STUDIES ON FLAVOR, BODX, TEXIURE AND WHIPPABILCIY OF MAISED MTKE DRINISS

By
ROBERTTHA CLACK MAITESONN
Bachelor of Science
Kansas State College
Manhattan, Kansas 1940

[^0]

STUDIES ON FLAVOR, BODY, TEXIURI AND WHIPPABILTIY OF MALIEGD MILK DRTNKS

ACKIONTMDGEMSM2

The writer wishes to express her appreciation to Dr. 敢. C. Olsom for his assistance and direction of the work reported, and to mombers of the Housebold Science Department for the time expended in the preparetion of this paper.

Thile or consmins
Prefecs vi
Revien of haterature 1
Methods 9
Experimondal Drocedure 12
Discussion 36
Conclusion 37
Bibliograph 38

PREACR

There is little in the Ilterature on the fectors that deternine or influence the quality of malted milk or milt ghakes. Therefors, the object of this research was to study sone of the factors that are related to the production of a bettor malted milk drink, special emphasis beine given to the developaent of a now flavor.

Halted mill drinks and milk chokes are so popular with the Aneriean public that they are served in alnost every plece where ice crean is sold. Basicelly, all malted milks are tho some. Molted mill is made by whipping together milk, ice crear and mevoring material. The flavoring natorisl may be chocolate syrup or any other of the many flavorings available, On the other hand, there is little uniforiaty from one gelling plece to gnother in the procedure used in moking of milk shekes. The ingreilients in the ice cream, the anount of ice crean, the araount of milk, thipping time and the amount and kind of llavoring influence the body, toxtare and flevor of the finished drink.

There are nany ilavoring naterishs on whe nericet and the possible combinations from then are limitless. Many of these flavors are distinctive in their character, but would appeel to ferf people or vould do for occasional use only. In the ico erean industry, it is noted that venilla is by far the most favored flavor, with ohocolato runing a poor second. For dom on the list are the obher spocial flavorg. The spice ilavors suck as cinnenon and nutmeg are only populas in the baking induatry. The flevor of butter and cofree are tro that are accoptod daily by a groat may people and seened worthy of consideration.

REVIEI OF LITERRATURE

Chocolate and vanilla have been used in preparing drinks on this continent for a longer period of time than is generally realized. According to Baer the Aztec Indians were drincing a chocolate and vanilla concoction when the Spaniards came to America. He reported that the vanilla bean was obtained from them and grown in other parts of the world. It seemed to thrive best in the Bourbon Islands off the southeast coast of Africa. These islands include Madagascar, Reunion, Mautritius and the Seycheles, From this region, he said, come the finest vanillas in the world, but according to Lucas and Merrill ${ }^{2}$ extracts from Mexican vanilla beans have the finest flavor in ice cream. The Mexican vanilla beans cost more than the vanilla beans from other sources because the Mexican labor cost is high and the total crop is smaller. Somner ${ }^{3}$ said, "There is little to choose between Mexican and Bourbon beans.

It has been reported that the first vanilla flavoring was made by chopping the beans and adding them to the sood. Later it was discovered that the flavor could be extracted with alcohol and the fiberous part of the bean discarded. Extraction made with thirty per cent

[^1]alconol wes found to be the nost enfoctive for liberating the vanillin, which is the most inportant flavoring constituent in the bean.

Baer ${ }^{5}$ reported that the Unfted stetes rtanderd vaninla is made mith ton grans of vanilla beens for each hundred cubic centineter of the exurect. Although vanilin is congitered an adulteront by the government, the uso of seven-tontha of one por cent of vomilin par gellon of extract wes recomended. It wes steted thet nost vanillin comes from ofl of elove, since it in tore ensily freed from the elove than froa the venilla been.

Ordinarily four ounces of vanille axtract is the alant used por ten gallons of atmished ice crean. It has been said ${ }^{6}$ that a flavoring consisting of helf vanilla and heli vanillin reted the highest when used in ice crean and compared with pure vonilla oxtract.

There is a difference of opinion on the use of vanilla in chocoIate ice creare, Ono published article antd, whe uso of vanilla flevor as a measure of intensifying other flovors in recomended. Fobricius ${ }^{\text {B }}$ said, MAny improvement in chocolete lee erean by the use of vanilla extrect mes not evident enough to justify the edded expence."

A subject of meh discussion has been whether or not vanilla freezes out. Sotmen ${ }^{9}$ asked the opinion of ais college nen and ten

5 Beer, 100 cit.
6 Anonynous, Westimg Consumer Preferences with Special Referenee

7 Anomyous, Wge of Vonilla and Other Havors in Iee Green, IE Ieg Grean Revien, 26 (Fabruary, 1941), 14.
© (1). E. Fabrieius, "Iaproving Chocolate Tee Grem, "Ice Crees Revicl, 14 (mugust, 1930), 72.
9.c. Cotran, vanille and Vanilitn Compounds," Ice Gregn Hevien, 14 (June, 1931), 49.
manufacturers on this matter. Five of the manufacturers and three of the college men said it did not freeze out. One manufacturer and three college men admitted they did not lnow, while four manufacturers said it did freeze out. Button ${ }^{10}$ worked on the factors affecting the quality of vanilla ice cream and said that if there was a decrease in the vanilla flavor, it occurred in the first few days of storage after freezing. He suggested that vanilla was less volatile at low temperatures. Lucas and Merrili ${ }^{17}$ made ice crean mixes that were identical except for the vanilla. They used vanilla extract from Mexican, Bourbon and Tonka beans, with and without vanillin and coumarin. These ice creams were frozen and stored at a temperature of -10 F. The ice creans were sampled at intervals up to three months and compared with freshly made samples of the same formula. The authors report, wro diminution in flavor strength after storage was detected. ${ }^{*}$

The shortage of chocolate during World War II led to research on stretching the available chocolate supply. It has been reported ${ }^{12}$ that although three per cent cocoa in prewar mixes was comnonly used, two per cent cocoa in the mix made a "Iairly satisfactory" ice cream. From the same source we have the following statements "We, as yet, have not found any so called 'chocolate stretchers!both ice cream manufacturers and soda fountain operators would be very wise in keeping up the quality of chocolate products and do with a lesser amount rather than give the public an inferior product. ${ }^{\text {w }}$

[^2]It is a well-known fact that the stabilizers in the ice cream used for making malted milks also affect the acceptability of the malted milk and milk shakes made from them. Stebnitz and Somner ${ }^{13}$ reported the functions of stabilizess in ice cream as followss to produce a smooth body and texture in the ica cream; to prevent coarseness upon storage; and to be unperceptible to the taste when eaten. According to these same investigators, stabilizers may come from animal or vegetable sources. Gelatin is from an animel source and was one of the first stabilizers used in ice cream. The stabilizers from plant sources are starches and gum.

Stebnitz and Sommer, 14 Gaulfield and Hartin, ${ }^{15}$ Gould and Lazas, ${ }^{16}$ and Josephson and Dahle ${ }^{17}$ all agreed that some gum stabilizers "Whey off." Gaulfield and Martin ${ }^{18}$ worked with five gun stabilizers; Krabyn, HyGell, Col-Ace, Sure-Bet and Kelco Gel. They found Sure-Bet suitable for sherbets and ices, while the Keleo Gel was too hard to incorporate and gave "off flavor." Caulfield and Martin ${ }^{19}$ found that these two cost more than the others and were not included in the final experi-

[^3]ments. The ice creams were scored from the hardening room, from the dealer's cabinet and after head shock. The average of these three scores for the ice cream was 22.58 for the one made with gelatin, 22.86 for the one made with Krabyn, 22.30 for HyGell and 22.70 for the Col-Ace. Those investigators soid, Where was virtually no difference In the quality of the finished ice crean stebilized with the vegetable stabilizer used in this study as compared with that stabilized with gelatin."

Gould and Laces ${ }^{20}$ furbher imostigatod mhoying off of tce creams mada with gum stebilizers, They pickod the one that gave the greatest Mwhey off" for thein work. Govid snd Lucas 21 reported thet, whe princlpal factor involved in the whoy separation is conceraed chiefly with the milk products used in the mix rather then the stabilizer. The eliaination of the separation of whey by any practical plant nethod does not appear feasible."

Prescott, Helfetz and Stanley ${ }^{22}$ reported that the guar stabilizers, Irebyn and Pragon, loft on umeltable residue then uged in ice cream. Ice creak was made with these two grans as stabilizers and scored aganst 1ce cream mada with gelatin. On nelting the ice crean made with geletin passed through a one-third inch mesh acreening, but the ice creans mede with the guas left a residue shat would not pess through the sereen. One hundred persons scored the ice cresin and eighty-one preferred the

20 Gould and hiteas, 1oc. cit.
21 Tbid., loc. cit.
22 Semuel Prescott, Arthur Heifeti and David Stanley, Jr., "Ice Crean Stabilizerc, Ice Grean Revici, I6 (Septombar, 1932), 34-5.
ice erean made with gelatin. Right expert iee crean judges scored the ice crean and said they proferred the geletin stabilized ice crean in erch case.

Josephson and Dohle ${ }^{23}$ described the properties of a nent gun stobilizer of high viscosity sodiun corboynethocellulose. It is a white granular porder devoid of tasto and odor and does not noke ice crean mix whoy off. Only fifteen to wenty hundreths por cent of this gux was necessary to stabilizo a nix. Pasteurization did not affect its usefulness. The texture of the ice crean made from it compared favorably with the $\begin{aligned} & \text { of ice orem rade with geletin and ege yolk. The whip- }\end{aligned}$ ping tine was even shorter than that for gelatin. It was conciuded that this gum stabilizer was superior to gelatin as an ice crear stabilizer.

Stebnitz and Sommer ${ }^{24}$ proposed the use of a sodium alginate as a stabilizer for ice crean mix. This stabilizer, now on the market as Drriloid, must be combined with either sugar or weter before being added to the niz. The mix should be at a temperature of $160^{\circ} \mathrm{F}$. when the stabilizer is added. There was no whey off with this atabilizer and no change in tie viscosity of the mix with aging as is the case with gelatin. It mas reported that a little over helf as much sodiw alginge, Darilold, as gelatin would stabilize a nix.
the effect of the temperature of the ingredients used in making the maltod milk upon the desirability of the finished product was tested

[^4]by the Hemilton Beach Company. 25 For meking a 11 ght or thin mazeed milk, it vas recomended that the ingredients chould be one Ro. 20 dip of ice crean at $10^{\circ} \mathrm{F}$., eight ounces of mill at $30^{\circ} \mathrm{F}$, one and a half ounces of chocolate syrup and a half ounce of malted mills powder at rooin temperature. This combination was then placed in a chilled container and mixed for forty-five soconds. From this study it should be noted that the whipping tine deponds upon the time required to breats dona the ice crear and obtain a homogenous mix without Iumps. It was found aecessary to aerate the mis to the maxdmuan during this whipping period. The final teaperabure of the elrink, winpped forty-five seconds, rae $32^{\circ} \mathrm{F}$. and the volume was sixtoen and a halif ounces. The texture was eroeriay ond thoroughly aoratod. Further investigations ${ }^{26}$ more made regarding whipping tine required for making a thick or hoavg nalted milis. The proportions used were four No. 20 dips of ice creen at $\mathcal{L}^{\circ} \mathrm{F}$., three ounces of mills at 70° F., one and a half ounces of chocolate syrup and a hail ounce of maited milk powder at room temperature. This was pleced in a container at room temperature and whipped. Whipping times of thirty; sixty, ninety, one hundred and twenty, and one hundred and firty seconds were used. The best maled milus was obteined from the mix beaten for ninety seconds. The volune of this drink wes thirteen ounces and the final temperature ges $32^{\circ} \mathrm{F}$. Whipping times ebove or belou ninety sceonds gave smaller volumes of malted milks.

Hexdorson ${ }^{27}$ pointed out that ${ }^{2}$ millk cen hold approxinately 90 per
 Qroan Reviev, 21 (June, 1938), 40-1.

26 Ioid. , loc. cit.
27 c. E. Henderson, "Chocolate Molteds," Fee Crean Revion, 4 (January, 1941), 31.
cent air when whipped at $32^{\circ} \mathrm{F} \cdot 2^{\prime \prime}$ but will hold only twenty per cent air when whipped at 72° F. In this study it was noticed that with "chocolate malteds" a temperature around freezing gave the best results in the finished drink. Henderson ${ }^{28}$ reported that, "Chocolate malted. milk should be the first concern of soda fountain operators because they are much the most popular of the drinks containing mills and ice cream.......a group vhich outsells other fountain drinks except the low priced colas."

Powdered ice cream mixes used during World War II to supply overseas forces ${ }^{29}$ were criticized by the service men because of the oxidized flavor found in most of them. 30

The International Association of Ice Cream Dealers made a survey analysis ${ }^{31}$ in 1931 on the popularity of various flavors of ice cream in the United States. $O P$ all the ice cream sold in the United States 48.46 per cent was vanilla, 16.78 per cent chocolate, 8.27 per cent strawberry, 2.27 per cent peach, with even smaller amounts for cherry, maple, pineapple, black walnut, banana and a number of other special flavors. Since 1925 the per cent of chocolate ice cream sold had increased while the per cent of vanilla ice cream sold had decreased.

[^5]A simulated naltod mile drint was ased for testing the flavore. This eliminatod the weighing and neasurins oi joe eream used in the drink and gave very noarly the same flator as a real malbed mill.

The simulated drink wes rade by using the sane ingredionte in the proportions of a real malted mill. Ouly the treatment was difforent. The simulated drink was nede from wole wille powder, plonty Powder $\frac{1}{1}{ }^{1}$ (a stabilizer and sugar), dextrose, sucrose, cocoa, ${ }^{2}$ melted nill powder, 3 weter and mill in the following proportione:

Table I

Siruletod Drink Formula

Ingredient	Grams	Fer Cont
笱holo Lislk Powder	23.4	7.6721
Plenty Powder H_{2}	17.6	5.7705
Dextrose	21.7	7.1111
Sucrose	19.0	6.2295
Cocoa	5.0	1.7705
Maltod 3 lla	2.8	0.9131
Water	95.1	31.1803
Tilu	120.0	39.3442
Tota 1	305.0	99.9963

All the dry ingredients except the melted mils powder were mixed together and sded to the water. This mixture was then pasteurizod at 190°. for fite minutes in a hot water bath. The hot solution was homogonized, using land homogenizer. The malted milk powder and milk

1 In It-A-Plenty Compeny. Tulsa, Oklahona.
2 Van Fouten and Zoon, Wew York, W. Y.
3 Carnation Compeny, Ocononowoc, Tisconsin.
were added after it had cooled to 60° F. Thirty cuble centineter portions of this mixture vere used in the ilavor experiments.

The flavors were checked using the nethod recomended by E. C. Crocker ${ }^{4}$ in his book, "Plavor," on pages 130 to 131. He sets up six rules for scoring dairy products. They are:
"I. Have the liquid products at a temperature of obout 90°.
n2. Concentrate on tasting. Do not think or talk of other things. Since flavors are often delicate and the senses are also delicate, this careful concentration is essential.
"3. Do not swellow the product. Roll it around slowly in the mouth until the flavor is entirely absorbed by the taste senses (concentrating all the time). Then spit it out. If this procedure is followad, the first taste will be imparted when the product is first put in the mouth; a second taste while it is being rolled in the mouth; and an aftertaste after it is apit out. These successive tastes aust be compared with the ideal you heve in mind for the particular product being testad.
" 4 . Be sure the mouth is rinsed out well with Iukewarm water before proceeding to the next sample.

M5. Do not taste too rapidly. In the mouth becomes chilled or too busy in testing, the sense of taste is lost.
36. Do not tasta for flevor, body and texture at the same time. Taste first for flavor, and then second time for body and texture.

The technique used in this experiment for determining the desirability of the odor wes proposed by Crocker. 5 "Smelling is done best by

4 E. C. Crocker, "Flavors," pp. 130-131.
${ }^{5}$ Tbid., Op. cit., pp. 87-92.
inhaling strongly through the nose fow a period of two or three seconds With both nostrils open, even though only one is usad.......Ag far as possible, smelling should be done fare now from the hands to svold everpresent skin odors from interfering with judgnent.
"Smelling is more accurate when one specinen is compared with a stondard.......It is best proctice to smell firet with the specinen and then the standard, several times in a five socond interval.......

BYPRRTEETAL PROCDOTS
Desirability of Certoin Flovors and Combinations

Mandon Selection

A large group of essential oils and other flavoring materials were obteined frok various sourcas to be asod in devoloping the ner flavor. They included mint, colay initation rum and butter, initetion butber, oll of sweet maxjorem, two line oils, intigtion licorice, inttation loganbery, initation blacls walwo suethol, inttetion butterscotch, oil cognac, three butber inavors, initation mapla, initation stramberys, initetion quince, three oreage oils, root beer, oil of nutmeg, imitation peach, imitation cocoanti, oil op peppermint, initathon cessie oil (eimanon), three Bourbon vanillas, raspberry, initation grape, oil of wintergreen leaf, anise, two imitation pineapple, cimonon, four confees, imitation burns alnond, imitation pisteche, custord type flavoring, imitation Jomaice run and Hapleine.

Bach of the above flevors was checked as an individual elavoring by adding one, tho ond hour drope to thirty cubie centineter portions of the slmulated drink. This tas done to give a rough deternination of the proper atrongth to use and to elininato the obviously undesixable flavors. A major portion of the flevors vere discarded because thoy were artificial or unpleasing.

Selected Flawors

The following flavors were selected from the group as having the best possibilities:

Table II

Selected Flavors and Their Dilutions

	Flavoring Material	Dilution
1. Coffee Concentrate	Use undiluted	
2. All Goffee	10\% solution	
3. Barrington Hall Cofiee	10\% solution	
4. Sol Gafe	10\% solution	
5. Butter Culture Aroma	Use undiluted	
6. Zip (butter Plavor)	0.4% solution	
7. Starter Distillate (buttor)	Use undiluted	
8. Rum and Butter	0.04% solution	
9. Foote and Jenks Bourbon Vanilla	Use undiluted	
10. Verity Brand Vanilla	Use undiluted	
11. Van-sal 6 Fold Vanilla	1 to 6 dilution	
12. Cassia Oil (cinnamon)	0.04% solution	
13. Nutmeg Oil	0.04% solution	
1. Oil of Iemon	0.024% solution	
15. Imitation Butterseoteh	0.032% solution	
16. Oil of Lime	0.024% solution	

The coffee flavors come in different forms. For example, coffee concentrate (No. 1 in Table II) is a liquid, while the other three coffee Mlavors (Mos. 2, 3 and 4 in Table II) are obtained in powder form. These were made up in aqueous solution. Zip, a butter flavor, was diluted with water. The rum and butter flavor was diluted with alcohol. The vanillas were all Bourbon vanillas. The Van-Sal 6 Fold vanilla was diluted with water because it precipitated from solution if diluted with alcohol. The cassia oil, nutmeg oil, lemon oil, butterscotch and lime oil were made up in alcohol solutions.

Using thirty cubic centimeter portions of the simulated drink the following flavors were tried and judged by competent judges. The following table gives the results of the judgings:

Table III
Comparison of Flavoring llaterials Used in the Simulated Drink

The All Coffee powder (Ho. 2 in Table III) gave the most desirable coffee flavor. The price was noted and found to be trifice that of the other coffees; however, it was considered far superior to the other coffees. None of the butter flevors appeared to be particulasly desirable. There seemed to be little difference in the vanillas. These were all good grades of Bourbon vanillas.

The All Goffee powder (No. 2), Butter Gulture Aroma (No. 5), Starter Distillate (butter flavor, Mo. 7), and one of the vanillas were tried in
various combinations, with and without cinnamon, nutmeg, lemon oil, lime oil and imitation butterscotch. Thirty cubic centimeter portions of the simulated drink were used in cheoking each of these flavors.

Table IV gives the results of the desirability of these various selected flavor combinations.

Table IV
Prelininary Test of Desirability of Selected Flavor Combination

NO_{2}	Mavoring Materisl	Drops of Flavoring	Dominant Flavor and Remarks
1.	A11 Coffee	10	Nice coffee
2.	A11 Goffee	10	About the same as 1-
	Vanilla	2	Desirable
3.	A11 Coffee	10	Too strong of acebic acta
	Butter Culture Aroma	10	
4.	A11 Coffee	10	Too strong of acetic acid
	Starter Distillate	10	
5.	A.11 Coffee	10	Too strong
	Butter Culture Aroma	10	
	Vanilla	2	
6.	A11 Coffee	10	Too strong
	Butter Culture Aroma	10	
	Vanilla	2	
	Cinnamon	2	
7.	A11 Coffee	15	Pale taste, has possibil-
	Startor Distillate	10	ities
	Vanilla	10	
8.	A11 Coffee	15	Too much cinnamon
	Starter Distillate	10	
	Vanilla	10	
	Cinnamon	1	
9.	A11 Goffee	15	Not undesirable
	Starter Distillate	10	
	Vanilla	10	
	Cinnamon	$\frac{1}{2}$	
10.	A11 Coffee	15	Too much nutmeg
	Starter Distillate	20	
	Vamilla	10	
	Ginnamon	1	
	Wutmeg	1	
11.	A11. Coffee	10	Has possibilities
	Vanilla	10	
	Cinnamon	2	
	Nutmeg	1	
	Butterscotch	2	

Table IV (Cont'd.)

No.	Mavoring Material	Drops of Flavoring	Dominant Flavor and Remarks
12.	All Coffee	10	Too much cinnamon
	Vanilla	10	
	Cinnamon	2	
	Butterscotch	2	
13.	All Coffee	10	Too strong of nutmeg
	Vanilla	10	
	Nutmeg	1	
	Butterscotch	1	
14.	Vanilla	10	Too much nutmeg
	Nutmeg	1	
15.	Vanilla	10	Cinnamon, soft flavor
	Cinnamon	2	
	Butterscotch	1	
16.	Vanilla	10	Too strong of cinnamon
	Cinnamon	2	
	Nutmeg	1	
	Butterscotch	1	
17.	All Goffee	10	Too much butter
	Vanilla	10	
	Starter Distillate	10	
	Butterscotch	1	
18.	All Coffee	10	Too much lemon, too
	Vanilla	10	strong
	Cinnamon	2	
	Butterscotch	1	
	011 of Lemon	3	
19.	All Coffee	10	Puzzling, dominant flavor,
	Vanilla	10	hard to identify
	Cinnamion	2	
	Nutmeg	1	
	Butterscotch	1	
	Oill of Lime	2	

As reported in Table IV, nineteen flavor combinations were tried. The All Coffee (No. 1) and the AII Coffee and vanilla (No. 2) gave the most pleasing results. All the other flavors tested.were considered less desirable.

Table V gives the results of the effect of various amounts of twelve of the nineteen flavor combinations used in the preliminary test of the desirability of selected flavor combinations reposted in Table IV.

Because of the limited supply of Starter Distillate (butter), the
flavor combinations using this material were made up in six cubic centimeter volumes. All of the other flavoring materials were made up in thirty cubic centimeter volumes. After these flavoring materials were mixed, varying amounts of the flavoring materials were added to thirty cubic centimeter aliquots of the simulated drinks. This flavored drink was then judged. The dominant character and pertinent remarks regarding the flavor of the various amounts of the different flavor combinations is recorded in the last column of Table V.

Table V

Effect of Various Amounts of Selected Flavor Combinations When Added to 30 cc. of the Simulated Drink

Table V (Cont'd.)

No	Mavoring cc. Material	Dilution	Drops ofr Flavoring Material Added to 30 cc . of Simulated Drink	Dominant Character and Remarks
7.	25.0 Van-Sal	1 to 6	10	Nutmeg, too strong
	2.5 liutmeg	0.04% Sol.	5	llutmeg, desirable
	2.5 Cinnamon	0.04% Sol.	3	No character
8.	12.0 A11 Coffee	10\% Sol.	10	Time, too strong
	1.2 Butterscoteh	0.023% Sol.	5	Ifime, too strong
	$12.0 \mathrm{Van-Sal}$	1 to 6	3	Lime, too strong
	2.4 Cinnamon	0.04\% Sol.		
	1.2 Nutmeg	0.04\% Sol.		
	$1.20: 11$ of Lime	$0.021 \% \mathrm{Sol}$.		
9.	23.1 A11 Coffee	10\% Sol.	10	No character
	4.6 Cinnamon	0.04\% Sol.	5	No character
	2.3 Buttarscotch	$0.032 \% \mathrm{Sol}$.	3	Has possibilities
10.	19.5 All Coffee	10\% Sol.	10	Nutmeg, desirable
	$7.5 \mathrm{Van}-\mathrm{Sal}$	1 to 6	5	No character
	2.2 Cinnamon	$0.04 \% \mathrm{Sol}$.	3	No character
	0.7 Nutmeg	0.04% Sol.		
11.	6.0 All Coffee	10\% Sol.	5	Bitter
	0.6 Butterscotch	0.032\% Sol.	3	Time, desirable for
	$6.0 \mathrm{Van}-\mathrm{Sal}$	1 to 6		those who like
	0.9 Clinnamon	0.04\% Sol.		lime
	0.6 IVutmeg	0.04\% Sol.		
	0.3 Hime 011	0.021\% Sol.		
12.	$2.3 \mathrm{Van}-\mathrm{Sal}$	1 to 6	10	Too much butter
	1.0 Starter DistilLate (Butter)	Undiluted	a	Too sweet, othervise desirable
	1.0 A11 Coffee	10% Sol.	3	No character

From the data in Table V, it can readily be seen that the amount and kind of flavoring used has a bearing on the acceptability of a malted. milk. Of the twelve flavors made up, Mos. 1,7 and 12 (Table V) were selected as having commercial possibilities.

Acidity Level

All drinks in Table V were allowed to stand in the refrigerator overnight and were rescored. On the second scoring all the malted millks containing the spice flavors were too strong. One assumption was that
lactic acid formation was responsible for this change. A study of the effect of adding a small anount of acid to the drink was made. Table VI shows the influence of adding one drop of ten per cent hydrochloric acid solution to each thirty cubic centimeter portions of the simulated drink containing selected anounts of the twelve flavor combinations used in Table V. The samples were run in duplicate. To the control samples no acid was added. To the experimental samples one drop of ten per cent hydrochloric acid was added. The drinks were scored immediately. The acidified samples were checked against the control samples by competent judges.

Table VI

Effect of Increased Acidity Level on Flavor Combinations

Flavor No. *	Ingredients	Drops of Flavoring	Drink with Added Acid	Drink with no Acid
1	Vanilla	5	No character	Desirable
	Coffee	3	Mo charactor	No character
2	Vanilla	5	No character	No character
	Goffee	3	No character	No character
	Cinnanon			
3	Coffee	5	Undesirable	Undesirable
	Butter	3	Undesirable	Undesirable
4	Coffee	5	No character	No. character
	Butter	3	No character	No character
	Vanilla			
5	Vanilla	3	Bitterness	Undesirable
	Butter		gone, still	
	Coffee		not a good	
	Cimnamon		Llavor	
6	Coffee	5	Undesirable	Undesirable
	Butterscotch	3	Undesirable	Undesirable
	Vanilla			
	Nutmeg			
	Cinnamon			
7	Vanilla	5	Desirable	Desirable
	Mutmeg	3	Desirable	Desirable
	Cinnamon			
8	Coffee	2	Undesirable	Undesirable
	Vanilla			
	Butterscoteh			
	Cinnamon			
	Nutmeg			
	Lime			

Table VI (Cont'd.)

Flavor No. *	Ingredients	Drops of Flavoring	Drink with Added Acid	Drink vith no Acid
9	Coffee Cinnamon Butterscotch	3	Undesirable	Undesirable
10	Goffee Vanilla Cinnamon Nutneg	$\begin{array}{r} 10 \\ 3 \end{array}$	Undesirable Undesirable	Undesirable No character
11	Coffee Butterscotch Vanilla Cinnemon Nutmeg Iime	3	Undesirable, too strong	$\begin{aligned} & \text { For those } \\ & \text { who like } \\ & \text { lime } \end{aligned}$
12	Vanilla Butter Coffee	$\begin{aligned} & 8 \\ & 5 \end{aligned}$	Too strong Too strong	Too strong Desirable

Increasing the acidity level in the samples did not improve the Rlavors. In many instances it detracted from the desirability of the drink. Flavor No. 7 (Table VI) was acceptable with the added acid and also without the acid. This was the only sample acceptable with the increased acidity.

Consumer Acceptability of Three Select Flavors

Since Mavors No. 1, 7 and 12 were judged to be the best of the twelve flavors described in Tables V and $V I$, it was decided to run consumer acceptability tests on these three selected flavors. In order to do this, drinks using these three flavors were prepared in sixtoen ounce portions, the usual commercial volume. Nine individuals rated them in the order of their preferences. To get the composite rating, each time a Ilavor combination was rated first, it received three points, second two points, and third one point. The composite rating was the total of these points.

[^6]Table VII
Consumer Acceptability Rating of Three Best Flavor Combinations

Flavor No.	Ingredients	Times Rated Mirst	Times Rated Second	Times Rated Third	Composite Rating	Remarks
1	Vanilla	5	3	1	22	Good flavor
	Coffee					
7	Vanilla	1	3	5	14	
	Nutmeg					
12	Cinnamon Vanilla		2			
12	Coffee	3	2	4	17	Too sv

The mixes of each of the three flavors in Table VII contained the same amount of sugar. However, the drink made with flavor No. 12 was criticized as being too sweet.

Gffect of Varying the Amount of Sweetening on the Acceptability of Flavors No. 1 and No. 12

As a result of the consumer acceptability ratings reported in Table VII, it was found that the drink made with flavor Mo. 12 had a desirable flavor, but was too sweet for most of the judges. Because of this fact, it was thought that the mix using flavor No. 12 might be developed into a sugar saving formula which would meet with consumer acceptance. To test this possibility, six simulated drink mixes were made containing varying amounts of sweetening, ranging from 7.77 per cent to 18.59 per cent total sweetening. The total sweetening was calculated by adding the percentages of sucrose, dextrose and ninety-one per cent of the Plenty Powder \#2 (ninety-one per cent of Plenty Powder \#2 is dextrose). Table VIII gives in detail the composition of the six simulated drink mixes. IIfix No. 6 in Table VIII was the control and had the same composition as the simulated drinks which had been used in the preceding tests.

Table VIII
Composition in Gras and Per Cont of Sex Straleted Drink $\begin{gathered}\text { Gures }\end{gathered}$ with Varying Suger Lovely

Ingredienta	$\begin{aligned} & \text { Hix Wo. } 1 \\ & \text { Gns. Por Cent } \end{aligned}$		IIIX 10.2 Gas. Per Cont		$\begin{aligned} & \text { Mix Mo. }{ }^{3} \\ & \text { gms. Pox Cent } \end{aligned}$		WX 10.4 Gas. Zer Cent		$\begin{aligned} & \text { Vix Mo. } 5 \\ & \text { Gas. Por Cont } \end{aligned}$		1415 50. 6% Gus. Per Cont	
Whole Milk												
Poryder	29.6	9.6393	28.5	9.3443	27.5	9.0163	25.9	8.4918	24.5	8.0327	23.4	7.6722
Plenty												
Ponder \%2	22.3	7.3114	22.5	7.0491	20.8	6.8196	19.6	6.4262	18.5	6.065	17.6	5.77705
Dextrose	1.7	0.5573	5.0	2.6393	8.8	2.8852	12.8	4.1967	17.9	5.5688	22.7	7.1111
Sucrose	1.7	0.5573	4.2	1.3770	6.4	2.1639	12.1	3.9572	15.7	5.1803	19.0	6.2395
Cocoa	6.8	2.2262	6.6	2.8196	6.4	2.1639	6.0	1.9672	5.7	1.8688	5.4	1.7705
Malted rals												
Powder	3.4	1.1131	3.3	1.4095	3.2	1.0819	3.1	1.0163	2.9	0.9508	2.8	0.9181
Water	119.7	39.2459	115.9	37.016/4	111.9	36.6885	105.5	34.5901	99.8	32.7213	95.1	31.1303
Whole Milk	120.0	39.3442	120.0	32.3443	120.0	39.3442	120.0	29.3442	120.0	32.3442	120.0	32.3442
Total	305.0	99.9947	305.0	99,9996	305.0	100.1635	305.0	200.0097	305.0	100.0324	305.0	99.9963
Total												
Srreetening	23.7	7.7705	28.5	2,442	34.1	12.1803	62.7	24.0000	50.4	16.5246	56.7	18.5901

*This mix wes the control sample.

The mixes described in Table VIII were made up in thirty cubic centimeter portions. Duplicate samples on each sugar level were used. Flavor Mo. I was added to one sample and used as the control, and Flavor No. 12 was added to the other sample. The influence of the sugar concentration on the acceptability of IMavors No. 1 and No. 12 may be seen in Table IX.

Table IX

Influence of Various Sugar Concentrations on Consumer Acceptability of the Simulated Drink Mixes of Flavors No. I and Mo. 12

Hix	Per Cent	Acceptability of Flavor	Acceptability of Flavor No.
No. Sweetening	No, 1, Coffee, Vanil1,	12, Coffee, Vanil1a, Butter	
1	7.77	Not sweet enough	Not sweet enough
2	9.44	Not sweet enough	Not sweet enough
3	11.18	Not sweet enough	Not sweet enough
4	14.00	Not sweet enough	Right sweetness
5	16.52	Right sweetness	Too sweet
6	18.59	A Iittle sweet	Too sweet

From the data in Table IX, it appears that Flavor No. 1 requires 16.52 per cent sweetening, while Flavor No. 12 requires 14.00 per cent sweetening to give an acceptable dulcitude. It is apparent that a two and a half per cent sugar saving could be realized by using Flavor Mo. 12.

Commercial Acceptability

The most promising flavors for commercial use were selected and sent to a concern interested in malted milk drinks and milk shakes. The flavors sent were Nos. 1, 6, 7, 9, 10, and 12 (See Table IV). In the commercial plant they were used in drinks and judged by competent judges. No. 1, a coffee and vanilla combination, was chosen as the best and was considered worth using comnercially.

The porcontage comosition wsed in makig Tlaror ivo. 1 wes 8.8 per ceat Kelloge All Coffee (dry weight). Z.I per cent Van-Sal (6 Fold wanilla) and 88.7 per cont water. The coffee was put into solution with tap wator. To seasona mated milk drink or a milk shake, 1.16 per cont of the above dilution was needed. To concentrate the flavor, the amount of water was decreased. The final flavor composition was 19.5 per cont Kelloget All coffoo (dry weight), 7.5 per oont Van-Sal (6fold vanilla) ana 73.1 per cent water. At this ooncentration 0.5 per cent by volue of the flavoring tatorial was required to give a satiefactory flavor to a malted milk drink or a mill shake.

Studies of Practical Forsa in which Nated Taty Drinizs May bo Lartetod

The comeraid company interestod in this project made three suggestions s to the form which might be used in sarleting the melted mile dring. The first one was thet a new product be made which could be shipped as powder containing all the ingrodionts nocessary except the water for the finished mated mill or raill shake . In order to guersintee a standard produot with no variation fron butch to batch, it was recomended that the proanct be made in a powder form. A measurod anount of wher could then be added to this powder before freszing. This would eliminate sone of the necessary dipring needed in making malted milt drinks. The customary moportions used in making malted milks includes tro 10.26 dips of toe cream, one sad one-half onnoes of chocolate syrup and four ounces of mill.

The second succestion was to freeze an ioe crean base product coateining everythige but the mill and to put it up in containers of uniforn size. The drint could then be made by adding the milk to the frozen ico orean base and whipping.

The third suggestion was that everything including the milk be bottled; then frozen to a mush and stored at a temperature of 30° F. At the time of sale the product would be whipped. A trial drink was made to determine the effect of including all the ingredients; and then pasteurizing, bottling and chilling the product for whipping at the fountain. This project was abandoned because the body and the texture of the drink was not characteristic of a malted milk. This method produced a sub-standard product which resembled melted ice cream.

The first and second suggestions were carried out by making up an ice milk. The term, ice milk, refers to a low fat product similar to ice cream, containing the milk solids, fat, water, stabilizer and flavoring. After freezing the ice milk, it was cut and weighed into portions which varied from 170 to 190 grams. To each of these portions was added 120 cubic centimeters of milk at $40^{\circ} \mathrm{F}$. , and the mixture was then whipped for a period of one minute. Table \mathbf{X} shows the volume of the finished drinks after whipping for one minute.

Table X

Volumes Obtained on Whipping Ice Milk and Milk for One Minute

Weight of Ice Milk in Grams	Volume of Finished Drink in Gubic Centimeters
165	350
180	380
175	360
175	370
185	380
205	450
190	410
180	400
185	400
200	400
Average	184

It appears from the data on Table X that the volume obtained from all but one of the drinks was below the standard accepted volume of 450 cubic centimeters, the average being 390 cubic centimeters. This lack of volume would adversely affect the commercial value of the drink.

In connection with the problem of trying to find an acceptable form in which to market these malted milk drinks, the effect of pasteurization on the flavor of the coffee-vanilla or vanilla type flavor combinations needed investigation. The following experiments were performed to test the effect of pasteurization upon these flavors.

Effect of Pasteurization on the Flavor of Coffees and Vanillas

Since the flavor of the drinks in Table \mathbf{Z} was largely dissipated during pasteurization, an attempt was made to find a vanilla and a coffee that would not be affected by pasteurization. To determine the effect of pasteurization, twenty-one different vanillas and vanilla type flavors and five coffees vere studied. The vanillas are listed in Table XI.

Table XI
Vanillas Used for Checking the gffect of Pastaurization on Flavor

To.	Brand and Troe of Mavor
1.	Kelloggs, Pure French Venilla Extract
2.	Kelloggs, Pure Mexican Vanilla Extract
3.	Kelloggs, Pure Bourbon Vanilla Extract
4.	Van-Sal Mexican Pure Venilla
5.	Van-Sal Pure Vanilla Extract (South American)
6.	Massey's Peerless Pure Bourbon Vanilla
7.	Massey's Royal Pure Mexican Vanilla
8.	Massey's Coronet Pure Mexican Vanilla
9.	Massey's Pure French Vanilla
10.	Virginia Dare Pure Vanilla Ixtract No. 7 (Blended)
11.	Verity Brand Bourbon and Mexican
12.	Blanke-Baer Pure Vanilla Extract No. 22 (Blended)
13.	Massey's Pure Vanilla Concentrate
14.	Van-Sal 6 Fold Vanilla Concentrate

Table XI (Cont'd.)

Procedure for Testing the Fffect of Pasteurization on Vanillas
A test was made using the following procedure: each concentrated vanilla was diluted to the strength of ordinary vanilla. Bach dilution was made according to the reported concentration given on each bottle. Two series of thirty cubic centimeter portions of the sinmiated drink, using the original sugar level, were made. To one series 0.3 cubie centimeters of a given vanilla was added before pasteurization. The flavoring was added to the other series after pasteurization. The flavors of the two series were compared by competent judges. The effect of pasteurization on the flavors of the various vanillas and vanilla type flavorings is given in Table XII. The order of the tests reported in Table XII is the same as that in Table XI.

Table XII
Effect of Pasteurization on the Flavor of Various Vanillas and Vanilla Type Flavorings when Used in a Simulated Malted Milk Drink

Type of Vanilla	Comparison of Pasteurized and
1. French	Unpastourized Flavor
2. Moxifician	tion
3. Bofore and aiter pasteuriza-	

Table XII (Cont'd.)

Troe of Vanilla	Comparison of Pasteurized and Unpasteurized Flavor
4. Mexican	Faded on pesteurization
5. South American	Faded on pasteurization
6. Bourbon	Faded on pasteurization
7. Mexican	Weak before and after pasteurization
8. Mexdican	Not desirable, poor vanilla
9. Franch	Coarse, artificial vanilla, faded
10. Blended vanilla	Faded on pasteurization
11. Mexican and Bourbon	Faded on pasteurization
12. Blended vanilla	Faded on pasteurization, weak
13. Concentrate	Faded on pasteurization, weak
14. Concentrate	Faded on pasteurization
15. Vanilla and Vanillin	Stronger after pasteurization, artificial
16. Imitation Vanilla	Faded on pasteurization
17. Vanilla and Vanillin	Faded on pasteurization
18. Initation Vanilla	No fading, artificial
19. Vanillin and Coumarin	Faded on pasteurization
20. Concentrate	Big loss of flavor
21. Vanilla and Vanillin	Weak before and after pasteurization

It is apparent that all pure vanillas lose some of their flavoring on pasteurization (Table XII). One Plavor (No. 15, Table XII), a vanilla and vanillin combination, appeared to be stronger after pasteurization than before, but its flavor was artificial, making it undesirable.

Effect of Pasteurization on the Flavor of Selected Coffee and Vanilla Combinations

In determining the effect of pasteuxization on coffee and vanilla in combination, a selection of the vanillas was made to include one of each type except the French vanillas. These were omitted from the test because they did not prove to be acceptable before or after pasteurization. The vanillas selected were (1) Kellogg's Pure Bourbon Vanilla Extract, (2) Massey's Royal Pure Mexican Vanilla, (3) Verity Brand Mexican and Bourbon, (4) Blanke-Baer's Pure Vanilla Bxtract with Synthetic Vanillin, (5) Massey's Paragon Brand Pure Vanilla and Vonillin, (6) Massey's The New 2A Imitation Vanilla and (7) Cleveland Fruit Juice Company Vanillin
and Courmarin Compound.
The four powdered coffees were made up in ten per cent solutions in water. The Lurient coffee concentrate was diluted to half its original strength with water. Equal portions of coffee solution and vanilla were used to make the flavoring. Sach thirty cubic centimeter portion of the simulated drink was flavored with 0.3 cubic centimeter of a given flavoring. One series was flavored before pasteurization and the other series after pastourization. The flavors of the two series were compared by competent judges.

All these coffee-vanilla combinations had been scored previously. The All Goffeo-vanilla combination was found to be superior to the other coffee-vanilla combinations. The Barrington Hall, Sol Cafe and IlesCafe in combination with vanilla gave a mediocre product. The Iarient coffeovanilla combination did not produce an acceptable product. However, it seemed advisable to test the effect of pasteurization on each of these coffee-vanilla combinations. The effect of pasteurization on the flavor of each of these five coffees with seven different vanilla and vanilla type flavorings is tabulated in Table XIII.

Table XIII

Effect of Pasteurization on the Flavor of Selected Coffee and Vanilla Combinations when Used in a Simulated Malted Milk Drink

No.	Type Vanilla	Coffee	Comparison of Pasteurized and Unnasteuxized Myavors
1.	Bourbon	All Goffee	Weak after pasteurization
	Bourbon	Barrington Hall	Weak after pasteurization
	Bouribon	Sol Gafe	Weak after pasteurization
	Bourbon	NesCafe	Weak after pesteurization
	Bourbon	Lurient	Harsh, buxnt tasto

Table XIII (Cont'd.)

Moe	$\begin{aligned} & \text { Type } \\ & \text { Vanil1a } \end{aligned}$	Coffoe	Comparison of Pasteurized and Unpasteurized FIavors
2.	Mexciean	All Coffee	Weak after pasteuxization
	Mexican	Barrington Hall	Wleak after pasteuxization
	Mexican	Sol Cafo	Weak after pasteurization
	Miexican	MesGafie	Weak after pasteurization
	Hexican	Luxient	Harsh, burut tasto
3.	MexicanBourbon	All Coffee	Weak af'ter pasteuxization
	Mexican-	Baxrington Hall	Weak after pasteurization
	Bourbon		
	Mexican-	Sol Cafe	Weak after pasteurization
	Bourion		
	Mexican-	NesGafe	Weak afiter pasteurization
	Bourbon		
	Mexican-	Imurient	Harsh, burnt inavor
4.	Bourbon	171 Coffee	
	Vanillin		
	Vanilla-	Barrington Hall	Rough flavor, flavor holds
	Venillin		
	Vanilla-	Sol Caie	Rough flavor, flavor holds
	Vanillin		
	Vanilla-	WesCafe	Rough flavor, flavor holds
	Vanillin		
	Vanilla-	Lurient	Rough flavor, flavor holds
	Vamillin		
5.	Vanilla-	All Coffee	Faded on pasteurization
	Vanillin		
	Vanilla-	Barrington Hall	Faded on pasteurization
	Vanillin		
	Vanilla-	Sol Cafe	Faded on pasteurization
	Vanillin		
	Vanilla-	NesCafe	Faded on pasteurization
	Vanillin		
	Vanilla-	Larient	Harsh, burnt coffee
	Vonillin		
6.	Imitation	All Coffee	Powerful mavor, artificial
	Tmitation	Barrincton Holl	Poverful flevor, arbificia
	Vanilla	Barsingtom hall	Poweriul Ravor, articicia
	Initation	Sol Cafe	Powerful flavor, artificial
	Vanilla		
	Imitation	NesGafe	Powerful flavor, artificial
	Venilla		
	Initation	Larient	Powerful flavor, harsh
	Vonilla		

Table XIII (Cont'd.)

No.	Type Vanilla	Coffee	Comparison of Pasteurized and Unpasteurized Mavors
7.	Vanillin-	A11 Coffee	Faded on pasteurization
	Coumarin Vanillin-	Barrington Hall	Faded on pasteurization
	Coumarin		Faded on pastourization
	Vanillin-	Sol Gafe	Faded on pasteurization
	Coumarin Vanillin-	MesCafe	
	Coumarin	NesCafe	Faded on pasteurization
	VanillinCoumarin	Lurient	Hersh coffee

Since most of the flavors faded on pasteurization, it wruld appear impractical to add the flavoring to the mix before pasteurization (Tables XII and XIII).

Stabilizers

Since gelatin is an excellent stabilizer and gives a standard product, in most of this experimental work gelatin was the stabilizer used. However, it seemed desirable that the use of some gum stabilizers be investigated. Sodium alginate, which is an Irish moss derivative (sold comercially as Dariloid), and high viscosity sodium carboxymethocellulose, called GMC (sold by the Dow Chemical Company), were chosen for this work. To deternine the amount necessary for stabilization of a malted milk, a series of samples containing different percentages of the gums were set up.

Bach malted milk contained two hundred cuble centimeters mills, four grams cocoa, one gram malted milk powder, thirty grams sugar, sixhundreths of a gram of salt and the stabilizer. One cubic centimet,er of the flavoring was added after the pasteurization and cooling period. The percentages of stabilizer used were $0.25,0.35,0.75$, and 1.0. The dry ingredients were all thoroughly mixed and added to the milk when it
reached a temperature of $160^{\circ} \mathrm{F}$. The milk solution was stirred and held at 180° F. for fliftoen minutes. When the drinks had cooled to 32° F., they were whipped one mimite on the Hamilton-Beach mixer and the volunie measured. The effect of varying amounts of the gum stabilizers on the body and volume of the malted milk drinks appears on Table XIV.

Table XIV
Effect of Varying Amounts of Gum Stabilizers on the Volume and Body of a Mlalted Milis

Drink No.	Per Cont	Stabilizer	Volume of Finished Drink	Body
1.	0.25	Dariloid	350 cc.	Too thin
2.	0.35	Dariloid	400 cc.	Right
3.	0.50	Dariloid	380 cc .	Too thick
4.	0.75	Dariloid	370 cc.	Too thick
5.	1.00	Dariloid	360 cc .	Too thick
6.	0.25	CIIC	340 ce.	Too thin
7.	0.35	GİC	380 cc 。	Right
8.	0.50	Ginc	370 cc.	Too thick
9.	0.75	CMC	300 ce.	Too thick
10.	1.00	c)MC	280 cc.	Poo thick

The data recorded in Table XIV shows that 0.35 per cent of either Dariloid or CHC gave a body suitable for a malted milk. The volumes of the finished drinks made with this anount of stabilizer were greater than at any other levels. The Dariloid gave a volume of 400 eubie centimeters and the CME a volume of 380 cubic centimeters. The flavor of the product made with Dariloid was indistinguishable from that made with gelatin. While the flavor of the melted milk made with CMC was smooth and bland, it required a larger amount of flavoring to give the same intensity of flavor as that made with gelatin.

Wenest of Fat on the Fintshed Volume ar a Malted 解1k Mrink

Because mang oomercial ostablishmonts use ioe milk rather than ice cren fom matinemited milks, qua becanse it is a lmom foct thet whon coletine is veed as a ctabilizer there is an liverse relationghig betreen the volum of the fint shed arint and the amount of fet in the product, it semed asirable to study the offect of fet on the volume of melted milke mede with these gun stabilizere. Therefore, a stedy of the exfect of fat on the finished volume of the drint mas me by using the same formula as empldyed in the previous oxperiment and using 0.35 per cent of the gun stabilizer. Four melted mills were nade con-
 stabilizer wore made with whole milk and two whth sum nilk. The fintshed drink made with 3 kole mint contafned 3.0 per cont butterfet, while that made with sinim wilk contained 0.01 por cent butberfat. The
 which the drink wes whipped was 32°.

Table 2 V

Drink \$0.	Stabilizer	Volute or Finishod Drinus	$\begin{gathered} \text { Per Cent } \\ \text { Fat } \end{gathered}$	Avorage Voluac of Finished Drinis
1.	Deriloia	300 ce.	5.0	300 00.
2.	Deriloid	300 00.	3.0	
3.	08 C	350 ce.	3.0	375 oc.
4.	Cla	40060	3.0	
E.	Doriloid	370 0e.	0.01	383 co.
6.	Dar 2010	400 00.	0.01	
7.	CWg	400 e0.	0.01	39000.
8.	CLC	380 cc.	0.01	

It can be seen (Table IV) thet the sverage rolume of the mated

meters, while that made with whole millk (3.0 per cent butterfat) was only 375 cubic centimeters. It appears that as the fat content increased, the volume of the finished drink decreased.
riffect of Storage on the Finished Volume of Maited Hilk Drinks

Because previous experiments reported in the literature reeord mwheying offi of ice cream mixas when stored, the preceding experiment was repeated using skim milk alone and storing the drinks for three days at 42° F. before whipping. Four samples, using each stabilizar were made up. After storage the drinks were whipped for one minute at $32^{\circ} \mathrm{F}$. The effect of storage on the finished volume of the malted milks is recorded in Table XVI.

Table XVI

Erfect of Storage on the Finished Volume of Meited IGlk Drinks

	Volume of Einished Drink Hade with Dariloid	Volume of Finished Drink Hade with CMC
	500 cc .	500 cc .
	470 cc -	460 ec.
	580 cc .	460 cc .
Average	51.5 cc .	472.5 cc.

By comparing the data in Table XV with the data in Table XVI, it is noted that storing the malted millk drink for three days increases the volume of the drink when finished. For example, the average volume of the drink containing Dariloid was 385 cubic centimeters when used immodLately. After storing for three days before whipping, a volume of 515 cubic centimeters was obtained. The trend shown in Table XV is that the malted milks made from skim millk with Dariloid gave a larger volume
than the ones medo with 6wh．Using Deriloid as a stebilizer there wes a variation renging fron 470 to 550 cubie centimeters in the voluno of
 In the drinks made with CHE There is no doubt that storage increesed the volua of tho finished drink．

Wothod of Incorgoroting the Mevor into the Mrished helted lavy
The ustrat mothod os moking malted nily drinke is to megnuro seytr－ ately the milks，choolete syrup and the nalted mils powder into the niser and then Thip．This in not only time－conswaines but ineroases the chonees of devitetion from standard product due to inaccuracies in neasuring．借 is bolioved that a standard predueb oond bo insured if the meesturing of the mils and aymp cond be done in one operation．
 A nubber of different mothode of incorporating the flavor tnto the molted mill wore tried．The final nethod of incorporating the flavor into the drink consistod of combining the syrup and flavoriag material日数 the mily．

The experinents performed show sone of the mony tariables which affect consumer secoptability of matiod milu. The kind axd mour of flavoring used appers to be of nejor invortowee. The kind ont cmount of tho neteriels uced in the ice croan nix, the treatnent of these materiels before freezing and the move of ice crean used in the finshed dxini also have a bexing on the acceptability of these drinkes.

The folloning percentage composition fox the chocolate syrup wa decided to be the nost accepteble:
7.8 por cent cocoa
38.9 pex cent dextrose 14.8 per cent sucrose 38.2 par cent mater
0. 2 per cent melt
99.8 per cent total

A chocolate milk mixture was nede with the following proportions: one and ono-helf parts (by voluna) of the above chocolate syrup, aired With fous parts of milk, and pasteurized for finteen minutes at 180° F. After cooling, one por cent (by volune) of flavor Wo. 1 wes added to the ehocolate milu.

The following proportions were used in moking a malted mill using this formias two 30.16 dips of ice crean, sive and ono-half ounces of the chocolete syrup and nilk mixture, and one and one-halif ounces of malted nilk porder. This combination of ingredienta mas placed is a Hariliton-Beach mixer, whipped for one ainuto and served. This yothod simplified the proparation of chocolate malted milks, and the resulting product scored satisfectorily. The drink wes scored by qualifiod employees of a commercial ice crean company and othor qualified judges. They reported the drink to bo setisfoctory in all rospects.

A sombination of 1 per cent welloge All Coffee (dry weight) and .OA per cont Van-sal (6 pold vanilla) wa a good flavoring for a chocolato mited raill.

Dariloid and zoliun carbozmathocellulose when used as stabilizers in 0.35 per cont concentration vero as effective in producing a standard nolted avine as 0.5 par cont gelatin.

Naltod milk drinks mad from iee orem contaning 3.0 per cont buterfot had amallor volume than those mado with toe rille containing 0.01 pas cent butterfat.

Pestcurizetion at 180° For finton minutes partialy dissipated the flavors of vanilla and cofree. For this reason, we sugest the flavoring be addad after pasteurization.

Histng of the milt, chocolato cyrap ane other flavoring matorials prior to use at the sales couter reduced the amout of dippiae at the time of sale and insured a more maiform product.

Anonymous. "Powdered Ice Gream Mix." Ice Gream Reviell, 29 (September, 1945), 38.

Anonymous. "Survey Analyzes Mavor Popularity, Types of Ice Gream Outlets." Ice Cream Reviers, 16 (May, 1933), 40.

Anomymous. "Testing Consumer Preferences and Special Reference to Constituents of Ice Gream." Ice Gream Reviove, 28 (Jamuary, 1945), 32.

Anonymous. "To Stretch or Not to Stretch Our Available Chocolate to Meet Public Demand." Ice Gream Reviery, 26 (May, 1943), 22-1.

Anonymous, "Use of Vanilla and Other Flavors in Ice Gream." Ice Gream Review, 24 (February, 1941), 114.

Baer, Samuel H. "Vanilla Bean and Vanilla Extract." Ice Gream Revier, 17 (March, 1934), 32-4.

Button, F. C. "Important Factors Affecting Quality of Vanilla Iee Gream." Ice Gream Reviem, 16 (March, 1933), 24 .

Caulfield, W. J. and Martin, W. H. "The Use of Vegetable Stabilizers in Ice Cream." Journal of Dairy Science, 16 (1933), 265.

Grocker, E. C. Iavor. New York: HeGraw-Hill Book Company, 1945.
Fabricius, N. E. "Improving Chocolate Ice Gream." Ice Gream Review, 14 (August, 1930), 72.

Gould, I. A. and Iacas, P. S. "A Study of Factors Influeneing the Separation of Whey in Ice Gream Mixes Containing Vegetable Stabilizers." Journel of Dairy Science, 18 (1935), 307.

Hamilton Beach Company. "Temperature Control in Making a Malted Milk." Ice Gream Reviev, 21 (June, 1938), 40-1.

Henderson, C. C. "Chocolate Melteds." Ice Gream Reviey, 24 (January, 1942), 31.

Josephson, Donald and Chester Dahle. "A New Gellulose Gum Stabilizer for Ice Cream." Ice Gream Reviev, 28 (June, 1945), 32.

Imeas, P. S. and Morrill, A. C. "Vanilla Flavors do not Freeze out of Ice Gream. " Michigan Agricultural Experiment Station Quarterly Bulletin, 11 (1929), 118-30.

Prescott, Samuel, Arthur Heifetz and David Stenley, Jr. "Ice Cream Stabilizers, II Ice Gream Reviel, 16 (September, 1932), 34-5.

Sommer, Hugo H. The Theory and Bractice of Ice Gream Making, 2nd Edition. Milwaukee: Olson Publishing Company, 1937.

Stebnitz, V. C. and Sommer, H. H. "What Should Ice Gream Stabilizers Do. ${ }^{*}$ Ice Gream Reviev, 20 (November, 1937), 51.

Totman, C. C. "Vanilia and Vanilla, Compoundse" Ice Gream Revieg, $\mathbb{L}_{\text {. }}$ (June, 1931), 49.

Tracy, P. H. "Powdered Whole MIk and Mix." Joe Gream Trade Journal, 4, No. 4 (Apri1, 1945), 22.

Typists Thellyn A. Ienris

[^0]: Submitted to the Department of Household Science Oklahoma Agricultural and Mechanical College In Portial Fulfillment of the Requirements for the Degree of Haster of Science

 1946

[^1]: 1 Samuel H. Baer, "Vanilla Beans and Vanilla Hxtract," Ice Gream Revier, 17 (March, 1934), 32-4.

 2 P. S. Lucas and A. G. Merrill, "Vanilla Flavors Do Not Freeze Out of Ice Gream, ${ }^{n}$ Hiehtean Agriculture Exporiment Station Quarteriy Bulletin, 11 (1929), 118-20.

 3 Hugo H. Sommer, The Theory and Practice of Ice Gream Making, pp. 448.

 4 Anonymous, "Use of Vanilla and Other Mavors in Ice Cream," Ice Gream Reviery, 26 (February, 1941), 14.

[^2]: 10 F. C. Bution, "Important Factors Affecting Quality of Vanilla Ice Gream," Ice Gream Reviev, 16 (March, 1933), 24.

 11 P. S. Lacas and A. C. Merrill, loc. cit.
 12 Anonymous, "ro Stretch or Not to Stretch Our Available Chocolate to Heet Public Demand," Ice Gream Reviev, 26 (May, 1943), 224.

[^3]: 13 V. C. Stebnitz and H. H. Sommer, What Should Ice Gream Stabilizers Do, "Ice Gream Review, 20 (March, 1937), 51.

 14 дbid. 2 pp. 51.
 15 Gaulefield and Martin, WThe Use of Vegetable Stabilizers in Iee Gream," Jx. of Dairy Science, 16 (1933), 265.

 16 I. A. Gould and P. S. Lucas, "A Study of Factors Influencing the Separation of Whey in Ice Crean Mixes Containing Vegetable Stabilizers, " Jx of Dairy Science, 18 (1935), 307.

 17 Doneld Josephson and Chester Dahle, "A New Cellulose Gum Stabilizer for Ice Cream," Iee Grean Revier, 28 (June, 1945), 32.

 18 Caulfield and Martin, loc. cit.
 19 goid. 10c. cit.

[^4]: 23 Joseghson and Dahlo, loc. cit.
 24 Stebritz and Somer, 1oc. cit.

[^5]: 28 Henderson, loc. cit.
 29 Anonymous, "powdered Ice Cream Mix, "Ice Gream Review, 29 (September, 1945), 38.

 30 P. H. Tracy, mPowdered Whole Hilk and Mx, "Ice Grean Trade Journal, 41, No. 4 (April, 1945), 22.

 31 Anonymous, "Survey Analyses Mavor Popularity, Type of Ice Gream Outlets, " Ice Grean Revielt, 16 (May, 1933), 40.

[^6]: * Flavor Numbers Correspond with Table V.

