MEASURING TLCHIIIQUES FOR THE
723A REFLEX KLYSTRON

MEASURING TECHNIQUES FOR THE
723A RLFLEX KLYSIRON

By
WILLIAII G. WORTH JR. Bachelor of Science Oklahoma Agricultural and Mechanical College Stillwater, Oklahoma 1942

Submitted to the Department of Electrical Engineering Oklahoma Agricultural and Mechanical College In Partial Fulfillment of the Requirements for the Degree of MASTIR OF SCIENCE

CGRICTLTTRAL, \& MPCHANICAT, MLABES
TI PR R Y
AUG 91948

Dean of the Graduate School

From the beginning of World war II to the present time, the use of Ultra High Frequencies has seen an advancement comparable to no other era. Ideas, experiences and equipment of jesterday are being used as the basic foundation for the more complex problems immediately following.

Ultra High Frequencies belong to a nev and highly specialized field. The concepts of resistance, resonance, inductance and capacitance, which were sufficient for the lover frequency levels, need to be supplemented by the concepts of field configuration, velocity of propagation, reflection coef ficient and many more. The Ultre High Frequency Ingine日r has to be able to include these heretofore neglected equation components in the present day formulas.

The present and potential uses of Ultra High Frequency are so great that the Communications Ingineer is impelled to be familiar vith the basic iceas associated vith this great fiold. To ignore the potentialities of this field, would put the Commications Engineer in a closed field which, in the author's opinion, will soon be outdated.

With the above ideas in mind, the Electrical Zngineering Department of Oklahoma A, and M. College initiated a basic course in Ultre High Frequency, compulsary for all senior students in the Communication Option. This course number for college reference is Llectrical Engineering 4×3.

A sumary of all subjects covered in Electrical Engineering 4×3 would aproach book size, therefore the laboratory klystron section was chosen because of its relative importance as explained in the general section. This paper is not intended to stress the theory of klystron and wave guide operation, but rather to give several laboratory tschniques, which when followed, will give complete operational characteristics for frequency and
power output of a $723 \mathrm{~A} / \mathrm{B}$ reflex klystron.
The design considerations given in the thesis body are those of the author and were developed specifically for the techniques embodied in the thesis. For this reason, the application of the equipment is limited to other experiments simil ar to those described.

```
The author wishes to acknowleage with gratitude the assistance of Professor A.I. Betts, who read the manuscript and offered many valuable sug gestions, and of Mr . Wilbur B. Canfield, who spent much time in reading the proofs.
```

William G. Vorth Jr.

Stillwater, Oklahoma October, 1947

Table of Contents

General considerations of 9000 megacycle power. 1
Part I : Measurement of frequency and relativepover under static conditions.4
Block diagram of electrical components 5
D.C. power supply No. 1 6
D.C. power supply No. 2 7
Design of D.C. pover supply No. 2 8
Physical component arrangement 16
Crystal current meter 18
Part II : Discussion and application of results of Part I. 20
Part III: Neasurement of frequency and relative pover under dynamic conditions. 23
Block diagram of electrical components 25
liodulation circuit 26
Repeller voltage vs time 27
Clipper tube protection 27
Dynamic frequency measurement 29
i.ode power variations 30
Part IV : Themistor briage wattmeter 31
Physical component arrangement 32
Thermistor description 33
Basic thermistor bridge 34
Bridge sensitivity compensation 35
Ambient temperature compensation 36
Absolute power measurements 37
Complete electrical circuit for the thermistor bridge 38
Dynamic power measurements 39
Calibration of thermistor T_{1} 40
Bibliography 41

GEIERAL CONSIDERAT IONS

At frequencies of 9000 megacycles, the reflex klystron is perhaps the most extensively used tube for low power sources. Its value for use in receiving and test equipment cannot be approachod by any other vacuum tube on the market at the present time. Its only serious deficiency is that a continuous broad band of frequencies cannot be covered by any one unit.

In the design of local oscillators for receivers, the frequency range and power output for this frequency range is the most important aspect. Since the voltages required by the klystron are generally belov 1000 volts, the pover supplies can be of a conventional regulated type. Also since UHF re ceivers are subject to alignment and calibration, a signal gener ator capable of delivering calibrated frequency and powor output is necessary, therefore, for theso signal ganorators, it is almost ossontial that a klystron be omployod as the oscillator. The klystron tube circuit can also be dosigned so that amplitude modulated or frequency modulated outputs may be easily obtained. This is ospocially valuablo in signal generators.

The most essontial charactoristics for ordinary vacuum tubss can be found in any of the soveral tubo manuals. Also tho samo typo tubo is essontially the samo regardess of the manufacturer, The klystron is not an ordinary tube. The namo klystron is a patentod namo originated by the Sperry Gyroscopo Company. Dssontially it is a "war baby". Klystrons wers known and dovelopod beforo the war and most texts still carry thom undor the title "volocity modulated tubos". The demand for high frequency radar equipment during the progress of the var was so great, that noarly all companies vith large contracts, developod their orm models of the velocity modulated tubes. Each company's model met the spocified output pover and frequency characteristics as given by govarnment specifications, but the models vere vory differont physically. Consequently, tho operating voltages for aach company's model vary. This
proporty along with cifferent physical sizes make the klystrons non-inter changeable with any except another of the same type. As an example of this, in the 10 cm . band, the 726A manufactured by Vestern Electric, the K417A manufactured by Sperry Gyroscope Company, and the 707A/B manufactured by Western blectric and Raytheon will each produce the same electrical output, but to replace one by the other in a circuit means both electrical and mechanical changes.

As a result of each company's research, several models are on the commercial market now. The majority of these are obtainable thru war surplus channels. The klystron originally had the War and Navy Departments Secret classification and later a Confidential classification. is a result, the published literature on klystron operational characteristics is in limited quantities. Operational data is not as a rule supplied thru surplus channels, therefore the only absolute methoc of obtaining specific data for a particular type klystron is by a written request to the manufacturer.

The operational data from the manufacturer is in very general terms. The principle mode of operation is stressed and most data is given for that mode, since this mode was the only one used for most radar sets. General terms are given because physical manufacturing tolerances cannot be $\pm 0 \%$. This means that grid spacings, grid-repeller spacings, etc., will vary by minute amounts, thus changing the outjut frequency and pover for specified voltages. Hence operational curves for several klystrons of the same type will differ.

Calculation of performance data for a specific klystron from the general data is almost impossible. Therefore for most of those who wish more complete operational data for any particular klystron tube, it is necessary to apply laboratory methods of analysis to obtain such.

For undergraduate laboratory work, 5 cm , vavelengths are not too satisfactory,
because of the low power outputs of the reflex klystron. Particularly, the $723 / B$ klystron is not the best tube to be used because it does not furnish enough power to allow sufficient isolation from the remainder of the circuit in the form of attenuation inserted between the klystron and other circuit com ponents. Insufficient isolation may result in 'pulling' of the klystron as the load is changed. 'Pulling' is defined as the changing of klystron frequency with changes in load. For these reasons, best laboratory results by inexperi enced personnel, 10 cm , wavelengths vould be more advantageous because the out put pover is much greater.

It was originally intended to cover both 10 cm , and 3 cm . wavelengths in the Llectrical Dngineering $4 X 3$ laboratory. However, to completely equip a laboratory for ultra high frequency measurements requires a large amount of money and as the large amount of money was not available, the Ilectrical Engineering Department sought equijment from sources other than by direct purchases. Liost of the equipment now on hand as obtained from either AAF surplus or by donations from private companies. Betreen these two sources, onough equipment is now on hand to offer a very complete laboratory course in Ultra High Frequencies.

The material obtaing vas used originally in radar research or in actual radar sets. Since only about 30 per cont of the 10 cm . radar sots use wave guides and about 98 per cent of the 3 cm . radar sets use wave guides, the greatest amount of vave guide and assoc iated material on hand is for 3 cm . vavelengths. It is for this reason that the following klystron techniques are for the 3 cm . band. This is advantageous in the respect that 3 cm . wavelength techniques are much more critical with respect to tuning, fitting etc., than 10 cm . vavelengths. Thus with suitable experience in the 3 cm . field, the 10 cm . field is practicilly mastered except for concepts of physical component sizes.

PART: I: EASURENEITT OF FRE $U E E T C Y$ AITD RELATIVE POIER UNDER STATIC CONDITIONS. EQUIPIENT:

All possible precautions were taken to minimize effects of line voltage variations, room temperature variations, capacity to ground or capacity to operator variations and meter reading inaccuracies.

Since the 115 volt A.C. house service is subject to voltage variations due to poor regulation, all power to the test bench is thru a constant voltage transformer of 2 KVA rating. The main D.C. power source is one taiken from a SCR 547 Radar Set and numbered RA 57A. This furnishes a regulated supply voltage up to 1000 volts. The D.C. voltages applied to the klystron are further regulated by a power pack diesigned for this special application.

The result of the above rogulators is a negligible variation in klystron voltages for a 20% variation in house voltage or a one cycle per second change in frequency. The D.C. supplies are designed with the positive lead grounded, so that the klystron shell and a.ll parts of the wave guides and frequency meter, etc., will be grounded and therefore will have no capacity to ground. Any part of the external wi ring, moters, etc., may be touched by the operator with no change in meter readings.

Ambient temperature variations of the air surrounding the klystron were held to 2^{0} Fahrenheit by shielding the klystron from air currents in the vicinity of the test bench.

Neters used for voltages and currents are Veston instruments and have been calibrated before and after test runs against standards and the average calibration used.

Wave guide components used are by several manufacturers, however all components are of the sume inside dimgnsions. Single or double choke joints are used at all wive suide component connections.

Figure 1 is a block diagram of electrical connections. Components shown

Figure 1 : Block diagram of electrical components.

Figure 2 : Electrical diagram for D.C. pover supply No. 1.

Description of components shown in Figure 2

Item	Description	
1	Vacuum Tube	Type 836
2	Vacuum Tube	Type 6L6
3	Vacuum Tube	Type VR 105/30
4	Vacuum Trube	Type VR 150/30
5	Vacuum Iube	Type 6SF5
6	Vacuum Tube	Type 6SF5
7	Resistor	50 ohm
8	Resistor	50 ohm
9	Resistor	500 ohm
10	Resistor	50 ohm
11	Resistor	50 ohm
12	Resistor	50 ohm
13	Resistor	500 ohm
14	Resistor	50 ohm
15	Resistor	5 Legohms
16	Resistor	100,000 ohm
17	Resistor	500,000 ohm
18	Resistor	50,000 ohm
19	Resistor	45,000 ohm
20	Resistor	500,000 ohm
21	Resistor	120,000 ohm
22	Resistor	100,000 ohm (variable)
23	Resistor	600,000 ohm
24	Condenser	6 microfarad
25	Condenser	6 microfarad

Continued from Page 6a.

Item

Condenser
Condenser
Condenser

Description
. 25 microfarad
. 25 microfarad
. 15 microfarad

Filament Transformer
Plate Transformer
Auto Transformer
Fuse
6 ampere
Fus ${ }^{\circ}$
2 ampere

as blocks in Figure 1 vill be described in the following sections and a complete electrical circuit given. Figure 2 is an electrical diagram of D.C. power supply No. I. This power supply will produce a regulated output of 1000 volts at 100 ma . Note that the positive lead is grounded. Figure 3 shows the electrical connections for D.C. power supply No. 2. It is of a conventional regulated nature but will produce an output variable from 250 volts D.C. at 26 ma . to 400 volts D.C. at 43 ma . simultaneously vith a second output variable from 0 to -350 volts D.C. with reference to the negat ive side of the first named output. Either output may be set at any value independent of the other and both out puts are regulated.

The following s, nopsis of circuit action is given as a prelude to actual design of D.C. power supply No. 2.

The $6 Y 6$ acts as a variable resistor in series vith the output. Its bias determines the plate resistance and hence the voltage drop across it. The bias of the $6 Y 6$ is essentially Voltage GB minus Voltage $A B$ (Figure 3). If the load current is increased, Voltage $A B$ and hence Voltage $A C$ will tend to decrease. Voltage $B C$ is essentially constant. The Voltage EC would decrease, making the bias on the 6SJ7 more negative. This increases the tube drop across the 6SJ7 and makes the grid of the 6Y6 less negative. Thus the plate resist ance of the 6 Y 6 is reduced, reducing the $6 Y 6$ tube drop and increasing the output voltage. The action is the same in the design except that the extreme maximum and minimum voltages are used.

DESIGN OF POINR SUPPLY NO . 2 :
Input Voltage $F C$ to be 1000 volts D.v. at all times. Voltage $A B$ to be 250 volts D.C. minimum at 21 ma . Voltage $A B$ to be 400 volts D.C. maximum at 38 ma . Voltage $B L$ to be 0 volts minimum and 350 volts D.C. maximum.

There is no current drain from Voltage BL.

The bleeder current thru R_{4}, R_{5}, R_{6} and R_{7} is approximately 1.3 ma. This current is essentially constant, i.e.,

$$
\frac{\text { Voltage } A C}{R_{4}+R_{5}+R_{6}+R_{7}}=\frac{700}{550,000}=1.3 \mathrm{ma}
$$

This assumes that bleeder resistance will be approximately .5 meg ohms so that the current will be small. Actual resistance of bleeder components will be determined in a following section. Again to limit the current to a small value, choose R_{1} and R_{2} to have a total of 80 K ohms. This is an approximation but will enable the average bleeder current thru R_{1} and R_{2} to be calculated. This current is approximately 4 ma .

Combining the above loads gives the following maximum and minimum ratings of the power supply.

Daximum output Voltage $A C=770$ volts at 43 ma .
Minimum output Voltage $A C=620$ volts at 26 ma .
Since the input Voltage FC is constant at 1000 volts D.C., it is apparent that Voltage FA is 230 volts for maximum output voltage and Voltage FA is 380 volts for minimum voltage output.

The screen current of the 6 Y 6 is assumed cons tant at 3 ma . for all screen voltages then the plate voltage is aproximately 200 volts. This is an approximation but is within 10%.

For maximum voltage out jut (Voltage AC), the plate load for the 6Y6 is 770 volts $/ .043$ ampere $=18,000$ ohms. For minimum voltage output, the plate load resistance for the 6Y6 is 24,000 ohms. Since the voltage drop across the 6Y6 is a minimum for maximum output voltage, the screen supply voltage is a minimum at this point. The screen voltage should not be below 120 volts D.C. With the screen current assumed constant at 3 ma . for this plate voltage range, the resistor $R_{9}=\frac{230-120}{.003}$ or 40 K ohms. Using this resistor value in the screen circuit will therefore cause the screen voltage
to rise as the Voltage FA increases.
Voltage FA is a mazimum for minimum output and is equal to 380 volts. Due to the increased plate supply, the screen current vill decrease. Approximately, the screen current vill be halved by doubling the plate voltage, so that the screen current is appoximately 1.5 ma. when the plate voltage is 380 volts. The drop across R_{g} will be 60 volts. Therefore the screen voltage will be 320 volts. This increase in screen voltage vill be taken into consideration later.

Voltage regulation occurs because of the drop across the $6 Y 6$ tube. Hence the grid bias voltages for the 6Y6 must be determined for maximum and minimum output voltages. For minimum Voltage $A C=620$ volts at $26 \mathrm{ma} .$, the Voltage $\mathrm{Fa}=380$ volts, Voltage $H A=120$ volts, plate load resistor $=24 \mathrm{~K}$ ohms and $\mathrm{E}_{\mathrm{bb}}=1000$ volts. Using this data in conjunction with the 6 Y 6 tube characteristics, the grid bias necessary for the data to hold is -20 volts. However, the curves are for a scroen voltage of 135 volts where now the screen voltage is 320 volts, which indicates that the grid bias has to be more negative than -20 volts. Theoretically the bias should at least be $(320 / 135) \times(-20)$ or - 48 volts. To bo sure that the tube will have sufficiont bias to increase the tube drop to 280 volts, the bias circuit will be designed to give - 70 volts grid bias for tho 6Y6, when the output Voltage $A C$ is a minimum.

For maximum Voltago $A C=770$ volts D.C. at 43 ma., the Voltage $\mathrm{FA}=230$ volts, Voltago $H A=120$ volts, $E_{b b}=1000$ volts and the plate load resistance aquals 24 K ohms. Using this data in conjunction with the 6Y6 tube characteristics, the grid bias necessary for the data to hold is -16 volts D.C. To be sure that the bias vill be low enough to decrease the tube drop to 230 volts, the bias circuit will be designed to give - 15 volts bias for the $6 Y 6$ when the output Voltage $A C$ is a maximum.

From Kirchhoff's law, the bias for the 6Y6 is Voltage GB minus Voltage. AB
or the tube voltage drop of the 6 SJ 7 minus the output voltage $A B$. Both of these voltages vary vith output voltage changes. Wen the output Voltage $A C$ is a maximum of 770 volts, the Voltage $A B=400$ volts. From preceding calculations, the bias of the $6 Y 6$ is to be -15 volts. Hence the tube drop of the $6 \mathrm{SJ}^{7}=400-15=385$ volts or Voltage GB . The plate supply voltage for the 6SJ7 equals Voltage $A B+$ Voltage $F A=400+230$ or 630 volts. Wen the output Voltage $A C$ is a minimum of 620 volts, the Voltage $A B=250$ volts. From preceding calculations, the bias of the 6 Y 6 is to be - 70 volts. Hence, the tube drop of the $6 \mathrm{SJ} 7=250-70=$ Voltage $G B=180$ volts. The plate supply voltage for the $6 \mathrm{SJ7}=250+380$ or 630 volts which is the same as before.

Since the $I_{b o}$ vs $E_{b o}$ curves of the $6 \mathrm{SJ7}$ are to be vorked w ith, the screen voltage should be known, so it will now be calculated. The screen supply voltage is the Voltago $A B$. Screen voltage is obtained by a divider network consisting of R_{I} and R_{2}. As before, assume the sum of these resistors to be approximately 80 K ohms. The current in R_{1} and R_{2} also passes through the VR tubes and is a regulating factor in the firing of these tubes.

Wen the plate voltage of the 6SJ7 is 180 volts, the screen supply voltage is 250 volts. The screen voltage should be approximately 100 wolts. The screen current can be assumed practically constant for a pentode with varying plate voltage. The screon current vill be assumod at 3 ma . The soreen curront drop in R1 will have to be takon into consideration. Figure 4 shoms the equivalent scroen circuit and the calculations necessary to dotermine R_{1} and R_{2}. Tho calculations in Figure 4 vill give a scre日n voltago of 100 volts wi th Voltage AC a minimum. However, with Voltago AC a maximum, the screen voltage will increase. The screen current remains at approximately 3 ma. Figure 5 shows the equivalent screen circuit for this coniition. The approximate screen resistance equals $100 / .003=30 \mathrm{~K}$ ohms $=R_{s}$. With Figures 4 and 5 as reference, the load resistor, Rg_{g}, for the 6SJ7 can now

$$
\begin{aligned}
& I_{1} R_{2}+\left(I_{1}+.003\right) R_{1}=250 \text { volts } \\
& I_{1} R_{2}=100 \text { volts } \\
& \text { Assume } R_{2}=40,000 \text { ohms } \\
& \text { Then } I_{1}=2.5 \mathrm{ma} . \\
& \text { Therefore } R_{1}=27,000 \text { ohms }
\end{aligned}
$$

Figure 4 : Equivalent screen circuit for 6SJ7.

$$
\mathrm{R}_{\mathrm{I}}=\frac{30 \mathrm{~K} \times 40 \mathrm{~K}}{30 \mathrm{~K}+40 \mathrm{~K}}=17 \mathrm{~K} \text { ohms }
$$

$$
\text { Screen Voltage }=E_{C 02}
$$

$$
E_{\mathrm{CO2}}=(17 / 44) \times 400=155 \text { volts }
$$

Figure 5 : Equivalent screen circuit.
be calculated.
With Voltage AC a minimum, Voltage $\mathrm{AB}=250$ volts, the $6 \mathrm{SJ7}$ tube drop equals 180 volts and $E_{\mathrm{bb}}=630$ volts. Assume that the grid bias will be zero for this condition. (This is from the circuit analysis, since the drop of the 6SJ7 has to be small, the tube current would have to be large.) By drawing a load line for these conditions, R9 $=(630-180) / .009$ or 50K ohms. To overdesign, R_{9} will be used as 60 K ohms in order that the 6Y6 bias will be - 70 volts with zero bias on the 6SJ7. The load line for the other extreme of Voltage $A B=400$ volts will be the same, since later in the design, provision will be made to reduce the 6SJ7 bias enough to secure 385 volts tube drop.

Wen Voltage $A B=400$ volts, the 6 SJ 7 tube drop should be 385 volts. Using $R_{9}=60 \mathrm{~K}$ ohms as the load line, the 6 SJ 7 bias should be -2 volts. However at this point, the screen voltage $=155$ volts so that the bias should be $(155 / 100) \times(-2)=-3$ volts. In the following design this bias vill be used as - 4 volts.

The bleeder resistances (R_{4}, R_{5}, R_{6} and $\left.R_{7}\right)$ can now be calculated. Point C will be used as the reference voltage. Assume that the Voltage BC equals 370 volts. This will vary with temperature, but will be compensated for later. For minimum Voltage $A C=620$ volts, the bias for the 6SJ7 equals zero. Also the point E (variable) approaches point I. The Voltage $B C=$ 370 volts. Hence the Voltage $E C=370$ volts. The Voltage $A C=620$ volts. Therefore the ratio of resistance A and resistance EC can be calculated. $E C /(A E+E C) \times 620=370$ volts. From this equation, the resistance ratio $A E / E C=.66$. Assume that the divider sum $=550 \mathrm{~K}$ ohms as before. Therefore resistance $A E+E C=550 \mathrm{~K}$ ohms. From the prec eding resistance ratio of $E C$ and $A B, E C=332 \mathrm{~K}$ ohms and $A E=218 \mathrm{~K}$ ohins.

To allow for temperature $v a r i a t i o n s$ in the $V R$ tubes, chooss resistance
of R_{5} to be 100 K ohms, and resistance EI to be 30 K ohms, so that if the VR tubes raise Voltage BC to 375 volts, the 6 SJ 7 grid can still be zero. Jith these values, then $R_{4}=218 \mathrm{~K}-30 \mathrm{~K}$ or 188 K ohms and $\mathrm{R}_{5}=100 \mathrm{~K}$ ohms as before. Therefore, resistance $E J=70 K$ ohms, $E C=332 K$ ohms and $R_{6}+R_{7}=332 K-70 K$ or 262 K ohms. Choose R_{7} to be 50 K ohms. This leaves R_{6} to be 212 K ohms. iith these resistance values, the $6 S J 7$ grid bias for maximum output voltage can be checked.

With maximum output, the Voltage $A C=770$ volts and Voltage $J C=$ $\left(R_{6}+R_{7}\right) / 550 K \times 770=366$ volts. The maximum negative bias possible on the 6 SJ 7 is $366-370$ or -4 volts. This is sufficient as -4 volts is all that is necessary in accordance with preceding specifications.

The condenser C_{1} is added to make the grid of the 6SJ7 more sensitive to the output ripple voltage. It essentially puts the grid at ground potential as far as ripple voltage is concerned. Therefore voltage regulation will take place for the ripple components.

Since the output ripple voltage is smaller than the input ripple voltage due to the ripple drop in the 6Y6, a provision is made to make the 6SJ7 grid sensitive to the input ripple. R_{7} is a 50 K ohm potentiometer, with the center tap connected thru 4 megohms to the input positive supply. Hence the input ripple vill cause variations in the 6 SJ 7 grid circuit and the regulation will be such to counteract the input ripple.

With consideration of the purpose of the power supply, the following refinement was added so as to permit a more flexible Voltage AB. R_{6} is shunted by a 250 K ohm potentiometer in series with a 300 K ohm resistor as shown in Figure 6. This enables a varnier control of the Voltage $A B$ with R_{5} so that the full range of R_{5} can be used giving greator accuracy in sotting voltago $A B$.

In the repeller circuit, potent iometer R_{3} is chosen in sizo to meot wattage specifications. The maximum voltage across the potentiometor is Voltage

BC and is equal to 380 volts. R_{3} is chosen as a 250 K ohm, 1 watt potenti ometer so that the dissipated vattage is .65 watts. The center tap of the potentiometer is connected to the repeller of the klystron and no current is drawn, since the repeller is always negative with respect to the klystron cathode. Further refinements for this power supply will be given in a later section, when circuits requiring additional voltages will be used.

Figure 6 : Vernier control for Voltage $A B$.
The pover pack tas built in accordance with the preceding calculations and the outputs were tested using the klystron as a load. All voltages were within those in the design calculations.

It may be noted that the cathodes of the 6Y6 and the 65J7 are at different potentials. This necessitates a filament transformer with two separate 6.3 volt secondaries. As a special transformer was not available, a standard plate transformer wi th a 5 volt and a 6.3 volt secondary was used. The 6Y6 operates with 6.3 volts and the 6SJ'7 with 5 volts on the filament. Since the porver pack was originally overdesigned, this low voltage on the 6SJ7 fila ment does not mar the operation of the pover pack.

PHYSICAL COMPONEITS :

Figure 7 shovs the physical component arrangement for the trave guide assembly. Connections between sections of wave guides are by single or double choke joints as shown in Figure 7a. The rectangular wave guide is excited in the HOl mode of transmission by virtue of the klystron probe placement.

13

Figure 7a : Single choke joint.

Arrows on tuning devices denote direction of physical movement

1. Shorting plug, variable position
2. Tuning stub, variable length and position
3. Tuning stubs, variable length, fixed position
4. Shorting plug, variable position
5. Crystal
6. Wavemeter
7. Klystron probe
8. Choke joint
9. Cross section
10. Iube mount
11. Series Tee
12. Variable load
13. Crystal cap
14. Crystal mount
15. Attenuator
16. Coaxial lead

The wave meter is a circular cavity with variable length and is excited in the $\mathbb{T E}_{111}$ mode since the E vector in the wave guide is parallel to the E vector in the wave meter. As the wave meter is directly connected to the side of the wave guide perpendicular to the E vector, the $T E_{011}$ mode is eliminated. Note Figure 7 for this mode elimination.

Ample tuning arrangements are suitably located, to assure optimum loading of the klystron. The tuning of one stub affects the tuning of the others, therefore when obtaining maimum crystal current, it is necessarv that all tuning arrangements be dealt with simultaneously. This has to be do ne for each point of data, when relat ive pover measurement s are being taken. The individual role of each tuning arrangement can be clear ly demonstrated in the denamic characteristic section. Referring to Figure 7, the following correlation of tuning arrangements is given for clarification. (I) essential ly matches klystron to wave guide. (2) matches load to vave guide. (3 \& 4) match crystal to wave guido.

Using Figure 7 as reforence, the following theory is given to cover the actual conditions occurring when the frequency and approximate power of the klystron are being moasured. Dnergy flows from the klystron to the load (12) and the crystal (5). The meter (in detail later) will indicate crystal current and when the vave meter is not tuned to resonance, matching adjust ments are made to make the crystal current a maximum. When the frequency meter is tuned to resonance, a low impedance is presonted to the wave guide at the wave meter coupling and power will be absorbed by the wave moter. This decreases the povor floving to the crystal and a dip vill occur in the crystal current. This dip is large enough to assure an accurate frequency reading for all modes except the mode corresponding to the smallest negat ive rejeller voltage.

The wave meter is such th at one part in 9000 cm be measured for the
frequency range of 8430 megacycles to 9660 megacycles. The accuracy of the crystal current meter does notenter in, since a minimum reading is seen on the meter, not a direct current reading when measuring frequency. Then measuring relative power of the klystron, the meter reading does enter in and accuracy of relative pover measurements will depend on the meter accuracy. This will be discussed later.

The crystal is located in the maximum I field of the wave guide and presents an impedance to the E field, hence crystal current will flow. It is this current that is measured on the meter. The crystal operates as a square law detector. The power in the wave guide is proportional to E^{2}. Therefore neglecting the s light current that flows in the reverse direction, since the crystal is not a perfect rectifier, it is possible to measure the relative power out put of the klystron in its various modes. The current in the meter $=K L^{2}$. Were K is a constant as long as the crystal is not over loaded. From this, the meter reading is proportional to the pover in the wave guide. This current recding for relative powor measurements is taken when the wave meter is off resonance.

The actual power delivered by the klystron cannot be measured, since an impedance meter for 3 cm . wave guides is not available. Therefore tho impedance of the crystal branch and the load branch as presentod to the series tee section cannot be determined. The crystal current is ther efore, only the relative power output of the klystron. In a later section of this paper, a circuit is shown for actual power measurements.

CRYSTAL CURRENT IIEMER :
The meter to measure crystal current was chosen so as to be of such impedance to obtain a maximum power transfer from crystal to meter. The meter is a 60 microampere movement manufactured by Weston. The meter resistance is 111.4 ohms measured to four significant figures. Since the pover output

$$
\begin{aligned}
& R^{\prime}{ }_{3}=74.27 \text { ohms } \\
& R^{\prime}{ }_{10}=100.3 \text { ohms } \\
& R^{\prime}{ }_{40}=108.6 \text { ohms }
\end{aligned}
$$

$$
\begin{aligned}
& R^{\prime \prime}{ }_{3}=55.70 \text { ohms } \\
& R^{\prime \prime}{ }_{10}=12.38 \text { ohms } \\
& R^{\prime \prime}{ }_{40}=2.859 \mathrm{ohms}
\end{aligned}
$$

Switch Positions

1. No Connection
2. Weter $\times 1$
3. Neter $x 3$
4. Neter x 10
5. Weter $\times 40$
6. Iio Connection

Figure 8 : Crystal current meter circuit.
of the klystron varies with modes of oscillation, it is necessary to extend the range of the meter to cover the high power modes. To keep the impedance presented to the crystal constant, an pad is incorporated with the meter for the different ranges. This gives a 111.4 ohm impedance on all ranges. Figure 8 shows the complete meter circuit.

The following design considerations are given for the meter multiplier circuit. Using an inverted L pad as in Figure 9, the impedance presented to the crystal should be approximately 110 ohms. To simplify calculations, Z_{kl} is made equal to the impedance of the meter or $\mathrm{Z}_{\mathrm{kl}}=111.4 \mathrm{ohms}$.

$$
R^{\prime}=z_{k 1} \frac{\left(\alpha^{\prime}-1\right)}{a^{\prime}} \quad R^{\prime \prime}=\frac{z_{k 1}}{\left(a^{\prime}-1\right)}
$$

$$
\text { Were } \alpha^{\prime}=\frac{\text { Current in meter without attenuator }}{\text { Current in meter with attenuator }}
$$

Figure 9 : Inverted L pad for crystal current meter. The following ranges are desired.

$$
\begin{aligned}
& 60 \text { microampere or meter } \times 1 \\
& 180 \text { microampere or meter } \times 3 \\
& 600 \text { microampere or meter } \times 10 \\
& 2400 \text { microampere or meter } \times 40
\end{aligned}
$$

Attention is invited to the fact that with this choice of scale ranges, full scale on a lower range will give at least $\frac{1}{4}$ full scale reading on the next higher range, so that the range of 60 microampere to 2400 microamperes can be fully covered.

Following is the calculation of meter pad resistances. 180 microampere range

$$
\begin{aligned}
& \alpha^{\prime}=1 / .333=3 \\
& R_{3}^{\prime}=111.4 \frac{(3-1)}{3}=74.27 \mathrm{ohms} \\
& R_{3}^{\prime}=111.4 /(3-1)=55.70 \text { ohms }
\end{aligned}
$$

For the 600 and 2400 microampere ranges, the calculations are similiar to the preceding ones. Final values for all ranges are shown in Figure 8. These resistors were hand wound and cut to four significant figure accuracy by means of a Leed Northrup Resistance Bridge. The final unit was tested, and the results were vell within the accuracy of the meter.

With reference to Figure 8, note that in case of meter overload, the meter can be switched out of the crystal circuit by clockwise or counter-clockwise rotation of the selector switch. This switching operation can be performed in a fraction of a second and therefore will protect the moter from damage.

The in jut to the meter consists of a coaxial connector for this particular circuit and pin jacks are in parallel vith the coaxial connector for other circuits that may be used later.

PART II: DISCUSSION AID AP-LICAIION OF RESULTS OF PART I.
Very often in electronic design work, absolute voltages as called for in design specifications cannot be met at low costs. Probably voltages within 10% of specifications can be met by us ing commercial products already on the market. The question then arises, will the frequency range and power output of the klystron be within the design limits then operated on design voltages $\pm 10 \%$. With reference to Figure 1 and Figure 3, it may be seen that any combination of repeller voltage, cavity voltage or filament voltage applied to the klystron may be obtained. This enables complete coverage of the operating voltage ranges of the klystron and static data can be taken for any desired conditions.

Obtaining static data for klystron operation is a tedious undertaking. However, it can be accomplished and experimental curves for the camplete range of operation for a particular klystron were taken by use of the equipment as explained. Figure 10 shows a plot of relative pover and frequency vs repeller voltage for the optimum operating voltages. For this curve, the filament voltage $=6.3$ volts A.C. and the cavity voltage $=300$ volts D.C.

Five modes are showm in Figure 10. Whether or not more modes will appear to the right on the diagram dejends on the spacing of the cavity grids and the ratio of the starting current to the beam current. One mode does exist to the left of the curves shown, but its power is so small, that even mith the crystal current meter on the lovest range, the mode camnot be tuned for measurement. The dynamic section will shov th is small mode, because of the high amplification of the oscilloscope. Generally seven modes can be obtained with this particular klystron. In the direction of increasing negative ropeller voltage, the last mode may be larger or smaller than the preceding mode. This depends on the tube characteristics along with operating voltages.

Variations in klystron loads cannot be shown simultaneously for the various modes. Therefore, the effect of load changes vill be discussed in the dynamic section.

The tendency of the $723 \mathrm{~A} / \mathrm{B}$ klystron to pull into high power output, or the 'pulling' of the klystron can be clearly show, when the static data is taken. When trying to obtain a half power point or any point not at maximum power, it is necessary to tune the system so as to eliminate mis-matches between the components. As this tuning proceeds, it is noticed that the crystal current increases beyond the half pover point and eventually climbs to maximum pover. When this happens, the dat a has to be cancelled and the mode data retaken. Elimination of this situation is discussed in an earlier section.

PART III : MEASUREMENT OF FRE JUEITCY AID RELATIVE PO ER UNDER DYMAMIC CONDITIONS.

As stated in Part II, the determination of klystron characteristics by the static method is a tedious and exacting undertaking. The relatively long periods of time consumed by data taking may be wasted because the actual over-all results of tuning for raximum power and measurement of frequency are not irmediately apparent. The results have to be plotted on coordinate paper before one can determine whether or not they are sufficiently accurate. The 723A klystron was originally designed so that forced cooling was not necessary. The maximum ambient temperature is approximately 248° Fahrenheit. This does not mean that the tube characteristics are the same for all temperatures between room temperature and 246°. Design considerations have minimized expansion and contraction effects so that the pover and frequency shifts with temperature are lov, but not $\pm 0 \%$. For this reason, the static data may be in error due to temperature changes. This error is not apparent until the data is plotted.

Modification of circuits shown in Part I, in conjunction with an oscilloscope, make it possible to viev all operating modes of the klystron at the same time. When the frequency meter is not at resonance, the oscilloscope picture vill be approximately as Figure 10 for the output porser. From the studonts vier point, this dynamic picture enables a visual oportunity to see the correlation between theory, laboratory techniques and the actual electrical changes taking place.

Nany different klystron circuit features may be shown such as : individual offect of each tuning arrangement, cavity voltage changes, load changes, grid spacing changes, determination of faulty klystron tubos, elimination of 'pulling', filament voltage variations, output frequency and relative power. The preceding features if properly appliod, can givo much
more information for the klystron, than the static method in about 2% of the time. In fact the effect of load changes for each mode camot be determined by static methods as outlined in Part I.

Dynamic klystron operation originally had its most important role in the automatic frequency control section of radar receivers. The effect of repeller voltages on the output as shown in Figure 10 , makes frequency modulation an easily obtainable characteristic. Negligible power is needed, simply because the repeller circuit has no current fiow. In radar receivers, the maximum frequency variations are not utilized. Only a very small portion is used because of the magnetron stability under normal operating conditions. However, for laboratory work, the maximum frequency range is utilized so that all characteristics of the klystron may be shown.

For automatic frequency control in radar receivers, a saw tooth voltage wave is applied to the klystron repeller. This wave is of the same form as the sveep voltage of an oscilloscope, that is, the voltage change has an almost linear variation with time. The saw tooth modulation circuit is too complicated for use in the laboratory. It is a special circuit and serves its purpose in the radar receiver admirably.

Frequency modulation will take place as long as the repeller voltage is varied, and for ease in the laboratory, the klystron repeller circuit voltage will be an A.C., 60 cycle wave superimposed upon a negative D.C. bias voltage. The magnitude of this voltage will be discussed later.

For dynamic operation, the oscilloscope sweep voltage is not used. Instead, the A.C. component of the repeller circuit is used as the horizontal sweep. The rectified klystron output from the crystal is connected to the vertical plates. These facts are correlated in Figure 11, a simplified diagram. In Figure 11 note that the D.C. component of the repeller voltage does not appear
as a deflection voltace. Therefore the output of the various klystron modes will be as a function of the sweep voltage and since the variations in repeller voltage and sweep voltage are the same, the output would be as in Figure 10.

Figure 11 : Block diagram of components for dynamic characteristics.

Nodulation by A.C., rather than by a saw tooth voltage has one disadvantage. The A.C. sweep voltage superimposes the left to right and right to left portions of the sweep which occur during one cycle of A.C. modulation voltage. The two wave forms thus obtained do not correspond exactly, because of the lead resistance, charge and discharge of the coupling capacitor, and the hysteresis effect of the coupling capacitor ard the hysteresis effect of the klystron repeller field. This disadvantage is not predominant, except with a large horizontal amplification, and vinen vieving all modes simultaneously, can hardly be noticed. This will be discussed more fully in a later section. The double image disadvantage is not as great as the disadvantage caused by the complicated circuit, when a saw tooth modulation voltage is used.

For Part III, the physical placement of the wave guide and related com ponents will be as shown in Pigure 7. The crystal out put will be fed to the vertical plates of the oscilloscope instead of to the crystal current meter.

The attenuator (Part 15, Figure 7) can be used for all measurements because of the vertical amplification of the oscilloscope. The attenuator could not be used for all measurements in the static tests because of the low power output of the klystron.

It is necessary to modify power pack No. 2 for the dynamic tests. The adiitions are in such an external manner to the power pack chassis, that the changes take only a few minutes and the pover pack can be used intorchangeably for the static and dymamic tosts.

The repeller modulation transformer is a $1: 3$ plate transformer and is designed for 110 volts r.m.s. operation on the primary. The modulation circuit to be acided to Figure 3 is shown in Figure 12. The A.C. output $x-x$ is connected to the points $x-x$ shovm in Figure 3 . The short between $x-x$ is removed. Thus the repgller voltage is the A.C. voltago $x-x$ suporimposed upon the nogative D.C. voltage LB in Figure 3.

Figure 12: Modulation voltage circuit for dymamic operation.
Voltages $L B$ and $X-X$ are both variable and either may be set independently of the other. The maximum D.C. voltage obtainable is -370 volts as previously stated. The repeller is not designed to be positive with respect to the cathode, therefore the A.C. voltage should be 370 volts peak. The
repeller voltage diagram is shown in Figure 13. The 370 volts peak voltage corresponds to 262 volts r.m.s. The output of the modulation transformer is normally 330 volts r.m.s. with 110 volts r.m.s. applied, thus the reason for the auto transformer in Figure 12 is to prevent a positive voltage from being applied to the repeller. A limiting stop is placed on the auto transformer.

Figure 13 : Repeller voltage with reference to time.
As a further protection to the repeller circuit, a clipper tube is connected between the repeller and cathode. Figure 14 shows this circuit. In Figure 14, YY' refers to connections relative to Figure 3. The cathode of the clipper tube is at the same potential as the klystron cathode, thus the clipper filament power may be obtained from the klystron filament transformer.

Figure 14 : Clipper tube.
The clipper tube does not conduct when the repeller is negative with respect to the klystron cathode. When the repeller goes positive, the clipper
tube conducts causing a voltage drop in R_{11} (Figure 3). This drop is of the same polarity as the voltage $L B$, so that when the tube conducts, the positive excursion of the repeller voltage is limited. R_{11} is 100 K ohms so that with a small current flowing in the clipper tube a large voltage drop is introduced in K_{11}.

Figure 13 shows the maximum voltage in the repeller circuit. The ex cursion of the repeller voltage is from zero to -740 volts. This variation in voltage is large enough to include all modes for a 723A/B klystron. Fig ure 10 will be altered to show seven modes, which is the total possible for this particular tube.

With the power circuit connected for dynamic operation, it is possible to use my value of negative D.C. bias simultaneously with any value of A.C. modulation voltage super imposed upon the D.C. This is a very valuable characteristic, since any mode of operation may be selected by suitable values of D.C. and A.C. components. For any particular mode, the D.C. bias is set at the value corresponding to the peak power of the mode and the A.C. is increased until the repeller voltage swing is sufficient for this mode. By this method, any number of successive modes may be examined. This feature is very valuable when measuring the frequency excursion of the mode.

When the wave meter is tuned to resonance, the effects are clearly shown on the oscilloscope picture. As the reflector voltage sweeps thru a mode, the frequency of oscillation changes as shown in Figure 10. When the frequency of the klystron corresponds to the tuning of the frecuency meter, power will be absorbed as explained in the static section and the dip in crystal output will be shown in the oscilloscope curves. This is illustrated in Figure 15.

To calibrate the horizontal axis in Figure 15, it is necessary to apply a. known peak to peak value of A.C. voltage to the horizontal plates instead
of the repeller voltage. Thus the horizontal sweep of the oscilloscope can be calibrated in volts per inch. When the repeller voltage is connected as the sweep, the peak to peak value can be measured. The D.C. bias voltage can be measured, therefore the repeller voltage for any part of a mode can be found from the oscilloscope picture.

Figure 15 : Dynamic frequency measurement.

The effect of the load upon the pover output of each mode can be examined by varying the load tuning adjustment. (Figure 7, Part 2) The mode power output will depend upon the load value.

For light loads, the power output will be small. Increasing the load, increases the power output up to a optimum value and increasing the load further, decreases the power output. The width of the mode in terms of the reflector voltage decreases with loading. By viewing one mode on the oscilloscope, a picture similiar to Figure 16 will be obtained for the three load
values mentioned. Note from this figure that the advantage of linear frequency changes vs repeller voltage can only be obtained from over-loading. The data for the frequency curves (Figure 16) is obtained as stated previously for this section.

Figure 16 : Node power variations with respect to loading. The effects of load variations are different for the various modes. That is, a particular change in klystron loading will not effect all modes in the same manner. If the klystron is lightly loaded, all of the modes will be relatively small and as the load is increased, the power of all modes will increase. As the load is further increased the mode corresponding to the largest negative reveller voltages will increase to a maximum. Increasing the load further, decreases this large mode and the next mode to the left (smaller repeller voltage) will increase to its maximum. If the load is
increased still further, the mode that reached its maximum first may disappear entirely.

The dynamic procedure to this point is sufficient to determine the effect on output power and frequency for each of the klystron circuit features listed on page 23.

With all modes shorm on the oscilloscope, the effect of each matching adjustment upon the power output of the klystron may be shown as well as the relative effective value of the tuning adjustments. Results of the dynamic tests substantiate the theory very vell.

Power output of the klystron depends very much on the D.C. cavity volt age. As the cavity voltage is increased to the optimum operating value of 300 volts D. U., the power for each mode increases. At cavity voltages over 300 volts D.C., the maximum pover output experiences relatively little change. However, the frequency characteristics of the modes undergo continual changes for D.C. cavity voltage.

The minimum filament voltage at which the klystron will operate satis factory can also be clearly shown, since the power output as shown on the oscilloscope can be viewed simultaneously with reduction of klystron filament voltage.

PARI IV : THERIISTOR BRIDGE WATTETER.
A special physical component arrangement is used for this circuit. Components are at ground potential as explained for Figure 7. To eliminate 'pulling' and other loading effects, the thermistor is the only load component for taking output power cata. Sufficient matching devices are incorporated to assure an impedance match for the range of frequencies covered for both klystron to vave guide and Thermistor T_{1} to wave guide. The frequency measur ing portion is the same as in Figure 7 and the theory given previously holds for this section. Figure 17 shows the physical component arrangement.

1. Shorting plug, variable position
2. Tuning Stub, fized position, variable length
3. Klystron tube mount
4. Choke joint
5. Shunt Tee
6. Thermistor Zount
7. Bead Thermistor
8. avemeter assembly
9. Tuning stub
10. Klystron probe
11. Crystal
12. Crystal Mount
13. Coaxial Crystal lead.
14. Thermistor lead
15. Crystal cap

Figure 17 : Physical arrangement of wave guide and associated components for themistor bridge.

The D.C. power for the klystron is supplied from the power packs previously mentioned, thus the additional electrical circuits necessary will be for the thermistor.

The thermistor bridge wattmeter measures power by the use of a variable resistance element incorporated in a bridge circuit. The thermistor is the variable resistance element. Its resistance decreases with increasing temperature and vice versa. Changes in the thermistor temperature and hence resistance, may be caused by several factors : (1) Thermal changes in air surrounding bridge. (2) By A.C. or D.©. currents floving thru thermistor. (3) By absorbed R.F. power. All three of these items should be considered in the bridge circuit design.

The pover measuring thermistor is a bead type. It has a small mass and is affected currently by the three factors mentioned above. It is en closed in an evacuated glass bulb as shoom in Figure 18. Another type of thermistor is the disc type. It is several times larger than the bead type and has a much larger mass. Its resistance is relatively insensitive to current flowing thru it, and is therefore dependent upon the ambient temp erature. The disc type will be used in temperature compensating networks. A physical sketch for the disc type thermistor is show in Figure 19.

Figure 18 : Bead type thermistor

Figure 19 : Disc type thermistor.

The basic thermistor bridge circuit is showm in Figure 20. The Wheatstone Bridge circuit consists of R_{3}, R_{4}, R_{5} and Thermistor T_{1}. The balance equation for the bridge is $\left(R_{3} / T_{1}\right)=\left(R_{4} / R_{5}\right)$ and the meter will show no current indication when this equation is effective.

Figure 20 : Basic Thermistor Bridge
With no R.F. applied to the thermistor T_{1}, the bridge may be balanced by varying the D.C. current in the thermistor. This varies the thermistor temperature. Since the thermistor resistance changes with temperature, the resistance of the thermistor can be adjusted by $R_{2}($ Figure 20$)$, which will be called the Zero Adjustment.

After meter M_{1} has been set to zero, the Row. power can be measured when the klystron is placed in operation. The R.F. power absorbed by the thermistor increases its tomperature and hence, decreases its resistance, thus unbalancing the bridge and allowing current in meter lif. The current in the meter is proportional to the R.F. power of the klystron.

If the ambient room temperature could be held constant, the basic circuit shown in Figure 20 could be usod as shovm. Since the ambient temperature
is not constant, the measuring sensitivity of the circuit vill vary with temperature. The measuring sensitivity is defined as unit meter current per unit R.F. power and for this circuit is microamperes / milliwatt.

The bridge circuit in Figure 20 incredses in sensitivity wi th a decrease in ambient temperature. This is not due to the thermistor sensitivity change since the ohms / watt of the thermistor remains constant over a broad temp erature range. However, as the temperature decreases, the thermistor resist ance tends to increase, making it necessary to adjust R_{2} to apply a higher voltage across points A and B in Figure 20. Therefore the current through the meter due to a given change in thermistor resistance is greater at a lower temperature because of the higher voltage across the input. If the resist ance of the meter M_{1} could be automatically changed, then the bridge sonsitivi ty could be hold constant over a large room tomperature change.

Since the sensitivity increases with a decrease in temperature, the variation in sensitivity could be compensated for by increasing the meter resistance as the temperature decreases. Since thermistors have this charac teristic increase in resistance mith adecrease in temperature, a disc type thermistor in series with the meter, would give the desired compensation.

To avoid the higher cost of a special thermistor for meter M_{1}, in order to obtain the correct rate of change of resistance with temperature, resis tors are added in series and parallel with meter thermistor T_{2}. Figure $2 l$ shows the meter thermistor circuit details.

The preceding compensation doos not compensate for the neod of $z_{\text {oro }}$ adjustmont with tomporature changes. For continuous operation of tho bridge, potentiometer R_{2} would have to bo reset beforo each messurement, unloss the ambiont temperature is constant. Thus an automatic mothod of increasing the current through T_{1} with docroase in tomperature is required.

If a disc type thermistor whose resistance increases with decreasing temperature were placed in parallel with the bridge, more current would flow thru the bridge at a lower temperature because the ratio of the shunt ing thermistor resistance to the bridge resistance (resistance AB, Figure 22) is greater at a lower temperature. This is shown in Figure 22. The resistors are used in series and parallel with the thermistor as explained previously.

Figure 21 : Details of meter sensitivity thermistor.

Figure 22 : Details of zero adjustment thermistor.

The complete electrical bridge circuit with numerical values is shown in Figure 23. The input D.C. voltage should be from a regulated power supply similar to porer supply No. 1 , but with a 200 volt output and the negative terminal grounded.

Thermistors T_{1} and T_{3} are physically constructed so that one lead may be srounded. Thermistor T_{2} is a disc type thermistor similar to I_{3} except that due to its electrical connections, both leads are ungrounded. T_{2} and T_{3} are placed as close as possible physically to T_{1} so that the ambient temperature of T_{1} will affect the compensating thermistors.

The thermistor bridge circuit has the advantage over the circuits given previously in that then properly calibrated, the actual pover output of the klystron may be measured. Item 9 (Figure 17) is a detuning stub incorporated in the physical wave guide system. When pushed and locked so that the probe extends in the wave guide, the frequency measuring portion of the circuit draws negligible power from the main wave guide. Since the remainder of the coupling impedances are matched, all of the klystron power is used in heating the thermistor T_{1}.

In working with frequencios of the order 9×10^{9} oycles por second, tolerances cannot be made $\pm 0 \%$. Rather than try this, it is easier to build the set-up using eloments of a very close tolerance and then calibrate the set. This system may be used with the thermistor bridge. By removing the klystron probe from the wave guide and inserting in its place the probe from a calibrated signal gener ator, the actual pover fed into the wave guide is known. Thus the actual bridge meter reading can be calibrated against the known power and a calibration chart dravm. R_{11} is placed in parallel with meter M_{1} so that the calibration chart may be drawn on an easy to read scale.

If dynamic characteristics for relative power are desired, then the meter

Figure 23 : Complete electrical circuit for thermistor briage.
M_{1} should be replaced by a 70 ohm resistor. The vertical oscilloscope leads are connected across this resistor. Formerly the oscilloscope case was at ground potential, hovever, due to the electrical connections, the oscillo scope will now be approximately 3 volts D.C. above ground. To eliminate any possibility of circuit camplications, the A.C. horizontal sweep voltage should be obtained from a separate secondary vinding of the repeller modulation transformer. This will give the same oscilloscope pictures as referred to in the dynamic section.

The circuit does not lend it self to actual dynamic power measurements because of the oscilloscope calibration difficulties and internal wiring changes for the oscilloscope. Therefore this phase of measurement will not be further discussed because of the applications to be made of this paper.

Figure 24 shows the I vs E and I vs Resistance curves for the thermistor T_{I}. It can be seen from the curves that the resistance decreases almost linearly with the current, whon the current is greater than 13 ma .

Since the bridge is to be bal anced by D.C. and then subjected to R.F. power, the portion of the resistance curve to be workod with is below 250 ohms. This choice will keep operation on the inverse part of the I vs E curve.

For convenience, the D.C. balance point is located at 250 ohms or point A on Figure 24. This corresponds to a thermistor current of 14 ma . and a thermistor voltage of 3.45 volts. For the bridge to be balanced, the D.C. voltage BA (Figure 23) should be 6.9 volts D.C. The arrangement of R_{1} and R_{2} shown in Figure 23 onables the operator to select the bridge voltago. R_{1} is for largo variations in the supply voltage appliod to the bridge, and R_{2} is for zero adjustment necessitated by the ambiont tomperature.

Figure 24 : Calibration of Thermistor I_{1}.

BIBLIOGRAPHY

Fink, D.G. Radar Engineering. New York : MeGraw - Hill Book Co., Inc.,1947.
Harrison, A.E. Klystron Tubes. New York : MicGraw - Hill Book Co., Inc.,1947.
M.I.T. Radar School. Principles of Radar. Nev York : licGraw - Hill Book Co., Inc.,1946.

Radiation Laboratory Series. Volumes 1-28, Inclusive. NeGraw - Hill Book Co., Inc.,1947.

Sarbacher and Edson. Hyper and Ultra High Frequency Engineering. New York : Johm Viley and Sons, Inc., 1943.

William G. Worth Jr.

