A GENERALIZATION OF MENGER'S RESULT ON THE STRUCTURE OF LOGICAL FORMULAS By DAL CHARLES GERNETH "" Bachelor of Science The University of Texas Austin, Texas 1946

Submitted to the Department of Mathematics Oklahoma Agricultural and Mechanical College In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

iii OKLAHOMA ADRICT THAL & POSTAL THE OK L TO R DEC 8 1947

APPROVED BY:

H +1

Member of Thesis Committee

iamor

Chairman of Thesis Committee and Head of Department

Dean of the Graduate School

Preface

The problem of generalizing Menger's¹ result was first raised by S. Hoberman, and suggested to the author of this paper by Dr. J. C. C. McKinsey. The formulation of the principal theorem here proved is due to Miss Helen Dayton. The proof, the first given for this theorem, is original.

In Menger's paper there is a proof for the special case n = 2. The proof here given is valid for all n > 1, and thus includes his result. The theorem provides a decision method, that is, a method for determining whether an arbitrary expression is a formula.

¹Karl Menger, <u>Eine elemtare Bemarkung</u> über die <u>Structure logischer</u> Formeln.

TABLE OF CONTENTS

Section	I.	Definitions	and	Lemmas	 	 •••••	Page	1		
Section	п.	Principal 1	heore	m	 	 	Page	l	-	4

Section I. Definitions and Lemmas.

All numbers used in the following are integers, for which the results of arithmetic are assumed.

Notation: The symbol p_j is a sentential variable for any integer i, and will be referred to as a 'variable.' The symbol $R_j^n = R$ is an n-ary connective for any j and n > 1, and will be called simply a connective.

Definitions:

(1). An expression is a sequence $s_1 \dots s_k$ such that s_i for $i = 1, \dots, k$ is a variable or connective.

(2). An initial segment of an expression is an expression $s_1 \dots s_i$, where i < k.

(3). A terminal segment of an expression is an expression $s_t \cdots s_k$, where t > 1.

(4). For each n > 1, a formula is an expression contained in every set K such that:

(a) Every variable is in K.

(b) If x_1, \ldots, x_n are in K, Rx_1, \ldots, x_n is in K.

From (4) we have immediately the lemmas:

(5). If all variables have a property, and if when x_1, \dots, x_n have the property, $Rx_1 \dots x_n$ has the property, then all formulas have the property.

(6). Every variable is a formula. If x_1, \ldots, x_n are formulas, then $Rx_1 \ldots x_n$ is a formula.

Section II. Principal Theorem.

Necessary and sufficient conditions that an expression $x = s_1 \cdots s_k$ be a formula are:

(C1) $v_i < (n-1) c_i + 1$ (C2) $v_k = (n-1) c_k + 1$ where x_i = an initial segment of x for i = 1,...,k-l v_i = the number of variables in x_i c_i = the number of connectives in x_i v_k = the number of variables in x c_k = the number of connectives in x.

The conditions are necessary:

Every variable satisfies (1) vacuously and (2), since $c_k = 0$.

To show by (5) that (Cl) and (C2) hold for all formulas, we assume they hold for $z_1, \ldots z_n$ and consider $x = Rz_1 \ldots z_n$. Let y be an initial segment of x. Then one of the following is true:

- (7) y is an initial segment of Rz.
- (8) $y = Rz_1 \dots z_h$ for some h < n.
- (9) $Rz_1...z_h$ is an initial segment of y for some h < n.
- If (7) holds, x obviously satisfies (C1).
- If (8) holds, let

u_i = number of variables in z_i for i = l,...,h q_i = number of connectives in z_i for i = l,...,h u_y = number of variables in y q_y = number of connectives in y.

Then we have:

(10)
$$q_y = q_1 + \dots + q_n + 1$$

 $u_y = u_1 + \dots + u_h$
 $= (n-1)(q_1 + \dots + q_n) + h by (2)$ for each z_i
 $= (n-1)(q_y - 1) + h by (10)$
 $= (n-1)q_y - n + h + 1$

But h - n < 0, since h < n, so that $u_y < (n - 1)q_y + 1$.

If (9) holds, consideration of (8) and z_{h+1} leads to the desired result; thus (C1) holds for all formulas.

The proof that (C2) holds for x is the same as the proof for case (8) above, with $u_y = v_k$, $q_y = c_k$, and h = n. Thus (C2) holds for all formulas.

The conditions are sufficient:

This is proved by an induction on the length of the expression. If x is an expression of length one, this one symbol by (C2) must be a variable. This is a formula by (6). Suppose then that all expressions of length < k satisfying (C1) and (C2) are formulas, and that $x = s_1 \cdots s_k$ satisfies (C1) and (C2), where k > 1.

If s_1 is a variable, by (Cl) we have l < l. Hence s_1 is a connective. In any terminal segment, if v_t is the number of variables, and c_t the number of connectives, we have for t = l + i for some i,

$$c_t = c_k - c_i$$

 $v_t = v_k - v_i$
 $> (n-1)c_k + 1 - (n-1)c_i - 1$ by (C1) and (C2)
 $= (n-1)(c_k - c_i)$
 $= (n-1)c_t$

or (11) $v_t > (n-1)c_t$.

write $x = Rx^{i} = Rs_{2} \dots s_{k}$. If $s_{2} = x_{1}$ is a variable, it is a formula by (6). If s_{2} is a connective, this initial segment of x^{i} satisfies (C1). Let x_{1} be the shortest segment which does not satisfy (C1), i.e. such that $v_{1} = (n-1)c_{1} + 1$, where v_{1} and c_{1} are defined for x_{1} as usual. There is such a segment by (11) for x^{i} . Thus x_{1} satisfies (C1) and (C2), and is a formula by the induction hypothesis. We write $x = Rx_{1}x^{i}$, and construct in the same manner formulas x_2, \ldots, x_m so that $x = Rx_1 \ldots x_m$. It is possible to exhaust the symbols of x in this manner, since k is an integer, and each x_i contains at least one symbol.

As in the proof of (C1) for case (8), we have

$$v_k = (n-1)c_k - n + 1 + m$$

but

 $v_{k} = (n-1)c_{k} + 1$ by (C2) for x.

Hence m - n = 0 or m = n. We conclude by (6) that x is a formula.

This completes the proof of the theorem.

BIBLIOGRAPHY

Menger, Karl, <u>Eine elementare Bemarkung über die Structure logischer Formeln</u>, Ergebnisse eines mathematischen Kolloquiums, Heft 3 (pp. 22-23).

.

Betty Westerman Typist