A GENERALIZATION OF MENGER'S RESULT
ON THE STRUCTURE OF LOGICAL FORMULAS

A GENERALIZATION OF MENGER'S RESULT
 ON THE STRUCTURE OF LOGICAL FORMULAS

By
DAL CHARLES GERNETH
Bachelor of Science
The University of Texas
Austin, Texas
1946

Submitted to the Department of Mathematics Oklahoma Agricultural and Mechanical College
In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

Chairman of Thesis Committee and Head of Department

Dean of the Graduate School

Preface

The problem of generalizing Menger's ${ }^{l}$ result was first raised by S. Hoberman, and suggested to the author of this paper by Dr. J. C. C. McKinsey. The formulation of the principal theorem here proved is due to Miss Helen Dayton. The proof, the first given for this theorem, is original.

In Menger's paper there is a proof for the special case $n=2$. The proof here given is valid for all $\mathrm{n}>1$, and thus includes his result. The theorem provides a decision method, that is, a method for determining whether an arbitrary expression is a formula.
$l_{\text {Karl Menger, Eine elemtare Bemarkung iber die Structure logischer }}$ Formeln.

TABLE OF CONIENTS

Section I. Definitions and Lemmas Page 1
Section II. Principal Theorem Page 1-4

Section I. Definitions and Lemmas.
All numbers used in the following are integers, for which the results of arithmetic are assumed.

Notation: The symbol p_{i} is a sentential variable for any integer i, and will be referred to as a 'variable." The symbol $\mathrm{H}_{\mathrm{j}}^{\mathrm{n}}=\mathrm{R}$ is an n-ary connective for any j and $n>1$, and will be called simply a connective.

Definitions:
(1). An expression is a sequence $s_{1} \ldots s_{k}$ such that s_{i} for $i=1, \ldots, k$ is a variable or connective.
(2). An initial segment of an expression is an expression $s_{1} \ldots s_{i}$, where $i<k$.
(3). A terminal segment of an expression is an expression $s_{t} \ldots s_{k}$, where $t>1$.
(4). For each $n>1$, a formula is an expression contained in every set K such that:
(a) Eivery variable is in K.
(b) If x_{1}, \ldots, x_{n} are in $K, R x_{1} \ldots x_{n}$ is in K.

From (4) we have immediately the lemmas:
(5). If all variables have a property, and if when x_{1}, \ldots, x_{n} have the property, $\mathrm{Bx}_{1} \ldots \mathrm{X}_{\mathrm{n}}$ has the property, then all formulas have the property.
(6). Eyery variable is a formula. If x_{1}, \ldots, x_{n} are formulas, then $B x_{1} \ldots x_{n}$ is a formula.

Section II. Principal Theorem.
Necessary and sufficient conditions that an expression $x=s_{2} \ldots s_{k}$ be a formula are:
(Cl) $v_{i}<(n-1) c_{i}+1$
(c2) $v_{k} \propto(n-1) c_{k}+1$
where $x_{1}=$ an initial segment of x for $i=1, \ldots, k-1$
$\nabla_{i}=$ the number of variables in x_{i}
$c_{i}=$ the number of connectives in x_{i}
$v_{k}=$ the number of variables in x
$c_{k}=$ the number of connectives in x.

The conditions are necessary:
Every variable satisfies (1) vacuously and (2), since $c_{k}=0$.
To show by (5) that (C1) and (C2) hold for all formulas, we assume they hold for $z_{1}, \ldots z_{n}$ and consider $x=\mathrm{Rz}_{1} \cdots z_{n}$. Let y be an initial segment of x. Then one of the following is true:
(7) y is an initial segment of Rz_{1}.
(8) $y=R z_{1} \ldots z_{h}$ for some $h<n$.
(9) $\mathrm{Rz}_{1} \ldots z_{h}$ is an initial segment of y for some $h<n$.

If (7) holds, x obviously satisfies (Cl).
If (8) holds, let
$u_{i}=$ number of variables in z_{i} for $i=1, \ldots, h$
$q_{i}=$ number of connectives in z_{i} for $i=1, \ldots, h$
$u_{y}=$ number of variables in y
$q_{y}=$ number of connectives in y.
Then we have:

$$
\text { (10) } \begin{aligned}
q_{y} & =q_{1}+\ldots+q_{h}+1 \\
u_{y} & =u_{1}+\ldots+u_{h} \\
& =(n-1)\left(q_{1}+\ldots+q_{n}\right)+h \text { by (2) for each } z_{i} \\
& =(n-1)\left(q_{y}-1\right)+h \text { by (10) } \\
& =(n-1) q_{y}-n+h+1
\end{aligned}
$$

But $h-n<0$, since $h<n$, so that $u_{y}<(n-1) q_{y}+1$.
If (9) holds, consideration of (8) and z_{h+1} leads to the desired result; thus (Cl) holds for all formulas.

The proof that (C2) holds for x is the same as the proof for case (8) above, with $u_{y}=v_{k}, q_{y}=c_{k}$, and $h=n$. Thus (c2) holds for all formulas.

The conditions are sufficient:
This is proved by an induction on the length of the expression. If x is an expression of length one, this one symbol by (C2) must be a variable. This is a formula by (6). Suppose then that all expressions of length $<\mathbf{k}$ satisfying (C1) and (C2) are formalas, and that $x=s_{1} \ldots s_{k}$ satisfies (Cl) and (C2), where $k>1$.

If 3_{1} is a variable, by (Cl) we have $1<1$. Hence s_{1} is a comective. In any terminal segnent, if v_{t} is the number of variables, and c_{t} the number of connectives, we have for $t=1+i$ for some i,

$$
\begin{aligned}
c_{t} & =c_{k}-c_{i} \\
v_{t} & =v_{k}-v_{i} \\
& >(n-1) c_{k}+1-(n-1) c_{i}-1 \text { by (c1) and (c2) } \\
& =(n-1)\left(c_{k}-c_{i}\right) \\
& =(n-1) c_{t} \\
\text { or (11) } v_{t} & =(n-1) c_{t} .
\end{aligned}
$$

write $x=R x^{\prime}=R s_{2} \ldots s_{k}$. If $s_{2}=x_{1}$ is a variable, it is a formula by (6). If s_{2} is a connective, this initial segment of x^{\prime} satisfies (Cl). Let x_{1} be the shortest segment which does not satisfy (Cl), i.e. such that $v_{1}=(n-1) c_{1}+1$, where v_{1} and c_{1} are defined for x_{1} as usual. There is such a segment by (II) for x^{\prime}. Thus x_{1} satisfies (C1) and (C2), and is a formula by the induction hypothesis. We write $x=R x_{1} x^{\prime \prime}$, and construct in the
same manner formulas x_{2}, \ldots, x_{m} so that $x=\mathrm{Bx}_{1} \ldots \mathrm{X}_{\mathrm{m}}$. It is possible to exhaust the symbols of x in this manner, since k is an integer, and each x_{i} contains at least one symbol.

As in the proof of (CI) for case (8), we have

$$
v_{k}=(n-1) c_{k}-n+1+m
$$

but $\quad v_{k}=(n-1) q_{k}+1$ by (c2) for x_{0}
Hence $m-n=0$ or $m=n$. We conclude by (6) that x is a formula.
This completes the proof of the theorem.

BIBLIOGRAPHY

Menger, Karl, Eine elementare Bemarkung iber die Structure logischer Formeln, Ergebnisse aines mathematischen Kolloquiums, Heft 3(pp. 22-23).

Betty Westerman Typist

