NOTES ON THE GROWTH AND FRUITING OP ANDROPOGON SCOPARTUS WITH SOME REFERMOCE TO ITS REACTION TO A CHANGED ENVIROMMETT

ORYS ON THE GROMTI ADD
FRUTTMG OF AWDOROCON BOOPARNS WXTR SORG

By
CLARLIE CLETU GRRD
Bachelor of sotence Pexas herioultural and Mechanical Collage College Station, Texas 1940

Submitted to the Depertment of Botany and Flant Pathology Oklahona Agricultural and Kechanical College

In Partial Fulfillment of the Requirements
For the Degree of
MASTRE GP SCLIMCE
1941

APPROVED:

TABLE OF CONTHNTS
Page
Introduction 1
Review of Literature 2
History of the Plants Studied. 4
Method of Study. 4
Results and Discussion 5
Sumary and Conclusions. 22
Bibliography 23

INTRODUCTION

This paper was initiated by wide differences in vegetative characters of Andropogon scoparius Michx. observed among plants from various states wioh had been transplanted to the Forest Mursery west of Stillwater, Oklahona. The question was raised as to whether the difierences were inherited characteristics or due to environment, and, if due to environment, to whet extent had the plants retained their acquired charecters after growing in a new environment for six years.

Thet most plants do respond ana become accustoned to a certain length of day is a well established fact. This tendeacy of plants to respond to a change in the length of the day has been set forth in the form of a "bioclimetic law" by Hopkins $(3)^{1}$, who states:
other conditions being equal, the variation in time of occurrence of a given periodic event in the life activity of plants in temperate North Anerica is at the general average rate of four days to each degree of latitude, five degrees of longitude, sna four hundred feet of altitude, progressing northward, eastward and upward in spring and early summer and the reverse in late summer and early autum.

That grasses retain the habit, or tendency, to grow and flower in response to day length, so that when plants are moved from north to south, the introduced individuals will flower earlier than native plants of the same species, or when the movement is northward the moved plants will flower later than the netives, has also been observed. (4)

[^0]The flowering time of accessions to the nursery has been accurately recorded to detemine whethen on not plants of A. scoparius retain this tendency after six years growta in their prosent location.

The recent wide-spread interest in grasses in general, brought on by a recognition of their importance in soil and water conservation and wild-life protection, has shown the need for more imiornation concerning our more important range species of grasses. More data is especially needed on the seeding habits of the various grasses, vegetative characters which may indioate prolific seed producess, and the reaction of plants when roved to localities other than that in which they were collected.

According to Hitchcock (2) A. sooparius is distributed from quebec to Alberta and Idaho, souta to florida and Arizona. It is of major importance, however, only in the tall grass or true prairie region. (1). Weaver and ritzpatrick (5) rate it as the second raost important species of the prairie, second only to its relative, Andropogon furcatus.

The fact that A. scoparius is a valuable forage grass over such a wied area makes a study of its characteristics important from an economic as well as a purely ecological view-point.

REVITN OF LITERATURE

The importance of the relationsinip existing betweon light and plant growth and aevelopment have been so long
recognized and these relationships have been of so much interest to investigators that a very extensive literature on the subject has been developed. Since this relationship is only one phase of the present paper it is not considered necessary to attempt even a orief review of this interature. por a are extended discussion of the work in this field the writings of W. W. Garmer and H. A. Allard of the united States Department of Agriculture may be consulted.

The literature on the variations within a speaies of plants according to environment is also extensive, but that concerning the variations among plants of Andropogon socparius is rather Invited.

Witchook (2) in his manual of Grasses of the United States allows for quite e wide variation in his description of A. scoparius, as follows:
plants green or glaticous, often purplist; oulns tufted, from slender to robust, compressed, 50 to 150 cm. tall, erect, the upper freely branching; sheaths and bladea commonly glabrous or nearly so, frequently sparsely pilose at their junction, rarely pubescent to villous throughout; the blades 3 to 6 m. wide, flat; racenes 3 to 6 cm . long, mostly curvea, the illiform peduncles mostly wholly or partly included in the sheaths, commonly spreading, the rachis slender, flexuous, pilose, sometimes copionsly so; sessile spiselets 6 to 8 rm. lone; pedicellate spikelet reduced, short awned, spreacing, the pedicel pilose.

Savage (4), in discussing the inportance of source of seed, makes the following statement:

When grow at Woodward, Oklahoma, the plants from the nost southern locations were decidedly later in flowering but noticeably taller, more vigorous, and produced much more forage then those grown from seed harvested farther north. The grontia was successively less and the plents eanlier in maturity with each successive northerly acquisition.

HISTORY OF THE RLARTS STUDIED

The plants studied were located in the Forest Nursery two miles west of stillwater, oklahome, on a very fine, sandy, loam soil. They were collected in various parts of Texas, Oklahoma, Arkansas, Kansas, Nebrasha, and Colorado by employees of the soil Conservation Service during the year 1934, and transplanted to the nursery. The plants were planted in rows, four bunches to the row, in the order in which they were received, without any effort being made to favor any group of plants. The rows were spaced about thirty inches apart with the bunches twenty-four inches apart in the row.

The ground between the rows has been hoed at least once each season to remove weeds; otherwise the plants have received no treatment that should affect their growth. The previous years growth was renoved to a height of three to six inches before growth began in the spring of 1940 so that nev growth could be observed more eabily.

METHOD OH STUDY

The plants were visited at about ten-day intervals fron the time growth began in the spring until anthesis started, and notes were taken on the relative rate of growth, color of plents, degree of ha riness, and the relative size of stems and leaves. After anthesis began, the plants were visited at two or three-day intervals to get a record of when anthesis began on each group of plants.

Seed-heads were collected from each group of plants, after anthesis, and studied to see if all came rithin the description of Andropogon scoparius as given by ritchoock. (2)

RYSULTS AND DISCUSSION

All plants showed green shoots emerging on the same day, March 20, which indicates that, if the tendency to start growth on the beginning of a certain length of day is an acquired character of the plants, the tendency has been lost during the time they have been growing under the present conditions.

Table I shows the number assigned to the various plants in the nursery, the place where they were collected, color, degree of hairiness, relative size of stems, relative rate of growth, and the time of anthesis.

The division of the plants according to color was made on an arbitrary basis, there being an intergrading which often made a decision difficult. As the plants became older, and especially after they started taking on the characteristic bronze hue, it became more difficult to say whether a given plant shoula be classed as green or glaucous.

Table II shows that about fifty per cent of the plants were green and fifty per cent were glaucous. It is furtinex notea, in pable I, that among the plants from each area there were some green and some glauous. In fact, in a few cases, the two colors were found among the plants of a single row.

TABLE I

TABLE I (Cont.)

TABLE I (cont.)

TABLE I (Cont.)

N^{1}	Origin of Plants				Color		Hairiness		s^{2}		$\mathrm{R}^{3}: \mathrm{H}$	t. ${ }^{4}$:Ht. ${ }^{5}$	Date ${ }^{6}$

C5c71	Lincoln C	Co. O	kla.		Glaucous		Glabrous		Fine		Rapid	10	39	: 7-19-40:
C5a47	Milano,	Texa			Gleucous	:	Villous	:	Coarse	:	Rapid	18	54	:8-12-40
C5c100:	"	"			"	:	glabrous	:	"		Fair	22	,	
C5cl01:	*	"		:	"	:	Villous	:	"		" :	24	:	:
C5a43:	Pontotoc	Co.	Okla.	:	Green	!	Glabrous	:	Medium		Slow	20	: 48	$: 8-14-40$
05068	"	"	"		"	:	"		Fine		Fair	12	39	: 7-29-40:
C5a69	"	\%f	"	:	Glaucous	:	Villous	:	Medium	:	Rapia	15	54	:7-24-40
C5a70	"	"	"	:	"	:	"	:	Coarse		V. Slow:	14	50	:7-19-40
C5a71	"	"	"	.	"	:	"	:	"		Fair	15	58	:8-6-40
C5a72 :	"	"	*	:	Green	:	Glabrous	:	Fine		V. Slow:	16	: 38	:7-17-40
C5a.73	"	*	"	:	Glaucous	:	Villous	:	Medium	:	Fair :	12	42	:7-31-40
C5a74	*	"	"	:	Green	:	Glabrous		\%		" :	14	: 36	:8-16-40
C5a.75	\#	"	$\%$.	*	:	"	:	Fine	:	" :	8	30	$: 7-26-40$

TABLE I (Cont.)

TABLE I (Cont.)

TABLE I (cont.)

TABLE I (cont.)

N^{1}	Origin of Plants	color	Hairiness	s^{2}	$\mathrm{R}^{3} \vdots$	$t .4:$	Ht. 5 :	$\text { pate }{ }^{6}$
					:			
C5a91	Major Co. Oklahoma	Glaucous	Glabrous	Fine	V. Slow:	14	41	7-19-40:
05892	" \% \%	"	"	"	Slow	14	44	8-14-40:
					:	:		
C5a93	"	"	"	"	Fair	15	46	8-18-40:
						:		
C5c77	" \% "	"	"	"	" :	15	54	7-19-4C:
					:	16:		
05078	"	Green	Villous	Medium	" :	16	46	0
C4a88	Wilbarger, Texas	"	Glabrous	"	Slow	14	44	7-22-40
64987	Liberal, Kansas	Glaucous	"	\%	\# :	12	40	7-19-40
C4a93	Dardenella, Ark.	Green	\#	"	V. Slow:	16	48	7-29-40
04078	Cherokee Co. Texas	"	Villous	Coarse	V. Slow:	24	54	8-12-40
C4a86	Garden City, Kansas	Glaucous	"	Nedium	Fair	13	42	7-17-40
C4a90	Hebbronville, Tex. Jim Hogg Co.	Green	Glabrous	: "	V. Slow:	18	48	7-51-40
C4e83	Logan Co. Oklahoma	"	: ${ }^{5}$	Fine	Slow	16	40	7-17-40
C4e84	Pittsburg Co. Okla.	"	Villous	Medium	Fair	17	38	:7-26-40

TABLE I (Cont.)

	:					:		$:$
						:		:
C4e85	Mays Co. Oklahoma	Green	Glabrous	Medium	Fair	18	40	:7-26-40:
	:							:
C4e86	Okmulgee Co. Okla.	Glaucous	"	*	: "	17	36	:8-14-40:
C4e91	Anderson Co. Kansas	Green	*	Fine	- 1	14	36	: $7-17-40$
				-		:		
C4e92	Manhattan, Kan.	"	*	- "	"	13	: 48	:7-17-40:
C4e93	O'neil, Nebraska	"	Villous	:	Slow	: 12	36	: 7-19-40:
						:		:
				,		:		:

ACCOROITG TO COLOR, TAIELMESS, ANO STTA SIZE

While the plants were young, it was not difficult to say whether a given individual was villous or glabrous. This seamed to be a rather definite character, each plant being definitely villous or entirely glabrous. The villous plants Were found in about the same proportion anong the plants of the differeat colors, about one-third of each being hairy, as shown in Sub-total ${ }^{\text {Pl }}$, Table II.

In all ceses, where a number of plants came from a given locality, some were found whion were green and hairy, some green and glabrous, others were glatcous and hairy, and still others were glaucous and glabrous. This seems to indicate that habitat has no significant influence on these characters. The question of size of stems also had to be settled arbitrarily, baced on observation ratier than actual mes surement.

As with color, there seemed to be no relation between the size of sten and the source of the plants.
pable II gives the number oi plants in each size classification among the green and glancous plants and also according to whethex they were villous or glabrous. In general, the glaucous plants tended to have larger stens and coarser foliage. This seemed especially true of the glaucous, villous plants, wich in practioally every case were found to have coarse stems. The number of stems per bunch, although not shown in table 1 , seemed to be directly related to the size of stems. The coarsestemed plants had fewer stens, fewer leaves, and reached a greater height than those with fine or medium sized stems.

The relative rate of growth was based, not only on the height attained, but also on the number and length of leaves and the general vigor of the individual plants as compared with the group as a whole. The place from which the plants came apparently had no effect on the rate of growth, as is shown in table I ; rapid, faix, slow, and very slow plants being found in the groups from practically all localities and among all colors and size of stems. Tie one exception was found among the plants from Texas which were all vizorous, robust, individuals. However, this exception could possibly be due to the srall number of plants from Texas. If a larger number were present, the entire range mignt be obtained.

Table III shows the relation between hairiness and rate of growth. Seventeen and one-half per cent of the villous
plants were classed as rapid growers while less than ten per cent of the glabrous plants were classed as such. Among those olassed as "fair" was found almost fifty per cent of the villous plants and only twenty-nine per cent of the glabrous plants. This seems to indicate that hairiness is an indication of vegetative vigor without reference to environment.

TABLE III

RFIATION BETWEEN RATE OF GROWTH AND HAIRINESS

Table IV shows the relation of growth rate to size of stems. Twenty-five per cent of the coarse plants were found in the rapid and forty-three per cent in the fair classification while only fifteen per cent of the fine stemmed plants were rapid and thirty-eight per cent were fair growers. This seems to indicate that there is some relation between growth rate and size of stem; however when the medium stem column is examined, it is seen that only four per cent are rapid growers and thirty-five per cent are fair. This, and the fact that the medium stemmed group has a preponderance of slow growers is contradictory to the theory. This deviation is possibly due
to the number of plants studied or there may be some limiting factor which was not observed.

TABLTIV
RELATION BETMEEN GIZE OF STEM AN GROWTY RATE

In comparing the rate of growth of plants of difierent colors, as shown in Table V, it was found that the glaucous plants were more vigorous. Twenty-one per cent of the glaucous plants were classed as rapld growers as compared with only six and one-half per cent of the green plants. However, the relation here was not quite so evident, as oniy thirtyfour per cent of the glaucous plants were "fair" ageinst forty-five per cent of the green plants in this classification.

The most robust, visor ous growing individuals were found to be both villous and glaucous, the origingl source of the plants heving littie, if any, effect.

The rate of growth of all plents was not consistent, some developing rapidly in the first part of the season and some later. Here again the originel source of the plants apparently was not the determining factor, nor did tho time
of the most rapid growth have any apparent effect upon the time of anthesis. The plants from pontotoc county, Olahoma are cited as examples. Amone these plants are foun both rapid and slow growers, some of which flowered as exmly as July seventeenth and others which had not flowered when the present stuay wes brought to a close, August 24,1940 .

TABIE V
TEE RTLATTOM OE COLOR MO FATE OF GRONTH

Anthesis begen on July fifteenth and increased rapidy for four days, then as repidly decreased until only a few adaitional plants were found in flower at each succeeding visit. Table サI gives the datas on whi oh the plots were Visited and the total number of plants which had started anthesis since the preceding visit.

The lall in the number of plants blooming during the first few days of August, followed by renewed activity, apparentiy was a direct result of the weathor. During the extrenely hot weather, the first week of August, many plants were wilted and growth wes at a stand-still. with the beginning of rainy weather, the plants revived amd a new wave of flowering took place.

In checking the time of anthesis with the source of the plants, in Table I, no conclusive evidence was found to support the theory that plants moved from south to north bloom later than northern plants. If Andropogon scoparius has this tendency, it apparently has been lost during the time they have been growing in the nursery. It is true that some of the plants from Texas were late in blooming, though no later than some plants from oklahoma, but these plants are coarse, villous individuals which in general are later than the average for the entire group.

Time and circumstances would not permit the gathering of seed to determine what type of plant would produce the greatest number, but based on general observation of the plants, it seemed thet those with fine to medium stems would give the greatest yield. The coarse stemmed plants had relatively few stems per bunch and these did not branch as freely as the fine to medium stemmed ones.

TABLE VI
TOTAL NUBER OF PLANTS FLOWERING ON GIVEN DATES

Tine outstanding onaracters of one ham red and twelve plats of Andropogon scoparius, gathered by employees of the Soil Conservation Service in various parts of six states and trensplanted to the Forest Nursery west of stillwater during 1954, were studied during one groning season in an attempt to deterrine what characters were associated with vegetative vigor and prolific seed production, and, whether or not these plants had retained the tencenoy to flower earliex mhen moved from north to south timn when roved from south to north.

From the evidence gathered, it seems that the origin of the plant has no significant effect on the color, degree of bairiness, the rate of growth, or the size of stems.

Glaucous color and hatrineas are apparentiy associsted with vegetative vigor; the most robust, consistently repid growers being of this type.

Fine stermed plants appear to produce more seed because of the greator number of stems por bunch.

If Andropogon scoparius has the tenaency to bloon eariier or later when moved, depending upon whether the movement is northward or southwara, the tendency apparently has been lost by the plants in the nursery within the past six years.

More conclusive evidenco of thi s tendency would necessitate carrying the study over a number of years, starting at the time the plants were transplanted.

RIBL TOCRAEAY

$I_{\text {Aldone, }}$ A. E., "Trprovement of A. scoparias by Breeding and selection", Am. Soo. Asron. Joura., 32: 159-160.
$2_{\text {Hitoheock, } A}$. S., manual of the grasses of the Jnited ctates," U.S.D.A. Misc. Dub., 200, 1935.

Bropkins, A. D., "The Bioclimatic Law, "T. B.D.A. Weather Bureau; Monthly Meather Review Supplonent Mo. 9. $1-42,1918$.
$4_{\text {SGvage, }}$ D. A., "Gress Culture and pange Improvement, in the Central and Southern great Plains," U.S.D.f. Circ. Mo. 491, 1939.
5weaver, J. F.: and T. J. Fitzpatrick, HFcology and Relative Importance of the Dominants of Tall-Grass prairie, Fot. Gezette 93, April, 1932, 113-150.

Typist: Vera Thomas

[^0]: $1_{\text {Refers to }}$ literature cited.

