PEC plate. Away from normal incidence the scattering is due to 

edge diffraction that is not fully suppressed by the edge loading. Interference lobing 

appears in the backscattering away from normal due to diffraction from the opposite 

edges. As shown by Zhao and West [72], the interference lobes are considerably larger 

when no edge loading is used. When the induced edge currents are attenuated by the 

resistive loading, the RCS declines quickly as the incident angle increases from 0° to 

go0 • Note that the results below about -80 dB-.X2 are affected by the numerical noise 
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Figure 4.16: RCS of normal backscattering from the flat plate. 
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floor of the calculations. 

• Off-axis Backscattering 

The 3-D "off-axis" backscattering RCS distribution figures are shown in Fig

ure 4.17. The backscattering ranges from ¢ = -30° to 30° (azimuthal angle ±30° 

off the -x axis). The results are similar to that of the on-axis backscattering in Fig

ure 4.16. First, co-polarization scattering (VV,HH) is much stronger (about 50 dB) 

than cross-polarization scatter (VH,HV) at small incidence angles. Also, the scat

tering declines quickly as the incidence angle increases, from about 20 dB to -100 

dB for co-polarization and -30 dB to -100 dB for cross-polarization as the incidence 

angle changes from 0° to 90°. Edge diffraction again causes interference lobing as 
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Figure 4.17: Off-axis backscattering RCS distribution. 
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the incident angle ( Bi) changes. The fluctuations in the azimuthal dimension are also 

caused by the edge diffraction when the incidence is azimuthally varied. The RCS 

distributions of cross-polarized backscattering at VH and HV nearly equal above -80 

dB->.2 (the numerical noise floor) , which agrees with the reciprocity principle. 

• Bistatic Scattering 

The bistatic scattering from the flat plate with fixed illumination at <Pi = 0° and 

ei = 80° is now considered. The results with the observation angles ranging over 

<Ps = 0° to 360° and Bs = 0° to 90° is shown in Figure 4.18. Figure 4.19 also shows 

the results as a contour plot. 

The bistatic scattering distribution in Figure 4.18 is similar to the "off-axis" 
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Figure 4.18: Bistatic scattering RCS distribution of the flat plate. 
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backscattering in Figure 4.17. The interference lobing with incident angle and fluctu

ation in azimuthal dimension still exist due to the edge diffraction, and the diffraction 

effects change as the observation azimuthally varies. Overall, the lobing in the bistatic 

scattering changes more slowly than that with backscattering since the induced cur

rent distribution remains unchanged here. The associated magnitude contours in 

Figure 4.19 indicate that the cross-polarization scattering is still much lower than 

the co-polarization scattering. The maximum scattering for both co-polarization and 

cross-polarization cases appears around the observation point cf>s = 180°, 08 = 80°, 

which corresponding to the specular reflection direction for this incidence. How

ever, due to the lobing, the maximum scattering values do not exactly appear in the 

specular-reflection direction. 

(a) Co-polar VV (b) Co-polar HH 

(c) Cross-polar VH (d) Cross-polar HV 

Figure 4.19: Contours of the bistatic scattering RCS of the flat plate. 
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Chapter 5 

N orrnal Backscattering Study 

In the last two decades, LGA breaking wave scattering has received considerable 

attention in surface scattering research. The breaking wave surfaces have steepen

ing wave fronts, projected wave crests, and overturning jets. The projected and 

steep sections of a surface cause strong reflection at LGA incidence, thus potentially 

dominating the scattering from the entire surface. Therefore, the understanding of 

scattering from various crest shapes is critical to the understanding of the overall 

sea-surface scattering. 

In Chapter 4, the MM-based numerical techniques were reviewed, and the validity 

of the MLFMA routine was verified by analyzing the scattering from a flat plate. 

These numerical routines are now applied to 3-D breaking-wave crest models. Directly 

measured surfaces typically have multiple scattering features whose contributions are 

difficult to isolate when the entire surface is modeled. Therefore, the test surfaces 

are formulated to have a single dominant scattering feature which may be examined 

in isolation. The effects of the individual features may then be combined to give the 

complete scattering. 

As introduced in Section 2.2, the 18 profiles of LONGTANK model case 2.4 [63] 

describe the time-evolution of a breaking wave. The crest shapes of the profiles are 

typical of the crest features of breaking waves. Therefore, 3-D test surfaces are created 
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from these 18 profiles. As a reference, the 2-D scattering of the individual profiles 

are completed first using MM/GTD and EGO/GTD. The scattering for the 3-D test 

surfaces is then computed by using MLFMA. The validity of 3-D EGO model is also 

discussed based on the comparison of the analytical and numerical results. 

In this chapter, only upwave-looking backscattering is discussed (analogous to 

the on-axis look with the flat plate in the previous chapter). Results presented are 

limited to 60° to 90° incidence since the LGA backscattering only is of interest. The 

frequency of the incident wave is assumed 10 GHz unless specially noted. 

5.1 Generation of 3-D Crest Test Surfaces 

As mentioned, the 18 profiles of the LONG TANK model case 2.4 indicate the tempo

ral evolution of a complete breaking wave. Each profile ideally represents a specific 

crest shape during the formation of a breaking wave. Figure 2.3 shows that profile 

1 to profile 11 are the steepening waves which represent a energy cumulative process 

[143]. An overturning jet forms gradually from profile 12 to 18. Compared with a 

flat or smooth surface, the steepening and the overturning jet will lead to strong 

backscattering when the incident field illuminates it at low grazing angles. On the 

other hand, the wave breaks as the overturning jet gets so large that the capillary and 

hydrodynamic forces can not support the weight of the projected water. After the 

crest collapses, turbulent regions are generated, which reflect or scatter the incident 

energy into different directions. The backscattering therefore reduces significantly, 

and it is the crest that dominates the backscattering from a breaking wave at LGA 

incidence. The calculation of the scattering from individual profiles of the LONG

TANK series is a 2-D electromagnetic problem. The hybrid MM/GTD technique is 

therefore employed to numerically solve the 2-D scattering problem. In order to ap

ply MM/GTD routines, the original profiles are pre-processed by symmetric reversal, 

and a 3° clockwise rotation. The rotation is used for convenience in implementing the 
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half-planar extension required by MM/GTD. Also, the relative positions of the pro

files also are adjusted, which actually does not affect the magnitude of the scattering 

from each profile, but will be convenient for the later 3-D test surface generation. Fig

ure 5.1 shows the pre-processed profiles 1 to 18. Each has 3 A half-planar extensions 

at each side with a 40° slope angle to horizontal. 

The 3-D test surfaces are generated by using a spline interpolation based on the 

profiles of LONGTANK model case 2.4. The adjusted and extended profiles in Fig

ure 5.1 are used. One profile is used as the major reference for each 3-D test surface. 

The other profiles before it are used in the interpolation, and those after it are ig

nored. For example, in the generation of test surface 12, the spline interpolation is 

applied from profiles 1 through 12 only. Figure 5.2 shows the generation of surface 

12. The original profiles (plotted with thick lines) are separated azimuthally, between 

which the interpolation generates new profiles and fills the space. The interpolation 

between profile 11 to 12 dominates the surface, and the interpolation between profiles 

1 through 11 only smoothly transitions to the edge extension. 

Resistive loading as discussed in Section 4.8 is used to suppress edge-diffraction 

effects. The 3 A flat extensions in front of and in back of the individual LONG TANK 

profiles provide the low-scattering regions needed for the application of the loading 

3 A. extension 

40° to Horizon 
3 A extension 

Figure 5.1: Pre-processed LONGTANK case 2.4 profiles. 
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m the range (x) direction. The surface must also be extended in the azimuthal 

(y) direction. Profile 1 of the LONGTANK series is sufficiently steep that it gives 

significant 2-D backscattering at 60° incidence. It therefore should not be extended 

directly. Instead, multiple passes of a three-point moving average were applied to 

profile 1 to decrease the steepness and give a surface with little backscattering at 

all incidence. This resulting surface was applied over 2 >. to provide the region for 

the resistive loading. Also, the surface was made symmetric in azimuth around the 

reference profile. The smoothed profile 1 extension therefore appears on both sides of 

the test profiles, on which the loading is applied. The process for resistive loading is 

also illustrated in Figure 5.2. Note that the symmetric duplication may lead to strong 

interference for some surfaces. This phenomenon will be identified when it occurs. 

Profiles 8, 12, and 18 represent the steepening stage, the beginning of overturning, 

and the fully developed overturning jet, respectively. They are therefore chosen as 

reference profiles. An earlier 2-D scattering analysis [2] showed that the scattering 

was very sensitive to the profile change at the initial breaking (from profile 11 to 

13) , particularly at VV. Therefore, profiles 11 and 13 were also used to generate two 

additional test surfaces. Finally, profile 15 is used as the representative of a small 

overturning jet. Therefore, a total of six test surfaces are used with profiles 8, 11 , 

2istive loadin ion 
extended based on the 
smoothed profile 1 

oh region 
based on the moving 
average of profile 1 

Figure 5.2: Demonstration of the 3-D crest surface formation. 
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12, 13, 15 and 18 used as the references. The final 3-D test surfaces are shown m 

Figure 5.3, they are named surface 8, 11, 12, 13, 15 and 18, respectively. 
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Figure 5.3: Test 3-D surfaces with various crest features 
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The six surfaces have different features at their centers, which represent the dif

ferent crest characteristics at different stages of breaking. These features may exist 

in the different stages of a breaking wave, or simultaneously appear in different parts 

of a large sea surface. 

5. 2 2-D Scattering 

5.2.1 MM/GTD 

MM/GTD was previously used by West [2] to find the upwave looking backscattering 

from the 2-D profiles in Figure 5.1. Additional results from profiles 8,11,12,13,15 

and 18 are shown in Figure 5.4. Shown are the LGA radar cross-sections (RCS) for 

both VV and HH backscattering. The 2-D RCSs are calculated from the definition in 

(2.1), and are given in dB with respect to unit wavelength (dB--\). The VV and HH 

RCS scattering of profile 8 are nearly identical at all angles. However, HH exceeds 

VV from profile 11 to profile 13. The HH RCS depends much less strongly than VV 

on incidence angles with these profiles. A deep null appears in the VV RCS at 77° 

with profile 13. Note that HH exceeding VV backscatter indicates a super event. For 

profile 15, with a small jet, the super event occurs only when the incident angle is 

greater than 70°. As the jet becomes larger in profile 18, the super event exists for 

all incident angles from 60° to 90°. 

Figure 5.5 shows the backscattering RCS of the 18 profiles at incidence angles of 

80° and 60°. The scattering dramatically changes with the incident angle change. At 

80° incidence, the super event exists after profile 8, but at 60° incidence the situation 

is more complicated. At 60° incidence, the super event appears after profile 8, but 

disappears from profile 13 through 17. The explanation of the 80° RCS was provided 

by West[2]. 
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Figure 5.4: Backscattering RCS of 2-D surfaces (MM/GTD) 

5.2.2 Prediction of EGO/ G TD model 

The EGO/GTD model [2] can provide a good prediction of the backscattering from 

some simple crest structures. For the crest geometry shown in Figure 5.6, there are 

two specular reflection points A and B located on the jet and cavity region respec-
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Figure 5.5: Backscattering of the 18 LONGTANK profiles (MM/GTD) [2]. 

tively. D shows a curvature inflection point. The backscattering from this crest can 

be predicted by the EGO reflections from A and B plus the GTD-based diffraction 

from D. Interference may occur between the reflections from A and B, explaining why 

the VV backscattering of profile 13 has a deep null. However, if the crest structure 

is too complicated, the EGO/GTD model may fail to give a good prediction. 

According to West's analysis [2], prior to profile 9 there are no specular reflection 

points on the waves at very low grazing angle. The backscattering of profile 8 is 

therefore dominated by the GTD-based diffraction from the inflection point. At 

profile 9 and beyond specular reflection points appear and the EGO back-reflection 

must also be included . 

..... ____ 
....__....__ A ------ ....... 

B 

Figure 5.6: Geometry for reflection and diffraction by a crest structure. 
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Figure 5.7: EGO/GTD prediction of the backscattering from the 18 LONGTANK 
profiles (repeated from [2]). 

Figure 5.7 shows the EGO/GTD backscattering prediction result of the 18 pro

files when incident angle is 80°. Compared with the MM/GTD numerical result, 

EGO/GTD is accurate to within 3 dB at both polarization up to profile 9. In partic

ular, the VV interference nulls of profile 10 through 12 are predicted. The modeled 

result is quite inaccurate at both VV and HH for profiles 13 and later. 

5.3 3-D Crest Test Surface Scattering 

5.3.1 Backscattering 

MLFMA is now used to analyze the backscattering from the six 3-D crest test surfaces. 

As a full vector technique, MLFMA can find both the co-polarized and cross-polarized 

backscattering. The 3-D RCS is obtained following the definition of (2.2), represented 

using dB with respect to the unit wavelength square (dB-A2). Figure 5.8 shows the co

polarization backscattering RCS when looking up-wave at LGA. The depolarization 

phenomena will be discussed in next chapter. 

Many similarities are apparent when comparing the backscattering RCS of these 

3-D test surfaces with the MM/ GTD results associated with individual 2-D profiles 
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in Figure 5.4. The dependence of the RCS of surface 8 and 11 on incidence angle are 

similar to those of 2-D profiles 8 and 11. The relative RCS at VV of 3-D surface 12 

and 13 are higher than those of 2-D profiles 12 and 13 when incidence at 60° to 65°, 
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Figure 5.8: Normal backscattering RCS of 3-D test surfaces (MLFMA) 
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so the super events disappear in these cases. A deeper interference null appears with 

3-D surface 12 VV scattering than in the corresponding 2-D case. 3-D surfaces 15 

and 18 and 2-D profiles 15 and 18 backscattering differs significantly at both VV and 

HH. This results because the 2-D surfaces are electromagnetically treated as if they 

extend infinitely in azimuth. The 3-D surfaces are curved in the azimuthal dimension, 

affecting the scattering. 

5.3.2 The Relationship of 2-D and 3-D Backscattering 

Since the 3-D test surfaces were formed by azimuthally aligning and interpolating the 

2-D crest profiles, the scattered field from a 3-D test surface can be approximated 

from the 2-D scattering from the individual profiles using a technique first used by 

Zhao [67] for a spilling breaker wave. The approximate 3-D field is given [77] by 

( lejn/4) 
E3D ~ E2D-total ry:::. , 

V AP p=r 

(5.1) 

where E2D-total = I: Ei is the coherent sum of all 2-D surface scattered fields, Ei is the 

scattered field of the ith 2-D profile, and l is the azimuthal width of each 2-D profile 

used in forming the 3-D surface. MM/GTD is used to compute the backscattered 

fields from each 2-D profile of a test surface, and (5.1) is applied to these fields 

to give the 3-D synthesized fields. The 3-D RCS is then found from (2.2). The 

azimuthal width is the interval between two 2-D profiles in the 3-D test surface after 

interpolation (l = lo>. here). Figure 5.9 shows the comparison of the 2-D-synthesized 

RCS with the reference MLFMA results. The starred lines are the synthesized results. 

The synthesized HH RCS gives a better match with the exact results than at VV, 

especially at higher incidence ( > 70°). When incident angle is less than 70°, the 

maximum error of HH is less than 5 dB (except surface 15). The synthesized VV 

shows the interference nulls with profiles 12 and 13. However, VV is sensitive to the 

azimuthal curvature of reflection points, leading to oscillations in the MLFMA results 
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that are not seen in the synthesized results. Overall, the disagreement becomes larger 

as the surface jet gets bigger. Siegel [144] introduced a shape correction factor for 

the RCS calculation of simple bodies of revolution. The 3-D RCS was obtained from 

the relative 2-D RCS by multiplying the shape correction factor to account for the 
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Figure 5.9: Comparison of synthesized 3-D RCS with MLFMA results. 
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curvature. However, different correction factors were used according to the shape of 

the scatterers. Similarly, the approximation in the relationship (5.1) also relates to 

the shape of a scatterer. The crest shape changes rapidly in azimuth with surface 18, 

which compromises the approximation accuracy of (5.1). 

5.3.3 3-D EGO Model 

Referring back to the crest test surfaces in Figure 5.3, the surfaces are smoothly 

curved in azimuth at their center. Sharply curved sections occur only on the sides, 

which should have only a slight role in the upwave-looking backscattering. In the 

range dimension, the angled edge extensions are shadowed from the crest so there is 

no multipath reflection. Similar to the 2-D profiles, the upwave looking backscattering 

from these surfaces should be primarily due to a few quasi-specular reflection points. 

Thus, a 3-D EGO model will be applied to the 3-D crest test surfaces. Diffraction 

from inflection points will be small and very difficult to model with 3-D profiles, so is 

simply ignored. Also, EGO failed after 2-D profile 13, so is not expected to be valid 

for the 3-D profiles after 13. The 3-D EGO model was therefore applied only to test 

surface 12 and 13. 

To apply the 3-D EGO approximation, an automatic searching code was first de

veloped to find the reflection points on the surface by comparing the incident direction 

with the surface normal vector at every point on the surface. The point is assumed 

to contribute to the specular reflection when the error angle between these two direc

tions is less than a specific criteria 8. The reflection point distribution of surface 12 

and surface 13 are shown in Figure 5.10 when 8 :S 2°. The position accuracy of the 

reflection points depends on the search sampling accuracy. The range dimension step 

size of ~x = 0.05 A and the azimuthal step size of ~y = 0.02 A are used in Figure 5.10. 

The figures indicate that all reflection points concentrated in two locations for any 

incident angle from 60° to 90°. One area is at a convex curvature point in the range 
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(a) Surface 12 (b) Surface 13 

Figure 5.10: Automatically searched reflection points when b :S 2°. 

dimension on the jet. The other is located in the cavity region under the jet, where 

the range curvature is concave. 

Two equivalent reflection points are obtained from the mean of the reflection point 

coordinates automatically identified, shown in Figure 5.11. The 3-D EGO model is 

implemented at these two points. The RCS results of the VV and HH reflection 

are calculated and compared with the reference of MLFMA results in Figure 5.12. 

The 3-D EGO results using the automatically found reflection points and curvatures 

(denoted as "Auto. 3D-EGO" in the figure) give fairly poor agreement with the 

MLFMA results. However , the positions of the two reflection points on surface 12 

were slightly adjusted manually, giving the EGO results in Figure 5.12 designated 

( a) Surface 12 (b) Surface 13 

Figure 5.11: Equivalent reflection points and their cross-section curves. 
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Figure 5.12: Comparison the 3-D EGO results with the reference of MLFMA. 

by the crossed and plussed lines. The VV RCS changes dramatically, and a deep 

interference null appears at the same incident angle as the reference results. This 

result indicates that 3-D EGO is able to reveal the underlying mechanisms that lead to 

backscattering as the incident angle changes. On the other hand, the sensitivity to the 

positions of the reflection points and still limited accuracy indicate that the two-point 

reflection model is not sufficient to provide a good prediction of the backscattering 

from the entire surface. This likely results since the inflection point diffraction and 

the reflection from side regions are completed ignored. Note that similar results for 

surface 13 are also obtained by slightly adjusting the positions of the two reflection 

points, as seen in Figure 5.12(b). 

5.3.4 Cross-section Curvature Effect on Scattering 

The computed test-surface backscattering presented so far shows that the azimuthal 

curvature of a surface plays a role in its scattering. Equations (3.12) and (3.13) also 

indicate the relationship between the scattered field and the radii of curvature at the 

reflection point. The relationship can also be explicitly observed through numerical 

simulation. Surface 12 is used as an example. The surface is reformed by reducing 

spacing between the individual 2-D profiles used to form the 3-D surface by a specific 
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Figure 5.13: The cross-section cut lines at reflection points. 
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percentage. The azimuthal curvature is reduced simultaneously. Figure 5.13 shows 

azimuthal cuts in horizontal plane through the two reflection points for 50%, 60%, 

70%, 80% and 90% compression. The non-compressed cuts is shown in Figure 5.11. 

Figure 5.14 shows the VV and HH RCS computed by MLFMA for each compres

sion case. As the azimuthal cross-section radius of curvature decreases, the RCS level 

decrease for both VV and HH cases. The VV scattering changes sharply as the sur

face is compressed, and changes the position of the interference null. In fact, equation 

(3.12) indicates the VV and HH RCS curves should have shifted with a constant level 

at a specific incident angle if the scatterer is an ideal sphere. For the case of surface 
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Figure 5.14: The backscattering RCS of compressed surface 12. 
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12, the null at VV is generated by the interference between concave and convex points 

reflections. The surface compression changes the azimuthal curvature at both points 

differently. The interference therefore changes, and null position is shifted. 
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Chapter 6 

Polarimetric Scattering 

The vector MLFMA scattering code provides both co-polarized and cross-polarized 

surface scattering. A full characterization of the polarization dependence of the scat

tering is termed the polarimetric signature. The polarimetric signature can provide 

additional information for target identification and classification beyond that available 

from co-polarized signals alone [145][146]. Polarimetric scattering from the synthe

sized profiles is considered in this chapter. 

The cross-polarized scattered fields were usually very low when looking upwave 

with the 3-D test surfaces considered in the previous chapter. Here, the dependence of 

the co-polarization and cross-polarization backscattering on the azimuthal look angle 

will first be considered. Following the notation in Chapter 4, this is termed "off-axis" 

backscattering. Then, the incidence elevation and azimuth angles will be fixed and 

the scattering angles varied, giving the bistatic scattering signature. 

In Chapter 4, the flat plate test case was used to define the concepts and termi

nology for monostatic and bistatic polarimetric scattering. These concepts will be 

used in examining the polarimetric scattering from the LONGTANK-based 3-D test 

surfaces. Once again, the study is limited to LGA incidence. The frequency is still 

assumed to be 10 GHz. 
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6.1 Off-axis Backscattering from Surface 8 

The off-axis backscattering RCS for test surface 8 for incidence angles ranging from 

60° to 90° and azimuth angles ranging from 0° to 30° is shown in Figure 6.1. Note that 

the cross-section is symmetric around the 0° azimuthal angle since the test surface is 

symmetric. 

As shown m Figure 6.1 (a) and (b) , the RCSs at both VV and HH smoothly 

reduce as the angle moves azimuthally away from the upwave looking direction. When 

looking up wave, there are two quasi-specular reflection points in the center of the 

surface. As marked in Figure 6.2(a), the upper point has convex curvature in range 
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Figure 6.1 : RCS of off-axis backscattering from surface 8. 
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direction and the curvature of the lower one is concave. However, due to the minimal 

jetting of this surface, these two reflection points closely located, and the range

direction surface radii of curvature are larger than the electromagnetic wavelength. 

Because of this, no significant destructive interference occurs. As shown in Figure 6.2, 

the positions of the reflection points move from center across the surface to edge area 

as azimuthal angle increases. On the other hand, the azimuthal radii of curvature at 

these specular reflection points reduce gradually, thus causing the RCSs to decrease 

simultaneously. Both VH and HV cross-sections in Figure 6.l(c) and (d) are very low 

(below -40 dB->.2) and have irregular fluctuations. Although it is difficult to clearly 

describe the mechanism that leads to fluctuations, the similarity of the RCS at VH 

and HV indicates the MLFMA computation is accurate. 

(b) ¢ = 7° 

(c) ¢ = 10° (d) ¢ = 20° 

Figure 6.2: Position variation of specular reflection points on surface 8 
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6.2 Off-axis Backscattering from Surface 12 

Figure 6.3 shows the off-axis RCS of backscattering from test surface 12. At 0° 

azimuth, the VV RCS has an interference null at an incidence angle of ()i = Bs = 76°, 

corresponding to part( c) of Figure 5.8. The null position moves toward a larger 

incidence angle as the azimuth angle increases to 7°. As the azimuth angle continues to 

increase to 12°, t he null position moves back to smaller incidence angles. The VV RCS 

then smoothly reduces as</> moves above 15°. The HH RCS decreases as the azimuth 

angle increases, with a distinct null appearing at 9° at smaller incidence. In this case, 

the VH and HV are also very low (below -40 dB--\2) and have irregular fluctuations. 
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Figure 6.3: RCS of off-axis backscattering from surface 12. 
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Compared with the cross-polarized scattering from surface 8, the fluctuations are even 

stronger, which indicates that the scattering mechanisms that lead to interference at 

co-polarized components also play a role at cross-polarized scattering. 

In Section 5.3.3, 3-D EGO showed that the upwave looking (on-axis) backscatter

ing from test surface 12 is dominated by the quasi-specular reflections from the jet 

(a) ¢= 5° (b) ¢ = 7° 

(c) ¢ = 10° (d) ¢ = 15° 

(e) ¢ = 20° (f) ¢ = 25° 

Figure 6.4: Position variation of specular reflection points on surface 12 
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and cavity regions. Also, interference between these reflections gives cancellation at 

VV while constructively adding at HH. Thus HH > VV super events occur. 

The off-axis backscattering shows that the destructive interference between the 

reflections from the jet and cavity region still occurs at VV as the azimuth angle 

varies. This indicates that specular reflection points still exist and dominate the 

backscattering. Figure 6.4 shows the specular reflection points identified on surface 

12 for a few azimuth angles. The upwave-looking case was shown in part (a) of 

Figure 5.10. The figure shows that there are specular reflection points on the jet and 

in the cavity region from ¢ = 0° through 10°, but the positions of reflection points 

move from the center of the profile to side as ¢ increases. The different curvatures of 

the surface at the reflection points lead to the change of the depth and incidence angle 

of the interference null. As shown by West [2], the destructive interference at VV 

occurs only when convex and concave reflection points exist simultaneously, and the 

surface radii of curvatures (in range direction) at the reflection points are somewhat 

smaller than the electromagnetic wavelength. When ¢ > 10°, the reflection points 

move from the central region to the side section of the surface. Although the convex 

and concave reflection points are still there, the radius of curvature changes. The 

interference null at VV therefore disappears gradually. 

6.3 Off-axis Backscattering from Surface 15 

Figure 6.5 shows the off-axis backscattering from surface 15. There is no strong VV 

interference null around the upwave looking direction corresponding to Figure 5.8(e). 

However, a null appears as the azimuthal angle increases, and a very deep null appears 

at all incidence angles above 75° when azimuthal angle is 7°. The specular back

reflection points shown in Figure 6.6 indicate the corresponding scattering mechanism. 

When upwave looking (¢=0°), the cavity region is shadowed by the jet, so there is no 

specular reflection from this concave section to interfere with the reflection from the 
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convex jet. As the azimuthal angle increases, the cavity reflection points move out 

of the jet shadow and become visible. This gives the concave reflection point needed 

for the VV destructive interference to occur. This effect is most pronounced at the 

largest incidence angle. 

A slight HH null also appears at ¢=3°. The responsible mechanism will be ana

lyzed in next section. 

6.4 Off-axis Backscattering from Surface 18 

Figure 6. 7 shows the off-axis backscattering from surface 18. A deep VV interference 

null appears at ¢ = 8°. Additional shallow VV nulls exist at other positions. These 

VV nulls have the same scattering mechanism as that identified in surface 12 and 

surface 15 cases. That is, the VV nulls are formed by the destructive interference 

of the reflections from the convex reflection points at jet and the concave reflection 

points at the cavity region. The HH backscattering includes a deep interference null 

at about 13° azimuth. No corresponding VV interference null appears at the same 

azimuth. 

As mentioned, a shallow HH null is also observed in the HH backscattering from 
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(a) ¢= 0° (b) ¢ = 3° 

(c) ¢ = 7° (d) </>= 10° 

(e) ¢= 15° (f) ¢ = 20° 

Figure 6.6: Position variation of specular reflection points on surface 15 

surface 15 at 3° azimuth. This phenomena may be due to a similar effect. Consider 

the specular reflection points when the azimuthal angle equals 13° as shown in Fig

ure 6.8 (e). One of the reflection points is on top of the jet, while another is located 

in the cavity region near the azimuthal edge of the surface. The surface has a posi-
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Figure 6. 7: RCS of off-axis backscattering from surface 18. 

tive radius of curvature in the azimuthal direction at the point on top of the crest, 

while it is negative at the point in the cavity region. This is similar to the case at 

VV polarization that leads to destructive interference, but with the surface and field 

rotated counter clockwise by 90°. This gives the observed interference null. 

The destructive interference scattering mechanism is further illustrated in Fig

ure 6.9. Part (a) shows the case where VV destructively interferes , but HH interferes 

constructively. In contrast, the configuration in part (b) leads to HH destructive 

interference, while VV interferes constructively. Note that the surface radii of curva

tures at the reflection points should be somewhat smaller than the electromagnetic 

wavelength to give the destructive interference [2] . Here, this refers to the radii in 

range direction for case (a), and in the azimuthal direction for case (b). As seen 

in Figure 6.6(b) , the specular reflection points on surface 15 at 3° azimuth similarly 

meet these conditions , which further supports this explanation. This effect is hereafter 

referred to as an "HH null" event. 

Considering the above analysis, both super events (strong sea spikes) and HH null 

events should appear in the scattering from real sea surfaces which have complex rough 

wave crests. From the numerical treatments ( especially in the 2-D simulations and 3-

D upwave looking backscattering simulations), it has been seen that VV interference 
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(a) ¢ = 0° (b) </>= 3° 

( C) cp = 8° (d) <P = 10° 

(e) cp = 13° (f) <P = 20° 

Figure 6.8: Position variation of specular reflection points on surface 18 

nulls due to the reflections from the jet and cavity areas is one of the mechanisms 

that can lead to super events. However, the HH interference null is much less likely 

since the interference condition in azimuthal direction is seldom satisfied. When the 

off-axis backscattering or bistatic scattering from a single crest is considered, however , 
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Figure 6.9: Illustration of destructive interference mechanisms 

it is easily observed and identified as a scattering mechanism similar to that which 

causes the VV interference nulls. 

6.5 Bistatic Scattering from Surface 12 and 18 

Figure 6.10 shows the bistatic scattering from surface 12 when the illumination di

rection is <Pi = 0° and (Ji = 80°. The bistatic scattering is shown from <Ps = 0° to 30° 

and ()8 = 60° to 90°. 

The cross-polarized scattering is stronger than in the corresponding monostatic 

case (although still small compared to the co-polarized scattering ). It changes 

smoothly across the observation range. The dependence of the position of the VV 

( co-polarized) interference null on azimuth is similar to that in the backscattering 

case, although weaker. This results since the specular reflection points are somewhat 

different from those shown in Figure 6.4 due to the separation of the source and 

observation point. Because the incident direction remains unchanged, the specular 

reflection points move less rapidly with respect to the azimuthal observation angle, 

which leads to the slower and smoother variation of the bistatic scattering. 

The co-polarization scattering characteristics (especially at VV) change abruptly 

as the azimuth angle moves through 15°. This is due to the surface shape. When 
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Figure 6.10: RCS of bistatic scattering from surface 12. 
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c/Js ~ 10°, the specular reflection points are on the center of the crest, which therefore 

satisfy the curvature conditions that causes strong VV interference null. When c/Js 2: 

15°, the reflection points are more on the side of the wave where the curvature at 

the reflection points does not support VV destructive interference. The rapid change 

( from VV null to flat response) occurs when the reflection points move from the center 

onto the side. The surface curvature at the reflection points changes quickly there. 

Unlike the off-axis monostatic case, the cross-polarized bistatic VH and HV RCSs 

are considerably different. This is because they are no longer reciprocal cases due to 

the separation of source and observation point. 

The bistatic scattering from surface 18 with the same illumination as Figure 6.10 
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is shown in Figure 6.11. Compared with the off-axis backscattering results of this 

surface in Figure 6. 7, the co-polarized scattering again changes more smoothly with 

the azimuth angle. On the other hand, a significant VV interference null occurs at 

about ef>s = 20°, and a deeper HH interference null appears at c/>s = 26°. This results 

since the specular reflection points are again different for the monostatic and bistatic 

scattering cases. However , the mechanisms for interference nulls at both VV and HH 

are similar to those for backscattering. 
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Figure 6.11: RCS of bistatic scattering from surface 18. 
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Chapter 7 

Backscattering from Multiple-jet 

Wave Crests 

7.1 Introduction 

In the previous chapter, the polarimetric scattering from four 3-D test surfaces was 

discussed. The results, especially the off-axis backscattering, indicated that the mech

anisms of scattering from different crest features were different. The destructive inter

ference phenomenon was observed at both VV and HH in some cases. The interference 

effect strongly depends on the change of the positions of the specular reflection points 

on the wave crest with the change in the incidence azimuthal angle. The scattering 

mechanisms were easily identified due to the relatively simple crest structure that 

included only single jet. 

When more complicated crests are considered, such as waves with multiple jet 

structures, the scattering will become more complex, with more reflection points 

interfering. This chapter focuses on the analysis of scattering from multi-jet test 

surfaces. 

The 3-D multi-jet test surfaces are synthesized following a method similar to that 

used in the Chapter 5. The first step used in the synthesis is to interpolate three 
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profiles between each adjacent LONGTANK profile. For example, Figure 7.1 shows 

the profiles interpolated between profile 17 and profile 18, referred to as profile 17.25, 

profile 17.5 and profile 17. 75. The other interpolated profiles are named following the 

same rule. The multi-jet test surfaces are synthesized by azimuthally aligning these 

interpolated profiles. They are formed to have multiple jets, with "cavity" regions 

between the adjacent jets. These "cavity" regions are formed by overlapping the side 

areas of the adjacent jets, also called "overlapped cavity region". 

Figure 7.2 illustrates the cross-section view of two example wave crests. Crest 1 

has 3 identical jets (J1 , J2 , and J3 ) with profile 18 as the central reference, 2 cavity 

regions ( C1 and C2 ) with profile 17 as the central reference. The distance between 

two adjacent jet centers ( or cavity centers) ~Y1 is named the jet period. Crest 2 has 

4 jets with profile 18 as the central reference, and 3 cavity regions with profile 17 as 

the central reference. Different jet variations are synthesized by changing the central 

reference profiles of the cavity regions. For example, in Crest 2 of Figure 7.2, profiles 

16, 17, 17.5 are used as the central reference profile of the cavity regions, giving the 

profiles marked by the dash-dotted line, solid line, and dotted line, respectively. For 

simplicity, these will be termed rough-ripple, medium-ripple, and smooth-ripple crests 

respectively. The jet period of crest 2 (~Y2 ) is less than that of Crest 1. In later tests, 

crests with more random features where there is no fixed jet period, or the central 

reference profiles of individual jets or cavity regions are different, are generated. 

17.75 17.5 17.25 

11 

Figure 7.1: Interpolated LONGTANK case 2.4 profiles (11 to 18). 
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Figure 7.2: Illustration of the creation of multi-jet surface crests. 

The analysis in this chapter will focus on the scattering from test surfaces which 

have various jet ripple magnitudes, jet periods, and varing number of jets. The 

relationship between the scattering results and the crest features are considered, and 

scattering mechanisms are identified. 

7.2 Scattering Analysis of Multi-jet Wave Crests 

Four related test surfaces are shown in Figure 7.3. The individual jets in each of 

these surfaces are identical, using profile 13 as the central reference profile. Part (a) 

shows the single-jet surface. Parts (b), (c) and (d) show 2-, 3-, and 5-jet surfaces, 

respectively. Profile 11 is used as the reference at the center of the cavity regions 

between each adjacent jets. The specular reflection points resulting with upwave 

looking incidence are marked in these surfaces. The MLFMA backscattering from 

these surfaces is shown in Figure 7.4. The RCS of the single-jet surface in part (a) 

is nearly the same as that in Fig.5.8 (d). Slight differences result from a change 

in curvature in the surface side regions. However, the jetting area dominates the 

scattering, giving a deep VV interference null. With the multi-jet surface cases, the 

depth of the VV null is somewhat smaller as the jet number increases, and the shape 

of the RCS curve changes slightly. This is because the back-reflections from the 
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A B 

(a) Single Jet (surface width: 6.868 -\) (b) 2 Jets (surface width: 11.594 -\) 

A B 
A j 

(c) 3 Jets (surface width: 16.320 -\) (d) 5 Jets (surface width: 25.772 -\) 

Figure 7.3: Multi-jet surfaces with marked reflection points (b :'.S 4°). 

cavity regions tend to reduce the destructive interference. Because the individual 

jets and cavity regions of these surfaces are identical, the specular reflection points 

always appear at the same positions on each jet or in each cavity region. The fields 

scattered from these individual regions therefore add constructively when looking 

upwave. Therefore, the RCS level of both VV and HH raises about 3 to 5 dB when 

a second jet is added in Figure 7.4(b). The VV null becomes slightly shallower due 

to the addition of the first cavity region. The scattering from an N-jet test surface 

can then be found using the superposition of the scattering from the one- and two-jet 

surfaces. 

A synthesis procedure has been formed to predict the backscattering from the 
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Figure 7.4: RCS of backscattering from multi-jet surfaces. 

multi-jet crests. The scattering from the surface in Figure 7.3 (a) is termed the 

'A' scattering from a single jet. The scattering from the region between two jets is 

then isolated using the scattering from the surface of Figure 7.3 (b). That is, the 

'B' scattered fields from the cavity region is found by coherently subtracting twice 

the single-jet surface scattering from the two-jet surface scattering. The scattering 

from an N-jet surface can then be found using the coherent addition '(N)A+(N-l)B'. 

Synthesized 3- and 5-jet surface RCSs are compared with the MLFMA results for the 

complete surfaces in Figure 7.4. Excellent agreement is achieved at both polarizations 

for this test case. 

This synthesis prediction method is significant because the large computational 
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cost of MLFMA may prevent the direct numerical computation of a very large surface. 

However, it may only be used in cases where the adjacent features do not interact 

significantly through multipath. Cases where this takes place will be observed later. 

The 3-D EGO model was also applied to the multi-jet surfaces of Figure 7.3. Au

tomated algorithms to identify specular reflection points and calculate the curvatures 

used in EGO were tested, but as with the single jet cases, the accuracy was again lim

ited. Therefore, manually adjusted EGO parameters were again used for the four test 

surfaces. The 3-D EGO backscattering results are shown in Figure 7.5. 3-D EGO is 

much less accurate than the synthesized backscattering results. As discussed before, 

the 3-D EGO model is too sensitive to the positions and curvatures of the specular 
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Figure 7.5: 3-D EGO results of multi-jet surfaces. 
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reflection points to provide accurate scattering based on a few dominant reflection 

points. However, it again clearly demonstrates physical scattering mechanism. Due 

to the limited accuracy, the 3-D EGO model is not further considered. 

7.3 Scattering from Three-jet Crest Surfaces 

In this section, the scattering from four different surfaces is examined. The crest 

of each surface has three identical jets. The ability of the synthesis procedure to 

predict the three-jet surface scattering from the one-jet and two-jet surface MLFMA 

scattering is tested on these surfaces. The comparison of the synthesized results with 

the MLFMA scattering from the full three-jet surface indicates the different scattering 

mechanisms in each case. 

Figure 7.6 (c) shows a 3-jet surface. The central reference profile of each jet region 

is profile 13, while the cavity center profile is 12.5. The RCS of the surface is shown 

in Figure 7.6 (d). The solid line is VV and dashed line is HH. Compared to the 

single-jet result of surface 13 in Chapter 5, this 3-jet surface has a similar deep VV 

interference null. The interference between the reflections from the jetting areas and 

the cavity regions under the jets is therefore still significant. The specular reflection 

points marked in the figures show that the cavity region between two adjacent jets 

has reflection points similar to those of the jets. Also, there are two concave reflection 

points in each side cavity region of the crest. Because the reflection point distribution 

in this case is different from that in Figure 7.3, the synthesis procedure also changes. 

Figure 7.7 illustrates the crests of one-jet and two-jet. T1 and T2 are the reflection 

points on the jets, C1 and C2 are those in the cavity regions underneath the two 

jets. SC1 and SC2 are reflection points on the side cavity regions of the crest. T3 

and CC1 are the reflection points in the middle region between the jets, on the top 

and in the cavity region respectively. The scattering from the full one-jet surface is 

termed 'A' scattering. 'C' scattering stands for the residual backscattering from the 
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2-jet surface after the 'A' scattering is coherently subtracted, and therefore includes 

the reflections from the points T2 , C2 , T3 , and CC1 . The synthesis 'A+2C' therefore 

represents the scattering from the 3-jet surface. The synthesized 'A+2C' scattering 

(a) Single Jet (surface width: 6.426 .\) 

(c) 3 Jets (surface width: 9.724 .\) 

(b) 2 Jets (surface width: 8.092 .\) 
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Figure 7.6: Illustration of 3-jet surface (Reference profile 13/12.5). 

C r est -i 
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Cres t 2 
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Figure 7.7: Illustration of reflection points on crest jets and in cavity regions. 
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is compared with the MLFMA scattering from the full surface in Figure 7.6 (d). 

The excellent agreement indicates that multiple interactions between the jets and 

cavities is small, and coherent superposition of the fields scattered from the individual 

scattering features is valid. 

Figure 7.8 (c) shows another 3-jet surface. The reference profiles used in the 

surface formation are 18/ 17 at t he jet/cavity region centers. For this scenario, due 

to the long jetting of profile 18, the size of a complete jet is bigger than that in 

Figure 7.6. Strong overlapping therefore occurs in the side regions of each jet when 

the 2-jet and 3-jet surfaces are generated. However, the 'A+2C' synthesis results still 

agree with the direct MLFMA results very well. In this case, the jetting areas totally 

(a) Single Jet (surface width: 9.282 A) 

(c) 3 Jets (surface width: 12.580 A) 

(b) 2 Jets (surface width: 10.948 A) 
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Incident Angle (degree) 

(d) Comparison of RCS for 3-jet case 

Figure 7.8: Illustration of 3-jet surface (Reference profile 18/ 17) . 
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shadow the reflections from the points under the jets. Therefore, only a few dominant 

reflection points contribute to the backscattering. Little multiple interaction between 

the crest features takes place despite the large crest, which supports the constructive 

superposition for the multiple-jet cases. With no reflection from a concave surface 

point, the VV interference null does not occur. 

The 3-jet surface in Figure 7.9 (c) is generated with the central reference pro

file 16/ 14 at the jet/cavity region center. Figure 7.9 (d) compares the synthesized 

backscattering with the full-surface MLFMA results. VV again shows good agree

ment , but HH is much poorer at high incidence. In the single-jet surface in Figure 7.9 

(a) , the medium-size jet shadows the middle part of the cavity region underneath the 

(a) Single Jet (surface width: 7.276 >.) 

(c) 3 Jets (surface width: 10.574 >.) 

(b) 2 Jets (surface width: 8.942 >.) 
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(d) Comparison of RCS for 3-jet case 

Figure 7.9: Illustration of 3-jet surface (Reference profile 16/14). 
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jet , while the side parts of the cavity region are only partially shadowed. For the 2-jet 

and 3-jet surface cases, the overlapped regions between adjacent jets have less jetting 

so the reflection points in these cavity regions are also only partially shadowed. The 

degree of partial shadowing depends upon the incident angle, being less severe at high 

incidence (low grazing). 

Figure 7.10 shows the variation of the reflection points on the 2-jet surface at 

different incident angles. T1 , T2 , and T3 stand for the convex reflection points on the 

top area of the crest. C1 and C2 are the concave reflection points in the cavity regions 

underneath the jets. SC1 and SC2 are the concave reflection points on the side regions 

of the crest. Finally, CC1 stands for the concave reflection points in the overlapped 

(a) Incident angle e = 60° (b) Incident angle e = 70° 

( c) Incident angle e = 80° (d) Incident angle 8 = 90° 

Figure 7.10: Reflection points on the 2-jet surface in Figure 7.9(b) at different incident 
angles. 
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cavity region between the two jets. As mentioned, the VV interference null usually 

occurs when the reflections from T1 and T2 destructively interfere with the reflections 

from C1 and C2 . However, C1 and C2 are totally shadowed by the jetting parts 

in this case, so there is no significant VV null. On the other hand, the reflections 

from T1 and T2 (azimuthally convex) may interfere with the reflections from SC1 , 

SC2 , CC1 or T3 (azimuthally concave), which leads to HH destructive interference. 

As the incidence approaches grazing, the unshadowed cavity region gets larger , and 

the reflection points move to the positions where the surface radii of curvatures are 

different. The HH destructive interference therefore becomes stronger. There is some 

interaction between the individual scattering regions, the simple 'A+2C' coherent 

(a) Single Jet (surface width: 8.738 -\) 

(c) 3 Jets (surface width: 12.036 -\) 

(b) 2 Jets (surface width: 11.628 -\) 
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-30 

~-.. 
-,~:. . 

... _ ........ _ 

-35 

- 4C/;o 65 70 75 80 
Incident Angle (degree) 

85 
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Figure 7.11: Illustration of 3-jet surface (Reference profile 18/16). 
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superposition is no longer perfectly accurate. 

Figure 7.11 (c) shows another 3-jet surface. The central reference profiles are 

18/ 16 at the jet/cavity region centers. In this case, the jetting area is narrower than 

that in Figure 7 .8 ( c), and partial shadowing of the cavity below the jets occurs in 

the overlapped cavity regions between the jets and the side regions of the crest. A 

detailed identification of the reflection points on the 2-jet crest is given in Figure 7.12. 

No significant VV destructive interference occurs because the reflections from C1 and 

C2 are totally shadowed. The HH destructive interference occurs because T1 and 

T2 are azimuthally convex and SC1 , SC2 and CC1 are azimuthally concave in the 

electric field plane. The simple 'A+2C' coherent synthesis loses accuracy at HH, but 

still predicts HH destructive interference. 

(a) Incident angle e = 60° (b) Incident angle e = 70° 

( c) Incident angle e = 80° (d) Incident angle e = 90° 

Figure 7.12: Reflection points on the 2-jet surface in Figure 7.ll(b) at different inci
dent angles. 
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7.4 Scattering from Six-jet Crest Surfaces 

7.4.1 Jet P eriod 

The backscattering from 6-jet test surfaces is analyzed in this section. The six jets 

are identical within each surface. The crest characteristics of different surfaces are 

different due to either different central reference profiles or a variation of the jet 

sizes. The scattering phenomena associated various crest features are identified and 

compared. Figures 7.13 (a) , (b) and (c) show three 6-jet test surfaces, each of 

which have reference profiles 13/12 at their jet/cavity region centers. The surfaces 

(a) Jet period t.Yi = l.105>. 
( surface width: 11.152 >. ) 

(c) Jet period 6Y3 = 2.125>. 
( surface width: 16. 762 >. ) 

(b) Jet period t.Y2 = 1.649>. 
( surface width: 14.144 >. ) 
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Figure 7.13: Six-jet surfaces (Ref. profile 13/12) with different jet period. 
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differ in that their jet periods are varied. (As previously defined, jet period stands 

for the distance between the centers of two adjacent jets). Thus, the different jet 

periods give different surface widths, and different azimuthal curvatures at specific 

points on these surfaces. The jet periods(~ Y) of the three surfaces in Figure 7.13 are 

1.105 A, 1.649 A and 2.125 A respectively. The backscattering from these surfaces is 

shown in Part (d) of this figure. In each case, there is a deep VV interference null at 

approximately 77° incidence. This indicates that a crest expansion or compression in 

the azimuthal direction does not change the dominant scattering mechanism for the 

crest. This is not surprising since the positions of the convex and concave reflection 

points and their range-direction curvature remain almost unchanged. The RCS level 

at both VV and HH shifts upward with increasing jet period since the azimuthal 

radius of curvature at the dominant reflection points also increases as the jet size gets 

bigger. 

The surfaces in Figures 7.14 (a), (b) and (c) have the same azimuthal jet periods 

as those in Figure 7.13, but the central reference profile is changed to 18/17 at the 

jet/cavity region centers. The larger jets totally shadow the reflections from the 

concave regions under the jets, so no significant destructive VV interference occurs. 

The main effect of the jet period is again simply to raise or lower the overall scattering. 

7.4.2 Jet Magnitude 

As observed above, a change in the jet period introduces little change to the scattering 

other than. Now, the analysis is focused on the effect of the magnitude of the jetting 

when the surfaces have an identical jet period. 

Figure 7.15 (b) shows the same surface as that shown in Figure 7.13 (b), with 

central reference profiles of 13/12 and a jet period of 1.649 A. Parts (a) and (d) 

of Figure 7.15 use the same azimuthal jet period as part (b), but the central ref

erence profiles are 13/12.5 in part (a), and 13/11 in part (c). The surfaces are 
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(a) J et period 6Y1 = 1.105,\ 
( surface width: 14.552 ,\ ) 

(c) Jet period 6Y3 = 2.125,\ 
( surface width: 20.162 ,\ ) 

(b) Jet period 6Y2=1.649,\ 
( surface width: 17.544 ,\ ) 
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(d) RCS comparison 

Figure 7 .14: Six-jet surfaces (Ref. profile 18 / 17) with different jet period. 

termed 'smooth-ripple' , 'medium-ripple' and 'rough-ripple' for parts (a) through (c), 

respectively, corresponding to the azimuthal "ripple" that the multiple jets form on 

the crest. Figure 7.15 (d) gives the scattering from these surfaces. The scattering 

from the 'smooth-ripple' surface has a deep VV interference null similar to that with 

the 'medium-ripple' case, but at slightly higher incidence. The dominant scattering 

mechanisms are therefore similar. The 'rough-ripple' case, however , has very different 

results. There is only a shallow VV interference null, and the HH scattering drops 

about 3 to 5 dB overall. This difference results from the reflections from the regions 

between adjacent jet pairs, which reduces the original destructive interference at VV, 

and simultaneously introduces some destructive interference at HH. At the same time, 
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(a) Profile 13/ 12.5, smooth-ripple 
( surface width: 14.382 A) 

(c) Profile 13/ 11, rough-ripple 
( surface width: 13.60 A) 

(b) Profile 13/12, medium-ripple 
( surface width: 14.144 A) 
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Figure 7.15: Six-jet surfaces (Ref. profile 13 at jet centers) with different ripple 
feature. 

the 'rough-ripple' leads to the greater curvature at the reflection points, which is also 

a possible factor to reduce HH scattering because, in geometrical optics model, the 

reflected field is directly related to the surface radii of curvature at the reflection 

points. 

The synthesis procedure illustrated in Figure 7.7 is now applied to the surfaces 

of Figure 7.15. As mentioned, 'A' scattering in Figure 7.7 includes two types inter

ference. One is the interference of the reflections from the convex jet top T1 and 

the concave cavity region C1 , which leads to VV destructive interference. The other 

is the interference of the reflections from the jet top T1 (azimuthal convex) and the 

side cavity region SC1 and SC2 (azimuthally concave), which causes the destructive 
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interference at HH. Figure 7.16 (a) shows the single-jet 'A' scattering from each of 

the surfaces in Figure 7.15. The VV scattering is almost identical in the three cases, 

including the interference null, because they have the same reference profiles at the 

jet centers. Thus the identical T1 and 0 1 give the same VV interference. At the same 

time, the reflections from 801 and 802 give different interference with the reflection 

from T1 at HH. The HH destructive interference of the 'rough-ripple' case is stronger 

than the other two cases because less shadowing occurs in the side regions 801 and 

802, especially at large incident angles. 

Figure 7.7 shows that the 'C' backscattering results not only from the overlapped 

region, but also partially from the jet top T2 and the cavity region 0 2 underneath the 

jet. In other words, the 'C' scattering actually results from interference between the 

reflections from the jet top T2 , the cavity region 0 2 , and the overlapped region points 

T3 and CC1 . Figure 7.16 (b) shows the 'C' scattering corresponding to the surfaces 

in Figure 7.15. Because T2 and 0 2 are exactly the same as T1 and 0 1 , they should 

produce the same scattering effect, a deep VV null. However, due to the interference 

with of the reflection from the overlapped region, the VV null almost disappears in the 

'rough-ripple' case. For the 'smooth-ripple' and 'medium-ripple' cases, the reflections 

from the cavity of CC1 are mostly shadowed, the VV nulls that result from T2 and 
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Figure 7.16: Comparison of the scattering from section A and C respectively. 
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C2 therefore still appear. The scattering from six-jet surfaces in Figure 7.15 (d) looks 

very much like the 'C' scattering since the fields scattered from six-jet surface can 

be coherently synthesized as 'A+5C'. Multiple interactions between features that are 

not represented in the synthesis are negligible. 

The three surfaces shown in Figure 7.17 are similar to those in Figure 7.15, but the 

central reference profiles are 18 / 1 7. 5 in part (a), 18 / 1 7 in part (b), and 18 / 16 in part 

( c). The RCS shown in Figure 7 .17 ( d) indicates there is no strong VV dependence on 

the jet amplitude. No VV interference nulls appear due to the shadowing of the cavity 

(a) Profile 18/ 17.5, smooth ripple 
( surface width: 18.088 .X.) 

(c) Profile 18/ 16, rough-ripple 
( surface width: 17.0 .X.) 

(b) Profile 18/17, medium-ripple 
( surface width: 17.544 .X.) 
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Figure 7.17: Six-jet surfaces (Ref. profile 18 at jet centers) with different ripple 
feature. 
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by the jetting area. However, more complicated HH scattering occurs in 'rough-ripple' 

case, especially when incidence approaches grazing. A deep HH interference null is 

formed at about 74° incident angle. 

Figure 7.18 shows 'A' and 'C' scattering corresponding to the surfaces in Fig

ure 7.17. Due to the large jetting, both the cavity region 0 1 and the side regions SC1 

and SC2 are totally blocked from the incident field. Scattering 'A' results only from 

the scattering from the jet top area T1 . There is therefore little difference between 

the three cases, except that the RCS level slightly raises or lowers due to the different 

azimuthal curvatures. The 'C' scattering of the 'smooth-ripple' and 'medium-ripple' 

cases are similar. No significant interference nulls occur at either VV or HH since the 

overlapped cavity regions 001 are totally shadowed by the large jetting areas. The 'C' 

scattering from 'rough-ripple' surface, however, shows strong destructive interference 

at HH as the incident angle increases beyond 66°. This is because the reflection from 

the jet T2 interferes with the reflections from the overlapped region T3 and 001. The 

cavity region 001 of this 'rough-ripple' crest is only partially shadowed. Note that 

the scattering from the 6-jet 'rough-ripple' surface in Figure 7.15 is much different 

from that of the corresponding 'C' scattering shown in Figure 7.18 (b). This indi

cates that multiple interactions between the individual features take place while the 
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Figure 7 .18: Comparison of the scattering from section A and C respectively. 
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destructive interference occurs. The scattering is no longer predicted by the simple 

coherent synthesis from scattering 'A' and 'C'. The relative scattering mechanisms 

will be further examined in the next section. 

7.5 Scattering from Series Multi-jet Surfaces with 

Identical Jet Features 

In this section, the constructive superposition synthesis and interference phenomena 

as the number of the identical jets increases is considered. A series of profiles with 

the number of jets ranging from 1 through 12 were synthesized. The central reference 

profiles were 13/12 for the jet/cavity region in each case. Figure 7.19 shows the 3-

, 6-, and 12-jet surfaces. The six jet surface also appeared in Figure 7.13 (b). The 

azimuthal widths of these surfaces become larger as the number of jets increases since 

identical jet sizes and periods are used in all cases. Figure 7.20 (a) shows the RCSs 

of the 3- through 12-jet surfaces. Overall, both VV and HH scattered fields increase 

uniformly as the number of jets increase. Multiple interactions are therefore small. As 

examined in Section 7.2, the scattering from multiple-jet surfaces may be coherently 

synthesized from the fields scattered from the single-jet and 2-jet surfaces. Also, the 

cavity between jets has little contribution. The absolute RCS level increases linearly 

with jet number (logarithmically in dB). 

A second example is given in Figure 7.20 (b). The plotted backscattering is 

from the series of surfaces shown in Figure 7.21. The surfaces have 1 through 6 jets 

with the central reference profile 18/16. The 6-jet case was discussed in Figure 7.17 

(c). The VV scattering increases linearly with the number of jets as in Figure 7.20 

(a). The reflection points of the single-jet case dominate the VV scattering. The 

overlapped regions that appear as more jets are added have little effect. However, 

when the incident angle is above 66°, the RCS at HH varies significantly as the jet 
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(a) Single Jet (surface width: 5.882 >.) (b) 3 Jets (surface width: 9.180 >.) 

(c) 6 Jets (surface width: 14.144 >.) (d) 12 Jets (surface width: 24.04 >.) 

Figure 7.19: Series surfaces (Ref. profile 13/12) with identical jet size and period. 
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Figure 7.20: RCS comparison of backscattering from multi-jet surfaces. 
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Figure 7.21: Series surfaces (Ref. profile 18/ 16) with identical jet size and period 

number increases. As the number of jets increases from 1 to 5, the HH destructive 

interference increases until a -45dB deep null is formed. The overlapped region is 

therefore important in this case. The 6-jet case, which is similar to the 5-jet case, was 

analyzed in Figure 7.17 (c). Figure 7.22 and Figure 7.23 show the reflection points 

on the 2-jet and 4-jet surfaces at 60° , 70°, 80°, and 90° incident angle, respectively. 

As shown in these figures , all the concave reflection points in both the cavity regions 

under the jets ( Ci and SCi) and the overlapped cavity regions between adjacent 

jets ( CCi) are totally shadowed by the bigger jetting area at incidence angles less 

than 66°. The scattering, therefore, comes only from the reflection points on the 

jetting areas (Ti) of the surfaces. Thus, no VV and HH interference occurs. As the 
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(a) Incidence angle 60° (b) Incidence angle 70° 

( c) Incidence angle 80° (d) Incidence angle 90° 

Figure 7.22: Reflection points on the 2-jet surface, at different incident angles. 

incidence approaches grazing, the HH scattering varies dramatically as the number 

of jets increases. This indicates that some multiple interactions take place, so it is 

difficult to directly identify the mechanisms that lead to the HH reduction. 

The two previously used synthesis procedures are also performed on the crests 

of Figure 7.21, illustrated in Figure 7.24. Part (a) shows that the scattering from 

the full 2-jet surface can be represented using '2A+B'. In this case, the effects of 

SC1 and SC2 are ignored, and 'B' scattering represents only the reflections from the 

overlapped region between the jets. The N-jet surface scattering therefore should 

be '(N)A+(N-l)B'. Part (b) uses 'A+D' to represent the full 2-jet scattering so that 

the reflection from SC1 and SC2 is considered in 'A' scattering, and the interference 
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(a) Incidence angle 60° (b) Incidence angle 70° 

( c) Incidence angle 80° (d) Incidence angle 90° 

Figure 7.23: Reflection points on the 4-jet surface, at different incident angles. 
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Figure 7.24: Illustration of the difference between the two synthesis procedures. 
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between jet (T2) and cavity region ( CC1) reflections is included in 'D' scattering. 

The N-jet surface scattering is synthesized by 'A+(N-l)D'. Figure 7.25 shows the 'A' 

scattering and the comparison of 'B' scattering with 'D' scattering. Both 'A' and 'D' 

scattering show the HH reduction, which indicates the effect of the side cavity region 

and the overlapped region. Figure 7.26 shows the comparison of the two types of 

synthesized results in the 3-, 4-, 5-, and 6-jet cases. Also showed is the corresponding 

MLFMA scattering. 

The results of Figure 7.26 show that the 'B' and 'D' based synthesis give the 

exact same VV scattering, and have good agreement with MLFMA results. This 

again shows that the VV scattering is not affected by the cavity regions. The 'B' 

based synthesized HH scattering is over 20 dB greater than the MLFMA results in all 

cases. The 'D' based HH scattering agrees with MLFMA scattering when incidence 

angle is less than 66°. At the larger incident angles, the destructive HH interference is 

predicted, but with poor accuracy. This shows that multiple interactions occur with 

this surface, preventing the use of any synthesis procedure. 
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Figure 7.25: Scattering from section A, B, and D respectively. 
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Figure 7.26: Comparison of 'B' and 'D' based synthesized scattering with MLFMA 
scattering. 

7.6 Scattering from Multi-jet Surfaces with Random-

roughness Crests 

In this section, two surfaces that have more random multiple jets are examined. The 

random jets are formed by using different reference profiles at both each jet center 

and at the center of each cavity region between two adjacent jets. To ease the surface 

generation, the surfaces are symmetric in the azimuthal dimension. One of these 
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surfaces is shown in Figure 7.27 (d). It has 7 different jets, with reference profiles 

18, 17, 17.5 and 16.5 respectively at the center of each. The concave regions next to 

those jets are formed with profiles 16.5, 16.5, 16 and 15.5 at the center, respectively. 

Parts (a), (b) , and ( c) show surfaces generated with fewer jets. The surface in part 

(a) has only one jet pair , the surface in part (b) has two jet pairs, and the surface in 

part ( c) has three jet pairs. 

Figure 7.28 shows the RCS of these surfaces. Part (a) shows the scattering from 

the partial surface of Figure 7.27 (a). When the incident angle is less than 65° , the 

scattering is different from the other three cases in Figure 7.27 (b) through (d). When 

incident angle ranges from 65° to about 80°, the scattering from all four surfaces shows 
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Figure 7.27: Random-roughness crest surfaces (smooth) 
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Figure 7.28: RCS of scattering from random-roughness crest surfaces (smooth) 

a weak super event (HH > VV about 3 to 5 dB). When the incident angle exceeds 80°, 

VV exceeds HH in all four cases. Generally, the RCS fluctuation in each case is less 

than 5 dB. The overall scattering level increases as the number of jets increases. No 

strong destructive interference appears in any of these four cases. This results because 

the variation between the jets is not extreme, and most of the concave cavity regions 

are shadowed by the bigger jetting area. Significant VV and/ or HH cancellation, 

therefore, is not established. 

Figure 7.29 shows another series of random-roughness crest surfaces. The surface 

in part ( e) of this figure is the final surface, which uses reference profiles 18, 16, 17, 15 

and 14 at its jet centers (from center to side), and uses reference profiles 15, 15, 14, 13 

at the cavity region centers next to the above jets. Figure 7.29 (f) shows the specular 
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looking backscattering from these surfaces is shown in Figure 7 .30. Parts (a) to ( e) 

are the scattering corresponding to the surfaces of Figure 7.29, parts (a) to (e). Part 

(f) is the scattering from only the central jet, which was found from the difference of 

the vector scattered fields from the surfaces in parts ( e) and ( d). 
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The RCS variation shown in parts (a) to (e) of Figure 7.30 exhibits a clear transi

tion from strong VV destructive interference to strong HH destructive interference as 

jets are added. For the two side jets case of part (a), the scattering is due to reflection 

from the convex jetting areas and the concave cavity regions under the jets, giving 

the VV interference null. The reflection points between and outside of the two jets 

have little effect. As jets are added in cases (b) through (e), the new jets themselves 

do not lead to VV destructive interference due to the shadowing of the cavity. The 

back-reflection from the new jets overwhelms the interference nulls in the original 

2-jet scattering. However, the cavity regions between the jets provide the concave 

reflection point in the plane of the electric field needed to give the HH destructive 

interference. 

As more jets are added in the central area, more reflection points appear on the 

convex jets and in the overlapped cavity regions between adjacent jets. The reflection 

from the jetting areas overwhelms the reflection from the previously existing reflection 

points on the concave areas. The HH interference null appears as concave reflection 

points appear in the azimuthal direction. The central jet does not strongly affect 

the backscattering because the reflection from its jetting area is not significantly 

different from that from the other jets, and the concave section under this jet is 

totally shadowed. 

Note that the fluctuation of the VV and HH backscattering is especially significant 

at larger incident angles. This is because more reflection points in concave cavity 

regions may move out of shadowing and become visible as the incidence approaches 

grazing Thus more reflections from the concave regions contribute the destructive 

interference. The jets in the surfaces of Figure 7.29 are considerably rougher than 

those in Figure 7.27. More reflection points in the concave regions of Figure 7.29 are 

visible, especially at large incident angles. Therefore, the interference of the reflections 

from these regions become significant, which leads to stronger scattering variation. 
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Chapter 8 

Summary and Conclusions 

In this paper, analytical models and numerical techniques to model the electromag

netic scattering from breaking water wave crests have been investigated. In particular, 

implementations of a 2-D hybrid MM/GTD and 3-D multilevel fast multipole algo

rithm numerical scattering models were reviewed in detail. A test analysis of the 

scattering from a flat plate was used to confirm the validity of the numerical models. 

The numerical techniques were then applied to test surfaces based on the LONG

TANK series of the time history of a plunging breaker wave. 3-D test surfaces were 

formed by azimuthally aligning the individual 2-D LONGTANK crests and interpo

lating between them to give a continuous surface. The· 3-D radar cross-sections were 

computed using MLFMA. The 3-D extended geometrical optics (EGO) model was 

able to model the basic scattering mechanism for the simplest test cases. With the 

LONGTANK profile based test surfaces, the EGO model provided a reasonable pre

diction of the backscattering before the jet was fully developed, but the model failed 

when cavity region was shadowed by the developed jetting. A synthesis of the 3-D 

RCS from the individual 2-D profiles was less accurate due to the azimuthal curvature 

of the wave. 

Both the off-axis backscattering and the bistatic scattering from several 3-D single

jet test wave crest surfaces was found. The scattering variation associated with the 
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movement of the reflection points in azimuth demonstrated different scattering mech

anisms associated with the crest jet features. There was no significant destructive 

interference in the backscattering from surfaces early in the breaking since the quasi

specular reflection points on the crest have large radii of curvature. Interference nulls 

formed in both monostatic and bistatic VV scattering from a surface formed near 

the center of the breaking. The VV null resulted from the destructive interference 

of the reflections from the convex jetting area and the concave cavity region under 

the jet, provided that the surface radii of curvature was somewhat smaller than the 

electromagnetic wavelength. This scattering mechanism was first identified by West 

[2] in a 2-D backscattering analysis of LONGTANK waves. As the azimuthal angle of 

the illumination was changed, the specular reflection points on the wave moved from 

the center of the jet/cavity region to the wave side, thereby changing the magnitude 

and incidence angle of the null. The scattering from a surface late in the breaking 

with a fully formed crest showed that the VV destructive interference was affected 

by the shadowing of the cavity underneath the jet. A VV interference null did not 

occur when looking upwave since the concave reflection point in the cavity was shad

owed, and could not interfere with the direct jet scattering. As the incidence was 

moved in azimuth, the concave region became visible. Reflections from this region 

then interfered with those from convex jet, and the VV null therefore formed. With 

the most extreme jetting, the null did not form until the azimuth extended to 8°. On 

the other hand, a significant HH interference null was observed when the azimuthal 

angle was 13°. This is the first time that an HH destructive interference null has been 

observed. The mechanism of this HH destructive interference is essentially the same 

as the one that more commonly leads to VV destructive interference. The wave jet 

forms reflection points where the surface is concave in the plane of the electric field 

at one point and convex in the plane of the electric field at another point. The radii 

of curvature at these points was small compared to the electromagnetic wavelength, 
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so all conditions needed to give destructive interference were met. 

Multiple-jet 3-D test surfaces were also synthesized using the interpolated LONG

TANK profiles. The test surfaces include various crest features such as the duplication 

of individual jet structures, small, medium, and rough ripples in the azimuthal direc

tion along the jet, and random roughness crest structure. A numerical computation 

of the backscattering from these test surfaces was performed. Two scattered-field 

coherent synthesis schemes were designed to compare the effect of the reflection from 

the cavity regions between jets, and to identify the multiple interaction that occurs 

between individual jet features. 

Both the VV and HH destructive interference phenomena were observed in various 

multiple-jet cases. The mechanisms of the destructive interference are similar to 

those that occurred in the single-jet cases described above. The actual interference 

therefore strongly depends upon the crest features. In particular, the structures of 

both the jet maxima and the cavity between adjacent jets are important. Reflections 

from these areas interfere each other, thus leading to interference effects that may 

be constructive or destructive, strong or weak, depending upon the exact geometry. 

The jet shadowing plays a critical role in backscattering from the multiple-jet wave 

crests. The larger jetting areas may shadow the reflections from cavity regions both 

below the jets or between adjacent jets. When the reflections from cavity regions 

are totally shadowed, significant interference does not occur. In the case of the most 

complex wave crest with random roughness, the cavities are only partially shadowed, 

and the shadowing reduces as the incidence approaches grazing. Because of this, the 

interference effects vary, usually becoming stronger, as the incident angle increases. 

In the case of the surfaces generated by identically duplicating a single jet struc

ture multiple times, the backscattering may depend linearly upon the number of jets 

included, provided that the reflections from the cavity regions between adjacent jets 

do not introduce significant interference. The dependence fails when the reflections 
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from the cavity regions between adjacent jets are significant, which usually was ac

companied by an HH null formed by the destructive interference in the azimuthal 

dimension. 
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