PARTITION RATIOS OF SOIAB ORGANIC ACIDS BETWEEN

ETHER AND WATER

prway

35

Cachelow of setenco
Colorado state colloge of fextouthre anc mechantw Axta Pomt collus, GoLorado
2933

Subrattod to the Departanent of honsistry Dklahome Agrtculbural ant Meekmical tollage
in Parthal gulfilluent of the Roquirements
For the pegreo of

1941

Qoderneer

Member of Thesis Committee

Ceto m. Smith
Head of Department of chemistry

A GCTOWLEDGMEMT

The author takes this opportunity to acknowledge his Indebtedness to the Chemistry Deparment faculty for granting him the assistantship which made possiole his graduate work at the OKlahoma Agricultural and Mechanical college. The author wishes to erpress his appreciation for the sid and suggesting given by Dr. 0. C. Demer, under wose supervision this wome was performed. He is also greaty Indebted to $D r$. F. Trimble for bis excellent sugrestions, services in constructing equipment, and for the uses thereof.

Recognition is also due the storeroom assistants and to Mr. Adams for their co-operation in securing supplies and equipront. Further appreciation is also extended to college Libramiang for their kindly assistance.

The author recelved a valuable suggestion fron Dr. N. T. Helley of the Wonsanto Chemical Company, Saint Louls.

Finally, the author wishes to express his gratitude for the sacrifices and inspiration from F . m_{m}. and V. L. H .

PIFACM

One of the earliest observations which can be classed as cherical is that aome substances dissolve when placed in contact with vaxious liquide mat fixst quarter of the twentieth certary was a time in whith one of the chief ocoupatices of ghemata was the study of solutions. hevertheless, weacht mowleage of solutions is very inacequate, alviouet there are nemy wheovies which attempt to oxplalin the mature of solutions. ghwies on partinion have bean valuable in eluctdatime bo stabe of anbstames in solvente

The ratho of tre soncentrathons or a giontonee with is
 Knoma as the aistribution os pectition matio. ghas partition betweon solvents is the sasia for nuacrous preparabion, appam ration, and purification processot.

Th the 11 terature there exist soveral aisctapancias in rogard to the pardation ratiog of some omyanto acids in wator and cther. There is a doxath of partition data for nomma to O.O1 commi solutions betreen ether and wator at 25° C. A possink use fox these data is the qualitative faentifieation of individual organio scica in swall awounts my the partition ratios. The puppose of this lmeatigetion was wo cina
 reesons mentioned apove.

WAMLE OF CONTHTS

Page
Entroduction 1
Rxpenimental 9
Medoods ard Reavits 14
DLscuseion of Results 38
Sumary and Conclusions 42
Bibliography -* 43
Autonjography 47

INTRODUCTION

In 1872 Berthelot and Jungfleisch (5) studied the partition of iodine between carbon disulfide and water and concluded that the familisr Henry's law, concerning the equilibrium between a gas and its solution in a liquid, follows the same Beneral principle as the aistribution of a solute between two liquid phases. Nernst (35) imposed an important restriction upon this generalizetion which is now called the distribution or partition law. He showed that for ideal liquid-1iquid systems a constancy of the partition ratio exists only when the molecules of the distributed substance are in the same condition in both phases. Furthermore, the two solvents must be absolutely insaluble in each other, even when both contain large anounts of solute. Of course these ideal conditions are seldon more than approximately realized, the disturbing influences becoming greater with increasing concentration. The system cerbon tetrachloride-water-iodine approaches this iacal.

In this work ether was chosen for the second solvent phase because it is a relatively "non-polar" solvent (47) and the many organic acids which dissolve in it are believec to be in the simple molecular state. In chloroform, benzene and many other associeting solvents the acids are considered to be pertly associated $(17,24)$. Frequently there is dissociation in the water. Many attempts have been made to
correct for this in order to make the partition ratio constant. Some acids are more highly associated in the weter layer than in the organic solvent, e. g., 3,5dinitrobenzoic acid (50). The solute and solvent may combine to form definite compounds, e.g., hydretes in aqueous solution (1,18). Ethereal solutions separate readily from aqueous solutions which have been shaken; other solvents do not separate nearly so readily. This is an aid in titrating near the end point. Ether is especially useful beceuse there is a tremendous range in the partition of orgenic acids between it and water. Chandler (7) finds other to be the best non-aqueous solvent in general for the determination of the state of equilibriun in solutions of dibasic acids and their salts. However, methylal nay be more efficient as an extraction solvent for several common orgenic ecids (12). Wexkmen (54) suggests the use of isoanyl ether for partition work because it is less soluble in water than either ethyl other or isopropyl ether. For this reason he uses it to detemine partition ratios for fatty acids. Later work shows isopropyl ether to be unstable, i. e., it becomes acid upon standing (37a).

There is no obvious relationship between the solubilities of organic acids in pure water or pure ether and tireir solubilities in ether-saturated water or matersaturated ether (46) as shown on page 36 of this thesis. Pershke (39) shows in theory and by experiment that the partition ratio is the ratio of the concentrations of
tis aissolved subebscee in the two solventa for tre syster
 pertition ratio is natheny aiderant from the ratio of tho solubilities of succinie acid in the pure solvents. Furthernore, the liniting value of the partition ratio st Ligk total concentrations of tio distributed substance is not geterminad, in general, by the ratio of the solubilitias of the two solvents but by the ratio of the coneentratione of tho two phases at tho triple poizt: solia-liguidliguá (44).

The solubs aky have one of three possible effecta upon the parition ratio (32,52) beccuse of its affect upon the Gutucil solubilities of the scivents. ILrst, the distributed pheoc say lower the nutual solubilities. At the inft, won subseguent adations of soluto, it is conceiveble thet the autual solubilities would be reduced to zero so that the limiting esctuibution ratio would be that of the solubilities in the puro solvents. Second, the distributod phoce nay increase the mutual solubilitioe. at the limit the pheses would be seluble tn all groportions. sthis woula ofuse the aistribution ratio to approceh unity et the consoluto concontretion. Klobbie (29) points out the case of malonic acid as atributed botween ether and wetem as an example of this second type Thixa, the solubility of one liduic in the second may incrocse, an that of the second is the dirst deareate, upon the adution of bolute.

This would cause the partition ratio to vary throughout the concentration range. Any of these three possibilitios hay be realized experimentally.

Although this work was done at constant temperature, it is well to remember that the solubility of ether in water decreases with rising temperature while the solubility of water in ether increases with a rise in temperature (36). Consideration of the effect of temperature is inportent if the partition method is to be used for the rapid qualitative characterization of organic acias, because it is more practical to determine these ratios at room temperature. The partition ratio may be expected to vary with temperature beceuse solubilities ordincrily are affected by temperature changes. The solubility of the acid in the water phase probabiy does not vary to the same extent as does the solubility in the ether phase, and, as has been pointed out previously, the mutual solubilities of the ethar and water are affected in opposite ways. Forbes and Coolidge (13) in their thorough work on "The Relations between Distribution Ratio, Temperature, and Concentration in the System: Water, Ether, and Succinic Acid" calculate the temperature coefficient for the partition ratio in this system to be 0.0258 units per degree. This agrees favorably with their experimental figure of 0.0255 . Perschke (39a) finds a temperature coefficient of 0.0222 between 17 and 18.4° C. for succinic acid in other and weter where the concentration of acid in the ether layer is 0.06 to 0.07
grans por liter. For the syston acetic acid-water-ether, Fantzsoh and Sobaldt (21) find the partition ratio to bo 2.031 at 0° and only 2.19 at $25^{\circ} \mathrm{C}$. It appears thet these snell changes are true only in systons where the temperature coefficisnts of the solubilities in the two phases are little difforent, because this ratio is altered only when the solubility ratios are altered. This is tho besis for the gencral statement that toaperature changes have little effect upon partition ratios (4, 10, 56).

Solubility is known to be affected by pressure; theoretically, it ray be assuned that there should be a pressure coefficient of the partition ratios between the liquid phases. However, pressure nust heve an exceedingly small. effect upon partition ratios, and as yet no such effects have been noted (52).

Tmpurities in the solute or solvent naturally affect partition ratios, Wator is easily obtaincd relatively pure, and hence inpurities in water will not be discussed here. Impurities in ether are discussed in the section on rsagents. Twelve C. P. acids were used in this work, and purification of the other three is discussed in the section on reagents, but since pure acids alay not tways be available it is appropriate to consider the effect that iapurities in the solute would have upon partition ratios. Because the partition ratio is deterained by alkali titration ratios, the effect of any foreign acidic or basic substances is
obvious snd serious. eaylor (52) states that for axtraction purposes:

The distribution ratio may be changed in the gesired dixoction by addition of another compound which depresses tho dissociation of the substance boing extracted; en orgenic acia of moacrate strength for example can be most advantageously extrected fron water after addition of a strong inoregaic acia, which by its excess of hydrogen ion will convert the organic scid chiefly into undissociated molecules, which are soluble in the ethereal phase wheress the ions are not. An organic basc, by the same reasoning, is most easily extracted in the presence of a strone inorganic base. The addition of neutral bodies such as selts will also in many cases lower the solubility of the organic compound in water (the so-cslled selting-out effect) and thus favor the extraction by the ether.

Salts are usually insoluble in organic liquits, and conversely the amount of substance disiribated in the water Layer is dscreased upon the eddition of salt. The "salt-ing-out effect" is larger the smaller the size of the ion and the greater the ionic charge. According to Ferz and Stanner (25), ol ${ }^{-}$is more effective then Bx which is more effective than I^{-}. Susex content does not influence the partition of succinic acid between ether and water, according to Pinnow (40).

Polymorphic forms of cyystalline substances are comon, and since they differ among themselves in orystalline form, free energy and other physicel and chemicel properties, a mixture of two forms might conoeivably be present, one as sn impurity. There is a difference in solubility of polymorphic forms (6). In solutions, however, there should be no effect on the partition ratio if there were mixtures of
polyarpince fome dissolved because the ervatal lattice no Ionger exists.

The application of the partition law to Iiquid-liquid systems has furnished many interestine as well as useful pesults. Therous experinenters have determined degree of dissociation or association or both. The ordinary procedure is to use the equations lmown to apply to association, the degree of dissociation being deteraned rram independent conductivity oxperiments. If the cheraical potential or activity of the solute is known in one solvent It may be detemanod for the other solvent (11, St). Tris fumphes a means of calcalating free energles. A host of chomical equilibria may be studied to advantage by partition methods (27, 52). Studies of distribution may also Fumish the means of proving the existonee of conpounas (9), on determining heats of dissoctation, nydration, or ammoniation. Ordinarily the partition principle is most used th the process of extraction. It hss been possivie, In some instances, to ostablish the identity of a single acid by partition methods (49a), or a single acid in a wixture of acids by partition methods (37). In sumarizIng the applications of partition studies, it may be said that it is obvious that the principle of distribution is intimately related to the stato of aggregation of matter in solution. When surficient partition data are know it wll be possible to detemine the sdentsty of an organic acid by a comparison of know partition ratios with ratios
of the acid to be identified. Additional chemical equilibritu studies need to be made. Our meager mowledge in this field justifies the determination of more partition data in the hope that order may be wrought from the present chros.

REACEHES. The following reagents were used: mino(glycinc), monobromo-, monochlorom, dichlorow, and trichloroacotic, adipic, barbituric, benzenesulfonic, crotonic, foraic, 2-furoic, glycolic, alpha-hydroxyisobutyric, succinic, and d-tartaric acids, othyl ether, ethyl alcohol (denatured), phenolphthalein, thyolphthalein, sodium hydroxide, and water.

WaTme. ordinary distilled water was used. It is frportant that this water be neutral, alcohol-free, and carbon-dioxide-free for this worls. Carbon dioxide may be romoved Dy boiling the water.

ETHL ETHET. Although Merck reagent grade absolute etiny ether was ased, it was washed by shating with distilled water and kept in thls water-saturated condition over water until desired for use. The solubility of water in ethyl ether is 1.34 pepocit by weight at $25^{\circ} \mathrm{C} .$, whereas the solubility of ether in water is 6.04 percent by weight at 25° O. (27). ALeongi affects the aistribution of succinac acid between water and ether more than any other impurity Inkely to be present. Forbes and coolidge (13) ind that the presence of one percent of alcohol increases the solubility or ether in wator by about two percent of Itself, and that the solubility of tho acld in ether is increased by as much as twenty percent of itself, while the
increase of the solubility of the acid in water was much 1ess. After washins the absoluto ether four tines mth water the author foma the distribution of succinic acid to be the same as without washing. This was done to see whether the inpurities, a maximus of 0.005 percent of acicis (as acetic) and not more than 0.1 percent of alcohol, would affect the diatribution. Any impurities which may have been present evidently had no effect upon the distribution in this particular case.

IDOICATORS. Although Hall (20) recomerds the use of diBromothyolsulionphthaletn, comonly callea bromothmol blue, as an indicator for titwetions in ether solutions because it is not extractea from the wator leyer by the ether, it was found ry the author to be inpractical to use because the color change at the end point wes not as sharp as with phenolphtialein. Also, the pil at the end point is too low for the best titration of a week acia with a strong base by means of this indicator. Furthermore, almost without exception, other investisators in paritition work with organtc acids have preferrea to use phewolphthalein.

The thamolphthalein usod in the glycine titmation vas 0.5 percent by wetght in alcohol.

SONTU MPDROXTDE Thas reagent was standardized with potassim acid phthalate, and stored in elass carboy connected to a sods-Ithe tower. Atr prescure from a
rubber pressure bulb was used to fonce the sodium hydroxiag from the carboy through a tube to a burette also conneoted to a sode-ine tower. In this mannem ail air in contact vith the sodiwa hyaroxide was oarbon-dioride-free. A ono nomal somution ot beriua chlomide, gqual in volume to one percent of the sodiun hydroxide solution was added to the zolution to precipitate any carbonetes whiok might have beon present. Kay and Sheohen (28) give excellent directions for propaxing and usins very ailute standard solutions of sodiun hyaroxide. It was found adrantegeous to make one alkali solution about four times the atrength of the other, 2.0.2 0.03219 and 0.1237 nomel. The bylrochlorie aeid used fon back titmation wat 0.01525 aomal.

RHMY ficomot. The 95 pereent alcohol was denaturod with five percent nethyl aloohol.

2-TROIC ACDD. Following the suggestion of Rilas and Walsh (34), furoio acid was puafied by recrystallizetion from a hot mixture of two paris of carbon tetrachlonide and one part chloroforn. These crystals melted at 132$133^{\circ}$.

Ginman (16) etetes:
Duroic acias, in gencral, undergo melatively ready decarboxylation and the smoothness of this reaction with 2 -furoio ecid comands it as the best present method for the preparation of furen. and reports that this decarboxylation takes place at 158°. Furoic acid melts at 132° and boils at 230°. Although
furan, b. 32°, is sasily obtained by decarboxylatine furoic acid, it is not certain that the lone white needes of furcic acid which subline readily from the tarry melt are pure enough for partition studies. Tho yield of furoic acid by distillation even under reduced pressure is not over fifty percent. Furthermore, purification was apparently unnecessary because the purified crystals when dissolved gavs partition ratio which was almost identical (within axperimental error) with the commercial practical crystals before purification.

DICHLOROACETIC ACID. This acid was purified by distillation, after some difficulty with decomposition products, by Dr. O. C. Dermer. The bydrochlorio acia which was found to be present was removed by boiling until the diohloroacatic ecid was practically ohloride-free. Titration of the acid with atanderd base indicated more than 99 percent dichoroacetic soid to be present.

BRNLNESULFONIC ACID.* This acid was prepared by Dr. 0.0 . Dermer from benzenesulfonyl chloride by the method of Davies and Davies (8a).

The source and purity of the other acids used follow. iforobrownacetic acin* besman C. P.
Moncchloroaceric acid* ctaco C. P.

[^0]| TEICIILOROACTEIC ACID* | MERCR C. ${ }^{\text {P. }}$ |
| :---: | :---: |
| ADIPIC ACID | EASTMAN C. P. |
| BARETTURTC AOTD | BASTMAN C. ${ }^{\text {P }}$ |
| OROTONIO AOLD | |
| TORIIG ACID* | WTRCK O. P. |
| ATHOLCETIC AOTD (GLYOLNS) | Thatuan 0.7 |
| GLYOOLIC AGTD* | Ensman C. P |
| SUCOTHIC AGID | MRROK $\mathrm{O} . \mathrm{P}$. |
| C-TADTARIC ACDD | MERCR 0.9. |
| ALPUA-HYDROXYISOBUTYRIC ACTD | PASTLAT $0 . P$ |

* Done water was present in this acid, but since this acid was studied in a water solution this impurity was unimportant.

A 300 ml stock solution of each organic acid was Gdjusted to a concentration of about one normal. From the stock solution were pipetted three 50, three 25, three 10, and three 5 ml samples into twelve 125 ml ground glass stoppered bottles. The stoppers did not fit well enough as they cane fron the manufacturer so they were ground with water and emery to fit their respective bottles. When a water-saturated ether solution could be vigorously shasen in a bottle with no ether leaking thru the joint the stopper was deemed properly fitted. Water was measured by means of a burette into the sample bottles containing the acid, no water in the first three, 25 ml in each of the second three, 40 ml in each of the next three, and 45 ml in the last three. This made 50 ml of acid solution in each of the twelve sample bottles. The acid concentration in the sets of bottles was then approximately nomal, $\mathrm{N} / 2$, $\mathrm{N} / 5$, and $\mathrm{N} / 10$ respectively. Next, 50 ml of watersaturated ether was pipetted into each bottle, so thet the total volume of solution in each of the twelve botiles was approximately 100 hi .

It was not necessary to be accurate in preparing these solutions. The unpleasent tesk of sucking ether into a 50 ml pipette was avoided by placing the pipette in one hole of a two-hole cork stopper, and a short right-angled piece of 2 -mm glass tubing in the other hole. Rubber
tubing, connected at one snd to a rubber pressure bulb, was then slipped over the end of the small right-angled tubing. When the stopper was placed in the ether bottle and the tube of the pipette extended into the ether a few squeezes on the bulb would furnish enough pressure to send the ether shooting up into the pipette.

The glass stoppers were tightly fitted in their respective bottles and a rubber band, which was fastoned to a wire hook around the neek of each bottle, was snapped over each stopper to keep it tight while the solutions reached equilibrium in the bath, and while shaking. All twelve botiles were laid side by side and shaken menually in a wooden box built for that purpose. The box and its contents were allowed to remain subnerged in the water thermostat for at least thirty minutes at $25 \pm 0.2^{\circ} \mathrm{C}$. After that time the box was removed from the water bath and again shaken by pulling it to and fro on a table top for five minutes to insure complete equilibriun. The box containing the bottles was then returned to the bath for at least ten minutes to sllow the liquid pheses time to separate completely.

Bach sample bottle was allowed to remain in the water bath until the 25 ml samples were to be taken from the ether layer and the water laysr. Water around the top of the stopper was removed and a 25 ml pipette in a small rubber two-hole stopper with the rubber pressure bulb attachent, like the one usod to remove the water-saturated
other from its containor, was placed in the neok of the bottle so that the tip of the pipette was about 5 mm above the aqueous layer. About 15 ral of the other layer was forced into a clean, but not necessarily dry, pipette. The inside of the pipette was rinsed with the 15 ml of ether solution after removing the pipette, stopper and all. When the pipette was placed in the bottle again, exactly 25 ml of the ether layer was removed, placed in a 250 ml Prlenmeyer flask, and the flask stoppered until the solution could be titrated. The method of removing other by means of pressure reduces evaporation. One pipette was used for renoving all semples from the ether layer and another for all from the water layer. Samples from the ether layer were placed in the larger flask to permit the addition of about 100 ml of water before titration, and also to help one to renember which layer the sample had cone from. As an added precaution a finger was hela over the protruaing end of the pipette whils it was going through the ether laysr. Before removing the 25 ml portion from the water layer, a few bubles of air were blown into the water layor to expel any ether which might have entered the pipette.

Samples of both layers of all acids used in this investigation, except glycine, were titrated with 0.03219 or 0.1237 nomal sodium hydroxide using phenolphthalein as an indicator. Since ether extracted some of the indicator froa the rest of the solution, about one and one-half
tines as much phenolphthalsin wes addod to each seaple from the ether layer as to the water layer samples. It was found empedient to titrate all of the samples fron one layer in succession, beginning with the gost dilute.

Special technique is requirea for the titration of othoreal solutions. Chendler (7) eaded water and distilled off the ether. Dr. M. T. Kelley, of Monsento Chemical Gompany in Saint Louis, suggested adaing about 100 hl of water, an excess of sodium hydroxide, and back titrating with hydrochioric acid. The later vas found to be the best method.

Glycine is an anino acic which forms a zwitterion and cennot be titrated with phenolphthaloin as the indicator. Trom the several methods of titrating amino acids (13a, 23, 34e) we chose the following for the titration of our glycine samplas. All ather was evaporated from ether layer samples, and water leyen samples were evaporated to about 2al. This was dons to insure an excess of about 65 percent alcohol for the titration after adaing 50 ml of alcohol to each semple. The 85 peroent excess of alcohol must be present for the accurate determination of glycine by this nethod. One $m l$ of 0.5 percent thymolphthalein was added, the mixture heated to boiling, and titretion with stendard base was porformed in the boiling solution to a greenishblue ond point for the samplos from the ether layer, and a faint sky-blue end point for tho water layer semples. This titration is considered to be a measure of the carboryl groups present in the anino acid.

TABLI 1

> ADIPIC ACID
> $\mathrm{HOOC} \cdot \mathrm{OH}_{2} \cdot \mathrm{OH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{COOE}$ $\mathrm{m} . \mathrm{W} \cdot=146.14$

GNPGRTMEMTAL RESULTS AT $25^{\circ} 0$.

Titration of 25 ml . of water layer		Titration of 25 mi . of ether layex		Ratio
E2. WoOn	mi. NaOH	nil NaOH	N1. NEOH	
$\underset{\text { w }}{0.03219} \text {. }$	0.1237 N.	$\underset{\mathrm{e}}{0.03219 \mathrm{~N}}$	0.1237 N	w/e
40.10	----	20.58	----	1.95
40.31	----	20.76	----	1.94
40.40	\cdots	20.80	----	1.94
99.15	----	52.25	---*	1.90
96.72	-->	50.85	----	1.90
100.40	----	52.83	----	1.90
159.02*	41.38	84.58	----	1.88
158.72*	41.30	84.38	-mm*	1.88
155.26*	40.40	32.42	-----	1.86
196.15*	51.04	106.18	----	1.85
198.49*	51.65	107.60	-->-	1.84
197.07*	51.28	107.43	---	1.83

CALCULATMD IMAN VALUES

Acid in water layer (聠) Acid in ether layer (E)

Nomality	g./L.	Normality	$\mathrm{E} . / 1$.	W/R
0.0129	1.88	0.0065	0.95	1.98
0.1069	15.62	0.0557	8.14	1.92
0.1700	24.84	0.0904	13.21	1.88
0.2357	34.45	0.1281	18.72	1.84
0.2705	39.53	0.1486	21.72	1.82

[^1]MABLTA 2
BARBITURIC ACID

M. W. $=128.09$

EXPCTMEHAL RESULDS AT $25^{\circ} \mathrm{C}$.

Ritration of 25 mi . of water layer
ml. NaOH ml. NaOH $0.03219 \mathrm{~N}, 0.1237 \mathrm{~N}$.

Mitration of 25 ml . of sther layer
mL. NaOE ml. NaOH Ratio 0.03219 \%. 0.1237 N.

-		w/0
0.72	---	32.6
0.57	---	40.8
0.57	\cdots	41.0
1.09	---	42.7
1.02	-->	44.7
1.00	---	4.5 .7
1.44*	---	42.2
1.43	- -	42.8
1.39	-->	43.5

*Both layers ane saturated at this concentration.

CALGULATED MEAN VALUTS

Acia in water layen (w)

Mormaijty	$\mathrm{g} . / \mathrm{L}$
0.0258	3.30
0.0306	4.96
0.0515	6.60
0.0644	8.25
0.0773	9.90

Acia in ether layer (E)

Nomality	8.11	
0.0006	0.08	W/E
0.0009	0.12	43.0
0.0012	0.15	43.0
0.0015	0.19	43.0
0.0018	0.23	43.0

TABTB 3

$$
\begin{aligned}
& \text { ORORONIC AGID } \\
& \text { OEE } 3.0 H: O H .00 O H \\
& \text { NI. } 1 .=86.09
\end{aligned}
$$

EXPGRITRUTLL RASULIE AT $25^{\circ} 0$.

Titration of 25 ml . of water layer		Titration of 25 ml . of ether leyer		
mL. MaOH	nin. NaOH	mi. NaOf	mi. NaOH	Ratio
$0.03219 \mathrm{~N}$	0.1237 Na	$\underset{6}{0.03219 \mathrm{~W}}$	0.1237 N.	w/e
14.146	---*	57.13	----	0.253
14.55	----	57.61	-----	0.253
14.55	-***	57.74	----	0.251
27.89	--->	136.74	----*	0.239
27.80	---*	116.86	----	0.238
27.61	----	116.50	----	0.237
62.68	--m-	294.40*	76.61	0.213
62.95	----	294.92*	76.74	0.213
63.10	----	296.00*	77.02	0.213
$110.49^{\text {\% }}$	28.75	588.17^{*}	153.05	0.185
110.91 *	26.86	588.21*	153.06	0.187
111.22^{*}	28.94	588.98*	153.26	0.187

CALCULATED MBAN VIUES

Acia in water layer (w)

Mormality	g./1.
0.0078	0.67
0.0542	4.67
0.0885	7.62
0.1194	10.28
0.1506	12.97

Acja in ether layer (E)
Normality g./l. F / s

0.0296	2.55	0.263
0.2280	19.63	0.238
0.6212	36.26	0.210
0.5041	52.01	0.198
0.3127	69.97	0.185

* Calculated.

TABLS 4

$$
\begin{gathered}
\text { MORTCG AOTD } \\
\text { HCOOL } \\
\text { W. W. }=46.03
\end{gathered}
$$

RYERTMETRAT ROULUS AS $25^{\circ} 0$.

Titration of water	$\begin{aligned} & 25 \mathrm{al} . \\ & \text { layen } \end{aligned}$	Theration of 25 ml . of ether layer		Retio
m]. WaOH	m1. Ma0at	mi. NaOn		
0.03219 7 .	0.1237 2r.	$\underset{6}{0.03219} \text { iv. }$	0.1237 N.	1/a
57.00	----	19.83	-man	2.87
57.06	---*	20.75	\cdots	2.74
57.00	--*-	20.88	--mo	2.73
115.14	29.96	4.0 .67	---*	2.83
115.21*	29.98	40.81	--m	2.82
114.33*	29.75	41.87	- - - -	2.73
296.30%	77.10	106.85	\cdots	2.77
295.91*	77.00	108.14	---*	2.74
256.41 ${ }^{\text {\% }}$	76.13	108.29	- $-\infty$	2.74
578.42	150.52	220.46\%	57.37	2.62
583.00°	151.72	222.08\%	57.79	2.62
582.52*	151.58	222.31*	57.85	2.62

CALOULATED DRAN VALUES

[^2]
TABLE 5

FUNOTC ACTD

$$
\text { M. } \mathrm{m} .=112.08
$$

BREREIMENPAL RLGUTHS AT $25^{\circ} 0$.

Titration of 25 ml . of water layer		Titration of 25 ml . of ether layem		Datio
m1. MaOR	mi. NaOH	ml. HaOH	nl. NaOH	
0.03219 N	0.1237 N.	$\underset{\mathrm{a}}{0.03219 \mathrm{~N} .}$	0.1237 N.	W/e
8.70	---	30.40	---	0.287
8.69	--.	30.40	---	0.236
8.71	-a**	30.44	---	0.267
16.40	--.-	61.52	---	0.267
16.39	---	61.51	---	0.267
15.90	-	60.68	----	0.262
37.49	--..	156.60**	10.75	0.239
37.50	---	153.25*	41.18	0.237
36.50	--.	150.66*	40.76	0.733
59.40	---	271.55^{*}	70.66	0.219
57.26	---	261.32*	68.00	0.219
57.99	---	260.56\%	67.80	0.223

CALCULATED MEAN VALUES

Acid in water layer (w) Acia in ether layer (1 $)$

Mormality	S./1.	Womelity	E./L.	V/s
0.0087	0.93	0.0296	3.18	0.294
0.0324	3.63	0.1283	14.44	0.251
0.0564	6.32	0.2447	27.43	0.230
0.0782	8.76	0.3168	35.51	0.222
0.0811	9.09	0.3697	41.44	0.217

[^3]
PABLE 6

GLYCOLIC ACID
 $\mathrm{HOCH}_{2} \cdot \mathrm{COOH}$

$$
\text { 酰. }=76.05
$$

BKPERTETVAL RESULTS AT $25^{\circ} 0$ ．

Titration of waten	$\begin{aligned} & f 25 \mathrm{ml} \\ & \text { layer } \end{aligned}$	Pitration of 25 mi． of ether layer		
n1．NaOL	Ri．NaOE	al．TaOR	ml．NaOR	Ratio
$0.03219 \mathrm{~N}$	0.1237 3．	$0.03219 \mathrm{~N}$	0.1237 䛔．	／e
66.78	－－mom	2.00	－－－－	33.4
66.47	－－－－	1.90	－－－－	35.0
66.50	－－－－	1.86	－－－＊	35.8
$131.58{ }^{2 \%}$	34．24	3.82	－－－－	34.4
$134.12^{\text {䨗 }}$	34.90	3.83	－－－－	34.6
133．74＊	34.80	3.63	－－－－	36.8
336．15＊	87.47	9.51	－－－－	35.3
335．92\％	37.43	9.45	－－－－	35.5
335．80＊＊	87.38	9.27	－－－－	36.2
669.63^{*}	174.25	18.94	－－－－	35.4
671.18^{*}	174.65	18.90	－－－－	35.5
$671.44{ }^{*}$	174．71	18.88	－－－－	35.5

OLOULAPED MEAL VAUES

Acid in watar lovar（v）Acta in ethor loyer（m）

Nommality	g．／A．	Nomality	\％．／1．	W／ET
0.0644	4.90	0.0018	0.14	35.5
0.2254	17．14．	0.0064	0.48	35.5
0.3864	29.39	0.0109	0.83	35.5
0.6440	49.00	0.0181	1.38	35.5
0.9016	68.57	0.0254	1.93	35.5

＊Calculated

PABLE 7

$$
\begin{gathered}
A L P H A-H Y O R O X Y I S O B U T Y Y R I C ~ A C I D \\
\left(\mathrm{CH}_{3}\right)_{2}(0 \mathrm{OH}) \cdot 000 \mathrm{E} \\
\text { R. } 2=104.10
\end{gathered}
$$

EXPRETBNTAL RESULIS AT $25^{\circ} \mathrm{c}$.

GREULATED MEAD VALTES

[^4]TABLE 8

$$
\begin{gathered}
\text { MOMOBROMOACITIC ACID } \\
\text { BICH }_{2} \cdot \mathrm{COOH} \\
\text { 2. }{ }^{\text {M. }}=138.96
\end{gathered}
$$

EXPERINGNTAL RESULTS AT $25^{\circ} \mathrm{C}$.

Titration of water	$\begin{aligned} & \mathrm{f} 25 \mathrm{ml} . \\ & \text { leyer } \end{aligned}$	Titration of 25 ml . of ether layor		
M1. WaOH	ml. NaOH	ml. NaOn	ml. NaOH	Ratio
$0.03219 \mathrm{Nt}$	0.1237 现	$\underset{\mathrm{e}}{0.03219 \mathrm{~N}}$	0.1237 M	w/ ${ }^{\text {a }}$
19.20	----	62.37	----	0.308
18.93	----	61.96	----	0.306
18.91	- - - - -	62.23	----	0.304
36.13	----	126.23	---*	0.286
35.92	----	125.81	----	0.286
35.68	----	125.13	-*-	0.285
84.87	--m-	318.26*	82.82	0.267
84.14	----	317.03*	82.50	0.265
84.05	--a.	318.06*	82.76	0.265
159.79**	41.78	636.90 *	165.73	0.251
159.06*	41.39	$635.94 *$	165.48	0.250
158.06*	4.1 .13	633.63^{*}	164.88	0.249

GALGULATED MEAN VALUBS

Acid in water layer (if)		Acid in ether layer (B)		
Normality	§./1.	Hormality	$\xi \cdot / 1$.	W/2
0.0204	2.83	0.0644	8.95	0.317
0.0735	10.21	0.2705	37.59	0.272
0.1247	17.33	0.4740	65.87	0.263
0.164 .5	22.86	0.6414	89.13	0.256
0.2200	30.57	0.8887	123.49	0.248

[^5]
MOHOCALOROACETIG MCID ClOFI_{2} ． 000 FI
 $$
\text { \%. }=94.50
$$

DPPERTMEPTAL RESULTS KS $25^{\circ} 0$.

Titration of weter	$\begin{aligned} & 25 \mathrm{ml} . \\ & \text { Layes } \end{aligned}$	Sitration of 25 al ． of ether layer		
ml．NaOH	nl．NaOH	mi．NaOP	mi．MaOH	Retio
$\underset{\mathrm{w}}{0.03219 \mathrm{Na}}$	0.1237 M ．	$\begin{gathered} 0.03219 \mathrm{~N} . \\ \mathrm{e} \end{gathered}$	0.1237 m	v／e
23.54	－－－－	51.65	－－－．．	0.457
24.05	－－－－	52.63	－－－－	0.457
23.67	－－－－	51.85	－－＞	0.457
46.02	－－－－	106.80	－－－－	0.431
45.89	－－－－	106.95	－－mos	0.429
45.94	－－－－	107.30	－－－－	0.429
107.11	－－－－	271．51＊	70.65	0.395
108.00	－－－－	$273.24{ }^{*}$	71.10	0.395
106.60	－－－－	270．82＊	70.4	0.394
204．45\％	53.20	545.51 \％	14．1．95	0.375
205．33＊	53.43	$549.55^{\text {尔 }}$	143.00	0.373
$204.58{ }^{\text {\％}}$	53.23	$550.39^{\text {＊}}$	143.22	0.372

GALCULATDD WHAN VALUES

Acid in water layer（W）

Normality g．／2．

0.0247	2.33
0.0908	8.58
0.1471	13.90
0.2114	19.98
0.2767	26.15

＊Calculatod．

$$
\begin{gathered}
\text { SUCOINIC AOID } \\
\text { HOCC.OH2.OH2.000世 } \\
\text { re. }=118.09
\end{gathered}
$$

RAPERTMETMTA RESULES AT $25^{\circ} \mathrm{C}$.

Titration or 25 ml . of water layer

mi. Meon	E1. NaOR
$0.03219 \mathrm{w}$	0.1237 N
60.38	----
60.32	---
59.79	- - - -
122.02^{4}	31.75
$121.78^{\text {. }}$	31.69
119.90*	31.20
303.87 *	79.07
$304.98^{\text {\% }}$	79.36
304.17*	79.15
$606.48^{\text {\% }}$	157.91
608.65^{*}	158.38
607.85*	158.17

Muration ot 25 al. of ether layes

7.71	$-\cdots$	7.83
7.72	$-\infty$	7.81
7.86	$\cdots .-\infty$	7.61

15.62 - $\quad 7.81$
$15.59 \quad-\infty \quad 7.81$
$15.63 \quad 7.77$
39.55 - $\quad 7.68$
$\begin{array}{lll}39.76 & -\infty & 7.67 \\ 39.69 & -\infty & 7.66\end{array}$
$39.69-\infty \quad 7.66$
$60.55 \quad 7.53$
80.67 -...- $\quad 7.53$
30.83 - 7.52

Aoid in wator loyer (a) Boid in ether layox (E)

Nomallty	$8 \cdot / 1$.		S./L.	W/
0.0515	6.08	0.0066	0.76	7.83
0.2705	31.94	0.0349	4.12	7.74
0.5152	60.884	0.0674	7.96	7.64
0.7020	33.51	0.0929	20.97	7.56
0.9016	106.4.7	0.1207	14.25	7.47

* Calculated.

TABLE 11

TARTARTC ACID
HOOC.CHOL CROK.OOOH

$$
\text { M. W. }=168.10
$$

EXPRALMEMAL RESULTS AE $25^{\circ} \mathrm{C}$.

Titration of 25 ml . of water layer		Titration of 25 ml . of ether layer		
min. NaOR	ml. NaOH	ni. NaOH	mil HoOH	Ratio
$\underset{\mathrm{W}}{0.03219 \mathrm{~N} .}$	0.1237 NT.	$\underset{\mathrm{e}}{0.03219 \mathrm{~W} .}$	0.1237 IV.	w/e
73.92	----	0.20	----	369
73.66	----	0.22	---**	335
73.80	----	0.37	----	200
148.80\%	38.72	0.54	----	276
148.72*	38.70	0.59	---.	252
148.65*	38.68	0.61	----	24\%
374.15\%	97.36	1.30	---*	288
374.42^{*}	97.43	1.34	----	280
375.00*	97.58	1.36	----	276
$750.38{ }^{*}$	195.26	2.48	---*	303
750.92*	195.40	2.58	----	291
750.81*	195.37	2.59	---	290

catculated mear values

Acid in water layer (w) Acid in ether layer (B)

Nomality	$\mathrm{g} . / \mathrm{I}$	Normelity	$\mathrm{E} . / 1$.	w/玉
0.0644	10.83	0.0002	0.04	244
0.2898	40.72	0.0011	0.18	268
0.5152	86.61	0.0018	0.31	281
0.7406	124.49	0.0026	0.43	289
0.9660	162.38	0.0032	0.54	295

[^6]TABLI 12

TRICHLCZOACETTC ACID

$$
\mathrm{Cl}_{3} \mathrm{o} .00 \mathrm{OH}
$$

I. 1 . $=163.40$
grpermanta mesults at $25^{\circ} \mathrm{C}$.

mitration of water	$\begin{aligned} & 25 \mathrm{ml} . \\ & 1 \mathrm{aye} \end{aligned}$	Titration of 25 ml . or athor layez		Ratio
ml. No.0n	mi. NaOL	mi NaOk	ni. paok	
0.03219	0.1237 N.	$0.03219 \mathrm{~W}$	0.1238 过.	w/e
16.38	-->-	68.00	---*	0.241
16.4.3	----	68.35	----	0.240
17.39	----	76.11	----	0.228
25.16	---*	144.34*	37.56	0.174
25.35	- ---	145.53*	37.87	0.174
25.10	--*	144.15*	37.51	0.174
44.75	--m-	365.77^{*}	95.96	0.122
44.90	----	366.93*	95.48	0.122
4.4 .70	----	367.39 \%	95.60	0.122
71.96	---*	712.91^{*}	185.51	0.101
72.17	--m	713.03^{*}	185.54	0.101
72.36	----	712.65*	185.44	0.102

GALCULATMD MEAM VALURS

[^7]BUNZTHESULFONIC AOTD

$$
\mathrm{C}_{6} \mathrm{H}_{5}^{\mathrm{SO}} 3^{\mathrm{H}}
$$

$$
\text { M. W. }=150.14
$$

exparizaral resulas at $25^{\circ} \mathrm{c}$.

Titration of 25 ml . of water layer		Titiation or 25 ml . of ether layer		Retio
mi. NaOli	nil. NaOd	mi. HaOH	ma. HaOR	
$\underset{\mathrm{w}}{0.03219} \mathrm{~N} .$	0.1237 N.	$\underset{\theta}{0.03219 \mathrm{~N} .}$	0.1237 N.	w/e
72.74	----	0.18	----	404
66.74	----	0.27	--me	247
67.93	----	0.22	----	308
136.43^{*}	35.50	0.26	----	525
135.89*	35.36	0.22	---*	618
$135.41^{\text {* }}$	35.24	0.26	----	521.
340.14*	88.51	0.52	----	654
339.76^{*}	88.41	0.46	----	739
339.18\%	88.26	0.48	----	708
661.91\%	172.24	0.91	-m--	727
662.54^{*}	172.40	0.91	---	723
668.49*	173.95	0.86	--	777

GALCULATBD MEAN VALTES

Acid in w	Iayex	Acid in other layar (2)		
Nommality	g./2.	Nornality	g. $/ 1$.	W/5
0.0837	13.24	0.00030	0.05	280
0.2769	43.79	0.00043	0.07	656
0.4701	74.34	0.00067	0.11	705
0.6633	104.39	0.00091	0.14	727
0.8630	136.47	0.00116	0.18	752

[^8]
TABLE 14

$$
\begin{aligned}
& \text { DICRLOROACDPIO ACID } \\
& \mathrm{ClCH}_{2} . \mathrm{COOH} \\
& \text { M. 筑. }=128.93
\end{aligned}
$$

EXPDRINATAL RESULTS AT $25^{\circ} \mathrm{C}$.

Titration of water	$\begin{aligned} & 25 \mathrm{ml} . \\ & \text { layer } \end{aligned}$	Titration of 25 ml . of ethex layer		
ml. MaOn	ne. NaCt	nl. MaOH	mi. WaOK	Ratio
$\underset{\text { vi }}{0.03219 \mathrm{M}}$	0.1237 \%	$\underset{8}{0.03219 \mathrm{ym} .}$	0.1237 N.	w/e
12.60	----	71.83	----	0.175
11.77	----	67.26	---*	0.175
12.76	----	72.11	----	0.177
20.87	-->-	$148.58^{\text {\% }}$	38.66	0.140
20.60	----	149.02*	38.78	0.138
20.04	-->-	144.17*	37.52	0.139
42.00	----	377.46^{*}	98.22	0.111
42.20	----	377.59*	98.25	0.112
42.23	-----	377.81 *	98.31	0.112
74.55	---*	732.62^{*}	190.64	0.102
74.60	----	$731.54 *$	190.32	0.102
74.01	---*	$725.59{ }^{*}$	188.81	0.102

CALOULATED DEAT VALULS

[^9]
TABLE 15

$$
\begin{aligned}
& \text { GITCIINS } \\
& { }_{2} \mathrm{FBC}_{2} \text {.000 } \\
& \text { M. } 7.76 .05
\end{aligned}
$$

BNERIMNPAT RESULTS AR $25^{\circ} \mathrm{C}$ ．

sitration of water	$\begin{aligned} & \text { f } 25 \mathrm{ml} . \\ & \text { leyer } \end{aligned}$	Pitration of 25 ml ． of ether layer		
ml．NaOH	ml． NaOH	ml．Na03	ni．NaOH	Ratio
$\underset{w}{0.03219} \text { 凫。 }$	0.1237 N 。	$\underset{\mathrm{e}}{0.03219 \mathrm{~m}}$	0.1237 m ．	W／e
71.60 ＊	18.63	0.70	－－－－	102
59.34 ＊	15.44	0.65	－－m	91
70.90 ＊	18.45	0.66	－－－＊＊＊＊＊＊＊	107
135．39＊＊	35.23	0.83	－－－－	163
135．27＊	35.20	0.84	－－－－	161
136．58＊	36.06	0.86	－－－－	161
318．97＊	83.00	1.02	－－＞－－	313
311．36＊	81.02	1.00	－－－＊	311
307．32＊	79.97	0.99	－－－－	310
559.12^{*}	14．5．49	2.16	－－－－－	482
554．39＊	144.26	1.13	－－－＊	491
558.50 ＊	145.33	1.17	～－＊＊	477

CAEOULATED MPAN VALUES

Acid in water layex（iv）Aoid in etior laver（ F ）

Womality	g．／1．	Woman ity	G．／I．	W／G
0.0644	4.90	0.0007	0.06	86
0.2254	17.14	0.0012	0.09	195
0.3664	29.39	0.0013	0.10	302
0.5410	41.14	0.0014	0.10	392
0.7213	54.65	0.0015	0.11	483

[^10]CROTONIC ACID
our results at 25°

Ether layer	Ratio
$6 . / 1$.	0.135
69.97	0.193
52.01	0.210
36.26	0.236
19.63	0.263
2.53	
at 25°, H. W. Smith (48)	
0.961	0.303
0.472	0.307
0.337	0.316
0.235	0.312
0.145	0.317

FORMIC ACID
Our results at 25°

at 25°, Auerbach and Zeglin (2) at 25°, H. W. Smith (48)

Ether layer	Ratio	Ether layer	Ratio
0.599°	2.27	0.610°	2.26
0.414	2.44	0.219	2.82
0.230	2.63	0.150	2.72
0.092	2.36	0.106	2.85
		0.075	2.94

*Calculated from the lingar equation $=$ - $222-0.655$

MOMOBROWOACLTIC ACID
Our results at 25°

123.49
69.13
65.87
37.59
8.95
at 18°, Knaus (30)
Bther layor Ratio

106.99	0.24
82.48	0.24
62.25	0.26
41.41	0.26
25.84	0.27
1.75	0.29

Ratio
w/
0.248
0.256
0.263
0.272
0.317
at 25°, H. W. Smith (48)

Ethey layer	Ratio
1.327	W/E
0.875	0.445
0.453	0.485
0.262	0.568
0.186	0.694
	0.719

ROROCELOROACETIC ACID

Our results at 25°

Ether layer	Ratio
70.59	$0 / 2$
52.33	0.370
35.30	0.382
20.70	0.394
4.87	0.415
at 18°, Knaus (30)	

89.92	0.34
78.96	0.36
6.90	0.36
46.95	0.36
3.43	0.38

at 25°, Hantzsoh and Vogt (22) at 25°, H. W. Smith (48)

molex layer	Patio
$8 . / 1$.	0.565
1.1 .4	0.581
1.27	0.602
0.80	0.690
0.63	0.769
0.35	0.826
0.22	0.15

DICHLORONOTIC ACID

Our results at 25°

at 18°, Kneus (30)
Hthem layoz
E./1.
142.82
133.25
70.51
10.60
27.58

Retio
$7 / 2$
0.19
0.16
0.18
0.20
0.21
0.100
0.106
0.112
0.126
0.182
$\begin{array}{cc}\text { at } 25^{\circ}, \text { IT. Wi } \\ \text { athath } & (48) \\ \text { Regio }\end{array}$ soll \quad W/
3.22
1.93

1. 29
0.65
0.26
0.373
0.431
0.503
0.503
0.962

TRICHLOROACTRIO ACID

$$
\text { Our results at } 25^{\circ}
$$

Ether layer Ratio
151.11
82.81
49.88 28.72 14.31
at 18°, Knaus (30)
Rther layer
8. $/ 1$.
288.24
172.88
170.07
110.20
71.89
43.73
40.52

Fatio
W/E
0.10
0.10
0.10
0.10
0.12
0.14
0.15

W/E
0.101
0.119
0.143
0.179
0.238
at 25°, 15. 䇥. Smith (48)
sther layer
8. $/ 1$.
2.78
1.74
1.70
0.88
0.41
0.14
0.516
0.625
0.680
0.943
1.280
2.294

Our mesultis at 25°

$\begin{aligned} & \text { Thber layer } \\ & 14.85 \\ & 10.97 \\ & 7.96 \\ & 4.12 \\ & 0.78 \end{aligned}$	$\begin{gathered} \text { Tatio } \\ 7 / 4 \\ 7.47 \\ 7.56 \\ 7.64 \\ 7.74 \\ 7.83 \end{gathered}$
at 25°, 7oxbes and Coolicge (13) at 25 , N. W. Smith (48)	
3ther loyer patio	Ether ieyer Petio
	6./1.
$11.95 \quad 7.40$	0.32 5.03
$2.69 \quad 7.43$	$0.15 \quad 5.13$
5.76 7.58	$0.10 \quad 5.05$
$2.93 \quad 7.69$	0.06 5.38
	0.03 5.55
at 25°, Chander (7)	$\text { at } 15^{\circ}, \text { Bertholot and }$
$2.63 \quad 7.73$	
0.88 7.79	7.3 (6.6
$0.32 \quad 7.81$	6.76 .3
$0.16 \quad 7.95$	6.1 6.0
0.08 8.39	4.15
0.05 8.42	2.2 5.4
0.03 (8.79	1.3 5.2
	0.46 - 5.2
Forbes and Coolidee give a tsm-	(c) ${ }^{\text {a }}$ trend of w/w with
perature coefficient for the other data)	
succinic acid-other-water system at 14°, Getman ana Daniels	
of 0.0255 units per degree C. (15)	
for the partition ratio.	7.96 .0
	7.45
	7.16 .1

SUCOINIC AGID
The solubility in g./1. for IsctaTM pure water ((3w) and Isolugred pure ether (Se) compared with g./l. in water leyer (Cw) and ethor layer (Ce) in contact with each other at aquilibrium.

Sut		Sllov, Le		(4.6)	Partition
	Se	Solubiliby	Cul	Ce	
		Ratio			Ratio
72	3.5	19.0	82	11.5	7.1
56.52	3.19	$\begin{gathered} 17.5^{\circ}, \mathrm{Pe} \\ 17.72 \end{gathered}$	59.	8. 4.8	7.07

a-Ramanoc MoTD

Oux resulta at 25°

Solubility in g./1. for ISOLATED pure water (Sw) and ISOLATDD pure ether (Se) compared with g ./1. in water layer (Cw) and ether leyer (Ce) in contact with each other at equilibrium.

Svi	at 23.5°, Silov, Lepin, Janiak (46)				
	Se	Solubility	Cw	Ce	Partition
		Retio			Ratio
1470	5.7	256	1370	16	86

It is believod that a mistake was made in transposing to the Tables Annuelles from the original deta. Probebly the data should read: $\begin{array}{llllll}1370 & 16 & 86 & 1470 & 5.7 & 256\end{array}$

GLYCOLIC ACID
Oux mesults at 25°

Ether layer	Ratio
E. $/ 1$.	W/E
1.93	35.5
1.38	35.5
0.83	35.5
0.48	35.5
0.14	
at 26°, Pinnow	(42)
$-\infty$	38 ± 1

DISCUSSION OF RESULTS

itach aqueous solution of organic acid was adjusted to four approximate concentrations, i.e., nomel (or saturated), $N / 2, N / 5$, and $N / 10$, before shaking with ethor. Three Bamples were run at each concentration to determine the pertition ratio w / e, the ratio of the acid concentration in the water layer to the ether layer concentration. These partition ratios were plotted against the concentration in the aqueous layer for one set of graphs, and plotted againet the acid concentration in the ethereal layer for another set. A smooth curve drawn thru these points was used to get the mean ratios W/E and the concentration (v) in the wator layer or (D) in the ether layer. The graphs were too unmieldy to be included in this thesis.

The largest source of error, perhaps, was in pipetting samples after the systens hed reached equilibriun. In both the pipette which was used to remove water layex sanples and the ether layer pipatto there was always the "wine drop effect." In other words the ether, being more volatile, would evaporate first and always leave droplets of water inside the pipette. Mo way to prevent this error could be found although it is reduced to a certain extent by using 25 ml pipettes instead of the 10 ml ones first tried. Forbes and Coolidge's gravimetric method is probably more acourate than ours, but the apperatus required is far more elaborate, and the work more time-consuming.

Error due to the presence of carbon dioxide is within the experimental error at the concentrations studied in this investigation.

The titration of sanples which requixed less than 5 ml of 0.03219 nomal base was subject to an orror which could have been decreased if we had used larger volunes of aciá solution, microburettes, or a more ailute base; hovever, the phenolphthalein end point of nost of the weak organic acids would be very difficult to see if the solutions werg much nore dilute.

部tration of glycine with thymolphthalain was soneWhet difficult when a laxge quantity of acia was present; however, by using tho first sample as a color stanamar for all other titrations, any exror from titrating to the wrong end point will cancel when calculating the w/e ratios.

Comparison of this work with that of others was difeicult in most instances because other investigetors worked either with more ailute solutions or at a different temperature. Temperature corrections were not applied because they would be likely to vary with each acid, and they ame not known for any acid used in this work except succinic. For comparison, however, all aveilable date were included regardess of concentration as long as the work was done between 14 and $27^{\circ} \mathrm{C}$. There is some aisagreenent on partition data in the literature, and our results compare favorably in most instances with literature values IT extrapolation of our ourves is permissible in order to compare
the partition ratios at the same concentrations. We disagree with Suith on the partituon zatios of formic, succinic, and tantaric acids. Knaus worked in approximately the same concentration range as we dic. And although his work was done at 18°, IF WE ASSUEE the temperature coefficient of the partition ratio to be small, our results compare favorably with those of Knaus' work except on dichloroacetic acid. The outstanding disacrooment still seems to be upon succinic acid, no two workers agreeing although discrepancies are less serious. Our work is more nearly in agreement with that of Chandler then of any other worker. The elassical data of Berthelot and Jungeleisch are obviously erroneous for succinic actd.

The reader will see that the following conclusions may be drawn from our data in the precedinc tables:

1. The partition ratios for elycolic and barbituric acids remain practically constant.
2. The partition ratios of all halogen-substituted acetic acids decrease with an increase in acid concentrotion, this partition ratio decrease being greatest for trichioroacetic and less for each acid in the order nemed, dichloroacetic, monobromoacetic, and monochloroacetic.
3. Changes of the partition ratio with concentration for crotonic and furole acids are sinilar to those for the halogen-substituted acetic acids.
4. The pertition zatios for succinic, adtpic, fomic, and alphe-byaroxisobutrric acids becrease whth an incaease In acid concentration. Thoso ratios, as well as tho ones for barbituric, glyeolic, and tartarie acids, are dixeotly proportional to the concentration over the concentration range atudied.
5. The very lange partition ratios fon glyoino, tartaric acid, and benzenesulfonic acio increase with an inarease in acia concentration. These acias sro virtanily insoluble in ether.

A simplemethod was dosoribec for noteminirag pax tition coeffictents of argando acias botweon ethaz and weter at 6 conatant teaperaturs.

The partition coefficients of fifteen orgenio aciss Wers Cotermined for concentrations wansix frow nomal, of satureted (betore mixine with etherl, to oncotanth nomal solutions at $25^{\circ} \mathrm{C}$.

Avilable partition ratios from the litereture are mosented for the aystoms studied. In most instaness our results compare fovorably with litereture values.

The partition ratios of furoio, elphe-hydroxyisobutyric, aninoacetio (glycine), aipic, barbituric, and bonzenemulionic coids havo never been determined proviously.

BIBLIOGRADYY

1. Andreasov, Ukrainskii Khen. Zhur., 3: Sci. part, 463-5 (1928)
2. Auexbach and Zeglin, Z. physik. Chem., 103: 200-37 (1922)
3. Behreas, Z. aal. Chem., 69: 97-107 (1926)
4. Bekturov, J. Gen. Chem. (U.S.S.R.), 9: 419-28 (1939)
5. Berthelot and Jungfleisch, Anr. chim. phys., (4), 26: 396 (1872)
6. Caspari, J. Chem. Soc., 1929: 2709-12 (1929)
7. Chancler, J. Ans. Chen. Soc., 30: 694-713 (1908)
8. Dekin, Jannev, and Wakeman, J. Bio. Cham., 14; 341 (1913)

Sa. Davies and Davies, J, Chen. Soc., 123: 2976-2952 (1923)
9. Dawson, J. Cham. Soc., 89: 1666 (1.906)
10. Distzol and Rosenbaum, Biochen. \mathbb{Z}. 135 : 275-86 (1927)
11. Nastlake, Trans. Roy. Soc. Can Sect., iii, 7: 210-11 (1913)
12. Espil, Bull. soc. chin., (5), 1: 1502-3 (1934)
13. Forbos and Coolidge, J. An. Chen. Soc., 4l: 150-67 1919)

13a. Foreman, Biochea. J.: 14: 451-73 (1920)
14. Frosonias and Grunhut, Z. anal. Chem., 60: 457 (1921)
15. Getman and Daniels, "Outlines of Theoretical Chemistry," wiloy and Sons, Now York, pp. 291-292 (1937)
16. Gilman, Janney, and Bradley, Iowa Stato Coll. J. Sci., 7: 429-31 (1933)
17. Glasstone, "Text-Book of Physical Chemistry," Van Wostrand, New York, pp. 725-732 (1940)
18. Glasstone, op. cit., p. 668,671
19. Gordon and Reid, J. Phys. When., 26: 773-789 (1922)
20. Hall, Ind. Eing. Chern., Anal. Ed., 2: 244-446 (1930)
21. Hantzsch and Sobaldt, Z. physik. Cher., 30: 253 (1899)
22. Hantzsch and Vogt, ibid, 38: 705 (1901)
23. Harris, Proc. Roy. Soc., Series B, 95 : 500 (1923-24)
24. Henarixson, Z. anorg. Chea., 13: 73 (1897)
25. Herz and Stannex, Z. physik. Chem., 128: 399-411 (1927)
26. "Intemetional Custicel Tables of Mumericel Data, Physics, Chemistry and Technology," EicGraw-Hill, Hew Yonk, III: wo L28-434 (I926)
27. Tablukov and Milischeve, J. An. Chem. Soc., 47: 1553-60 (1925)
28. Kay and Sheehen, Biochen. J., 28: 1795-5 (1934)
29. Klobbie, 2. physik. Chem., $24: 629$ (1907)
30. Knaus, Hesis, Basel, Switzerland, (1923); data
 VI: purt 2, pp. 952-53 (1924)
31. Kolosovskii and Kulikov, Z. physik. Chem., A-169: 459-71 (1934)
32. Kolosovskii and Kultikov, Jo cen. Chen, (U.S.S.R.), 5: 1037-40 (1935)
33. Lewis and Randall, "Thernodynamics and the Free Energy of Chemical Substances," Mograw-Einl. Naw Yonk, pp. 260-62, 330 (1923)
34. Milas and Walsh, J. Am. Chen. Soc., 57: 1390 (1935)

34a. Mitchell ana Hamilton, "Biochemistry of raino Acids," Chemicel Catalog Co. F New York, pp. 133-136 (1929)
35. Itanct, Z. physit. Ghen., 3: 110 (1391)
36. Mernst, "Theoretioal Chomistry, "Macminean, Hev York, pp. $4844_{4}-488$ (1904)
37. Osbum and Werkan, Ind. Eng. Chen., Anal. Ha., S: 264-5 (1031)

S7a.Ostom, Wood, and Werbman, Ind. Ene. Chen., Anal. Ed., 8: 270-5 (1036)
38. Perschive, z. anors. Chem., 151: 230 (1936)
50. Perschire, J. Russ. Phys.-Chem. Soc., 58: 495-510 (1026)

59a.perschno, Z, anorg. Chem., 151: 239 (1926)
40. Pinnow, Z. Wahr. Gemusma, 44: 204-9 (192e)
41. Pinnow, 1bid., 37: 49-65 (1919)
42. Pinnon, 2. anal. Chemie., 54: 321-45 (1915)
43. Riesser, Z. physiol. Cher., 96 : 555 (1916)
44. Schtlow anc Lepln, Z. physik. Cher., 102: 353-402 (1922)
45. Schreiner, Z. anorg. Oher., 122: 201 (1926)
46. Silov, Lepin, Janiak, hes. Soc. Vhy. chim. Lononosow, I: book 2, 1920, data appear in "Tables Annuelles," VI: part 2, p. 953 (1923-1924)
47. Srith, A. R., and Morton, J. An. Chen. Soc., 54: 3811-3816 (1932)
48. Smith. 71. W., J. Phys. Chem., 25: 610 (see also pp. 160, 204, 605, and 721) (1921)
49. Smith, H . W., and White, J. Phys. Chem., 53: 1953-74 (1929)

49a.Smith, O., unpublishod thesis, omahoma Agricultural and Bechanical Colloge (1940)
50. Szyszkowsk, Medd. K. Vetonskapsalad. Wobelinst. 3: Mo. 3, 7 pp (1915)
51. "rables Anmueles de Constantes et Donées Tunériques de Chimie, de Phyelque, de piologie et de mechologie," HoGraw-Hill, New Yowk, VI: pant 2, pp. 052-3 (192s-4)
5. Taylor, "Trestise on Physical Chemstry," Van Mostrand, Hew York, Chapter 9 (written by A. E. Hilli), pp. $345-567$ (1024)
55. Weakan, Iowa Stato College J. Sci., 4: 450-64 (2950)
54. Wemmen, Kid., 5: 1-3, 121 (1980)
55. Wertman, Ind. Bre. Chem., Anal. Ed., 2: 302-304 (1030)
50. Wosnossemany, Z. phank, Cace. 104: 46-50 (1028)

AUTOBIOGRAPGY

I. Wendell Glem Markhan, was born in Boulder, Colorado, October 6, 1914. In 1916 I moved to Denver, Colorado, vhere I attended the public schools, and was Erscuated from South Denver High School in June 1933.

I entered Colorado state College or Agmiculture and Mechanic Arts, Fort Colitns, Colorado, Soptember 1933. I was graduated in June 1039, receiving a Bachelor of Science degree.

I was employed by the Amenican Snelting and Refining Co., of Denver, from Decerber 1954 until May 1935; by the G\&tes Nubber Company, of Denvers during the summers of 1935, 1836, and 1550; by tho Dow Chemical Company, of Midland, Michigan, Prox Septeraber 1936 to Septerber 1937; and by the shattuck Chemicel Company, of Denver, duxing the sumer of 1930.

I matriculated in the Graduate sohool of the oxiahoma Agricultural and Hechandal colloge $1 n$ Septonber 1939 , where I have been emploged haliftime as a graduate assiatant in the Chemistry Department arding the regular school term of 1939 and 1940.

Typist:

Florence Lackey
Stillwater, Oklahoma

[^0]: *Some woter vas present in this acid, but since this acia wes studied in a water solution this impurity was unimportant.

[^1]: - Colculated.

[^2]: *calculated.

[^3]: *Caleulated.

[^4]: *Calculated

[^5]: *Calculated

[^6]: *Calculated.

[^7]: *alculated.

[^8]: * Caleulated.

[^9]: *Glculated

[^10]: ＊Celculated

