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Preface

At the inception of Projeet No. 21 of the Research Foundation at Okla-
homa A. and M. College, Dr. Alvin C. Sugar began the preparation of an atlas
of inverse matrices which could be used to solve the Dirdichlet problem., This
paper embodies the results of that investigation, which may be extended to
examine allied problems that are suggested.

The fundamental theory for the simple cases has been worked out in great
detail with the hope that some clue may become apparent for generalizing more
complicated cases.

The bibliography, deliberately inextensive, is basiec. References to it
Wq&tﬁctﬂmwwmnmrm and page nunbers.

The paper does not represesmt all that has been and is being done on the
project; as a matter of fact, an approach to the problem is being made at
present through the use of integral equations and variation principles.

R, R, R.

July, 1947
Stillwater, Okla,



latrix-relaxation Methods in the Solution of Boundary-value Problems

1 Introduction

The principal result of this paper is the development of certain numeri-
cal methods of solving the Dirichlet problem for a long rectangular damain.
Less general results are obtained for squares and other rectangular bounda-
ries, and there is included a sketch of how the methods may be extended to
equations other than Laplace's. .

The problem is formulated as follows:

The set of lines x = h, x = 2h, .es X = nh intersects the set y = k, y = 2k,
eee ¥ = mk in sm interior points on a cartesian coordinate system for all
integral m and n. Beginning at (x,y) = (h,mk), mumber these points P; seri-
ally from left to right in each row and count off the rows consecutively from
hphmt-ntm(xg)duhudmrwﬁm. The pairs of
boundary lines y = (m*l)k, y = 0, and x = 0, x = (n+l)h, which constitute the
boundary, intersect this configuration in 2(m+n) boundary points (x,(m+1l)k),
(x,0) [x=h, 2h, «ee nk] and (O,y), ((n+l)h,y) [y = mk, (m-1)k, ... k],
which are named, respectively, P-, , P2 ,mrzd_yk,r:‘,wﬂ. How sup-
pose & function u = u(x,y), defined at every point of this net, to have the
value u, at Py and w) at P} [1=1, 2, ... m; and the superseript j = 1, 2,
3, 4]. The Diriehlet problem seeks the u, when (1) the uw) are knows and
(2) u(x,y) satisfies Laplace's equation in two dimensions

) u = 0.
It is possible, in a manner to be described presently, to replace (1) by
the linear algebraic system of difference equations

(2) M= wr

vhere M is a nonsingular square matrix of constants, and u and u¥* are column



matrices containing u, and linear conbinations of u), respeetively [i=1,
2y esemmy =1, 2, 3, 4], Then for a given rectangular boundary, as m and
n inerease without bound, h indkapprowh zero and the solutions of (2) con~
verge to those of (1), subject to the given boundary conditions., A proof of
this is given in (1], The solution

(3) u = W g

of the matrix equation (2) requires (1) the inversion of M and (2) the multi-
plication of ¥ by the column matrix u*. Once ¥~ is known, cach u, can be

computed by adding mm pairs of products of numbers. Thus it appears that
tabulation of inverses of M for areas divided into a large number of rectan-

gles would facilitate the complete solution of many numerically difficult
engineering problems.

2 The 1 >X n rectangle

- Bguation(l) is reduced in [7, p. 163] and [5, p. 20] to the difference
equation

(4) ulx+h,y)+u(x,y+h)+ulx=h,y)+u(x,y=h)-4u(x,y) = 0 ,
which is a simplification of |

(5) u(xeh,y)*u(x=h,y)-2u(x,y) , ulx,y+k)rulx,y-k)-2u(x,y) .
¥ he : 2
in the case where the rectangle is subdivided into squares so that h = k.
low suppose m = 1; then in (2) M has 4's in the prineipal diagonal, -1's in
the immediately adjacent diagonals, and O's elsewhere, while u has u;, u,,
3.2 52 1 2 -

eee U, and u* has “1'“’1’“2’ Ugtlny eee W 43U o, WoHR U, reading downward
in both cases. The square matrix, which in this instance (m = 1) will be
called M , is not only symmetric but also has the reversibility property that




the elements of the i th row [j th column] read forward [downward] are the
same as those of the (n+l-i)th row [(n+l-j)th column] read backward [upward].
More precisely, if J is a square matrix with 1's in the secondary diagonal
and O's elsewhere, and if M = JMJ, then M is called a preversible matrix, The
theorems below follow from the

Lemma: J°= I, where I is the unit matrix of the same order as J; for
if the elements otdeiJ (£, 3 =1, 2, «wen], thmdij"i,ml—g'
dne1-g,je TS

s o SAES* S

kN 0iri¢fj
is used throughout for the Kronecker delta. Now if J° = C and the elements
or(:meij,thcncu-ﬂdud”,mwomtimmﬁunk-lton.
The only nonzero elements are those of the form di,ml—idhol-j, 33 hence n+l-i
= n#l-j, or i = j. Therefore, e“-a”,mmstc-:[.

Theoren 1: I

_Theorem 2: A reversible matrix is not nmgaar.‘lly symnetrie; e.g., if
b¥d,

= J.

LB =T
ve o
P Ao
.

Theorem 3: A symmetric matrix is not necessarily reversible; e.g., if
a¥ d,
ab
ba *
Theoren 4: The inverse of a reversible matrix is reversible; for suppose
M= 2, then Nt = J" iyt = Aty
Theorem 5: If M is reversible, then JM = liJ; for suppose M = JiiJ, then
Ji = JIJ = TiJ = MJ.
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Iheorem 6t The sum or difference of two reversible matrices is rever-
sible; for suppose i = JiiJ and N = JUJ, then MtN = JMJ+JNJ = (JM#JN)J =
J(isN)J,

Theorem 7: The product of two reversible matrices is reversible; for
suppose M = JWJ and N = Jid, then M = JIJJNJ = JMINJ = JMNJ,

Definition: A symmetric, reversible matrix is called a gymverse.

&me%hamenc,aomoisl;]';thmit is necessary to compute
only those elements in the fundamental triangle, which is that part of 1T
to the left of and including the left halves of the prineipal and secondsry
diagonals. These inverses are calculated exactly and to five decimal places
in Table 1 up o n = 7. It is possible to determine any element in I" once
the element a in the first row and first column is known. Moreover, a ..
can be expressed in terms of a . Furthermore, it will be shown that each of
the elements approaches a limiting value as n increases without bound.

Let a symmetric matrix be partitioned

e!
Xw S4
where a and d are square, symmetrie, and nonsingular, but ¢ and hence its
transpose ¢! may be rectangular. Then its inverse

4—1- ‘c'

% cp ?
whose submatrices are of the same order as similarly placed quantities in M,
is worked out according to the following steps, which are adapted from
(4, p. 112, ££.]:

1) Compute a -
(6) 2) Premltiply 1) by e: ca L
3) Postmiltiply 2) by e': ea Te



L) Subtract 3) from d: d-ca Lot

5) Invert 4): D = (deca vet)™t

6) Preaultiply 2) by the negative of 5); G = ~Dea *
7) Premiltiply 6) by o'z c'C

8) Subtraet 7) from the unit matrix It I-c'C

9) Premiltiply 8) by 1): A = a >(I~¢'C)

(6)

The submatrices A, C, D are thus determined from 9), 6), 5).
Suppose lgl is known and that M . is partitioned

Kol :"4 ;

where K is a row matrix with n-1 O's and having -1 as the rightmost element.
Then, since the element in the n th row and the n the eolum of I is equal
to a, (bocm.lnia reversiblej, it follows after applying the first five
steps of (6) that

(7) .h‘l']. w 1/ (h‘ﬂn) .
Since a, = 1/4, subsequent a are rational fractions; thus if a = Hr/Bn,
where N and d_ are relatively prime integers, (7) is equivalent to
N

el l"‘n" Dml - "‘Dn-un *

Combination of these yields the relations

@) Hll-l, iz"h, nnli]_-mn_xn-l R A :
. el 92-15' Dpey = 40570y g T o

The values of N and ten-place approximations of a, are entered in Table 2.
kn enlargement of this table gives the leading element in i~ for any n.
Now, in order to determine the other elements of the fundamental tri-
angle, designate the elements ozgluy;umdthou of M, by by,; then,
ﬁmolglln-lnl;l-ln(thomtnatﬂxotwmn), the n® equations



' T a = 3
(9) Ve, (i, §=1, 2, «eu n] ,

Ebytey = 94

hold, the swmation ruming from k = 1 to n. From the definition of M,

bu - £j- - l’ 2, ew n.]

i
bi’i*l = "‘l [1 - l’ 2’ 'EE ] }3"'1];
1 (=2, 3, ... n]

by i1
thus for i, j =1, 2, ... n, (9) may be written

(20) 4, g " Ay
81,5805 %,3 T y

provided that

(1) 20" %,00 " %) " %3~ 0
Elements of the first column are determined from the equations

12) ey e, mg g e g9y [Ee 12, . el

g& can be written ‘11 - g(i) /Bn’ where N(i) is an integer, it fol-
lows that N ) satisfies a difference equation

x(""l) - u(i)_l(i-l) : !(1) - nn

similar to that for N ; hww,thamml(”mfrmuntol
while assuming the same values as N, in reverse order.
Todotmimthornﬂningolmta,ﬁrstnliﬁnahauﬁm(m):

(13) 8 el "% 5*%a1 7% 3
An induction shows that

(1) .'ij - zi:g:i; 8 »

the summation rumning over either odd or even integers r, not both, since

09 iz, gl a2

i=] -,1 i=-j+2
and (14) holds for j = 1, 2. After applying (7) and (12), it is most expedi-



tious to caleculate first the elements along the principal diagonal, then
those along the diagonal just below, etc.; work toward the center of the
matrix, This solves completely the problem of inverting the matrix for the
1 >< n rectangle.

It will now be shown that as n-+w, corresponding elements of l[;‘l’
have limiting values; the infinite matrix n:‘uth these limiting elements
is accordingly called the Limit matrix of ", This is accomplished by
proving (l)dlthcaumbomdodtorwnand(z)mupmgu”
form a monotone sequence, Suppose in (3) that w* has 1 in the j th row and
O's elsewhere, then if M = h’d‘]’ uy -,‘1.1 [i,d =1, 2, ses n]; thus any
B4 is actually a solution of (2) for a particular set of boundary values;
viz,, 1 at some point and O at all other boundary points. Since by (5)
u(x,y) is the average of values of u at the four neighboring points (x+h,y),
(x=h,y), (x,y+#h), (x,y-h), it fm as shown in [3, p. 735] that u attains
its maximum and minimum on the boundary; hence, all the a4 lie between 0
and 1 for any n. In (7) therefore 4-a > 0 so that the difference

(15) a8, = (a2 )/ (e )(bma )
hpouitiuirah«H)& Since az-al-h/ﬁ-l/k- 1/60 > 0, it follows by
induction from (15) that the a, form a monotone nondecreasing sequence with 1
as an upper bound and have a limit s which is the smaller root of

(16) - s=1/(ks) , nz-ka-l, or s =2« 3 .

Similar arguments using (12) and (14) demonstrate the convergence of remaining
ay 5e To calculate these limits for j = 1, first take the limits as n - of

the first temms in (12) for i = 1:
linam_-l.a—l;

comparison of this with (16) makes



Mna, =8 .
Furthermere,

an :}_8:3 =

where  is defined as after (14). Elements of ¥~ calculsted along succes-
sive diagonals are displayed in Table 3, In the inverses computed in Table 1
it appears thet if the elements in the fundamental briangle of K_* are re-
placed by those of I ", the following may be said sbout differences between
corresponding elements: (1) they decrease as n increases, (2) they increase
rather rapidly away from the principal diagonal, (3) they increase rather
slowly along the prineipal diagonsl towards the cemter of the matrix; therefore,
for large n the matrix built up by symmetry and reversibility in this manner
fron the appropriste fundseental trimgle is a good approximation to i~ and
¢an be improved by using the formila

g - Gl
wiich is the first step of an iterative procedure described in (4, pe 120].
As & numerical exauple consider a 1 >< 8 rectangle with boundary values

we2, =9, aloteru=0.

The results cbtained by using elements of W' differ fron the exact values

5-1um_mmm.u¢mnmam The exact solu-
tion is u = xy.

3 The m >< n rectangle

In applying (5) to the case of m rows of points (m = 1, 2, ses] the
metrix ¥ in (2) is of order mn and is composed of m th order submatrices:
m i 's in the prinecipal diagonal, ~I 's in the immediately adjacent disgonals,



and O 's elsewhere, where I and O are n th order unit and zero matrices,
respectively; w* is a column matrix of n th order column submatrices
Bl’ az’ LE R Bm’ ﬂlm

oy e e, s

Bi has s 0, oi. 0, k [i - 2, 3, e ."1] »
Bn hﬂ .‘{. lz’ LR ] 1’ % » -

all reading downwards. The square matrix, which in this instance will be
callodlhn[n-l,z,...],hawern,mdwalwiammom;
1ms U35, M5, and IG5 ave exhibited in Table 5.

Results analogous to those in the preceding section are now presented,
Suppmlhnhmmmdthatkl’nicpaﬂitimd

_ R
R N N

where K is a row mabrix of submatrices: m~l O 's and -I at the exbreme
right. Let the submatrie slements of M- be Agg [4, 3= 1, 2, eooml, each of
n th order. Llnld&l_-jh,ﬂamappucatianotm first five steps of

(6) gives
ae) by =0 A = M,

whence it follows by Theorems 4 and 6 and mathematical induction that Ay is

o
o

a symverse and therefore Ay, = A = A for all m, Furthermore, if the sub-
(1) #

matric elements of the last row of lnal,n are designated &4-1,3 (3= 31,2, 00

m+l], they may be caleulated according to step 6 of (6) by the formula

(19) ﬁ(}z‘ipa-j = Ape1h,me1-j

because Ah{lo'i).,ml = A .4+ However, since li is a symverse,

(20) Aig = A1 = Apncs midg = Buelog,mer-s o
so that (19) becames
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(21) by *haa e MY ea by =230,
where, in accord with convention, i replaces j to designate the row,
To deteruine the other Ay; of I}, note that the equations for finding
the 1j th and ji th submatric elements in the product i ML can be written

(22) "1-1 L3R Ry 5 T 9y
(23) N o i PO T LT U
mmunh,pmvm&o-at’.ﬂ-tm -A‘.I’J-Bud

I ifi=]
0 irdigfy°

%3
Substitution of (20) into (23) yields
(2) Ay g MAsghy ga = 9y

elimination of MA,, from (22) and (24) gives the analog of (13); finally,
induction is applied to this and the analog of (12)

(25) hag = N4 190 (1=1,2, eeo m]
to produce ,
(26) Ay = Ha 108

the summation running over r as described after (14)., In summary, to calculate
s

1) Use the methods of Section 2 to calculate W

2) Use (18) to find the .ppwpa-:i.at- A, which is the leading

mhmtricclﬂmtink

27) 3) use (21) to find the remaining A,
4) Use (26) to determine all the other Aj; in the fundamental

triangle of symmetric elements
Several theorems are now proved:
Theorem 8: 'h‘lj“ﬁd'h (£, 3%, 2, caampn™l, 2 seel]s



Proof: The product u:lam has the 1j th submatric element given by

(28) Ay g2y g = 0y s

with the same notation as in (23), The theorem follows immediately on com-
parison of (2,) and (28).

Theoren 9: If (1) A and B are symetric matrices and (2) AB = BA, then
AB is symmetric.

Proof: Let A', B', (AB)' be the respective transposes of A, B, (AB);
then (AB)! = B'A' = BA = AB,

Theorem 10: Ayy is a symverse by application of Theoreus 8, 9, 7, 6 and
equations (18), (25), (26). Consequently, it is necessary to compute only the
elements in the Mtwodca&lm.

Theorem L1t Aphyyy = Apyyhy 2y By var) «
Proof: Pre- and postoultiplication of the second equation in (18) by

Oln-‘.) yield
KA1 Ahney = In
At At = In *
respectively, By the definition of A ., and Theoren 8 the first terms in each

of these = emations are identical; hence, the theorem,
Iheorem 12: The corresponding elements in A iacrease monotonically with

Proof: The difference between successive temms in the sequence (17) may
be written

Amedoty = A (AL)-(AA 0 D00
= (g A dhrl~(Ay A AT
i ‘-01‘:@":1-1)



= Apea ALOL A )-00-4,)]

= Apa Ay )
According to the statement preceding (15) A has only positive elements;
hence themtﬂxlh’l-jiemtm all positive elements if and only if
Ah, o does also, To complete the induction note that

gy = byt ) = byl (ot M = Ayl (T oy Dy ) = At
has positive elements,

Since each element in A 1s never more than 1 for any m, it follows by
Theorem 12 that corresponding elements have limits and that the limit matrix
is a solution of I

Se %“3)-1 3
which upon postmultiplication by '(rgs) and rearrangement becomes
32-% » "'In .
The left side could be written as a perfect sguare thus:
s /2 8/200 k= K/irL,
(29) 8(s-4,/2)- (4, /2) (53, /2) = OL-i1)/h ,
(s/2)" = LT )/h ,
prﬂichd%'%s, but this is true by Theoreém 8 and the convergence of &
to 83 consequently, from (29),

S= %‘#2)/2 s

Q = KA,
is an n th order matrix having, for m > 3, l4's in the principal diagonal
with the exception of the two corner elements which are 13's, -8's in the
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two immediately adjacent diagonals, 1's in the two next diagonals, and O's
elsewhere. The steps for the determination of qt/ 2 vy using Sylvester's
theorem are sketched below (for the application of the theorem to fractional
exponents see [4, pe 8l]:
1) caleulate the characteristic roots x 0fQ [r=1,2, «eo n]
2) For each x, form the product F, of all matrices deh'Qa

(j # r]l« This can be expanded into a matric polynomial of
dugr«n—linqn;thuitisnmsmmmmlatepmm

of Q |
(30) 3) mofmthownrotmmmxj-xrufr]
e Form the matrices Z, = F,/A, [r=1, 2, ¢ee 0]

5) M%ja.-ng?!r, the summation rumning from 1 te n; the
sign * before each term must be determined in such a way
that S has elements all less than 1.

~

The appropriate square root of Q, and the Mtntrixl&msivmhhbh
6. In general submatric elements “‘lun are expressible as sums of powers of
8 in the same mamner that the a4 are caleulated in (17); consequently, once
S is known, agmdappmﬁnatimtoﬁfor large m can be obtained by multi-
plication and addition of n th order matrices,

4 The relaxation method

Recall that the elements in the first colum of M  are the solutions of

(2) when u* has 1 for its first element and O's elsewhere, so that the problem
of solving (2) is equivalent to solving the Laplace boundary value problem
where the sum of the values of u at the boundary points neer the upper left
corner interior point of the rectangle is 1 and all otker boundary values

are O, The relaxation procedure, which is used to solve this problem, is
described in [2] and [5]; an interesting geametric interpretation is given

in [6]. Pirstmunaﬁotvﬂuuupf,p-l, 2, ses mn], numbered as in
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Section 1, and substitute them into the left side of (5); generslly instead of
being O this will equal some residual Hp. Egquations for the interior points
Pp and the surrounding normal neighbors Pﬂ, PP-"’-’ PH, Ppm, some of which
may be boundary points, are

(31) Bp = ™1 i pen

(32) B T s, W Y
and three others for u .., ¥, pon® In menb,‘oxtnmbme to
reduce it to O by adding —Ip to both sides of (31); this can be accomplished
by adding -RP/A to u,» not only in (31) but also in (32) and the three other
equations; then to balance (32), ete., ap/t. must be subtracted from R,
Roy1s  Boys Byyye Usually it is best not to reduce R, to O becsuse the
surrounding residuals are thereby increased in absolute value, Therefore, an
arbitpaw positive or negative number q is added which reduces the left side
of (31) to almost zero, so that (31) and (32) ete. become

Bp + 4= Algra/b)
Rpa=a/h = hg = o= (upea/b)=up ) o ton

and three other equations, The procedure is outlined as follows:

1) Guess a set of values
2) Galmlatolbﬁu(ﬂ) forp*ltakoup_l*%_n-l
i‘orp*lm_[k~1,2,...l]t¢eur1-0
forp=kn+1[k=1, 2, ...a—l]takenp_l-o
(33) for p<1, p>n take u, = 0
3) Atapointnhmapulargma addqt.olp,addq/hta
“pomnp_la%.la%_nanpmm”?dk

(boundary values are not to be used)
L) Continue repeating (3) until every R, is less than a pre-
scribed value
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This method is now used to deteruine the first columns of inverse nstrices
for certain sguare boundaries up bo 15 >< 15, The up in these aquares ave
symzebriec with respect to the diagomal of tbe cquare which runs from the upper

left to the lowsr right cornery i.e., 1;:. i, 3= 1, 2, ees nle

] )nm
Consequently, the residual at & noncornecr d:t.agox:tal point is

Hat)net ™ a0t (1 usdan ™ (iml Jovi 2

while, for the corner points,

By = le2u -y, Bon = Ry, [xn ‘==,2'} .

In applying sbep 3 of (33) to ayy LI Jjust below the diggonmal, the residuals

R

nejsy 20 the diagonel points must be diminished by 29/hs In

B3 )mei?
guesging take values somowhal greater than 'CJIOaG ot corresponding points in
smaller squares for which the problem has already ”s:«eeﬂ,wlved and £ill the
remaining rows with quantities o that the up decreases in any column bov ward
the botlom, These velues, written ocubt only to threc decimal places, are
relaxed so that the absolute value of Rp never exceeds 2 in the third place;
then a fourth figure is guessed and the above repeated, etc. Various stages
of this prosess for the 10 > 10 rectangle are shown in Table 7, and Table
8 c-entains solubions for several n ><X n squares [m = 1 s 2, 3, 4, T, 10, 15}
Finally, {26) is used to caleulste the other elements for the 15 >< 15 case
and the Dudanentel triangles of the {irst submetrie columm in the corresponds
ing 225 >< 225 matrix are exhibited in Table 9. If this approxinsting matrix
is called Mz;fﬁ 15 then

Mow p = Lﬁ{l (2h=ily o - Wk L)

15 15~ 15 15 “15 1595 15

is an improvenent.
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5 Iwbensions

4 few types of equations to uhich the chove method may be applied arc

now described. %he solubtion of Polsson's eguation
(3k) u = a{x,y)

is equivalent to solving Laplace's esquabtion with aliered bousdary copditions,

sinee the difference equation corresponding to (34) for a nebuork of scuares

(h = k) is
Ia{se,y J=ufah y )=ulx,yeh a5 )=al,yh) = g(x,y)0",

which differs from (2) only in having the 1 th element of w* incressed by
21 7 g e 1 .
g;h", vhere g, is the value of p{x,y) at P g LA=1, 2, oo mal.

The nmabrix fop the bihsrmonie ecuation

EN

iy

1 R U
KANK | RKYY YV
in the case of an m > n rectangle iz of mn th order and conbains n th order
submabrie clements L in the prineipel dlagoncl, F in the imsedictely adja~
4 &

cert diagomals, I in the next two disgonals, and § elscubere, vhere L has

2

20's in the prineipal diegonal, -8%s in the adjacent disconals, 1's ian the
& X ? &
next diegonals, and O's elsewhere, while ¥ has —8%s la the principal diago-
253 N

asl, 2's in the adjacent dispgonals, and O'c elsewbere.
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For n > 4 only fundamental triangles are shown
Decimal points and nonsignificant zeros are omitted from last columns
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Table 2
Leading elements and mummerators for 1 >< n rectangles
55776
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Table 3

gome elements of the limit matrix M

Column 1
26794 91924
TL79% 76971
19237 88646

51547 76140
13812 18104
37009 62755
99166 99813
26571 T1L706
71198 70027
19077 63451
51118 36760
13697 12532

36728 13160

98412 73201
26369 61206
T0657 16255
18932 52964
50729 56027

Column 6

28867 50591

77350 25858
20725 93934
55534 98708

14880 55521
39872 32753
10683 76064

28627 05033

Column 2

28718 70789
76951 54,585

20619 10456
55248 72416
14803 85102

39666 79926
10628 68683
28479 48051

Column 7

28867 51318
77350 26842
20725 94198
5553k 99415

1,880 55710
39872 33260

Column 3

28856 82970

77321 64213
20718 27156
55514 hA133

14875 04972
39857 57561
10679 80519

28616 45176

Column &

28867 51344
77350 26912

20725 94217
55534 99466

Columm 4

28866 TLOLO
20725 39143
55533 51896

16156
39871 27274

10683 47801
28626 29303

Column 9

28867 51346
77350 26918
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Column 5

28867 45839
77350 12161

20725 90261
55534 88867
14880 52884

39872 25687
10683 74170
28626 99960

#*Bach figure in second column indicates mumber of zeros between decimal
point and first digit of elements read along appropriate diagonal



91924

L7761

12181
00963
91670

26794
779
1923

515
138
37
9

2 65717

7L79

67697 28718
78864

7695
2061
552
148

39
9

Table 4

Approximation to l;l by l;l

67697
70789
154,58
91046

48724

03851
66680
91670

fl

1923
7695
28856
7132

2071
555
8

/4

78864,
15458
82970
16421
82716
Lkl
038

00963

515
2061
7732

28866
134
2071

552
138

&Jythaﬁntfmeohmso!flmahmhon

Decimal points and nonsignificant zeros are omitted from M

u

1.00005 69579
2.00004 98388
3.0000) 27189
4.00003 55985

5400002 84779
6400002 13566
7.00001 42385
8400000 71176

-1



co co ob br co o by o L

Table 5
Inverses for m >< n rectangles

- i (et iCE (5 costants)
X &b 5 16 16 8 29333 8333
A B y 16 5% 8 16 8333 29333
0 4<-1 192 1 8 5 16 8333 K167
5 8 16 16 56 1167 8333
-3 72 208 29482 8613
A 208 72 8613 29482
0 4-1 225 120 780 255 9317 L4969 32298 10559
-1 3&3‘ 120 225 255 T80  L969 9317 10559 32298
0 68 47 2816 1946
) 47 68 1946 2816
-1 8948 2623 49256 8655
4 2623 8948 8655 29256
0 4 -1 286, 1544 9912 3312 945l 5095 32707 10929
A -l kb gy 1544 28643312 9912 5095 5L 10929 32707
0 A4 O 964 689 3167 1792 3181 2274 10450 5913
0 0 «1 689 964 1792 3167 2274 3181 5913 10450
0 303 248 1000 418
0 248 303 818 1000
a0 67 55 29910 33036
A3 2 T 9821
g & 7 3125
0 0 4-1 0 ﬁ 22 Th 9821 33036
B4 Ak 1, 28 28 8 6250 12500 12500 37500
0-1 01 & 6 2679 L6k
0 0 = . 3125
0 0 6 10 - 2679 L6k
0 0 3 1339

(ool o) QOII-‘ C)"-'-P"

Decimal points and nonsignificant zeros are omitted from last columns



Table 6

The limit matrix Huz

- W -8
) o
n=2a L=
A1--16 52-16
-5 8 8 8
F- rn
1 g -8 BT

1/2 <1/2 - M2 A3
Z, = Z,
-1/2 1/2 1/2 1/2

‘é/z = R ity

S = 429533 9082 08662 6929
08662 6929 .29533 9082
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Table 7
Stages in approximating first column elements for 10 x 10 square

1 2 3 I 5 WS R S o
303
105 ‘ b
43 L 39
ol SR . b -
» ¥ 8 B
k g8 11 7 6 3
2 5 6 6 5 A -
1 3 A 5 3 1 0 0
0 1 1 2 2 r 8.9 B
0 0 1 1 1 S See AT Uh
3025
1050 750
425 b9 354
198 276 255 222
102 160 178 187 140
51 9 112 109 9% 68
1 56 & 69 0 W 25
a3 BN M g %N B % L
B 3. B U W B 3 A 3
3 &6 1 3 9 8 F R
30230
10461 7419
4193 4377 3355
1934 2539 2333 1864
1003 1511 1573 1395 1134
568 928 1051 1006 872 707
339 582 698 705 641 541 427
205 363 452 474k K46 387 312 232
118 213 271 291 280 248 203 153 102
5, 99 127 138 135 121 100 76 51 26

Decimal points and nonsignificant zeros are omitted



Table 8

Relaxation approximations to first columns for n x n squares

10

25000

29333
8333

30105

3802
1333

30216
10432
4150
1875
925
464,
197

30233
10448
4202

1944
1015

579
347
209
120

53

4167

6250
2679

6938
3665
1530

7362
4292
2425
1363
735
32

7433
4395
2561
1534

98
597
370

214
99

1339

T

46
275
129

1039
730
L90
300
1,2

911
670
467
294
143

178

Thl
570
410
265
129

89

451
333 250

e %

Decimal points and nonsignificant zeros are omitied
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Table 9
First column of submatric elements for 15 x 15 square

30240
10480 34467
4227 12461 35561

1981 5321 13075 3595

1094 2595 5705 13331 36121

6L, 1478 2851 5881 13468 36227

38, 870 1654 2988 5987 13548 36283

256 560 1007 1760 3068 6043 135% 36303 Ay,
1% 393 666 1087 1816 3116 6063

137 282 413 722 13

106 217 338 521 h2
80 162 265 358
56 128 182

43 76
20
10480
Th55 14909

2643 6017 11102 17157
1588 3647 6677 11566 17503

00, 2248 A1 7023 11831 17709

660 1468 2594 4376 7229 11988 17620

46l 1006 1733 2800 4533 73LO 12065 17860 A,
346 729 1212 1890 2911 4610 7380

265 552 886 1323 1967 2951

206 k22 663 963 1363
157 317 499 703
i 5 234 357

165% 3557 5878 8608 10575

150 %87 199 638 896 10870

;ML m A AN Ko 1Ee g
A M0 1% MW N ioa b
368 1769 2495 3485

295 602 938 1345 1829

I3 233



IS5EE BEEER

735

3605
7
3556

Table 9

(continued)

7700
5947
4727

5729
5063

3485

7928
7370 8006 A
6025 W
6157

e s

7 4905
5291 h61



33

856

237

391

151
74

256
622

696
667
618
563
462
370

25

70
176
470
542
572

1151

598

Table 9

(continued)

2692

P38l

1773

£ EENES R

3702
373%
3550
3225

2793

3134
3021

2469

2556
2622
2579
2173

393k

3885 4008
3621,

3277
3275 3347

2 a9
2643
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£eE5R BEAEE R8Bbe »BERY BEUIEE SN8ER oR5RK EOREER SE%

SIEE BERR

691

576
463
350

BEeE SSUEB ESNE B

&E

636
650

IRE
8 SEFBE 88%

523
467

402
335

982
1313

1349
1159
1038
867
694

r
83

1650

1636
1520
1335
1156

Table 9

(continued)

199
1961

1638
1395

1695
1641
1555
1376
1172

1330
117

1316

952

1801
1847
1850
1747
1609

1,97

1550
L1434

- 1364

2317
23k4 2377
2240

1956
1953 2010
1904

1630
1591 167¢

10,1

g

f22



173
228

247

215
199
176

)
2888

ERUEY 2232 33858 BuFel ERERS S8Bas v

339
475

ERE

3

BEES

BRE

as3BB B8E

el

$8 23ERR BS

265

276
285

255

Table 9

(continued)

918
977 1073

1017 1110
999 1125
952 1075
847 989
731
602
667 708
660 758
681 736
615 738
564 643
490
296
325 350
30 35
333 367
307 361
283 322
214y

170

1

1218

402

M3

hsa
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