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ABSTRACT

A theoretical investigation is focused on the com­
bined effects of gas dynamics, viscosity, heat conduction, 
mass diffusion, and chemical reactions on the wave propaga­
tion induced by weak disturbances. The governing equations 
for multicomponent reacting gas mixtures are set up within 
the framework of a general linearized theory. The combustion 
process is approximated by a simple one-step reaction involving 
a ternary mixture of oxidant, fuel, and product. The per­
tinent governing partial differential equation for the velocity 
potential is derived and applied to several specific physical 
problems. Laplace transform techniques are utilized to ob­
tain asymptotic long-time wave behavior. It has been shown 
that Burgers' equation is the appropriate description of the 
equilibrium wave propagation. A general expression for the 
laminar flame speed which displays the dependency on the 
reaction order, heat of combustion, characteristic reaction 
time, and the transport properties of the system is obtained 
in the study.

The theory is demonstrated by two basic problems: 
a hot-surface ignition problem and a one-dimensional explosion 
problem, that is, the shock-tube problem. The associated
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complex processes are illustrated and interpreted by explicit 
asymptotic solutions. The induced temperature, pressure, 
velocity, and species concentration disturbances for the re­
acting mixture are plotted and discussed, particularly with 
regard to the wave disturbances.
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NOMENCLATURE

a^,a^ Equilibrium and frozen sound speeds, respectively

A Preexponential factor
bg,b^ Factors of diffusive spreading; defined in equa­

tion (2.4.8)
Cp Frozen specific heat at constant pressure

C Specific heat of a at constant pressureP,a
Dimensionless speed of laminar flame (deflagra­
tion wave)

D Binary diffusion coefficient
Multi-component diffusion coefficient

Pressure diffusion coefficienta

E^ Activation energy for the reaction

Eq Energy liberated by the reaction

f Stoichiometric coefficient for fuel species
g Stoichiometric coefficient for product species
h Enthalpy
h° Enthalpy of formation of species a
-y Diffusion-flux vector for species a

Chemical rate of production per unit mass for species a
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K(T,p) Equilibrium constant for the reaction 
k Thermal conductivity

Dimensionless pressure-diffusion coefficient

L Lewis numbere
P Pressure
P^ Effective Prandtl number

q Heat-flux vector
Q Dimensionless effective heat of reaction

Specific gas constant for species a

R Rate of progress of the reaction

Linearized rate of reaction function

? Dimensionless position vector

f Dimensional position vector

S Effective Schmidt numberc
s Laplace transform variable
T Temperature
t Time
u Velocity component in x direction

^ Velocity vector

W Average molecular weight of the mixture

Molecular weight of species a 

X Stretched coordinate defined in (5.1.2 3)
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X Dimensionless one-dimensional spatial coordinate
Mass fraction of species a

r(n) Gamma function
Y Effective ratio of specific heats
6 Dimensionless multi-diffusion coefficient
A Mixture strength parameter (=Ap-aA^)
A^/A=p , Initial differential of various state variables 
T,P  across the diaphragm

A^ Temperature jump on the hot-surface

% Rate of strain tensor
e Small perturbation parameter

Damping factor

n Stretched spatial coordinate, defined in equation
(5.1.26)

K Boltzmann's constant
X Second coefficient of viscosity

First coefficient of viscosity
V Diffusivity factor, defined in equation (5.1.27)
Ç Stretched coordinate, defined in equation (5.1.2 3)
p Density
a Stoichiometric mass ratio (=fWp/xW^)

"t Viscous stress tensor
T Nondimensional time
Tg Characteristic forward chemical reaction time
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T Characteristic reverse chemical reaction timer
*Tg Damkohler's second similarity group

^ Velocity potential
* Laplace transform of *
X stoichiometric coefficient for oxidant species

2V Laplacian operator
( )^ Variable evaluated at ambient conditions

( )' Perturbation quantity
~ Asymptotically equal to (in some given limit)
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CHAPTER I

INTRODUCTION

Combustion phenomena can be categorized as involving 
either a homogeneous mixture of reactants combined before ig­
nition occurs, or a reaction between initially unmixed re­
actants that meet at the flame. The non-premixed combustion, 
such as the burning of gaseous fuel jet, a carbon sphere, and 
a candle, is conventionally termed a diffusion flame, since 
the mixing of fuel and oxidizer must be accomplished by a 
diffusion process. In the premixed situation, exemplified 
by a Bunsen burner with primary air entrainment and by flames 
in a gasoline engine, combustion is localized near wave fronts 
associated with nonequilibrium and diffusive processes. These 
can be subdivided into detonation and deflagration types of 
waves. In different practical situations, all these types 
of combustion are encountered.

To describe the combustion problem rigorously, the 
equation of continuity, the equation of motion, the energy 
equation, the diffusion equation, and the equation of state 
must be set up, including chemical-reaction and heat-generation 
terms, in the appropriate coordinate system and with the initial 
and boundary conditions. Unfortunately, owing to the nonlinearity
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and complexity of the equations, complete analytic solutions 
appear impossible. There are various approaches for obtaining 
solutions to the governing equations of combustion dynamics. 
Among many numerical schemes are the notable methods of Friedman 
and Burke [1], Spalding, Stephenson, and Taylor [2], Bledjian 
[3], Vance and Krier [4], and Smoot, Hieker, and Williams 
[5], among others. Numerical results can give precise numbers, 
but they usually are for restrictive situations and leave the 
interplay of the pertinent parameters obscure. As recommended 
in the review article of Williams[6], considerable insight 
into combustion problems can be obtained by considering the 
limit of large activation energy. The notion of activation 
energy asymptotics has been exploited by Bush and Fendell[7], 
Berman and Riazantesev [8], and Clarke [9] in their analysis 
of plane deflagration waves. The idea was also taken up by 
Williams [10], Ludford[ll], and Buckmaster, Kapila, and 
Ludford [12] in connection with problems of heterogeneous 
combustion between solid and gas. A much more general as­
ymptotic analysis in flame theory has been derived and reviewed 
by Clarke [13]. A third approach which can complement the 
previous two is that of linearized theory.

When the external disturbances are small, it is 
expected that the responses of the flow field are also small 
perturbations from the ambient conditions. Consequently, as 
a first-order approximation, the governing equations can be 
linearized. Then the analysis is simplified enough to allow
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one to carry out a unified discussion of the various effects. 
It has been known for a long time that linearized theory is 
a mainstay in fluid mechanics problems. It provides not only 
the over-all picture, but also important insights into the 
features of the exact nonlinear problems. A linearized theory 
involving a diffusion flame in steady flow has been developed 
by Clarke [14,15]. A corresponding theory involving diffusion 
flames associated with weak explosions has been studied by 
Rasmussen [16,17,181. A linearized theory for duct flows 
with combustion has been utilized by Williams [19]. The 
viewpoint of linearized analysis has also been employed 
previously by Moore and Curtis [201 and Sforza and Bloom [21] 
to study nonequilibrium dissociating gas flow. It is the 
purpose of the present paper to apply this well-known tech­
nique of linearization to the study of a class of problems.

Specifically, the following two problems are to 
be considered in the investigation; A. A semi-infinite 
region filled with a reacting gas mixture, initially in 
equilibrium, is disturbed by an impulsive temperature in­
crease at the boundary end wall, and the consequent response 
to the action is to be studied. This problem is associated 
with the ignition of a combustible gas in contact with a 
heated wall. B. Initially two mixtures are separated by 
diaphragm. Across the diaphragm, small differences in 
pressure, temperature, and chemical composition exist. At 
a given instant, the diaphragm is removed, and the subsequent
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flow is to be determined. This applies to situations where 
bubbles of hot burned gas are injected into a medium of fuel 
gas mixture. The problems envisaged here are inherently 
unsteady and involve propagation of various waves arising 
from thermal and mass diffusive mixing, chemical heat release, 
and nonequilibrium changes of state.

In the following analysis, we start the formulation 
with the linearization of the governing equations for a multi- 
component reacting ideal gas mixture based on the small- 
perturbation model which includes a linearized reaction rate. 
Pressure diffusion and multicomponent diffusion are included. 
Moreover, attention is confined to the general one-step re­
versible reaction represented by [Fuel] + [Oxidant] = [Product] . 
The linearized equations are manipulated so that a single 
ninth-order partial differential equation for the velocity 
potential is derived and applied to case A listed above. For 
case B, a simpler analysis employs Fick's law of diffusion 
and results in a similar governing equation which is of 
seventh-order. Solutions are obtained by means of the Laplace- 
transform technique. Asymptotic solutions valid for large 
times, which are the regime of interest, are obtained by the 
method of Rasmussen [22] . Some interesting features demon­
strated by the exemplary problems are deduced and compared 
with existing results where possible. Finally, some effects of 
nonlinearities on the equilibrium wave front are demonstrated 
by showing that the one-dimensional wave front is governed 
by the well-known Burgers' equation.



CHAPTER II

FORMULATION OF THE PROBLEM

2.1 Governing Equations 
The equations of conservation of mass, species 

momentum, and energy for the ternary system of reacting 
species are (with body forces neglected)

^  + p div V = 0 (2.1.1)

DY
p — = - div + pK^ , a = X,F,P (2.1.2)

p ^  = - grad P + div Ÿ (2.1.3)

P ^  ^  - div q (2.1.4)

where p is the mass density, ^ the mass mean velocity,
the mass fraction of species a, the diffusion-flux vector
for species a, the mass rate of production of species a
per unit mass, P the pressure, T  the viscous stress tensor,
h the enthalpy, V  the rate of strain tensor, and q the
heat flux vector. We assume the stress and the rate of strain
are related by the Navier-Stokes relations

-5-
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t  = 2p‘e + X(div V) Y  (2.1.5)

7  = (1/2) [ W  + (V^)^] (2.1.6)

where p and X are the first and second coefficient of viscosity. 
The diffusion-flux and heat-flux vectors are given by

= - ^11 - ®12 " f - (2.1.7)

: F = - ^21 " ^22 &nP (2.1.8)

q = - kVT + (h^ - hp) + (hp - hp) ]p (2.1.9)

if radiation, thermal diffusion, and the concomitant Dufour
effect are neglected. These constitutive relations can be
derived from kinetic theory [2 3] or by means of continuum
mechanics [16]. Similar relations have also been developed
by using the generalized Grad method [24], which is based on
the expansion of the molecular velocity distribution functions
of each of the components in a series in irreducible Hermitian
tensor polynomials. The quantities are multicomponent
diffusion coefficients and are functions of species mass
fractions and binary diffusion coefficients. The pressure
diffusion coefficient for species a is denoted by . The
product terms Y , i , and K satisfy the relations P P P

Y% + Yp + Yp =1 (2.1.10)

3x + 3p = 0 (2.1.11)

K„ + K„ + K = 0 (2.1.12)A r p
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The system is closed when the thermal and caloric equations 
of state of the form

P = P(p,T,y^) , h = h(p,T,Y^) (2.1.13)

are added, together with expressions for the mass rate of 
production for species a, K^. If the individual gases are 
presumed to be thermally perfect, the thermal and caloric 
equations of state can be written in the forms

P = pT[(R% - Rp) + (Rp - Rp)Yp + R^] (2.1.14)

h = - hp) + - hp) + hp (2.1.15)

h = (m C dT + h° , a = X,F, or P. (2.1.16)a JT^ p,a a

In the above, R^, R_, R are the specific gas constants for A F p
the oxidant, fuel, and product species,  ̂ the specific 
heat of a at constant pressure, and h° the enthalpy of forma­
tion of species a.

Equations (2.1.15) and (2.1.16) can be combined
to read

h = Cp dT + Y^(h° - + Yj,(h° - h°) + h° (2.1.17)

where is the frozen specific heat at constant pressure 
defined as

'ah
3T - =P,P>

+ - =p,p> + % , p
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The combustion scheme in this study will be sim­
plified by assuming that f fuel molecules (chemical symbol F) 
combine with x oxidant molecules (X) to form g product molecules 
(P), that is,

f F + x x z : g P (2.1.19)

For reaction (2.1.19) the mass rates of production are ex­
pressed as

Kp = - f Wg R (2.1 .20)

K = g W R P P

"f ^r

y J  - K(T,p) Y?

(2.1.21)

where W^(a = X,F,P) is the molecular weight of species a. 
The quantity R, is the rate of progress of the reaction and 
Tg and are the relevant forward (reactant—» product) and 
reverse (product—►reactant) characteristic reaction times. 
We refer to the function

K(T,p) = -i = B(pT)9"X"f exp 
^r

V<T (2.1.22)

as the equilibrium constant for the reaction. The character­
istic forward reaction time, which is strongly temperature
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dependent, is assumed to be given by the Arrhenius law:
g1 , /P fP „a   ( A(P 1Xw„ w I exp kT (2.1.23)

In the above, A,B,a, and k are constants, is the energy 
liberated by the reaction, and is the activation energy 
for the reaction. The Arrhenius factor exp (- E^/kT) is re­
sponsible for the fact that combustion process occurs only 
when the temperature T is comparable to or greater than the 
activation temperature E^/K, a given constant. It is this 
feature which makes combustion a highly temperature-dependent 
phenomenon.

2.2 Linearized Theory 
The following analysis will be based on the theory 

of small perturbations. By small perturbations, we mean 
that the resulting flow fields induced by weak disturbances 
are small perturbations from the ambient condition. Then we 
may define dimensionless perturbation variables as follows:

p =  P Q  (1 +  P '  )

P = P (1 + P') o
T = T^(l + T') (2.2.1)

Y = Y + Y' , a = X,F,P 
"o

^ = a^
o

The primed symbols represent perturbations from the ambient 
state (subscript naught), where |p'|,|P'|,|T'|,|Y^| <<1 every-
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where, and |v|<<a^ i being the frozen speed of sound in
o o

the uniform ambient state, defined as

a^ = Y -—  (2.2.2)
o o

Here y is the frozen specific heats ratio in the ambient 
state, defined as

, (ER Y )_
^  (2.2.3)

In general, the dissipative parameters u,X,k/D^g, and 
are functions of temperature. Again for simplicity we take 
them constant, since in the linearization only their leading
terms (depending on T^) will be involved.

The dimensionless time and space variables are now
defined as

PcFf P(ff ^
T = t , r = r (2.2.4)

"o ^o
where = 2y^ + is the reduced viscosity and r denotes
the dimensional position vector.

Damkohler's second similarity group, the ratio of
a characteristic chemical time to a characteristic molecular
diffusion time, is then defined as

2
*  ^_o%)'VP,^f - ~ ^f

o
To further simplify the analysis it will be assumed 

that the multicomponent diffusion coefficients are related by
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Bll = %22 ana Sl2 = %21

With all of the foregoing assumptions the equations of 2.1 
can be linearized by dropping all products and squares of 
perturbations. A set of linearized equations is obtained 
in the following form;
Continuity

Species

Momentum

Energy

State

+ V.V = 0 (2.2.6)
o T

DgY% = «Sv̂ Yp + k^v^p _ s^xW^B (2.2.7)

DgYp = av^Yx + kpV^P - S^fWpR (2.2.8)

i VP + v(V.V) - vX(vXV) (2.2.9)
^O

D T = P + P qB (2.2.10)p y r 3% r

P = p + T + a^Yx + OpYp (2.2.11)

In these equations primes have been dropped with the under­
standing that all quantities are now dimensionless. Here 

2V is the dimensionless Laplacian operator and

Dp ' Pr I? -

(2.2.12)
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are the classical mass and thermal diffusion operators,
P = M C /k is the Prandtl number, S = the Schmidt
number, 6 = (̂ 3̂2  ̂o'̂  ̂ ^11^ o nondimensional multi-diffusion
coefficient, k = ,) the dimensionless pressure-a a ' 11 o
diffusion coefficient for species a, and and defined as

a

a

-  %

X X  F F  + R YO O P P
° (2.2.13)

E_F - R%Yx + RpYp + R Y
o 0 0

The dimensionless effective heat of reaction, Q, appears in 
the energy equation (2.2.11), defined as

^ . f x t ‘' x - .V o ^ ^ " F < ‘-F - V o  ,2.2.,4,
Po °

At this stage, it should be noted that the linearized 
equations in the set just referred to are coupled by the 
chemical rate terms since, in general, % is a function of p,
T, and the Y's, as indicated by equation (2.1.21). Because 
of the a priori assumption that deviations from the ambient 
state of equilibrium are small, we shall assume that B can be 
approximated from the linear terms of a multi-variate Taylor 
series, expanded about the uniform ambient state of equilibrium. 
Then the linearized rate of reaction function, is given by

^ = &(p,T,Y%,Yp)

= + SpYp - BpP - 3̂ '̂  (2.2.15)
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where

 *—

%

' I t 3£nK
9&np (2.2.16)

X f
o o
*

9%nK
3S,nT

An expression for the logarithmic derivative of K(T,p) with 
respect to temperature can be derived from the result in 
(2.1.22) in the form

aJlnK
9tnT

where m = g-x-f and W =

= m + — -----—
O (y—1)W

(2.2.17)

a
Wa-'OJ

-1
is the average molecular

weight of the mixture. Thus the temperature derivative of 
the equilibrium constant is given in terms of the effective 
energy of reaction, Q. The logarithmic derivative with 
respect to density is

•9
aARpj? = m (2.2.18)
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The density derivative at constant temperature is a constant.
The condition R = 0 denotes local thermodynamic 

*
'f
* * equilibrium when t _ vanishes but denotes frozen flow when
o obecomes infinity. The functional form (2.2.15) is an exten­

sion of the simple non-equilibrium expressions discussed by 
Clarke and McChesney [25] and Vincenti and Kruger [26] in 
which only one non-equilibrium variable was contained. Here 
we have two non-equilibrium variables, and Y^, pertaining 
to our simple ternary combustion model, equation (2.1.19).

2.3 Reduced Equations 
The linearized problem can be simplified further 

by splitting the velocity vector into its irrotational and 
solenoidal parts [27] . The present study, however, is con­
cerned with problems that are irrotational by virtue of 
planar symmetry; curl v vanishes identically. For these 
irrotational flows, we introduce the velocity potential such 
that

^ = V (j) (2.3.1)

The momentum equation (2.2.10) can now be integrated once 
and the pressure perturbation obtained as

P = y (7^i})-<|)̂ ) (2.3.2)

The time-function of integration has been set equal to zero 
since the pressure perturbation does not vary with time uni­
formly in space. The continuity equation (2.2.7) can now 
be written
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(2.3.3)

Consider now the rate expression (2.2.16). Elimina­
tion of T by means of the thermal equation of state (2.2.12) 
yields

(Bp - e^)p + B^p (2.3.4)

where

= *X + *X*T
(2.3.5),

^  ^ “f T̂

Differentiation of R with respect to time now yields

R = A%Yx 4- ApYp - $(*) (2.3.6)

where

$(*) = (6^ -Bp)v̂ <{> + yB^fv^O -ÿ^)^ (2.3.7)

with the aid of equations (2.3.2) and (2.3.3). The time 
derivative of the rate function now depends on the time 
derivatives of the mass fractions and the velocity potential. 
A single equation for the velocity potential can then be 
obtained by differentiating the energy equation (2.2.11) with 
time, eliminating the temperature T by means of equation
(2.2.12), and utilizing equations (2.3.2) and (2.3.3) to 
eliminate P and p. We obtain

L(<J)) = P^OOf*) - {a%D + PrO&x}Yx

- {OpD + P^QAp}Yp (2.3.8)
T
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where

L(*) E Dp(p^ - p^) + PfPt

- + 7^{V^p - (y + - 9^0)^

(2.3.9)

The effects of combustion and mass diffusion are contained 
in the terms on the right-hand side of equation (2.3.8).

By differentiating the diffusion equations (2.2.8) 
and (2.2.9) with respect to time, eliminating by equation
(2.3.6), we obtain two simultaneous equations for and Y^.

<°S + T I

+ KxV^P + Ŝ 3̂ Ŵ $(<j)) (2.3.10)

'°s + ScfMpAplYp = (5 7̂  - ScfMpAxlYx
T T

+ KpV^P^ + S^fWp$(*) (2.3.11)

Cross operation of the above equations yields the separate
equations for Y^ and Y^:

A4y = [k^{D^ + S^fWgAp} + kg{6v2 - S^xW^A^ljv^P

+ S^[xW^Dg + fWp6V^]$(*) (2.3.12)

44 = [kftDg + S^XW^Aj;) + k^{672 - S^£WjA^}]72p
FT

+ S^[fW^Dg + XW^gV^]*(*) (2.3.13)
4where the fourth-order operator A is given by
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A* = + S E,D - gg (2.3.14)s e l s  c 2

E XW^A^ H- fWfAp

= XW^Ap + fWgA^
(2.3.15)

4If we now operate on equation (2.3.8) with the operator A 
and eliminate and by means of equations (2.3.12) and 
(2.3.13), a single equation for ({> is obtained;

Â L((j)) = [P 0{D^ - 6^V^} - S D {E-D + E . 6 } ] $ ( (f)

- [D„{E-D^ + E,0V^} + P Q{E_D^ + E-5V^}' ■ p b s  b r / S op
+ S E_D Iv^p (2.3.16)c 9 pJ

where

^3 "

E^ = XW^Op + fWpa%

^5 ^f “x

Eg = k^Op + kpO^ (2.3.17)

E7 _ k^A^ + kpAp

- ^X^F ^F^X

E9 = (opAĵ  - â jAp) (XW^kp - fWpk̂ )̂

Equation (2.3.16) can also be written as
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(1 - - A  ̂ *8 3x2
A^V^* - B_
' 3t

- V

+ A

- &«?: + B« 7-f9 T 9 X

=  0H  - c y *3.2 e

3. *5?'* - B;?' A  + V c  ^9 X 9 T

(2.3.18)

where

Ag - y [{1 - 6 )̂ + Eg - 5Eg]

Ag - ( 1 - 6  ) (y + Pj.) + Y S^(2 + Eg) + (Eg - ôEg) (1 + P^)

A^ = (1 - 5 ) + 2S^ +Y S^(E^ - gEg) + Pj.Q(Ey - 6Eg) + S^Eg

+ 6, P^Qd - 5 ) - S^(E3 - 6E4)

B_ - P (1 - 6 ) + 2S (y + P„) + y SZ + S_Ec(l + P_) + P^(Eg - 6Eg)c 5

= 2S^P^ + Sc(Ei - SEg) (y + P^) + (1 + yE^)

+ y8^|p^Q(l - 6^) - (Eg - 6E4) (1 + P^) 2PrO + S^Eg

+ T P^Q(E, - 6Eg + S^E,) + S^Egd + P^)j

P^(2 + yEg) + S^(y + P^)

Cg = Sc (El - gEg) + (g, -Bp) fPj^Qd - 6 ) - Sc (Eg - 6Ej)

&5 = Sc Pr(Ei - 6Eg) + ScEi - (8?- 8,) Pr(Eg - 6E4) + EgSc - 2PrO

®5 = Sc P^(Ei - GEg) + P^Sc + ScEi(y + P^) + yP^(QE^ + Eg)

+ y8 ZPfQ + Pr®o'° ■ B3) - Pf'Eg - SE^) - S^Ej
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. ̂1 -  V < ° - V
E^ + yB^(Q - E3)

Equation (2.3.18) is the key equation in the pre­
sent investigation, which is an extension of the linear 
wave equations studied extensively by Lick [28] and Whitham 
[29,30]. It is readily seen that this equation is a ninth- 
order partial differential equation, the highest-crder term 
involving eight space derivatives and one time derivative.
The last two terms in the equation are the lowest order 
terms and are related to the classical wave equation as­
sociated with inviscid acoustics. The higher-order terms 
reveal the combined effects due to viscosity, heat-conduction, 
mass-diffusion, and chemical reaction. To simplify the 
analysis and presentation the assumption of 6 = k^ = k^ = 0 
will be made throughout the subsequent applications. In 
this case mass diffusion is adequately described in term of 
Pick's law, this means that

where D is the binary diffusion coefficient. However, these 
parameters are retained here for further extension later on 
to assess the effects of pressure diffusion and multi-component 
diffusion.
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2.4 Solution by Laplace Transformation
The Laplace transform with respect to t of a 

function f(r,t) is defined as

f(r,t)j = f(r,s) = /” e ® f(r,t) dt (2.4.1)

where s is the transform variable. Application of the trans­
formation (2.4.1) to equation (2.3.18) yields an eight-order 
ordinary differential equation in the space variable. The 
assumed form $(x,s) = exp(Xx) for the complimentary solution 
of the transformed equation leads to the characteristic 
equation for X :

8 6  +  s A .

-

-  X Cg + SA, + S Ag +  s X A c  +  s A ,  +  s  B _  5 5 7
r 2 2 1 4 r „  1A . C  + sBc + S  B ^ + s A .  +  S P  S4 e 5 6 4  r c =  0

(2.4.2)

Equation (2.4.2) is a quartic equation for X which can be 
solved explicitly. The complicated expressions, however, 
make the inversion difficult. It will be more expedient 
to obtain asymptotic expansions for the roots of the charac­
teristic equation. The four positive roots have the following 
expansions for small s (which are appropriate for large-time 
inversions):

\ /sA^

X 2 ~ /sA2

1 + 0(s) 

1 + 0(s)

1 - -Ar + O(s^)

^4 ~ Gw + C- w

4b

1 - + 0(si ) (2.4.3)
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where

^,2
A- + v'hl - 4C^A.C^ 5 — 5 6 4 e

2C,
1/2

(2.4.4)

’w = 1 — Ô
1/2

2[ c . ( i  -  a ' ) ]2.13/2

^ CgA^d - (Ŝ ) - CgAg - Ag(l - 5^)2

(2.4.5)

(2.4.6)

1 - 5 ^  (1 - 6̂ ) ^6

A7A9
1 — 5 2 2 (1 - 6 )

A5B8
(1 - 5^)3

(2.4.7)

Ag A,(l - S h c l

b = —  
® / 2 ^4 ^4 e

-1/2

GlGw/'Gl -

1/2
(2.4.8)

The functions and X^ vary to lowest order like /s and 
hence lead to purely diffusive behavior, such as might be 
associated with a temperature or mass fraction discontinuity. 
When Pick's Law holds, that is, when 5 = = 0, the
expressions for and A2 simplify to
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S A  + (^T - Gp)(PrQ - ScEg)
1/2

(2.4.9)

*2 = /S^ (2.4.10)

The coefficients and A^ essentially represent thermal and
mass diffusivities. The thermal diffusivity limit = /P^
is recovered by setting Q = 0, but the general form (2.4.9)
shows the general effects of equilibrium chemical reactions
plus a coupling with mass diffusivity through the appearance
of S . c

The function Xg varies like s to lowest order and 
hence leads to wave behavior. The wave speed is given by 

which is thus identified as the equilibrium speed of 
sound. The diffusive spreading of the wave front is repre­
sented by the factor b^ in the second-order term of Xg.

The function X^ also leads to wave behavior, but 
this wave is damped by virtue of the lowest order term ç^. 
When Pick's Law of diffusion holds, the damping factor is 
given by

1/2
^w = Scfl + (GT - GP)(PrQ - ScGs) (2.4.11)

and is thus a function of thermal and mass diffusion through 
and S^, and the reaction rates through E^, and gp.

The factor represents the laminar flame speed, and the 
factor b^ represents the diffusive spreading. For Pick's Law, 
the flame speed simplifies to
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4  YBpfPrO - S^E])} + PpfPr " S^) (3^ - Gp)Q

(2.4.12)

This laminar flame speed depends on thermal and mass dif-
fusivities P and S and the reaction rates. Additional r c
details of the equilibrium speed of sound and laminar flame 
speed shall be discussed in Sections 2.5 and 2.6.

2.5 Laminar Flame Propagation 
Three mathematical formulations have been developed 

which attempt to predict the laminar flame structure and 
speed. The first method, introducted by Hirschfelder [31] , 
aimed to solve the set of conservation equations for a 
stationary flame, with specified boundary conditions at the 
burned and unburned ends of the flame. It was shown that 
the propagation speed of a laminar flame corresponds to 
the eigenvalue of the governing boundary-value problem. The 
second method, proposed by Spalding [2], adopts a computing 
procedure to solve the equations of one-dimensional unsteady 
laminar flame propagation. Specifically, the method consists 
of setting up the time-dependent equations of conservation, 
assuming arbitrary initial profiles, and then solving the 
equations numerically. The iterative solution was continued 
until the profiles of the different dependent variables 
approached sufficiently close to a steady state. The asymp-
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totics of large activation energy serves as the third 
method, but the notion was scarcely employed before the 
review article of Williams [6] . The method of matched 
asymptotic expansions [7,8] is used to obtain approximations 
for the rate of laminar flame propagation through a homo­
geneous, gaseous fuel mixture. The applications and flex­
ibility of these methods have been proved, but they usually 
require fairly large number of restrictive assumptions. 
Consequently, there remains a need for a rational analysis 
of laminar flame theory in which diffusional effects, thermal 
effects, and transient behavior are all included. Linearized 
theory is intended for this purpose.

The formula for the dimensionless laminar flame
speed in the present study has been established in (2.4.12).

*The dependence on the Damkohler's second number xj can be
o

shown explicitly by manipulating (2.4.12), and we obtain

i 4^0-------------  (2.5.1)
(Sc^l + *3)Tf + ^1 2̂o

where

XW*(ÿ%- + Ÿ^-) + f W p ( ^  +
"o "o=1 ' XW (=&- + ÿ2_) + fW + mE

(2.5.2)

a„ = yYi.Y£m(P 0 - S E O  (2.5.3)

a. = P_Q(P_ - S )Y% Y^ — (2.5.4) 
^ O o (y-l)W
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and use has been made of equations (2.2.16), (2.2.17), and 
(2.2.18) among others. The Lewis number is defined by

The wave associated with the wave speed c arisesw
solely as a result of combustion processes. Within the 
framework of a linearized theory, this wave can be identified 
as a deflagration wave. Correspondingly, the wave associated 
with the equilibrium speed is an embryonic detonation 
wave. Whereas the equilibrium speed is a well-known result 
and can be obtained from simpler considerations (see section 
2.6), the concept of the deflagration wave as outlined here 
is a new approach. It is obtained from an entirely rational 
analysis. For instance, it is not necessary to suppose the 
pressure is a constant across this wave front. The behavior 
of the pressure will be a result of the analysis. There 
is no "cold-boundary" difficulty to deal with.

*When the characteristic reaction time, x ̂  , that
o

is, the second Damkohler number, is large, the deflagration 
wave speed behaves asymptotically as

1

This result is precisely true when a^ = 0, or in particular
when m = 0, where m = g - x ~ f i s  the net change of mole
number during the chemical reaction. This functional de- 

*pendency on x ̂  is in agreement with conventional elementary 
o
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theories for obtaining laminar flame speeds, as might be
anticipated from dimensional considerationsC32 3.

*When Tg is sufficiently small, deviatiates 
o

from the conventional behavior. This is illustrated in
Fig. 2.1. The functional behavior of the flame speed with 

*respect to depends on the value and algebraic sign of 
o

m in equation (2.5.3). As seen from Fig. 2.1, the curves
for m > 0, m < 0, and m = 0 are distinctively different

* * when Tg < 10. When Xg > 10, however, the behavior is the
o o

same for all values of m. It is possible that this behavior
can account for some of the discrepancies between various 
theoretical models within themselves and also in comparison 
with experiment. Without detailed knowledge of the chemical 
kinetics, various theoretical results might differ by as 
much as 100% between themselves and with experiments [2].
As Clarke [13] has pointed out in connection with his de­
tailed analyses of flame speeds for large activation energies,
the coefficient of (xg ) in equation (2.5.5) is a com-

o
plicated affair and depends in no very obvious manner on
heat of combustion, species concentrations, Lewis number,
and so forth. Equation (2.5.5) which is a special case of

*equation (2.5.1) valid for large Xg (or m = 0), is certainly
o

in agreement with this observation. The more general
*equation (2.5.1) is valid also when Xg is not large and
o

hence is not restricted to large activation energies.
In principle, equation (2.5.1) should provide 

numerical estimate for the laminar flame speed C^. However,
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in practice, values of are so uncertain that equation
® *(2.5.1) is more useful for estimating from experimental

o
values of C^. For example, let us consider an exothermically 
reacting mixture in an isolated system. If the mixture at 
a specified temperature and pressure is allowed to approach 
chemical equilibrium by a constant pressure process adiaba- 
tically, then the final temperature attained by the system 
is the adiabatic flame temperature T^. Clearly depends 
on the pressure, the initial temperature, and composition 
of the reactants. The final equilibrium mixture is employed 
as the initial mixture in the present linearized formulation. 
For specific chemical reaction, the equilibrium composition 
and the adiabatic flame temperature could be evaluated by 
an iterative procedure. The coefficients, a^, a^, and a^ 
are then determined and the forward chemical reaction time 
Tg could be estimated by measuring the speed C^. Accordingly, 
the present linearized theory provides a new approach to 
study the influence of pressure, temperature, and composition 
on the flame speed, without the necessity of supposing the 
pressure is constant across the flame, and there is no "cold- 
boundary" difficulty to deal with. At this stage, it is seen 
that the present linearized approach is different from the 
conventional approach. In the conventional approach, the 
combustible mixture (at given temperature and pressure) con­
tains fuel and oxidant only and there is no product initially. 
Either fuel or oxidant is consumed entirely after burning.



-29-

These are idealizations appropriate for large activation 
energies. Further, they give rise to the cold wall difficulty 
because the reaction rate never falls to zero if it follows 
the Arrhenius law. Essentially the situation in which com­
bustion is not completed might prevail, and the mixture is 
really in an equilibrium state and at high temperature. Thus 
the initial conditions in the present problem may correspond 
to the final state of conventional combustion. Our problem 
might be viewed as an "after" combustion caused by a pressure 
or temperature disturbance imposed on a hot pre-burned equili­
brium mixture.

It is interesting to note from formula (2.5.1)
* 2 4that, with Tg roughly estimated between 10 to 10 (chemical
O C « Qforward reaction time lies in 10 to 10 sec, and the

characteristic diffusion time is about 10 sec), will
then be in the range of 10  ̂to 10  ̂ (flame speed is between
10^ and 10^ cm/sec). If corresponds to about 10 cm/sec,
then Tg has about the value 10  ̂ sec. These results are
larger than empirically determined flame speeds, which are
in the range of tens to thousands cm/sec. Generally, however,
these experimental results were not obtained from transient
weak disturbance problems such as envisaged here.

2.6 Equilibrium Speed of Sound 
The dimensionless equilibrium speed of sound, C^, 

derived in the preceding section, can be obtained from simpler 
thermodynamic considerations. Following the work of Vincenti
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and Kruger [26] for a dissociating gas, the Gibbs relation 
for our ternary reacting mixture is written as

TdS = dh - — dp - (Ux - "pIdYx + kp - "p'dY; (2.6.1)
The quantity p is called the chemical potentical for

a
species a . By means of the caloric equation of state in 
the functional form h = h(p,p,Y^,Yp), we write the dif­
ferential form

euqation (2.6.1) can also be written

(2.6.2)

TdS = - -9P p dP + dp +dp
9h
9YX

dYX

9h
9Y, dY, (2.6.3)

For a reacting mixture in equilibrium, we have Y^ = Y^(P,p) 
and (pv'Pn) dYy + (pp-p_) dY„ =0. It follows that theA p A r p r
equilibrium speed of sound is determined by

*

S,Y = Y 
a a

111 + ill_ + ilL_
Po 9P 9Y^ 9P 9P
*̂ o ah ah 

9P 9YX
+  9h 2^;

9P 9Yp 9P

(2.6.4)

where the derivatives are evaluated at the
ambient equilibrium state and P,p have been normalized.

The calculation of a^ for the specific ternary 
system in this study can be established by evaluating the
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derivatives in equation (2.6.4). First, from the caloric 
equation of state (2.1.15), we have the differential form

dh = (hx-hp) " CpTo°X dY^ + (hp-hp) -
dY.

+ C T dP - C T dp p o p o ^ (2.6.4)

where use has been made of the linearized thermal equation 
of state (2.2.11) to eliminate T. This gives

9Y^ ^p) " , gp CpT^
(2.6.5)

3Y_ “ " CpTo*F 9p P o

The explicit form of function Y^(P,p) is found from the fact 
that linearized rate of reaction function is equal to zero 
under equilibrium condition and the changes of species fraction 
are related by Y^/Y^ = XW^ç/fW^ç where ç is the degree of 
advancement. The result is given by

* fw
= -Ë7

(gp-grp) P +  6,J,P

(6 -Bylp+ BfP

(2 .6 .6)

hence it follows that
3Y* XW_

^ “Ë7
BYX xw.X
9P

(2.6.7)
9Y fW
9̂  "Ë7 (Bp-e?)

fWp
9P E, ^T
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Substituting these derivatives into (2.6.4), and after some 
simple algebraic manipulation, we find the dimensional equili­
brium speed of sound;

This final result is exactly the same (after normalization 
by the frozen speed of sound) as that in the governing equa­
tion (2.3.18). Note that the equilibrium speed is in- 

*dependent of t .̂



CHAPTER III

APPLICATION TO HOT-SURFACE IGNITION OF GASES

3.1 Statement of the Problem 
When a gas mixture capable of an exothermic reaction 

is heated locally and rapidly under various modes of energy 
supply, such as an electrical spark, a hot vessel wall, a 
pocket of hot gas, or a pilot flame, a flame front can be 
initiated in the vicinity of the energy source and propagated 
into the rest of the mixture. A considerable amount of 
study has been given to problems which pertain to the ignition 
of reacting condensed substances [33,34]. Relatively few 
studies have dealt with the problem of ignition of gases which 
is more complicated than that for condensed-phase ignition, 
because the convective motions in gases must be taken into 
account. In most problems of ignition of gases studies in 
the past [35,36,37 ], attention has been directed primarily 
to the laws of ignition, namely, the critical conditions 
for the establishment of steady-state flame in a gas mixture 
and the quenching and ignition limits.

Shkadinskii and Barzykin [35] have considered the 
problem of hot-surface ignition of gases with allowance for

-33-
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diffusion and hydrodynamics by means of numerical work. The 
treatment is confined to the assumption of constant pressure, 
it is valid after the pressure wave has left the reaction 
zone. In the present analysis, a similiar problem will be 
studied with a different viewpoint as mentioned in Section 2.5, 
and the emphasis will be on the problem of gasdynamic aspects 
of ignition which is becoming of importance in understanding 
combustion noise. The particular purpose of this chapter 
is to contribute to a qualitative picture of nonequilibrium 
dissipative phenomena involved in complicated ignition process, 
stressing asymptotic behaviors which display certain con­
sequences of heating conditions at ignition source. The 
specific ignition problem described above may be simulated 
as follows. At the initial instant, a chemically reacting 
gas mixture that is in a state of chemical equilibrium and 
semi-infinite in extent is brought into contact with a hot 
surface whose temperature exceeds the initial temperature 
of the mixture; the subsequent response induced in the gas 
mixture is then to be determined. Two fundamentally different 
types of surface conditions are considered:

(a) constant surface temperature; the heat flow at 
the surface falls with time,

(b' constant heat flow through the surface, the surface 
temperature increases.

The initial conditions for the ignition problem are that all 
perturbation variables are zero at t = 0. The boundary con-
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ditions at the hot-surface, which we take to be non-catalytic 
and impermeable, are

T = F(t), u = 0 , and = 0 (a = X,F) for t>0 , x - 0 (3.1.1)

Finally, all perturbations must vanish at infinity. The 
problem facing us is to solve the governing equation (2.3.18) 
subject to the above initial and boundary conditions.

3.2 Laplace-Transform Analysis 
A solution can be obtained by taking the Laplace 

transform with respect to t followed by solving of the 
ordinary differential equation in the space variable x «
If ô(x,s) denotes the Laplace transform with respect to 
time of *(x,T), the transformed solution of (2.3.18) is

0(x,s) = E B exp
n=l ^

- X (s)x n (3.2.1)

where X^yXgfXg and X^ are the positive roots of the quartic
2equation (2.4.2) for X . Their asymptotic expansions in the

limit of s->0 have been derived in (2.4.3)-(2.4.8), and B^,
B^, B^, and B^ are arbitrary constants of integration. The 
transformed solutions for pressure and density are found 
directly from equation (2.3.2) and (2.3.3);

4 ,
P(x,s) = y Z (X - s)B exp (-X x) (3.2.2)

n=l * " "
n 4 2

p(x,s) = - - E X B exp(-x x) (3.2.3)
s n=l * * "
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The particular integrals of the transforms of simultaneous 
equations (2.2.7) and (2.2.8) are obtained in the form

= !, "nX ®nn—‘X

4  \  ”nP ®nn=l

(3.2.4)

where

nnx ' - VeT<xV'*^«p> + -# (6p-6^) (xw^-fWp) -
''n

j2-s j2
+ ^  - s2(bp-b^)xw^ ^

A^(A^-s) S
^nF = - ScYBT(fWp-6XWx)  + -| (Bp-g?) (fW^-ÔXW^)

X^-S Â
+ S^^BylfWpS) ^  s^xep-B?) fw -ü

\  *n

A = (1-0^)A^ - S (2s + - 6E_)A^ + (ŝ  + sE^)n n o  i z n c  i

(3.2.5)
and pressure diffusion has been ignored. The transform of 
the temperature is then determined by means of equation
(2.2.11). The transform of the velocity is determined by
s = ♦x-

The four constants B^, , B^, and B^ in the above
transformed expressions are determined by imposing the trans-
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formed boundary conditions (3.1.1) at the hot-surface. 
These conditions provide four equations for the four un­
knowns ;

4
Z

n=l " s) + -§ - »x"nX ■ “f "nP Bn = f(s)

(3.2.6)

*n"nx®n '  °n—X

S  ^n"nF=n = ° n=l

Solving these equations yields 
f (s)X2X3X.

®1 ^ Â ^^3X^4F'’’̂ 2X^3F‘̂ ^4X^2f“^3X^2F“^2x’̂4f"^4X^3F^

- f ( s ) X 3X . X ,
®2 ~ Â (^4X^1F^^3X^4F*^1X^3F"^4X^3F"^3X^1F"^1X^4F)

f (s)X.X^X_
B3 =  ̂ (^1x^2F'‘'^4X^1f'‘'^2X^4F"^1X^4F"^4X^2F"^2X^1F^

®4 = (%2X^3F^'KIX^2F^^3X^1F ^2X^ 1f”^IX^3f"^3X^2F̂
(3.2.7)

where

^I^IX

^I^IF

^2^2X

^2^2F

^3^3X

^3^3F

^4^4X

^4^4F

(3.2.8)
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and
'I'n = Y(Xn-:' - “v" -a n X nX F nP (3.2.9)

The solution for the transformed problem is now complete.
The complicated form of the transformed solution we encounter 
makes the exact inversion impossible. However, asymptotic 
approximations valid for large values of the time can be de­
veloped by expanding all transforms for small s [38]. In 
the limit s->0, the roots of the characteristic equation have 
the expansions given in (2.4.3) and the corresponding ex­
pansions for B^, , B^ are (for 6=0).

1 + E s^/2 + E* 3^/2 +0(3) o o

B^'V - f(3) ^  s"l/2 + 0(sl/2)

- f(s) Go/PrO-ScSs)
PrOSw

+ 0(s^/2)

(3.2.10)

where
h =

E =

^1 “ (e.p“ep)E2

^l‘̂ el^rY^l'^Y6̂ (Q-E3)-E3(B^-8^-ye^)] [SgE -Ke^-g^) (P^Q-S^E^) ] 
[Ei-(8t-B JEjj ^ + ( 6^-6 ) (Q-E3 )] 3/2(PrSc)l/2

g. , p f ^ 0(e^-BT)[Ej^t(8,j,-Bj(Q-E3)]^/^

° sJ'''[V'eT-ep>®3] [ W < 9 t -6p ' < W 3 > 1
(3.2.11)

and it i3 found that B^ vaniehee identically when 6=0 (see
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Appendix A). The transformed field variables after having 
been expanded for small s have the lowest-order terms rep­
resented in the following form:

T(x,s) % f(s) expt-X^x) + EgS^/^{exp(-X^x) - exp(-XgX)}

* 1/2+ s ' {exp(-X^x) - exp(-X^x)} (3.2.12)

(A^-l)s exp(-Y^x) + s^/^expt-XgX)

( V ^ ) ( y - S c ^ 3 ) A l  3/2s ' exp(-X.x) (3.2.13)

u(x,s) ~ f(s) s — exp(-XgX) - exp(-X^x) (3.2.14)

Yy(x,s) (B -g )h 1 1/2exp(-X-x) - —  s  ̂ exp(-X^x)
w ■'

(3.2.15)

3.3 Ignition at a Constant Surface Temperature
We first consider the case in which the wall tem­

perature does not change with time. The condition may be 
described by f(s) = A^/s, where is the dimensionless tem­
perature of the source. The transformed problem can now be 
inverted by means of standard Laplace-transform tables and by 
the approximation method proposed by Rasmussen [2 2]. With 
the use of expressions (3.2.12)-(3.2.15), the general formulas 
for the asymptotic behavior of the large-time solution are 
found to be
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^erfc ( ^ }  + E
/4t

f ^1̂  'exp
-  L

/4 t
- I(x,T;bg,Cg)

+ E exp 4 t - exp(-ç^x) I(x,x;b^,C^)
'TTT

+ 0(T"3/2) (3.3.1)

p(x ,t )

u(x,x) h
Am ~ A-, I(X/T;b^,C^) -exp 4t

(3.3.2)

+ 0 ( T

Y%(x,T) (e^-g )h

-3/2)

xWjjAy '\j
AnX\ A-

(3.3.3)

erfc ( ^ ) -  :^exp(-; X) I(x,x;b^,C^) 
/4x

+ 0(t 3/2)

where

l(x,x;b,C) bx f 
ttC J(

X ^-b^(t-x/c)2/t dt
/t

(3.3.4)

(3 .3 .5 )

Several interesting features of wave propagation 
may be noted from the quadrature (3.3.5) that appears in the 
above asymptotic formulas. The quadrature was evaluated nu­
merically. The function /ttx*I (x, x ;b,C) is shown in Fig. 3.1 
as a function of x/x for various instants of time. Before 
we enter into a discussion of the details of the behavior of
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the wave function I(x,x;b,C), it is helpful to examine its 
asymptotic behavior in different domains. The integral 
(3.3.5) is evaluated asymptotically for three limiting cases: 
x/Cx<lf x/Cx>l, and x/Cx>l, by the Laplace's method [47].
It is found that

(3.3.6)I(x,x;b,C) ^ ^  erfc f- / % \l - ^
2/irx /I—x/Cx I C X '

(for x/Cx<l and not too close to 1)
,5. e-b^Tlx/Ct-l)? r ( i )

I(x,x;b,c) 'h ------- YYÂ----------------------3---- T“
X 1+ b/r^(x/Cx-l) r (^)/r (̂ )

(for x/Cx>l) (3.3.7)
1 X e“t)̂ x (x,Cx-l) ̂I(x,x?b,C) '\j --- p— / M " ■!' ■■•r   (3.3.8)

(for x/Cx>l and not too close to 1)

The magnitude of the wave function is largest near the wave 
front (x/x = C). The magnitude is associated with the strength 
of the generating disturbance. Since the generating distur­
bance decreases with time, the strongest part of the distur­
bance is at the wave front, which was generated earliest. The
wave front is diffused out because of dissipation, and the
diffusive spreading is reflected through the factor b. For a
fixed value of x/x, I(x,x;b,C) dies out approximately like
-1/2 -1/4X when x/Cx<l (not too close to 1), like x near the

wave front (x/Cx>l), and decays exponentially when x/Cx>l
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(not too close to 1). These have been shown from the ex­
pressions (3 . 3. 6) - (3. 3 . 8) .

The resulting process associated with hot-surface
ignition of gases in most real cases may be described as
follows. The temperature jump at the boundary causes a
pressure wave that moves with the equilibrium speed of sound
through the ambient gas. The heat flow from the hot-surface
raises the adjacent layers of gas to a higher temperature and
initiates an exothermic chemical reaction. Subsequently, the
thermal energy released in the reaction zone accelerates the
reaction, and a nonstationary combustion front is formed.
Since the equilibrium speed of sound (0[lO^cm/sec]) is much

1 3higher than that of the laminar flame (0[10 'vlO cm/sec]), 
the equilibrium wave leaves the heating and reaction zones 
and has no further effect on the process. Behind the wave, 
a gas velocity corresponding to the expansion of the heated 
gas and a pressure equal to the starting pressure are es­
tablished.

For the purpose of illustration, the pertinent 
parameters appear in the asymptotic solutions will be chosen 
as :

= 1.0, E* = 10.0, = 0.915, = 0.01

b = 0.6, C = 0.95, b = 0.5, C = 0.20 e e w w
The asymptotic solutions we have developed illustrate these
thermal mechanisms qualitatively. The distribution of the
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perturbation temperature is plotted in Figure 3.2 as a function 
*of X = x/x for various times and for selected values of the

*parameters. It should be noted that the coefficient assoc­
iated with the combustion front term is proportional to the 
effective heat of reaction, whereas E is not. The thermal 
boundary layer spreads from the hot-surface as the square 
root of time and is given by the first term in (3.3.1). This 
is the usual term obtained in the time-dependent problem of 
heat conduction when there is a temperature jump on the 
boundary surface, except the thermal diffusivity is modified 
by the effects of the chemical reaction and mass diffusion.
The contribution from the pressure wave is given by I(x,x;b^,C^)
led by E in equation (3.3.1). The term associated with I(x,x;b ,C ) o w w
in equation (3.3.1) describes the contribution from the exo­
thermic chemical reaction; its space-time distribution is 
similar to those previously examined by Averson et al. [39] 
and Shkadinskii and Barzykin [35]. It should be pointed out 
that only the reaction zone is represented in the work of 
these authors. In the real ignition cases, as the flame 
front moves away from the wall the heat flux into the burning 
zone decreases, but the heat released in the chemical reaction 
compensates for the heat transferred to the colder part of 
the gas and then raises the temperature to such a point that 
the reaction accelerates sharply and a nonstationary combustion 
front is formed. The temperature perturbation generated in 
the reaction zone in the present case is predominatly due to
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the presence of thermal flux from the hot wall into the 
burning zone. The rate of the thermal flux decreases with 
time for the case of constant surface temperature, and the 
rate of chemical reaction and the heat released in the re­
action zone decrease. Therefore, the amplitude of the tem­
perature perturbation in the burning zone decreases with time. 
Furthermore, as the flame front moves away from the hot wall 
the heat flux into the burning zone decreases, and the in­
duced chemcial reaction and temperature perturbation also 
decrease. These results are described by the damping term 
contained in the chemical contribution such that the induced 
perturbation dies out exponentially with distance from the 
hot-surface. The lower-order diffusion terms, that is

A^x2 ,
exp - — / / ^ , appear in the equation (3.3.1) are the con­
tributions of the thermal expansion of the gas, associated 
with the pressure wave and the chemical reaction. They cause 
a fall in temperature.

The function associated with the gasdynamic wave 
dominates the pressure distribution. The resulting pressure 
distribution is quite like that in Fig. 3.1. The pressure 
variation induced by the flame propagation is higher order 
and has been ignored in the asymptotic expression (3.3.2). 
Thus we may conclude that the conventional assumption of 
constant pressure through the flame is an acceptable approxi­
mation.
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Fig. 3.3 gives the space-time distribution of the 
perturbation velocity for selected parameters. Physically, 
the hot surface transfers heat to the gas, causing a pressure 
wave and initiating an exothermic chemical reaction. The 
expansion of the gas, associated with the pressure wave and 
the chemical reaction, causes a motion away from the wall. 
However, the velocity caused by chemical conversion itself 
and the thermal expansion associated with the chemical reaction 
are higher order and has been disregarded in the asymptotic 
expression (3.3.3). Thus, the dominant contributions are from 
the gasdynamic mechanism and the resulting velocity distri­
bution is similar to that of the inert system; there is a 
velocity peak near the pressure wave front and the velocity 
doesn't vary with distance in a region between the wave front 
and just outside the velocity boundary layer, as shown in 
Fig. 3.3. It should be noted that the induced velocity in­
creases with increase in temperature jump and the amplitude
decreases with time for the same reasons as that for the tem­
perature perturbation.

The space-time distribution of species concentration
of oxidant is represented in Fig. 3.4. The mass-diffusion
boundary layer spreads from the hot-surface through the combined
effects of diffusion. The reaction zone is centered at x = C xw
and spreads parabolically with time. A feature of the space­
time distribution of species concentration of oxidant is its 
increase in time to the value of the initial equilibrium state.
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This is because the flow of heat from the wall decreases with 
time; consequently, the induced chemical reaction is incapable 
of self-acceleration if the heat released due to the exothermic 
reaction is not enough. Practically, the present problem may 
correspond to situations in which the gaseous mixture cannot 
be ignited or, if ignited, is incapable of sustained burning. 
Such a correspondence might be important in various situations 
where "degenerate" combustion takes place.

There is a limiting case in which the chemical re­
action does not occur, such as that of an inert mixture; the 
resulting flow field then reduces to the problem of thermally 
driven acoustic phenomena. The results for this case are 
expressed as

. erfc + I(x,T;b,C =1)At /4 t e

exp
-  Ix

/tT T

^-]L- i(x,T;b,C =1)
^T e

(3.3.9)

(3.3.10)

u ( x , t ) ^  _ 2 _  

^T Æ "
I(x,T;b,Cg=l) -

rexp 4t
/■ÏÏT

(3.3.11)

where b e (2y) Thus the resulting field iS composed
of the diffusive wave propagation, thermal conduction, and 
thermal expansion.
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3.4 Ignition by a Constant Heat Flow
In the case of constant heat flow through the surface,

the surface temperature increases continually. The effect of
constant heat flux may be characterized unambiguously by the
result that the surface temperature is a particular function
of time. It can be shown that the function is described by 

2F(x) = —  /t (for the sake of simplicity). To lowest order,
Athe asymptotic approximations that satisfy the conditions on 

the hot-surface are then found to be

T (x,t) ~ J —  exp\ 77
AnX 1 rA.xx

- A,x erfc X
4x J 1 V4x

erfc
A^x

* •At X'
+ E erfco ■

X ) 'X, - -- U(x,x;
1̂

- e-Gw* U(x,x;b^,C^)

- 1/ 2 ,
e' e

(3.4.1)
(3.4.2)

u(x,x) ~ U(x,x;bg,C^) - erfc f̂ l^l
â]4x

+ 0(x"l/2) (3.4.3)

xW,X
/—  expI 77

A y - A^x erfc
A^x^

~  exp(-ç^x) U(x,x;b_,C^)w w (3.4.4)

where



U(x,x;b,C) = 1/2

-52-

2
erfc b(x/C-T)l ^ g4b"x/C erfc ! b(x/C+T)

/ T  J I /?

(3.4.5)

The characteristic picture of the wave function U(x,x;b,C) 
is shown in Fig. 3.5. It is observed that the wave front 
travels with the speed of C and spreads out like the square- 
root of time. The complex processes are essentially the same 
as for the previous case both of which are composed of dif­
fusive waves and a boundary layer adjacent to the hot-surface.
In the latter case, we get a nonstationary reaction zone with 
a continuous supply of heat from the bounding surface. The
dimensionless thermal flux from the wall q = a . is determinedo 1
from the first group of terms in (3.4.1), which is a solution 
of the linear heat conduction problem. The associated per­
turbation temperature, velocity, and species concentration

*of oxidant are plotted as function of x = x / t in Figs. 3.6- 
3.8 at different instants in time. In contrast to the case 
when the surface temperature does not vary with time, there 
are no relatively maximum perturbations in the field. We 
could attribute this difference to the fact that the case of 
constant surface temperature provides a more intensive heat 
supply from an outer source. For instance, when the combustible 
mixture ignited by a similar heat impulse, the time of heating 
action is shorter for the case of constant surface temperature 
than for that of constant heat flow.
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The damping term exp (-ç^x) associated with the 
chemical reaction exists in both cases, since the heat flux 
into the burning zone decreases as the flame front moves 
away from the hot surface. However, the induced perturbations 
do not die out with time for the case of constant heat flux, 
because there is a constant supply of heat from the bounding 
surface.



CHAPTER IV 

APPLICATION TO EXPLOSION PROBLEM

4.1 Description of the Problem
The one-dimensional explosion problem will be con­

sidered in this chapter. The problem is envisaged as follows. 
Initially, a planar diaphragm at x = 0 separates two semi­
infinite regions. On the right-hand side of the diaphragm,
X  > 0, the mixture of oxidant, fuel and product is in equili­
brium with pressure, P^, density, p^, temperature, T^, and
mass species fractions Y , a = X, F, and P. On the left-hand

o
side of the diaphragm, x < 0, the conditions are perturbed 
from the right-hand side by small amounts and may or may not 
be in chemcial equilibrium. The perturbations are denoted 
by the symbol A with the appropriate subscripts, as indicated 
in Fig. 4.1.

/ / / / / / / / / / / / / / / / / / / / / / /

perturbed equilibrium

7777777777777777777777'

- 5 8 -
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X  < 0, t < 0 X > 1

p P_(l + A ) P PO p' o
p — P_(l + A ) p = p ^O p o
T T (1 + A„) T — To T o
Y Y + A Y _ YX ^o ^ X X

Y„ + A„ Y„ _ Y„F F “po F F
Y 1 — Y — Y_ — A — A„ Y _ 1P X _  F X  F O o P X .

Fig. 4.1 Configuration for One-Dimensional 
Explosion Problem

The initial perturbations are not all independent, they are 
related by the equation

Ap = Ap + 'T + “X*X + “P*F

At a given instant t = 0, the diaphragm is withdrawn instan­
taneously. The thermal regime of the gas mixture is then 
determined at subsequent instants. The problem then is to 
solve the governing equation (A.7) subject to the above initial 
conditions and the requirement that all perturbations vanish 
at infinity.

This problem could be considered as a simplified
model of a soap-bubble explosion where hot burned gas is in­
troduced into an infinite space occupied by a fuel gas mixture 
and ignites the surrounding unburned gas.
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4.2 Laplace-Transform Analysis 
The diffusion equation D^J = 0 can be solved 

separately. The initial conditions are J(x < 0,0) = A and 
J(x > 0,0) = 0, where A = A„ - aA„ is a mixture strengthr A
parameter. Further, J is continuous at x = 0. The result 
is :

J(x ,t)/A =(l/2)erfc
r/Txic
/4T

(4.2.1)

Therefore, the species concentration of fuel, is defined 
in terms of that of the oxidant, Y^, and J(x,t). Hence, it 
is only necessary to solve for the species concentration of 
the oxidant among the species. With J known, equation (A.7) 
constitutes a seventh order non-homogeneous equation for <j).
If a Laplace transformation with respect to time is applied 
to equation (A.7), the following differential equation is 
obtained

6 ” 4 " 2 “
Ô, — -Î +  ̂ t + 6  ̂—— ^ - 6.<f> — ^(x,s) (4.2.2)

1 3x6 2 2x4 3 2x2 4

where
2 ,*(x<0,s) = d^Ap/yS^ - (l/^AS^(apE^-ApE3) (P^-S^)s e

(4.2.3)
- / S sx c.(» (x>0,s) = a /2)AS^(apE^-ApE3) (P^-S^)s e " (4.2.4)

and 6 ,̂ S^, 63, and 5^ are defined as
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ô, = ys + 1

as - - 6^

«1=' + (PrSc+Gs's' + '’A Ei+(P^-Pp)(Q-Eg)

Pr^c s^+{E^+yP^(Q-E3)}g3 (4.2.5)

The general solutions of equation (4.2.2) can be found in the 
form

+ -%iX + -^3% + -%4%<j)(x>0,s) = A^e + A^e + A^e

(CpE -AjE ) (P^-S^) -/S^x
+ ------------------  e

2K
X,x X-X X .X

*(x<0,s) = A^e + A3 + A~e

(4.2.6)

(apEi-ApE3)(Pr-Sc) /S^ix ,------------------  e - Ap/ys
2K

(4.2.7)
+ + +

where A^y A3, and A^ are constants of integration and where

K = 6, S^s^ + 6_S s + 6_ — Ô./S s 1 c 2 c 3 4 c (4.2.8)

In the limit of s^O, corresponding to large time, we have 
asymptotic expansion for K in the form

K-x. S^s(P^-S^) [E^-(6̂ -gp)E3] + O(s^) (4.2.9)

and X^, X3, and X^ are the same as presented in Chapter II, 
equation (2.4.3) without taking account of pressure diffusion
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+ + +

and multicomponent diffusion. The constants A^, and
are determined by requiring that u, P, p,
be continuous at x = 0. The large-time expansions of these 
constants are found to be

Ai ^ A^/s + 0(1)

^3 ~ A /2ys + 0(l/s) (4.2.10)

and

A4 -V A4 + 0(s)

- A.

-  A , (4.2.11)

-  A,

where
h

A, =
2A

r A E - A

1 2  *TAp + PyO-ScE,

+ Ahg/h^^ + Â Ay. + ApAp (4.2.12)

h.
A. =

2;
( g ^ - B p ) A p  -  B^Ap +  ( A ^ A ^  +  A p A p )

w
(4.2.13)

h, = PyO - ScG3
1 Ej_ + (6̂ -6p) (P O-S^Eg) (4.2.14)

_ “f^i ~ V 3
2 E^ - (6̂ -Bp)E3h„ = (4.2.15)
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with these results the approximate transforms of the velocity, 
pressure, species concentration of oxidant, and temperature, 
valid for small values of transform variable, can be written 
as

u(x,s) ~ —
-/sA^x  ̂ -XgX

* -&4X
+ SwA4 =

Ah

P e

2 e
-/Ssx c

2 /s /s~c
(4.2.16)

 ̂ * -/sA-X A -X_x A -X^x
P(x>0,s)'v--y(A^-1) A^e ^  | e

2 * Y(S -IjAh. -/S sx
- + --25-----^ e (4.2.17)

-  *  /sA. X  A X.,x A X_x
P (x<0, s) vy (A^-1) A^e + — ^ e ” 2s" ®

2 * ^4^ Y(S -l)Ah /S^x+ yc A,e + - £ -----^ ---- - ew  4 28 (4.2.18)

XW.X 2yE,

PyO-ScB] ^ 2E.

X
XW. (xlO,s)~

Ap-fBT-Gplhg

...

-/s sx c

(4.2.19)
P X.x

X 2yE.    +  -X W ^  S

ç2a’w 4 X4X
PrO-S^E, s 2Ei Ap-(BT-ep)h2

/S sx c
(4.2.20)
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T(x<0,s) ~

h s

(PyO) 5^4 - X X
e

PyQ-ScS] s

2̂ *
l i e
h s

X^x
e

PrO-ScGs s

2 c—  e ^ (4.2.21)

X^x
e*  -  3

where

Y(S^-l)Ah2 /S^sx

+ (Ap-Ap-ajçAjç-apAp)/s (4.2.22)

* 1 -YB?)
Î3 - ^  - Y - E^+(6̂ -6p) (Q-E3) (4.2.23)

4.3 Asymptotic Approximations for Large Time
The inversion of the transformed field variables 

found in the previous section can be accomplished by means of
standard Laplace-transform tables and by the approximation
method proposed by Rasmussen [22]. The large-time approxi­
mation for the velocity field is

u(x,T)~ A . A .   ------------- —     + Ç A.e ^ GQxl,T;b,C)1 1 /  n /5~ /  W j
✓ i T T  2/S V T 7 Tc

A
+ 27c“ UÛxi,T;b^,C^) (4.3.1)

b |x|
G(|x[,T;b,C) 5 ^ ^ - (4.3.2)

W / t t t
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The contribution associated with the initial pressure dif­
ferential ApU( |x I,x;bgC^)/2yC^ is dominant and corresponds to 
the compression wave in one direction and an expansion wave 
in the other. The resulting pressure distribution is quite 
like that in Figure 3.1. The first two terms in equation
(4.3.1) describe the diffusive-type relaxation of the initial 
disturbance caused by the removal of the diaphragm. The 
disturbance at x = 0 dies out like t  . The higher-order 
contribution is given in the third term in equation (4.3.1), 
which is generated by chemical reaction. They constitute 
a compression wave traveling in one direction and an expansion 
wave traveling in the other. This effect behaves as a pulse, 
centered at x = C^t and traveling with the laminar flame 
speed C^, and dies out approximately like t . The cor­
responding large-time approximation for the pressure is

p  *  A .  X  - A ^ x ^ / 4 t  y ( S  -l)Ah_
P(x>0,T)^-Y(A;-l)Ai e  ̂ +- §=---- ^  - j S = =  e

/Ittt c /4irT

2c2 G(|x|,T;bg,Cg) + A U(|x|,x;b^,C^)/2 
e ^

- e G(lx| ,x;b^,Cj (4.3.3)

P * A.X -A?x ^/4t y (S -l)Ah„ /S%x -S x^/4t
P(x<0,T)~ -Y(A:-1)A. e  ̂  ^^=£==6

/4iTT c /4irT
A

+ — & G(x,x;b ,C ) - A U(ix|, t;b ,C )/2 + A2Q c c y c t; t-»

2 * ^w^+ e Gfix[,x;b^,C^) (4.3.4)
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The functions associated with initial pressure perturbation
ApU(x,T;b^,C^)/2 dominate the pressure distribution. The other
contributions die out at least as fast as t . The variation
of pressure generated by the flame propagation is described by

-Ç^x
the functions G (|x[,t ;b^,C^) and a damping term e . When 
the initial pressure perturbation across the diaphragm 
vanishes, this combustion wave becomes the dominating distur­
bance. The large-time approximation for the species concen­
tration of oxidant is

xW (X>0,T)~ -
X

Bp)*!*! ( M )  - _A_ erfc

U(Ix|,x;b^,C^)
2YCeEi

2 * 
(«A,

P Q-S E, ®Y c 3
(4.3.5)

_ .. -v^ X
V < V 8p>‘'2.erfc

c
/4t

2 *

(4.3.5)

The asymptotic solutions show that the species concentration 
of oxidant are influenced by initial pressure perturbation 
and chemical non-equilibrium, besides the diffusive-type re-
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laxation of initial mass fraction perturbation. Without 
chemistry and the solution exhibits entirely diffusive
behavior as that of inert binary mixture. With the known 
asymptotic behaviour of oxidant, the solution for mass fraction 
of fuel can be found from equation (4.2.1).

The large-time approximation for the temperature
field is

An A* A,x y(S -l)h /six -S xV4x
erfc ( _ )  + ^  e

*
63A

- U(|x|,T;bg,Cg)

(P Q) . -Ç X
- P ^ “ <|x|,r;b„,CJ (4.3.7)

Y c 3

*l''l , Y(S -l)h, /six -S xÎ'4t
T(x <0,t) ~ a? + erfc ( — ) + -----  - T - 7  ®

/4t C  k4itt
*

+ - | ^  U(|x|,T;bg,Cg)

(P Q)ç ^ A .  Ç X  

+ PChS-W;-^ e " U(|x|,T,bw,C^^ (4.3.8)

It is noted from the above results that the flame propagation 
provides an important contribution to the temperature field, 
as is evident from the last terms in equation (4.3.7) and (4.3.8) 
This contribution is proportional to the effective heat released 
by combustion, Q. The terms associated with wave function 
U (1X I,T;b^,C^) are proportional to A^, hence they are of gas- 
dynamic origin. The first two terms in (4.3.7) and (4.3.8) are
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associated with classical thermal conduction and mass diffusion, 
When Schmidt number is unity, the contribution of mass dif­
fusion to the temperature variation vanishes.

The above results show that the shock wave front
is centered at x = C t  and diffuses with a characteristice
diffusion width defined by

X  - C T  = (4.3.9)e e

Thus the linearized theory predicts a shock wave with a dif­
fusion width increasing indefinitely with time like /t . This 
leads to an estimate of the time at which the linear solution 
breaks down. As is expected, the thickness of a weak shock 
in the steady flow is of the order of 1/A, where A is the 
initial perturbation. Since we expect the solution of the 
shock tube problem to yield a steady-state shock as we
conclude that the linearized solution becomes invalid when 
T = 0(1/A^). This nonuniformity will be treated in the next 
chapter by method of multiple scales [41,42].



CHAPTER V 

NONLINEAR INTERACTION

For very long times, the wave fronts in linearized 
theory are dominated by transport diffusive effects. It is 
known in shock-wave behavior, however, that diffusive and 
nonlinear effects tend to counteract each other. In order to 
delineate the balance between the diffusive linear terms and 
the steepening nonlinear terms, let us isolate the viscosity 
by means of the dimensionless parameter

- - ° (5.1.1)
o

where L is some characteristic length pertinent to a given 
problem. The parameter e  is to be regarded as small so that 
the transport terms can be balanced with the nonlinear terms, 
which are also small. The Prandtl and Schmidt numbers are 
of order unity. Let us introduce new independent variables 
such that

af t ^ i
T = ° = ET and r = ^ = £ r  (5.1.2)Li J-i

It follows in the new variables that V = eV and v =
In the new variables, the old nth order derivatives in both

— 69—
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nspace and time now become proportional to e . Thus we can 
rewrite the governing potential equation, equation (2.3.18), 
and display the lowest two orders as

\ c ^ \ - + #- As^ 4,-B 5? ̂ .j, ̂^+Pr Ŝ<f,e ^ 'V'Vi A MTT^ T 4 L XT XXXX ■'

+ 0 ( e ) (5.1.3)

The lowest-order terms thus constitute the classical wave
operator with the equilibrium speed of sound. The diffusive
transport terms enter as a first-order correction involving
derivatives of one-higher order. The nonlinear terms, which
were omitted by the original linearization, should also appear
to order e in equation (5.1.3).

To obtain the lowest order nonlinear correction,
we return to the original equations, omit the transport terms
for simplicity since they are already accounted for in (5.1.3),
but retain the lowest order nonlinear terms. We replace the

' %perturbation variables in (2.2.1) by p = e p , and so on for 
the other primed variables, and utilize the normalizations
(5.1.2). The governing equations then become

—  + + E? ' (p^) = 0
9t

—  + (1/ y ) ̂ P  +  E
3 t 3 x

_ iz i  +
X 9^

+ 0 ( e )  = 0

Y — 1 'v> 3 P

Ÿ
fî — Hi M'pl » 3̂i?

X"x 'Po
3T
. o 3x

(5.1.4)

(5.1.5)

+ 0 ( e )  = 0

(5.1.6)
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A(^j^/xWx) - BpP -8̂ % +E r»
3 t

+ O(e^) = 0 (5.1.7)

= p + ^ + E3 (%%/xWx) + E pï+Eg (%x/xW%) (p+%)

+ 0 ( E ) (5.1.8)

where

(5.1.9)

3C.
Tt 9T(Cp,x Cp,p)

3T o

o % W ' S . F ' S , p ’-to

'3^r' 2 n.2 
2 -  + r*2Ri [^^r ]

^3p^J 0 ' ° 2 I3T J0 ° 2 0 2

3^R' n +  ̂ 3^R
[3p 3Yxj 0  'o' X 3p 3Yp

32pr
+0

32r 1
3T 3Y x 3T 3Yp

3^R
3p3T 

23 R
3Yx3Yp

A - El - BrpÊ

(5.1.10)

2

Po?o

;x»F
(5.1.11)

(5.1.12)

These equations can be manipulated so that the following 
equation for the perturbation potential is obtained to the 
lowest two orders :
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_2%2CgV 4-4^^ = E
TT

^  (^4)^+5 4^v^4+Çq4^^^ 
3 t t t t t

+ O(e^) (5.1.13)

where

C* 5 C^(2[E^+6j(Q-E3)](,/c2+E3cyc2+E3C^C^) + (Q-E3HR

- EiSc}/[Ei+(6T-6p)(Q-E3)]

;0 = CeCo/[2l+(8T-»p)'0-E3'l

(5.1.14)

(5.1.15)

■R
'3̂ R' ^0 . f3^R]

2 -4 + r r,2U p . 0 Ce 3T +
'3^r'
3y:

' a V
3Y,

1 +
ffWp^2i
xW,

+ 3^R
3 p 3 Y. + 3^R

3p3Y,
1 + xW.X

O ’ O + '' S^r ''
3p 3T

P T  Ç,

o C
o o^T 
2—

3^R 1  ̂ a^R 1
3T 3Y

0
[3T3YpJ 0 . X"x. I'o^T^O +

3^R
3Yj.3Yf Ü I  ,2

o>:”x °

(5.1.16)

T r3C
= IZI + G.S S + ^1 T O  C 3T T o

( y - 1 ) [ E ^ - ( G ^ - 6 p ) E 3 ] - Y B p O  

®1+^^t"^p ) (O-E3)

(5.1.17)

(5.1.17)

( y - 1 )  g , j . - g p

"o - E^+(e^-3 ) (Q-E3) (5.1.18)

The first two terms of order e in (5.1.13) are nonlinear.
The third term, r é  , is linear and is actually contained

TTT
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in (5.1.3). We note when the chemcial reactions are ignored 
* *that Cg = 1, = 0, and ç = y - 1 , and hence (5.1.13) in

this limit is easily obtained from classical inviscid second- 
order potential theory.

We now observe that the first-order corrections to 
the linear inviscid terms amount to the linear combination 
of the first-order linear viscous correction and the first- 
order nonlinear inviscid correction. Thus the full first-order 
correction to the potential equation is

e 6 [1A.TT JT L 4 T T T T

(V<j))2

9 T
+ 0 (e ) (5.1.20)

This equation can be reduced further if we realize that to
Replacing the linear space deriva­

tives on the right-hand side with the equivalent time derivatives 
then yields, correct to order e.

lowest order = 6e ^

T T

FAj-BjC^+PrSjc^ ,
----- --------- A + --

A . C ^ ÏŸ? 3Î (̂ ♦)
4 e 

2+ Ç (J) ? (j) + 0(e") (5.1.21)

where we have integrated once with respect to t  and set the 
function of integration equal to zero. Equation (5.1.21) 
governs the long-time behavior near the shock fronts.

The origin of the diffusion terms, that is, the 
coefficient of * , can now be traced back to the original

T T T
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linearized equation (2.3.18). Further, this same coefficient 
appeared in the long-time solution by Laplace transforms. In 
fact, we can identify the parameter from equation (2.4.8)
as

.2_4 ̂ i - K f -  — Ü — M V.BsCe-Ag-PrScCe
A4C*

- 1/2
(5.1.22)

Further insight into the nature of the nonlinear 
interaction can be obtained by specializing equation (5.1.21) 
to one-dimensional motion. If we consider an initial-value 
problem with boundary conditions given at x = 0, such as for 
the motion of a piston, then it is appropriate to introduce 
new independent variables defined as

X = ex
(5.1.23)

One would be led to such a transformation from the method of 
multiple scales since a straightforward perturbation expan­
sion for equation (5.1.21) would lead to a secular nonuni­
formity when X = 0(e ^). In the new variables (5.1.23), 
equation (5.1.21) becomes to lowest order

2 2 4BgC -Ar-P S C
V  + 2S7  h h K  " "---- * «5  +e ^^4 e

In the new variables, 4̂  is the lowest-order velocity 
contribution, that is,

v = e U  + 0(e^) (5.1.25)



-75-

where U = <j)̂. We can place equation (5.1.24) in a con­
ventional form if we replace X by the new variable

n = X = ex (5.1.26)
e e

and introduce the effective diffusivity

A4C^(2+ç ) 2bg(2+ç )

Then equation (5.1.24) becomes for the velocity U(S,n)

U + UU_ = v*Urr + 0(e) (5.1.28)

We recognize this nonlinear diffusion equation as the famous 
Burgers' equation. Burgers' equation can be solved exactly 
[30,44,45]. Distinct solutions of this equation have been 
tabulated in a paper by Benton and Platzman [46] . To lowest 
order, the other perturbation variables are found to be

p = eyC U + O(e^)

p = U + 0 (e )
I

^ Ce
(5.1.29)

t' = eç^CeC + 0(^2)

Yp/fMp " ^x/x^x = - ESqCgU + O(e^)
*Note that the effective diffusivity v is related

to the parameter b^ in the linear theory, equation (5.1.22),
* 2 * * by the relation 2(2+ç )b^v = 1, where ç has something to do

with the second derivatives of rate of reaction function R.
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Thus linear theory yields the correct combination of terms 
arising from viscous, thermal, mass-diffusion, and chemical 
reaction dissipation that contribute to the breadth of the 
shock front, but raised to the wrong power.



CHAPTER VI

CONCLUDING REMARKS

In this investigation, a ternary gas mixture ini­
tially in chemical equilibrium, or nearly so, has been con­
sidered. A small temperature or pressure perturbation disturbs 
the gas mixture, and the subsequent responding gas motion has 
been determined for small disturbances. In particular, the 
problems of hot-surface ignition and the one-dimensional weak- 
explosion problems have been studied. The results illustrate 
the combined effects of viscosity, thermal conduction, mass 
diffusion, and chemical nonequilibrium on the propagation of 
small disturbances in reacting gas mixtures. The embryonic 
structures of both detonation and deflagration waves are 
obtained as natural outputs of the analysis. The results are 
of a fundamental theoretical interest that contribute to the 
basic knowledge and understanding of trans ient combustion 
and chemical-reaction problems. They are also of some practical 
utility, especially with regards to the propagation of acoustic 
disturbances.

The attack on the problem was by means of linearized 
theory. By this method, a general methodology and approxi-

-77-



— 78“

mation scheme was estab lished that applies to a wide class 
of problems. As in most linearized approximations, the 
results break down in certain limiting regimes. In this 
regard the nonlinear evolution of the weak detonation wave 
front was analyzed and found to be governed by Burgers 
equation for one-dimensional problems. The effects of vis­
cosity, thermal conduction, mass diffusion, and chemical 
reactions on the effective diffusivity were established.

The present theory can also be applied to other 
exemplary problems, such as the piston problem, the cylin­
drical and spherical explosion problems, the hot-spot 
problem, the hot-surface ignition problem including surface 
catalycity, and the spark-ignition problem. The study of 
these problems would be both interesting and useful. Also 
the effects of pressure-diffusion and thermo-diffusion on 
the resulting gas motion, or other dissipative effects such 
as radiation or electric and magnetic fields might be studied 
fruitfully by this approach.
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APPENDIX A

SEVENTH-ORDER PARTIAL DIFFERENTIAL EQUATION 
FOR THE VELOCITY POTENTIAL

If Pick's law of diffusion is assumed in the very 
beginning of formulation, the analysis could be less compli­
cated. The problem is then governed by the following set of 
linearized equations:

Continuity

Momentum

Species

Energy

State

p = - V̂ (j) (A.l)

P = (A.2)

V x  = - (A-3)

DgYp = - S^fMpb (A. 4)

D„T = P P + P Q& (A. 5)P Y r T r

P = p + T + + üpYp (A.6)

The linearized rate of reaction function, R, is given by
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equation (2.3.4). The above equations can be manipulated so 
that the following single seventh-order equation for (p is 
obtained:

27 ({) —a<}>
T T

+ 7 6l*TT-62? ^ + P S r c T T
T T

G34TT-94? * + Pr^c Ei+(B^-8p}(Q-E3) .2 .

c:
7 (f) — — « (p2 ^TT

= S^(«pE^-ApE3)DpJ (A.7)

where

Bl = Sc(Y+Pr) + P,

^3 " ScE^fY+Pr) + Ygçp P^Q(S^+1) - S^E^fP^+l)

U = ®c^l + (BT-Bp)(PrO-ScB3) (A.8)

where the variable J(x ,t ) is defined as

J ( x , t )  =  Y p  -  aY^ (A.9)

and satisfies the diffusion equation, that is DgJ = 0. The 
notation a is the stoichiometric mass ratio, namely a = fW^/xW^. 
For the case of hot-surface ignition of gases, it is found 
that J(x ,t ) = 0 identically.

A similar equation has been developed and studied 
by Rasmussen and Frair [43] and Rasmussen [42] for inert
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binary mixtures. The present analysis extends those in­
vestigations to include chemical reactions. The last two 
terms in the left hand side of equation (A.7) reflect the 
effect of chemical reaction. Also the coefficients have 
been modified.


