MATRIX-RELAXATION METHODS IN THE SOLUTION OF BOUNDARY-VALUE PROBLEMS ### MATRIX-RELAXATION METHODS IN THE SOLUTION OF BOUNDARY-VALUE PROBLEMS By ROBERT R. REYNOLDS Bachelor of Education Chicago Teachers College Chicago, Illinois 1942 Submitted to the Department of Mathematics Oklahoma Agricultural and Mechanical College In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE 1948 APPROVED BY: Off familton Chairman, Thesis Committee Herman H. Smith Member of the Thesis Committee Head of the Department Dean of the Graduate School #### Preface At the inception of Project No. 21 of the Research Foundation at Oklahoma A. and M. College, Dr. Alvin C. Sugar began the preparation of an atlas of inverse matrices which could be used to solve the Dirichlet problem. This paper embodies the results of that investigation, which may be extended to examine allied problems that are suggested. The fundamental theory for the simple cases has been worked out in great detail with the hope that some clue may become apparent for generalizing more complicated cases. The bibliography, deliberately inextensive, is basic. References to it throughout the text are indicated by bracketed numerals and page numbers. The paper does not represent all that has been and is being done on the project; as a matter of fact, an approach to the problem is being made at present through the use of integral equations and variation principles. R. R. R. July, 1947 Stillwater, Okla. Matrix-relaxation Methods in the Solution of Boundary-value Problems #### 1 Introduction The principal result of this paper is the development of certain numerical methods of solving the Dirichlet problem for a long rectangular domain. Less general results are obtained for squares and other rectangular boundaries, and there is included a sketch of how the methods may be extended to equations other than Laplace's. The problem is formulated as follows: The set of lines x = h, x = 2h, ... x = nh intersects the set y = k, y = 2k, ... y = mk in an interior points on a cartesian coordinate system for all integral m and n. Beginning at (x,y) = (h,mk), number these points P_i serially from left to right in each row and count off the rows consecutively from top to bottom so that (x,y) will be designated $P_{(m-y/k)n+x/h}$. The pairs of boundary lines y = (m+1)k, y = 0, and x = 0, x = (n+1)h, which constitute the boundary, intersect this configuration in 2(m+n) boundary points (x,(m+1)k), (x,0) [x = h, 2h, ... hh] and (0,y), ((n+1)h,y) [y = mk, (m-1)k, ... k], which are named, respectively, $P_{x/h}^1$, $P_{x/h}^2$, and $P_{m+1-y/k}^3$. Now suppose a function u = u(x,y), defined at every point of this net, to have the value u_i at P_i and u_j^1 at P_j^1 [i = 1, 2, ... mn; and the superscript j = 1, 2, 3, 4]. The Dirichlet problem seeks the u_i when (1) the u_j^1 are known and (2) u(x,y) satisfies Laplace's equation in two dimensions $$u_{xx}+u_{yy}=0.$$ It is possible, in a manner to be described presently, to replace (1) by the linear algebraic system of difference equations where M is a nonsingular square matrix of constants, and u and u* are column matrices containing u_i and linear combinations of u_i^j , respectively [i = 1, 2, ... mn; j = 1, 2, 3, 4]. Then for a given rectangular boundary, as m and n increase without bound, h and k approach zero and the solutions of (2) converge to those of (1), subject to the given boundary conditions. A proof of this is given in [1]. The solution $$u = M^{-1}u^*$$ of the matrix equation (2) requires (1) the inversion of M and (2) the multiplication of M⁻¹ by the column matrix u*. Once M⁻¹ is known, each u_i can be computed by adding mm pairs of products of numbers. Thus it appears that tabulation of inverses of M for areas divided into a large number of rectangles would facilitate the complete solution of many numerically difficult engineering problems. ## 2 The 1 × n rectangle Equation(1) is reduced in [7, p. 163] and [5, p. 20] to the difference equation (4) u(x+h,y)+u(x,y+h)+u(x-h,y)+u(x,y-h)-4u(x,y) = 0, which is a simplification of (5) $$\frac{u(x+h,y)+u(x-h,y)-2u(x,y)}{h^2} + \frac{u(x,y+k)+u(x,y-k)-2u(x,y)}{k^2} = 0$$ in the case where the rectangle is subdivided into squares so that h = k. Now suppose m = 1; then in (2) M has 4's in the principal diagonal, -1's in the immediately adjacent diagonals, and 0's elsewhere, while u has u_1 , u_2 , ... u_n , and u^* has $u_1^1 + u_1^2 + u_1^3$, $u_2^1 + u_2^2$, ... $u_{n-1}^1 + u_{n-1}^2$, $u_n^1 + u_n^2 + u_n^4$, reading downward in both cases. The square matrix, which in this instance (m = 1) will be called M_n , is not only symmetric but also has the <u>reversibility</u> property that the elements of the i th row [j th column] read forward [downward] are the same as those of the (n+l-i)th row [(n+l-j)th column] read backward [upward]. More precisely, if J is a square matrix with l's in the secondary diagonal and 0's elsewhere, and if M = JMJ, then M is called a reversible matrix. The theorems below follow from the Lemma: $J^2 = I$, where I is the unit matrix of the same order as J; for if the elements of J are d_{ij} [i, j = 1, 2, ... n], then $d_{ij} = d_{i,n+1-j} = d_{n+1-i,j}$, where is used throughout for the Kronecker delta. Now if $J^2 = C$ and the elements of C are c_{ij} , then $c_{ij} = E \ d_{ik} d_{ij}$, where the summation runs from k = 1 to n. The only nonzero elements are those of the form $d_{i,n+1-i} d_{n+1-j,j}$; hence n+1-i = n+1-j, or i = j. Therefore, $c_{ij} = d_{ij}$, so that C = I. Theorem 1: $J^{-1} = J$. Theorem 2: A reversible matrix is not necessarily symmetric; e.g., if b \neq d, abed. Theorem 3: A symmetric matrix is not necessarily reversible; e.g., if $a \neq d$, ab bd. Theorem 4: The inverse of a reversible matrix is reversible; for suppose M = JMJ, then $M^{-1} = J^{-1}M^{-1}J^{-1} = JM^{-1}J$. Theorem 5: If M is reversible, then JM = MJ; for suppose M = JMJ, then JM = JJMJ = IMJ = MJ. Theorem 6: The sum or difference of two reversible matrices is reversible; for suppose M = JMJ and N = JNJ, then M+N = JMJ+JNJ = (JM+JN)J = J(M+N)J. Theorem 7: The product of two reversible matrices is reversible; for suppose M = JMJ and N = JNJ, then MN = JMJJNJ = JMINJ = JMNJ. Definition: A symmetric, reversible matrix is called a symverse. Since M_n is a symverse, so also is M_n^{-1} ; thus it is necessary to compute only those elements in the <u>fundamental triangle</u>, which is that part of M_n^{-1} to the left of and including the left halves of the principal and secondary diagonals. These inverses are calculated exactly and to five decimal places in Table 1 up to n=7. It is possible to determine any element in M_n^{-1} once the element a_n in the first row and first column is known. Moreover, a_{n+1} can be expressed in terms of a_n . Furthermore, it will be shown that each of the elements approaches a limiting value as n increases without bound. Let a symmetric matrix be partitioned where a and d are square, symmetric, and nonsingular, but c and hence its transpose c' may be rectangular. Then its inverse $$M^{-1} = \begin{array}{cc} A & C^{\bullet} \\ C & D \end{array},$$ whose submatrices are of the same order as similarly placed quantities in M, is worked out according to the following steps, which are adapted from [4, p. 112, ff.]: - 1) Compute a-1 - (6) 2) Premultiply 1) by c: ca-1 - 3) Postmiltiply 2) by c': ca-lc' - 4) Subtract 3) from d: d-ca-1c. - 5) Invert 4): D = (d-ca-1c*)-1 - 6) Premultiply 2) by the negative of 5): C = -Dca-1 - 7) Premultiply 6) by c': c'C - 8) Subtract 7) from the unit matrix I: I-c'C - 9) Premultiply 8) by 1): A = a-1(I-e'C) The submatrices A, C, D are thus determined from 9), 6), 5). Suppose Mn is known and that Mn+1 is partitioned $$M_{n+1} = M_n K',$$ where K is a row matrix with n-l 0's and having -l as the rightmost element. Then, since the element in the n th row and the n the column of $M_{\rm n}^{-1}$ is equal to a_n (because $M_{\rm n}$ is reversible), it follows after applying the first five steps of (6) that (7) $$a_{n+1} = 1/(4-a_n)$$. Since $a_1 = 1/4$, subsequent a_n are rational fractions; thus if $a_n = N_n/D_n$, where N_n and d_n are relatively prime integers, (7) is equivalent to $$N_{n+1} = D_n$$, $D_{n+1} = 4D_n - N_n$. Combination of these yields the relations (8) $$N_1 = 1$$, $N_2 = 4$, $N_{n+1} = 4N_n - N_{n-1}$ $[n = 3, 4, ...]$. The values of N_n and ten-place approximations of a_n are entered in Table 2. An enlargement of this table gives the leading element in M_n^{-1} for any n. Now, in order to determine the other elements of the fundamental triangle, designate the elements of M_n^{-1} by a_{ij} and those of M_n by b_{ij} ; then, since $M_n^{-1}M_n = M_nM_n^{-1} = I_n$ (the unit matrix of order n), the n^2 equations (9) $$\sum_{i,k} a_{ik} b_{ij} = \delta_{ij}$$ [i, j = 1, 2, ... n], hold, the summation running from k = 1 to n. From the definition of M, thus for i, j = 1, 2, ... n, (9) may be written provided that (11) $$a_{i0} = a_{i,n+1} = a_{0j} = a_{n+1,j} = 0$$. Elements of the first column are determined from the equations (12) $$a_{11} = a_n$$, $a_{i+1,1} = 4a_{i1} - a_{i-1,1} - a_{i1}$ [i = 1, 2, ... n-1]. Now since a_{il} can be written $a_{il} = N^{(i)}/D_n$, where $N^{(i)}$ is an integer, it follows that $N^{(i)}$ satisfies a difference equation $$N^{(i+1)} = 4N^{(i)}-N^{(i-1)}, N^{(1)} = N_{n}$$ similar to that for N_n ; however, the sequence $N^{(i)}$ decreases from N_n to 1 while assuming the same values as N_i in reverse order. To determine the remaining elements, first eliminate a from (10): An induction shows that (14) $$a_{ij} = \sum_{i=(j-1)}^{i+(j-1)} a_{rl}$$, the summation running over either odd or even integers r, not both, since $$\Sigma_{i-j}^{i+j} = \Sigma_{i-j}^{i+j-2} + \Sigma_{i-j+2}^{i+j} - \Sigma_{i-j+2}^{i+j-2}$$ and (14) holds for j = 1, 2. After applying (7) and (12), it is most expedi- tious to calculate first the elements along the principal diagonal, then those along the diagonal just below, etc.; work toward the center of the matrix. This solves completely the problem of inverting the matrix for the 1 × n rectangle. It will now be shown that as $n \to \infty$, corresponding elements of \mathbb{N}_n^{-1} have limiting values; the infinite matrix \mathbb{N}_∞^{-1} with these limiting elements is accordingly called the <u>limit matrix</u> of \mathbb{N}_n^{-1} . This is accomplished by proving (1) all the a_{ij} are bounded for any n and (2) corresponding a_{ij} form a monotone sequence. Suppose in (3) that u^* has 1 in the j th row and 0's elsewhere, then if $\mathbb{N} = [a_{ij}]$, $u_i = a_{ij}$ [i,j = 1, 2, ... n]; thus any a_{ij} is actually a solution of (2) for a particular set of boundary values; viz., 1 at some point and 0 at all other boundary points. Since by (5) u(x,y) is the average of values of u at the four neighboring points (x+h,y), (x-h,y), (x,y+h), (x,y-h), it follows as shown in [3, p. 735] that u attains its maximum and minimum on the boundary; hence, all the a_{ij} lie between 0 and 1 for any n. In (7) therefore $k-a_n > 0$ so that the difference (15) $$a_{n+1}-a_n = (a_n-a_{n-1})/(4-a_n)(4-a_{n-1})$$ is positive if $a_n-a_{n-1} > 0$. Since $a_2-a_1 = 4/15-1/4 = 1/60 > 0$, it follows by induction from (15) that the a_n form a monotone nondecreasing sequence with 1 as an upper bound and have a limit s which is the smaller root of (16) $$s = 1/(4-s)$$, $s^2 = 4s-1$, or $s = 2-\sqrt{3}$. Similar arguments using (12) and (14) demonstrate the convergence of remaining a_{ij} . To calculate these limits for j=1, first take the limits as $n\to\infty$ of the first terms in (12) for i=1: $$\lim_{21} = 4s-1$$; comparison of this with (16) makes Furthermore, (17) $$\lim_{a_{ij}} a_{ij} = \sum_{i-(j-1)}^{i+(j-1)} s^{r},$$ where Σ is defined as after (14). Elements of \mathbb{N}_{∞}^{-1} calculated along successive diagonals are displayed in Table 3. In the inverses computed in Table 1 it appears that if the elements in the fundamental triangle of \mathbb{N}_{n}^{-1} are replaced by those of \mathbb{N}_{∞}^{-1} , the following may be said about differences between corresponding elements: (1) they decrease as n increases, (2) they increase rather rapidly away from the principal diagonal, (3) they increase rather slowly along the principal diagonal towards the center of the matrix; therefore, for large n the matrix built up by symmetry and reversibility in this manner from the appropriate fundamental triangle is a good approximation to \mathbb{N}_{n}^{-1} and can be improved by using the formula $$M_n^{-1} = M_n^{-1}(21-M_nM_n^{-1})$$, which is the first step of an iterative procedure described in [4, p. 120]. As a numerical example consider a 1×8 rectangle with boundary values $$u_{i}^{1} = 2i$$, $u_{1}^{4} = 9$, all other $u_{i}^{j} = 0$. The results obtained by using elements of M_{co}^{-1} differ from the exact values $u_1 = i$ in the fifth decimal place, as attested in Table 4. The exact solution is u = xy. # 3 The m × n rectangle In applying (5) to the case of m rows of points [m = 1, 2, ...] the matrix M in (2) is of order mm and is composed of m th order submatrices: m \mathbb{N}_n 's in the principal diagonal, $-\mathbb{I}_n$'s in the immediately adjacent diagonals, and $\mathbf{0}_n$'s elsewhere, where \mathbf{I}_n and $\mathbf{0}_n$ are n th order unit and zero matrices, respectively; u* is a column matrix of n th order column submatrices $\mathbf{U}_1, \, \mathbf{U}_2, \, \dots \, \mathbf{U}_m$, where $$\begin{array}{c} U_1 \text{ has } u_1^1 + u_1^3, \ u_2^1, \ \dots \ u_{n-1}^1, \ u_n^1 + u_1^4 \ , \\ U_i \text{ has } u_i, \ 0, \ \dots \ 0, \ u_i^4 & \quad [i = 2, 3, \ \dots \ m-1] \ , \\ U_m \text{ has } u_1^2 + u_m^3, \ u_2^2, \ \dots \ u_{n-1}^2, \ u_n^2 + u_m^4 \ , \end{array}$$ all reading downwards. The square matrix, which in this instance will be called M_{mn} [n = 1, 2, ...], is a symverse, and so also is its inverse; M_{23}^{-1} , M_{2h}^{-1} , and M_{33}^{-1} are exhibited in Table 5. Results analogous to those in the preceding section are now presented. Suppose M is known and that M is partitioned where K_n is a row matrix of submatrices: m-l O_n 's and $-I_n$ at the extreme right. Let the submatric elements of M_{mn}^{-1} be A_{ij} [i, j = 1, 2, ...m], each of n th order. Also let $A_{mm} = A_m$, then application of the first five steps of (6) gives (18) $$A_1 = M_n^{-1}, \quad A_{m+1} = (M_n - A_m)^{-1},$$ whence it follows by Theorems 4 and 6 and mathematical induction that A_{m+1} is a symverse and therefore $A_{11} = A_{mm} = A_m$ for all m. Furthermore, if the submatric elements of the last row of $M_{m+1,n}$ are designated $A_{m+1,j}^{(1)}$ [j = 1,2, ... m+1], they may be calculated according to step 6 of (6) by the formula (19) $$A_{m+1,m+2-j}^{(1)} = A_{m+1}A_{m,m+1-j},$$ because A(1) = Am+1. However, since M-1 is a symverse, so that (19) becomes (21) $$A_{11} = A_{m+1}$$, $A_{i1}^{(1)} = A_{m+1}A_{i1}$ [i = 2, 3, ...], where, in accord with convention, i replaces j to designate the row. To determine the other A_{ij} of M_{mn}^{-1} , note that the equations for finding the ij th and ji th submatric elements in the product $M_{mn}M_{mn}^{-1}$ can be written (22) $$-A_{i-1,j} + M_{n} A_{ij} - A_{i+1,j} = \partial_{ij}$$ $$-A_{j-1,i} + M_{n} A_{ji} - A_{j+1,i} = \partial_{ji}$$ (23) $$\partial_{ij} = \int_{n}^{\infty} \inf i = j$$ $\int_{n}^{\infty} \inf i \neq j$ Substitution of (20) into (23) yields (24) $$-A_{i,j-1} + M_{n}A_{i,j} - A_{i,j+1} = o_{i,j};$$ elimination of MnA; from (22) and (24) gives the analog of (13); finally, induction is applied to this and the analog of (12) (25) $$A_{i+1,1} = M_n A_{i-1,1} - A_{i-1,$$ to produce (26) $$A_{ij} = \Sigma_{i-(j-1)}^{i+(j-1)} A_{rl},$$ the summation running over r as described after (14). In summary, to calculate M_{mn}^{-1} : - 1) Use the methods of Section 2 to calculate Mn - 2) Use (18) to find the appropriate A_m, which is the leading submatric element in M_{mn}⁻¹ - (27) 3) Use (21) to find the remaining Ail - 4) Use (26) to determine all the other A_{ij} in the fundamental triangle of symmetric elements Several theorems are now proved: Theorem 8: $$M_{n}A_{ij} = A_{ij}M_{n}$$ [i, j = 1, 2, ... m; n = 1, 2, ...]. Proof: The product M_Mm has the ij th submatric element given by (28) $$-A_{i,j-1}+A_{i,j}M_n-A_{i,j+1}=o_{i,j}$$ with the same notation as in (23). The theorem follows immediately on comparison of (24) and (28). Theorem 9: If (1) A and B are symmetric matrices and (2) AB = BA, then AB is symmetric. Proof: Let A', B', (AB)' be the respective transposes of A, B, (AB); then (AB)' = B'A' = BA = AB. Theorem 10: A_{ij} is a symverse by application of Theorems 8, 9, 7, 6 and equations (18), (25), (26). Consequently, it is necessary to compute only the elements in the fundamental triangle of each A_{ij} . Theorem 11: $$A_{m}A_{m+1} = A_{m+1}A_{m}$$ [m = 1, 2, ...]. Proof: Pre- and postmultiplication of the second equation in (18) by (M_n-A_m) yield $$M_{n}^{A}_{m+1}^{-A}_{m}^{-A}_{m+1}^{-A} = I_{n}$$ $A_{m+1}^{M}_{n}^{-A}_{m+1}^{-A}_{m} = I_{n}$ respectively. By the definition of Am+1 and Theorem 8 the first terms in each of these equations are identical; hence, the theorem. Theorem 12: The corresponding elements in A_{m} increase monotonically with m_{\bullet} Proof: The difference between successive terms in the sequence (17) may be written $$A_{m+1-A_{m}} = A_{m+1}(A_{m}A_{m}-1)-(A_{m}A_{m+1})A_{m+1}^{-1}$$ $$= (A_{m+1}A_{m})A_{m}1-(A_{m+1}A_{m})A_{m+1}^{-1}$$ $$= A_{m+1}A_{m}(A_{m}^{-1}-A_{m+1}^{-1})$$ = $$A_{m+1}A_{m}[(M_{n}-A_{m-1})-(M_{n}-A_{m})]$$ = $A_{m+1}A_{m}(A_{m}-A_{m-1})$. According to the statement preceding (15) A_m has only positive elements; hence the matrix A_{m+1} - A_m contains all positive elements if and only if A_m - A_{m-1} does also. To complete the induction note that $$A_2 - A_1 = A_2(I_n - A_2^{-1}A_1) = A_2[I_n - (M_n - A_1)A_1] = A_2[I_n - (A_1^{-1} - A_1)A_1] = A_2A_1^2$$ has positive elements. Since each element in Am is never more than 1 for any m, it follows by Theorem 12 that corresponding elements have limits and that the limit matrix is a solution of $$s = (M_n - s)^{-1}$$. which upon postmultiplication by (M -S) and rearrangement becomes $$s^2 - sM_n = -I_n .$$ The left side could be written as a perfect square thus: $$s^{2}-su_{n}/2-u_{n}s/2+u_{n}^{2}/4 = u_{n}^{2}/4-I_{n},$$ (29) $$s(s-u_{n}/2)-(u_{n}/2)(s-u_{n}/2) = (u_{n}^{2}-4I_{n})/4,$$ $$(s-u_{n}/2)^{2} = (u_{n}^{2}-4I_{n})/4,$$ provided $SM_n = M_n S$, but this is true by Theorem 8 and the convergence of A_m to S; consequently, from (29), $$S = (M_n - Q_n^{1/2})/2$$, where is an n th order matrix having, for n > 3, l4's in the principal diagonal with the exception of the two corner elements which are l3's, -8's in the two immediately adjacent diagonals, 1's in the two next diagonals, and 0's elsewhere. The steps for the determination of $Q_n^{1/2}$ by using Sylvester's theorem are sketched below (for the application of the theorem to fractional exponents see [4, p. 81]: - 1) Calculate the characteristic roots x_r of Q_n [r = 1, 2, ... n] - 2) For each x_r form the product F_r of all matrices x_jI_n-Q_n [j ≠ r]. This can be expanded into a matric polynomial of degree n-l in Q_n; thus it is necessary to calculate powers of Q_n - (30) 3) Also form the product Δ_r of all numbers $x_i x_r$ [j $\neq r$] - 4) Form the matrices $Z_r = F_r/A_r$ [r = 1, 2, ... n] - 5) Then $q_n^{1/2} = \sum \pm x_r^{1/2} Z_r$, the summation running from 1 to n; the sign \pm before each term must be determined in such a way that S has elements all less than 1. The appropriate square root of Q₂ and the limit matrix M₀₂ are given in Table 6. In general submatric elements of M_{0n} are expressible as sums of powers of S in the same manner that the a_{ij} are calculated in (17); consequently, once S is known, a good approximation to M_{nn} for large m can be obtained by multiplication and addition of n th order matrices. ## 4 The relaxation method Recall that the elements in the first column of M⁻¹ are the solutions of (2) when u* has 1 for its first element and 0's elsewhere, so that the problem of solving (2) is equivalent to solving the Laplace boundary value problem where the sum of the values of u at the boundary points near the upper left corner interior point of the rectangle is 1 and all other boundary values are 0. The relaxation procedure, which is used to solve this problem, is described in [2] and [5]; an interesting geometric interpretation is given in [6]. First guess a set of values u [p = 1, 2, ... mm], numbered as in Section 1, and substitute them into the left side of (5); generally instead of being 0 this will equal some <u>residual</u> R_p. Equations for the interior points P_p and the surrounding normal neighbors P_{p-1}, P_{p+1}, P_{p-n}, P_{p+n}, some of which may be boundary points, are (31) $$R_{p} = 4u_{p} - u_{p-1} - u_{p+1} - u_{p-n} - u_{p+n}$$ (32) $$R_{p-1} = 4u_{p-1} - u_{p-2} - u_{p-1-n} - u_{p-1+n}$$ and three others for u_{p+1} , u_{p-n} , u_{p+n} . In case $R_p \neq 0$ it is possible to reduce it to 0 by adding $-R_p$ to both sides of (31); this can be accomplished by adding $-R_p/4$ to u_p , not only in (31) but also in (32) and the three other equations; then to balance (32), etc., $-R_p/4$ must be subtracted from R_{p-1} , R_{p+1} , R_{p-n} , R_{p+n} . Usually it is best not to reduce R_p to 0 because the surrounding residuals are thereby increased in absolute value. Therefore, an arbitrary positive or negative number q is added which reduces the left side of (31) to almost zero, so that (31) and (32) etc. become $$R_{p} + q = 4(u_{p}+q/4)-u_{p-1}-u_{p+1}-u_{p-n}-u_{p+n}$$ $$R_{p-1}-q/4 = 4u_{p-1}-u_{p-2}-(u_{p}+q/4)-u_{p-1-n}-u_{p-1+n}$$ and three other equations. The procedure is outlined as follows: - 1) Guess a set of values up - 2) Calculate R_p from (31) for p = 1 take u_{p-1}+u_{p-n} = 1 for p = kn [k = 1, 2, ... m] take u_{p+1} = 0 for p = kn + 1 [k = 1, 2, ... m-1] take u_{p-1} = 0 - (33) for p < 1, p > n take u_p = 0 3) At a point where R_p is largest: add q to R_p, add q/4 to u_p, diminish R_{p-1}, R_{p+1}, R_{p-n}, R_{p+n} each by q/4 (boundary values are not to be used) - 4) Continue repeating (3) until every R_p is less than a prescribed value This method is now used to determine the first columns of inverse matrices for certain square boundaries up to 15×15 . The u in these squares are symmetric with respect to the diagonal of the square which runs from the upper left to the lower right corner; i.e., $u_{ij} = u_{(i-1)n+j}$ [i, j = 1, 2, ... n]. Consequently, the residual at a noncorner diagonal point is while, for the corner points, $$R_1 = 1 + 2n_{n+1} - 4n_1$$, $R_{nn} = 2n_{nn+1} - 4n_n$ $[nn = n^2]$. In applying step 3 of (33) to any $u_{\text{in+i}}$ just below the diagonal, the residuals $R_{(i-1)n+i}$, $R_{\text{in+i+1}}$ at the diagonal points must be diminished by 2q/4. In guessing take values somewhat greater than those at corresponding points in smaller squares for which the problem has already been solved and fill the remaining rows with quantities so that the u_p decreases in any column toward the bottom. These values, written out only to three decimal places, are relaxed so that the absolute value of R_p never exceeds 2 in the third place; then a fourth figure is guessed and the above repeated, etc. Various stages of this process for the 10×10 rectangle are shown in Table 7, and Table 8 contains solutions for several $n \times n$ squares $\{n = 1, 2, 3, 4, 7, 10, 15\}$. Finally, (26) is used to calculate the other elements for the 15×15 case and the fundamental triangles of the first submetric column in the corresponding 225×225 matrix are exhibited in Table 9. If this approximating matrix is called $M_{5,5}^{*}$, then $$M_{15} = M_{15}^{-1} = (21-11_5 + 15M_5^{-1})$$ is an improvement. #### 5 Extensions A few types of equations to which the above method may be applied are now described. The solution of Poisson's equation $$u_{xx} + u_{yy} = \phi(x,y)$$ is equivalent to solving Laplaco's equation with altered boundary conditions, since the difference equation corresponding to (34) for a network of squares (h = k) is $$4u(x,y)-u(x+h,y)-u(x,y+h)-u(x-h,y)-u(x,y-h) = \phi(x,y)h^2$$, which differs from (2) only in having the i th element of u* increased by $\phi_{i}h^{2}$, where ϕ_{i} is the value of $\phi(x,y)$ at P_{i} [i = 1, 2, ... mn]. The matrix for the biharmonic equation in the case of an $m \times n$ rectangle is of mn th order and contains n th order submatric elements L_n in the principal diagonal, F_n in the immediately adjacent diagonals, I_n in the next two diagonals, and O_n elsewhere, where L_n has 20's in the principal diagonal, -3's in the adjacent diagonals, 1's in the next diagonals, and 0's elsewhere, while F_n has -3's in the principal diagonal, 2's in the adjacent diagonals, and 0's elsewhere. Table 1 Inverses for $1 \times n$ rectangles | n | Мп | | 1/2 | | | | Mn (5 decimals) | | | | |---|-------------------------------------------|----------------|-------------------------------------|--------------------------------|--------------------|--------------------|-------------------------------------------|-------------------------------------|-------------------------------|------------------------------| | 1 | 4 | $\frac{1}{4}$ | 1 | | | | 25000 | | | | | 2 | 4-1-1-4 | 15 | 4 | 1 4 | | | 26667
6667 | 6667
26667 | | | | 3 | 4-1 0
-1 4-1
0-1 4 | <u>1</u>
56 | 15
4
1 | 16 4 | 1
4
15 | | 26786
7143
1786 | 7143
28571
7143 | 1786
7143
26786 | | | 4 | 4-1 0 0
-1 4-1 0
0-1 4-1
0 0-1 4 | 1
209 | 56
15
4
1 | 15
60
16
4 | 16
60
15 | 1
4
15
56 | 26794
7177
1914
478 | 7177
28708
7656
1914 | 1914
7656
28708
7177 | 478
1914
7177
26794 | | 5 | 4
0-1 4
0-1 4 | 1780 | 209
56
15
4
1 | 22¼
50
16 | 225 | | 26795
7179
1923
513
128 | 28718
7692
2051 | 28846 | | | 6 | 4
0-1 4
0 0-1
0 0 0-1
0 0 | 2911 | 780
209
56
15
4 | 836
224
60
16 | 840
225 | | 26795
7180
1924
515
137
34 | 28719
7695
2061
550 | 28856
7729 | | | 7 | 4
0-1 4
0 0-1 4
0 0 0 0
0 0 | 10864 | 2911
780
209
56
15
4 | 3120
836
224
60
16 | 3135
840
225 | 3136 | 26795
7180
1924
515
138
37 | 28719
7695
2062
552
147 | 28857
7732
2071 | 28866 | For n > 4 only fundamental triangles are shown Decimal points and nonsignificant zeros are omitted from last columns Table 2 Leading elements and numerators for $1 \times n$ rectangles | n | N | | ay | 1 | |----------------------------|--|---|-------------------------|-------| | 1 2 3 4 5 | R(CH) | 1
4
15
56
209 | 26666
26785
26794 | 71428 | | 6
7
8
9
10 | | 780
2911
10864
40545
51316 | 26794 | 91922 | | 11
12
13
14
15 | 21
78
293 | 64719
07560
65521
54524
52575 | | | | 16
17
18
19
20 | 4088
15258
56946
2 12526
7 93159 | 26340
34831 | | | Table 3 Some elements of the limit matrix \mathbf{M}_{∞} | Row | * | Golumn 1 | Column 2 | Column 3 | Column 4 | Column 5 | |----------------|--------|---|---|---|---|---| | 1 2 3 | 0 1 1 | 26794 91924
71796 76971
19237 88646 | 28718 70789
76951 54585 | 28856 82970 | | STIRA | | 4 5 6 | 2 2 3 | 51547 76140
13812 18104
37009 62755 | 20619 10456
55248 72416
14803 85102 | 77321 64213
20718 27156
55514 44133 | 28866 74640
77348 21385
20725 39143 | 28867 45839
77350 12161 | | 7 8 9 | 3 4 5 | 99166 99813
26571 71706
71198 70127 | 39666 79926
10628 68683
28479 48051 | 14875 04972
39857 57561
10679 80519 | 55533 51896
14880 16156
39871 27274 | 20725 90261
55534 88867
14880 52884 | | 10
11
12 | 5 6 6 | 19077 63451
51118 36760
13697 12532 | | 28616 45176 | 10683 47801
28626 29303 | 39872 25687
10683 74170
28626 99960 | | 13
14
15 | 7 8 8 | 36728 13160
98412 73201
26369 61206 | | | | | | 16
17
18 | 9 9 10 | 70657 16255
18932 52964
50729 56027 | | | | | | | | Column 6 | Column 7 | Column 8 | Column 9 | | | 6 | 0 | 28867 50591 | | | | | | 7 8 9 | 1 1 2 | 77350 25858
20725 93934
55534 98708 | 28867 51318
77350 26842
20725 94198 | 28867 51344
77350 26912 | 28867 51346 | | | 10
11
12 | 2 3 3 | 14880 55521
39872 32753
10683 76064 | 55534 99415
14880 55710
39872 33260 | 20725 94217
55534 99466 | 77350 26918 | | | 13 | 4 | 28627 05033 | | PARK | | | *Each figure in second column indicates number of zeros between decimal point and first digit of elements read along appropriate diagonal | | | | | M ⁻¹ | | u* | u | | | | |------------------------------|----------------------------------|-------------------------------|----------------------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------|--|----------------| | 26794
7179
1923
515 | 91924
67697
78864
47761 | 7179
28718
7695
2061 | 67697
70789
15458
91046 | 1923
7695
28856
7732 | 78864
15458
82970
16421 | 515
2061
7732
28866 | 47761
91046
16421
74640 | 2 4 6 8 | 1.00005 6
2.00004 9
3.00004 2
4.00003 5 | 98388 | | 138
37
9
2 | 12181
00963
91670
65717 | 552
148
39
9 | 48724
03851
66680
91670 | 2071
555
148
37 | 82716
14441
03851
00963 | 7734
2071
552
138 | 82138
82716
48724
12181 | 12 | 5.00002 8
6.00002 1
7.00001 1
8.00000 7 | L3566
42385 | Only the first four columns of M⁻¹ are shown here Decimal points and nonsignificant zeros are omitted from M⁻¹ Table 5 Inverses for m × n rectangles | m n | 14 _{mn} | M_m (exac | t) 11-1 (5 | decimals) | |---|--|--|--|--| | 4 -1
-1 4
22-1 0
0 -1 | -1 0
0 -1
4 -1
-1 4 | 16 56
16 8 | 16 8 29333 833
8 16 8333 2933
56 16 8333 416
16 56 4167 833 | 3
7 | | 4 -1
-1 4
32-1 0
0 -1
0 0 | 4 -1 <u>1</u> 2415 | | 29482 861
8613 2948
80 255 9317 496
55 780 4969 931
2816 194
1946 281 | 9 32298 10559
7 10559 32298 | | 4 -1
-1 4
-1 0
0 -1
0 0
0 0
0 0 | 4 -1 1
-1 4 30305
-1 0
0 -1 | 8948 2623
2623 8948
2864 1544 99
1544 2864 33
964 689 31
689 964 17
303 248
248 303 | 12 9912 5095 945
67 1792 3181 227 | 66
95 32707 10929
1 10929 32707
14 10450 5913
1 5913 10450
18 | | 0 -1
-1 0
33 0 -1 | 0
-1
4
0 4 -1 0 1
0 -1 4 -1 224
-1 0 -1 4 | 67 55
22 74
7
22
14 28
6
7
6 10
3 | 29910 3303
9821
3125
74 9821
28 84 6250 1250
2679
3125
2679 446
1339 | 33036
0 12500 37500
4464 | Decimal points and nonsignificant zeros are omitted from last columns Table 6 The limit matrix M 100 % RAG 11, S.A. Table 7 Stages in approximating first column elements for 10 x 10 square | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |--|--------------------------------|----------------------------------|----------------------------------|---------------------------------|---------------------------------|--------------------------|------------------|-----|----| | 303
105
43
21
10 | 75
46
30
17 | 39
29
20 | 19
15 | 10 | P/ | | | | | | 4
2
1
0
0 | 8
5
3
1
0 | 11
6
4
1 | 7
6
5
2
1 | 6
5
3
2
1 | 3
2
1
1
0 | 1 0 0 0 | 0 0 0 | 0 0 | 0 | | 3025
1050
425
198
102 | 750
449
276
160 | 354
255
178 | 222
187 | 140 | | | | | | | 51
31
18
8
3 | 94
56
32
14
6 | 112
69
41
22
10 | 109
69
43
23
10 | 94
60
36
20
9 | 68
44
26
13
6 | 25
16
3
2 | 14 4 1 | 1 0 | 0 | | 30230
10461
4193
1934
1003 | 7419
4377
2539
1511 | 3355
2333
1573 | 1864 1395 | 1134 | | | | | | | 568
339
205
118
54 | 928
582
363
213
99 | 1051
698
452
271
127 | 1006
705
474
291
138 | 872
641
446
280
135 | 707
541
387
248
121 | 427
312
203
100 | 232
153
76 | 102 | 26 | Decimal points and nonsignificant zeros are omitted Table 8 Relaxation approximations to first columns for $n \times n$ squares | n | | | | | | | | | | |----|---|--|------------------------------------|----------------------------------|---------------------------------|---------------------------------|--------------------------|-------------------------|----| | 1 | 25000 | | | | | | | TID CV | | | 2 | 29333
8333 | 4167 | | | | | | | | | 3 | 29910
9821
3125 | 6250
2679 | 1339 | | | | | -100 | | | 4 | 30105
10211
3802
1333 | 6938
3665
1530 | 2392
1120 | 560 | | | | | | | 7 | 30216
10432
4150
1875
925
464
197 | 7362
4292
2425
1363
735
323 | 3231
2169
1366
790
361 | 1656
1142
702
332 | 842
542
263 | 360
178 | 89 | | | | | 30233
10468
4202
1944
1015 | 7433
4395
2561
1534 | 3381
2363
1604 | 1898
1429 | 1170 | | | | | | 10 | 579
347
209
120
53 | 948
597
370
214
99 | 1079
718
464
275
129 | 1039
730
490
300
142 | 911
670
467
294
143 | 741
570
410
265
129 | 451
333
218
108 | 250
164 109
81 56 | 27 | | | | | | | | | | | | Decimal points and nonsignificant zeros are omitted Table 9 First column of submatric elements for 15 x 15 square | 30240
10480
4227
1981
1094 | 34467
12461
5321
2595 | 35561
13075
5705 | 35945
13331 | 36121 | CM | | | | |--|------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------|--|------------------------|-------|-----------------| | 614
384
256
176
137 | 1478
870
560
393
282 | 2851
1654
1007
666
473 | 5881
2988
1760
1087
722 | 13468
5987
3068
1816
1135 | 36227
13548
6043
3116
1836 | 36283
13596
6063 | 36303 | A | | 106
80
56
48
20 | 217
162
128
76 | 338
265
182 | 52 <u>1</u>
358 | 742 | | | • | | | 10480
7455
4429
2643
1588 | 14909
10098
6017
3647 | 16497
11102
6677 | 17157
11566 | 17503 | | | | | | 1004
660
464
346
265 | 2248
1468
1006
729
552 | 4111
2594
1733
1212
886 | 7023
4376
2800
1890
1323 | 11831
7229
4533
2911
1967 | 17709
11988
7340
4610
2951 | 17820
12065
7380 | 17860 | ^A 21 | | 206
157
111
77
40 | 422
317
234
151 | 663
499
357 | 963
703 | 1363 | | | | | | 4227
4429
3391
2407
1656 | 7618
6836
5047
3557 | 9274
7986
5878 | 10105 | 10575 | | | Sī | BA | | 1150
831
622
470
368 | 2487
1772
1301
990
765 | 41 79 2957 2140 1596 1224 | 6348
4547
3252
2374
1769 | 8976
6643
4781
3425
2495 | 10870
9210
6816
4902
3485 | 11043
9331
6876 | 11103 | A ₃₁ | | 295
234
173
121
60 | 602
468
356
233 | 938
723
528 | 1345
998 | 1829 | | | | | Table 9 # (continued) | 1981
2643
2407
1961
1513 | 4388
4604
3920
3116 | 5901
5759
4806 | 6787
6446 | 7329 | | | | | |--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|------|-----------------| | 11.55
886
687
542
441 | 2399
1842
1428
1128
913 | 3803
2941
2283
1799
1437 | 5348
4244
3312
2592
2027 | 6887
5719
4553
3540
2766 | 7700
7196
5947
4727
3714 | 7928
7370
6025 | 8006 | A ₄₁ | | 371
309
228
174
78 | 750
599
483
306 | 1141
924
677 | 1611 | 2105 | | | | | | 1094
1588
1656
1513
1284 | 2750
3101
2940
2566 | 4034
4154
3796 | 4890
4850 | 5462 | • | | | | | 1053
856
696
572
477 | 2140
1749
1428
1173
1009 | 3262
2712
2226
1865
1575 | 4368
3739
3149
2628
2123 | 5327
4805
4141
3407
2781 | 5899
5729
5063
4294
3485 | 6157
5882
5141 | 6235 | A ₅₁ | | 437
402
258
153
78 | 879
695
555
336 | 1267
1032
773 | 1728
1345 | 2201 | | | | | | 614
1004
1150
1155
1053 | 1764
21.59
2203
2076 | 2817
3080
2991 | 3605
3747 | 4170 | | | | | | 921
788
667
565
482 | 1841
1588
1353
1149
976 | 2743
2406
2070
1764
1490 | 3556
3225
2817
2411
2011 | 4229
3967
3566
3064
2568 | 4581
4570
4214
3723
3141 | 4828
4727
4291 | 4905 | A ₆₁ | | 411
341
247
157
77 | 823
658
498
324 | 1223
980
735 | 1647
1300 | 2088 | | | | | Table 9 (continued) | 384
660
831
886
856 | 1215
1546
1687
1674 | 2071.
2334.
2390 | 2774
2952 | 3311 | | | | | |---------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--|----------------------|--------|-----------------| | 788
703
618
537
468 | 1559
1406
1240
1086
928 | 2292
2096
1874
1631
1400 | 2927
2760
2487
2188
1863 | 3420
3318
3074
2719
2339 | 3702
3734
3550
3225
2793 | 3934
3885
3624 | 4008 | A71 | | 391
314
232
151
74 | 782
623
465
306 | 1160
933
697 | 1551
1234 | 1937 | | | | | | 256
464
622
687
696 | 878
1151
1318
1354 | 1574
1818
1936 | 2192
2381 | 2692 | | | | | | 667
618
563
500
462 | 1314
1230
1118
1025
870 | 1917
1814
1692
1488
1316 | 2436
2379
2184
1983
1703 | 2843
2806
2670
2399
21.24 | 3062
3134
3021
2811
2469 | 3277
3275
3091 | 3347 | A ₈₁ | | 370
291
215
141
70 | 753
585
432
285 | 1085
894
655 | 1457 | 1773 | | | | | | 176
346
470
542
572 | 646
888
1042
1107 | 1218
1453
1579 | 1755
1953 | 2221 | RIC | Fjo | ALE UK | | | 565
537
500
466
404 | 1109
1065
1003
904
801 | 1607
1575
1469
1338
1169 | 2045
2011
1910
1734
1537 | 2357
2380
2276
2109
1863 | 2556
2622
2579
2 405
2173 | 2755
2751
2643 | 2819 | A ₉₁ | | 335
265
199
129
64 | 669
534
394
263 | 1000
798
598 | 1298
1064 | 1601 | | | | | Table 9 (continued) | 137
265
368
441
477 | 505
706
845
923 | 982
1188
1313 | 1450
1650 | 1854 | IRIS | P | AR | | |---------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|------|-------------------| | 482
468
462
404
344 | 945
944
872
806
691 | 1385
1349
1288
1159
1038 | 1717
1729
1636
1520
1335 | 1994
2004
1961
1812
1638 | 2141
2226
2180
2079
1872 | 2317
2344
2240 | 2377 | A _{10,1} | | 287
232
176
118
60 | 576
463
350
236 | 867
694
523 | 1156
927 | 1395 | | | | | | 106
206
295
371
437 | 401
571
732
782 | 838
988
1123 | 1229
1358 | 1564 | | ni e | | X | | 411
391
370
335
287 | 828
781
726
657
572 | 1152
1163
1068
963
859 | 1458
1439
1400
1270
1118 | 1645
1695
1641
1555
1376 | 1801
1847
1850
1747
1609 | 1956
1953
1904 | 2010 | ^A 11,1 | | 237
202
155
106
54 | 489
392
308
209 | 727
595
446 | 965
781 | 1172 | | | | | | 80
157
234
309
402 | 314
466
636
650 | 716
807
950 | 1030 | 1295 | | | | | | 341
314
291
265
232 | 716
632
579
523
467 | 941
981
864
781
693 | 1215
1173
1183
1034
914 | 1330
1417
1343
1316
1125 | 1497
1500
1550
1434
1364 | 1630
1591
1598 | 1678 | A _{12,1} | | 202
170
133
91
48 | 402
335
261
181 | 600
493
383 | 784
648 | 952 | | | | | Table 9 # (continued) | 56
173
228
258
247
232
215
199
176
155
133
108
76
37 | 339
431
475
490
462
431
391
354
309
263
209
145 | 487
586
663
690
689
638
586
524
462
385
300 | 719
801
862
866
844
771
694
600
499 | 918
977
1017
999
952
847
731 | 1073
1110
1125
1075
989 | 1181
1186
1162 | 1218 | Å13,1 | |---|--|---|---|--|-------------------------------------|----------------------|------|-------------------| | 48
77
121
174
153
157
151
141
129 | 169
251
274
331
304
298
280
259 | 322
408
425
472
433
416
386 | 473
549
554
590
539
507 | 602
667
660
681
615 | 708
758
736
738 | 784
815
764 | 812 | A _{14,1} | | 118
106
91
76
57
28 | 235
209
182
148
104 | 350
311
266
210 | 462
407
339 | 564
490 | 643 | | | | | 20
40
60
78
78 | 80
118
138
155 | 158
195
212 | 232
265 | 296 | 000 | | NP. | | | 77
74
70
64
60 | 152
147
138
130
118 | 225
216
207
192
178 | 276
285
270
255
229 | 325
330
333
307
283 | 350
373
367
361
322 | 387
401
382 | 402 | A _{15,1} | | 54
48
37
28
15 | 108
91
76
52 | 155
136
106 | 206
170 | 21,4 | | | | | ## Bibliography - [1] Courant, R.; Friedrichs, K.; Lewy, H. ''Ueber die partiellen Differenzengleichungen der mathematischen Physik.'' <u>Mathematische</u> <u>Annalen</u>, 100 (1928), 22-74. - [2] Emmons, H. W. 'The Numerical Solution of Partial Differential Equations.' Quarterly of Applied Mathematics, 2 (1944), 173-195. - [3] Frank, P.; von Mises, R. <u>Die Differential- und Integralgleichungen</u> [8. Auflage von Riemann-Webers <u>Partiellen Differentialgleichungen</u> der mathematischen Physik]. Braunschweig: Friedr. Vieweg, 1930. - [4] Frazer, R. A.; Duncan, W. J.; Collar, A. R. <u>Elementary Matrices and Some Applications to Dynamics and Differential Equations</u>. New York: The Macmillan Company, 1946. - [5] Southwell, R. V. Relaxation Methods in Theoretical Physics. Oxfords The Clarendon Press, 1946. - [6] Synge, J. L. ''A Geometric Interpretation of the Relaxation Method.'' Quarterly of Applied Mathematics, 2 (1944), 87-89. - [7] Tamarkin, J. D.; Feller, W. Partial Differential Equations. Providence: Brown University, 1941. # STRATAMORE PARCHIAERT CHENT Betty Westerman Typist