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ORTHOGONAL GEOMETRY OVER RINGS WITH

STABILITY CONDITIONS
CHAPTER 1
INTRODUCTION

Historically, H. Bass described a "stable range condition" on
a ring and when the stable range is 1, he was able to classify completely
the normal subgroups of the general linear group in any dimension. In
contrast, the study of the orthogonal group and the Witt ring over a
general coefficient ring has progressed slowly through increasingly more
general rings, e.g., first fields, then local rings, then semilocal rings.
Our aéproach was to discover an equational condition analogous to stable
range which would allow duplication of the classical results.

In Chapter II, a ring is defined tobe full, of type (m,n), if

it satisfies certain polynomial~type conditions. Examples of rings which
are {(m,n)-full are shown to include large enough fields, semi-local
rings whose residue fields are full of type (m,n), and von Neumann regu-
lar rings. We show that every commutative ring can be embedded in an
(m,n)-full ring.

Chapter III concerns inner product spaces over a ring R which
is full of type (1,3) and has 2 a unit. We show that such an inner

product space always has an orthogonal basis and that Witt Cancellation

1



holds. For a space with hyperbolic rank = 1, we determine generators
of the orthogonal group and show that the Eichler subgroup equals the
commutator subgroup of the orthogonal group.

Chapter IV deals with the normal subgroups of the orthogonal
group O(V) where V is a free symmetric inner-product space over a (1,3)-
full ring R and V has hyperbolic rank = 1. The main result is that G
is a normal subgroup of 0(V) if and only if there is an ideal A of R
with Q(V,A) <G < 0(V,A).

The final chapter defines the Witt ring W(R) of free symmetric
inner product spaces over a (1,3)-full ring R having 2 a unit. Genera-
tors and relations of W(R) are given and its prime ideals are clagsi—
fied. For a ring which is full of type (3,3) and has 2 a unit, we show
using round forms that the generators of the torsion part of the Witt
ring have the form (1,-a) where a is a unit and a sum of squares.

Throughout, rings are commutative with identity. Let R* denote

the group of units of a ring R.



CHAPTER II
RING THEORETIC RESULTS

In this chapter, equational conditions on a ring are defined
which allow the development of the theory of free symmetric inner prod-
uct spaces, the orthogonal group, and the Witt ring. Examples of rings
which satisfy these conditions are.shown to include "sufficiently large"
fields, semi-local rings with "large enough" residue fields, and von

Neumann regular rings.

(II1.1) Definition. Let m be an integer 2 1 and n an integer = 2.

A ring R is full of type (m,n), or {(m,n)-full, if for every m X n matrix

A= [aij] over R with unimodular rows, there exist an o in R (dependent

on A) and units Ups Uysotey U of R such that

1 ul.
Al ¢ 1 = [Y2] .
2 .
¢ .
n-1 a
‘0‘ w - m—

Rings of the above type have '"many" units, i.e., are "full" of units—-

hence the terminology.

R is strongly full of type (m,n) if « may be chosen to be a

unit.



Finally, R is (strongly) full if R is (strongly) full of type

{myn) for all positive integers m, n. (This generalizes the definition
of a full ring used in [29].) Certainly any strongly full ring is full.

To illustrate the definition, we will consider some specific
types of fullness and indicate the types of results they give.

(1) SupposeRis full of type (1,2). Then for any two elements
a, b of R such that the ideal generated by a and b is all of R (the no-
tation for this is (a,b) = R), there exists an o in R with a + ab a unit.
This is Bass's definition of stable range 1 (see [7]). Bass showed in
[7} that for a free module V over a ring with stable range 1 (i.e., a
ring which is full of type (1,2)), the normal subgroup structure of
GL(V) behaves in the classical fashion.

(2) Suppose R is full of type (1,3). Then for three elements
a, b, ¢ of R such that (a,b,c) = R, there is an element a of R with
4 + ba + ca® a unit. We show this condition is sufficient to insure
that every free inner product space over R has an orthogonal basis,
Witt cancellation holds, generators and relations for the Witt ring
over R are known, and if hyperbolic rank > 1, thenthe Eichler subgroup
is equal to the commutator subgroup of the orthogonal group.

(3) Suppose R is strongly full of type (1,3). Then for any
three elements a, b, ¢ of R such that (a,b,c) = R, there is a unit g
in R satisfying a + by + caz is a unit. For a free module V over R,
where R is of type (1,3), with certain additional hypotheses, we show
the normal subgroups of 0(V), the orthogonal group of V, are nested be-
tween congruence subgroups.

(4) Suppose R is full of type (3,3). This says that if
[a, ]

is a matrix over R with (a

2;513x3 11721273130 = (85703555253)



- . . . 2
31,332,a33) = R, then there is an o in R such that all + alza + al3a ,

2 2 . . .
az1 + a22a + a23a , and a31 + a32a + a33a are all units. We show this

condition is enough to determine generators of the torsionm part of the

=(a

Witt ring.
Certain relations between types of fullmness should be noted:
Any ring which is full of type <m,n? is full of type (s,t) for
1<s<m 1<t<nm.
A ring R is called n-stable for a positive integer n if for

every set of n + 1 elements a, B B seey Bn in R with (a,Bl,-~~,8n)

1’ 72

= R, then there exist w,,***,w_  in Rwith a + B,w, + *++ + B w_ = unit.
n 171 nn

1°
A ring R is stable if R is n-stable for every n = 1. It is straight-
forward to check that if R is l-stable, then R is n-stable for n = 1,
and if R is n-stable then R is m-stable for 1 < m < n. Thus, l-stable
implies stable. Clearl&, if R is (1,3)-full, then R is l-stable, hence
R is stable.

The following lemma gives a useful equivalent condition to

(1,3)-full.

(I1.2) Lemma R is (1,3)-full if and only if for any set of 2n + 1

elements o, By» **> B s 855 *++, & in R with (a,sl,--o,sn,al,---,an)

w in R with

= R, there exist w IR

» W

1

’ 2 2 .
o + Blwl + ﬁzwz + . + Bnmn + lel + + ann = unit.

Proof One direction is trivial. So suppose (a,Bl,"',Bn,dl,-~-,6n) = R.

Then for suitable a, b_,s--, bn’ d

1 d» @+ ]biBy + )ds8; = 1

AT

Since R is (1,3)-full, it is stable, so there is a b in R with

o+ E(zi b8, * zidisi) = unit.



., d. = bd..
1 1 1

[« TRRY

Let bi = bb Then

n-1 ° n-1 7 - - .
(@ + Zi=l b.B + 11 d;6) +b B +d 8 = unit.
Since R is (1,3)-full, there is an element, say w > with
[o + 071 (.8, +d.6,)] + w8 +w’6 =unit.
i=1 ivi i'i nn n n

~

8 T dn-lén—l to manu-
2

see,w with a + w. + )8.w.
>“n ZBi i z ii

Now reassociate, and repeat the argument on bn

facture w After n steps, we have w

n-1" 1°
= unit.
A minor application of (II.2) is the following lemma which in

turn will be applied in (III.6).

(II.3) Lemma Let R be a ring which is full of type (1,3) and let A be
a proper ideal of R. Then R/A is full of type (1,3).
Proof Let x denote the image of x under the canonical mapping R - R/A.
Suppose (x,¥,z) = R/A. Then there exist a, b, ¢ in R/A such that
ax + E§ + cz = 1. This implies that there is a k in A with ax + by + cz
- k=1. Thus (x,y,k,z,k) = R. By (II.2) there exist wys W, in R such
that x + wyy + mzk + wlzz + wzzk = v a unit in R. Then

2

T 2 - = -2
1 2 + Wy k =x + mly + Wy

x + 51§ + SZE +w z =vy. Sincev is a unit,
v is a unit.
Now some examples of some types of full rings will be given.

Since the class of full rings of type {m,n} is defined equatiomally, we

~ have the following result.

(I1.4) Proposition (a) If RA is (strongly) full of type (m,n) for each
A in an index set A, then the product T_Tg RA is (strongly) full of type

{m,n).
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(b) 1f {RA} is a directed system of (strongl&) full rings of
type (m,n), then the direct limit lim Rl is (strongly) full of type (m,ﬁ).
As an application of (II1.4) we have: If each finitely generated
subring S of R is contained in some (strongly) full subring of type
(myn), thenR (being a direct limit of such rings) is (strongly) full of

type {(m,n’.

(I1.5) Proposition Let R be (strongly) ¢m,n)-full where n = 2 and let
A be a proper ideal of R. Then

(a) R/A is (strongly) full of type ¢(m,n-1).

(b) The canonical ring morphism w: R - R/A induces a surjec-
tive group morphism R*¥ » (R/A)*. Indeed, R* > (R/A)* is surjective for
every A if and only if 1 is in the stable range of R, i.e., R is (1,2)-
full..

Proof Let [Eij] be an m x (n-1) matrix over R/A having unimodular rows.

There are ;ij in R/A with

n-1 - - _ = .
zj=l Ty T 1 (1<i<m)

Let r.. and a., be in R with r., » r.. and a.. » a.. under the canonical
ij ij ij ij ij ij

morphism R +~ R/A. Then, there exist a seeesd in A with

1
n-1 .
Jicg T;:8,. va, =1, (1<i<m.
j=1 "ij ij i ==
Thus
R T
&m1 " am,n—l %

has unimodular rows. Since R is full of type (m,n), there is an o with



n~-1 j-1 n-1
4 - = € i<
Zj=1 a, ;0 ajo A (1<is<m
. . - n-1 ~ -=-j-1 -
where vi is a unit. If o - o under R » R/A, then zj=l aija =v&?where

;i is a unit in R/A. This gives (a).

(b) Let u be a unit in R/A. Then there is a v in R/A with
uv = 1. Let u and v be preimages for u and v, respectively, under R
-+ R/A. For some a in A, uv + a = 1. Since (u,a) = R and R is stable,

there is an element b of R with u + ba = w and w is a unit. Then if

w > w under R » R/A, w is a unit, and w = u + ba = u.

(II.6) Proposition A field k with more than m(n-1) elements is {m,n)- .
full.
Proof. Suppose [aij] is an m x n matrix over k with a non-zero entry
) . . 2 n-1.t
in each row. 1In order for all m entries of [aij][l, a, a5, *ee, a ]
to be non-zero, o cannot be a zero of any of the m polynomials
n-1 . .

asq + aizx F e + ainX . A polynomial of degree n - 1 over a field
has at most n -~ 1 zeroes. Thus, there are at most m(n - 1) elements of
k which will not meet the requirement for a.

In particular, (I1.6) says that a field with 2 a unit is full

of type (1,3}, and a field where 2, 3 and 5 are units is full of type

(3,3). Obviously, an infinite field is full.

(II.7) Theorem Let Rad(R) denote the Jacobson radical of R and let A
be an ideal of R contained in Rad(R). If R/A is (m,n)-full, then R is
{m,n)-full.

Proof Let [aij] be an m x n matrix over R with unimodular rows. Let
m: R - R/A be the canonical map. Since R/A is (m,n)-full, there is an

o in R/A with



(G2 10L& «oey &7 = (5, 8y voe 6]

where Ei is 2 unit, 1 <i<m. Let a, u,, *°**, u be in R with n(a) = a,

l’
n(ui) =u,. Then

n_l t = 3 X ] t
[aij][l, o, s o ] = [ul + s s u + Jm]

where ji is in A, 1 < i< m. Since ﬂ(ui) = Gi is a unit, there exist
y. in R and t, in A with (u, + j))y. =1+ t., 1 <i<m Sincel + t,
i i i i’7i i i

is a unit for each i, uy + ji is a unit.

Corollary A semi-local ring R having' |R/M| = m(n - 1) for each maximal
ideal M is (m,n)-full.
Proof R/Rad(R) = T—T-R/M where the product runs over the finitely-many
maximal ideals of R. Applying (II.d) and (II.7) gives the result.

Note, in particular, that a semi-local ring with 2 a unit is
full of type (1,3), and if 2, 3 and 5 are units, it is full of type

(3,3).

We next show that von Neumann regular rings are full of type
(1,3) (or type (m,n) for larger m and n when certain additional hypotheseé
are given) and thus also stable. fhis involves the Pierce representation
of a2 von Neumann ring as a ring of cross-sections of a sheaf of fields

over a Boolean space. (See [33], pp. 4-41.)

(IL.9) Theorem The ring of cross-sections of a sheaf of (m,n)-full
rings over a Boolean space is {(m,n)-full.
Proof Let Z be a sheaf of full rings over a Boolean space X. Let R

denote the ring of cross-sections. Suppose [oij] is an m X n matrix
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over R with (cil,oiz,---,oin) = R for each i, 1 < i < m. Then there
n
5=1 P15%13

exist Bil’ Bigs *°°> Bin in R with ) 1. Then, for each

. . n .
point x in the base space X, zj=l Bij(x)cij(x) lx in the stalk Rx
above x. ?hat is, (cil(x), °i2(x)’ RN oin(x)) = Rx forveach i. ince

R_ is {(m,n)-full, there is an a_ in R_ with
x - X x

n—1]t = u o t
B P > Tmx

[Gij(x)][l’ ax’ Tt Otx 1x

where u, is a unit in R, (1 € 1 < m).
ix X
By 3.2(b) and Lemma 3.3 of [33], there exist T, u, and A in R

. _ _ R 8
with 1(x) = a s ui(x) =u and vi(x) u - Then
2 n-1 _
(vi(cil + OpT + 0,37 + + Osnt NEX) = lX

and by 3.2(e) of [33] there is an open neighborhood Nix of x in X such

that
(v.(o., + o.,T+ see + o0 Tn—l)(y) =1
irril i2 in y
n
for all y in N, . Let N_. = Q. N, . Then
ix X i=l "ix

n-1 _ .
(Vi(oil +0,,T + +o.T Ny = 1y ‘for all i

and for all y in Nx' The family {Nx} cover X and by the partition

Xx€X
property there is a finite disjoint subcollection of open-closed subsets
which cover X. By patching together the appropriate sections above each

of these sets, we obtain a T in R with

0.. + 0.1+ oo + 0. T%% = unit for each i
ij i2 in

That is, [cij][l,;,?z,---,;n_l]t is a column of units.
Using the fact that a von Neumann regular ring may be represented

as the ring of cross sections of a sheaf of fields over a Boolean space

gives the following corollaries.
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(I1.10) Corollary A von Neumann regular ring having 2 a unit is full

of type (1,3).

(IT.11) Corollary A von Neumann regular ring with 2, 3, and 5 being

units is full of type (3,3).

(I1.12) Theorem A zero~dimensional ring having 2 a unit is full of
type (1,3). A zero-dimensional ring in which 2, 3, and 5 are units is
full of type (3,3).

Proof Goodearl and Warfield in [16] show that a commutative ring R is
zero-dimensionai if and only if Rad(R) is nil and R/Rad(R) is von

Neumann regular. Combining (II.7) with (II.1l) gives the theorem.

For an example of a ring which is not stable, hence not full

of type (m,n) for any m = 1, n = 2, consider R[X], the polynomial ring

over 2 commutative ring R. Let a = 1 + X and B8 = XZ. Then (a,B) = R[X]

since 1 = (L +X)(1 -~ X) + XZ. However, by checking degrees, there is

no polynomial f with (1 + X) + X2f a unit in R[X].

On the other hand, we have the following

(IT.13) Proposition If R is full of type (m,n), then the formal power
series, R{[X]], is full of type {(m,n).

.Proof Let [fij] beanm x n matrix over R{[X1] with (fil,fiz,...,fin)

= R[[X]] for 1 < i < m. Then there are aij’ l1<i<ml<j<n, in

(o)

. 3 - = o

R{[X]] with ailfil + aiZfiZ + eee + ainfin = 1. 'Then 1 ailfil +
0 (O
“32%42 in in iJ

. o . . . .
etc. That 1s,[fij] is an m x n matrix over R with unimodular rows.

o .0 o . . .
+ oo + o. £, , where aij is the constant coefficient of ..,

Since R is {m,n)-full, there is an ¢ in R with

n-1.t t
]

(o]
[fij][l,a,on s = [ul,uz,'“,um]
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where u, is a unit, 1 € i <m. Then ¢ and u, are elements of R[[X]] and

n-1 t
]

2
[fij][l,a,a 9% *,0 = [gl’gz’o..’gm]

where &; has u, for its constant coefficient. Since a power series is
a unit if and only if its constant coefficient is a unit, each 8; is a
unit.

As the following examples will show, the requirement that R be
strongly full of type (m,n) is not much more stringent than requiring

the ring to be full of type (m,n).

(II.14) Proposition A field k with more than m(n - 1) + 1 elements is
strongly full of type {(m,n).
Proof 1In the proof of (II1.6), the additional choice o = 0 now must be

avoided.

(I1.15) Corollary A field such that both 2 and 3 are units is strongly

full of type (1,3).

(11.16) Theorem If R/Rad(R) is strongly full of type (m,n), then R is
strongly full of type {(m,n).

Proof Let m: R =+ R/Rad(R) be the canonical map. Suppose [aij] is an

m X n matrix overlR with unimodular rows. Then [waij] is anm x n matrix
over R/Rad(R) with unimodular rows. There exists a unit o of R/Rad(R)
with [naij][l,&,az,---,&n_l]t = [Gl,ﬁz,oo-,;m]t where Gi is a gnit,

1 <i<m Since the morphism R* » (R/Rad(R))* induced by = is surjective,

there is a unit o in R with n(a) = a. Thus

n-1l.t . . 4t
[aij][l’a’...’a 1" = [ul + Jla""um + Jm]

where ug is in R and ji is in Rad(R). Now ﬂ(ui + ji) = Gi is a unit in
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R/Rad(R) implies there is an x; in R with (ui + ji)xi =1+ tss for some
ti in Rad(R). Since 1 + ti is a unit, uy + ji is a unit for each i, and

the proof is done.

(11.17) Corollary A semi-local ring R having |R/M| = m(n - 1) + 1 for
each maximal ideal M is strongly full of type {(m,n’).
In particular, a semi-~local ring in which 2 and 3 are both units

is strongly full of type <(1,3).

(I71.18) Theorem Let I be a sheaf of rings, each of which is strongly
full of type {(m,n’), over a Boolean space. The ring of cross sections

of £ is strongly full of type (m,n).

Proof The proof is only a little more detailed than the proof of (II.9).
Let R denote the ring of cross sections. Suppose [oij] is an m x n matrix
over R with unimodular rows. Then there exist Bij’ 1<i<m1<j<n,
in R with Z?=1 Bij(x)oij(x) = 1 1in the stalk R above x, for each point

x in X. That is, [oij(x)] is an m x n matrix over Rx with unimodular
rows. Then there exists a unit o in R, with

t

n—l]t _ mx] ,

[O'ij(x)][lsaxs"’ﬂlx = [ulx’uzx:"'au

where U is a unit in Rx’ 1<i<m. By 3.2(b) and Lemma 3.3 of [33],
. . . -1
there exist g, 7, u;, v, in R with ¢(x) = 0y s ox) = oy > ui(x) =u

_ .-
and vi(x) = uix'

ix
: n-1 _

Then (vi(oil + 0T + eee + O.nT NEE) = lX and.

oT(xX) = lx. By 3.2(e) of [33] there is an open neighborhood Nix of x

. nf-l _ .
in X such that (vi(ci + 0.yt + + Ont NY) = ly for all y in

1 2

Nix’ and there is an open neighborhood 0x of x such that o1(y) = 1y for
m

i . = N no: .
all y in Ox Let Nx A N.x Ox Then

174

n-1 _
(vi(cil t ot et o T Ny = ly
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and o1(y) = ly for all i and for all y in Nx' The family {Nx}xEEX cover
X and by the partition property there is a finite disjoint subcollection
of open-closed subsets which cover X. By patching together the appro-

priate sections above each of the sets, we obtain T and o in R with

-n-1 _

= n- . . . -
+ cizr + e + OinT -~ = ynit for each i, and 10 = 1. That is, T

.. - -n-1.t ., .
is a unit and [oij][l,r,-~~,r l] is a column of units.

(08
il

(IT1.19) Corollary A von Neumann regular ring in which 2 and 3 are units

is strongly full of type (1,3).

(IT.20) Corollary A zero-dimensional ring in which 2 and 3 are units

is strongly full of type (1,3).

(II.21) Proposition If R is strongly full of type {(m,n’, then R[[X]]
is strongly full of type {(m,n).
Proof The proof is nearly identical to the proof of (II.10) and will be

omitted.

Let R be any commutative ring. If f = z;=0 aiXi is in R[X],
the content of f = c¢(f) = (ao,al,-~-,an). f is primitive if c(f) = R.
Let S denote the set of primitive polynomials in R[X]. Then ([32], pp.
' 17-18) S is a multiplicatively closed subset of R[X] containing no zero

divisors. Let R(X) denote SflR[X].

(I1.22) Theorem Let R be a commutative ring, and let m =2 1, n 2 2, be
integers. Then R(X) is strongly full of type (m,n).

Proof Let A = [fij] be an m x n matrix over R(X) with unimodular rows.
By "clearing denominators" of units (which will not affect calculatioms),

we may assume all fij are in R[X]. There exist gij and hij in R[X]
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with

in R(X). Thus

I_:ll

. (0T n e, £.. .
3 k#j ik Pij i3 ] ij
Then the content c(l I hij) = | l c(hij) is a unit in
h| h| h|
R(X). Let mij = deg(fij) for each i, j. Let s be any integer with

]
o
w
o
=

s > 2 max{m..}. Consider
. . 1]
1,]

s\n

4 S e e o
g; = f. X + + fin(x ).

il + fi

2
The coefficients of 8; will be a union of the coefficients of
{fij: j = 1l,---,n}. By the above, c(gi) = R. Hence g; is a unit for

each i. X° is also a unit in R(X), and the proof is complete.

(I1.23) Corollary Every commutative ring is a subring of a strongly
full ring of type (m,n) for any m =1, n = 2.

Proof Observe R C R(X) and apply (II.22).

This chapter is concluded with a condition on a commutative
ring which seems to have no connection with the fullness conditioms, but
which is possessed by zero-dimensional rings in which 2 and 3 are units.
_ The condition is useful in the normal subgroup theory of the orthogonal

group.

(11.24) Definition A ring R is square representable if every element

N

of R can be written as a sum of squares of units and negatives of squares

of units, i.e., for any r in R, there exists a finite set of units
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k

n i 2
Ups Uy ttt, U such that r = Zi=l(—l) 1 uy where ki € {0,1}.

Observe that in a field k with 2 # O, any element n, n # 0, 2,
may be expressed as the sum of two squared units minus a squared unit:

2 2
n = (n/2)2 +1- g'f lJz. If 340, 2= 22 4 {%1 - {%) has the same

2 2 2
are both units, every element of the field may be written ia the form

2 2 2 2

2 . .
1 + u, + U3t T U, - g where the u, are units (by adding and sub-

2 2 2
form. Further, 0 = 22 + (lJ + [l} -~ {5} - {QJ . Thus, when 2 and 3

u

tracting l2 if necessary). Thus, if Rl is a field with characteristic

different from 2 or 3, for all X in an index set A, then I [ RA is square
AEA
representable.

(II.25) Proposition Let R be a stable ring with 2 a unit such that
R/Rad(R) is square representable. Then R is square representable.

Proof Let w: R - R/Rad(R) be the canonical map and let u be an element

n. —
of R. w(u) = Z§=l(—1) 1 vi, where the vi are units in R/Rad(R) and ni

is 0 or 1. Since the induced map R* -+ (R/Rad(R))* is surjective, we

n,
may choose units vi in R such that n(vi) = ;i' Then u = Z - 1 vi2 +r
where r is in Rad(R). Now, r is in Rad(R) implies that 1 + r and 1 - ¢
2 - 2
are units, so ¥ = {l—g—EJ - FLTfJ% , a difference of squares of units.

Thus u is written in the desired form.

(I1.26) Corollary A semilocal ring in which 2 and 3 are units is square

representable.

(11.27) Theorem A ring of cross sections of a sheaf of fields with
characteristic # 2 or 3, over a Boolean space is square representable.
Proof The proof follows the same outline as the proofs in {(II.9) and

(1I1.18). If n is an element of the ring R of cross sectioms, n(x) =

2,2 .2 2

2 . R .
u u - u -u where u, are units in R.. There are units
1x 2x 3x 4x - 5%’ ix X
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V., u, in R such that u,(x) = u v.(x) = u, and
i’ i i i i

ix’

2 2 2 2 2
n(x) = (u1 + u, + uy T Y, -y Y(x).

Then there is an open neighborhood Nx of x in X such that

2 2 2 2
N = Gt e -

- u ) )
and uivi(y) = ly for each y in Nx and for each i, 1 € i < 5. The fémily
{Nx}xEEx covers X. Patching together over a finite disjoint subcover,
we obtain Gi units of R with n = Glz 522 + G32 - 542 - GSZ.

(Note: 1in order to patch together, the same number of unit
squares must be added and subtracted over each set in the subcover. This

is why the hypothesis is less general than for the first two theorems

involving a ring of cross-sections.)

(II1.28) Corollary A von Neumann regular ring in which 2 and 3 are units

is square representable.

(II.29) Corollary A zero-dimensional ring in which 2 and 3 are units is

square representable.



CHAPTER IIT
INNER PRODUCT SPACES OVER (1,3)-FULL RINGS

The structure theory for the general linear group over a stable
ring is given by Bass in [7]. We will be concerned with inner product
spaces and their orthogonal groups over rings which are full of type
{1,3>.

Throughout this chapter, V will be a free space of dimension n
over a (1,3)~full ring R. -Further, V posseses a symmetric inner product
B: V xV >R, i.e., 8 is an R-bilinear form on V, R(x,y) = B(y,x) and
dB: vV = HomR(V,R) by dB(x)(y) = B(x,y) is an R~isomorphism. We will
use the basic terminology and facts on symmetric inner product spaces over
commutative rings as given by Milnor in Chapter I of [31], by McDonald
in Chapter III of [28], or by Baeza in Kapitel I in [4].

Let S be a commutative ring‘and M a finitely generated projective
S-module. The module M is called stably free if there exist finitely

generated free S-modules F. and F, with M@ F, = F It can be shown

1 2 1 2°
([15}, p. 16), ([8], p. 2) or ([37], pp. 188-196) that "Every stably free
projective is free" is equivalent to "For every subset {al,-;-,an} of S
with (al,---,an) = S, then there is an n x n matrix A having determinant
a unit and first row (al,---,an).” It is a straightforward calculation
to show this matrix condition is valid for stable rings. This gives the

following useful lemma.

18



19

(I1I.1) Lemma A stably free projective module over a stable ring is

free.

Notation: (u) denotes a l-dimensional space spanned by a vector

x having B(x,x) = u.

(I11.2) Theorem Let R be a ring which is full of type (1,3} and having

2 a unit. Then V = (ul) L eee L (un) where u “*e,u_ are units in R.

1’
Proof (The matrix computation in this proof was part of the motivation
for the definition of (1,3)-full.) The proof is by induction on the

dimension of V. If n=1 (n = dim(V)), the result is immediate. Let

{e e --n,en} be a basis for V and let B = [Bij] Where Bij = 8<ei’ej-).

where b = [Blz,o--,Bln] and D is an (n - 1) x (n - 1) block. Since g is
an inner product, the determinant of B, det(B), is a unit. Consequently,
the elements of each column generate R and, in particular, using the
second column, (812,822,0--,8n2) = R. Since R is stable, there exist
vwz,--°,wn with 612 + w2622 + -f- + wan2 = v where v is a unit. Let

X = [wg,w3,---,mn]. Then

1 X Bll b|il 0 a b + xD

o 1|| bt pl|x* 1 bt + Dx© D

where a = + bxt + xbt + xDxt. Then

B11

b+ xB = [Blzs"”sln] + [wz,'-',wn]D = [bz,"'sbn]

and, by the choice of x, b2 is a unit.
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Therefore, without loss of generality, we may assume B==[Bij]
has the property that 812 (which equals 821) is a unit. Since 812 is a

unit, R = (Bll,B R 2). Since 2 is a unit, R = (B The

12’72 11’2812’822)'
ring R is (1,3)-full, so there is a y in R with Bll + 2812y + 822y2 =u

where u is a unit. Then

Yoo 1 0 0 u %
0 1 Bly 1 =

Thus, after a suitable change of basis, we may assume the matrix B==[sij]
has Bll = u a unit. If {fl,---,fn} is the basis of V having Bij = B(fiffj)
and Bll = u, then f1 is non-isotropic, i.e., B(fl,fl) is a unit, and

by ((3.2), [31]), V= Rf L RE)' = () L (RE)'. Since Rf, is free,

we have (Rfl)’L is stably free. By (III.1) (Rfl)l is free. Hence, (Rfl)l

with B = is a free symmetric inner product space of

B
I(Rf ' ox e )t

dimension n - i. The proof follows by induction.
A basis {el,---,en} of a free symmetric inner product space
(V,B) giving rise to an orthogonal decomposition as given in (III.2),

i.e., B(ei’ei) = u, and B(ei,e ) =0 for i # j, is called an orthogonal

J
basis for V.
Let (V,B) be a free symmetric inner product space. A unimodular

vector x in V is isotropic if g(x,x) = 0. A direct summand W of V is

totally isotropic if g(w,w) = O for all w in W. Further, V is split if

V contains a totally isotropic summand W with W = WL.
Suppose dim(V) = 2 and V has a basis {el,ez} with s(el,ez) =1
and B(ei,ei) =0 for 1 = 1, 2. Then V is split and is called a hyper-

bolic plane.
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(I11.3) Theorem Let R be a (1,3)-full ring having 2 a unit. The fol-
lowing are equivalent:
(a) (V,B) is split.
(b) (V,8) is an orthogonal sum of hyperbolic planes.
Proof Since a hyperbolic plane is split and orthogonal sums of split
spaces are split (see [31], Lemma (6.2)), it is clearlthat (b) implies
(a).

Now assume (a), that (V,B) is split. Then V = W & Y where

W

h%. By (III.2), let {el,--o,en} be an orthogonal basis for V. Let

e and u = B(e,e). Then e =w + y for w in W and y in Y. Clearly

y # 0 since B(e,e) = u a unit. Thus, u = B(e,e) = 28(w,y) + B(y,y).

e

Define c: Y > R by a( ) B(2w + vy, ). Then o(y) = u and y is unimodular.
Thus ¢ is surjective and y generates a free direct summand of Y,
Y =Ry €Y.

Since V is split, Y is naturally isomorphic uxder x -+ B( ,x)
with the dual space W* = HomR(W,R) of W (see [31], p. 12). Thus
W% = Rf ® W where f is given by £f( ) = g( ,y). Since W is finitely gen-
erated and projective, we may identify W with its double dual (W*)* via
the pairing (w*,w) = w¥(w) for w*¥ in W* and w in W. Since f is unimodu-
lar in W*, there is a w in W with 1 = (f,w) = f(w) = g(w,y). Thus, we
have an element w in W which is isotropic, i.e., R(w,w) = 0, and uni-
modular. Further, H = Rw ® Ry is a hyperbolic plane. Then V = H 1 v
by ([31], [28]). Again applying (III.1l), V is a free inner product space.

It is easy to see that V is also split. Hence, the proof follows by

induction on the dimension of V.
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A symmetric inner product space (V,8) is said to have hyperbolic
rank = t, if there exists an orthogonal splitting V = Hl I ool Ht 1V

where the Hi for 1 € i < t are hyperbolic planes.

(III1.4) Lemma Let (V,B) be a free symmetric inner-pfoduct_space of di-
mension n over a (1,3)~full ring R. If x is isotropic in V then there is
a y in V satisfying:

(a) H = Rx & Ry is a hyperbolic plane

(b) B(x,y) =1

(¢) V=H1W

Proof Since x is unimodular, V = Rx @ W. Let Xyt oo sX be a basis for
W. Then {x = x f

---,xn} is a basis for V. Let f . fn be a

lsx23 1° to2
dual basis of V* = Hom(V,R), where fi(xj) = aij' Since 8 is an inner
product, B(xj, ): V > V* is an isomorphism for each j. Then there are

Y = ¥y Yps cccsy in V with B(Xj,yi) = oi(xj). Then Rx @ Ry is a hyper-

bolic plane.

(III.5) Corollary (Witt Decomposition). Let V be as in (III.4). V has
a decomposition V = V0 1 tH where Vo is anisotropic (has no isotropic

vectors).

For the remainder of this chapter, R is a (1,3)-full ring in
which 2 is a unit, and (V,B) is a free symmetric inner product space
of dimension n over R.

Let 0(V) denote the orthogonal group of V, i.e., the set of all

o in the general linear group GL(V) satisfying R(ox,oy) = B8(x,y) for

all x and y in V. If ¢ is in O(V), o is called an isometry.
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Our terminology and notation will basically follow Chapter III
of [28]. We fix the following assumptions and notation for the remainder
of this chapter: Assume the hyperbolic rank of V is = 1 and dim(V) = 3.
Then V=H. Wwhere H = Ru ® Rv, B(u,u) = B(v,v) = 0, and B(u,v) = 1,
i.e., H is a hyperbolic plane. Under this hypothesis, we can describé
some elements of O0(V). (See [19] or Chapter III of [28].)

(a) Define A in O(V) by A(v) = u, A(u) = v and A(x) = x for
all x in W.

(b) For € a unit of R, define @E by @E(u) = gu, ¢€(v) = s—lv

and ¢€(x) = x for all x in W.

(¢) If x is in V with B(x,u) = 0, define Eu % by

3

E, x(Z) =z - B(u,2)x + B(x,z)u - %B(x,x)B(u,z)u

and define Ev < (if B(x,v) = 0) in an analogous fashion. The maps'Eu

b 9

and EV x are Eichler-Siegal transvections.
b

(111.6) ?heorém Vhen V has hyperbolic rank = 1, the maps Eu,x’ Ev,x’

4 and ¢€ are in O0(V). Further,

(a) Eu,xEu,y = Eu,x+y’ (Eu,xfl = Eu,—x’ and Eau,x = Eu,ax for ¢ a unit.
(b) A_l¢€A =0 -1 ¢;1 =0 -1

- 2 _
(c) @E_1A¢€ = A, A I.
(d) If z is in V then z = qu + 8v + y where y is in W, o and § are in

R. If x is in W, then
E, () = [0+ 8(xy) - %88(x,x)Ju + &v + (y - &x).
b4

(A similar formula is available for Ev x(z).)

1

(e) If 6 is in O(V) and GIH = identity, then GEu’xe = Eu,ex' In
-1 .
general eEu’xe = Eeu,ex for 6 in O(V).
(£) If x is in W, then  E 6.~ = E = E .
» £ Uu,X € U, €X E£U,X
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Proof See (III.15) and (III.16) of [28] or verify directly.
Since V= H! W and H is a hyperbolic plane, then W is a free
symmetric inner product space. By (II1I.2) we may select an orthogonal

basis {e '-°,et} (t = n - 2) of non-isotropic vectors in W, i.e.,

13
= 1 < i< . = see 1 il 0f
B(ei,ei) vi a unit for 1 <i<t If x o e + + atet is in

and z = au + &v + Glel + °°-+6tet is in V, then

2
= o) 1 -
Eu,x(z) [e + ) a8 v, + 58 () oy vi)]u + v + Z(éi Gai)ei

from (I1I1.6)(d). Therefore, if z is unimodular and R is (1,3)-full,

then, by (II.2) there exist o LN in R with a + Z aiéivi + %GZ(aivi)

l’
= w a unit. (This is the second motivation for the term "full" of type
(1,37.) That is, after a transformation of z by a suitable transvection
3 = LY D =0 +6 +6e
Eu,x with x = a,e; + + o e, we may assume Eu’x(z) utdv+é e
. . . _ -1
+ + étet where o is a unit. Then, if y = « (cSlel + + Gtet),

E (z) = h where h is in H. Further, h = au + 8v where a is a unit.

E
V,¥ u,X

(III1.7) Theorem Let Rbearing, full of type (1,3, having 2 a unit, and let
(V,B) be a free symmetric inner product space of hyperbolic rank = 1. Then
(a) the orthogonal group O(V) is transitive on unimodular vectors of the
same norm.
'(b) The orthogonal group O(V) is transitive on the set of hyperbolic
planes in V.

Proof Let y and z be unimodular of the same norm, i.e., B(y,y) = B8(z,z)
and let V = H 1 W where 4 is a hyperbolic plane. By the above discussion,
there exist products E and F of transvections such that E(y) = aqu + 5lv,
F(z) = t,u + ézv, where @y and @, are units (H = Ru @€ Rv). Then

P, 1E() = u + o by, %5_11’(2) =u+ ad,v. Since B(y,y) = B(z,2),
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a151 = a262. Hence, ¢ailE(y) = ¢a£1F(z) and consequently,

-1
y=E "¢ ¢ -1F(z).
) 9%

This completes the proof of (a).

To show (b), we may assume that H, and H2 are hyperbolic planes

1

where Hl = H = Ru € Rv. Suppose H2 = Ru @ Rv where 8(u,v) = 1,

B(E,ﬁ) = 8(;,3) = 0. By part (a), we may transform u to u. Thus, assume

u=u. Then v = ou + 6v + w where w is in W, V=H.1l W. Since

8

B(u,v) = B(G,;) =1, we have v = au + v + w. Then Eu w will carry
’

v into H and simultaneously fix u. Hence H2 is carried to Hl.

(III.8) Theorem (Cancellation). Let R be a ring, full of type (1,3),
having 2 a unit. Let U, W, and Z be free symmetric inner product spaces
over R. IfULl W=~Ul2Z, then W = Z.

Proof It suffices to prove the result when U = H where H is a hyper-
bolic plane. This follows since if U = (U,R3), then both sides of the
above isometry may be augmented by replacing (U,g) by (U,-g) 1 (U,g).

But (U,-g) I (U,B) is split, and by (III.3), it is a direct sum of hyper-
bolic planes. Then, by induction, we may assume U = H. Thué, let

o0 HL W+ HL Z be the given isometry. Let H

o(H). By the pre-

H. Since isometries

ceding theorem there is a v in O(H 1 Z) with {H
carry orthogonél complements to orthogonal complements, the result
follows.

Note that the above also shows that if W and Z are non-singular
subspaces of a symmetric inner product space U, then any isometry

6: W > Z may be lifted to an isometry o: U =+ U with'5|w = 0.
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Next we examine the generators of 0O(V) when V has hyperbolic
rank = 1.

Suppose 0 is in O(V) and V=H L Rel L eee | Ret where
{el,---,et} is an orthogonal basis for W = Hl. Then B(o(es),o(es))

= B(es,es). By the proof of (III.7) there is a product T CreTg of the

1
isometries described in (III.6) with Tl---rso(es) =e_. Then

tl;'°rso: (Res)l > (Res)l. An induction argument would show that the
isometries described in (III.6) generate O(V) provided it is true for
V = H.l Re where e is non-isotropic.

Thus, suppose V = Hl Re where B(e,e) = w (a unit). Let o be
in 0(V). Then o(H) = H where H is a hyperbolic plane. By the proof of
(III.}) there is a product Ty e T of isometries described in (III.6)
with Tl"'TSG = identity on H. Further, T “'TSO: H% > H}. Hence,

Tl-~-rso(e) = ae. Using B(e,e) = w, one sees that az = 1.

1

To examine the equation a2 = 1, let P be a prime ideal of R.

The localization (cx)P of o satisfies (a)g = 1 in the local ring RP.

Since 2 is a unit, (a)P = +1. Let V= {P in Spec(R)](a)P = 1} and let

W= {P in Spec(R)](a)P = -1}. Thus V = Supp(a + 1) and ¥ = Supp(a - 1).
Then Spec(R) is a disjoint union of V and W. This decomposition of
Spec(R) determines a partition of unity 1 = e + f where e and f are
orthogonal idempotents. Indeed, e = (o + 1)/2, £ = (0@ - 1)/2. This
givés natural decompositions R = Re ® Rf, V = eV & fV and, in particular,
0(V) = 0(eV) ® 0(£fV). (For example, see [26] or [4].) After decompo-~
sition of O(V), we may assume ¢« = 1 or ¢« = -1. We now treat each case.
If 11---Tso(e) = e, then Tl"'TSO==I (identity) and

-1 . . . . .
o= T4 l"’Tl is thus given as a product of the isometries described

in (III.6).



27

Suppose Tl"'TSO(e) = —~e. This is more difficult and requires
a brief digression.

If x is a non-isotropic vector in V, then the symmetry or hyper-

. . . . B(x,z)
= 5z = 2 2382/
plane reflection o_ determined by x is defined by o¢_(z) z 2 B (x.%) X

for all -z in V. The symmetry Oy is an involution in O(V) and

o, = -1

X Rx 1 I(Rx)l' In the previous discussion, if T1...Tsc(e) = -g,

then Tyt T 0 is precisely the symmetry Oe. The next lemma shows that
a symmetry Oy where x is in H+ may be written as a product of the iso-

metries described in (III.6).

(I11.9) Lemma Let V=H | W and let x be non-isotropic in W. Then the

symmetry Oy is given by

X Aq>--126(x,x)EV,—xE 2x Ev,-—x'

u’B(X,x)

Proof It is straightforward but tedious to check that both sides of the
above equation agree on u, v and arbitrary w in W.

For the remainder of this section, we assume that R is connected,

i.e., has no nontrivial idempotents. (See Remark on page 29.)

(I11.10) Theorem (Generators of O(V)). When the hyperbolic rank of V
is > 1, the group 0(V) is generated by the isometries Eu s Ev <’ A and
bl b

¢€ for various choices of x and e.

Let A be a proper ideal of R. The canonical ring morphism
m: R = R/A induces a natural morphism of bilinear spaces m: (V,B8) -
(V/AV, B) where 8 is given by B(mx,Ty) = T(B(x,¥)).

Similarly, we obtain a group morphism m: O(V) - O(V/AV) by

(mo) (nx) = m(o(x)). Since V has hyperbolic rank=1lwitha hyperbolic
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plane H = Ru ® Rv, it is easy to see that V/AV has hYperbolic rank = 1
with a hyperbolic plane H = Rmu ® Rnv. By (II.3), R/A is full of type
(1,3) with 2 a unit. Hence, each generator of O(V/AV) is given by (III.10)
and consequently (applying (II.5)(b) for ¢€) each generator in O(V/AV)

has a generator pre-image in O(V). Thus, we have the next theorem.

(III.11) Theorem If A is a proper ideal of R, then the group morphism

m: O0(V) > 0(V/AV) is surjective.

(I11.12) Theorem The center of O(V) is {#I}.
Proof The proof of the analogous result over a local ring given in
([19], Lemma 1) or ([28], Theorem (III.22)) carries over to the (1,3)-

full ring without changes.

The subgroup of 0(V) generated by all Eu x

and E with x in
5 VX

b

W is denoted by EQO(V) and called the Eichler subgroup of 0(V). Since

the generators of 0(V), by (III.10), are of the form A, ¢E, Eu x and
b

Ev,x’ and, since the Eu,x’ Ev,x behave properly under conjugation (see
(I11.6)) by these generators, we have that EO(V) is a normal subgroup
of 0(V).

Let Q(V) = [0(V),0(V)] be the commutator subgroup of 0(V).

We conclude by showing that if 3 is also a unit in R, then Q(V) = EQ(V).

(III.13) Theorem Let 3 also be a unit in R. Then
EO(V) = (V) = [2(),a(M)].
Proof Prior to the proof we need a technical lemma. The lemma was proven
over fields by Eichler [12] and later over local rings by James [19].
The lemma may be verified directly by checking the images of u and v

and of x in W on both sides of the expression.
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(III1.14) Lemma If o« and 6 are in R and x is in W with n = 1 - LadB(x,x)

a unit, then

Ev,axEu,éx - Eu,n'léxEv,anx¢n'2'

We now begin a proof of (III.13). To show EO(V) = Q(V), first observe

E Thus EO(V) is in Q(V).

UsX @3Eu,x/2¢l/3Eu,—x/2 = [¢3’Eu,x/2]'
To show Q(V) is in EO(V), recall from (III.10), if 6 is in
0(V), then 6 may be written as 8 = Aa¢nx where a is in {0,1}, n is a unit

and x is in EO(V). ((I11.6) allows the factors to appear in the order

described.) Then, for 6 and ¢ in O(V),

a
[0.0] = [87¢ x,20 ¥]

a -1 -1.a-1-1 a -1l.a
A énx¢ewx <I>n Ay ¢e =4 x1w1w2 A wZQ(E—Za

)

-1 -1 -1
= '] 1 = ) i 1 =
where Xl an¢n is in EO(V), wl ¢nev¢n€ is in EO(V), X ¢€Xl¢€

and wz are in EO(V). Using (III1.6) to remove A, we have

fe,0] = ¢ o ¥
(e Za) 3

where w3 is in EO(V). It remains to show ¢€2 is in EO(V) for € a unit

in R. Let £ be a unit and x be in W with g(x,x) a unit. Set

a= (1- e)B(x,x)—lZ. Then ¢ = 1 - %oB(x,x). Applying (II1.14), we

have o -2 (and hgnce ¢Ez) in EO(V). Thus Q(V) = [0(V),0(V)] is in EO(V).
Clearly, [Q(V),Q(V)] = [EO(V),EO0(V)] is in EO(V) = Q(V). On

the other hand, Eu,x = [¢22, Eu,x/3] is in [Q(V),Q(V)]. Thus

EO(V) = [Q(V),0(V)], completing the proof.

Remark The material following Lemma (III.9) may be extended to a ring
which is full of type ¢1,3), has 2 a unit, and is not connected, provided

A is redefined to reflect the existence of non-trivial idempotents.



CHAPTER IV
NORMAL SUBGROUPS OF 0(V)

The central purpose of this chapter is to determine the normal
subgroups of 0(V). We assume that 2 is a unit of R, R is (1,3)-full

with no non-trivial idempotents, (V,B) is a free symmetric inner product

space over R, dim(V) = 3, and V has hyperbolic rank > 1. Thus V‘splits
as V=H .l W where H = Ru ® Rv is a hyperbolic plane with g(u,v) = 1
and g(u,u) = g(v,v) = 0.

Let (V) = [0(V),0(V)] act onO(V) as a transformation group under
conjugacion and examine the orbit of a single element o. We_ show that among
the elements of this orbit there isan isometry which is a product of two
Eichler-Siegal transvections, a suitable ¢€ and an element of>0(W).

First we establish some definitions and notation. Suppose A

is a proper ideal of R. The ring morphism 7,: R - R/A induces a sur-

A

) of symmetric inner product

jective R-morphism Myt (V,8) ~» (V/AV,BA

spaces where BA(nAx,wAy) = nAB(x,y). In turn, this gives a surjective
group morphism Ayt 0(V) -~ O(V/AV) (see (III.11)). The Special Ortho-
gonal Group, SO(V) is defined by SO(V) = {c € 0(V): det(¢) = 1}. Define
0(V,A) = {o in O(V): },0 is in Center(0(V/AV))}. Since dim(V) > 3,

(I11.12) implies

0(V,a) = {0 in O(V): AAc = #I}.

Let SO(V,A) = SO(V) N 0(V,A). The group 0(V,A) is the congruence

30
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subgroup of 0(V) of level A and the group SO(V,A) is the special congru-

ence subgroup of O(V) of level A.

If A = R (hence V/RV = 0), let O(V/RV) = I and SO(V/RV) = I.

Further let

0(V,R) = 0(V),

0(V,0) = Center (0(V)),
SO(V,R) = SO(V), and

SO(V,0) = SO(V) N Center (0(V)).

Recall Q(V) = [0(V),0(V)] denotes the commutator subgroup of O(V). ‘De-

fine the mixed commutator subgroup of level A to be Q(V,A) = [O(V),O(V,A)]

for an ideal A, i.e., Q(V,A) is the subgroup generated by all,g_lh—lgh

for g in O(V) and h in O(V,A). Observe Q(V,A) < 0(V,A). 1Indeed,
Q(V,A) < SO(V,A). Let EO(V) denote the subgroup of O(V) generated by

all the Eichler-Siegal transvections Eu and EV where x and y are in
b >

W. For an ideal A of R, let EO(V,A) denote the EO(V)-normal subgroup

of 0(V,A) generated by all transvections Eu x and Ev y where x and y are

b4 b

in Wand TTA(X) =7rA(y) =0, i.e., theorder 0(x) of x and the order 0(y) of

y are in A. We call EO(V) the Eichler subgroup of 0(V) and EO(V,A) the

Eichler subgroup of level A. Observe EO(V,A) < 0(V,A) and EO(V,A) is
6—1

the subgroup generated by all eEu xe—l and eEv y for 6 in EO(V) and

b b4

0(x) C A, 0(y) C A.

(IV.1) Theorem Let A be an ideal of R and p be in O(V,A). Then for

suitable ¢ in Q(V),
Yob = 070,98 where

(a) oy and g, are Eichler-Siegal transvections of order contained in A;
(b) € = %1 mod A;

(c) elH = identity. Hence 8 is in O(W,A).
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(Nate that 015 O ¢€ or 0 may be trivial, e.g., p may be I.

2°
This will not affect the subsequent proofs.)

Proof Suppose p(v) = au + 6v + z, where o and § are in R, z is in W,
and p is in O(V,A). Since AAp =+, § = 1 mod A, o = 0 mod A and

n,z2 =0, i.e., 0(z) C A. First we show that p may be modified by con-

A

" jugation so that 6 is a unit. Let ¢ = Ev where s is in W. Clearly

¢ is in Q(V). Set p = Ypu ©. Then p(v) = oy T(v) = ¥p(v)

= ou + [§ - B(s,z) - koB(s,s)]v + (z + as). Let {el,ez,---,ek} be an

orthogonal basis for W with R(e.,e.) = v, a unit. Then z = 2 d.e, for
i’7i i i’

di in R. Since p(v) is unimodular, (a,&,dl,---,dk) = R. Since 2 is a

unit and each vi is a unit,

R = (§,-d o ,~d. v, ,=kav

eea =}
k 1° ’ ’iavk)‘

1Vy2 4V, K

s++,w. in R such that

Applying (II.2), there exist WysW X

2’

k Lotk 2
8= dymy d49vq¥ e Ly vty

a unit. let s = z:=l wiei, which is in W. Observe that R(s,z) =

) widivi, B(s,s) = ) wizvi so & - B(s,z) - %oR(s,s) = u and

p(v) = au + pv + (z + 0z) has coefficient of v a unit. & = p mod A
since 0(z) € A and ¢ is in A. Thus, we may write Ypy(v) = S(V)

= aqu + 6v + z where ¢ and 6§ are in R, § is a unit, § = %=1 mod A, o is
in A, z is in W and 0(2) C A.

The transvection Eu is in Q(V,A) = EO(V,A), and

,6'12
G@) = [a + 4 8(z,2)Ju + sv.
Then

Eu’é_lz(g(v)) = [8a + L4B(z,z)]u + v.
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Set py = ¢6Eu,6'lzs° Since B(v,v) = 0, then B(ol(v),pl(v))==0, and
consequently, 6o + %8(z,z) = 0. Thus pl(v) = v.
Next consider the action of py o0 u. As above, in general,
pl(u) =yu+ pv +w for v, ¢ in R and w in W. Since pl~is in 0(V,A),
O(w) C A. Since l = B(u,v) = B(pl(u),pl(v)), we have y = 1. Then
’wpl(u) = u + pv, and using B(u,u) = 0, it is clear that ¥ = 0. Hence,

EV’W%Eu §°1gP = 8 where 6(u) = u and 6(v) = v, i.e., 6 fixes H. Further,

C . N » . . . 2 2 =
O(w) C A implies E  _ is in Q(V,A). This is because By w®

B(w,z)v - B(V,z)w - %B(w,w)B(v,z)v and all the terms except z have coef-

ficients in A, so 7 E (z) =7 (z) Then

p =E 9=E -1

u,—5'12¢6_1Ev,—w -$ 6'19'

bA v -8w

For the remainder of this chapter we fix the following setting:

Let G denote an Q(V)-normal subgroup of O(V), i.e., G is a
subgroup of 0(V) and cpo—l is in G for all ¢ in O(V) and p in G. For
p in G, let Cp denote the orbit of p under conjugatioh by elements of
Q(V). Certainly, Cp is in G. Further, by (IV.1l), we may assume there
is a ¢y in Q(V) with wp¢-1 = E, (B, ;0.0 where elH is the identity and

u, X v,y

x and y are in W.

(IV.2) Lemma (For the above setting). Assume 3 and S5 are also units

in R. Then there are units e and n such that E X and E y belong to G.

U, e Vsn

Proof Observe that 0, = [QZ,A] is in Q(V). Thus the commutator

-1 _ -1 -1 -1-1_ -1 -1
[woy "0, = wou "o 00 "y To,7 = E E ¢ 00,6 ¢ E _E _9
_ -1 _ -1 -1
- u,xEv,y¢4Ev,—yEu,-x¢4 - Eu,xEv,yq)l*}::v,-y(;‘)4 ¢4Eu,"x¢4

=E _E _E E =E _(E £t

U,X v,y v,-y/b u,-bx u,Xx v,3y/4Eu,-3x U,X
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is in G. Conjugating by Eu = shows that E is in G. It
b

u,3y/4Eu,—3x

now suffices to show that if Eu xEv y lies in G, then there are units
b ’

€ and n such that E
u,exX

and E lie in G.
’ V,ny

b4

Observe since E E is in G then
UsX V,y

-

E E L )JE
V,¥ u,X U,X U,X V,¥ Uu,X

is in G. Thus

S |
Eu,ZXEv,Zy - Ev,y(Ev,yEu,x

) (E

D E  )E
U,X V,y V,Y¥
is in G. Repeating the argument of the previous paragraph shows that

is in G. Then E is in G since,

Eu,éxEv,4y u,16XEv,Y ) ¢4Eua4XEV’4y¢4

as noted above, ¢4 is in Q(V). Then

=gt (E E )E

Eu,lstv,yEu,x U,X u,16X v,y Tu,Xx
is in G and since E E is in G, we conclude that E is in G.
_ V,¥ U,X u,15x

Hence, there is a unit £ = 15 such that Eu 15% is in G. An analogous
’

argument shows there is a unit n such that Gv,ny is in G. This completes
the proof.

Observe that if one is interested only in the normal subgroups
of 0(V) rather than the Q(V)-normal subgroups, then in the above proof
the conjugation by ¢4, which lies in Q(V), may be replaced by conjuga-
tion by 55 which is in 0(V). Then, with minor modifications, the argu~-
ment will carry through under the hypothesis only that 2 and 3 are units,
omitting the assumption that 5 is a unit.

Having obtained E X in G, we next show that suitable conjuga-

U,

tion gives Q(V,0(x)) < G. That is, the orbit of Eu x when Q(V) acts on

0(V) via conjugation is Q(V,0(x)).

(IV.3) Theorem Let R be a ring which is strongly (1,3)-full and square

representable, having 2 a unit. Let G be an (V)-normal subgroup of
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0(V), dim(V) = 3 or 2 5, and hyperbolic rank of V= 1. 1If Eu x is in

2

G, then Q(V,0(x)) < G.
Proof The proof will follow from a series of steps.

(a) 1f E is in G, then E is in G for all n in R. Observe, if
u,Xx u,nx

8 is a unit, then ¢.5 is in Q(V) since ¢, = [¢.,4]. Then, if E is
8 8 8 U, X

in G have E
in G, we have u, 62x

. t 2 . . -
sentability, n = Zi=l A where v, = fu and u; is a unit for each i.

= ¢ oE ¢_% is in G. Suppose, using square repre-
8¢7u,x ¢

Then E = E E ««-E is in G. This argument shows that
u, nx U,V X U,V,X U,V X

Q(V,0(x)) < G in the case dim(V) = 3. For the remainder of the proof,
we assume dim(V) > 5 and, consequently, V = H 1l W where dim(W) = m > 3.
(b) Next we manufacture some elements in Q(V). It was noted in (III.9)

that the symmetry o, for z nonisotropic in W could be written as

92 7 M—‘/zs (z,Z)Ev, -zEu,—Zz/B(z,Z)Ev,—z

in terms of the Eichler-Siegal transvections, A, and ¢€. Recall that

A2 = 1 and A¢€A = ¢€_1. Hence, letting ¢ = -%g(z,z),

¢ Ao_=E __E | E
€ 2 Vy=Z Uye 12 V,-2

is in Q(V). Consequently, for y and z nonisotropic in W and letting
o = -%B(y,y), the isometry

¢_1Ao ¢"1Ao = ¢_1¢ Azc g =9¢ 1% 0. 0
€E Za y € a z €

y azy

is in Q(V). It is easy to check that if ) is a unit of R, O, = 0)pt

Thus, in ¢€_1¢aozoy, z may be replaced by B(z,z)—lz and y by %y without

i the fact . H - = -
changing e factor ozoy owever, ¢E 1¢a ¢€ 1y becomes ¢8(z,z)8(y,y)/4

under these replacements. Therefore, is in Q(V).

%8 (2,2)8(y,y)/4%2%

(c) Suppose further that y and z are nonisotropic in W and satisfy

B(y,z) = 1. A direct computation gives
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(0,0, - oyvz)(X) = [4/8(2,2)B(y,y)][B(y,x)z - B(z,x)y].

Hence, if € = B(z,z)B(y,y)/4, then

(0,0, - cycz)(x) = B(y,x)z - B(z,x)y.

y

(d) Next we combine (b) and (¢) and apply them to the transvection

in G. Since G is Q(V)-normal and ¢ ¢ 0o is in Q(V) where z, y, and
u,X €2y

¢ are as given in (c), we have

(¢ 0 0 )E (d 0 ¢ )—l = E
€E 2y U,Xx €2y U,e0 0 X
zy
is in G. Likewise, E is in G. Thus,
Uu,e0_0_X
vy 2z
-1

Eu,ec 0. X u,e0 0 X Eu,ec o} xEu,—ec o X
zy y z zy y z

Eu,ec G X-€0 06X Eu B(y,x)z -B(z,x)y
z y y z ? 9’ 9

is in G. We now complete the proof by carefully choosing x, y, and z.

(e) Suppose E is in G. Let W have an orthogonal basis {xl,x -~-,xm}

29

u,X
wherem=n - 2 =2 3. Then x = + eee + amxm for ay in R and

1%
o(x) = (al,---,am). We want to show Q(V,0(x)) C G. Since Q(V,0(x))

= EO(V,0(x)), we need to show Eu 3 is in G where 0(§) is in (al,..;,am).

(A similar argument employing E will place E_ - in G.) If
V,X V,X

b
—= +no- i i = N
X Glxl + Gmxm’ then Gi is in 0(x) and consequently, Gi juijaj
Hence, x = Zi Zj uijajxi. Thus, if we are to show E 7 1s in G, we

u,

need first to show Eu 0.X is in G for each i and j. Then, by (a),
b ] - -

. Jz
E X will be in G for all “ij in R. In turn,

u’uijaj i

E - =E = | | E
u,X U, 2y, .a.X, U,p..0.X

’ ’ ulJaJ i ,UIJGJ i
is in G. We use part (d) above, i.e., if y and z are nonisotropic in

W with g(y,z) = 1, then
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(*) Eu,e(y,x)z—s(z,X)y

is in G whenever Eu % is in G.
’

-1
= < i <n. = .
Let ¢, B(x,,x.) for 1 <1 n Let Y. €. X, Then

= < i< m.
B(xi,yi) lforl1<i<nm

For i # j, since (ei,ej) = R and R is strongly (1,3)-full, there

is a unit n so that with z = X + nxj and y = yi, B(z,2) = s + nzej

is a unit. Thus y and z are nonisotropic and B(y,z) = 1. By substitut-

i ; *

ing in (*), E 6.e.v.)" Thus, by part
i j3i
is in G for all n in R.

u,B8(y,X)z - B(2,X)y Eu,n(ocixj -

(a)’ E - _
‘ u,n(aixj a.sjy.)

j i
Let 1 < 1i,j,k € m be distinct. (Recallm =23). In (*) set

X = aixj - ajejyi,
zZ = xk,
y =V Ty,

where § is a unit such that B(y,y) = €1 + 6 Ej is a unit, applying
the fact that R is strongly full of type (1,3). Then B(z,y) = 1 and

Eu,B(y,x)z-B(z,x)y = Eu’éaixk is in G, where i # k. Since § is a unit,

by part (b), E is in G for all i and k with i # k.
usa X
It remains to show Eu o.x isin G for 1 € i <m. In (*) set
X = 0.X,
z = xk + yxi,
= e—l
y k. xk,

where y is a unit such that B(z,z) is a unit and i # k. Then

and by (b), Eu,a.x is in G. This com-

E = [
u,B(y,x)z - B(z,X)y u,Ya X, *;

pletes the proof of the theorem. An analogous statement and proof will

apply for Ev x 1n G.

’
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If one is interested only in the case that G is a normal sub-
group of 0(V), square representability is nct necessary to prove the

preceding theorem, as is shown next.

(IV.4) Theorem Let R be a ring which is strongly full of type (1,3)

and in which 2 is a unit. Assume dim(V) = 3 or =2 5 and that V has hyper-

bolic rank = 1. If G is a normal subgroup of 0(V) containing Eu %’ then
3

Q(V,0(x)) <G.

Proof For any n in R, there is a § in R such that both n - 8§ and n + &

are units: (nz,—l) = R implies there is a unit § in R such that n2 -~ 18

2

is a unit. Since n2 -6“"=(-8)(Mn+6), both n-8 and n+4§ are units.

If E x is in G, then E x is in G for 2all n in R: ZLet & be

U, U,n
an element of R such that n = 6§ and n + 6 are units. Then
-1 -1

E o] = i 1 - . -
¢n-6 u,x n-¢ Eu,nx-—éx is in G and ¢n+5Eu,x¢n+6 Eu,nx-fﬁx is in G,
by normality of G. Thus Eu,nx-éxEu,nx-+5x = Eu,2nx is in G, and
%E , ¢ =E _ isinG.

s u,2nx % u,nx

This shows that Q(V,0(x)) < G in the case dim(V) = 3. TFor
dim(V) = 5, the proof is exactly the same as parts (b) through (e) in
the proof of (IV.3).

Now we can prove the main theorem of this chapter.

(IV.5) Theorem Let R be a ring which is strongly full of type (1,3)
and square representable and in which 2, 3, and 5 are units. Let
dim(V) = 3 or dim(V) > 5 and assume V has hyperbolic rank = 1. Suppose
G is a subgroup of O(V) normalized by Q(V) and let A be an ideal which
is maximal with respect to Q(V,A) < G. Then Q(V,A) < G < 0(V,A).

Proof Observe Q(V,0) = I is always in G. Thus there exists an ideal B

with Q(V,B) < G.

2
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If {BA}’ X € A, is a family of ideals satisfying Q(V,BA) < G,
then since EO(V;BX) = Q(V,BA), it is easy to see th;t Q(V,ZA BA) < G.
Thus the A in the statement of the theorem is unique and contains every
ideal B with Q(V,B) < G.

Let ¢ be in G. There is a ¢ in Q(V) with ¢¢w'l = E, E, y¢€e,
b b

where E and E are in G. Thus ¢ 6 is in G. For arbitrary z in W,
’x V,y . €

we have, since eIH =1, [Eu _z,¢€6] = E in G. Then
2

u,e6(z) -z
Q(V,0(e6(z) - z)) < G and consequently, by the above remark,
0(e6(z) - z) C A. Therefore, €6(z) = z mod A. Select z in W with 2z

nonisotropic, i.e., B(z,2) is a unit. Then 526(6(2),6(2)) = B(ee(z),ee(z))

= B(z,2z) mod A. Since B(z,z) is a unit, 82 1 mod A and thus

"n

8(z) €z mod A for all z in W. If we apply the above to ¢, ¢ (x) =

gex mod A for all x in V. Let 5 = A Then $(x) = gx for all x in

A%
V/AV. Let y be any element of O(V/AV). For any x in V/AV, po(x) =
U(ex) = e¥(x) = $¥(x). Thus ¢ = ¢y, and ¢ = A,¢ is in Center(0(V/AV)).
This shows that ¢ is in 0(V,A), and completes the proof.

Recall that if we ask G to be normal rather than Q(V)-normal,
the assumptions that 5 is a unit and R is square representable may be

omitted.

This chapter is concluded with several useful observations.

Remark Let G be a subgroup of O(V). The order of G, denoted 0(G),
is the smallest ideal A satisfying AAG < Center(0(V/AV)). Thus, since
dim(V) =2 3, 0(G) is the smallest ideal A with AAo = +I for all ¢ in G.

Suppose G is Q(V)-normal and 0(G) = A. Under the hypothesis
of the main theorem in this section, there is an ideal B with

Q(v,B) <G <0(V,B). Thus, since G < 0(V,B), we have A contained in B.
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On the other hand, 2(V,B) = EO(V,B) and clearly the generators of EO(V,B)
indicate O(EO(V,B)) = B. Hence 0(Q(V,B)) = B and since Q(V,B) < G, B

is contained in A. Hence A = B. fhus, if G is an Q(V)-normal subgroup
of 0(V) and 0(G) = A, then

Q(V,A) < G < 0(V,A).

Remark Suppose G is any subgroup of 0(V) satisfying Q(V,A) < G < 0(V,4)

for an ideal A of R. Let o0 be in 0(V) and T be in G. Then 0T0~1T-l

is in Q(V,A) since tis in 0(V,A). Hence 010_11 = p for some p in G
since Q(V,A) is in G. That is, ot~ = pT is in G and G is normal in
0(V). Therefore, if G is any subgroup of O(V) satisfying Q(V,A) < G

< 0(V,A) for an ideal A, then G is normal (hence Q(V)-normal) in O(V).



CHAPTER V
THE WITT RING

In this chapter, the Witt ring, W(R), is defined for a ring
R which is full of type €1,3) and has 2 a unit. Generators and relations
for W(R) are given, the prime ideal theory is described, and some facts
about nilpotent and torsion elements are shown. For a ring which is
full of type (3,3), the generators of the torsion part of W(R) are iden-
tified using the theory of round forms, particularly Pfister forms.
The theory of Witt rings over semi-local rings is given in Baeza [4].

Let R be a ring which is full of type (1,3) and has 2 a unit.
Denote by Bil(R) the category of free symmetric inner product spaces
over R. On Bil(R) we have the following operations:

For (Vl,Bl) and (VZ’BZ) in Bil(R),

¢D) (Vl,Bl) 1 (VZ,BZ) = (Vl ® VZ’B) where 8 is defined by
(2) (Vl,Bl) ® (V,,8,) = (Vl O Vys 81 &)82) where 8, ® 8, is defined by
By ® By(xp @ x50 77 @ 3y) = By (xpy )8y (%p57))
where X5 Vs are in Vi.
Now in the category Bil(R) we construct the Grothendieck ring
and obtain the Witt-Grothendieck ring ﬁ(R) = Ko(Bil(R)) of free symmetric

inner product spaces over R. The identity element of W(R) is represented

41
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by the one-dimensional space (l). An element x of ﬁ(R) has the form

X = [Vl] = [V,] where [Vi] is the isomorphism class of V, = (V,,8.).

By definition, [Vl] - [V2] = [Wl] - [WZ] when there is a U in Bil(R) with
Vl 1 W2 1 U= Wl 1 V2 l U. By cancellation (III.8), Vl L w2 = Wl 1 V2.

In W(R) define H(R) = {[Vl] - [Vz]: V, and V, are split spaces
in Bil(R)}. By (III.3), all split spaces are sums of hyperbolic planes,

so that H(R) = ZH where H is a hyperbolic plane.

(V.1) Proposition H(R) is an ideal of ﬁ(R).

Proof It is sufficient to show that for H a hyperbolic plane and (V,B)

n

in Bil(R), V® H is in H(R). Since H = (1,-1), V® H= (Vg 1) I (V& -1)

~ V1 (-V), which is split. Thus V& H is in H(R).

(V.2) Definition W(R) = W(R)/H(R). W(R) is the Witt Ring of free sym-
metric inner product spaces over R.

In W(R), denote the class of a space (V,B) by [V,8] or simply
[vl. [v,B8] is called the Witt class of the space (V,g). Since
(Vv,B) L (V,-B) is split, -[V,B] = [V,-8] in W(R). Thus every element of
W(R) is the Witt class of some space, not just thé difference of two

Witt classes.

(V.3) Definition We call two spaces V and W over R equivalent or Witt-

equivalent, and write V ~ W if [V] = [W] in W(R).
Clearly W(R) is the quotient of the semiring Bil(R) by this
equivalence relation: W(R) = Bil(R)/~. We have the'following description

of Witt equivalence.

(V.4) Proposition Two spaces V and W over R are equivalent if and only

if V1 nH = W1 mH for m, n nonnegative integers. (nH denotes the
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orthogonal sum of n hyperbolic planes.)
Proof If [V] = [W], then in WR), [V] - [W] = [P] - [Q] with P, Q in
H(R). By definition of ﬁ(R), there is a space (U,8) in Bil(R) such that
viQlLUu=wWlPLl U

Add -U to both sides. QL Ul -U and Pl Ul ~U are split spaces, thus
sums of hyperbolic planes.

Recalling the Witt decomposition (see II11.5), every space V has
a decomposition V = V0 1l tH where V0 is anisotropic. By cancellation,

the isomorphism class of V0 and the number t 2 0 are uniquely determined

by V. Observe that in W(R), [V] = [Vo]. v, is called the kernel space

of V.

(V.5) Corollary Two spaces V and W in Bil(R) are equivalent if and only
if Vo = WO.

W( ) is a functor from the category of full rings of type (1,3)
and ring morphisms to the category of rings and ring morphisms, as fol-
lows. Let a: R = S be a homomorphism of (1,3)~full rings with 2 a unit,
and let (V;B) be in Bil(R). S is an R-module via o and consequently
v Gk S is a free S-module. On V @i S, define the bilinear form
Bs(x A, y® 1) = a(B(x,y))Au for x, y in V and A, pin S. It is easy
to check that (V'@R S, BS) is in Bil(S). This construction is called
scalar extension via a: R - S. With it, one obtains an additive and
multiplicative functor a*: Bil(R) - Bil(S) which induces the Witt-
Grothendieck ring homomorphism‘a*: &(R) -> ﬁ(s). Now suppose H is a
hyperbolic plane in Bil(R), say H = {(u,v), B(u,u) = B(v,v) = 0 and
B(u,v) = 1. Then H 8& S has basis {u® 1, v ® 1} and Bs(u @1, u® 1)

= a(B(u,u))-1-1 = 0, Bs(v ®1, v®1l) = a(B(v,v))*1-1 = 0,
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Bs(u ®1l, v&1l) = a(B(u,v))-1-1 = 1. Thus H ®R S is a hyperbolic plane
in Bil(S) and a*H(R) C H(S). Then a* induces a ring homomorphism
a*: W(R) -~ W(S).

Next we define two homomorphisms which are useful for examining
the structure of W(R).

For spaces, we have the obvious homomorphism dim: Bil(R) =+ {non-
negative integers}. This yields a homomorphism dim: &(R) -+ Z. Since
dim(V) is even for any V in H(R), we obtain a ring homomorphism
v: W(R) » 2/2Z defined by v([V]) = dim(V) mod 2. We usually write Q(V)
instead of v([V]).

Let Q(R) éenote the group R*/(R*)2 of square classes of R.
If V= [aij] and V' =.[aij] are isomorphic bilinear spaces over R, then
[aij] = Bt[aij]B for some B in GLn(R). Taking determinants,
det[aij] = b2 det[aij]withb = det B a unit.
(V.6) Definition We call the square class det[aij](R*)2 the determinant
of the space V, denoted det(V), and we have shown that det(V) is a well-
defined invariant of V.

For two spaces V and W over R, we have det(V 1l W) = det(V)det(W).

Thus our invariant yields a determinant map det: W(R) > Q(R) defined by

det([V] - [W]) = det(V)det(W). (Notice that det([V] + [W] - [W])

det(V)det (W) = det(V)). Unfortunately, det(d) = det([1] L [-1])

~1(R*)2. Thus, det does not factor through W(R). To repair this, let
(Z/22) o Q(R) denote the abelian group consisting of the pairs (v,d)
in (Z/2Z) x Q(R) with "twisted" multiplication (vl,dl)(vz,dz) =

n(n-1)/2

Vv,V
(vl + Vys (-1) 1 2d1d2)' Consider the map z - (n mod 2, (-1) det z)

from W(R) to (2/2Z) o Q(R), where n = dim z. This map is a group
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homomorphism and vanishes on H. Thus it induces a map (v,d): WQR) -

(z/2Z) o Q(R) by (v,d)(z) = (v(z), d(z)). The second component of this

n(n-1)/2

map, d: W(R) » Q(R) is defined by d([V]) = (-1) det(V) and is

called the signed determinant. This square class is denoted by d(V).
v(V)v(W)

For spaces V, Wover R, d(V1 W) = (-1) dw) d).

Q(R) can be regarded as the group of isomorphism classes (a)
of dimension 1 over R with the tensor product as multiplication. We
have a natural map (a) =+ [(a)] from Q(R) to W(R). Since d([(a)]) = a(R*)z,
this map is injective. Henceforth we regard Q(R) as a subset of W(R),
i.e., we identify a square class a(R*)2 with the Witt class [(a)]. Now

Q(R) is a subgroup of the group of units W(R)* of the ring W(R).

For convenience, let G = Q(R) = R*/(R*)z.

(V.7) Proposition W(R) is additively generated by G.
Proof Let V be in Bil(R). V has an orthogonal basis, so V = (al) 1

(az) 1l eee (an) = (a °-,an) where a; is a unit, n = dim(V). 1In

123"
W(R) we have the equation V = [(al)] + [(az)] + eee + [(an)].

According to this proposition we have a surjective homomorphism
from the integral group ring Z[G] to W(R), ¢: Z[G] - W(R) induced by the
inclusion map from G to W(R). If we consider a square class a(R*)2 as

an element of Z[G] we denote this square class by (a). The homomorphism

¢ maps {a) to [(a)]. Let K denote the kernel of ¢.

(V.8) Proposition The ideal K is additively generated by the element
(1) + (-1) and all elements

= ¢o n
2= lim1 @) 7 Liag By

n

£ itive i Ty =~ 1
Oor n any positive integer and where i=1 (ai) i=1

(bi)'
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Proof Clearly all of these elements lie in K. Now let z be a given
element of K. We have z = <al) + eee + (ar) - (bl) - eee - (bs) where
a,, bj are units. Replacing z by -z if necessary, we may assume r = s.
The spaces V = (ai,---,ar) and W = (bl,'--,bs) are Witt-equivalent. 1In
particular, since [V] - [W] = 0 in W(R), the difference in &(R) is a

sum of hyperbolic planes, so r - s is an even number, say 2t. Then in "
&(R), V and W1 t(1,-1) have the same image. Thus V = Wl t(1,-1). For

s<is<r, let bi = +] so that Wl t(l,-l)==(bl,b2,---,br). Then we

have z = £((L) + (1) + [T | (@) - [T ().

(V.9) Theorem W(R) is additively generated by {(a): a € R*} with the
following relations:
(i)  (ab?) = (a) for all b in R¥*.

(ii) (al) + (az) + see + (an).= (bl) + see + (bn) if and only if
(@) L eeel (@) = (b)) L «e- L (b).

(iii) (a) + (=a) =0
(iv) (a) + (b) = (a +b) + (ab(a + b)) if a + b € R*,

(v)  (a)(b) = (ab)

R

Proof Using W(R) Z[R*/(R*)Z]/K, parts (i), (ii), (iii) and (v) clearly
hold in W(R). To see that (iv) holds, suppose (V,B) = (a) L (b) has

basis elements x, y with B(x,y) = 0, B8(x,x) = a, B(y,y) = b. Then

B(x+y, x+7y) a + b is a unit implies that there exists z in V such

that {x +y, z} is an orthogonal basis for V, i.e., vV = (a+Db)L (c)

where B(z,z) ¢ is a unit. Now comparing determinants, ab = (a + b)c
and since (a + b) = (a + b)_1 mod(R*)Z, c = ab(a + b) mod(R*)z. Thus
‘(@) L (b) ®= (a+b) 1l (ab(a + b)). Notice that (iv) is a result of (i)

and (ii).
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Now let S be a ring generated by {(a): a € R*} with relations
(i) through (v). Since these relations hold in W(R), there is a canon-
ical ring homomorphism h: S -+ W(R) which maps (a) in S to the class of
the bilinear space (a) in W(R). h is clearly surjective. Suppose
h(zz=l (ai)) = 0 in W(R). Then (al) L eee | (an) is a sum of hyperbolic
planes. That is, n is even, and (al) L eee | (an) =~ 4nH, so
(al) 1 eoe ] (an) = %n((1) + (-1)) = 0. Thus, h is injective, hence an
isomorphism.

Since W(R) is isomorphic in a natural way to the quotient
Z[Q(R)]/K, the prime ideals of W(R) correspond uniquely with those prime
ideals of Z[Q{R)] which contain K. Thus, to determine the prime ideals
of W(R), we determine the prime ideals of Z[Q(R)] and then look at which
of them contain K.

The prime ideals of Z[G], for G any group of exponent 2 (i.e.,
g2 = 1 for all g in G), are determined by Knebusch in [25], pp. 166-169.

Denote by I(R) the kernel of v: W(R) - Z/2Z. From [25], Propo-

sition 1 (iii), p. 167, we obtain:

(V.10) Proposition I(R) is the unique prime ideal of W(R) which con-
tains 2.1W(R)'
(Observe that the generators of K are even-dimensional and thus

are contained in I(R)).

(v.11) Definition A signature ¢ of R is a ring homomorphism from W(R)

to 2.
The kermel of a signature ¢ is denoted by Po; thus, W(R)/P0 = Z.

Part (i) of Proposition 1, in [25] gives the following.
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(V.12) Proposition For every prime ideal P of W(R) which does not con-

tain p-1l for any rational prime p, there exists a unique signature

W(R)
¢ such that P = Po'

Recall that a character of a group G is a homomorphism x: G
+ {#1}. x extends uniquely to a ring homomorphism x: Z[G] = Z. To

analyze the prime ideals P of W(R) which contain p-l for p an odd

W(R)

prime, we need the following .information about the ideal K.

(V.13) Lemma For every character x of G = R*/(R*)2 either x(K) = 0
or x(K) = 2"z for some n = 1.
Proof We know the additive generators of K, by (V.8). On (1) + (-1),
every character x has value 0 or 2, since x(1) = 1. We claim that oﬁ an
element z = Z?=l <ai) - 22=1 (bi), x has a value 0 or 4n, n an integer.
To prove the claim, let s be the number of square classes (ai) with
x((ai)) = -1 and let t be the number of classes (bi) with x((bi)) = -].
Then x(2) = -s+ (n-s) +t - (n-t) = 2(t - s). Now for z a generator
of K, the spaces (al,o--,an) and (bl,---,bn) are isomorphic, so they
have the same determinant, TjT a; = TET bi' Applying x we obtain
(—1)S = (—l)t.‘ Thus t - s ;;leven. l;iis implies x(z) = O mod 4.

From this lemma it is clear that if x(K) C pZ for an odd prime

p, then x(K) = 0. Thus we obtain from part (ii) of Proposition 1 in

[25], the following.

(V.14) Proposition Let p be an odd prime. Then for every prime ideal

M of W(R) with p-1 in M there exists a unique signature ¢ of R such

W(R)
that M coincides with the set M0 5 = pZ + Pc consisting of all z in W(R)

b

with o(z) = 0 mod p.
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Thus the Pc’ the M0 D’ and I(R) are all the prime ideals of
b

W(R). The ring R is called real (or formally real) if R has at least

one signature. Otherwise R is called non-real. This description of the

prime ideals of W(R) implies the following.

(Vv.15) Corollary Assume R is real. Then the Pc are the minimal prime
ideals of W(R). The ideals Mo . and I(R) are the maximal ideals of W(R).
’

Every M0 b

contains a unique minimal prime ideal, which is Pc' The
b4

ideal I(R) contains all minimal prime ideals.

(Vv.16) Proposition The following are equivalent:
(a) R is non-real.

(b) I(R) is the unique prime ideal of W(R).

(c) 2nW(R) = 0 for some positive integer n.
Proof The equivalence of (a) and (b) is evident from our analysis of
the prime ideals of W(R). (c¢) implies (a) is trivial since W(R). does
not admit homomorphisms.to Z if W(R) consists entirely of torsion ele-
ments. It remains to prove (b) implies (c¢). By (b) and elementary com-
" mutative algebra, I(R) is the nilradical of W(R). In particular 2-1

W(R)
. . n
is nilpotent, hence 2 -1 = 0 for some n. Then 2 W(R) = 0.

W(R)

Next we consider the nilpotent and torsion elements of W(R) for
R a (1,3)-full ring with 2 a unit.

If R is non-real we know that all elements of W(R) are torsion,
annihilated by a fixed power of 2. Moreover, I(R) is the set of all
nilpotent elements.

From now on, we assume that R is real. Since the Pc are pre-

cisely all minimal prime ideals of W(R) we have the following character-

ization.
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(V.17) Proposition An element z of W(R) is nilpotent if and only if
o(z) = 0 for every signature ¢ of R.

Now we consider the torsion elements of W(R).

(V.18) Theorem An element z of W(R) is a torsiom element if and only
if z is nilpotent.

Ezggg Assume nz = ( for some n 2 1. Then certainly o(z) = 0 for all
signatures ¢ of R, hence z is nilpotent. The proof of the converse

follows exactly the proof given by Knebusch in [25], and will be omitted.

(V.19) Corollary All zero-divisors of W(R) have even dimension.

Proof PO is contained in I(R) for every signature o of R.

(V.20) Proposition For every torsion element z of W(R) there exists
a 2-power 2% with 2%z = 0.
Proof The proof given by Kenbusch ([25]) carries over without change.
Next we explore some useful properties of signatures.
Let ¢ be a signature of R, that is, a ring homomorphism from

20
IQ(R) {£1}

W(R) to Z. o yields a homomorphism R*¥ —— Q(R) = R*/(R*)
where 7 is the canonical map. o is completely determined by the compo-
site homomorphism from R* to {*l}, since W(R) is generated by Q(R).

Henceforth we identify a signature ¢ and the corresponding map from R*

to {1}, and write o(a) instead of o([(a)]).

(V.21) Proposition 1If a map o: R* - {+1} is a signature then the fol-
lowing properties hold:
(i) o(ab) = o(a)o(b) for a, b in R¥*,

(ii)  o(-1) = -1,
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(iii) 1If a;, 2 *tr, @ are units with G(ai) =1, 1<i<r, then for

2’
2

any unit b = Al a; + eee + Arzar for Ai in R, o(b) = 1.
Proof (i) and (ii) are evident from the fact that o is a ring homomor-
phism. To prove (iii), consider the bilinear space (al,az,-°',ar).
This space contains a vector x with 8(x,x) =b. Thus (al,---,ar) =

(b) ¢ (b)l. Let G = (b)l, the orthogonal complement of Rx. The space
G L (1) has an orthogonal basis. Thus (l,al,--‘,ar) = (b,bl,---,br)
for bi in R*. Computing the values of ¢ on the classes of these two
spaces, we obtain r + 1 = o(b) + o(bl) + e + o(br). Since each sum-

mand on the right side is either 1 or -1, they must be 1. In particular,

o(b) = 1.

(V.22) Theorem Let R be a (1,3)-full ring in which 2 is a unit. Let

aps°ccsa be units of R. Then for any unit b of R the following state-

l’
ments are equivalent:
(2) For every signature o of R with c(ai) =1 for 1<i<r, also

o(b) = 1.

(b) The unit b can be expressed in the form

i ir
b=V, _, .4 Calea
1k-0 or 1 11,---,1r X
with coefficients d, which are sums of squares of elements

. i
1° >Tr
in R.

Proof (b) implies (a) is evident from (V.21). To prove (a) implies
(b), consider the "Pfister forms' F = (l,él) & (1,32) ® *++ Q® (l,ar)
and E= (1,-b) ® F=F 1 (-b) ® F. Assumption (a) implies o(E) = 0 for
all signatures ¢ of R. Thus the class of E in W(R) is nilpotent (V.17)

hence torsion (V.18), and there exists some natural number m (actually,
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a power of 2) such that mE ~ 0. From this, mF ~ m(b) @ F. Since mF
and m(b) ® F have the same dimension, it follows that mF = m(b) & F.
Since F represents 1 (i.e., for some x in F, B(x,x) =1), the space
(b) ® F represents b, so mF represents b. This gives the desired ex-

pression for b with sums of m squares as coefficients.

(V.23) Corollary The units of R which have the value +1 under all
signatures are precisely the units which are sums of squares.

Proof This is the special case r = 1, a, = 1 of (V.22).

1

(V.24) Corollary Let R be a full ring of type ¢1,3) with 2 a unit.

Then R is non-real if and only if ~1 is a sum of squares.

Proof If -1 is a sum of squares, then from (V.21)(iii) it is clear that

R has no signatures. Now suppose R is non-real. In (V.21), taker =1,

a; = 1, b = -1. We see that b = -1 is a sum of squares.
Let W(R)t denote the torsion part of W(R).

(V.25) Proposition If W(R)t = 0, then any unit a of R which is a sum
of squares is itself a square, but -1 is not a square.
Proof If a is a sum of squares, by (V.23), o(a) = 1 for all signatures

o of R. Hence ¢([(1,-a)]) = 0 for each ¢, so [(1,~a)] is in W(R)t’ by

(V.17). Thus [(1,-a)] = 0, or [a] ~ [1]. This implies a = 1 mod(R*)*,

n

i.e., a is a square. Now W(R)t = 0 implies W(R)t # W(R) so R is real
and the set of signatures on R is non-empty. Thus -1 is not a square,
by (V.21)(ii) and (V.23).

The converse of (V.25) will be proven for rings which are full
of type (3,3),1farther in this chapter.

We give one further description of W(R)t.
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(V.26) Theorem Let M= {a in R*: a is a sum of squares}. If W(R)t

# W(R), then
W(R)t = U Ann[(l,al) @ e ® (1’ar)]

where a; is in M for each i and r runs through integers = (.
Proof Let A denote the right-hand side. If x is in A, then
x[(l,al)][(l,az)]~--[(l,ar)] = (0 for some a; in M. Since o(ai) =1 for
any a, in M (V.23), we have ZrU(X) = 0, so o(x) = 0, for all signatureé
o0 of R. Thus x is a torsion element. On the other hand, if x is tor-
sion, there is an integer n with 2%% = 0. Therefore, x[(l,l)]n = 0,
and x is in A.

A powerful stimulus for the study of Witt rings was Pfister's
theory of multiplicative forms, which was simplified by the concept of
a round form, introduced by Witt and later generalized by Knebusch [22].
For a nice summary of the historical development, see Hsia [18]. We
next study round forms over a full ring of type (3,3).

At first, R will be a full ring of type (1,3) with 2 a unit,
Let (V,B) be in Bil(R). D(V)* or D(B)* denotes the set of units of R
represented by B; that is,

D(V)* = {B8(x,x) in R* | x is in V}

A unit ) of R is called a similarity norm of (V,B) if (V,B) = (1) ® (V,B).
N(B) denotes the group of similarity norms of (V,8). For example, A is
in N(B) means that there is an R-linear isomorphism o: V - V with
B(a(x),0(x)) = AB(x,x) for eachxin V. o is called asimilarity withnorm X.

If 1 is in D(B), it follows that N(B) C D(R)*, since if ¢: E > E
is a similarity with norm A and B(x,x) = 1, then R(o(x),0(x)) = AB(x,%x)

= X+1 so A is in D(R).
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(V.27) Definition A bilinear space (V,B) is called round if N(B) = D(B)*.
Remark If D(B)* C N(B), then (V,B8) is round. To show this, we need

only show 1 is in D(B). Suppose R(x,x) is in D(B)*. Since B(x,x) is

in N(8), there is a similarity 6 of (V,B) with norm B(x,x). So
B(a(z),0(z)) = B(x,x)8(z,z) for every z in V. 1In particular, for z = x,
B(B(i,x)-lo(x), B(x,x)-lo(x)) =.B(x,x)~26(x,x)8(x,x) =1, so 1 is in

D(B).

An example of a round form is given in the following lemma.

(V.28) Lemma Let b be a unit of R. Then the bilinear space (1,b) is
round.
Proof Let (1,b) have basis {x,y} where B8(x,x) = 1, B(y,y) = b, B(x,¥)

= 0. Let z = ax + vy be in (1,b) with B(z,z) a unit. Then thé matrix

is a similarity of (1,b) with norm B(z,z) = a2 + Yzb.

Several easy observations about round spaces can be made. If
V is a round form, V must represent 1, since 1 @ V ~ V. Also, if r and
s are both represented by V, so is their product, since rs ® V =
r® (s®V) =r®V =~V. If r is represented by V, so is r-l = r—zr.
Therefore, the set of units represented by a round form is a multipli-
cative group. Since in our setting every space has an orthogonal basis,
it is easy to see that a round form represents its own determinant.
Since round forms always represent 1, any one-dimensional round

form is isomorphic to (1). A two-dimensional form is round if and only

if it has the form (1,a) where a is a unit.
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(V.29) Proposition Let (V,B) be a round form in Bil(R) of odd dimension.
If ¢ is in D(B)*, then ¢ is a square.

Proof Since ¢ is in D(B)* = N(B), ¢ ® V = V and det(c & V) = det(V).
dim(V) dim(V) _

Thus ¢ =1 mod(R*)z. Since dim(V)

det(V) = det(V). Thus c
is odd, this gives c = 1 mod(R*)z, and c is a square.
Thus, if V is round of odd dimension, V has a diagonalization

(1,1,+++,1) = n+(1), and every element of the ring R which is represented

by V is not only a sum of squares but a square itself.

(Vv.30) Lemma If V is in Bil(R) and V.1 H is round, then V is round
and D(V)* = R*,

Proof Let x be in V with B(x,x) a unit. Then B(x,x) is in D(V 1 H)*
so B(x,x) ® (VL H) = VI H. But B(x,x) ® (V1 H) = (B(x,x) ® V) 1
(B(x,x) ® H). Now since 2 is a unit, H = (1,-1) represents any r in
R: r= (s +1))%1+ (5 - 1))%(-1). Also, by (V.28), H is round.
So B(x,x) ® (V1 H) = (B(%,x) & V)1 H =Vl H. By cancellation,
B(x,x) ® V = V.

To show D(V)* = R*, observe that since D(H)* = R*, D(V .1 H)*

R*. Then for any unit r, r® (V1 H) = (r ® V) 1 (r® H) = (r® V)
L H. V1 H is round implies r ® (V1 H) = V1L H. Thus V1 H= (r® V)
1l H and by cancellation, V = ¥ ® V. Thus R¥ = D(V)*,

The next theorem, (V;33), shows how to build a new round form
from other round forms, when R is full of type (3,3). The proof of the

theorem uses the following lemma.

(V.32) Lemma Let a be a unit in R and let V be in Bil(R). Suppose n

is in R such that 1 + an2 is a unit. Let {x,y} be the orthogonal basis
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for the diagonal space (1,a). The map (1,a) ® V + (1,a) ® V defined by
6 ® idV where 6(x) = x + ny, 6(y) = anx - y is a similarity of (l,a) ® E
with norm 1 + anz.
Proof The claim may be verified directly by computation. Observe that‘
the matrix of 6 with respect to the basis {x,y} is

1 an

n -1

which has determinant -(1 + anz).

(V.33) Theoxrem Let R be a ring which is full of type (3,3) and has 2
a unit. Let (V,B8) be a round space in Bil(R). Then for every a in R¥*,
(1,2) ® V is round.
Proof Let W= (1,2) ® V=V L (a) ® V. Choose t in (a) with g(t,t) = a;
that is, Rt = (a). For ease of notation, we Qrite n(x) for the norm of
x, the inner product of x with itself. For an arbitrary element X + t @ y
of W (x,y in V),

n(x+ t®y) = nx) + an(y).
If n(x) + an(y) is a unit, we must show (n(x) + an(y)) ® W = W. We
considef two cases.
Case I. Suppose n(x) and n(y) are both units. Then because V is round,
n(x) ® V=Vand n(y) @V = V. Therefore, (1,2) ® V = (1,an(x)n(y)) ® V.
So (n(x) + an(y)) ® W = (a(x) + an(y)) ® (1,an(x)n(y)) & V. On the other
hand, for two units A, p with A + p a unit,

3

(*) )1 )

’

(A + 1) ® (Law).

Applying (*) to A = n(x) and u = an(y), it follows that

14

((x) +an(y)) @ W = [(n(x)) 1 (an(y))] @V

14

(n(x) ® V) L (an(y) ® V)

|14

V1 (a) ®V = W.
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Case II. Suppose n(x) and n(y) are not both units. Consider the fol-

lowing matrix over R:
1 0 a
A= In(x) -2aB(x,y) azn(y)
n(y) 28(x,y) n(x)
Since n(x) + an(y) is a unit and a is a unit, A has unimodular rows.

Since R is full of type (3,3), there exists an n in R with
A[l,n,nz]t = [ul,uz,u3]t

where u;, u,, u, are units. Now let x' = x - any and y' = y + nx.
Then n(x') = n(x) - 2anB(x,y) + aznzn(y) = u,3 n(y') = n(y) + 2n8(x,y)
+ nzn(x) = ug; and n(x") + an(y') = (1 + anz)(n(x) + an(y)) = ul(n(x)
+ an(y)) is a unit. By the lemma (V.32), (1 + anz) ® W= W. Applying
case I gives (n(x') + an(y')) @ W = W. This gives

Wx (1+and) (@) +an(y) € W= (n(x) + an(y)) ® W,

which is what we wanted to show.

(V.34) Definition A bilinear space of the form (l,al) ® (l,az) @ oo

® (l,an), where each a; is a unit, is called a bilinear Pfister-space,

or a bilinear Pfister—-form.

(v.35) Corollary If R is full of type (3,3) having 2 a unit, then every
bilinear Pfister form ¢ over R is round.
Proof Use induction on n where ¢ = (l,al) Q@ e ® (l,an). (l,ai) is

round by (V.28).

(V.36) Corollary Let n > 1 be a positive integer. Let R be a (3,3)-
full ring having 2 a unit, and let S represent the set of units of R

which are sums of 2" squares. Then S is a subgroup of R*.



58

-‘Proof The 2"-dimensional form ¢ = (1,1)®(1,1)®--- ® (1,1) (n factors)
is round, by (V.34). Observe that S = D(¢)*, which, as we have already
seen, is a group.

The next theorem identifies the generators of the annihilator

ideal of a round form and leads to the promised converse of (V.25).

(V.37) Theorem Let R be a ring which is full of type (3,3} having 2
a unit. If V is a round space over R, V % 0, then the annihilator ideal
Ann(V) in W(R) is generated by the spaces (1,-1) with A a unit repre-
sented by V.
Proof We may assume V is anisotropic, since the kernel space Vo is
round and represents the same units as V (see (V.30)). Let I be the
ideal of W(R) generated by {(1,-A): X is a unit represented by V}.
Since (1,-2) ¥ V=V 1 (-A) € V =V} -V~ 0, we have I C Ann(V).

We will use the following observation: Let b be a unit of R
and let ¢ be a unit of the form c = n(x) + bnzn(y) with n(x) and n(y)
units and n an element of R, x and y elements of V. ¢ is represented
by the round space (1,b) ® V, so that (¢) ® (1,b) ® V = (1,b) & V and
thus (1,-¢) ® (1,b) ® V ~ 0. Now consider the space F =
(n(x), bn(y), -c, -bc). The subspace (n(x), bn(y)) represents the unit
c = n(x) + bnzn(y), so F can be written as (c,t,-c,~bc) where t is a

unit. Comparing determinants of the two diagonalizations of F,

n(x)n(y)b = ct mod(R*)z, so t = ben(x)n(y) mod(R*)z. Then

F

(c, ben(x)n(y), -c, -bc) ~ (ben(x)n(y), -bec)

(-bc) ® (1, -n(x)n(y))

which is in I. Thus F = 0 mod I. On the other hand,
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(1,-¢) ® (1,b) - F = (l,-c,b,—bc,-n(x),-bn(y);c,bc)
v (1,b,-n(x),-bn(y)) = (1,-n(x)) L b ® (1,-n(y)),
which is also in I. Thus, (1,-¢) ® (1,b) = F = 0 mod I. Thus
(1,b) = (¢) ® (1,b) mod I.
Congruences of this type will be used in the remainder of the
proof.
Assume Ann(V) ¢ I. Let F = (bl,--',bn) be a space of minimal
dimension n with F not in I and F® V A~ 0. The space (bz,---,bn) @V
must have kernel space isomorphic to (—bl) & V. Since V represents 1,

(—bl) ® V represents —bl, and there is an equation

b, + bzn(xz) + o + bnn(xn) =0

1
with X, in V. We will alter F modulo I to a space F' = (b','-~,b;)

so that b! + b!

LA J '=
1 2+ -l-bn 0.

First, we find a unit ¢ of the form 1 + n2b2/bl such that
- ' 1 : ' LI '
c(b1 + bzn(xz)) bln(xl) + bzn(xz) with Xy and X, in V and n(xl) and
n(xé) both units. Let X, be in V with n(xl) = 1. Let A be the matrix
1 0 bzlbl
- 2
n(x))  =2(b,y/b)B(K %)) (by/by) nlx,)
n(x,) 28(x1,x2) n(x;)

A has unimodular rows. Then since R is full of type (3,3), there is an

n in R such that A[l,n,nz]t = [ul,uz,u3]t where u, u,, u, are units.

1 3

Let xi =% - (bz/bl)nx2 and xé =%, + n¥; - Then n(xi) = Uy, n(xé) = u3,
2 .

and n(xi) + (bzlbl)n(xé) = (1 +n bZ/bl)(n(xl) + (bZ/bl)n(XZ))‘ Multi-

plying both sides of this equation by bl gives

[

byn(x]) + bon(xy) = (1 + nzbz/bl)(bln(xl) + b,yn(xy))

(L + n7by/b,) (b + byn(x,).
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_ 2
Let c=1+n bZ/bl'

-1 -1 :
---,bn) = (¢ "b,sc b,,b ---,bn) mod I.

l’b2’ 1 273
Proof of claim: As in the earlier observation, (l,—cﬁl) ® (l’bzlbl)

Claim: (b

is in I, so b, ® (l,—c—l) ® (1,b,/b;) = (1,—c°l) e (bl,bz) is in I, and

1

-1 -1 v -1 1
thus (bl’bZ) (c bl,c b2) mod I. Now let b c bln(xl) and

1
b! = c"lb n(x!). Since x! and x! are in V and have unit norms,
2 2 72 2 1 2
-1 -1 _
(c bl,c b2,b3,-°-,bn) = (bi,bé,b3,--',bn) mod I. Further,

- 1 ' -1 ' ' ' . e
bln(xl) + bzn(xz) = c bln(xl) +c bzn(xz) so that bl + b2 + b3 +

This process is continued (next using bi and b3n(x3)) until

= N M R ' 1 N e o e ' = LI Y
F = (bl,b s ’bn) mod I with bl + + bn 0. Let el,ez, e be
the orthogonal basis of F' = (bi,bé,--~,b;) with n(ei) = bi. The vector
ey + e, + oo + e, is isotropic. Then F' = H1l G where H is a hype;bolic

plane and dim(G) = n - 2. F # Omod I and H is in I, so G # 0 mod I.
But 0 v FVAH®V]L G& VA G® V. This contradicts the minimality
of dim(F). (Notice that dim F > 2, since if n = 2, this argument shows

F = H which is in I, contrary to the choice of F.)

(V.38) Corollary If R is a full ring of type (3,3) with 2 a unit,
W(R)t is generated by elements of the form [(1,-a)] where a is a unit
and a sum of squares.

Proof By (V.26) and (V.37), W(R)t is generated by elements of the form
(1,-a) where a is a unit represented by a Pfister-space (l,al) ® oo~

® (1,an) where each a; is a unit and a sum of squares. Elements repre-

sented by such a space are again sums of squares, hence the corollary.

(V.39) Corollary W(R) is torsion free if and only if every unit which

is a sum of squares is itself a square, with the exception that -1 is
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not a square.

Proof 1If every element which is a sum of squares is already a square,
then W(R)t is generated by (l,—az) v (1,-1) ~ 0 so W(R)t = 0. The con-

verse is (V.25).
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