HYPERFINE SPLITTING
OF THE NORMAL s STATE OF SODIUM

HYPERFINE SPLITTING

OF THE NORMAL s STATE OF SODIUM

By
LEON WILLIAM SCHROEDER
Bachelor of Science Oklahoma Agricultural and Mechanical College Stillwater, Oklahoma 1947

Submitted to the Department of Physics Oklahoma Agricultural and Mechanical College In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

1948

231051

It has been observed that many spectral lines, especially those of the heavier atoms, show a narrow fine structure with separations of the order of one wave-number unit. These separations are very much smaller than those of the ordinary multiplet structure of heavy atoms, and for this reason these spectre are said to show hyperfine structure. ${ }^{1}$ There are two types of hyperfine structure (hereafter to be abbreviated hfs) to be distinguished from each other. First, there is a hfs due to a nuclear magnetic and mechanical moment and, second, a hfs due to the different isotopes of the same chemical element. ${ }^{2}$ There exists hfs of the first type in the D lines of sodium and it is the purpose of this thesis to deternine the separation of the two components of both of the D lines. This separation was determined by experimental means as well as from theoretical considerations. Correlation between theoretical and experimental hfs separations is then made.

1 Linius Pauling and Sanuel Goudsmit, The Structure of Line Spectra, p. 202.

2 Harvey Elliott White, Introduction to Atomic Spectra, p. 353.

The author wishes to take this opportumity especially to thenk Dr. S. W. Eager, under whose direction this project was completed, and also Dr. A. V. Pershing, who personally supervised the investigation.

TABLE OF CONTENTS

PREFACE iv
PART I
Experimental Determination of hf 3 in the Sodium Lines..... 1
PART IITheoretical Determination of hfs in the Sodium Lines...... 14
PART III
Correlation of Experimental and Theoretical Findings. 19
BIBLIOCRAPHY 21

PART I

EXPERIMENTAL DETERMINATION OF HFS IN THE SODIUM LINES

For experimental investigation of hfs of the sodium lines the Fabry-Perot interferometer was employed. Before discussing the actual measurements, the method used must be clarified. First let us consider the method used to find the separation of two spectral lines relatively near one another, e.g., the D lines of sodium. The apparatus used is shown set up in figure 1.

Figure 1.

In figure 1, S is the source, a General Electric Sodium Lab-Arc; M, a rapid setting monochrometer used to obtain light as near one wave length as possible; F, a Kodak Wratten filter number 67, renders the light still more monochromatic; C, a collimating lens; I, the half silvered parallel plates of the Fabry-Perot interfer-
ometer; and 0 and \mathbb{E} the objoctive lens and eyepiece, respectively, of the observer's telescope. The equation from which $\Delta \lambda$, the wavelength separation between the sodium D lines, is determined follows:

$$
\begin{equation*}
\Delta \lambda=\lambda_{1}-\lambda_{2}=\frac{\lambda_{1} \lambda_{2}}{2 u t \cos \theta} \tag{1}
\end{equation*}
$$

Here $\boldsymbol{\lambda}_{1}$ and $\boldsymbol{\lambda}_{2}$ are the wave lengths of the D lines expressed in centimeters, $\boldsymbol{\lambda}_{1}>\boldsymbol{\lambda}_{2}$, u the index of refraction for air, t the difference in plate separations, measured in centineters, between successive coincidences of the fringe systeras, and θ the angle between the incident ray and the axis of the interferometer. If $\boldsymbol{\lambda}_{1}$ and λ_{2} are very nearly the same and if we confine our attention to the rings near the center of the fringe system, we can say

$$
\begin{equation*}
\Delta \lambda=\frac{\lambda_{1}^{2}}{2 u t} \tag{2}
\end{equation*}
$$

To find the wave nuaber distance $\Delta \nu$ corresponding to the $\Delta \lambda$ in equation (2), we take the relation between ν and λ,

$$
\nu=\frac{1}{\lambda}
$$

λ being in centineters, and differentiate it, obtaining

$$
\Delta \nu=-\frac{\Delta \lambda}{\lambda^{2}}
$$

Substitution in equation 2 gives

$$
\begin{equation*}
\Delta \nu=-\frac{1}{2 u t}^{1} \tag{3}
\end{equation*}
$$

For our purpose the - sign may be neglected. From the last expression it follows that the wave number difference is inversely proportional to the plate separation between coincidences. Consequently, the plate separation between two successive coincidences of the hyperfine fringes of each D line must be considerably greater than the separation between coincidences of the D line fringes themselves since the former are much closer together.

The following sketches in figure 2 indicate the relative positions of the fringes formed by the two componets of each of the D lines. Here D1-0, D1-1 and D2-0, D2-1 are the components of the D1 and D2 lines respectively. Since the D2 line is twice as intense as the Dl line, its components are drawn twice as heavy as the DI components. Positions are shown when the fringes are in phase, out of phase by $\pi / 2$ radians, out of phase π radians, and then back in phase again. In other words, fringes are shown at intervals of $1 / 4$ a beat length, the beat length L being the distance betwen successive coincidences. The $3 \pi / 2$ position is not show since it falls beyond the range of the interferometer. If the two mirrors were in contact, the fringes would be in phase as shown in the 0 position in figure 2. When the plate separation is $1 / 4$ the beat length L, the fringe system would be as shown for the $\pi / 2$ position. Dl-1 has here advanced $1 / 4$ the way to the original position of the next D1-1 fringe, while D2-1 has also advanced $1 / 4$ the way to the original position of the next D2-1 fringe. As shown in the π

1 F. A. Jenkins, and H. E. White, Fundamentals of Physical Optics, pp 100-101
position, the D1-1 and D2-1 fringes have now advanced $1 / 2$ the distance to the original positions of the next D1-1 and D2-1 fringes, respectively, since the plate separation is $L / 2,1 / 2$ the beat length. Since $\Delta \nu$, the wave number distance between D1-0 and D1-1 and between D2-0 and $D 2-1$, is quite small, L will be quite large. As plate separation

Figure 2.

increases, distance between fringes decreases. This coupled with the fact that the fringes in the $\pi / 2$ and π positions are very evenly spaced, should lead to a very uniform distribution of fringes very close together in the $\pi / 2$ and the π positions. We might suspect that the
fringes would be "smeared". That is to say, the field of view apparently would be uniformly illuminated except near the center where fringes should be discemible in the region of maximum fringe separation. The plate separation at the $\pi / 2$ position must be multiplied by 4 to give the beat length L, which is equivalent to t in equation 3. Similarly, for the π position, t is equal to twice the distance between the plates. With these modifications, $\Delta \nu$ can be computed for both the π and the $\pi / 2$ positions. The mean of these two values will then give the hyperfine separation of the D line components in cm^{-1}. Careful observation of the fringe systems as the plate separation was gradually increased from a minimum value resulted in the discovery of "smeared" fringes in the vicinity of 2.139 cm and 4.189 cm . These are scale readings and not actual mirror separations. Obviously these readings correspond to the $\pi / 2$ and π positions respectively. These positions must now be accurately found and the actual mirror separations determined. $\Delta \nu$ can then be found by means of equation 3. These preliminary positions were determined with the filter removed. With the filter in position, the $\pi / 2$ position was more carefully investigated. The position in which maximum "smearing" of the fringes occurred was located at the scale reading of 2.240 cm . Further investigation of this region was postponed until the π position was accurately determined. The scale settings of the four best positions in the second region where the "smearing" of fringes was observed were recorded as follows: (1) 4.252 cm , (2) 4.229 cm , (3) 4.197 cm , (4) 4.171 cm . Hereafter all scale readings will be in centimeters so the units will be omitted. Checking between positions 1 and 2 it was decided that
the smearing was better in position 2. Between positions 3 and 4 , the latter was eliminated. Deciding between the two intermediate positions, position 2 was finally chosen over number 3. Careful observation showed that the position of maximum smearing (hereafter to be abbreviated the maximus) was between the limits 4.2220 and 4.2280. Within this region, ten observations of the maximum were observed and recorded:
4.22503
4.22623
4.22269
4.22686
4.22550
4.22706
4.22666
4.22617
4.22630
4.22410

The above mentioned region was divided into six intervals (cells) of 0.001 cm separation and the readings falling into each cell were counted as shown below.

From this plot it is apparent that the maximum is between 4.2260 and 4.2270. Taking this cell and two on each side, twenty readings between these limits (4.22140 and 4.2290) were recorded on page 7.

$$
\begin{aligned}
& 4.22566 \\
& 4.22726 \\
& 4.22492 \\
& 4.22771 \\
& 4.22403 \\
& 4.22692 \\
& 4.22594 \\
& 4.22725 \\
& 4.22585 \\
& 4.22765 \\
& 4.22618 \\
& 4.22812 \\
& 4.22542 \\
& 4.22642 \\
& 4.22592 \\
& 4.22764 \\
& 4.22626 \\
& 4.22744 \\
& 4.22582 \\
& 4.22686
\end{aligned}
$$

These readings were counted for each cell and added to those previously counted for these cells. The plot follows:

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|}
\hline \text { (3) } & \text { (8) } & (10) & (7) & (1) \\
& & - & & \\
& - & - & & \\
& - & - & - & \\
& - & - & - & \\
- & - & - & - & \\
- & - & - & - & \\
- & - & - & - & \\
\hline
\end{array}
\end{aligned}
$$

Since it is now highly probable that the maximum is between 4.2260 and 4.2270 , the ten readings lying between these limits were recorded again and averaged.

```
4.22623
4.22686
4.22606
4.22617 Mean = 4.226426 cm
4.22630
4.22692
4.22618
4.22642
4.22626
4.22686
```

This position is the scale reading and not the actual distance between the mirrors. With the mirrors just touching, the scale reading was 0.172750 cm . Subtracting this " 0 " reading from the mean position pre-
viously determined, the mirror separation at the π position was determined as 4.053676 cm .

Since the π position occurs with a plate separation twice as large as that for the $\pi / 2$ position, one half the plate separation found above should give the plate separation for the $\pi / 2$ position. When added to the "O" position, this should give the scale reading where "smearing" occurs in the $1 / 2$ position. This was done. The scale reading thus found was 2.199588 cm , roughly, 2.200 cm . This probable maximum position was compared with that previously located at 2.240 cm . All observations in this position were conducted with the filter in position, while those at the π position were made with the filter removed because it cut down the fringe intensity too much. After observing the two maxima nearest 2.200 and 2.240 , it was decided that the one in the vicinity of 2.240 was the better. Five readings of this maximum were taken and recorded.
2.232
2.236
2.237
2.233
2.236

These readings show the maximum to be between the limits 2.232 and 2.237. Ten readings between these limits were taken and plotted in cells of 0.001 cm separation.

$$
\begin{aligned}
& 2.23280 \\
& 2.23423 \\
& 2.23440 \\
& 2.23594 \\
& 2.23356 \\
& 2.23594 \\
& 2.23445 \\
& 2.23498 \\
& 2.23504 \\
& 2.23378
\end{aligned}
$$

These results have narrowed the range
so it is bounded by scale readings of 2.2330 and 2.2360 . This range was divided into six equal intervals of 0.0005 cm . separation and twenty readings were recorded and plotted.
2.23423
2.23339
2.23317
2.23322
2.23443
2.23501
2.23533
2.23419
2.23558
2.23409
2.23473
2.23357
2.23426
2.23365
2.23434
2.23372
2.23421
2.23390
2.23533
2.23393

These results have indicated that the maximum lies between the limits 2.2335 and 2.2350. Ten readings between these limits were plotted in cells of 0.0005 cm separation.
2.23385
2.23431
2.23404
2.23450
2.23417
2.23399
2.23481
2.23436
2.23423
2.23442

This plot verifies the result of the preceding plot in showing the maximum to be between scale positions 2.2340 and 2.2345. This interval was accordingly divided into five cells of 0.0001 cm separation and 10 readings were recorded and evaluated by plotting.

Ten observations between the more confining limits, 2.2343 and 2.2346 were taken and plotted.

Since the readings are very evenly distributed the maximum must be in one of these three cells. All the previously obtained reacings lying in this range were recorded again and a new plot, including the above readings, was made between the same limits.
2.23434
2.23431
2.23436
2.23439
2.23436
2.23440
2.23445
2.23443
2.23442
2.23445
2.23442
2.23446
2.23448
2.23443
2.23450

(7)	(13)	(5)
	-	
	-	
	-	
-	-	
-	-	
-	-	-
-	-	-
-	-	-
-	-	-

2.23430
2.23440
2.23450
2.23460

The maximum is definitely between 2.23440 and 2.23450. To the thirteen readings already recorded as falling in this region, seven new ones were taken and added. The average of these twenty readings was taken as the scale reading at the $\pi / 2$ position. The thirteen old readings plus the seven new ones are recorded below.

2.23443	The zero position was then redetermined and found to
2,23442	
2.23446	be 0.183985 . Subtraction of the "O" position from
2.23448	
2.23443	the mean scale reading at the position of the maximum
2.23442	
2.23440	gives the plate separation as 2.050464 cm at the $\pi / 2$
2.23445	
2.23445	position. Since this is one-fourth the beat length
2.23441	
2.23444	it must be multiplied by four when substituted in
2.23448	
2.23446	equation 3 for t. The substitution, with $u=1.000294$,
2.23449	follows:
2.23441	
2.23447	
2.23449	
2.23446	
2.23445	
2.23448	

Mean $=2.234449$

$$
\begin{aligned}
& \Delta \nu=\frac{1}{2 u t}=\frac{1}{(2)(1.000294)(4 \times 2.050464)} \\
& \Delta \nu=0.06094389 \mathrm{~cm}^{-1} \text { for the } \pi / 2 \text { position. }
\end{aligned}
$$

For the π position:

$$
\Delta \nu=\frac{1}{2 u t}=\frac{1}{(2)(1.000294)(2 \times 4.053676)}
$$

$$
\Delta V=0.06165429 \mathrm{~cm}^{-1} \text { for the } \pi \text { position. }
$$

For the determination of the final value of $\Delta \nu$, the two readings were
averaged. The $\pi / 2$ position was given a weighting of $7 / 10$ and the π position a weighting of $3 / 10$. The $\pi / 2$ position was given the heavier weighting since in thet position the "smeared" position could be best determined. The fringes there did not completely disappear in the central portion of the field of view; thus this maximun could be more accurately located. This in turn pernitted use of the filter, further rendering the $\pi / 2$ position more accurate. Weighting these values of $\Delta \nu$ in this manner, the final value was taken to be

$$
\Delta \nu=0.06115701 \mathrm{~cm}^{-1} .
$$

PATI II

IM THE SODTM LIUES

The sodiun atom in its nomal tate has an electron configuration of $1 s^{2} 2 s^{2} 2 p^{6} 3 \mathrm{~s}$ and $i t \mathrm{~s}$ nomal state is ${ }^{2} \mathrm{~S}$. Here the K and L . shells are filled. The x shell has only one electron and that is in the 3 s subshell and is the $3 s$ electron represented above. When one quantum of energy is wbsorbed by this $3 s$ valence electron it goes to the next higher energy leqel, namely the $3 p$ subshell. As the electron returns to the 3 s state from the 30 state, it enits the radiant energy which gives us the well know D lines.

In the $3 s$ state the azimuthel quantua naber, 1 , of the electron is zero, since the electron is in the $3 s$ subshell. The spin quantwm number s of the electron has the value $1 / 2$. The resultant of the orbital moreat 1 and the spin monent s is the quantim vector j, the total angular momentur of the electron. 3 has the value $1 / 2$ for the $3 s$ electron. With the election in the $3 p$ state, $I=1$ and $s=1 / 2$. Consequently j has the values $1 / 2$ and $3 / 2$. The spectral lines emitted when the electron recurs to the 3 s level from the $3 p$ level are lines of the principal series of sodiun. The allowable transitions ($j=0, \pm 1$)
 the DI line, the second to the D2 line. The above discussion is concerned only with fine structure and gives no hint of the existence of hyperfine structure.

For syperfine stmetwre, however, the mechanical moment of the nucleus mast be taken into accomt. It is represented by the quatum numer I. $I=3 / 2$ for sodiun. Coupline the quantum vector tif, the total
mechanical moment of the extranuclear electron, with the quantum vector I*, representing the total mechanical moment of the nucleus, there results a quantum vector F^{*}. It is this resultant F^{*} that now represents F \% $/ 2 \pi$, the total mechanical moment of the atom, in place of J^{*} as previously stated for fine structure. Just as in fine structore the starred quantities are given by

$$
\begin{equation*}
J^{*}=\sqrt{J(J+1)}, \quad I *=\sqrt{I(I+1)}, \quad F^{*}=\sqrt{F(F+1)} \tag{I}
\end{equation*}
$$

With a nuclear spin $I=3 / 2^{1}$ and a J value of $1 / 2$, the 3 s state is split into two levels $F=1$ and 2. Again with $I=3 / 2$ and $J=1 / 2, F$ has values 1 and 2 in the $3 p$ state. For $J=3 / 2$ in the $3 p$ state, F has the values $0,1,2$, and 3. Now the selection rules for F in his are just the same as those for J in fine structure, viz.,

$$
\begin{equation*}
\mathrm{F}=0, \pm_{1} \tag{2}
\end{equation*}
$$

With the new quantum number F given by a small subscript to the left of the L term type, the allowable transitions are:
(1) $3 \quad{ }_{3}^{2} \mathrm{P}_{3 / 2}, 3 \quad{ }_{2}^{2} \mathrm{P}_{3 / 2}$ and $3 \quad{ }_{1}^{2} \mathrm{P}_{3 / 2}$ to-- $3 \quad{ }_{2}^{2} \mathrm{~S} / 2$
(2) $3 \int_{2}^{2} P_{3 / 2}, 3 \quad{ }_{1}^{2} P_{3 / 2}$ and $3 \quad{ }_{0}^{2} P_{3 / 2}$ to ---3 $\quad{ }_{1}^{2} S_{1 / 2}$
(3) $3 \int_{2}^{2} \mathrm{P}_{1 / 2}$ and $3{ }_{1}^{2} \mathrm{P}_{1 / 2} \ldots$ to $\quad 3 \quad{ }_{2}^{2} \mathrm{~S}_{2}$
(4) $3{ }_{2}^{2} \mathrm{P}_{1 / 2}$, and $3{ }_{1}^{2} \mathrm{P}_{Y_{2}}$................. ${ }_{1}^{2} \mathrm{~S} \mathrm{Y}_{2}$

The transitions (1), (2), (3), (4) give rise respectively to the

I Harvey E. White, Introduction to Atomic Spectra, p. 372.

D2-1, D2-O, D1-1 and D1-0 lines mentioned in part I. It is seen that the D2-1 and DI-I Lines both terninate on the F=2 level of the 3 2 $51 / 2$ state. The two lines together thus have five components. Sinilarly, the D2-0 and Dl-0 lines, terminating on the $F=1$ level of the $3 \quad 2 \frac{1}{2}$ state, also have a total of five compenents. The experinentel method used in pert I, however is incapable of resolving these components. The separations of the D1-0 and D1-1 and of the D2-0 and D2-1 lines are the sane since both terminate on the F=2 and $\mathrm{F}=\mathrm{I}$ levals. To find this separetion it is necessary to compute the fnteraction anerey between the nuclear monent I* and the olectron monent for for states $\mathrm{F}=1$ and $\mathrm{F}=2$. The diference in theoe energies, expressed in cill^{-1}, is then the separetion, in weve rumer wits, of the two componeats of each of the D lines.

For a siagle valence elactron with a specified value, the interaction energy of this electron, screened fron the nacleus by a shell of electrons, is given by ${ }^{2}$

$$
\begin{equation*}
\Gamma_{\mathrm{F}}=1 / 2 a^{1}\left(\mathrm{~F}^{2}-\mathrm{I}^{2}-J^{2}\right) \mathrm{cm}^{-1}, \tag{3}
\end{equation*}
$$

where $F \%$, I* and there found from Bqs. (1). Coudsmit has suggested that we write for s electrons, ${ }^{3}$

$$
\begin{equation*}
a^{\prime}=\frac{x}{1833} \cdot \frac{\operatorname{Sox}^{2} x_{2}^{2}}{3 n_{0}^{3}} \cdot \pi \operatorname{ce}^{-1} \tag{4}
\end{equation*}
$$

E_{I}, the nuclear g factor has a value 1.4 for socium. 4 It is the
2 Iotd. p. 361.
3 Ibid. p. 363.
4 Ibid., p. 372.
number expressing the ratio between the magnetic monent of the nucleus in auclear magnetons (eh/4ma) and the mechanical moment of the nucleus in quantum units of $h / 2 \pi$.

R is the fydberg constant for sodium and is given by 5

$$
K=\frac{R_{\infty}}{1+\frac{m}{M M_{P}}}
$$

where mots the flyduerg constant for infinite mass; m, the mass of the electron is 1 ; A is the atonic weight (23) of sodium; and f_{p} is onesixteenth the fass of an oxygen atom expressed in terms of the electron mass. Evaluation of gields the value $109734.838 \mathrm{~cm}^{-1}$.

The fine-structure constant $\alpha(e q .4)$ equals $2 \pi e^{2} / \mathrm{hc} . \quad \alpha^{2}$ has the velue $5.305 \times 10^{-5} .6$

Referring again to Eq. 4 , \mathcal{Z}_{i} is the effective nuclear charge inside the core of closed electron shells. For s electrons, $Z_{i} \cong Z_{2}{ }^{7} Z_{0}$, the effective nuclear charge outside the core of closed electron shells, has the value unity for sodium.
n. represents the effective quantum number n^{*}. For an s electron with $1=0$ and the principal quanturn number $n=3$, $n_{0}=n *=1.627$. ${ }^{8}$ $n_{0}^{3}=4.30687888$.

[^0]The relativity correction K is given by 9

$$
\begin{equation*}
K=\frac{4 j\left(j+\frac{1}{2}\right)(j+1)}{\left(4 p^{2}-1\right) p}, \quad p^{2}=\left(j+\frac{1}{2}\right)^{2}-(\alpha z i)^{2}, \tag{6}
\end{equation*}
$$

With $j=1 / 2, P^{2}$ is 0.993581907 and $P=0.996785789$. Evaluation of K gives $K=1.01188373$.

Upon substituting these values in Eq. (4), it is found that $a^{\prime}=0.03055919 \mathrm{~cm}^{-1}$.

The interaction energy for $\mathrm{F}=2$ is found from Eq. (3),

$$
\begin{equation*}
\Gamma_{F=2}=\frac{3}{4} a^{\prime} \tag{7}
\end{equation*}
$$

where $I=3 / 2$ and $J=1 / 2$.
For $\mathrm{F}=\mathrm{I}$, I and J having the above values, the interaction energy is

$$
\begin{equation*}
\Gamma_{F=1}=-\frac{5}{4} a^{1} \tag{8}
\end{equation*}
$$

The energy difference between the levels $F=2$ and $F=1$ is

$$
\begin{equation*}
\Delta \Gamma=\Gamma_{F=2}-\Gamma_{F=1}=2 \mathrm{a}, \tag{9}
\end{equation*}
$$

Consequently $\Delta T=0.06111838 \mathrm{~cm}^{-1}$ and this is the wave number separation between the D1-0 and D1-1 and between the D2-0 and D2-1 lines.

The theoretical result is then

$$
\begin{equation*}
\Delta \nu=0.06111838 \mathrm{~cm}^{-1} \tag{10}
\end{equation*}
$$

9 Ibid., p. 362.

PARS III
CORRELATIOR OF EXPRRIMENTAL AND THOORETLGL FLNDIUGS
Between the experimental result $\Delta \nu=0.06115701 \mathrm{~cm}^{-1}$ and the theoretical result $\Delta \nu=0.06111838 \mathrm{~cm}^{-1}$ there is a difference of $0.00003863 \mathrm{~cm}^{-1}$. With the theoretical result taken to be correct, this gives an error of 0.063 of one percent for the experimental result.

When the two values are averaged, each varies from the mean by 0.032 of one percent.

Thus there is excellent agreement between theory and experiment. We know of only one case on record where hyperfine structure of sodiun has been determined experimentally. ${ }^{2}$ Here Schuler ${ }^{2}$ discovered that each one of the yellow sodium lines is double and showed that the lowest s state of sodium possesses a hyperine stmacture with $\Delta \nu=$ $0.060 \mathrm{~cm}^{-1}$. A copy of his paper wes not available for study but it is quite probable that his result was found by measurements of the radii of the ring systems photographed when sodiw light from a source slit was dispersed by a prism after passing through the Fabry-Perot etalon. The prism here is placed between the half-silvered plates and the converging lens. an excellent description of this nethod is given by Nilliams. 3

The results recorded in this paper are of the samemagnitude as

1 L. Pauling and 5. Goudsmit, Structure of Line Spectra, p. 224.
2 H. Schuler, Naturwiss., 16; 512, 1928.
3 W. E. Illiams, Applications of Interferometry, pp. 83-88.
that of Schuler. Scale readings in part I are accurate to six decimal places. Hence the experimental value of ΔU is accurate to six significant figures. In our opinion the theoretical value of $\Delta \mathcal{V}$ is also accurate to at least six figures.

It is, therefore, our conclusion that the sodium D lines are split due to a nuclear interaction, the separation being approximately equal to $0.06113769 \mathrm{~cm}^{-1}$.

BIBLIOGRAPHY

Jenkins, F. A. and White, H. E. Fundamentals of Physical Optics. New York: McGraw-Hill, 1937.

Pauling, L. and Goudsmit, S. The Structure of Line Spectra. New Yock: McGraw-Hill, 1930.

White, H. E. Introduction to Atomic Spectra. New York: McGraw-Hill, 1934.

Willians, W. E. Applications of Interferometry. London: Methuen \& Co., 1930.

[^0]: 5 Tbid., p. 35.
 6 Ibte. p. 437.
 7 Ibid., p. 363.
 8 Toter p. 90.

