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ABSTRACT

AGGREGATE BEHAVIORAL TRAVEL DEMAND MODELING 

WITH QUANTITATIVE CHOICE 

by

CHUNG JA LIEW
Department of Civil Engineering and Environmental Science 

University of Oklahoma 
November 21, 1977 

(Doctoral Dissertation)

The present study of aggregate behavioral travel demand model­

ing is based on the translog model with a quantitative choice. This 

is the comparative approach with the disaggregate behavioral demand 

models. In the model, the demand for travel is measured in terms of 

passenger miles of travel which is a continuously divisible unit.

The income-compensated elasticities which exclude the income 

effects from the market demand elasticities by holding the utility 

level constant are a correct measure for the substitution effects 

among the trip modes. The sensitivity analyses based on income-compen­

sated elasticities give no counter-intuitive results; they give very 

reasonable results.

This study further indicates that such a correct understanding 

of the passenger travel demand has a very important policy implication.

As for the parameter estimation process, the non-linear maximum 

likelihood estimation method is used.
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AGGREGATE BEHAVIORAL TRAVEL DEMAND MODELING 

WITH QUANTITATIVE CHOICE

CHAPTER I 

INTRODUCTION AND SUMMARY

A. Purpose of the Study 

The purpose of this study is: first, to formulate aggregate

behavioral travel demand models in contrast to disaggregate beha­

vioral travel demand models; second, to find a better way to 

measure quantitative assessments of the alternative transportation 

policies and plans.

The present study of aggregate behavioral demand modeling 

is based on the translog model with a quantitative choice approach, 

which is based on consumer theory; whereas, most of the disaggregate 

behavioral demand models are based on the multilogit model with a 
qualitative choice approach.

In the model, the demand for travel is measured in terms of 

passenger miles of travel instead of number of trips. The use of 

passenger miles as a dependent variable in the demand equation has a 

great appeal because many recent and traditional policy issues, such as 

energy consumption, air and noise pollution, accidents, revenue infor­

mation, transit vehicle productivity and the efficiency of alternative
1



transit management are more directly related to passenger and vehicle 

miles of travel than to number of trips. Therefore, it is more rea­

sonable to consider travel choices as being not only qualitative but 

also quantitative. In this study, many comparisons are done between 

qualitative choice and quantitative choice in connection with travel 

demand modeling.

In the quantitative assessments of alternative transportation 

policies, the use of Hicksian income-compensated elasticities 
gives the correct measure of substitution effect.

The market demand cross elasticities which have long been used in the 

aggregate travel demand models are not a good measure to see the sub­

stitution effect among the trip modes, unless signs of the parameters 

are constrained according to the prior knowledge.

The sensitivity analysis based on Hicksian income-compensated 

elasticities gives very reasonable results too.

B. Statement of the Problem and its Importance 

(Reference; Chapter II)

The traditional Urban Transportation Model System (UTMS) has 

been useful for the transportation forecasting purpose in many metro­

politan areas. But its shortcomings have long been demonstrated on 

both theoretical and empirical aspects. Without considering any 

theory of trip makers behavior, it only correlates the existing data. 

Hence it is not satisfactory for the forecasting purposes.

The aggregate joint models (or econometric models) 
developed mainly for intercity travel demands in connection 

with the North East Corridor Transportation Project (NECTP)



get over several of the shortcomings of the UTMS by the adoption of

joint structure instead of sequential structure and the partial 
implementation of economic consumer theory in the model. But only 

limited improvements are made.

Recent developments on disaggregate behavioral models (refer- 

ing to multinomial logit models) are based on probabilistic choice 
(qualitative choice) with the adoption of joint structure of 

trip making decisions. Disaggregate models are demonstrated to be 

superior than the previous models.

But many of the already existing data are not in the form use­

ful for disaggregate models, therefore a huge amount of data collec­

tion cost is needed to apply disaggregate models. In many cases, 

money and time are not readily available to collect disaggregate data 

sets.
Although the transferability of the disaggregate models is 

demonstrated to be possible,it is often necessary to collect a sub­

sampling of the data for the analysis. Only the transferability of 

mode-choice in the entire travel decision processes is considered and 

more study is needed.

In order to use the disaggregate models in travel demand 

forecasting, aggregation of the disaggregate models is necessary.

But still, there is an aggregation problem with disaggregate models. 

More study is needed on how far aggregation can be carried such that 

errors are within an acceptable range.

Further developments and more applications are necessary with 

disaggregate behavioral models but at the same time, re-developments



of aggregate models are needed because no one model will handle all 

cases of travel demands. Each type of model has limited scope of 

applicability.
From these considerations, the approach to aggregate travel 

demand models with consistent trip makers behavior and with quantita­

tive choice context is sensible. In aggregate behavioral travel 

demand modeling, no data collection is required. The use of existing 

data will be sufficient and no aggregation problem is necessary. Since 

it is based on solid theory, once estimated it is readily transferable 

to any area and is also useful for forecasting purposes.

As for the estimation method, the disaggregate behavioral models 

(logit models) employ the use of the non-linear maximum likelihood 

estimation method which is the most advanced method existing today.

The aggregate travel demand models are estimated by either 

linear regression, log-linear regression, constrained linear regression 

or one equation non-linear regression. To go comparatively with the 

disaggregate behavioral models, the present aggregate behavioral models 

with quantitative choice employ the use of the non-linear maximum 

likelihood estimation method.

Thus the way in which the two t>'pes of models (qualitative and 

quantitative choice approach) complement each other, gives rise to sig­

nificant reasons for further developments on both approaches.

C. Outline of the Report

The present study is mainly divided into four parts. Chapter II 

discusses current travel demand models and theories on which they are



based. Current results and shortcomings are briefly discussed with 
regard to aggregate and disaggregate models.

Chapter III goes over some review on qualitative choice theory
I

based on strict and random utility models. Then some review on con­

ventional consumption theory is done and comparisons are made between 

qualitative and quantitative choice theory. In the last part of 

Chapter III, transportation demand modeling is presented with translog 

models. After demand modeling is presented, elasticities of both 

Marshallian demand and Hicksian income-compensated demand and elasti­

cities of substitution of the present model are derived and their 

importances are discussed.

Chapter IV describes the data and model specification. The 

estimation methods in both quantitative and qualitative choice cases 

are comparatively discussed. In both cases, the non-linear maximum 

likelihood estimation method is applied.

Chapter V goes over the estimation results under different model 

specifications. The parameter estimates are evaluated with respect to 

their signs, t-statistics and X^-test statistics for the group of 

parameter estimates and for the restrictions. Marshallian elastici­

ties, Hicksian income-compensated elasticities and elasticities of 

substitution are calculated and evaluated. Sensitivity analyses are 

further examined to test models' performances.

Finally, Chapter VI discusses the application of the model and 

the conclusive results. Several research directions are proposed for 

further study.



CHAPTER II 

PRESENT STATE OF KNOWLEDGE

A. Current Theories and Models 

Travel demand models may be divided into choice models and 

volume models. In a choice model, the dependent variable is a share 

(e.g. proportion of people taking mode m); in a volume model, the 

dependent variable is a volume (e.g. number of trips). Travel demand 

models may also be divided according to their structure, either 
joint or sequential. They are either disaggregate or aggregate 

depending upon their use of data.

1. Aggregate Sequential Models 

The Urban Transportation Model System (UTMS) that has long 

been used in urban transportation planning studies is composed of a 

variety of aggregate sequential (indirect) travel demand models. The 

prediction of travel flows is divided into four sequential steps; 

trip generation, trip distribution, mode split and route assignment 

models. The shortcomings of the UTMS model system have been well 
discussed elsewhere (Talvitie 1971, CRA 1972, Manheim 1973, Ben-Akiva 

1973, Talvitie 1975). But it is useful to go over their shortcomings 

in this study.
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Interzonal trips, mode split, vehicle miles of travel and statistics 

derived thereof, are incorrectly predicted. Further, the level of 

service attribute variable should include travel cost and other

variables in addition to travel time.

Third, the mode-split models behave as if the level of service 

variables affecting modal choice have no effect on trip generations 

and trip distributions.

Modal split; = g3 (Vĵ j,, ®k»
where = interzonal trips by mode m.

Fourth, neither all level of service attributes nor the same 

parameters ("weights" on the attributes) in the modal split prediction 

are used in the network assignment model.

Route choice; = g4(Vkm*
where = volume of flow from k to £ of mode m by path r, and

^£mr “ level of service from k to £ of mode m by path r.
The last shortcoming is its inaccuracy and its time consuming re­

quirement to get predicted flows. The UTMS has many variants and 

their application ranges from small urban areas to large metropolitan 

areas.

2. Aggregate Joint Models (or Econometric Models)

The aggregate joint models are based on the concept 

that transportation is a derived demand, and it is natural to develop 

an intercity travel demand model based on the theory of consumer be­

havior.

Lancaster (1966) defined the utility functions over the attributes



of goods. Hence the demand for transportation as a derived demand may 

be expressed in terms of level •of service variables, socio-economic 

variables and attraction variables.

The structural specifications of the direct travel demand 

models are expressed in terms of direct and cross elasticities which 

are the result of the application of economic consumer theory.

The direct demand models include trip generation, trip distri­
bution and mode split in a single equation. They are expressed as 

follows:

^kim ** Â , ^kim' * m̂'Aii)
where = characteristics describing origin k,

= characteristics describing destination £,

Lk£m “ level of service variables by mode m, and
= level of service variables by other mode m'.

This type of model was first developed for intercity travel between 

two cities in connection with the North East Corridor Transportation 

Project by Kraft (1963), Quandt and Baumol (1966), Blackburn (1966), 

Kraft and Wohl (1967), Quandt and Young (1969), McLynn and Woronka 

(1969) and others. Later, the direct demand models were applied to 

urban travel demand by CRA (1967), Domsncich et al (1968) and Talvitie 

(1971). The common characteristic of these models is that they do not 

consider competition among alternative destinations in order to avoid 

the estimation of excessive parameters. The exclusion of competition 

among alternative destinations is not serious for work trips but for 

other kinds of trips, such as shopping and recreational trips, it is 

significant. Expressing per capita trips with route choice.
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(Aj^, Aj .̂ V l ' f a ) ,  H i l ’in' V m 'W )
k

f Is not only a function of its own attributes but is also a function 

of attributes of the substitute destinations and of the substitute 

modes. Hence the models can be extended to add route choice, provided 

the number of observations exceeds the number of parameters to be 

estimated.

The direct demand models result in smaller errors by escaping 

the drawbacks of the UTMS but these errors are still substantial.

There are basically two kinds of direct demand models developed for 

the NECTP. One is mode-specific, which does not allow new modes to 

be added to the market. The other is mode independent which allows 

the introduction of a new mode to the market. The Kraft-Sarc model is 

an example of the mode-specific model, and the Baumol-Quandt model 

(abstract mode model) is an example of the mode independent model. 

Kraft-Sarc model (product form):

\im = ^m(Sk' 4 '  ^km' ^k£m'

''to ' "''uq •

where t^^^ = travel cost and time by mode q.

Kraft estimated the demand equations for four modes separately. 

Baumol-Quandt abstract mode model:

^k£m “ *'^£m’ ^k£b» ®k» £̂̂

k £ k£b k£b k£b

where = frequency of service from k to £ by mode m, and
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“ cost, time and frequency of service 

from k to £ by "best" mode (the cheap­

est cost, the fastest time and the most 

frequent service)

Baumol-Quandt estimated each demand equation by mode separately. The 

model is based on the gravity model approach with elasticity considera­

tions. The primary motivation for the abstract mode formulation is 

that of data saving because it includes a smaller number of parameters, 

and it reduces the multicollinearity problem which the mode-specific 

models have difficulty in. The multicollinearity problem in the direct 

model were handled by constrained regression techniques (CRA 1967, 
Talvitie 1973).

Critiques of the Kraft-Sarc and Quandt-Baumol models;

The inclusion of all possible cross-elasticities in the Kraft- 

Sarc is an advantage over the Baumol-Quandt model.

But it is impossible to introduce a new mode in the Kraft-Sarc 

model while the Baumol-Quandt model can predict the demand for new modes 

without changing the functional form of the model or its parameters.

The specification of the Baumol-Quandt model is based on the 

assumption that cross-elasticity (competition) between modes exists 

only with respect to variables that qualify as "bests". Hence any 

changes in level of service variables, if they do not qualify that 

mode as the best, have no effect on demand for other modes in the sys­

tem. It will affect use of the given mode only.
McLynn Model;

The travel demand model developed by McLynn and Woronka (1969)
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for the Northeast Corridor Transportation Project (NECTP) can be clas­

sified either aggregate simultaneous or partially sequential. The 

model can be written as follows:

V  _  _  .  T

8lq(\iq>

The model includes two functions, one is gg to predict total trips from 

k to £ and a second g^^ to predict the share of which will use

mode m. In the McLynn model,

hi b2 b3 b^ bj
V'kji = g2 (Sj.,A.,L,̂ ,_) = bjPk;P£'Y^'Y£'[Z Slql

^k&m ®lm^2mr. . .
V, , = 8lm(\£m) = Wk£m^k£mL^ ~ ^(^Sm^kim^Jk£
where = cost, time and frequency of service from

city k to city £ by mode m.

The two functions are estimated sequentially: First the g^^ functions

are estimated, and then their sum is obtained as a variable to be used 

in g2 « The calibration of this model was done for each of the four 

modes separately. McLynn's model is also based on gravity model formu­

lation along with the elasticity consideration based on consumer theory. 

McLynn's model performs better than the Kraft-Sarc and the Baumol-Quandt 

models and it was adopted as a mode-split model. However problems 
were encountered in the McLynn model too. Considering binary mode-split 

case in the McLynn model.

\i “ \ £ m  + \£m'
then
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k£ k£m k£m _ k£m k£m’
\  * V—  * Vk£m k£m k£ k£m k£

where = elasticity of trip volume with respect to tra-
k£m

vel time from k to £ by mode m,
k£m ^ direct elasticity of V with respect to t, . t, - k£m  ̂ k£mk£m

V
hence E < 0, and 

k£m

V ,
E^ * = cross elasticity of with respect to t^^^
k£m

*'̂ k£m'and hence E^ > 0 . 
k£m

If the share of m, (y— —), is small and the first direct elasticity
k£

\ £term is smaller than the second cross elasticity term^then E^ will
k£m

be positive. This is not a valid result. In actuality, as travel time 

of a mode improves (i.e. decreases), trip volume from k to £ in­

creases. Hence in the McLynn model, there is no guarantee that

E will be negative. 
k£m

Talvitie Model:

The Talvitie model is based on the Kraft-Sarc model but it was 

applied to a three-mode case for downtown worktrips. The functional 

form of the model is

"k£m “ A^, L^^} .

For the detailed model specification, see (P. R, Stopher and A. H, Meyburg,
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1975). In the demand model formulation, Talvitie considered different 

kinds of mathematical forms and chose the mixed-form (i.e. £ny = a+bx+c£nx) 

on the grounds that this form provides both absolute and relative ef­

fects of a change in an explanatory variable, and also that the demand 

for travel is not implied to be sensitive to travel volumes. After 

predictive and structural accuracy tests were done in relation to other 

traditional transit models, he shows that the model is superior in its 

predictive accuracy and that it has both lower mean error and lower 
variation of the error than the traditional models.

Critiques of Aggregate Joint Model:

All four models presented above try to use economic consumer 

theory in the form of elasticity and the sign of elasticity but none 

of the models are well grounded in consumer theory.

All three models except the Talvitie model have constant elasti­

city with respect to each of the variables. This is a strong restric­

tion.

The calibrations of all the models are done with linear regres­

sion on the log transformed demand equation according to each mode 

separately.

None of the four models consider the relation between short-run 

travel choices and long-run mobility choices.

3. Disaggregate Models 

The difficulties with aggregate travel demand models have en­

couraged new modeling approaches. The disaggregate models have 

superior predictive power over the conventional aggregate travel demand
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models. The disaggregate models are free from the drawbacks of the 

aggregate models. When we consider individual's discrete choice be­

havior, then the travel choice is qualitative. Usually disaggregate 

travel demand models are formulated as probabilistic models while the 

aggregate models have been formulated to be deterministic although a 

share form may be considered as probabilistic in form.
McFadden (1968) constructively derived the multinomial logit 

model from the theoretical foundation and formulated the estimation of 

the parameters of the multilogit model (more detail in Chapter IV).

The probabilistic models express the functional relationship 

between the transportation system and the socioeconomic attributes of 

a random individual and the probability that the individual will choose 

to make a certain trip. Statistical inference on this functional depen­

dence is made possible if travel surveys are interpreted as drawings 

from a statistical distribution with these probabilities (Domencich 

and McFadden 1974).

Disaggregate Sequential Models;

Categorizing the disaggregate models, the choice structure of 

individuals over the set of travel alternatives— trip frequency, desti­

nation, time of day, mode and route (f,d,h,m,r) may be either sequen­

tial or simultaneous.

sequential: Pj^(f)*P£(d|f)•P^(h|d,f)'P^(m|f,d,h)'?i(r|f,d,h,m)

joint: Pj(£,d,h,m,r)

The sequential choice model is the result of assuming that 

travel choices are made sequentially. Expressing mathematically:

Pj’(f,d,h,m,r) = P£(f ) *P^(d |f ) *P^(h|d,f ) •Pj|̂ (m|f ,d,h) *Pĵ (r |f ,d,h,m)
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That is, both simultaneous and sequential models can be expressed 

as a joint probability or as a sequence of marginal and conditional 

probabilities. However joint probability derived from the simulta­

neous model is different from that derived from the sequential model.

The same is true with marginal probability. The differences are 

due to degrees of freedom. Sequential logit is the same as joint 

logit if the coefficient of the inclusive price is 1. The sequential 

choice model is as important as the simultaneous choice model in 

the study of travel choice behavior. Disaggregate sequential models 

have been studied by many (Stopher, 1969; McGillivray, 1970; Stopher 

and Lisco, 1970; Talvitie, 1972; CRA, 1972; and McFadden, 1974).

Disaggregate Simultaneous Models:

The disaggregate probabilistic simultaneous smodels were deve­

loped by Ben-Akina (1973). The assumption is that the decision pro­

cess of an individual traveller is simultaneous (joint) in nature.

Hence a complete trip is based on one simultaneous decision. Under a 

simultaneous choice situation, the problems of a large number of possible 

combinations of choices and the number of explanatory variables and the 

interactions among variables are handled by the explicit choice hierar­

chy. Travel decisions are divided into two sets of choices: the long-

run mobility decisions of location, housing, automobile ownership and 

mode to work and the short-run travel choices of frequency, mode, des­

tination, route and time of day. The set of models is termed block- 

conditional, where the blocks of mobility and travel choices as single
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units have a conditional structure, while each block by itself has a 

joint structure.
In recent years many studies have been made using disaggregate 

simultaneous choice models (Ben-Akiva, 1974; Liou and Talvitie, 1974; 

Lerman, 1975; Lerman and Ben-Akiva, 1976; Ben-Akiva and Richards, 1976; 

and others).

Issues on Disaggregate Models;

Disaggregate probabilistic models have been demonstrated to be 

best fit primarily for urban area travel demand forecasting.

(i) Data Set;
The existing travel information obtained by the origin-desti- 

nation survey is not in a format that is compatible with the calibra­

tion of disaggregate models. A great amount of time and cost are re­

quired to collect data from individuals. Furthermore the individual 

data is collected in such a way such that individual's travel choice

is discrete in nature.
In the disaggregate model, the level of service variables are

not obtained from individual data because individuals do not observe

the service attributes "correctly" and hence engineering estimates are

used predominantly. This has been argued by many because it does not

comply with qualitative choice theory.

(ii) Use of Extrapolated Figures:

For the purpose of travel forecasting, projection of future 

independent variables such as population or employment are required. 

Such projected figures are obtained from the application of extrapola­

ted factors which have potential errors and the higher the level of
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disaggregation, the less reliable the extrapolated figures become.

(iii) Transferability and Updating:

Brand (1973) emphasized the possible transferability of the 

behavioral travel demand models. The transferability and updating of 

disaggregate travel demand models were carried out by Atherton and 

Ben-Akiva (1975). Their empirical results assure that a well-specified 

model is transferable. But no model is perfectly specified and no 

model is perfectly transferable. Therefore, the updating procedures 

for the model coefficients were required.
The use of aggregate data in adjusting constant terms results 

in biases.

The use of maximum likelihood estimation technique with a 

small disaggregate sample gives very unstable coefficient estimates. 

(The resulting biases and standard deviations are large.)

They found that the Bayesian updating procedure using a small 

disaggregate sample is the most effective procedure for well-specified 

models.

Their empirical results were limited to the conditional pro­

bability of mode choice which is only one component of the entire 

travel decision processes. Therefore, further study on transferabi­

lity and updating is needed in areas of more complex choice situations.

(iv) Aggregation: ..
Aggregation is always needed in travel demand forecasting 

processes. Aggregation of disaggregate choice probabilities is the 

way in which aggregate share or volumes can be obtained from dis­

aggregate models.
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There have been five methods developed for the aggregation 

of the disaggregate travel demand models. Let utility function be 

denoted as:

U(Xĵ ) «= V(x^) + e(x^) where V(x^) = (x^3)

=l' , 6= ■®1

X2

. 1

1. Naive Procedure. This is a procedure of using the zonal 

means of the independent variables in the disaggregate models. It is 

computationally simple but this procedure ignores the within zone 

variance. The expectation of people choosing an alternative is:

E(Pi) = Pi =
where p is the probability evaluated at the zonal means of

the independent variables by logit or probit func­

tion depending on which assumptions have been made 

on the independently distributed error term e(x^).

2. Numerical Integration Procedure. It is a method of numeri­
cal integration to compute the expectation of the people choosing an 

alternative. McFadden and Reid (1973) used the assumption that inde­

pendent variables have multivariate normal distributions in the case

of binary choice probit models of the form:
w . 2

Pj(k:A) = $(xjg) where 0 (w) = J --- exp(—^)dy ,
-00 /2?

i.e. probability of an individual i choosing an alternative k from 

the alternative set A is expressed with the assumption that (xI3) is
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normally distributed with mean (xjB) and covariance . By inte­

gration, they obtained an aggregate share probit model: 

xjB
■ ' W

Westin (1974) used the same assumption with binary logit models.

3. Statistical Differential Procedure. This method is done by 

Talvitie (1973). The expectation of aggregate share is computed ana­

lytically by expanding the logit model using Taylor series expansion and 
truncating after second order terms to get a manageable expression for 

E(P). The expected aggregate share in the binary choice case is:

:(?%) = Pk(l + o2 (?k - i)(\ - h)]
where = variance of net utility distribution in the pre­

diction group, and 

P^ «= P^ evaluated at the mean of net utility function.

For multiple choice situation, (assuming that each utility function is 

stochastically independent)

E ( P k )  =  P k [ l  +  §  v a r f g ( X j ) )  (Pj -  e) (p^ -  h]],
0=1 when k=j 

0=0 when W j

g(Xj) = utility function of alternative j.

4. Enumeration Procedure. The expected number of people 

choosing alternative k is

"  I

where P^^ is the probability of an individual i to choose al­

ternative k.
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Share of people choosing alternative k is

fk - TT
where T is the number of individuals in the prediction group.

The above formula are shown by Talvitie (1973).

Although this enumeration procedure is the most theoretically 

consistent way, it requires complete knowledge of all individuals in 

the group and the attributes of available alternatives, which are not 

easily available.

Koppelman (1975) revised the above formulation as the random 

sample enumeration method.

V k = X  ■ 4

^ k ' T “ J / i k - ^

where Tg » number of individuals in the prediction sample, and 

Pik = their corresponding probabilities to choose alter­

native k.

In other words, a sample of individuals is used for the entire fore­

casting process. And aggregate forecasts are made by simply applying 

the appropriate sampling factors to the probabilities. Here, the 

within-zone variance still remains.

5. Classification Procedure (Koppelman, 1975). It is based

on

— assigning the aggregate group into two or more homogeneous classes.

— predicting aggregate choice chares of each class using the naive method.
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— computing the overall aggregate share as the weighted average of the 

class shares.

E(P) = I Pg ^  = I f (Xc)ÿ
G G

where Tg = number of individuals in subgroup G,

T = number of individuals in the prediction group, and 

Xg = vector of average variable values for individuals in 
subgroup G. Note that f is logit or probit function. 

This method is used to reduce the variance of the net utility distri­

butions by selecting variables for classification.

Among the five aggregation procedures, only the complete 

enumeration procedure is consistent with relevant theories of travel 

behavior • The second and third methods are applicable in the binary 

choice situations, but in the multiple choice situations numerical 

integration would be quite cumbersome and the Taylor series approxi­

mation is also quite unstable.

Koppelman conducted an analysis of the different procedures 

under different conditions (different levels of variances of net uti­
lity distribution, symmetric and skew distribution, and mean net uti­

lity values). Under symmetric distribution, the integration procedure has 

lowest biases followed by classification with two classes. Under 

skewed distribution, classification with three classes has the lower 

biases than integration. Bias is the greatest in naive procedure.

But when distributions are skewed, the naive procedure has the least 

bias within a range of mean net utility values. The statistical 

differential procedure gives a high error with the prediction for
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groups of large variances. Simulation analysis indicates that numeri­
cal integration and classification perform better than naive and sta­

tistical differential procedures.

The result indicates that it is feasible to predict aggregate 

travel demand using an aggregation of the disaggregate choice model.

But the result doesn’t say how far aggregation can actually be carried 

such that the errors are within an acceptable limit.

The two procedures that are proposed as the most applicable in 

the multidimensional model are the classification (classification of 

subgroups according to differences in choice set availability, and 

according to variables which contribute most to the variance in the 

distribution of the net utility in order to increase the homogeniety) 

and random sample enumeration. Here the problem of within zone variance 

is reduced but still remains.
Furthermore, there must be more research to compare predic­

tions based on aggregated disaggregate models with disaggregate data 

and predictions based on aggregate models (well-structured on beha­

vioral foundation) with aggregate data.

B. Current Results to Intercity Passenger Demand Models

1. Aggregate Models

There have been studies in multimodal intercity passenger de­

mand models with number of trips (or persons) as a dependent variable.

The descendants of the classic gravity distribution models 

(indirect demand model) which represent traffic between zones as a 

function of trip generation, attraction characteristics and some mea-
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sure of impedance term (supply characteristics such as distance, price 

or travel time) performed poorly in predicting intercity passenger 

demand on a wide range of distances and city sizes.

Blackburn (1966) formulated a model which includes differences 

in tastes and income among individuals based on consumer's choice 

theory. But the difficulty involves solving nonlinear functions over 

many definite integrals and the unavailability of data which are 

quite different from the existing data.

The Kraft-Sarc, Baumol-Quandt and McLynn models which are 

based on gravity model are the representatives for intercity passen­

ger demand models.

Billheimer (1972) used the intercity passenger demand model 
that was initially developed by McLynn (1969) to predict travel by 

mode within and around the state of Michigan. He carried out a com­

plicated task requiring calibration process to obtain each of the 

model's parameters using constrained log-linear regression. The idea 

of segmentation on different city sizes is a noticeable point.

Bennett et al (1974) compared the seven intercity modal-split 

models, which are all calibrations of cross elasticity models that 

were initially developed by McLynn (1967, 1969), with the adoption of 

abstract-mode and stratification. The model parameters are estimated 

by linear regressions.

Recently, the direct demand models (aggregate simultaneous) 

were again applied to Intercity application by Peers et al (1976).

They considered both mode-specific and mode-abstract models. The use 
of non-linear regression significantly improved the standard estimation
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procedures over the linear regression technique which normally re­

quires linear transformations and constraining variables. They have 

found that the aggregate direct-demand models successfully satisfied 

such objectives as policy sensitivity and demand response to al­

ternative transportation systems. This brings enough attention that 

aggregate as well as disaggregate demand models should be developed 

further.

Watson (1974) demonstrated the superior predictability of 

disaggregate models over the aggregate models. But the question of 

different estimation methods (e.g. linear methods to aggregate models 

versus non-linear methods to disaggregate models) also contributes to 

errors in the prediction of the aggregate models. Poor predictabi­

lity of aggregate model is due partly to sampling variances, partly 

to model specification errors and partly to aggregation errors (Talvi­

tie, 1973) along with errors associated with estimation methods.

Hence the poor predictability of aggregate models is not wholly due 

to the data aggregation (within zone variance) only. Talvitie (1973) 

further stated that the within zone variance problem still persists 

when aggregation of disaggregate model is performed (see previous ag­

gregation section).

As have been done with disaggregate probabilistic models, 

there should be a well-specified structural or behavioral representa­

tion of the decision process in the aggregate models to apply to the 

intercity passenger travel demand models. That is, instead of just 

correlating existing travel behavioral pattern with socio-economic, 

activity system and level of service variables, the model specification



26

must represent the casual relationships between these .variables to ob­

tain aggregate models with aggregate data.

2. Disaggregate Models 

Watson’s (1974) study was the mode-choice case on a rela­

tively short distance city pair. He compared the predictions of mode- 

choice behavior by applying linear regression to the aggregate models 

and logit analysis to the disaggregate models in which both models are 

based on the same data set.

Stopher and Prashker (1976) applied the multinomial logit model 

to intercity passenger travel forecasting. Their analysis was only 

partially disaggregate because the models were developed by creating 

a record for each trip made in each corridor. That is, their data 

is ’quasi-disaggregate’ data. Although they concluded that the data 

set they used was not suitable for the analysis, the models show a 

greater sensitivity to cost than to time and frequency. This again 

emphasizes that intercity trips over relatively long distances are 

more price-sensitive than intra-urban trips.

This brings enough attention that consumers tend to consider 

budget constraint when trip distance gets longer partly because of 

transportation cost and partly because of other accompanying costs.



CHAPTER III

QUALITATIVE VERSUS QUANTITATIVE CHOICE THEORY

A. Introduction

This chapter deals with the comparisons between qualitative 

and quantitative choice theory which are applicable to transportation 

demand function formulations. When the choice is discrete, it is 
more appropriate to apply probabilistic choice theory. Mien the choice 

is continuous, it is more appropriate to apply the classical consump­

tion theory.

This chapter falls into four parts. The first part is the 
description of the probabilistic choice theory based on strict and ran­

dom utility models. The second part is the review of the conventional 

consumption theory based on various utility functions of consumer 

preferences. The third part is the comparisons between qualitative 

and quantitative choice theory. In the fourth part , which is the most 

important, the transportation demand formulation based on the trans­

cendental logarithmic utility function is introduced.

Before going into the qualitative and quantitative choice 

theory, some basic differences need to be considered.
In the qualitative choice, the choice is discrete (a trip

27
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versus no trip). We assume a probabilistic behavior which is the re­

sult of the probabilistic choice behavior based on strict utility or 

random utility models. The probabilistic choice theory is suitable 

to the qualitative choice.

In the quantitative choice, there is a continuous divisible 

commodity which may be demanded in any quantities. We assume an 

economic consumer behavior which is the result of the assumption that 

the consumer maximizes utility subject to budget constraint. The 

economic consumption theory is suitable to the quantitative choice.

In both cases, the utility is used to express the consumer 

preferences. However, the utility in the probabilistic choice theory 

is defined as a function of the attributes of a single alternative 

and hence each utility function is defined corresponding to each al­

ternative, Whereas the utility in the consumption theory is defined 

over a space of n-commodities and attributes and hence only one uti­

lity function is defined.

McFadden (1974) had clarified the suitability of economic 

consumption theory to the continuous choice cases as well as the suita­

bility of probabilistic choice theory to the discrete choice cases.

It is noteworthy to review his discussion briefly regarding the quali­

tative choice and the quantitative choice comparisons.

In economic consumer behavior, the individual has a utility 

function u=u(x,s,e) where x is the attribute variables such as prices, 

s is the socioeconomic characteristics and e is the unobserved distur­

bance term which is assumed to account for the taste variations among 

individuals and unmeasured attributes. The utility function is
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maximized subject to budget constraint and the system of demand 
functions derived are denoted as x=f(B;s,e). This demand analysis can 

be done with either cross-sectional data or time-series data.

Most empirical demand studies based on economic consumer 

behavior is (1 ) to ignore the possibility of taste variations in the 

sample, and (2) to make the assumption that the consumers have observed 

demands which are distributed randomly about the exact values for 

some common tastes. In the conventional demand study, where quanti­

ties vary continuously, it is reasonable to expect errors in the mea­

surement of the chosen alternative to be significant, and perhaps 

dominate the effect of taste variations (McFadden, 1974). Hence in 

this case, demand modeling with a quantitative choice approach is 

suitable.

But in the case where the individual’s discrete choice is made 

from the set of finite number of alternatives, each utility should be 

a function of each alternative. The discreteness of the travel alter­

natives implies that those alternatives are perfect substitutes for 

each other. Here, the probabilistic choice theory that considers a 
finite set of mutually exclusive alternatives from which only one al­

ternative will be chosen can be easily applied (Ben-Akiva, 1973).

B. Qualitative Choice Theory

McFadden (1973) adequately discusses the qualitative choice theory. 
The following presentations are heavily drawn from McFadden (1973).

Luce and Suppes (1965) approach two different ways to relate the 

choice probabilities and the utility functions. One way is called
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"constant utility (or strict utility) models" and the other is called 

"random utility models".

1, Strict Utility Models 

The utility function is a fixed function over the set of al­

ternatives and the choice probabilities are determined as a specific 

assumed function of the utility measures. Suppressing the socio-eco­

nomic characteristics in the utility function in order to simplify 

the notation, we get:

V(x) • I zi(x)6i = z(x)'g

where z^(x) are empirical functions with no unknown parameters, 

X is the vector of attributes of alternative k, 

z’ « (z^,z^, ..., z^) a row vector of the empirical 

function, and

3 «» (3%, ..., 3%)' a column vector of unknown parameters. 

V is a linear function of the parameter vector . 

z^ may be complex transformations of row data.

Let the probability of the Individual choosing alternative i from 

the set A be P(i:A). Here, the axiom of usual probability theory 
should hold.

(axiom 1): P(i:A) > 0 , ^P(i:A) = 1 (positivity and summability)

Since there is no distinction between empirically 

zero probability and extremely small probability, 

one may assume without loss of generality that 

P(i:A) > 0.

(axiom 2): (Independence of irrelevant alternatives) This
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axiom is introduced by D. Luce (1959), The relative

odds of one alternative being chosen over a second

should be independent of the presence or absence

of unchosen third alternatives. The probabilistic

analog is that the ratio of the probabilities of

choice of two alternatives is fixed and does not

vary by changing the set of alternatives, i.e.

P(i:A) P(i:B) ............  _PÔ1ÂT = PCjlW "here i, jeA, AcB

(axiom 3): (Irrelevance of alternative set effect) The utility

function V(x,y) has the additively separable form, 
V(x,y) = V(x) - V(y).

Using the axioms and defining the logarithmic relationship 

between utility function (indirect) V and the ratio of choice proba­

bilities, the strict utility model is constructively derived as

Vi
P(i:A) = ®

I .jeA

2. Random Utility Models 

In the random utility models, the utility function is not a 

fixed function but a random variable. The utility function is ex­

pressed as U(x) = V(x) + e(x)

where V is non-stochastic function and reflects "representa­

tive’s tastes" of the consumer, and 

e is the stochastic and reflects the idiosyncracies of 

this individual
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Assuming an individual chooses an alternative which maximizes his uti­

lity, he will choose the alternative that gives him the most satisfac­

tion. Then the probability that an individual drawn randomly from 

the population will choose alternative i from the set A equals:

P(i:A) = P(Ui>Uj, j^i)

= P(Vi + Gi > Vj + Gj, Vjfi)
= P(Gj < Ei+Vi-Vj, Vj?Si)............................(1)

where = V(x^), = e(x^), .

Let F(ei, £j) denote the cumulative joint distribution function

of (Ej, £j) and let denote the partial derivative of F with

reSj»ec.t to its i*-̂  argument. Then,
00

Pi = / F^(£^+V^-Vi, Ei+V^-V2 , ..., Ei+V.-Vj) de^

To simplify the notation, we drop the subscript i on e and dE, and 

we get
CO

Pi = / Fi(E+Vi-Vj, E+Vi-Vg, ..., E+V^-V ) d £ .............(2)
— oo

For the binary choice case as well as the multiple choice case, dif­

ferent probability models result from different assumptions on the 

distribution of the error terms. For the binary choice case, rewriting 

the above equation.

Pi = f (v (x i) - V(Xg)]

where F is the cumulative distribution function of the differ­

ence of the random variables £(x2 > - eCx^).

If E(Xj) are distributed jointly and normally, then the binary 

probit model will result.
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Pi = $[V(Xi) - VCxp]
where $ is the cumulative standard normal curve.

This probit model holds when Cj and £2 are independent with identical 

means and variances. But the probit model also holds with the inclu­

sion of covariance (£^,£2) when £^ and £2 are dependent. Other random 

utility models will result with different assumptions on the distribu­

tion of the stochastic error terms (Domencich and McFadden, 1975).

For the multiple choice case, multinomial probit model results 

if the error terms are assumed to be distributed independently normal 

distributions. But the numerical integration technique to obtain the 

choice probabilities is considered too cumbersome and costly for prac­

tical usage (for more discussion see Chapter IV, C. Estimation Methods).

For binary and multiple choice cases, the multi-logit model 

results if the error terms are independently identically Weibull dis­

tributed. Reviewing the derivation of the multi-logit model, error 

terms are Weibull distributed, i.e.

P(£j < e) = e“®

Then, J .e-CG+Vj-V;)
F(£+V.-V., e+V.-V,, ..., e+V.-V,) = R e

•’ j=l

= . . ,3)

Fi(£*Vi-Vj, e*V̂ V2, .... c.V.-vp =

J -Cc+V.-V.)
=e-c R e ' ®  1 3. . . (4)

j=l
from Eqs. (2), (4),
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- EPi = / e

p . -

- E

e-® ] A  eVi
i ^ ^ = T “ vz e J

j=l

' i e^j
j=l

This is the multi-logit model which has equivalent expression as the 

strict utility model. The strict utility model is an independent 

random utility model. The multilogit model is the model most predomi­

nantly used in the qualitative choice analysis of transportation.

Critique on the Independence of Irrelevant Alternatives Axiom:

The advantage of assuming this axiom is above all, it simpli­

fies the analysis. This axiom allows the introduction of new alterna­

tives without the re-estimation of the model. Addition of a new al­

ternative involves the introduction of the corresponding utility func­

tion and its choice probability with the introduction of one more 

term in the denominator term in all the choice probabilities of the 

alternatives.

On the other hand, this axiom is at the same time a disadvantage 

because all the alternatives are assumed to be completely distinct and 

independent of each other. In actuality, some of the alternatives are 

related. Hence this axiom precludes the differential substitutability 

and complementarity between alternatives.

This axiom allows the separability of choice probability and 

also the separability of utility function. Here the separability re­

fers to weak separability (see section on utility function). The
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separability of utility function implies that the marginal rate of 

substitution among variables in the alternative set (e.g. mode choice 

set) is independent of other variables in other alternative set (e.g. 

destination choice set). The separability of choice probability 

implies that the conditional probability (e.g. probability of mode m 

given destination d) for a given choice depends only on the alterna­

tives for the given set (e.g. destination). It is independent of the 

alternatives (modes) to all other sets (destinations); but it is 

dependent in reality.

The separability of choice probability enables the use of

the recursive (sequential) methods to factor a series of separate

choice models. Again it is a strong assumption (Ben-Akiva, 1973).

C. Quantitative Choice Theory 

The economic consumption theory is applied to the quantitative 

choice theory. The consumption theory is concerned with a "representa­

tive" individual. It assumes that this individual maximizes utility 
subject to budget constraint.

In order to see the advantage and significance of the translog 

utility model, knowledge on consumption theory is necessary.

1. Restrictions on Economic Demand Functions

Properties any demand system should have if it is derived from 

any utility function are as follows (Theil, 1975; Brown and Deaton, 

1972):

(a) Equilibrium Condition (Summability). The réallocations 

of the budget due to income and price changes respectively must
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continue to exhaust total expenditure,

i.e. budget constraint has to be satisfied before and after income 

change.
(b) Homogeneity Restrictions. The demand equations are homo­

geneous of degree zero in income and prices. (Proportional changes 

in all prices and income leave the choice of commodities unchanged.)

x(kM,kp) = x(M,p) for any k> 0

(c) Symmetry Restrictions of Substitution (often called 

Slutsky condition). When income and prices change, the substitution 

terms are symmetric.

8Xj 3x^ 3x 3x
3 p 7 ' ^ = ' j l M ' ' 3 P 7 + * l M

J 1

i.e. the effect of a change in the i^^ price on the compensated
demand is the same as the effect of a change in the price on the

i^^ compensated demand (confer pp. 66 and 67).

(d) Negativity. If the demand equation x=x(M,p) represents a 

maximum of the utility function, small changes in x in the neighbor­

hood of the optimum must lead to a decrease in utility. The diagonal 

terms of the Hessian of the utility function are all negative. This 

is the famous "law of demand" that own-price compensated elasticities 

of demand are negative.
(e) Integrability of the difference equation is necessary if 

that equation is to be derivable from the demand equation at all, i.e. 

if fundamental equations
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Ü p dx XdP

p* 0 dM - x'dP

where U is the utility function, and

A is the Lagrangian multiplier (also marginal utility of 

income),

are to be derivable from x=x(M,p). The economic meaning of the inte­

grability is consistency of choice. Consequently if demand functions 

exist satisfying the four constraints or if differential demand functions 

exist satisfying all five, then for all practical purposes we may re­

gard the utility theory as valid and we are guaranteed that there is 

no conflict between that theory and the evidence before us.

Aggregation;

For the empirical analysis of the consumer demand model system, 

the use of aggregate data is inevitable. If the postulates of the 

theory turn out to be rejected by aggregate data, we may not be wise 

to reject the basic model but rather we should reconsider the appro­

priateness of the implicit method of aggregation. In the economic 

demand theory we assume that the "representative consumer" acts like 

an ideal consumer and use the micro-theory in order to derive demand 

equations. In the application of the economic demand theory, data 

almost inevitably relate to groups of consumers. Hence aggregation 

error always exists but it may not significantly add to errors of mea­

surement and omission of variables which are inevitably present (see 

Chapter III, Introduction).

Gorman (1959), Green (1964), and many others (Pearce, 1964;

Theil, 1965; Barten and Turnovsky, 1966j etc.) have investigated the



38

conditions under which aggregation of consumer demand equations can be 

made. Some of the results turn out to be very stringent and have some 

limitations for practical usage.

Hence some aggregation is always necessary but at the present 

stage, we may consider that aggregation is less important when we are 

dealing with consumer theory.

2. Study of Utility Functions

(a) Direct and Indirect Utility Functions. The basic notion 

of classical consumption theory is that of a preference ordering, a 

relation P('preferred to') which applies to points x in the 'commodity 

space'. However, a preference ordering does not determine a utility 

function uniquely, but only up to a monotonie transformation. (Thus, 

if we replace U(x) by a monotonically increasing function then

the resulting utility function corresponds to exactly the same pre­

ference ordering.)

The direct utility function U(x^, X2> ...» x^) and the indirect 

utility function V(pj, p^, ..., p^, M) are the two ways of describing 

a given preference ordering. The direct utility function is a func­

tion of all elements of the commodity bundles x, which is constant on 

any indifference surface for which U(Xj,X2 ,...,x^)>U(x°,X2 ,... ,x°)iH xPx9 

To see the relationship between direct and indirect utility 

functions, consider the following:
n

Maximize U = U(x^, X2 , ..., x^) subject to % p^x^ = M.
i=l

Then the primal function is the Lagrangian function
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n
L = U(x,, X ) - X( I p.x. - M)1 1

The necessary conditions for an optimum are

3L_ _ ^  

n
3x7  ' iï7  - " for i = 1 , 2 ..... n

I r '  J, Pi*i - " ° ° 1 — 1
then

1^  = Xp^ (for i = 1 , n ) ........................... (1)

nI PiXi = M .................................................. (2)
i=l  ̂1

where p^'s and M are known. Solving the equations (1) and (2), we get 

the demand equations:

Xi = x^Cpj, .... p^, M)
VJhen substituting demand equations to the utility function,

U —  U[Xj (pj,.., ,Pp̂ ,M) ,... ,x^(pJ,,,. ,Pĵ ,M) j — V(pj,,., ,Pĵ ,M)

This utility function V expressed in terms of prices and expenditure 
is called the indirect utility function.

Duality exists between the direct and indirect utility function 

(Lau 1970).
Primal Dual

Function Direct utility function Indirect utility function

Variables Quantities (xĵ ,... .x̂ )̂ Prices and expenditure
(Pl'.'.'Pn'M)Lagrangian

multiplier X X
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(b) Separability of Utility Function (Goldman and Uzawa, 1964), 

Let the set of all finite number of n commodities (n variables) be de­

noted by N. Then the partition of the set N into mutually exclusive 
and exhaustive subsets is denoted as

N = NjU ... U  Ng, ^t “ for sĵ t .
Let {Nj, . Ng} be a partition of the set N (the set of variables 

in the utility function) and U(x) be a utility function for a prefer­

ence relation.

The utility function U(x) is called strongly separable with 

respect to the partition {Nj, N^} if the marginal rate of substi­

tution between two variables x^ and Xj (where x^eN^, XjCN^) is 

independent of the variables outside of and N^; i.e.

3MRS.
3Xk

where

0 ,

BU

MRSij = -ilf- ̂  0 Xj, e Nk
3x.

The utility function U(x) is called weakly separable with re­

spect to the partition if marginal rate of substitution

between two variables x. and x. from N is independent of the rest of1 3  s
the variables outside of N^.

BMRSij
axk = ° ''̂ Gre %k e .

Separability by Strotz (1957) is equal to weak separability.

(c) Quadratic Utility Function, The quadratic utility function 

is expressed as:
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U(x) = Sq + a’x + x'H X
where a' is a row vector consisting of n coefficients,

X is a column vector of n commodity quantities, and 

H is a symmetric Hessian matrix (n by n).

The utility function has continuous derivatives up to the 3rd order 

and the 1st order derivatives are all positive, which insures that a 

larger quantity of any commodity leads to higher utility.
g 2 j j

Since H (Hessian matrix -) is negative definite, H~^O “ O j
is also negative definite. In particular, elements of H”  ̂along the

9^Uprincipal diagonal are negative (— < 0). This property implies9Xi
that the marginal utility of each commodity is a decreasing function 

of its own quantity.
g 2 y  g 2 j j

The symmetry of the Hessian (g^'-ax- ~ 3x 3x ̂  due to the 
fact that the effect of a change in the i^h commodity price on the

commodity demand is the same as the effect of a change in the

commodity price on the i^^ commodity demand. By assuming that the 

Hessian matrix is not only symmetric but negative definite, we can 

ensure that the demand equation corresponds to a constrained maximum 

rather than a minimum or a saddle point (see Theil, 1975).

(d) Homotheticity, Additivity and Elasticity of Substitution. 

(Dfn. 1): A utility function is homothetic if it can be written

in the form U = F[f(x^,...,x^)] where F is a positive, 

finite, continuous and strictly monotonically increasing 

function of one variable with F(0) = 0  and f is a homogene­

ous function of degree 1 of n .variables. Intuitively, if a

utility function is homothetic, the shape of the indifference 

curves is same, hence Engel curves are straight lines.

(Dfn. 2): A function is homogeneous of r^^ degree if
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f(Xxj f X%2> •••> Xx^) ~ X f(x^} •••> x ^ ) •
If r=l, then f is called linear homogeneous function. 

(Remark): Every utility function of homogeneous of degree r is homo­

thetic (because any homogeneous of r'̂ h degree is the trans­

formation of monotonically increasing function of homo­

geneous of degree 1 .)

(Property 1): If a utility function is homothetic, expenditure pro­

portions are independent of total expenditure, to show:

=  0 •

If a utility function is homothetic, its income elasticities 

of the demand equation is equal to 1. (Every homogeneous 

utility function has its income elasticities equal to one.) 

I.e.,

aFT • X.

but homotheticity implies
3x-

3^i iL = 1

3M  ̂= C (constant)

hence

Pi%i
"IT" = PiC

9 PiXj 3
" 9M - 0 .

Therefore, expenditure proportions are independent of 

total expenditure.

(Remark 2): The relationship between the quantity of commodity demanded
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and income (prices fixed) is called Engel curve, 

xi ej>l xo ej*l X3 0<ej<l X4 ej<0

luxury
good

-M normal
good

•M normal
good

inferior 
good

If the utility function is non-homothetic, the Engel curve 

need not be a straight line. And in actuality, as income 

increases, the budget share changes.

(Dfn.3): Additive utility function (or preference independence).

A utility function is additive if it can be written as: 

n
U(x) = 2 u.(x.): direct additivity

i=l ^
n

V(—) = ]] V. (—y) : indirect additivityM  ̂ M

The marginal utility of the i^^ commodity du^/dx^ depends 

only on the i^h quantity. This implies that all 2nd order 

cross derivatives of the utility function are identically 

zero, so that the Hessian of the utility function H and H”  ̂

are diagonal matrices. Hence each entry u^j=0 whenever i^j. 

No commodity is a specific substitute or complement of any 

other commodity. I.e. additivity assumption implies the ne­

glect of "related goods" in which additivity assumptions 

appear too strong.

(Property 2): If a utility function is additive and homothetic,

elasticities of substitution among all pairs of commodities 

are constant and equal (Jorgenson, Christensen and Lau, 1975)
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E.g. CES (constant elasticity of substitution) function

= Ii=l ^

Elasticity of Substitution. Let the utility function be re­

presented by U(Xj, X2 j ...» x_). Then the marginal rate of 

substitution of the commodity Xj for the commodity x^ (the

tangent gradient along the utility curve):
8U

MRS =-
dxj UXĵ  pj
d ^  ’ iixj ~ 3U ” Pj 

axj

MRS represents the additional amount of Xj, necessary to 

maintain the utility unchanged when a small unit reduction is 

made in x^. The convexity of the utility function implies 

the increasing marginal rate of substitution and it becomes 

increasingly more difficult to substitute Xj for x̂  ̂as the 

substitution proceeds. In order to determine how fast MRS 

increases, the definition of elasticity of substitution is 

necessary.

(Dfn.4): The elasticity of substitution between x^ and x^ is defined

as taking values between zero and infinity according to the 

ease with which x^ and Xj can be substituted in consumption 

to maintain a given level of indifference, 

d £n(x-/x.)

when utility maximization sub­

ject to budget is done.

Therefore, 6 . • = ~  .d £n(?i/Pj)
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In the case of the CES function, the elasticity of subsitu- 

tion is given = constant (Arrow, Chenery, Minhas and 

Solow, 1961). = 1 if the utility function is of the

Cobb-Douglas type.

3. Systems of Economic Demand Functions 

Note that in the discussion of consumer theory, utility func­

tions are expressed only in terms of quantities (x) or prices (p) 

and income (M). No attribute variables are considered in the utility 

functions and also in the demand functions. But attribute variables 

can be included in the utility functions and hence in the demand func­

tions of comsumer theory (see section on translog utility model).

(a) System of Double Logarithmic Functions.
a, a, a

U = x^ X2 ... x^ (Cobb-Douglas utility function)

An U = a. An X, + An x_ + ... + a An x i i z 2 n n
where Xĵ  stands for the quantity of i^^ commodity.

The demand function is:

An X. = “i * “IM " .îj “ij Pj 
where i=l,2 ,...,n

Note that all intercity travel demand models (McLynn, Kraft-Sarc, and 

Baumol-Quandt) have double logarithmic demand functional forms.

(b) Linear Expenditure System. This system of demand function 

is proposed by Stone (1954). Given the Klein-Rubin utility function 

(1947-48),

U(x) =Jâ  An(x^ - r%) 

where a^, r^ are parameters.
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The demand equation is:
n

Pi*i = + Oi(M - I pir^)
i=l

n
* 1  = li + ?! - ^2^ Pi^i)

(c) Rotterdam Demand System. The following system of equations 

is proposed by Theil (1965). The Rotterdam model is not based for one 

type of utility function in particular. It provides an approximation 

to a demand equation system based on an arbitrary utility function 

which satisfies the assumptions:

— All variables (p,x,M) can be varied continuously.

— When utility is maximized subject to budget constraint for any 

price-income point in the region (p,M>0), the solution x° is unique 

and has strictly positive component.

— The utility has continuous derivatives up to 3rd order and 1st order 

derivatives are all positive. By assuming that the Hessian of the 

utility is not only symmetric but also negative definite, the solu­

tion X corresponds to a constrained maximum rather than a minimum 

or a saddle point.

The Rotterdam system of demand functions is consistent with utility 

maximization only if the utility function is linear logarithmic.

Suppose that the Rotterdam model has strictly constant price 

coefficients in its infinitesmal demand equations. The Rotterdam 

model can be expressed as:
n n n

Wid(&n Xj) = Bi[d(&n M) - I uj.d(£n Pj.)] +  ̂ Cjj[d(£n p»)- I B%d(&npk)]
k=l ' j=l k=l

where d stands for differential, (i=l>2 ,,..,n)
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Pi=i and Bj and C^jare constants

satisfying Cjj = Cj- 

?Bi = 1
3 &n M= 4»B. and if» = 3 £n X 

X is lagrangian multiplier,
n

Using ^ C.. = ^B., the system reduces to partial differential equa- 
j=l J

tions (McFadden) and the resulting demand system is of the double loga­

rithmic function which is the result of the maximization of a utility

n
function of Cobb-Douglas type (U = B- &n x-).

i=l

(d) Indirect Addilog Model. The addilog model is proposed by 

Houthakker (1960). The indirect utility is:

The demand equation is:

K  aj-l
X z  —

(Note: The unknown parameters a^,a^ are in the product form.) The

following double-log expression is preferable for empirical calcula­

tion:
P£n Xjĵ - In Xj = £n(â â̂ ) - £n(ajCj) + (â -̂l)£n(-pj*0

- (Oj-l)£n(-^)

Note that the share form is similar to the form of gravity formula.
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The trip volume share in the transportation gravity formula is:

Vk - Z,Vj ' "ki
whereas the indirect addilog share is:

Pi "i Pi%i a^° i W
k=i '

4, Comparisons of Demand Functions 
(Christensen, Jorgenson and Lau, 1975).

(a) Double Logarithmic Demand Functions.

--Linear logarithmic utility function is both additive and homothetic 

(Cobb-Douglas utility function).

— All expenditure proportions are constant.

--Income elasticity is unity.

— Elasticities of substitution among all pairs of commodities are 

constant and equal to unity.

(b) Linear Expenditure System. The utility function is linear 

in the logarithms of quantity consumed less a constant for each commo­

dity. The constants are interpreted as initial commitments.

— If constants = 0 , the utility is linear logarithmic in form.

— If constants  ̂0 , then expenditure proportions vary with total ex­

penditure. The incremental expenditure proportions derived from 

quantities consumed in excess of the initial commitments are 

constant for all variations in total expenditure and in prices.

— Income elasticity ^ 1 .

(c) Rotterdam System of Demand Functions. The Rotterdam sys­

tem of demand functions is consistent with utility maximization only 

if the utility function is linear logarithmic. Then all the proper­
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ties are the same as the double logarithmic demand function explained 

above.
(d) Indirect Addilog System. Utility function is additive in 

functions that are homogeneous in quantity consumed for each commodity. 

— The degree of homogeneity may differ from commodity to commodity, 

permitting expenditure proportions to vary with total expenditure.

— If the degree of homogeneity is the same for all commodities, the 

addilog utility function is additive and homothetic (CES function), 

elasticities of substitution among all pairs of commodities are 

constant and equal.

— Income elasticity = 1 .

(Note): Since the well-known McLynn, Kraft-Sarc and Baumol-

Quandt models have double logarithmic functional form while the Tal- 

vitie's model has mixed form (logarithmic terms and non-logarithmic 

terms), it is useful to go over some critiques on double logarithmic 

demand.

The double logarithmic functional form is widely used in empi­

rical analysis because of its functional simplicity (log-linear). The 

elasticities are constants at all values of the exogeneous variables.

It is a convenient methodology but we should not expect it to be true 

all the time. Past studies have shown that consumer's trip making 

decreases as residential density rises, increasing population increases 

residential density, the number of trips increases at a decreasing 

rate as income increases, and also the number of trips increases as 

the level of service of the modes improves.

Thus even if the model fits the data well when estimated, we



know that if it is used to project forward it v/lll eventually lead to 

unsatisfactory results. Obviously we need a model with changing elas­

ticities and we need some theory describing how we might expect the 

elasticities to change.

(e) Translog Utility Model. The translog utility function 

which will be introduced later is quadratic in the logarithm of the 

quantities consumed. This utility function is neither additive nor 

homothetic. They allow expenditure proportions to vary with the level 

of total expenditure and permit a greater variety of substitution 

patterns among commodities than functions based on constant and equal 

elasticities of substitution among all pairs of commodities. The 

income elasticity is not unitary in general. Hence the use of the 

translog utility function is more realistic than other utility func­

tions .

D. Comparative Study of Qualitative and 

Quantitative Choice Theory 

Talvitie (1975) investigated the limitations of behavioral 

probabilistic qualitative choice theory and some comparisons between 

qualitative and quantitative choice theory.

In this section, comparison between qualitative and quantita­

tive choice theory is carried out by means of the comparisons between 

multi-logit models and the translog models.

1.
In the qualitative choice case, the analysis is based on 

disaggregate data, i.e. individual data are used in the analysis.
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In the quantitative choice case, the analysis is based on 

aggregate data. The ’per capita' terms are used to neutralize the 

variation in the population. The demand equation derived is a 'per 

capita' demand equation of the 'representative' consumer.

2 .
The utility function in the qualitative choice case is linear 

and additively separable. The linearity of the utility function is a 

strong assumption in the demand theory. Additivity implies neglect of 

related goods or related variables. But both additivity and linearity 

simplifies the analysis. The utility function is homogeneous and 

also homothetic. By assuming that the income spent on a particular 

group of commodity (transportation) is very small, the utility function 

is maximized without budget constraint.

The utility function in the quantitative choice case (translog 

utility) is quadratic and hence non-linear which is a more realistic 

start. The utility function is maximized subject to budget constraint.

The utility function can be varied under the restrictions im­

plied by the demand theory (equality and symmetry) and under the re­

strictions on the form of the utility function. Under equality and sym­

metry restriction, income elasticity is not unitary and the expendi­

ture pattern of a consumer changes with rising income, i.e. Engel 

curves are not straight lines.

3.

The 'independence of irrelevant alternatives' property in the 

qualitative choice theory precludes the differential substitutability
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between alternatives. In actuality, there are cases in which the 

alternatives are dependent upon each other and the random error 

terms of the random utility function are correlated with each other 

(Talvitie, 1975).

The demand functions based on translog utility model have the 

property that the elasticity of substitution is not constant and 

hence permit a greater variety of substitution patterns among alter­

natives. This is a more realistic behavioral observation.

4.
In the qualitative choice case, the aggregation of the dis­

aggregate travel demand predictions is needed for transportation 

forecasting purposes. (See aggregation section in Chapter II.)

In quantitative choice case, microeconomic theory is applied 

to the 'per capita' terms of the aggregate data. IVhen we are deal­

ing with consumer theory, we may ignore the aggregation.

5.

In the qualitative choice case, the independence of irrele­

vant alternative property gives the separability of choice probability 

as well as separability of utility functions. The separability of 

choice probability enables the recursive methods to factor simulta­

neous travel decisions into the set of travel alternatives— trip fre­

quency (f), destination (d), time of day (h), mode (m) and route (r).

In the quantitative choice case, especially with translog 

model, we can assume the separability of choice decisions by assuming
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separability of utility functions and the resulting restrictions on the 

parameters among the independent variables. Christensen, Jorgenson and 

Lau (1975) developed tests of a series of possible restrictions on the 

underlying structure of consumer preferences. They have considered 

groupwise separability, overall homotheticity, groupwise homotheti­

city restrictions on preferences and groupwise linear logarithmic 

utility as a possible restriction on preferences. More study is 

needed on the separability of the utility function and on its appli­

cation to the travel choice situations in either simultaneous choice 

or recursive choice cases.

6.

As for the cost-benefit analysis, the conventional consumer 

surplus arguments is useful for transportation project evaluation.

The consumer surplus consideration is based on the maximization of a 

'representative' consumer's utility subject to constraint and is 

typically translated to the maximization of the value of consumer bene­

fits.

However, the area under the market demand curve does not pro­

perly represent the consumer surplus. To measure the consumer surplus 

correctly, it is assumed that marginal utility of money (income) is 

constant and utility is additively separable into money (Diamond and 

McFadden, 1974). Under these assumptions, the market demand curve 

(Marshallian) becomes a Hicksian income compensated demand curve on 

which the level of utility is the same along the demand curve.

The translog utility model which is based on the conventional
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consumption theory is directly applicable to consumer surplus calcula­

tions with proper restrictions on the utility function which will 

generate zero income effect.

In the qualitative choice case where the choice is discrete 

and the individual tastes vary among population, the conventional 

consumer surplus arguments are not directly applicable, McFadden and 

Domencich (1975) have considered the applicability of the consumer 

surplus approach in the qualitative choice situation with proper assump­

tions on the structure of utility function and the definition of 

social welfare. They define the measure of social welfare by assuming 

that the utility is additively separable in money and in other attri­

butes of the alternatives and that this money is transferable across 

individuals. In the analysis, both benefits and costs are expressed 

in per capita terms. Also the demand which is estimated by the 

choice probability is expressed in per capita terms. In effect, it is 

the translation of the qualitative choice situation to the quantita­

tive choice case such that the conventional consumer surplus arguments 
may be applied.

7.

The comparisons of the estimation methods between logit mo­

del and translog model are shown in Chapter IV. C. Estimation Methods.

As a final remark, the development of quantitative choice 

in the transportation demand modeling is as important as that of qua­

litative choice because of its complementarity and the direct interre­

lationship between the two types of the theory.
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E. Translog Utility Models

1. Derivation of Translog Models

There have been many studies in travel demand modeling based 

on consumer theory but with qualitative choice approach.

McGillivrary (1970) applied consumer theory in the construc­

tion of demand and choice models of binary modal split. The utility 

function is assumed to be linear by assuming the covariance matrices 

of the two populations of auto and transit users being equal. In 

his analysis, the choice of mode is discrete, that is the quantity of 

trip is 1 if auto is chosen and 0 if transit is chosen for each indi­

vidual .

Golob and Beckman (1971) approached the problem of predicting 

individual's travel behavior in terms of economic utility theory and 

derived different travel demand models from different utility func­

tions. Their work also indicated the potential applicability of 

economic consumption theory to travel demand modeling. But their 

work was not specific enough to carry out an actual travel demand 

modeling.

Before going into the translog utility model, we admit the 

fact that all transportation demand functions are formulated with 

the assumption that there exists a demand function to allocate the 

expenditure on each group (food, clothing, housing, transportation, 

etc.) on the first stage. Here the allocation of income to the trans­

portation group is a fixed proportion of the total income. And all 

transportation demand functions are derived with the assumption of 

separability on their utility functions (the separability refers to
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weak separabilityCBen-Akiva, 1973)). In other words, marginal rate of 

substitution between two variables of the transportation group is 

independent of the rest of the commodities outside the transportation 

sector.
Based on the theoretical work of Christensen, Jorgenson and 

Lau (1975), the passenger miles of travel demand model is derived.

The model is based on a consistent system of consumer demand theory.

But the model includes other transportation attributes besides prices 

and income. Jorgenson (1974) considered time trend variable in addi­

tion to prices and income in the translog demand modeling. Going 

over briefly the derivation of translog model, the direct transcenden­

tal logarithmic utility function ^instead of the plain utility function 

U = U(Xĵ , ..., Xjj, Aj, ..., Ajjj))can be represented as: 

tn U — £n U (x^, .. «, Xĵ , A^, ..., A^)

where x^ is the quantity consumed of the i^^ trip commodity, and

Aj is the transportation attribute of a 'representa-jth

tive individual'.

The consumer maximizes utility subject to the budget constraint, 

nI Pi%i = Mi=l  ̂^

For the present demand equation formulation, the use of indirect 

translog utility function is desirable instead of direct translog 

utility function because the budget share equation derived from the 

direct translog utility function has dependent variable appearing 

not only on the left hand side but also on the right hand side of 

the equation. That is, the budget share equation using direct utility
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function is as follows:
n

Maximize U = UCx^, x^, A^, A^) subject to p^x^ = M
1=1

iM =3x1
= A P i ..................................................(1)

The transcendental logarithmic utility function is £n U = An U(Xĵ , X2 »

> » • • • » » then

H H i  = if - Api = &  ' P i % i ......... (2)

y 3 An U  ̂ T  ̂ If
i T I T T T  = Ü i Pi=i = ÏÏ • ^

A _ 1 r 3 An UiL = i  Y   (3)
U M iâi " *- ■■3 An Xi

Substituting (3) to (2), we get
,3 An U ,Pi*i _ (3 An Xi)

“ H n — ....................................
I (3 An U ) 
i=l 3 An Xi

Expressing direct translog utility function by functions that are qua­

dratic in the logarithm of Xi's and Aj's,

n m n n
AnU = an + I aiAnXi + I a +.AnA^ + -  I I bi-Anx.*Anx.i=l j=l 2 j=i i=i J

ill It 2 111 41t
+ 1 1  Ci^AnXi'AnA. + 7  I I d-ĵ AnA. • AnA,

j=l i=l  ̂ k=l j=l •’ J

Using equation (4),

n m
p,x. “1 *1 1  3 ""JL 3 —i
M " n m

J=1 J=1

where
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n

i=l 
n

, and

n
%  = ‘'ij •

The budget share has implicit expression in terras of dependent variable 

Xj's. Here, we get ’indirect' demand functions.
The indirect utility function is useful in characterizing 

the system of direct demand functions (’direct' means the endogeneous 

variable (x^) is expressed by only exogeneous variables (prices, income 

and other attributes)), giving total passenger miles of travel by each 

mode as functions of ratios of price to total expenditure and as 

functions of its transportation attributes. We can express the indi­

rect translog utility function by functions that are quadratic in the 

logarithms of the ratios of prices to total expenditure and in its 

transportation attributes.

The resulting indirect utility function provides a local 

second-order approximation to any indirect utility function. These 

indirect utility functions are not required to be additive or homothe­

tic; therefore, the expenditure proportion is dependent on expenditure, 

while additive and homothetic utility function implies that the expen­

diture proportion is invariant. In reality, expenditure proportion 

depends on income as Engel shows that the proportion of food items 

decline as income increases (as expenditure increases).

For simplicity, the indirect utility function involving three
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trip commodities with two attributes, time trend and speed factor is 

considered:

£n V = aQ + a'Z 1
+ Y Z'BZ

where a^ = constant.

a' = (&1 , S2 - a^, â t» ^s)

Z' = (£n Pi
M ' , £n P3 

M *

B = bji h z ^13 ht bis

^21 ^22 ^23 ^2t b2s

^31 ^32 ^33 ^3t bss
btl bt2 ^t3 btt bts

>sl bs2 bs3 bst bss.

; symmetric matrix

This utility function allows expenditure shares to vary with the 

level of total expenditure and permit a greater variety of substitu­

tion patterns among trip modes than functions based on constant and 

equal elasticities of substitution among all pairs of trip modes. 

Rewriting,
3 Pi

tnV = 2q + I ai&n(— ) + a^£nAi + a^KnA^ 
i=l

3 3 p. p. 3 p.

^ j=l i=l i=l

3 ?i 1
+ I bis&n (%-) ' 7  ̂ tt^^’̂ l^'
i=l

+ ^  b^gClnAg): .

In order to determine the budget share for the i^^ commodity (trip

mode), Roy!s identity Xi = - aV/BPj .
3V/8M is used.
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(Note): R. Roy's Identity.
n

Maximize U = U(x^, ...» x^, Aj, Â )̂ subject to  ̂p^x^ = M.i=l
Then 3U/3x^ = Xp^. Consider indirect utility function V = U[Xj^(p2 ,

Pn» ^ 1’ •••> •••» •••» Pji» ^ 1* •••» » ^ 1’ •••>
3V/3pj =  ̂3U/3X--3x^/3p^ = X^ Pj* 3x^/3pj..................(1)

3V/3M = ? 3U/3x_'3Xi/3M = X| p^.3x^/3M....................(2)

Differentiating budget constraint I p^x^ = M with respect to p^ and M 

(assuming all prices and attributes are constant except Pj), we get,

3Xi 3X;
X. . : pj.—  = 0 - E Pi—  = - X j ....................... (:)

3Xi
 ̂Pi 3T= ^ ..............................................

by (3), (1), 3V/3pj = -XXj 

by (4), (2),3V/3M = X

Using Roy's identity, the budget share of the i^b trip mode is:

Pi%i _ _ 3V /3Pj . Pi _ _ aV/aPj Pi/V _ 3&"V/32np.
M " 3V/3M * M ' ' 3V/3M ‘ M/V ~ 3£nV/3£nM

therefore,

p^x^ 3£nV/3£npi 
M ■ * '"3£nV/3£nM

where x^ is the quantity (passenger miles) of the trip mode i 

of a consumer.
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is the price of the i^^ trip mode per passenger 

mile,

M is the expenditure of trips during a time period, and 
Pi and M are exogeneously determined.

Then the budget shares are the simultaneous equations as:

PjXj aj + bjitnCpj/M) + bi2&n(p2/M) + b^^tnCpj/M) + b^^£nAj + bjg£nA2
M + ^MilinCpi/M) + bM2iinfp2/M) + bwT^n fp^/M) + b„t«nAi + bMs£nA2

P2X2 ^2 + b2i&n(p^/M) + b22&n(p2/M) + b23£n(p3/M) + + b2s^nA2
M + bui^nCPl/M) + b^j2^"CP2/M) + + + tMs*"A2

P3*3 ^3 + b3j£n(pj/M) + b32Jln(p2/M) + b33&n(p3/M) + bjtHnAi + ^3s^"^2
M + bHi^nCpi/M) + bjj2in(p2/M) + bM3^-r‘(P3/M) + +

where aĵj = ai+a2+&3 »

^M1 = bi i + b g i + b g i  ,

bjj2 = 1̂2*̂ 22*̂ 32 >

^13 = bl3+b23+b33 .

- ^Mt = blt+b2t+b3t ’

his = h s * h s * h s  •
The restrictions on the parameters of the budget share equations are:

(1) Equality. The budget constraint implies that

So, the parameters of the last equation can be obtained from the defi­

nitions of and bĵjj (j = 1 , 2 , ..., n), b^^ and n-1 equations

(in the three mode choice case above, only two equations! are required 

for a complete econometric model of demand.

(2) Normality and Negativity. The budget share equations are
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homogeneous of degree zero in the parameters; normalization of these 

parameters is required for estimation. Since utility is non-increasing 

in the prices, the logarithm of utility is non-increasing in the loga­

rithms of the prices. Therefore, all a^’s must be negative and nor­

malization is done by the following relationship:
= ^2 + 32 + aj = -1

(3) Symmetry. Symmetry of the Hessian of the indirect utility 

function gives rise to symmetry restrictions:

bij = bj2 (i 3̂ j, i,j = 1,2,3)
Since the three budget share equations sum to unity, the sum of the 

disturbances across the three equations is zero at each observation. 

This implies that the disturbance variance-covariance matrix is singu­

lar. Since the disturbance variance-covariance matrix of the three 

equations is singular, we could arbitrarily drop one equation and esti­

mate the remaining two equations.

2. Elasticities 

Elasticities are useful to measure the quantitative assess­

ment of alternative transportation policies.

(a) Marshallian Elasticities.

Expressing the budget share form of the least restricted trans­

log model, equality and symmetry case, where the explanatory variables 

are prices, income and other attribute variables;

PjXj 3j + Sbji&nÇpu/M) + bj^&nA^ + bj^tnA^ bjj£np^ + A L
M -1 + %bMi£n(pi/M) + bMt£nAi + bMs%nA2 bMj%npj + B K

M
where A = a-+ ? b^ •£n(p./M)+b-^£nA,+b^_£nA.,-b--£nM , Aj,A2 j -»■" 1 jr 1 js / jj

all
fixed
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B = -1+ I bj,jiin(p̂ /M)+bĵ ĵ £nAj+b̂ ,̂ £nA2-bj^jinM ,

L = bjj^npj + A ,

K = b^j&npj + B , and

s. = £ f i  J ADirect elasticity.
Partial differentiation of Xj and pj gives :

b..3 (%np.)'K - b. -3(£np.)*L
-CPj3Xj x.3p.) (bĵ .̂£npj + 8)2

(b /p • 3p • K - b /p • 3p • L)M
p<3x. + x.3p- = — ü — 2-----3--------- — 3------ i-----3 J ] J ĵ2

Pj 3Xj (bjj/pjXj'M . K - bwj/pjXj.M • L)

^  * ^Pj " k2

Similarly with other attribute variables, (i.e. partial differentiation 

of Xj and an attribute variable, say, A^)

E.,
3*1 Xj Sj

-if Aj = e^ (time trend variable is usually represented as expo­

nential form),

■'if A2 — Sp>

GjSp = -
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Cross elasticity.

PjXj
M

b.^&npk + L
M ^k^"Pk \  K
Pi'ifjfk

where p-
^’ 2 Aj, = 3j + Ç bj^in({[p)+bj^ ünAi+bjgAnAg-bkk&nM

ih

Bk = -1 + ? bMi£n(^)+bj^^ZnAj+bj3£nA2-bĵ £̂nM.
ifk

Partial differentiation of x. and p^:

Pj /  • (bjk-l/Pk) - ‘■C'=Mk • l/Pfc), 
(-rf-JSXj = (--------------3 ------------- )»Pk

Pk ax, Pk,M (bjk ■ % k )  
®jk = Xj • 5pf ' V P j ~ P r ^ ■)

_ (M/Pi=j)bjk - ^Mk 
K

L Pi*i Since ^  = ~r^ K M
Hence

bjk/Sj-bMk 
jk K

Income elasticity.

E f i
M

^ -fbj^trkhA^, _ I 
-ÇbMi£nM+Bj^ K

all prices
and attributes where A,. = a.+Zb^^£np.+b-+.£nA,
variables are ^  J i ^  1
constant. tbj^tnAg , and

= -l+ZbMi£npi+b^;£nAi

+b„s^nA2 .

Partial differentiation of Xj and M,

M(pjaXj)-(pjXj)3M K(-Zbjj) 1/M'9M-L(-Eb^^) 1/M-8M
m2
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^(M3x.) = ^  PjXj3M - ^  -3M

P*X. 9x • ..  ̂ 1 r*

E - 1^Mj Sj'K K •

Marshallian elasticities are:
3x. p. b. ./S. - b„.

(i) direct elasticity: E.. = = — — p---------1JJ oPj Xj K

"jSp = 3̂  • Ç  = - ^

(ii) cross elasticity: 3Xj p^ bj^/Sj - b^^
^jk ■ ^  * 3c7 K

(iii) income elasticity: . y,
E = ! ï i . 5 L = i . i V , i %
^Mj 3M X .  S.'K KJ 1

So far, the demand equations referred imply market demand equa­

tions which may be called as "Marshallian demand equations". Both 

the own-price and cross-price elasticities based on Marshallian demand 

equations are not correct measures of substitutability. The price 
elasticities of Marshallian demand equations are calculated as the 

change in quantity demanded that results from a change in price. But 

as the price varies in the Marshallian demand (i.e. the price Pj falls 

to pĵ with all other prices being held constant), two effects occur 

(reference: Theory of Resource Allocation and Prices by McFadden and
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Winter, Microeconomic Theory by Henderson and Quandt).

AB: substitution effect
EC: income effect
AC: total effect

Compensated 
budget line

Original 
budget line

New budget line

First, money income is adjusted so that the utility level is 

held constant. The shift from A to B is called the substitution ef­

fect, with real income (utility level) held constant.

Second, money income is increased from the compensated level M* 

to the actual level M, holding all other prices fixed, and a shift occurs 

from B to C which is called the income effect.

The total effect is the algebraic sum of the income effect 

and the substitution effect. The substitution effect by compensating 

income to hold the consumer's indifference curve constant is due to J.

R. Hicks (1946, Value and Capital). An alternative analysis is done 

by Slutsky and Slutsky's substitution effect is equivalent to Hicksian 

substitution effect for infinitesimal changes. Hence, the use of 

Slutsky equation is employed in the computation of Hicksian income- 

compensated elasticities which deal only with substitution effect.

Thus, both the own-substitution effect and cross-substitution effect 

are correctly measured by Hicksian income-compensated own elasticities
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and cross elasticities respectively. And two commodities i and j are: 

substitutes if E..j (Hicksian income- compensated cross elasticity)>0

complements if Eij

U

(Hicksian income-compensated cross elasticity)<0

(b) Hicksian Income-Compensated Elasticities. 

From Slutsky equation,

3x. 3x. 3x.

Multiplying each side of the equation by —  ,
*i

'ij
Pjx.

= ^ij * M * ^Mi

“ij L  ■ ^ij ^ * ^Mi

\Hicksian Marshallian Marshallian
income-compensated elasticity income-elasticity

elasticity

(i) direct elasticity: Ejj

(ii) cross elasticity: E^^

U

U

= Ejj * S. - E„.
(See Appendix 
for derivation)

(iii) elasticity for attribute variables:

= Ejt - 5

-jSp

u

u “ ^jSp- i

(See Appendix 
for derivation)
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*Appendix

Hicksian income-compensated elasticities in relation to Mar­

shallian elasticities. (Slutsky equations are derived for the ovm- 

price and cross elasticities and for the attribute variable elastici­

ties.) (Reference: Henderson, J. M., and R. E. Quandt, 1958).

1. Own-price and cross-price elasticities
TMaximize U = U(xj, X2 » x^; e , Sp) subject to PiXi+P2%2*P3 *3 “

The Lagrangian function is:

£, = U(Xi,X2 ,X2 ,eT,Sp) - X(p^X2+P2X2+P3X3-M)

From the Lagrangian 1st order condition.

3Xj - Ui - APi = 0

(1)
1Ê.Bx% = U_ - Xp_ = 0

where Uĵ  is the partial derivative of U with respect to x^'s, e^, Sp. 

Total differentiation of equation (1) gives:

«11 «12 «13 -Pi' dxj = 'Xdpj - Ui4d(e?) - UisdSp

U21 ^22 «23 -P2 dx2 Xdp2 - U24d(eT) - L^gdSp

«31 «32 «33 -P3 dx3 Xdp3 - U34d(e^) - b^gdSp

-Pi "P2 -P3 0 , dX -dM + Xjdpj + X2dp2 + X3dp3

.(2)

where Uz. = 3xi3xj

Then

= ^Dii[Xdpj-Uj4d(e’̂ )-Uj5dSp]-D2i[Xdp2-U24d(e'^)-U25dSp] 

+D31 [Xdp3 -U34d (e"̂ ) -L^gdSp] -D4 ̂ [-dM+x^dp j+X2dp2+X3dp3 ] ) (3)
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where = cofactor of the element in the row and

column of D, and

D = the bordered Hessian determinant ^11 ^ 1 2 ^13 -Pl
U21 U22 ^23 -P2

^31 " 3 2 ^33 -P3 

l-Pl -P2 -P3 ° ,

letting dpi = dp^ = dM = d(e^) = dSp = 0, 

-D2iXdp2 - D4i%2^P2

then

dxi =

3x1
3P2

-D2 1X ^41*2
D (a)

This is Marshallian rate of change in demand of commodity 1 with respect 

to change in the price of commodity 2 .

Now, considering constant utility level, 

dU = UjdXĵ  + U2dx2 + U^dXg + U^d(eT) + U^dSp = 0 

= XpjdXĵ  + Xp2,dX2 + XpjdXj + U^dCe^) + U^dSp 

= X(pjdxĵ  + P2&X2 + pgdXg) + U^d(e^) + UgdSp 

= -X(-dM + Xjdpj + X2dp2 + Xgdpg) + U^d(e^) + UgdSp 

X(-dM + Xĵ dpj + X2dp2 + Xjdpj) = U^d(eT) + UgdSp

(-dM + Xjdp^ + X2dp2 + x^dp.) = 1/X (U^dfe?) + UgdSp)............. (4)

Substituting equation (4) to equation (3),

ij = 1/D (Dii[Xdp^-Ui4d(eT)-Ui3dSp]-D2i[Xdp2-U24d(eT)-U2gdSp]

+D3 I [Xdp3 -Ü3 4d (eT) -U^gdSp] -D^j [1/X (U4 (dcT) ̂ UsdSp)] )

dx
jU=constant 

letting

dpi = dp^ = dM = d(e^) = dSp = 0 ,
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îïi
^ ^ 2 ü=constant

by (a) and (b),

3^
3p,

-D21X

3x Dji'Xg
âpj + — Q  (Slutsky equation)

U=constant 
Multiplying P2/Xj both sides,

3Xj p2 3x^ P2 D4 J-X2 p^
• ÏT  ̂- F -  • 3^

Also cetris paribus (dp^ = dp2 = dpj = dT = dSp = 0) except dM, 

then from eq. (3), ^
3Xi
3M = D ............................

Substituting (6 ) to (5),

A . ! i )
*1 Inconstant *1

'2P2,
= • ( - r )

'12 = Ei2 + Ew,
U=constant Marshallian

Hence, denoting with indirect utility function, in general.

= E-- + E;
V=constant jj * * S.

.'^4=constant '

(b)

(5)

(6)

2. Elasticities of other attributes (time trend, speed ratio)

dx. = ~(®ii [Adp^-Ui^d (e^) -UjjdSp]-D^i [Adp2-U24d (e"̂ ) -L^gdSp]
U=constant ^

+D3 I[Xdpg-U2 4 (de^)"UggdSpj-^^^[1/X (U4 (de^)+UgdS)])

dpj = dp^ = dpj = dM = dS = 0

^11 T ^21 T ^31 T ^41 ^4 Tr  “145 tê ) ♦ -j- - —  Uj^SCcT) - -  3(6 )̂8x
U=constant
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 ̂ = C- ^ « 1 4  - ^ « 2 4  - U3 4 ) - • r )U=constant v ____________ /

(— r) Marshallian 
3e*

A )3e* a
U=constant

U=constant
- ^1L . ^  ^  . 3U/3e? . e^/U
■ ggT ’ Xj " 3M * Xj * 3U/3M * M/U

It = El 3U/3e"^ • ef/U
■ ^"Marshallian ' 3"/»^ * M/U

If the translog indirect utility function (3JlnV/3£nM = +1) is homoge­

neous and non-additive, then and

=lt = E -  (1)
3%nV

^^Marshallian 3£n(e^)

in general.

= E_. 3 tnV
^"Marshallian 3£n(e*̂ )

, i=l,2,3

Similarly, the speed ratio attribute variable results in.

3xL . §E3Sp * Xj
3 * 1  sp_. I f l  à L  a u / a s p  S p / u  

U=constant = »Sp)(xi) " 3M ' Xi ' 3U/3M M/U .

'ISp
3£nV/3tnSp 

U = "isp - % i  • — W )
° Marshallian

If the translog utility function is homogeneous and non-additive, then

"ISp = E + atnVy ISp 3£nSp
° Marshallian
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in general 

EjSp = E 32nV
V_ jSPwarshallian 3**Sp

i = 1, 2, 3
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(c) Allen Uzawa Elasticities of Substitution

Elasticity of substitution between two commodiites x. and Xj 

is defined as:
d &n(x./x.)

„ - J \  (See Chapter III.C.3 (dfn. 4).)d An(Pi/Pj)
There is a relationship between Hicksian income-compensated elasticity 

and elasticity of substitution (Liew, 1977). Uzawa showed elasticity 

of substitution in terms of the expenditure function and its deriva­

tives as (1) below (1962).
(l)M(V;p)M (V;p) M*3/9p (x?) 3x*/8p • p /x?

-  = ' -xY 'Pjxg/M

where M(V;p) is the expenditure function, and

xt, xt are the Hicksian income-compensated i^^ and 

demand equations.
By the use of Shepherd Lemma,

Mj,(V»p) = X *

Maximize U(x) subject to p'x=M.

then 3U/3x^ = Xp^ (i=l,2,...,n)

Zp.x. = M 1

and 3M/3p. = Z p. "3x./3p. + x. = Z -r + x.1 i ^1 1 1̂ J i ^ 9x. 3pj 1

but under the Hicksian income-compensated demand equations.

3U % 3U
3Pj i 3Xj, ' apj = 0

. 3Mhence SpT =

i.e. Mj(V*p) = X *



CHAPTER IV 

METHOD AND DATA

A. Descriptions of Data

Most of the data used for the empirical analysis of this study 

are obtained from "Transportation Facts and Trends" (12th edition,

1975). It contains annual intercity travel data for the period from 

1947 to 1974:

(1) total intercity passenger mileage (in billions) of airline, 

bus and rail: XA, XB, XR;

(2) prices per passenger mile (in cents) by each mode: PA, PB,

PR;

(3) number of passengers (in millions) carried by airline, bus 
and rail : PNA, PNB, PNR;

(4) consumer price index with base year 1967.

The average speed (in miles per hour) of the domestic airline 

passenger carriers is obtained from the Handbook of Airline Statistics. 

The average speeds of passenger bus and rail modes are obtained from 

FHKA and ,\MTRAK respectively. The speed data of the rail mode are com­

puted differently from those of airline and bus modes. The speed 

data of the rail mode include not only intercity trains but also sub­

urban trains with waiting time included, whereas the speed data of

74
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airline and bus modes are the average maximum speed of the trip with 

waiting time not included. Considering this factor in the rail speed 

data, there is not much difference in speed between the bus and rail 

modes. Hence only the speed of the airline mode versus speed of the 

bus-rail mode is considered. And the speed factor is derived as the 

logarithm of the ratio of the speed of the airline mode versus the speed 

of the bus mode (representing both bus and rail speed).

For the present study, the intercity travel by auto is excluded, 

due primarily to a lack of data.

From the available data,

(1) Average revenue per passenger mile is divided by the consumer 

price index (consumer price index of 1967 = 100) to obtain deflated 

average revenue per passenger-mile,which is the price that individual 

passenger pays per passenger mile. Hero, the use of average revenue

per passenger-mile assumes the linear relationship between the prices 

and the passenger miles.

RPA = PA/CP , RPB = PB/CP , RPR = PR/CP (cents/passenger-mile).

(2) The quantities of travel (passenger-miles per person) by 

each mode are obtained by dividing total passenger mileage of travel 

by the number of passengers carried by each mode.

QXA = XA/PNA , QXB = XB/PNB , QXR = XR/PNR 

(billions of passenger miles/millions of passengers).

(3) Price per passenger mile (revenue per passenger mile) is 

multiplied by the quantities (passenger miles per person) of each trip 

mode to get expenditure of a 'representative individual' of a specific 

year.
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XM = (RPA'QXA) + (RPB*QXB) + (RPR*QXR) (where XM is in thousands of 

cents/passenger).

(4) Time trend variable T ranges from 1 to 28.

(5) Speed factor, SPF = £n(SPA/SPBR): let Sp = SPA/SPBR.

where SPA is the speed of airline mode in 

miles per hour, and 

SPBR is the speed of bus, rail modes 

in miles per hour.

(6 ) Since the intercity passengers carried by bus (PNB) are quite

different before and after the 1959 data, linear regression is applied

in PNA and PNR with respect to PNB to obtain uniformly increasing PNB 

values. Therefore, 13 regressed values of PNB's (from 1947 to 1959)

are used with the rest of the data in the analysis.

B. Model Specifications 

The model specifications are based on the validity of demand 

theory. Normality and negativity conditions are also imposed (i.e.

Sum of the constant terms should be equal to minus one).

1. Equality and Symmetry Restriction Case 

The independent variables considered are the prices per passen­

ger mile of the airline, bus and rail modes (RPA, RPB, RPR) and the 

expenditure M.

Equality: the parameters bĵ j (j=l,2,3) occur in both of the

share equations.

Symmetry: Hessian matrix is a symmetric matrix.

The entries of the Hessian Matrix satisfy
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^ij “ ^ji (i'i - 1,2,3)
The share equations based on the variable notations of the data

are:

SA - RPA,QXA _ AA+BAA»£n(RPA/XM)+BAB*&n(RPB/XM)+BAR'&n(RPR/XM)
~ XM " -l+BMA*£n(RPA/XM)+BMB,£nCRPB/XM)+BMR«£n(RPR/XM)

SR - RPR'OXR _ AR+BAR♦£nfRPA/XMI+BRB.&nfRPB/XM)+BRR.&n(RPR/XM)
XM -1+BMA • £n (RPA/ XM)+BMB • £n (RPB/XM) + BMR. £n (RPR/ XM)

SB = 1 - SA - SR

For simplicity, the share equation is denoted as:

forl.j=I,2,3
" * f »Ml '"(TT)

and the demand equation (Marshallian) is:

M f b-i £n(P /M)

Elasticities frefer to Chapter III).

Marshallian elasticity:

(i) Direct elasticity

3x. p. b../S. - b„. p.
Gjj = 9fT ' =- K---------  ̂ K = -1 +

(ii) Cross elasticity

‘’k bjk/Sj - M̂k
Gjk = TP; ' IT  = -'--K ------------

(iii) Income elasticity
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Hicksian Income-Compensated elasticity:

y = ^ij + Sj'Ew^(Po) for i,j=l,2,3

Allen-Uzawa Elasticity of Substitution:

'ij - S. - Sj

2. Homogeniety and Non-additivity Restriction Case 

The independent variables considered are the prices per passen­

ger mile of the airline, bus and rail modes (RPA, RPB, RPR), the expen­

diture M, the time trend T and the speed ratio Sp = SPA/SPBR. Homo­

geniety restriction is also well discussed in Christenson, Jorgenson 

and Lau (1975). But it is useful to relate their discussion to the 

present model specification which has attribute variables in addition 

to prices and income variables.

Homogeniety is a special case of homotheticity. Hence restric­

tions for homotheticity condition should be included in the homogeniety 

condition.
If the direct utility function is homothetic, we can write 

to U = F[£n H(Xj,X2 ,X3 ,t,Sp)] = F[&n H(Xi,X2 ,X3 ,X4 ,Xg)] 

where x^ = t, Xg = Sp ,

H is a homogeneous function of degree one, and 

F is a continuous and strictly monotonie function.

Partial differentiation of the translog direct utility function gives:

= a, (i = 1, 2, ..., 4, 5)3 itn Xi
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f'anU _ 3F  ̂ 3^£nH 3^F  ̂ 3£nH  ̂ 3£nH
3£nXj3£nXj ~ 3£nH * 3£nX^3£nXj * * 3&nXj

— (i,j=l, 2, «., 4, 5)
Homogeniety of degree 1 of the function H implies that (R.G.D. Allen,

1956):
E _ I
i 3£nXj
E s2£nH 
^ 3£nX^3£nXj = 0

Summing over i and using homogeniety of degree 1 of the function H, 

T. _  ̂ 3^£nU ____
^Mj = I dIHxTalHxT - 

where o =
3F/3£nH

^Mj ~ (fof j=l, 2, 4, 5)..homotheticity restriction (1)
Note that translog approximation to a homothetic utility function is not 

necessarily homothetic. The translog utility function is homothetic

iff it is homogeneous, i.e. o= 0 ............ homogeniety restriction (2)

Now, the translog approximation to a homogeneous function is 

homogeneous. Samuelson (1965) showed that the direct utility function 

is homothetic if and only if the indirect utility function is homothe­

tic. Hence the share equations derived from the indirect translog uti­

lity function with homotheticity and homogeniety restrictions along with 

normality restrictions (a2̂ +a2+aj = -1) are:

Ç RPA.QXA
= - X M ---

AA+BAA.&N(RPA/XM)+BAB•£n(RPB/XM)+BAR•£n(RPR/XM)+BAT.T+BAS.£n(Sp)_
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ç RPR'QXR 
R ■ XM

_ AR+BAR*£n(RPA/XM)+BRB'£n(RPB/XM)+BRR•In(RPR/XM)+BRT'T+BRS«%n(Sp)
( - 1)

^B = 1 - S* - S%

For simplicity, the share equation is denoted as:

P.x. a. + E b.. £n(P./M) + b *T + b- in(Sp)
S- = - 2- 2. = J  1— 21 Z 21- - - - - 21- - - - - -J M (-1)

for i,j = 1, 2, 3.

Note that the share equation is in log-linear form but Sj (the depen­

dent variable) is not in log form which is different from conventional 

aggregate travel demand models of log-linear form on both sides of the 

equations.

The demand equation (Marshallian) is:

£n (Sp).. ,M / j  * Î "ji * hjt'T * "is
- fpyJ------------------ M ) -----------

Elasticities (refer to Chapter III.E.2) 

Marshallian elasticity:

(i) Direct elasticity:

for i,j = 1, 2, 3.

3x. P. b..
. _L = _ 33

3P- X; S.J J 3

3x. b.^3 T Jt
3T "j

1=

St) ^iS 
^jSp = 3 %  • r  = - $5“

(ii) Cross elasticity:
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3X. P, b..
^ik “ ’ T~ ~ ~ j=l,2,3JK 3pĵ  Xj Sj

(iii) Income elasticity:

3X.

Hicksian income-compensated elasticity (see Chapter III.E.2):

= E-- + S. for i,j=l,2,3(i) Eij

(ii) Elasticities with attribute variables, time trend and 

speed ratio (see Chapter III.E.2. Appendix).

"jt = E. -

"jt

U 3t 32ne^ o

Tsince £nU = F[£nH(xj,X2 ,X2 ,e ,Sp)] and 

£nV = V[£nH(Pi,P2 ,P3 ,M,e?,Sp)] ,

3&nV= E,
oV_ 3£ne’̂

The following is the indirect translog utility function with time and 

speed varying preferences:

£nV* = a* + Z a^£n(Pj/M) + â £n(e'*̂ ) + ag£n(Sp) + J J | b.^£n(P^/M)£n(Pj/M) 

+ Î b^2&n(P^/M)£n(eT) + E bjg£n(Pĵ /M1 £n(Sp) + b̂ ^£n(e"̂ )£n(Sp)

+ ^  + I  b s s [ l n ( S p ) ] 2
Since a^, a^, a^, b^^, b^^, b^^ are not estimated in the demand equations 

(see Chapter III, Translog utility models), define time and speed
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adjusted indirect utility function as:

£nV = £nV* - [a^ + a^£n(e^) + a^£n(Sp) + b^g(£ne^)£n(Sp)

T\ 2   ̂ 1+ 7  b^tClne?) + y  bgg(£n(Sp))^]

With homogeniety restriction (? b-^ = 0 , ? b. = 0),i xt i IS

3£n(e^)

hence

"jt = Ej^ - I b^^ £n(Pĵ ) , j=l,2,3

Similarly with speed ratio variable,

=  : j s r  •

Ejsjy = EjSf- I i=1.2.3
' o

Allen-Uzawa elasticity of substitution:

= Jihs. i,j = l,2,3 
' S.

C. Estimation Methods 

In this section, both quantitative choice and qualitative choice 

estimation methods are discussed.

1. Quantitative Choice Estimation Methods 

In the calibration of aggregate travel demand models, parame­

ters of each demand equation are estimated by means of linear regres-
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sion, constrained linear regression, and non-linear regression.

For the present study, parameters of non-linear share equations 

are simultaneously determined by using non-linear maximum likelihood 

estimation method. No work has ever been made to employ the maxi­

mum likelihood method in aggregate travel demand model estimation.

The well-known multilogit models or probit models have employed the 

use of maximum likelihood method in disaggregate travel demand model 

estimation.

Consider the p non-linear system of stochastic simultaneous 

equations in Y given X (reference: Malinvaud, 1970; Bard, 1974). The 

standard reduced model is of the form

(1) Y = F(X,6) + e (p equation with n observations of Y and X and k

unknown parameters) 

where the errors e are distributed normally N(0,ESI) with zero 

mean and non-singular covariance matrix

ZSI = Oiil Oj2 l

OplI

-ipi

"pp'j

and I is a nxn identity matrix.

then the maximum likelihood function is

(2) L = C2tt) ZSI

Since the covariance matrix ZSI is generally unknown, the concentra­

ted maximum likelihood function (p.6 6 , Bard) is considered.

(3)(C(8) = ( ^ ) [ & n ( ^  - 1] - (ÿtn|M(8)l

where I'M (9) is a moment matrix defined as.
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nM(e) = I e(e)e’ce) 
i=l

where e =

n

^®2i » .

I ®Pi

®l' [ni]e =
®2 ®1= ?2i

1
9

PxP

lM(6) I = det M(6)

(4) Maximizing^ is equivalent to minimizing *(8) = ^  &n|M|

(5) By Taylor series expansion at the initial point 6 -,

*(8) = + gT(8-8.) + |(8-8.)'^ll.(8-8p

T 36where g = gradient vector of g (8 ) = -—a 36^

H = Hessian matrix of $, H _(G) = — —38.36

Minimizing 6 given y and x,

S g + H.(8-8 .) = 0 38 1 1 1

® " ®i ■ "i^ Si letting 8 = 6^+^ , 8 .^̂  = ^i-HT-^g^

(6) Iterative scheme: Starting with a given point as the initial

guess, generate a sequence of points 8 ,̂ 8 ,̂ ... which will con­

verge to the point 8*, at which 4>(8) is minimum.

6^^^ = 8  ̂+ where is step size, and

V is the directional vector (step 

direction).

Newton-Rapson (or Newton) iteration method:
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Let pu=l, given an arbitrary small number e>0.

=  M „  - th .i+1GL ., = 8  ̂- g^ : i iteration

till
«i

< e if yes, stop; 8^+^ is optimal, 

if no, iterate back.

McFadden used the Newton-Rapson (or Newton) iteration method in 

the multilogit model parameter estimation.

(7) In the case of logit model, the likelihood function is easily 

computed, and the gradient and Hessian of the log-likelihood 

function is easily obtained. But in general, the computation of 

gradient and Hessian is tedious especially when there are many 

number of simultaneous non-linear equations. The Newton- 

Gauss method is an approximation to the Newton method by eli­

minating the need for computing the second derivatives. For sim­

plicity, single equation non-linear least square is illustrated.

n p n 7 ^ 2
Minimize 0(6) = % [Y; - f(X.,0)] = % [Y.-f.] = I e-

i=l  ̂ i=l i=l

3$ ? ? 3fithen gradient = _  = 2 ej • —  = -2 —

n 9^f. n 5f. 3e.

n 3^f. n 3f. 3f.
= -2 y e- ----—  + 2 7  —  •1=1 * 38„3Sb i‘i 36„ 38g

Since in general, residuals are small and 

neglecting the 1st term,
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n 3£. 3f.
«as - «as = 2

and

6 = Bq - gg : This is called Newton-Gauss (or Gauss)

method.

where 6^ is initial guess, and

N“l.g is the directional vector.

For practical applications, gradient is approximated to reduce computa­

tional burden.

Be. Ae.

(8) Notes on convergence and initial guess:

The essence of Gauss method is to use the directional vector 

Vi = N^ïg^ to determine the direction of p(step-size) not the length 

of p, where is the solution of the set of simultaneous linear equa­

tions NUv^ = -gj. Convergence achieved by Gauss method gives local 

minimum. But the local minimum by Gauss method is a global minimum 

if measurement errors are not significant, the model fits the data 

well and specification errors are not significant. Even after one 

obtains a convergence, it is better to restart the estimation proce­

dure with different sets of initial guess to ensure the convergence 

gives a global minimum. But when excessive measurement errors or 

specifications errors exist, or the model doesn't fit the data, then 

either divergence occurs or convergence to local minimum occurs or 

certain parameters increase beyond bound. The state of the art of 

non-linear optimization is such that one cannot obtain correct
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parameter estimates in a single computer run. The choice of a good 

initial guess is also an important factor in order to reach convergence 

to the solution. In choosing an initial guess, one must rely heavily 

on intuition and prior knowledge of parameters.

In the case of the translog model, an alternative way of finding 

an initial guess is to change the original model into a simpler model 

by placing restrictions on the utility functions, and hence by placing 

restrictions on the parameters.

Recently Smale (1976) showed theoretically the convergence of 

Newton method (and hence Gauss method) to the global minimum under an 

arbitrarily given initial guess. The practical application of this 

theoretical development has not yet been demonstrated.

(9) The statistical properties of the parameter estimates are well 

discussed in Malinvaud (1970). The parameter estimates are 

shown to be asymtotically efficient, consistent and normal.

2. Qualitative Choice Estimation Methods 

In the qualitative choice estimation methods where the choice 

is discrete, logit model or probit model is used depending upon the 

distributional assumption of the random error term of the utility 

function. In both cases, the method of maximum likelihood is used 

for the estimation process. In addition to logit and probit models, 

discriminant analysis is used in qualitative choice estimation methods. 

But in discriminant analysis, no dependent variable exists. The 

discriminant analysis is a procedure to find the utility functions of 

the two groups such that their joint distribution has almost no overlap.
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The discrimination rule classifies a new observation of an unknown 

mode to which mode it is most likely to be chosen. Usually the popu­

lations of the two groups are assumed to be normally distributed in 

the set of variables specified.

Most often, the multilogit model has been used in the quali­

tative choice travel demand models.

The multinomial probit model has not been used previously be­

cause of the computational problems involving cumbersome numerical 

integration technique in the estimation procedure. However, recent 

work (Lerman and Manski, 1976) demonstrates the feasibility of the 

use of the multinomial probit model. The probit model has an advan­

tage over logit model in the sense that probit model allows the cases 

where the random error terms of the utility function are dependent.

More developments are expected in the multinomial probit model.
McFadden (1968) used the Newton-Rapson iteration method in the 

multilogit model parameter estimation. In the logit model,

Xit® 
e JtJcA;

Then the likelihood function

T ft(i) L = n n P(i;A )
t=l ieA^

where T is the number of observations, and

rl if alternative i is chosen in observation t, 

0 otherwise.

(ii) The log likelihood function is:

fit
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t=l ieA^

(iii) Gradient:

Z (fit - P(i;At))xit 
icA»t -

= 0

where ^itk^

(iv) Hessian:

■ tlilt'"'' ■ - -tî’}

where x^ = % x_^,P(i;A^)
ieA^

As is seen above, the calculation of Hessian is not tedious and hence 

the approximation to Hessian is not necessary. McFadden (1973) showed 

that the estimator L* has optimal asymtatic properties and that there 

is a unique MLE whenever a maximum exists.
Maximization of L is equivalent to solving the systems of 

equations (iii) by applying Newton-Rapson Method.
Research has progressed in the alternative logit estimation 

methods to be useful for disaggregate transportation demand model 

parameter estimation.

Manski's (1974) maximum score estimation methods do not require 

the independently Weibull distribution of the random error terms.

Only the disturbances are required to be order preserving (i.e. alter­

native with the highest utility has the greatest probability of being 

selected). While maximum score estimators are consistent under a
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broader range of conditions, they are neither asymtotically efficient 

nor normal. Hence the asymtotic statistical tests of the significance 

of the coefficients are impossible. But more study in this area is 

necessary.

Lerman and Manski (1976) categorized three sampling tech­

niques (random, stratified and choice-based sampling) for the calibra­

tion of disaggregate travel demand models. Existing logit estimation 

method yields consistent parameter estimates for random and stratified 

sampling techniques. But the weighted maximum likelihood estimation 

method whose estimators are both consistent and asymtotically normal 

is applicable to choice-based sampling techniques. This estimation 

method to choice-based sampling can be applied by using existing 

logit estimation programs with minor changes.

McFadden and Manski (1976) developed further in the area of 

parameter estimation for discrete choice cases. They showed the consis­

tent and asymtotically efficient estimation methods under alternative 

sampling processes. They developed and analyzed the maximum likelihood 

and the pseudo maximum likelihood estimators (or weighted maximum 

likelihood estimators) into fully constrained MLE, partially constrained 

MLE and unconstrained MLE depending upon whether B and Q are both 

known, only one of the two is known or neither of them are known re­

spectively. (P is the marginal distribution of attributes z in the 

population, P(z) = .Z^f(i,z) and Q is the marginal distribution of an

alternative ieC, Q(i) = Z f(i,z) (or aggregate choice shares in thezeZ
population).

It is well known that MLE’s are efficient under a correct
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model specification and no data measurement errors. But practically 

these conditions don't hold. Furthermore, the MLE of the logit model 

perform poorly in the rare choice case. Hence, they developed new 

estimators (the MM-class estimators) which are relatively inefficient 

but relatively robust when specification and measurement errors are 

present.

Further research in this area will contribute not only the 

estimation methods of the discrete choice case but also the general 

non-linear simultaneous parameter estimation cases.

3. Test Statistics Used

Since both of the quantitative choice and qualitative choice 

cases involve non-linear simultaneous estimation methods, the 
measure of fit used in regression analysis (R ) is not a good indica­

tor. Instead, the significance of a group of coefficients can be test­

ed using the likelihood ratio. In the qualitative choice estimation 

case (logit-model case), an index similar to is used. This index 

is obtained by transforming likelihood function.

= 1 - and is p^ adjusted for degrees of freedomL [Üj

where L*(6) is the log-likelihood function evaluated for the 

vector of estimated coefficients, and 

L*(0 ) is the log-likelihood function evaluated for 0=0 , 

where setting 6=0 assumes the equally likeli­

hood alternatives.
In the quantitative choice estimation case (translog-model case), the
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significance of the group of coefficients or the validity of restric­

tions is tested by using the likelihood ratio (S.S. Wilks, 1962; H. 

Theil, 1971).

(i) Test for the significance of the group of coefficients.

The likelihood ratio X is defined as the ratio of the maximum value of 

the likelihood function with the added group of coefficients L*(8) to 

the maximum value of the likelihood function without the added group 

of coefficients L*(0q), where 0=0q.

X = L*(8o)_
L * ( 0 )

For normally distributed disturbances the likelihood ratio may be 

written as

_

■ NSel  ‘

where |Zg| = determinant of the 0 -included estimator of the

var-cov matrix of the disturbances,

I Eg 1= determinant of the Og-included estimator of 
o

the var-cov matrix of the disturbances, and

n = degrees of freedom = number of newly added parameters.

Hence

-2 £nA = n(£n|Zg | - £n|Zgj) . 
o

(ii) Test for the Validity of restrictions. The likelihood 

ratio X is defined as the ratio of the maximum value of the likelihood 

function with restriction L* ~ to the maximum value of the likeli-XGSuX «
hood function without restriction L*^q restr.
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L* ^X = restr.
Lw/o restr.

For normally distributed disturbances the likelihood ratio may be 

written as

. = f 'Lstr.l 1 -"/:
l^w/o restr.I

where l̂ j-gstr I " the determinant of the restricted estimator
of the var-cov. matrix of the disturbances, 

l^w/o restr. 1 “ the determinant of the without restricted 
estimator of the var-cov. matrix of the 

disturbances, and 

n = degrees of freedom = no. of restrictions.

Hence

-21nX = restr.H'

(iii) Under the null hypothesis, this test statistic *-2&nX' 

is distributed asymptotically, as chi-square with the number of degrees 

of freedom equal to the number of added parameters or number of re­

strictions to be tested. That is, if is true, then

lim P(-2£nXj, < x ) = — - -  * J “ e du
n-^ o 2^/^r(r/2) o

which means that -2£nX^^ converges to chi-square distribution. For 

the actual use of this test statistic in the present study, see Chap­

ter V.A.3.



CHAPTER V

ESTIMATION RESULTS AND INTERPRETATION 
(See Chapter IV.B. Model specifications for reference.)

A. Parameter Estimations

The parameters of the share equations are estimated by the

non-linear maximum likelihood method. The TSP (Time Series Processor)

program developed by R. E. Hall and B. H. Hall (1974) is used in the

parameter estimation process.

Although R“, the standard error of regression and sura of

squared residuals are computable, the x^-statistic is a more powerful

tool to test the significance of the group of coefficients or the

restrictions. Hence we will mainly focus on the log of likelihood
2function values instead of R .

Parameter estimations are done under the following;

•homogeniety and non-additivity case 

•equality and symmetry case 

•equality case (share equations are free from 

symmetry restrictions)
•addition of new parameters starting from share equations with con­

stant term only.

94
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1. Equality and Symmetry Restriction Case 
This is the most general case (minimum restriction case) of the 

translog models. The model with prices and income as independent var­
iables is considered under the equality and symmetry restriction case.
Its share equations are expressed as,

P X. a- + ? b.. an(P-/M)
S. = -77-̂  = ---------------- —  for i,j=l,2,3J M -1 + ^ b^^ %n(Pi/M)

Explicitly expressing the share equations in terms of the 

data variable names,

RPA'QXA AA+BAA • £n (RPA/XM) +BAB. £,n (RPB/XM) +BAR. ̂n (RPR/XM)SA = ----   =---:---- ;— -----------------------------— ------ -—XM -1+BMA•£n(RPA/XM)+BMB•£n(RPB/XM)+BMR•&n(RPR/XM)
SB - RPR'OXB ^ AR+BAB♦£n(RPA/XM)+BBB.£n(RPB/XM)+BRB»£n(RPR/XM)

XM -l+BMA'%n(RPA/XM)+BMB'&n(RPB/XM)+BMR'£n(RPR/XM)
SR = RPB.QXR _ AB+BAR.£n(RPA/XM)+BRB.&n(RPB/XM)+BRR.&n(RPR/XM)

XM -1+BMA'^n(RPA/XM)+BMB.£n(RPB/XM)+BMR.£n(RPR/XM)

(Table I-l) shows the parameter estimates and their t-statistics of 

the above share equations. (Table 1-2) shows that the parameter esti­

mates become stationary under different sets of initial guesses.

This guarantees that the system converges to the global optimum.

(Table 1-3) shows the parameter estimates and their t-statistics under 

(1) homogeneous and non-additivity case, (2) equality and symmetry 
case, and (3) equality case where the prices and income are indepen­

dent variables.

Analysis of the parameter estimates

(i) The signs of the parameter estimates all came out as expected.
That is, all the constant terms of the share equations AA, AB, AR are negative 
whose sum equals -1, which satisfies the normality condition. The diagonal
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elements of the Hessian matrix BAA, BEE, BRR have negative signs as 

expected.

BAA < 0, det BAA BAB* and det
BAA BAB BAR

> 0 , BAB EBB BRBBAB EBB BAR BRB BRR
< 0

ensure the negative definiteness of the Hessian matrix of the uti­

lity function. Among the parameters, the symmetry of the Hessian 

matrix is satisfied as well as the equality restriction.

(ii) Number of observation n=28

number of parameters to be estimated = 8

(AA, BAA, BAB, BAR, AR, BRB, BRR, BMB)

number of share equations to be estimated = 2
Ohence,degrees of freedom = 28 - ^  = 24.

The t-values with 24 degrees of freedom with significance level (2-tail 

t-test) is:
significance level .40 ^20 .10

t-values at d.f. = 24 .857 1,318 1,711
At 20% significance level, parameters AA, BRB, AR, AB are significant.

2. Homogeniety and Non-Additivity Case

This is more restrictive case than equality and symmetry case but

this case can accommodate more variables than the equality and symmetry case.

The share equations with prices, income, time trend and speed ratio may be

expressed as:
3 3

P.x. a. +
S.

Pjij _ ^  * ill tn(P./M) . bjt'T * I b.g tnÇSp)

" (-1) 
for j = 1, 2, 3.

Several combinations of attribute variables (time trend and
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speed ratio) are tried and are compared. Model 4 with prices, income, 

time trend and speed ratio as explanatary variables is chosen to be 

the representative model of homogeniety and non-additivity restriction 
case. (Table II-l) has parameter estimates for model 4. All the mo­

dels considered and compared are shown in (Table II-2). (Table II-3) 

shows restrictions under the same independent variables (PA,PB,PR,M,T,

Sp). The restrictions are (1) homogeniety and non-additivity, (2) equa­

lity and symmetry.

In Table II-2, the independent variables considered in each of 

the models are;

model 1 . . . PA,PB,PR,M (prices, income)

model 2 . . . PA,PB,PR,M,T (prices, income, time trend)

model 3 . . . PA,PB,PR,M,Sp where Sp = SPA/SPBR (prices, income, speed

ratio)

model 4 . . . PA,PB,PR,M,T,Sp where Sp = SPA/SPBR (prices, income, time 

trend, speed ratio) 

model S . . . PA,PB,PR,M,T,SPA,SPBR (prices, income, time trend, speed

of air, speed of bus-rail) ,

Note that in the homogeniety and non-additivity restriction case, share 

equation is independent of M since Z bj^&hM = 0.

Explicitly expressing the share equations in terms of the data 

variable names,

^. _ RPA'QXA _ AA+BAA*£n (RPA/XM) +BAB*n (RPB/XM) +BAI^£n (RPR/XM) +BAT»T+BAS*n (Sp) 
" XM (-1)

cd-RPS•QXB_AB+BAl>£n(RPA/XM)tBBB&n(RPB/XM)+BRB*n(RPR/XM)+BBT*T+BB&£n(Sp)
XM (-1)

RPK'QXR AR+BAR*n(RPA/XM)+BRB*n(RPB/XM)+BRR*n(RPR/XM)+BRT«T+BR&£n(Sp)
“ (-1)



98

In the evaluation of the signs of the parameter estimates, the 

negativity and normality conditions of the constant terms are checked. 

The negativity of the diagonal terms of the Hessian is checked along 

with symmetry condition of the Hessian. As for the evaluation of the 

signs of the attribute variables (e.g. time trend, speed ratio), all 

the elements of the Hessian are not defined on the share equations. 

Therefore, only the elements of the Hessian that are defined in the 

share equations are judged by the prior common knowledge.

The negative value of R in model 1 implies that model 1 is no 

better than the prediction of shares by using mean values of observed 

shares.
Model 1 (prices, income) and model 2 (prices, income, time 

trend) have reasonable signs and reasonable t-statistics of the para­

meter estimates except that BRR (rail price coefficient of rail share) 

in model 1 and BEE (bus price coefficient of bus share) in model 2 have 

positive signs. Both BRR and EBB are diagonal elements of the Hessian 

matrix and hence they should be negative.

Model 3 (prices, income, speed ratio) has reasonable signs and 

reasonable t-statistics of its parameter estimates, except that EBB has 

positive sign and BBS (speed ratio coefficient of bus share) has nega­

tive sign.

Model 4 (prices, income, time trend, speed ratio) has reasonable 

signs and reasonable t-statistics of its parameter estimates, except 

that BBS has negative sign.

In model 5 (prices, income, time trend, speed of air, speed of 

bus-rail),AB (constant term of bus share) and EBB have positive signs
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in its parameter estimates but AB and EBB should both be negative.

From model 1 through model 5, as more variables are added, the
2log of likelihood functions increase, R s increase, standard errors 

of regression decrease and sums of residual squares decrease for the 

corresponding airline and rail share equations.

Comparing model 4 and model 5, better results are obtained if 

one speed variable in the speed ratio term (Sp = SPA/SPBR) is added as 

in model 4, instead of two separate speed variables SPA and SPBR as in 

model 5, because model S produces incorrect signs of both AB and BBB.

Comparing model 3 and model 4, the inclusion of the time 

trend variable changes the incorrect positive sign of BBB in model 3 

into a reasonable negative sign of BBB in model 4. In both models 3 

and 4, BBS is negative.
Comparing model 4 and model 2, the parameters of the time trend 

variable in model 2 and those in model 4 have exactly opposite signs.

In model 2, the parameter estimates of the time trend variable of the 

three share equations are:

t-stat.

BAT = -.000194 (-.430)

BRI = .000657 (1.52)

BBT = -.000463 (-2.33)

time coefficient of air share 

time coefficient of rail share 

time coefficient of bus share

and for illustration the air share equation is,
r.. _ RPA'QXA _ AA+BAA'&n(RPA/XM)+BAB'&n(RPB/XM)+BAR'2n(RPR/XM)+BAT'T“  ' m - - - - - - - - - - - - - - F I ) - - - - - - - - - - - - -
Therefore, the air share and bus share, SA and SB, increase with time 

trend but SR decreases with time trend. Note that BAT has a low t-value.
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Actual time series data shows that budget share of air SA de­

creases, while budget share of bus SB increases very slightly as the 

time trend approaches the present period. Budget share of rail fluc­

tuates somewhat over the years.

In model 4, the parameter estimates of the time trend variable 

and speed ratio variables are:
BAT = .00335 (4.97) BAS = -.136 (-6.20): time 5 speed coeff. of air share

BRT = -.00354 (-6.17) BRS = .152 (7.96): time S speed coeff. of rail share

BBT = .000195 (.833) BBS = -.0157 (-2.79): time § speed coeff. of bus share

and the share equation of the air mode is,

CA _RPA.QXA _ AA+BAA*£n(RPA/XM)+BAB.£n(RPB/XM)+BAR*£n(RPR/Xf^BAT*T+BAS*£n(Sp) 
XM ■ (-1)

Therefore air and bus shares decrease with time, and rail share increases 

with time. But BBT (time coefficient of bus share) has a smaller 

value than BAT (time coefficient of air share) or BRT (time coefficient 

of rail share) and it also has low t-value. Hence one may consider pa­

rameter estimates of the time trend variable fit the actual data bet­

ter than those in model 2 .

In model 4, the parameter estimates of the speed ratio variable 

have the same corresponding signs as those of the time trend variable 

of model 2. In model 4, the speed ratio variable (Sp = SPA/SPBR) has 

a positive effect on air and bus shares while it has a negative effect 

on rail share. Since model 2 does not have the speed ratio variable, 

the time trend variable explains vaguely people's tastes preference 

over the time period. Thus, in model 4, the introduction of the speed 

ratio variable explicitly explains why people's preference changes
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over time. For example, people's taste preference to the air mode has 

increased over time because of the technological changes of the air 

mode over other modes such as speed as well as other service attributes. 

This assures that people prefer a specific transport mode not because 

of the attractiveness of the name of that mode but because of the cha­

racteristics of the level of service and other attributes that the mode 

offers.
In model 4, all the parameters have reasonable signs and rea­

sonable t-values, except that BBS (speed ratio coefficient of bus share) 

is negative. This is because of the homogeniety restriction of the 

model (BAS+BBS+BRS = 0) and positive BRS (speed ratio coefficient of 

rail share) is greater than negative BAS (speed ratio coefficient of 

air share), resulting BBS (speed ratio coefficient of bus share) to be 

negative. At 10% significance level, all the parameters are significant 

except BBT (time trend coefficient of bus share) and BBB (bus price 

coefficient of bus share).

Hence, model 4 is chosen as the representative model for homo­

geniety and non-additivity case.
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Table I-l. Parameter Estimates (equality and Symmetry)

PA, PB, PR, M are independent variables.

n = 28, Log of likelihood function = 227 .837

Initial guess Parameter name Parameter estimates t-statistic
AA=-.70 AA -.815 -65.6

AR=-.1S BAA -.685 -.409 .

BMB=-.03 BAB -.00986 -.125

BAA=-.50 BAR -.155 -.573
BAB=.05 BMB -.0575 -.465

BAR=.10 BRB -.0232 -1.36
BRB=-.06 BRR -.0887 -1.12

BRR=-.10 AR -.124 -17.0

BMA -.850 -.420
BMR -.267 -.742
BBB -.0245 -. 808
AB -.0617 -5.69

SA SR
r2 .214 .207

Standard error 
of regression .00901 .00907

P ? .00227 .00231



Table 1-2. Parameter Estimates (Equality and Symmetry).
n=28; PA, PB, PR, M are independent variables.

log of likelihood fn. = 227.837 log of likelihood fn. = 227. 837
Initial Parameter Parameter Initial Parameter Parameter
guess name estimates t-statistic guess name estimates t-statistic

AA=-.70 AA -.815 (-65.6) AA=-.83 AA -.815 (-65.6)
AR=-.15 BAA -.685 (-.409) AR=-.12 BAA -.687 (-.409)
BMB=-.03 BAB -.00986 (-.125) BMB=.02 BAB -.00993 (-.126)
BAA=-.50 BAR -.155 (-.573) BAA=.40 BAR -.155 (-.573)

BAB=.05 BMB -.0575 (-.465) BAB=.02 BMB -.0576 (-.465)
BAR=.10 BRB -.0232 (-1.36) BAR*-.06 BRB -.0232 (-1.36)
BRB=-.06 BRR -.0887 (-1 .1 2) BRB*-.06 BRR -.0887 (-1 .1 2)
BRR=-.10 AR -.124 (-17.0) BRR*-.10 AR -.124 (-16.9)

BMA -.850 (-.420) BMA -.852 (-.420)
BMR -.267 (-.742) BMR -.267 (-.742)
BBB -.0245 (-.808) BBB -.0245 (-.807)
AB -.0617 (-5.69) AB -.0617 (-5.68)

SA SR SA SR

r2 .214 .207 .214 .207
Standard error of regression .00901 .00907 .00901 .00907

Ç e? .00227 .00231 .00227 .00231
-,----s— r-r-.îï



Table 1-3. Parameter Estimates under Various Restrictions.

PA, PB, PR, M are independent variables (n=28 obs.)

Homogeniety and Equality and Equality
non-additivity case symmetry case case

Log of
likelihood fn. 223. 860 227.837 231.689
Parameter Parameter Parameter Parameter

name estimates t-statistic estimates t-values estimates t- statistic
AA -.823 (-116.) -.815 (-65.6) -.817 (-136.0)
BAA -.0147 (-1.29) -.685 (-.409) .151 (.163)
BAB .0233 (1 0 .8 ) -.00986 (-.125) -.872 (-.911)
BAR -.00860 (-.746) -.155 (-.573) -.0947 (-.180)
BMA -.850 (-.420) .144 (.130)

BMB -.0575 (-.465) -1.11 (-.970)
BMR -.267 (-.742) -.152 (-.244)
AR -. 1 2 0 (-16.8) -.124 (-17,0) -.137 (-26.4)
BRA -.0304 (-.231)
BRB -.0108 (-2.41) -.0232 (-1.36) -.197 (-1,45)
BRR .0194 (1.51) -.0887 (-1 .1 2 ) -.0443 (-.597)
AB -.0571 (-39.4) -.0617 (-5.69) -.0459 (-2 1 .6 )
BBA .0228 (.455)
BBB -.0125 (-3.45) -.0245 (-.808) -.0378 (-.751)
BBR -.0132 (-.510)

SA SR SA SR SA SR

r2 -.0094 -.0354 .214 .207 .546 .427

Standard error .0102 .0104 .00901 .00907 .00685 .00772of regression
Z e? .00292 .00301 .00227 .00231 .00131 .00167
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Table II-l.

PA,

Parameter Estimates (Homogeniety and Non-Additivity) 

[Model 4] of Table II-2.

PB, PR, M, T, Sp are independent variables.

n=28 obs. Log of likelihood function = 248 .259.

Initial guess Parameter name Parameter estimates t-statistic

AA=-.70 AA -.642 -20.2

AR=-.15 BAA -.0457 -2.87

BAA=-.50 BAR .0330 2.53

BAR= .10 BAT .00335 4.97

BRR=-.10 BAS -.136 -6.20

BAT= .1 AR -.330 -12.2

BRT=-.l BRR -.0258 -2.26

BAS= .1 BRT -.00354 -6.17

BRS=-.l BRS .152 7.96

BAB .0127 1.94

BRB -.00719 -1.93

BBT .000195 .833

BBS -.0157 -2.79

AB -.0275 -2.71

BBB -.00554 -.786

SA SB
r2 .607 .706

Standard error 
of regression

^4
.00637 .00553

.00114 .000856



Table II-2. Parameter Estimates (Homogeniety and Non-Additivity Case).
n = 28 obs.

Model 1 Model 2 Model 3 Model 4 Model 5 PA,PB,
PA,PB,PR,M PA,PB,PR,M,T PA, PB ,PR,M,Sp PA.PB.PR.M.T.Sp PR.M.T.SPA.SPBR Constants only

Log of 223.860 227.098 235 .020 248 .259 256.484 199. 20711 fn.
Par am Param (t- Param (t- Param (t- Param (t- Param (t- Param (t-name estim stat) estim stat) estim stat) estim stat) estim stat) estim stat)
AA -.823 (-116.) -.818 (42.9) -.753 (-2 2 .1) -.642 (-2 0 .2) -.356 (-1.55) -.836 (-436.)
BAA -.0147 (-1.29) -.0239 (-1.15) -.0549 (-2.72) -.0457 (-2.87) -.0358 (-2.13)
BAR -.0086( (-.746) .0172 (.848) .0489 (2.64) .0330 (2.53) .0259 (1 .8 6)
BAT -.000194 (-.430) .00335 (4.97) .00436 (4.32)
BAS -.0316 (-2 .2 0 ) -.136 (-6 .2 0)
BAX -.143 (-6.51)
BAY .0692 (1 .2 1)
AR - . 1 2 0 (-16.8) -.146 (-8.15) -.230 (-7.41) -.330 (-1 2 .2 ) -.762 (-3.89) -.123 (-63.9)
BRR .0194 (1.51) -.00450 (-.215) -.0371 (-2 .1 1) -.0258 (-2.26) - . 0 1 2 0 (-1 .0 1 )
BRT .000657 (1.52) -.00354 (-6.17) -.00480 (-5.62)
BRS .0477 (3.63) .152 (7.96)
BRX .161 (8.64)
BRY -.0520 (-1.07)
BAB .0233 (1 0 .8 ) .00667 (.8 8 8 ) .00596 (1 .2 1) .0127 (1.94) .00994 (1.81)
BRB -.0108 (-2.41) -.0127 (-3.02) -.0118 (-3.24) -.00719 (-1.93) -.0138 (-3.62)
BBT -.000463 (-2.33) .000195 (.833) .000437 (1.80)
BBS -.0161 (-3.96) -.0157 (-2.79)
BBX -.0182 (-3.57)
BBY -.0172 (-1 .2 0)
AB -.0571 (-39.4) -.0365 (-4.08) -.0177 (-1.76) -.0275 (-2.71) .118 (1.98) -.0405 (-44.5)

J t B B ^ .00607
-----------^—

SA SR SA SR SA SR SA SR SA SR SA SR
R% -.00940 -.0354 .0713 .0290 .215 .309 .607 .706 .630 .735 .001 .000

S.e.r. .0102 .0104 .00979 .0100 .00901 .00847 .00637 .00553 .00618 .00524 .0101 .0102
.00292 .00301 .00269 .00282 .00227 .00201 .00114 .000856 .00107 .000770 .00288 .00291

oo\



Table III-3, Parameter Estimates with PA, PB, PR, M, T, Sp (n = 28 obs.)

Log of 
likelihood fn.

Homogeniety 8 

248

non-additivity

.259

Equality § Symmetry 

261.737
Equality
263.715

Parameter Parameter Parameter Parameter
name estimates (t-statistics) estimates (t-statistics) estimates (t-statistics)
AA -.642 (2 0 .2) -.792 (-15.7) -.810 (-37.7)
BAA -.0457 (-2.87) 1.11 (1.61) .999 (2.15)
BAB .0127 (1.94) .0482 (1.57) -.275 (-.402)
BAR .0330 (2.53) .134 (1.80) -.0129 (-.0465)
BAT .00335 (4.97) -.00576 (-.498) .00713 (.460)
BAS -. 136 (-6 .2 0) .0281 (.0609) -.0621 (-.133)
BMA 1.29 (1.63) 1.17 (2.14)
BMB .0563 (1.41) -.319 (-.393)
BMR .117 (1.84) .0500 (-.149)
BMT -.00857 (-.607) .00681 (.385)
BMS .0794 (.156) -.0340 (-.0638)
AR -.330 (-1 2 .2) -.191 (-2.72) -.165 (-5.49)
BRA .123 (2.05)
BRB -.00719 (-1.93) -.0103 (-.698) -.0310 (-.325)
BRR -.0258 (-2.26) -.00662 (-.320) -.0245 (-.538)
BRT -.00354 (-6.17) -.00272 (-1 .0 0 ) -.000729 (-.429)
BRS .152 (7.96) .0678 (2.34) .0421 (.973)
AB -.0275 (-2.71) -.0174 (-.809) -.0246 (-2.43)
BBA .0443 (1.96)
BBB -.00554 (-.786) -.00161 (-.236) -.0134 (-.394)
BBR -.0126 (-.773)
BBT .000195 (.833) -.0000895 (-.176) .000410 (.551)
BBS -.0157 _..X-2.79)______ -.0164 .Cr...4261 ....--,.•01.40----- -(--,.4901

SA SR SA SR SA SR
R% .607 .706 .858 .891 .866 .890

Standard error .00637 .00553 .00383 .00337 .00372 .00337of regression
? .00114 .000856 .000411 .000318 .000388 .000319
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3. Use of Test Statistics (refer to Chapter IV.C.3)

(i) Test the significance of the group of coefficients under 

homogeniety and non-additivity case.

Critical values of

Degrees of freedom 1 2 3 4 5 6 7 8

5% sig. level 3.84 5.99 7.81 9.49 11.1 12.6 14.1- 15.5

2.5% sig. level 5.02 7.38 9.35 11.1 12.8 14.4 16.0 17.5

2.5% sig.level 5% sig.level

Constant only^PA,PB,PR,M -2tnX=49.3 3 parameters 3 newly added

# param's=2 # param's=5 d.f.=3 significant parameters

U.f.=199.207 11.f.=223/860 significant

PA,PB,PR,M -> PA,PB,PR,M,T -2tnX=6.48 2 parameters 2 parameters

# param’s=5 # param’s=7 d.f.=2 insignificant significant

11.f.=223.860 11.f.=227.098

PA,PB,PR,M -> PA,PB,PR,M,Sp -2AnX=22.3 2 parameters 2 parameters

# param's=5 # param's=7 d.f.=2 significant significant

LI.f.=223.860 U.f.=235.020

PA,PB,PR,M,T -> PA,PB,PR,M,T,Sp -2£nX=42.3 2 parameters 2 parameters

# param’s=7 # param's=9 d.f.=2 significant significant

Ll.f.=227.098 11.f.=248.259

The above says that the addition of new variables and there­

fore new groups of parameters are all significant. The addition of 

time trend variable is insignificant at 2.5% but significant at 5% 

level.
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(ii) Test the validity of restrictions under the same set of 

independent variables.

(a) PA,PB,PR,M

2.5% sig. 
level

5% sig. 
level

Equality -2£nX=7.70 Insig. Insig.
and 4- 4- 4- 4- Equality d.f.=3 (accept
symmetry 3 restrictions restric lions)
11.f.=227.837 11.f.=231.689

Homogeneous Equality -2£nX=7.95 Insig. Sig.
and and d.f.=3 (accept (reject
non-additivity 3 restrictions symmetry restric­ restric­

11.f.=223.860 11.f.=227.837
tions) tions)

The insignificance of the symmetry restriction implies that sym­

metry restriction on the utility function is consistent with the evidence. 

Equality and symmetry case of PA, PB, PR, M is chosen as representative 

instead of homogeniety and non-additivity case of PA,PB,PR,M because of 

the more reasonable signs of the parameter estimates.

(b) PA,PB,PR,M,T,Sp

2.5% sig.
level level

Equality
and + + Equality
symmetry 3 restrictions

11.f.=261.737 11.f.=263.715

■2£nX=3.96 
d.f.=3

Insig. Insig. 
(accept 

restrictions)

Homogeneous Equality
and and
non-additivity 5 restrictions symmetry

•2£nX=27.0 
d.f.=5

Sig. Sig. 
(reject 

restrictions)

11.f.=248.259 U.f.=261.737
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Again, the insignificance of the symmetry restriction im­

plies that symmetry restriction on the utility function is consis­

tent with the evidence. The homogeneous and non-additivity restric­

tions of the equality and symmetry case is significant. But homo­

geneous and non-additivity case with PA, PB, PR, M, T, Sp is chosen 

to be representative because of the more reasonable signs of the 

parameter estimates.

B. Elasticities 

Refer to: Chapter III.E.l. Translog Utility Models

Chapter IV.B. Model Specification 

For the present study, the Marshallian elasticities, Hicksian 

income-compensated elasticities and Allen-Uzawa elasticities of 

substitution are all computed and analyzed under equality and symme­

try restricted model and also under homogeniety and non-additivity 

restricted model.

1. Equality and Symmetry Restriction Model (Table III-l)

(a) In the Marshallian elasticities, own-price elasticities, 

cross-price elasticities and income elasticities are calculated 

using yearly data and average data of independent variables.

The own-price elasticities of all three modes are negative, 

which implies that all three modes are normal goods. The own-price 

elasticities of airline demand are fairly stable over the years 

and they are elastic. The own-price elasticities of the bus mode 

increase somewhat in magnitude over the years and they are inelastic. 

The own-price elasticities of the rail decreased somewhat in magnitude
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over the years and they are inelastic.

Income elasticities of the three modes are all positive which 

implies that all three modes are superior goods and the income elas­

ticity of the air mode is the highest among the three modes (1.13). 

Income elasticities of the air mode are stable but in the increasing 

direction over the years. Income elasticities of the bus mode in­

crease over the years, while income elasticities of the rail mode de­

crease over the years.

Both the own-price and income elasticities of the market de­

mand (Marshallian demand) explain the characteristics of all three 

modes. But the Marshallian own-price elasticities aïe not a correct 

measure to see the pure own substitution effect. The cross-price elas­

ticities of the market demand are partly negative and partly positive. 

But in transportation, the three available competing modes are normally 

considered as substitutes for each other. Therefore the cross elasti­

cities should be positive. Constraining the signs of parameters were 

frequently used in the aggregate travel demand model calibration han­

dled the undesired signs of elasticities.

(b) The Hicksian income-compensated own and cross price elas­

ticities are the correct measure to see the substitution effect (Hen­

derson and Quandt, 1958; Intriligator, 1971).

The Slutsky equation is used (reference: Chapter III.E.2) to

get Hicksian income-compensated elasticities to measure the pure sub­

stitution effects.
Note again that in the market demand, as price changes both 

income and substitution effects are counted and money income M is
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fixed with the utility level being varied. But in the income-compen­

sated demand, as price changes only substitution effect is counted 

and the utility level is held constant with money income being varied.

Looking at the Hicksian income-compensated own-price elastici­

ties, the air mode has very small own-price elasticities (HEy^ = -.0828) 

Bus and rail modes have similar magnitude in their own price Hicksian 

elasticities (HEgg = -.525, HE^^ = -.614). That is, air mode has 

the smallest own substitution effect. Bus and rail mode have some 

own substitution effect with rail mode having larger own substitution 

effect than bus mode. All of the own-price elasticities are negative 

in sign, which is reasonable. Furthermore, it is interesting to notice 

that the own air price Marshallian elasticity (Ey^ = -1.02) and the 

own air price Hicksian elasticity (HEy^ = -̂ .0828) differ quite much, 

while those of rail and bus modes do not differ much. From Slutsky 

equations, one can observe that the Marshallian elasticity differs 

from that of the Hicksian by the product of the budget share to the 

income elasticity. This difference is the income effect that the 

Marshallian elasticity includes in addition to the usbstitution ef­

fect. Therefore, air mode has greater income effect than the bus and 

rail modes. Bus and rail modes have very little income effect. This 

means that the demand of air mode is not mainly determined by airline 

fare changes but is mainly determined by the income change of the con­

sumers. And the demand of bus and rail mode is mainly determined by 

bus and rail fair changes. This further indicates that there is a mar­

ket segmentation between air passengers and bus, rail passengers.

Air passengers are the ones whose income group is high while bus, rail
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passengers are the ones whose income group is low.

The Hicksian income-compensated cross elasticities have all

positive signs, which ensure that the three trip modes are substitutes

for each other. The cross elasticity of rail demand with respect to

air price change (HE^^ = .501) is larger than the cross elasticity of

bus demand with respect to air price (HEg^ = .177). There is also

some cross substitution effect between bus and rail modes, giving cross

elasticity of bus demand with respect to rail price as HE = .348 and

cross elasticity of rail demand with respect to bus price as HE^g = .1 1 2 .

There are very weak cross substitution effects between air and rail

and also between air and bus, giving cross elasticity of air demand

with respect to rail price as H E ^  = .0743 and cross elasticity of

air demand with respect to bus price as HE^g = .00847. One may notice

that cross substitution effect between air and rail is slightly

greater than the cross substitution effect between air and bus. One

may also notice that more cross substitution effect exists between

bus and rail than between air and bus or between air and rail.

Over the years, HE^^, HEgŷ  and HE^g increase while HEŷ ,̂ HEgg

and HE_, decrease. Actual data shows that bus is used more for the RA
short intercity travel. The use of air mode for the short intercity 

travel nowadays, may influence cross substitution effect between bus 

and air modes. The popular use of air mode for the long trips as con­

sumer's income increases, may reduce the cross substitution effect 

between rail and air modes over the years.

(c) Elasticities of substitution (reference: Chapter III.C.3 and

E.2) measure the extent to which the quantity ratio of commodities in
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response to changes in the price ratio of the corresponding commodi­

ties (or other corresponding attribute variable ratio) by holding 

utility level constant. Note that

MM.. M'M..
From Allen-Uzawa, a.. = -— ^  and a.. = ;;ij M^'Mj M^'Mj

while = 3^ ( x p  and Mj. = Jp^Cxp , ML = x?, = xj

but -gl— (xp = g ^ ( x p  (p. 158, M. D. Intriligator)
j i

hence .

AEgQ = AEĵ g = 2.81, AE^^ = A E ^  = .600 and AE^g = AEg^ = .2 1 2 , under 

the average independent variables. That is, greater substitution is 

between bus and rail than between air and rail or between air and bus. 

Slightly more substitution exists between air and rail than between 

air and bus. This indicates that bus and rail are close substitutes. 

Again, one can deduce that there is a market segmentation between air 

passengers and bus, rail passengers. Elasticity of substitution is 

slightly greater between air and rail than between air and bus. This 

is reasonable because rail is more used than bus for the long distance 
travel and air and rail are competing more than air and bus for the 

long distance travels. But bus is used much for the short distance 

travels. Over the years, elasticity of substitution increased slightly 

between bus and air while it decreased slightly between air and rail 

and it fluctuated somewhat between bus and rail. The usage of air for 

the short distance intercity travel may result in a slight increase in 

the elasticity of substitution between bus and air. The increase in
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in the usage of air for the longer intercity travel may result in the 

slight decrease in the elasticity of substitution between air and rail.

The results of elasticities of substitution is consistent with 

those of Hicksian cross elasticities. Elasticities of substitution 

further ensures the interrelated reasonings between Marshallian and 

Hicksian elasticities.

2. Homogeniety and Non-Additivity Restriction Model

(Table III-2)

(a) In the Marshallian demand, own-price elasticities are all 

negative, which is reasonable. There is not much gap among own-price 

elasticities of three modes. (E^ = -.945, Egg = -.863, E^^ = -.790 

evaluated under average independent variables.) Note also that the 

own-price elasticity of bus is greater than that of rail in the homo­

geniety and non-additivity case, while the own price elasticity of 

rail is greater than that of bus in the equality and symmetry case. 

This is because of the log-linearity of the homogeniety and non-addi­

tivity model and the inclusion of other attribute variables in the 

model. Over the years, the own-price elasticities of the air mode are 

stable, those of the bus mode increased somewhat but those of rail 

mode decreased somewhat in magnitude (same as in equality and symmetry 

case).

The time trend elasticities are: Ê .p = -.0580, Eg^ = -.0699

and E^y = .418 (where E^^ = -by^T/S^)

Over the years, time trend elasticities of all three modes in­

creased in magnitude because time trend variable is put in the model
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to increase yearly by 1 starting from 1 and ending to 28.

The speed elasticities are: E,_ = .163, = .390 andAop Dop
R̂Sp = Cohere E.ĝ  = -b.̂ /S-).

Over the years, the speed elasticities of the air mode in­

creased, those of the bus mode decreased and those of the rail mode 

fluctuated in magnitude mainly because share of the rail mode fluc­

tuated over the years.

Under homogeniety and non-additivity restriction, the model 

has unitary income elasticities (Chapter IV.B.2). This is rather a 

restricted situation but many demand systems have unitary income elas­

ticities such as double logarithmic demand system and Rotterdam-demand 

system.

As for the cross-price elasticities of the Marshallian demand, 

some of them are positive and some of them are negative. Hence the 

Hicksian income-compensated elasticities are needed.

(b) Looking at the Hicksian income-compensated elasticities, 

the air mode has the smallest own-price elasticities next the rail 

mode and then the bus mode. All the own-price elasticities are nega­

tive as expected. Again the air mode has the smallest own-substitu- 

tion effect. Hence, air mode has the greater income effect than the 

bus, rail modes. Similar interpretations may be drawn as in equality 

and symmetry model (see page 111 ). The Hicksian income-compensated 

cross elasticities have all positive signs which again ensure that the 

three trip modes are substitutes for each other. (HE^ = .568, HEĝ  ̂= 

.522, HEg% = .301, HE^g = .0989, HE^^ = .0835 and HE^g = .0252.) Over 

the years HE^g, HEg^ and HE^g are increased while HE^, HEg^ and HEg^
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are decreased. Again see equality and symmetry case (pagejiS) for 

the similar interpretations of the Hicksian cross elasticities.

The Hicksian income-compensated time trend and speed ratio 

elasticities are HÊ .̂  =-.0600, HEgy = -.0719, HE^^ = .416 and HE^^^ =

.242, HEggp = .469, WE^g^ = -1.16. Comparing these with Marshallian 

time trend and speed ratio elasticities, they have correspondingly 

same signs and corresponding values are similar.

(c) Elasticities of substitution are calculated with only 

price variables. AEgg = AE^g = 2.45, AE^^ = A E ^  = .679 and AE^g = 

AEg^ = .624 computed under average independent variables. Here, they 

show that greater substitution exists between bus and rail than any 

other pairs. But there is not much gap between elasticity of substitu­

tion of air, rail and elasticity of substitution of air, bus. See 

equality and symmetry case [page U4- ) for the interpretations of the 

elasticities of substitution.

In summary, both the Hicksian own and cross elasticities are 

the correct measures to see the own and cross substitution effects.

By comparing Marshallian and Hicksian elasticities, one can find out 

how much income effect is in each mode.

For the present analysis, both restriction case models indi­

cate that income effect is big and own substitution effect (price 

effect) is small in the air mode, while income effect is small and 

own substitution effect (price effect) is big in both bus and rail 

modes. The big income effect and very small price effect of the air 

mode may partly be due to the inclusion of business trips in the data. 

But the underlying income and price effects will still hold even if
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business trips are excluded.

For policy implication, the above results are useful in de­

termining whether deregulation of prices is necessary or not. As for 

the elasticities of other attribute variables, both Marshallian and 

Hicksian approaches give similar results.

Allen-Uzawa elasticities of substitution is also a good measure 

to see the differential substitutability between pairs of trip commodi­

ties. Greater substitution exists between bus and rail than between 

other modes. This indicates that market segmentation exists between 

air users and bus, rail users. Actual data indicates that bus is 

used for the short intercity trips, hence air and rail compete more than 

air and bus for the long distance trips, as is seen from the elasticity 

of substitution in equality and symmetry case. This reveals that 

stratification by distances is also necessary for further developments.
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Table III-l. Equality and Symmetry Case with PA,PB,PR,M as independent variables.

Marshallian Elasticities

Direct Blast. Cross Blast. Income Blast.
Year Eaa ^BB ERR ^ab ^AR Era EgR Er3 ERA EmA Emb
1950 -1.02 -.545 -.693 -.0334 -.0593 -.420 .276 .0891 .256 1.11 .689 .348
1954 -1.02 -.553 -.675 -.0345 -.0614 -.445 .263 .0943 .279 1.12 .735 .302
1958 -1.02 -.561 -.656 -.0358 -.0636 -.471 .250 .0997 .302 1.12 .782 .254
1962 -1.03 -.515 -.598 -.0378 -.0687 -.487 .285 .115 .386 1.14 .717 .0962
1966 -1.03 -.552 -.597 -.0386 -.0693 -.517 .246 .116 .381 1.14 .823 .101
1970 -1.03 -.565 -.530 -.0427 -.0765 -.597 .214 .134 .463 1.15 .947 ,0674
1974 -1.02 -.581 -.568 -.0420 -.0741 -.592 .202 .124 .402 1.14 .971 .0417

Marshallian Elasticities Under Average Independent Variables

-1.02 -.557 -.641 .0366 -.0653 -.484 .250 .104 .321 1.13 .790 .216

Average Independent Variables and Shares are:

RPÂ = .0645, RPB = .0285, = .0350, M = .0436,

^  = .576, W  = .0619, W  = .154,
^  = .836, SB = .0405, ^  = .123.
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Table III-l (continued)

Hicksian Income-Compensated Elasticities

Direct Elast. Cross Elast.

Year h â a HEgg HERR HEab HE^R HEr a-HEgR HErb HEra
1950 -.0912 -.520 -. 648 .00668 .0845 .155 .365 .102 .547

1954 -.0885 -.525 -.637 .00763 .0808 .169 .357 .106 .531

1958 -.0859 -.530 -.624 .00865 .0772 .182 .348 .110 .514

1962 -.0704 -.488 -.587 .00532 .0651 .119 .369 .119 .468

1966 -.0746 -.518 -.585 .00861 .0660 .174 .344 .120 .465

1970 -.0668 -.520 -.538 .0110 .0559 .197 .323 .131 .407

1974 -.0756 -.534 -.563 .0124 .0632 .216 .319 .126 .437

Hicksian Income-Comp. Elast. under Avg. Indep. variables 
.0828 -.525 -.614 .00847 .0743 .177 .348 .112 .501

Allen-Uzawa Elasticity of Substitution

Year ^AB"°BA GAR=GRA ^BR=^RB
1950 .186 .655 2.83

1954 .202 .636 2.80

1958 .219 .615 2.77

1962 .141 .554 3,14

1966 .207 .554 2.89

1970 .235 .485 2.81

1974 .259 .525 2.65

Elast. of Subs. under Avg. Ind. Var.

.212 .600 2.81



Table III-2. Homogeniety and Non-Additivity Case with PA,PB,PR,M,T,Sp
as Independent Variables.

Marshallian Elasticities
Direct Elasticities Cross Elasticities

Year ^AA Egg Eat Ea Sp Eg? ^BSp Ert ^RSp ^AB ^AR ^BA ^BR E^B Era
1950 -.946 -.846 -.791 -.0159 .162 -.0217 ,439 .115 -1.23 -.0151 -.0393 -.354 .200 .0581 -.267
1954 -.945 -.852 -.796 -.0320 .163 -.0417 ,422 .224 -1.20 -.0152 -.0394 -.341 .193 .0569 -.261

1958 -.945 -.855 -.812 -.0487 .165 -.0613 .413 .310 -1.11 -.0154 -.0400 -.334 .189 .0525 -.241

1962 -.946 -.860 -.787 -.0638 .162 -.0792 .400 .468 -1.25 -.0152 -.0393 -.323 .183 .0594 -.273

1966 -.946 -.870 -.781 -.0797 .162 -.0917 .371 .600 -1.29 -.0152 -.0393 -.300 .169 .0609 -.280

1970 -.946 -.882 -.771 -.0956 .162 -.0993 .334 .754 -1.35 -.0151 -.0393 -.270 .153 .0637 -.293

1974 -.946 - .888 -.762 -.111 .162 -.110 ,318 .913 -1.40 -.0151 .-.0392 -.257 .145 .0662 -.304

Marshallian Elasticities under Average Ir̂ dependent Variables

-.945 -.863 -.790 -.0580 .163 -.0699 .390 .418 -1.24 -.0152 -.0394 -.315 .178 .0585 -.268

N)



Table III-2 (continued)
Hicksian Income-Compensated Elasticities

Direct Elasticities Cross Elasticities

Year HEm HEa t “^ASp HEgT HEBSp JIErt "ERSp "%AB HEAR HEba HEgR HErb HEra
1950 -.105 -.810 - .668 -.0182 .252 -.0240 .529 .113 -1.14 .0208 .0844 .486 .324 .0940 .574

1954 -.109 -.814 -.669 -.0342 .251 -.0439 .511 .222 -I.II .0221 .0868 .496 .319 .0942 .575

1958 - . 1 2 0 -.817 -.675 -.0508 .248 -.0634 .496 .308 -1.03 .0227 .0969 .491 .326 .0906 .584

1962 -.106 -.820 - .666 -.0663 .260 -.0817 .498 .466 -1.16 .0242 .0818 .516 .304 .0987 .567

1966 -.106 -.827 -. 663 -.0818 .245 -.0938 .454 .598 -1.20 .0273 .0787 .540 .287 .103 . 560

1970 -.105 -.835 -.658 -.0969 .215 -.101 .387 .753 -1.29 .0319 .0735 .570 .265 .III .548

1974 -.104 -. 839 -.654 - . 1 1 2 .191 -.III .348 .912 -1.37 .0344 .0694 .585 .254 .116 .538
Hicksian Income-Compensated Elasticities under Avg. [ndep. Variables

-.109 -.823 -.667 -.0600 .242 -.0719 .469 .416 -1.16 .0252 .0835 .522 .301 .0989 .568

toto
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Table II1-2 (continued) 

Allen-Uzawa Elasticity of Substitution

Year ^AB=^BA *AR=*RA ^BR-^RB
1950 .578 .683 2.62

1954 .592 .688 2.53

1958 .595 .708 2.38

1962 .615 .676 2.51

1966 .643 .667 2.44

1970 .678 .652 2.35

1974 .695 .639 2.34

Elast of Sub. under Avg. Ind. Var.

.624 .679 2.45

Average Independent Variables and Shares are

RPA = .0645, RPB = .0285, RPR = .0350,

M = .0436 QXA = .576, = .0619,

QXR = .154, I = 14.5, Sp = 1.564,

SA = .836 SB == .0405, ^  = .123.
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C. Sensitivity Analyses 

Sensitivity analyses concretely give us more information about 

the estimated models' performances in relation to elasticities.

In the sensitivity analyses, both the aggregate intercity mo­

dels developed for NECTP and the disaggregate models applied for inter­

city passenger forecasting [P. Stopher and J. Prashker) have been found 

to have some counter-intuitive results. That is, as the price of a 

mode increases, not only the use of that mode is decreased but also 

the use of the other modes is decreased. They explained that the coun­

ter-intuitive result is due to the use of the simple average of the in­

dependent variable in the model and in the cases where the market share 

is small and where its variable value is relatively large compared 

with the other modes, the counter-intuitive result may occur.

For the present study, the use of Hicksian income-compensated 

simulation gives us n£ counter-intuitive results. It gives us very 

reasonable results.

The Hicksian income-compensated simulation is based on the 

Hicksian income-compensated demand equations, which have the same form 

as Marshallian demand equations except that M in the Hicksian income- 

compensated demand equations is the expenditure function instead of a 

fixed value. The expenditure function M is a function of prices, 

other attribute variables and the utility index. The translog expendi­

ture function can be expressed in terms of the parameters of the Marshal­

lian demand equations which are already estimated from the prices, income 

and other attribute variable data. Note that double logarithmic demand 

system is a special case of translog models. Other type of demand system 

such as addilog system do not have such property (expenditure function
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cannot be expressed in terms of the parameters of the Marshallian 
demand equations).

In the Hicksian simulation, M is varied and utility level is fixed 
while in the Marshallian simulation, utility is varied and M is fixed.
Both simulations are done under equality and symmetry model and homoge­
niety and non-additivity model.

1, Equality and Symmetry Model 
Marshallian share equations and demand equations are:

_ PjXj aj + 2 bji £n(Pi/M)
+ E £n(P./M)Sj = - ^  = -1 . r j = 1,2,3 where M is fixed as Pj varies.

a. + ? b.. £n(P./M)
'j '

where M is fixed and £n V varies as P^ varies.

£n V = ? a^£n(P^/M) * j b^j £n(P^/M) £n(Pj/M)

= ? a^£n(Pj) + £nM + 1  ZZ b^j£n(P^) £n(Pj)

- £nM ZE b..(£nP.) + &£nM)^ Z Z b. . . ij 11 1 2 i j 1]

Hicksian income-compensated share equations and demand equations are:

P.x. a. + Z b-. £n(P./M)
S- = -i—2- = —2--- i—  --------——  for j = 1, 2, 31 M -1 + ? b^i £n(Pi/M)

where the expenditure function M is varied as P- varies,

a. + Z b.. £n(P./M)
'j =

where the expenditure function M is varied and £n V is fixed 

as Pj varies.

£n V = Aq + Aj £nM + A2 (£n M)^
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where A = ? £n(P.) + 7  Z E b..£n(P.)£n(P.)o i 1 2 i i iJ 1 1

A} - 1 - E E b^j £nP.

A2 = I I ? ̂ij
Solving for £n M, log of the expenditure function is

-Aj ± /a^ - 4A (AQ-£nV)" 
£n M = — 1-----1----- 2--------

2A2

hence

-A. + A f  - 4 (A -£nV)
M = ExpC-i --- 2------ )
 ̂ 2A-7"2

-A, - A ?  - 4(A -£nV)
M2 = Exp(----------^ ----------)

'2

Since utility level is fixed, the smaller positive value of the two 

possible M ’s is chosen. (Table IV-1) and (Table IV-2) give the results 

of both Marshallian and Hicksian simulation under equality and symmetry 

model.

In the Marshallian simulation, only the effects on its own 

demand work reasonably as its own-price changes. However, some of the 

effects on the demand of the competing modes are counter-intuitive.

But in the Hicksian income-compensated simulation, the model 

predicts very reasonably. That is, as the price of a mode increases, 

its direct effect (effect on the demand of that mode) is the decrease 

in the demand of that mode, but its cross effect (effect on the demand 

of competing modes) is the increase in the demands of competing modes.

In the Marshallian simulation, fixed M = .0456 and the varying
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utility levels are calculated for each price change and are shown in 

Table IV-1. As the price of a trip mode increases, utility level is 

decreased. Oppositely as the price of a trip mode decreases, utility 

level is increased. That is, utility function is decreasing with in­

creasing prices and increasing with decreasing prices. This is con­

sistent with the utility theory.

In the Hicksian simulation, fixed V = .735 and the varying 

money incomes are calculated for each price change and are shown in 

Table (IV-2). Money income increases with increasing prices while it 

decreases with decreasing prices. Considering one example:

In the Marshallian simulation, as air price increases by 10%,

S3 air passenger miles are decreased, 2.6 bus passenger miles are de­
creased while 5 rail passenger miles are increased. Decrease in the 

bus passenger miles when air price increases is unreasonable.

In the Hicksian simulation, as air price increases by 10%,

4 air passenger miles are decreased while .9 bus passenger miles and 

8 rail passenger miles are increased. These are never counter-intuitive.

As air price increases by 10%, 4 air passenger miles decrease 

in the Hicksian simulation is due to substitution effect (price effect) 

only but S3 air passenger miles decrease in the Marshallian simulation 

is due to both substitution and income effect. Cross effects may be 

analyzed in a similar manner.

2. Homogeniety and Non-Additivity Model 

Marshallian share equations and demand equations are:

P.x. a. + ? b^- &n P. + b.„ T + b. £n(Sp)
=  n n f --- -- ^ ------  f o r j = l , 2 , 3
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where M is fixed and in V varies as varies.

The time and speed adjusted utility function is: 

in V = in(P^/M) + 1/2 ? ? in(P^/M) in(P^/M)

+ ? in(P^/M)*T + I b^g in(P./M) in(Sp)

in V with homogeniety
restriction = % a .  in P. + in M + 1/2 E Z b..(inP.)(inP.]

+ ? b..(inP.)T + ? b. (inP.)(«nSp)1 it, J. Xo X

Hicksian income-compensated share equations and demand equations are:

P.x. a. + Zb.. in P. +b. . * T + b .  in(Sp) s. = Ü -----L  for j=I.2.3

(Note that share equation in this case doesn't carry M in the right

hand side, hence varying M as P^ varies will not affect share equations.)

w a- + Z b.. in P. + b *T + b. in(Sp)
Xj = Ü  IS-------) for j.1.2.3

where the expenditure function M is varied and in V is fixed as P^ varies,

in V = Z a. in(P.) + in M + 1/2 Z Z b..(inP.)(inP.) + Z b.»(inP.)'T i 1 i j ij 1 3 i !•'

+ Z b.g(inP.)(inSp)

and solving for in M, log of the expenditure function is: 
inM=£nV-Za.in(P.)-^??b..(inP.)(inP.)-Zb. (inP.)«T-Zb. (inP.)(inSp), and1 1  ̂ 2ij 1] ̂   ̂ 1 It 1 1 is 1^

M=exp(inV-Za^in(P^)-|?^^j (inP^) (inPj)-Zb^^(inP^) «T-p^^CinP^) (inSp)). 

(Table V-1) and (V-2) give the results of both Marshallian and Hicksian
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simulation under homopeniety and non-additivity model.

In the Marshallian simulation, only the effects on the direct 

demand are reasonable as its own-price changes and attribute variable 

(time trend and speed ratio) changes. But again, as in equality and 
symmetry model, some of the effects on the demand of the competing 

modes are counter-intuitive.

However, in the Hicksian income-compensated simulation, the 

model predicts very reasonably. The direct and cross effects as the 

price changes are not at all counter-intuitive. The effects as the 

attribute variable (time trend and speed ratio) changes are also rea­

sonable.

Fixed M = .0436 and the varying utility levels of the Mar­

shallian simulations are found in (Table V-1).

Fixed V = .762 and the varying money incomes of the Hicksian 

simulations are found in (Table V-2).

In the Marshallian simulation, utility level decreases with 

increasing prices, increases with increasing time trend, decreases with 

increasing speed ratio and vice versa. The change of utility level 

with respect to price change is consistent with utility theory. Also 

the change of utility level is realistic with time trend and speed 

ratio.

In the Hicksian simulation, money income increases with in­

creasing prices, decreases with increasing time trend, increases with 

increasing speed ratio and vice versa. Since expenditure function has 

inverse relationship with utility function, the change of money income 

with price, time trend and speed ratio changes must be opposite to that
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of utility level.

In effect, both elasticity and sensitivity considerations are 

very important for transportation policy implementation. The approach 

with both Hicksian and Marshallian considerations brings far better . 

idea about the demand system.
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Table IV-1. Marshallian Simulation (Equality and Symmetry)

PA,PB,PR,M are independent variables.

%A %R %B
Utility 
level (V)

Observed quantity .576 .154 .0619
Predicted quantity .566 .154 .0613 .735
M = .0436 (fixed)

increase PA by 10% .513 .159 .0587 .663
increase PA by 25% .451 .164 .0556 .572
decrease PA by 10% .631 .149 .0647 .817
decrease PA by 25% .769 .137 .0719 .964

increase PR by 10% .563 .145 .0627 .724
increase PR by 25% .558 .133 .0646 .708
decrease PR by 10% .570 .165 .0597 .746
decrease PR by 25% .577 .183 .0566 .765

increase PB by 10% .564 .156 .0581 .731
increase PB by 25% .561 .158 .0538 .726
decrease PB by 10% .568 .153 .0649 .738
decrease PB by 25% .572 .150 .0712 .744

Sensitivity analysis (simulation) is done with respect to average 

independent variables on both Marshallian and Hicksian simulations. 

RPÂ = .0645, RPB = .0285, RPR = .0350, M = .0436,

QXA = .576, QXB = .0619, QXR = .154, SA = .836

SB = .0405, SR = .123

Note: For simple notation, PA, PB, PR stands for RPA, RPB, RPR

respectively, and X^, Xg, Xg stands for QXA, QXB, QXR respectively. 

X^, Xg, Xg are in'thousands of passenger miles' that a represen­

tative individual travels during one year period.
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Table IV-2.

Hicksian Income-Compensated Simulation (Equality and Symmetry)

PA,PB,PR,M are independent variables

%A %R %B
Money 

income M

Observed quantity .576 .154 .0619 .0436
Predicted quantity 
Utility V = .735 (fixed)

.566 .154 .0613 .0436

increase PA by 1 0% .562 .162 .0622 .0473
increase PA by 25% .557 .172 .0628 .0527
decrease PA by 1 0% .571 .146 .0600 .0400
decrease PA by 25% .582 .133 .0572 .0344

increase PR by 1 0% .570 .145 .0634 .0442
increase PR by 25% .576 .134 .0662 .0447
decrease PR by 1 0% .562 .165 .0591 .0431
decrease PR by 25% .555 .183 .0553 .0422

increase PB by 1 0% .567 .156 .0583 .0438
increase PB by 25% .567 .158 .0543 .0440
decrease PB by 1 0% .566 .153 .0647 .0435
decrease PB by 25% .565 .149 .0707 .0432
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Table V-1.

Marshallian Simulation (Homogeniety and Non-Additivity)

%A %R %B
Utility 
level (V)

Observed quantity .576 .154 .0619
Predicted quantity .566 .153 .0619 .762
M = .0436 (fixed)

increase PA by 10% .518 .149 .0600 .703
increase PA by 25% .459 .144 .0575 .631
decrease PA by 10% .626 .157 .0639 .832
decrease PA by 25% .743 .165 .0675 .967

increase PR by 10% .564 .142 .0629 .753
increase PR by 25% .561 .128 .0643 .741
decrease PR by 10% .569 .166 .0607 .772
decrease PR by 25% .573 .192 .0587 .788

increase PB by 10% .566 .154 .0570 .759
increase PB by 25% .564 .155 .0510 .755
decrease PB by 10% .567 .152 .0674 .765
decrease PB by 25% .569 .150 .0792 .770

increase T by 5 years .555 .175 .0604 .769
increase T by 10 years .544 .197 .0589 .771
decrease T by 5 years .578 .131 .0634 .754
decrease T by 10 years .589 .109 .0648 .747

increase Sp by 10% .575 .135 .0642 .756
increase Sp by 50% .604 .0764 .0716 .738
decrease Sp by 10% .557 .175 .0593 .768
decrease Sp by 50% .503 .284 .0452 .805

Sensitivity analysis (simulation) is done with respect to average in­

dependent variables on both Marshallian and Hicksian simulations.

RPÂ = .0645, RPB = .0285, = .0350, M = .0436, f  = 14.5,

SPF = 1.56, ^  = .576, = .0619, QXR = .154, SÂ = .836,

SB = .0405, ^  = .123.

Note: For simple notation, PA, PB, PR stands for RPA, RPB, RPR respec­
tively, and X/̂ , Xg, Xr stands for QXA, QXB, QXR respectively. 
Also SpF = £n(Sp) = £n(SPA/SPBR). Xg, Xr are in 'thousands
of passenger miles' that a representative individual travels 
during one year period.
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Table V-2.

Hicksian Simulation (Homogeniety and Non-Additivity)

PA, PB, PR, M, T, Sp are independent variables

Money
%A %R %B income M

Observed quantity .576 .154 .0619 .0436
Predicted quantity .566 .153 .0619 .0436
Utility V = .762 (fixed)

increase PA by 10% .561 .162 .0650 .0473
increase PA by 25% .553 .174 .0694 .0527
decrease PA by 10% .573 .144 .0585 .0400
decrease PA by 25% .585 .130 .0531 .0344

increase PR by 10% .571 .144 .0637 .0442
increase PR by 25% .577 .132 .0662 .0449
decrease PR by 10% .562 .164 .0599 .0431
decrease PR by 25% .554 .185 .0567 .0422

increase PB by 10% .568 .155 .0572 .0438
increase PB by 25% .570 .156 .0515 .0440
decrease PB by 10% .565 .151 .0675 .0435
decrease PB by 25% .562 .149 .0783 .0431

increase T by 5 years .550 .173 .0598 .0432
increase I by 10 years .533 .193 .0577 .0428
decrease T by 5 years .584 .132 .0640 .0441
decrease T by 10 years .601 .111 .0662 .0445

increase SP by 10% .580 .136 .0647 .0440
increase SP by 50% .624 .0789 .0740 .0451
decrease Sp by 10% .552 .172 .0588 .0433
decrease Sp by 50% .476 .269 .0427 .0413



CHAPTER VI 

CONCLUSIONS

A. Applications of the Model 

1.
In the model formulation, the prices and other attribute val­

ues are exogeneously determined and wo assume that the supply is 

readily available. In fact, many demand models are formulated assuming 

that the supply is readily available. But the transportation planner has 

to predict the equilibrium in the transportation system or the pat­

tern of flows in the transportation network. Hence complete policy 

assessments require the analysis of both demand and supply simulta­

neously. From the short run equilibrium, the resource consumption 

such as energy consumption, air and noise pollution, vehicle producti­

vity, etc. can be forecast and from the long run equilibrium, both 

resource consumption and activity shifts (socio-economic changes such 

as population, production costs, etc.) are to be forecast, while 

activity shifts are at the same time the influencing variables to the 

demand model. Hence the effective utilization of the model requires 

well structured supply models which express the supply of the trans­

port system,

135
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2.
The model is very useful in measuring the substitutability 

among different trip decisions (e.g. in the case of mode choice 

decisions, the elasticity of substitution between different trip 

modes measures the different substitutability among trip modes).

The elasticities and simulation results are very useful in transpor­

tation policy implications. The results indicate whether the deregu­

lation of public carriers prices is necessary, how much prices or 

other attribute variables should be increased or decreased and what 

the impacts are to the competing modes as well as its own mode.

3.

The consumer surplus argument is easily attacked since the 

present model is based on consistent consumer theory. Consumer sur­

plus can be estimated for each demand equations and we can observe 

how the consumer surplus changes when alternative transportation 

policies are implemented.

Any travel demand models which use the quantitative choice 

approach may adopt the translog models. In air travel demand model-, 

ing, FAA used an econometric model to forecast RPM (revenue passenger 

miles) in its 1974 aviation forecast report. RPM per capita is 

equivalent to ’passenger miles of travel’ in the present study. The 

application of the translog model to air travel demand modeling will 

have some significant results.

In freight demand modeling, the dependent variable of the ag­

gregate models is defined as ’tons of shipments’ which is a continuous.
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divisible commodity. Here again, quantitative choice approach with 

aggregate behavioral modeling will be quite suitable. Both aggregate 

and disaggregate models are used in freight demand modeling. But 

other aggregate models performed poorly and disaggregate models have 

been applied to only a few situations because most of the data are 

in the aggregate form.

B. Conclusions and Research Directions 

This study is the first attempt to apply translog models into 

travel demand modeling with quantitative choice approach. Although 

a highly aggregated data set is used, the model still performs quite 

satisfactorily. The use of stratified data by socio-economic groups 

or by trip purposes should give better performing model. Yet present 

study reveals that aggregate behavioral models based on translog 

models will be useful for transportation forecasting.

The use of Hicksian income-compensated demand elasticity and 

its sensitivity analysis give us very satisfactory results in measuring 

the substitution effect among trip modes. The parallel developments 

of both disaggregate and aggregate behavioral demand modeling are 

necessary.

Several areas are proposed for research directions.

1.
For the present study, auto travel is excluded because of the 

unavailability of the data. Although the intercity travel by auto 

differs from that of public carriers (airline, bus and rail), the 

inclusion of auto travel in the model after proper calculation of
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prices and other attribute variable values will be possible. Both time 

series analysis to see the long run impact and cross sectional analy­

sis to see the short run impact will give interesting results with 

the stratified data according to distances and trip purposes.

2 .
For the further extension of the present study, sequential 

structure as well as simultaneous structure of travel choice deci­

sions need to be developed under proper imposition of the separability 

of the translog utility functions.

3.

The incorporation of both quantitative and qualitative choices 

in the travel demand model formulation is necessary because some of 

the travel choices are qualitative while others are quantitative.

4.

As for the estimation methods, presently no inequality con­

straints can be placed into the parameter estimation process. It 

will be quite useful if the plausibility of the inequality constraints 

applied to the non-linear maximum likelihood estimation method, is 

handled both theoretically and empirically as has been done with linear 

regression case (C. K. Liew, 1976). Finally, aggregate behavioral 

travel demand models need to be developed further as well as disaggre­

gate models for the application to transportation demand modeling.
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