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PART 1

DEFIRITION OF THR SCOPE OF THE REPORT

The primary purpose of this papsr is to present®, in comparatively com-
pact form, a demonstration of the use of several of the more common methods
of beam analysls. It is intended that theso oxamplos serve as an aid %o
others who, though somswhat unfamiliar with the tochniquee iunvolved, might
wish ©o extend one (or more) of these mothods to apply So a particular pro-
blem not covered herein.

It would be undesirable end practicelly impossible to attempt, within
i;.ha ocops of & single report, analyses demonstrating every possible coubi-
nation of support amd loading conditions. For this resson, only & few of
the more common eclasses of loading will be showm. Zhe types of beams tec be
covered inmclude: (1) the simple beam, (2) the ceutilever beam, (3) beaws
fixed o one end and supperted at the other, (4) fixed-ended beems, and
(8) continuous beams.

For the beams which are statioally determinate, the objeot of the analy-
ais will be to determine the meximum deflection A, For statically indsior=
mivate beams, the reactions and moments at the supports (and, in some cases,
the deflections) will be found. Our only concern will be the magnitude of
the deflection, since the directlon usunlly con bs dotermined emeily by
ingpection.

The mathods of analysis to be used will includo: (A) double integra-
tion, (B) sres-momont, (C) conjugate team, (D) colwm enalogy, (B) slope
deflection, (?) virtual work, (0) real work, (H) loast work, (J) theorem of
three moments, and (K) moment distribution, In order to facilitabe uader-
standing of these methods, the basic theories upcn which they are founded

will be peinbed out. For certain of the beems discussed, some of the above



mothods of analysis will be either inapplicable or so cunbersoms and im-
practical as to be of 1ittle value. In such cases, ro atbempt will be made
to include them as a pert of the report.

As a result of these caloulations, it should be possible to point out,

in conoclusion, which of these methods offer the most facile means of inguiry
for esch type of beam studled.



PART 11
AN OUTLINE OF THE ANALYTICAL MBETHODS TO BE USED

As a preliminary step a brief outline will be wesented of the theory
supporting each method of investigation.
(8) Method of Double Integration: The expression for the radius of

=~ 3 .g%

nurvawre,fn of any curve is P = {1 + ‘%!J o 8ince the curvature of
d
dx

most (initially) streight beams is quite small when subjocted ts atresses

below the elastic limlt, the second order differesntial (g)a is very small
and may be negleoted with no appreciable error. Heacs, for our purposes,
Pu 1/%% o It oan be thaﬁn further thate « BI/M. By equating the two
expressicns for ? we arrive at the baslc relationship, EI g = ﬁ,; which
is the general aquation for the olastic curve of a beam: M is the bending
moment, expressed in terme of x, at a distence x from the origin and y 1is
the deflection of’ the beam at the same point.

(B) Arsa-Moment Methed: Proof of the two theorems used in this method

mey be found in most strength of materials textbooks. The theorems may be
stated as follows:

Theorem I = The change in the slope betwsen two points on tho elastic
curve of a straight beam subjescted to bending is represented in magnitude
by the srea under the M/BI diegrem between the two points.

Thecrem IT - When a straight beam is subjected to bending, the distance
of any point on the elastlc ocurve, measured normal to the original positicn
of the bending exis, from a tangent drawm a® any other point on the elastic
curve, is represented in magnitude by the moment of the area under the
M/B1 diegram botween the two points about an ordinate through the first

point,
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.g';[-.i‘ Load Diagram

t, = Area (%)

- s ——

Figo 1
The two theorems above may be expresssd mathematically by the equations:

i
M/BI Diagram

A

i

)
B?

3 B

o= { m‘anth“f D52 , whore M is oxproseed in terms of the die-
v T A

tanse, x, measured from the point, A.

(C) Conjupate Beam Methods From the eimilarity of the relationships
a*
dx
ship %o the moment that the M/BI bears to the deflection. Thus if the real

% ~wand 857 = % . it may be seen that the load bears tho samo relaticon-
beam is replaced by e conjugate beam (which, in somy cases differs from the
real been in type of support) and this conjugate beam then lcaded with the
MBI diegram, the deflection of the real beam at a given point will be equal
in magnitude %o the moment in the conjugate beam at the same point.

The slope in the real beam at a given point, incidentally, will be
egqual in magnitude to the shear in the conjugeto beam.

(D) Column Analogy: This is the method devised by Professor Hardy
Croes for determining the moment at any point of a statically indeterminate
struecture vhioh forms a conbtinuous ring (the earth is assumed to be a part
of this ring) without any members orcassing or intersecting at a joint., The

method applies only to single spaus.



In %he use of Column Aualogy, the member is treated as a short columm
of width 1 and thickunees 1/8I, with its axis symmetrical to the exis of the
straoture, and loaded with the angle ohange (from any ceuse), If, as in
this paper, the engle change is due Yo momsn®t prodused by loading the etruc-
ture, the structure 1s altered in some way (so as to be statically determi-
nete) and the mement ourve of this simple structure applied as & load on the
analogous volumn, The stress (P/A % /1) in the eolumn is then computed
and thet stress is equal to the imdoterminato momend at the point under con-
sideration, Then the actual moment at that point 13 the steticel moment
(for the assumed etatically determinate condition) mimue the indetsrminate
moment,. ‘

Thic method may be applied to single bents as well as %o single span
beams o

(B) B8lope Deflections The moment at the end of & rigid beam may be
influenced by four fectors: (1) the fixed ond mement dus to loads on the
beam, (2) the angle through which that end rotates, (8) the angle I‘hhrough
which the far end rotates, and (4) the relative deflection of the two suds.
i 5 Il‘b repreasents the moment at end, e, of span ab, then the general egue-
tion which takes these four factors into consideration is:

My = My ¢ 8 (400 + 2 - )
and for the moment at end, b
o = By + B (29, + 40, - )

if these eguations are applied, together with the statical equations
of equilibrium which may be writiten, there will gonsrelly be a suffiolent
menber of equations to dotermine the unkuown values for moment and angle
change in the strusture. In the above equations the mumerical valuss of the

fixed ond momeuts should be used with their proper signe: positive when the



rosiating moment acts clockwise and negative when it acte counterclockwise.
The unknown angles © should be assumed posltive or olockwise. The sign of

the fixed ond moments due to A mmst be consistent w. th the direotion of 4.

Sometimes the ratio 8/5 is represented by the letter R.

(F) Virtusl Works The exprossion for the slastic deflection of e

bean due to momsnt is A BJE&HT‘_ » whore M is the bending moment at x die-
tense from the origin due to the applied lcads and m is the bending moment
at the same point due to a unit load applied at the point vhere the de-

flostion g to be found., This equation meyv he derived as follows:

Py 2 ,
i l Aesume thet all portions of
: __qa
s _:El | the besam, except the dx portion,
1 1b, are infinidely otiff,
> (a) :
let F (fig. 2c) be the fiber
?l %‘r da
f o 4 stross dwe to & unit load. Them

—rﬁ
the work dons on the dx portien of

the beem by the undt load 1s
Fds + Fd%, But Fda ¢+ Pdt =
Fede ¢+ Ftda = Fda{s+t) or Fhde
8ince Fh = m, thils may be written
u * midc. And, egquating the exter=~
nsl end internal work we got:
1.4=mis (Bge 1)
Ezemining the deformed portion

of “he besm (fig. 24) it is seen

' = 0da o 8 M
Ll S dal
or daﬂ%‘%‘-
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Thoz from Bgo 1 we get 1 o b'ﬂ-n-or a-ir—_ (Bq. 2) if the beam
is deformed aleong its entire length.

The equations expressing the deflection dus to torque and shear may be
derived similarly. They are a,afﬁ-m &g -.,(EI

(@) Roal Work: This method is somewhat limited in application since
it cen be used To find e deflection only where there is a load, only in the
direotion of the load, eand only when there ere no other loads, 1I%, of
oourse, will not apply to distributed lcads.

The expression for the elastic energy mwhiich will be absorbed by a given
volums of material when uniformly streased is U = 1/2 82/ x Vol. In the
case of beams, whers the mtar'ial is aot uniformly stressed, this feot may
be used in setting up e differential expression for the ensrgy. For the

internal energy or work,
dx

_4 dv = dAdx 40 = 5 = dV = o dAdx
T ; buts'y‘*%
60, AU = MH2 4aax

ve [5F [ B

x Since the extermal work must equel

N.Sg

the internmal work, 1/2 PA = %2%5 , or Aw .ﬁé.l-juadxo

(H) lesst Work: Castiglianc's Theorem, whioh states that the deriva=
tive of the work with respect to a glwven load -g-; is equal %o the distence
through which the load moves (y,), provides a tool by means of which de-
flections my be determined. A fairly brief, semi-geometrlc proof’ of

Castigliano's Theorem is as follows:

1 ipving P. Choroh, Mechanios of Internal Work, pp. 126=127. Proof due %o
Prof. E. W, Rettger, Cornsll Universityo



Pig. 4
Loads Pl and P, are applied at points a and ¢, respectively, of the

spau shown above, In investigating the offect on the internsl work, U, of
applying en inorement, AP;, to the load Py, let us utilize the fact that it
is immaterial whother the loads be applisd simmlbansously, or successively
in any order, the final result being the same., Then conceive the ineremsant
bPl of the wvariable load P:I. %o be applied first of all, even before P1 CLLE
P, are placed on the structure.

if &Pl is applied gradually, the total externanl work deme so far is
% AP, by, , which ls represented by the area of the trisngle eb"h", where b"h"
equals APy (to some scale).

Now, le® the loads Py snd P, be applied gradually and simulbanecusly
until the final positions b’ end o' of points a and o are reached, The ex~
ternal work dons by Py is % P,¥,» represontsd by the area h%ik: and that
done by P, is %— Payas represented by the area eé"e'n. The additicaal exter-
nal work done by aPl,g which aots #d th constant force through the distance
¥yo is equal to APyy,o Thus the total external work (which ie equal to the
total internal work, Ul _) is represented by the entire shaded area in i‘igum

4o



Hoxt; lot the etruoture be entirely umlocaded and the two loads, Py and
By » be applied gradually and simiiteuscusly. The total external work (which
is oqual to the total internal work, U) is ogusl to 3 Pyy.+ 5B,y,0 Those
two terms are represented, respectively, by the aress of ths two triangles,
h"ik and e"e’n, which form a part of the shaded aress shown in figure 4.
- Therefore, it is evident that the difference U' - U, or AU, is representad
by the sum of the sreas of the triangle, ab"h", and the rectangle, bH"b'ih",

Therefore

1
AU = 5 AP0y, + APy,

AU b
ol RS
8s b.Pl -0 3 ﬁyl s O

lim AU
M 4y o TN

That 1s, %, vy

S8ince any of the loads may be consldered as the veriabls, the preced-
ing relationship is generally expressed as a partlal derivetives

3y
Py

The internal energy dus to bending has been shown (on page 7) to be

o

where A represente the deflectiocm of the beam at Tho point of applicatiocn
of the load P,
The similarilty between this equation and the virtual work equation

(shown on page 7) should be pointsd out at this time, It will be moted



10

that, where in the virtual work equation thsre 1a an m denoting the momsnt
due to a dunmy unit losd, here we have c%ﬁ o The two equations lead to the
sama result since m and g% are idenvieal, For example, consider 2 simple

beem with a concentrated load at mid-spans

R-% '* L "
= and -
=3= T
dlE =
i—-g-‘aﬂ—ég'i-—i'%x,mﬂohiamsm as m, >

If it is desired to find a deflection, by the method of least work, at
some point other tham where a load is moting 1t will be necessary To apply
' a dumny losd of sero magnitude at the point under comsideration. The valus
of zero for Py (the dwmy loed) may be substituted at any time after whe
partial derivative has been extrasted.

(J) Theorem of Three Momentss If a beeam ia contimuous over “hree or
more supports, a certain reletiocnship exists betwsen the moments at any thres
congecutive supportvs and the loads on the two imolwled spans. A counwvenisnt
dorivation of this relationship may be made by uge of the msthod of area-
momente-~as previously outlined under (B). Imn fig. 5§ let: @ bo the slope
of the tangent drawn to the elestlec ocurve at the centsr suppert; ¥, and ¥,
the tangential deviations of poiants 1 and 3, respectively, from the tangent
drawn at the hcenter support; Al and A, Gho areas under the s’.;l.mpla moment
dlagrems for the two spans; ;. the distence from the left support to ths
controid of the 8, areay X, Uhe distance from the right support to the cen-

troid of the Ag aree; and Mlg Wy, and Mg, the moments at tae left, center,
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end right supports, respectively (plotted below the base line for con-

venience of representation, but assumed to be positive).

=
l 'iii "ta
i 2) = 2. 1 |
3 a"‘*-.wm 8. -~ i — S
t]. g /;'411 % Lg o
..__L.__h/ Ry L
/
tl =V
q-T (qulj FiEoE
’ﬂ_\
7 :
ir A 4 |
51| ,ef'*a,
andinil M
I T~ w
l =
-~ Ll il Lg "

- 1 L 3 2y | 3
'*g}h‘*a‘"ﬁﬂ“*'ﬁ“z‘w‘a‘]ﬁ;
Laalz ux.ﬂ-a-zuar.]
E 2L
tau{}ﬁ ns, o Eedng, B8
b, m 2 l6A%, + M,17 + 212
2™ gET; | A Yyl 22
then,f‘rmzqo_l
e |64 % ¢u1La+zuzL§a—-—-"1 [Bﬁai +M5La+2llal..""] |
GELyLy (12 1 GB1,L, 2 2 2
end if I, = I, , then

6A 51 6A2§a

T Wy + By o -

= BL, -2,

11
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or H1L1+2H3(I.1+La)+ua:.aamu1i1uﬂgia

which is the general Theorem of Thres Moments equation for continucus beams
of constant cross sectlion and made of one material, vhere points 1, 2, and
S remain on the same etraight line.

(R) Moment Distribution:® The momsnt distribution method of analyzing

statically indeterminate structures was developed by Professor Hardy Cross
while at the University of Illinois, and originally published by the Ameri=
can Concrete Institute in 1929,

If the B end of an unloaded structural member AB is fully restrained
againat both translation and rotation, and the A end restrained against
treanslation but caused to rotate through an angle 8 by a moment M applied
at that end, there will be a moment M' produced at the E end which bears &
fixed relationship to the moment M such that the ratio H'/ll is a constant,
This constant vi 11 be termed tho "carry-over factor", If the member is of
oonstant cross-seotlion, it may be demonstrated by the method of area-moments
thet M,  45100/L and that My = = 21, 1f tension in the lower fibers is
takon as a positive moment end tension in the upper filbers, ss a negative
moment, That ia, the carry-over factor is equal to a negative one-half.
For a given angle ohange A9, the momenis are proportional te the I/L ratio
for the member. This ratio will be called the "stiffness factor" and will
be denoted by K. The effect of translation of a joint will not be con-
sidered in this report.

To make use of the relations shown abova, consider all joints of a

structure to be locked in position against translation and rotation.

2 Fred L, Plummer, Fundamentals of Indeterminate Structures. pp. 135-139
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Compute the fixed-end moments due to the loads on the members. In gemeral,
there will now exist an unbalanced moment at eash joint. HNow unlock one
joint for rotation only shile keeping all other joints locked, The joint
will rotate sufficiently to balance the momsnts et that joint, The change
in momsnt in each of the membsrs coming into the Joint will be proportional
to the stiffness factor K of tho member, and the total of these corrections
will equel the original unbalanced moment, AT the same time There will be
produced at ths far end of each member a carry-over moment of the opposite
algebraio eign and one=half the magnitude of the change in moment ot the
neer end. Now Af this joint is again considered looked in pesition against
travslation end rotation and each other joint, in turn, unlocked for rota=
tion, there will result a first sel of corrected values much nearer to¢ the
actual velues of the moments than were the originel fixed-end moments. Due
to the carry-over moments, the moments about each joint will s¥ill be un-
balanced, snd the process must be repeated until the cerry-over moments are
negligible as oomparod: to the eactual moment in the member. Usually no mora
then five repetitions of the process are required to produwe walues very

close to the true moments in the structure,.



PART III

APPLICATION OF THE VARIOUS METHODS OF ANALYSIS
TO SEVERAL SPECIFIC CASES

THE SIMPLY SUPPORTED BEAM

1. Concentrated Ioad at Mid-Span. t

. —]

!1 - P/z Ra = p/g
(A) By Double Integrations

ng-gteo

'honx'llzadv/ﬁx'o.-ocl-wﬁ:
Px?2 pPL2

m e -

Bly-%f--u"‘«»c,

whenx=0,y=0,800C,=0

andmnxtlfz.y-a.thon
a PL. PLS

1¢



(c) By the Conjugate Beam Method:

PI.*L L | j
ne By | |

The meximum moment in the conjugate beam will ococur at mid-span

and will be equal to the maximm defleotion A of the real beam

FPL2 L P L 1 L
®“16EI *Z" @1 °2°2°F
8 pLB PLB

4= "E 96ET © TEET

(D) Column Analogy does not apply.

(B) Slope Deflection may be used, but is uncommon for this purpose.
(F) By the Method of Virtual Works

| — R '
- 11b9
E-:;I.’;g L :IT
H‘BPx/Z,m:Bx/Z
bedr £ imes

and, due to uymotry of loading and support
r {7
o
f'&", T E“"‘mutn e
= g (1/2)° = gy
(G) By the Method of Real Works
aaéf/:uadx
, = B/

15
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¢ N R
A a-éf (1/2)2 = zﬁ:’;
(E) By the Method of least Works
Uuﬁ% /' ulax

o

My = Px/2 y
2 Px) 2 Wk
U= =T o%('g‘) dx = Efl-fo P%%x

L/s
b=3F- gy /) e

s 8
R
(J) Ia the derivetion of the Theorsm of Three Moments (Pert 1I, J) it
wes cssumed that points 1, 2, and 3 wore originally on the same straight
line, and that they retalned these positions after the application of
" the loads., The three points chosen are not necessarily reaction points,
nor need they retain their original positions when the loads are ap~
plied. A formala® which takes into accoumt the deflection d of point

2 with respect to a ebtraight line through points 1 and 8 ias
Wi, MGl +L) KL, AR A% % . 3
3 &> & - = BId
s B ek

This method is not commonly applied %o staticelly determinate

beans, though it does provide rather an easy msane for determining the
deflection at any desired point. For this particular case: L, * Ly
/2 , Ml and My sre squal to sero, Mp = PL/4, andhothnlilandaaxa

are equal to gero since the only loed ecte et point 2, Therefore

‘ 5 George, Rottger, and Howell, Mechanics of Materials, 2d edition, Chapler
Ix,



L L
&> ;
0*%2'3}_"4*0*0“3“('1%5*55‘
PL2 _ 4
i m(r)
_ p1®
™ ZERT

(K) Moment Distribution does not apply.
2. Concentrated load at Any Point.

(A) By Double Integrations

< a —E b e
4 x ,' s
< L
. L e
R =2
For portion of beam to leoft For portion of beam to right
of loads of loads
(1) exd --?-: Exga%&x-r’(x-a)
EI dy _ bx? Bl ¢y  bx?® (x - a)?
@ Fx*7 *4 F&E"m -7 —*C
when x = &
sl
ldx
e 63 * Cf
i
I

17
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(8) %&ys%{f--rclx-éca F_y.hza L.T‘:_)..d-clxoca

when x # O, y = 0O, o0 Ca2 = O When x

8 a
%‘:—e-ca %%-”O"cl‘*cé

whenx=L , y= 0

o 0. wdl=2)% bI®
°* 11 2

Now, to deternine the distanos x te the point of meximum deflsction

A, it will be assumed that the maximm defleotion occurs to the leoft of
the losd. Then at this point the slope (dy/dx) of ths elastio ourve
will be equal to sero. If, in the equation (2) for the slops for the
portion of the beam to the left of the load, zero is substituted for

dy/éx snd the proper valus for C, inserted, the resulting equation may

1
be solved for x, ths distance to the point ol maxismm defleotion.

2 . a 3
B, Gow® ME L,

Since L. = a = b, this may be written
2 2
bxa-l-%--%-fﬁ 0 , whence

§u L2200
g e
xw% (L

This expression for x may now be used in equation (3), with the
constants properly evaluated, to determine the maximm deflection A.

] pem——]
Ih_b(-gw(:ba-'ba) q,baz.—bﬁ,%m
6L 612

BL o . B (12 - b%) VE(IZTTD
R A b2) B(1% - b
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A o P(12 = b3) V3(LZ - b2)
2TBIL

The deflection y of the beam at eny polnt to the left of the load
mey be found from equation (3) by substituting therein the velue for =
nmessured from the left end,

(B) By Area-Momontss:

{
l ;
Pbxy | Pba
BIL | EIL
e i 1 i
)
t.nl \11\ Sl }B
e e b ~——3q
- L -
Ry s

Iet = bo the distance from RA to tha point of meaximum de-

flection A,

Pox T 2x Fbx®
(1) ¢, = 1a®la™le 6 §
A BL T %

, P Poa b 2 5L =
(2) tg"g'f%f'%@*%)*Mozoar=§f“°§-(le°"s“)

Pox3 2 2 szf szg
1 _Fba a 2h
m‘m(‘“r* s)“ﬁf'*m
from which :i'!a‘(_“;_bl

If L -~ b is substituted for a in the preceding expression, it

is found that

- i 2 p2
= 31,’3(3, 12)

By substituting thie velue for xz; into equation (1), it 1is
scen that
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Pe{L? = 12) V/5(12 = b?)
27BIL

(¢) By the Conjugate Beem Methods

tL"ﬁ.

il
|1
i

L S

Ry B (L a/s) o Ry

L (12 - v?)
1L (e) Load Diagram

ety ] \\j

(b) Shear Diagram

The shear eguation for the conjugate beam for values of x between

gero and a iss

v 'PbLawba - Pbx x
x BIL ° 2

Vihere the shear in the conjugate beem is equal to sero, the moment
in the conjugate besam will be & maximum; and the meximum defleotion in
the real beam will occur at this point., If the above shear equation

is set equal to zero, the valus for x found therefrom will be equal to

Ilo
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%SLQ - baz pt_,xa ~
Goys AR ¢ A
¥ ¥ = BR
%

:"%\/EZLEab!i ® Xy

Kow the maximum moment in the conjugate beem (A for the real beam)

will be
bz E x
H(mo)ﬂann‘&axlﬁﬁir}'o%o!!‘

NS \
P ﬂ%ﬁ.&ﬂ . § VB(ZZ - 59) - a2y (.g.\/s(rﬁwbﬁ)) .

. (12 - b3) VB(12 = b3)

. 27BIL

(D) Column Analogy does not apply.
(B) Slope Deflection is not commonly used.
(F) By the Method of Virtual Works
The solution of this problem by virtual work 1s quite tedious and
the likelihood of making mechaniecal errors (in elgebra, etc.) is great.

It is shown here principally To indicato the method of atbtack for euch

problems.
P
dee a l b o
i b 3
1. 8 :
l: "1 1‘ba .
1
R = Pb/L & R = 57/1.
re (L~-8)1L * = 8/L

ieat s be the distance measured from the left end to the poiant of
maximum deflection, and let the unit load bs applied at this point,

In setting up the expression for the work dome by the portion of
The beam to the left of the load, let the origin be taken at the loft

reaction. Then for values of z between zeroc aud g, Hx = ?-P%E ¢ and
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B = ?‘;‘ X o Forthain‘bemlbetmenxﬂsandx*lsMz‘%-’u;g

Lo8)yxe(x=~s),

and m, ®
For the part of the beam to the right of the load, le®t the origin
be taken at the right reaction, For valuss of x bPetween zero and b,

Pax 8X
B&“T'm"‘x"f“' Then

(1) BI8 = ;C P"(L—‘I“-;)‘a"‘ + j:a ;sz[ih_i_'lz - (x . s)] ax

& (b Pasx?dx
fo L

If the indloated operations are performsd, the preceding expression

reduces to

(2) Eu-g';‘;u--)-?b“s+£‘§+%§!m§‘%a+%

. _
or.i“%-&--hae+maaﬂha+zabac

If L - b is substitubted for a, it is found that

(3) EL. (12028 -

In order to find the walus of s for which the deflection A is a
maximmm, the first derivative of A wi th respect to & may be set equsl

to sero, ead the resulting equation solved for s,
Do (12-17) - 362 = 0
s = 3 VB(12 - b?)
Now, plecing this value of s in equation (8)
G - (1R - ) L JEEFI T - (BGT - 59 °

2 . he o ————
or Q'QZ%ELla\/S(L “b)

{€¢) The Method of Real Work does not apply.
(H) The Method of Least Work may be used in very much the sams manner

as was the method of virtual work. No solution will be shown,
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(J) The Theorem of Three Homents is not often used for this type beam.
(K) Moment distribution does not apply.

S, Two Equal Concentrated Loads Symmetrically Placed.

P B

]
g

(A) By Double Integrations

For portion of beam between For portion of beam between

HlandPLa PLQMPRS
Hx"Px H:"P"
Eldz EI 4
F&I™F ?"E;'“
2
%E%.%-d-cz -B-I- ﬂu.‘.ci

Ey-Frge-nsc, | By .

wienx = 0, y=0

ce Cp= 0
whonxJia

3
4.%”"(3-1-)"'5 - 8% , of

ml n&




mnx-%,ywa

EI , o 8L2 _sl?  a°
PR T T

- 8 (272 .. 2g2

%
- p—
mnn

{B) By Area-Mcments:

(] I ‘ I £
Pa Pa
SRR AE
il . | i
:ta T ——— . ____:r_&___ N e —— [
L o +

- BreBG-9 3G9

EI 8EI EI 881 6E1

b = e (812 = 4a?)

(¢) By the Conjugate Beam Method:

| I

Pa PII.\

i IR

o I |
(e @ o} y sl S

Rs%(h-a)




- B.?_s_g 1 e & - T2
b= M (maxo) = o (L -a) o 3 mx“z’(z 3“)

Bl jool? o2 o2 o al? o o
P Y 4 £ T T8 ¢ T

B8 = 5y (512 = 4a?)

5= -5%? (512 - 4a2)
(D) Column Analogy does not apply.
{(B) Slope Deflection is not commonly usoda.
(F) By the Method of Virtusl Work:
P P

] |

*_:___‘ax _I »i b @ —o$

i 1 b,
L

R=P
r=1/2
For the values of x between serc sund o
W = P, my = x/2
For the walues of x between & and (L = a)
M = P, mg = x/2
Since the beam 1s symmetrically loaded and supported, the total
internal work of the beam vwi 11 be equal %o twlce the work of one~half

the beam. Then

fa oy
Pr = Pa =
B=2{ == F.dxe2 = o 5 dx
Jo 2 Ja Bl 2

- ) e o 1



Bl , .8  ol? a°
i 2 A R
BI

e -4- (812 - 402)

A= m (312 = 4a?)
(@) The method of real work does mot apply.

() By the Method of Least Works:

S8inse there is no load meting et tho center of the besm where the

deflection is a maximum, it will be nscessary to apply & dumay load of

gero magnitude at mid-span.

| 1

{ i
&*———a-—-——-u:-‘; ‘;P il
i
L
R=P+Py/fp
Ua-é-gf%z

sm(/ (Px-o )a.«e-dfwa(mei;-)adx

) Pyx L/a
BIA EI f Pt + ‘2,,) % ax +J; 2 fpe

undoinod?ivFO
EIﬁﬁf?xadx+j;‘%Paxdz‘ s from which
o
Q-P-.'i-— 2 2
) 2431(51‘ 40.%)

(J) The Theorem of Three Moments ie not generslly used.

(K) Uoment Distribution does not epply.
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load Tniformly Distributed Over the Entire Longth of the Beam.

_ w Jbs./ft
e

.S
: s

. - Eg:

. a

(o) By Double Integrations

Elg Mx Lz wxa
szg ;‘?-14-"‘-— ;'%';a»cl

a3
whonxélfz.,%ao, ;’.,clsm;gif_
wix® wx* wlfx
Ely=<z -2 ~~2¢ *C2

mnx-o.yEOQ:?ocaao

whon x = L/2 , vy = A

wL‘ & wLG
B0 = - - e -

Swl®
-

pu D, W
L ° BY

(B) By Area-Moments:
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(C) By the Conjugato Boam Methods

| !

wi® 1

2481

wL® L
b= M (mex.) = 3T T

(D) Column Anslogy does not apply.
(B) Slope Deflection is not commonly used.

(F) By the Msthod of Virtual Work:

FEETERETYSS bor bao /et f {TTRTTTENT]

i i 3

1 1be
' 1 -

R= 2
r=1/2

Since the beam is symmetrically loaded and supported, the inbternal

work done by the beam is equal to twice the work of ons<half the beam.
Then

For values of x betwesn gero end 1/2

2
-5
=/t

‘”1/2(% w3t
&

2
&HETJO = dx



g m wl.é
BT
(@) The method of real work does uot epply.
(E) By the Method of leesst Work:
Again, since there is no concemtrated load acting at mid-span,
the point of meximum defleootion, it will be necessary %o apply a dvemy

load of zerc magnitude at this point,

IR N T
& é

e e

f’&medx

Pixa
MsTTT

2 ) % 4 @
EIqu Ta»-*—_“-’g-a} dx

Em-sz-:p- ?L/a (—-4%’5 %ﬁ)‘

Fy

ar.dsinoeP = 0

Enn(‘:’/ wlx? "“'s)dz

i m 31
(J) The Thsorem of Thres Moments is not generally used.

(K) Moment Distribution doss not epply.



THE CANTILEVER BEAM

1. Conceatrated Load at the Free End,

P %
4 g
R /
Z
L N
(A) By Doubls Integration:
BI %R HI f| o« PR
= ‘g% o %’E * 0y

2
when xﬂL,%ﬂ'Ogo"oclﬂ%m

8
when IEpr-Og o%ca""f%—

when x* 0, y= A

a = EL2
B1

(B} By Area-Momsnts:

PL L 2L

b= b= -FF o FoF
- PI®
8 .

(C) Ly the Conjugate Beem Methods
The end of the beeam whioh 1s free,in the real beam,becomes the

fixed end of the c:mjugata beam, and the fixed end of the real beam
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bevomes the free end of the conjugate besm.

”s L

e

A
&

ﬁ-n(m")s“'%o%a%&

PI‘S

b= &=
It eéhould be noted that, for the canbilever heam, this msthed is
exsotly 1like the mothod of Area-Moments, except for the somewhat dif-
ferent approach which is noticeable only iun the differense of the two

identification skstohes,
(D) Colum Analogy does not apply.
(B} By the Slops Deflection Methods

The reader 1s referred to page 5, part II, of this report for o
discussinn of this method snd for the basic equations of slope de=-
fleotion, The method will epply directly for the cantilever beam whoreg-
as it applies only artificially to the simple beam, In this (first)
application of the method, the gemeral basic equations will be shown
as woll as the specific equaetions for this case, so that the transe

formation may be ensily comprehendad.

{ 2

| 2

e ,,sq'.-—- o #ﬂfrb
L
"

(1) My, = Uy + Eofao, » 28, - of)
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(3) 1, = Mg ¢ %{2@“ + 48 = 3%)
Then, from equation (1)
(3) 0no+%1-(ma+0=a%)

apd from equation (2)

BI
4 mPLﬂ0+—-(z@ $ 0= G...)
(4) 5 4

From eqguetion (3)

o= 3

and if this 1s substituted for 9, iz equation (4)

(5) <PL= 0 + 2% ( 5“) (=38)

PLB
A= BT
(P) By the Method oﬁ_’ Virtual Work:

d .
- 7
< - “l =
i
f'
¥ L g
1 1be =z

% & o Px

By = =X



(E) By the Msthod of Ioast Worlk:

Wiz _ | Pl
2BI

ue | ZET

et @

vy [®
pedgel Bz

w0

PZP
b w7

(J) The Thecrem of Three Moments doos mot apply.
(K) Homsnt Distribution dees mot apply.

2. Concentrated Isad at Any Polnt.
3

e e

i

TS NHTTURRSY

{A) By Double Integration:

Since the beam %o ths left of the load P is not sudbjeoted to bend-

ing--i.6. the radius of curvature is infinitely largse~-=it will be con~

venient to seleot the origin at the load point and to determine the

deflectlon yp, under the loed. The deflection A of the send of the beam

may be found by adding %o yp the additional deflaot:lon(QP .+ a)dus to

the chenge in slope at the load point (see skstoh below),

e e -

L)
o
}Q—-—-—- a ™
—

s—

] %o ‘é;" P
P

To determine Tp? consider & beam having & length of (L = a)c

Then

L - a)®
Ip * %3



RISy =3 = Fx

2
mn:-li“ap%-o’ooacl.%i
T - 2
whsnxno,gwepnp“ Ia

P(Léfa)a & Pa(l - a)?

A=yp*+ € oa=
i P g%a'm-a)

(B) By Area-Momentss

GP!L = a!
B

I

NN

Q*M(Mo)aﬂ%ﬂo%(b")("&M)
a-ﬂlﬁﬁ %(8&-&21.-»2&)

. )2

(D) Column Analegy does not apply.



() By the Method of Slops Deflactlons

Thies method is, in gemoral, rather cunbersome when applied o
statiocally deteorminate beams. Since the mothod entails the use of the
fixed-eond momonts, which themselves are sometimss difficult of ooium
tion (being statically indoterminate), the slupe deflestlion theories
are seen to apply more readily to indelerminste csses., However, o
solution will be shown here to demonaitrats the use of the method, and

at the seme time, to illustrate ite comparative awkwardusss.
P

- 8 b

TI

The %wo basic equations in thig case ares

(1) Oﬁw%é%éﬁaAvﬁon%)

o Poa? Bl 64
(2) ® —I-:Euéimgzaa-&oaz_)
The solution of equation (1) for 6, gives

Pola 33
QEEBT*EH
Tow, if thls value for O, is placed into equation (2) and the

result ing equation solved for A, it is found that®
7
A= 77 (202 4 ab - 213)
apd gince b= L -

A= -—@—P(L *;E (21, + 2)

(F) By the Method of Virtuval ;‘iorks
; A
A

¥ a

% ——]

TS

1 ibe



36

For wvaluea of x between goro and a, 3, is zerc and the product
Mu is zero, therefore the work equation will scover only the portion of
the beam to the right of the load, where
| M, » = P(x = a)
and D = =x

Enﬁf P(x - ajzdx = {Landzu {Lledx

BIA 18 2° al? ao°
2 AR e I

CEIL

- @ 212 = 208 = %al2 » 32 e 21° - 3a1? ¢ o®

P(1 - a)2(2L +a)

A= T

(G) The Method of Real Work does not apply.

(E) By the Mothod of Loast Work: :;
/

iy -~

— « Z

e

] e

oo 5 ,;

L -~

~—

Pi = 0 [

For the walues of x between gerc and a, M, = = Pyx and for wvalues

of x botwoen a end L, My = ~ Pyx = P(x = a), Then
Ue i Fa("Px)adx"—]""fL(-Px“Px#Pu)adx
Eﬂo i &I, ‘3

. L.
wm-mr%%--fsza-rj 2(«Pyx = Px + Pa) (=x)dx
o & 1

since Pi-o
3 e 2 a
gna%ﬁ%.ew_o%,ﬁomwhioh

(J) The Theorem of 'I'hrae Momonts doeo not apply.

(k) loment Distribution does mot apply.



8. Loed Uniformly Distributed Over the Entire length of the Bean,

7777w tniden 7707

e Xt
: L

VAV

(A) By Double Integrations
d 2
Bl éé .My = o WT

EI%*@“—;@%

2
mn I'L, %30’ oooclii'zT.

when x® L,y = 0, < Cp= = Tm
when X =0, y= 4

N o M

(3) By Area-Momentss

TV
3




{C) By the Conjugats Beem:

™
—

——

-] ,
e L :{
S—

e

e~

ez 281

T

“"'!-..,_

~—

2
A= M (mex,) » ~ 22, L 3L
o) 21 °3° T

wi®

e

381
(D) Column Analogy doss 20t applys
(BE) The method of Slope Deflection mey be applied; but, for reasons
previously stated, ie too wnwieldy to warrant sonsideration., The sams
gonoral mothod es that shown under 2(5), page 36, applies.

(F) By tho Method of Virtual Works

|
-
777 e e 77 A
- = o -
W » ':’:—
1 1be . L
My == S
mx 8 = X
Lo wl®
ol Mt 2 - e 2

{G) The Msthod of Real Work does not apply.



(E) By the Method of Isast Works

e
Fo
S e free 77T
— =
L Z
Z

(J) The Theorsm of Three liomsn%ts does not apply.

(E) Moment Distributicn dose not apply.

BEAMS FIXED AT ONE END AND SUPPORTED AT THE OTHER

i. Concentrated Losd at Any Poinb.

P L
| =
< a i b ———sd
¥ 4 =
A; ;B
"—*-z——-ﬂl ;
8
= ~
(A) Ry Double Integration:
For values of x betwsen Por valuss of x between
¢ and a3 ) a and L
Biggﬁxﬂﬁx Ez%“;%emnp(xaa)
dy _ px® dy , Bx2 _ P 2
BETTh BLgEe g g E-afec

]

1

82
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o0 1 ——ﬂT
whonx-éla
2 2
s s E L SRl
g 2 2
sgl= B0, B
Gthh*g-T
- Rx®  m%& _RmL% Bx® Fbx
5y tZ=-F=rc, |BEycSpeoghE-aPe=
m.axéc
mnx-o»y-opacocamo
when X = &
. B Rl.aaaha ﬂﬁ RLaa.q_cn
ke aad T;T e
0= cj

vhenx = L , y= 0
.".na%:(szwb}
The nmoment at B may then be determinad statically.
HB_-RLuPb-%;-(SLﬂb)L-Pb

Mnﬂw D (L +8)

The deflection at any point may be determined frem the equations
of the elastic curve, shown ebove., For any problem involving numsri-
cal vnlues the ocumputations would be guite simple.

Ifa=bs= %’-ﬂw above expressions for the reaction R and the
nomont et B becoms & = gg and My = SE-

I1f more than one load aots on the span, The resulting resotion
and end memeat mey be found by algebraically adding the reaction end

momant duws to each load ncting separabely.
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(8) By Area-lomontss p o
g: a ,E: b
A e pory = o ]
i S S, . e -l- g = _—.{;-‘E:’
" . =
g |
__..]F......
RL
' 54
£
EI
SEBHESS, Zomeen

The tangential doviation of point A with respsot to the taugent

drewn at poiat B ie equal to serc.

= isL L -%u&‘}i b
b Bl ; A El'a(‘“'g‘)
RL’

EIT' TBT (d&*gb)
2= Px (2 s @) = e (31 - v)
The moment at B may be determined by statics as shown under 1 (A)-

(C) By the Conjugete Boam Methods:

r—
r: 3

RL
BT

AI . :_\tfi |-

o]

EX
S 2

Re .&3_1. (L2 = b?)

The deflsction of the real beam at both A and B is equal to zero.
Therefors, the moment in the conjugate at either A or B may be set
equal to zero and the resulting egquation solved for R. It will be

most convenient to teke moments ebout A in order to eliminate the mo=

men® of the conjugate beem reaction.
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Solving thies equation for R gives
R= %; (3L = b)

(D) By Column Aunalogys

In the use of the Colwm Analogy, the anelogous column is loaded
with the moment diagrem for the structure sallered ia any way so as %o
make 1t statierlly determinate, However, it is important to cheoose the
most converient curve of determinate momentss Furthormore, the stati=
cally determinate conditlon should not be achlieved by imposing a con-
dition of restraint where none already exists., For example, if the
structurs under comsideration in thls problem were to be mude stati=-
cally determinate by freeinz the fimed end and fixing the hinge supe
ported end the colump snalogy could be applied ¥o determine correctly
the moment at the fixed end B, But the method fails whean it is
attompted vo show thet the moment at the hinge A is zero.

1t must be noted that, since it offers no resistance to rotation
due to moment, a hinge is considerad to have an infinite elastic arsa.
Thus, the arpa of the analogous cclumn is lnfinitely great, and the
B/A term (of £ = P/A ¢ Me/I) is infinitely emall and need not be cone
sidered. Both the oentrold and the kern point of the infinite column
soctlon 1lie at the hinge.

In this oase lot the analogous column be loaded with moment curve

for a simpls spano.(see sketoh on pege £3).

Pub 0—1-01...&-].&
IR S T L
' BL°F
[‘!B““sB“Mi 0= ?—,(L@a)



o L + 8
E— 1
I ]
!
Infinite Loy ?i%‘i
Width -~ A i N
| i/B1
- a -—+————~ b ——
- L

(E) By the Method of Slope Deflection:

Thies msthod, of course, implies a knowledge of the fized end

mements for & given span.

Benge, the use of slope=deflection in the

solution of this problem might be considered somswhat questionable.

However, the solution will be shown to illustwrate the method.

P
-

» a i

Aﬁmi““'w..—’* i
. L =
“Fm”“‘r:e’* “FB&”%.;E

Mg = 0,8 =0,4=0
(1) Hm'e%b;& 31(49 +0=0)w0

Bl
5 (20, + 0= 0)

@ 1, - 52
From equation (1)

P2

o B 4311. s Yhen
a?ban) PaZh . Fb%a

“na ""3" 'I." Tt RT

Mpp = T(L*a)

48
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It should be noted that the sign of l‘;m is positive because the

resisting moment at B acts in a clockwise direotion, which is in ac~
sordance with the assumptions made in developing the slops deflection
equations.
(F) By the Mothod of Virtual Work:

Let the unit load, in this case, be applied at the left reaction,
S8ince there is no deflection of the elastlc curve at this point the
work dons by the upit load is gero. Therefore, the internal work equa=

tion may be set equal to zero. b

E- e

2
-3
k)

A

- R T NSO ——
P"'llbo%—_—: i

Forvaluesoi’xbotmenaeroandg_.t(xnkxandmtnxo For

AT

valuonofxbetmana.mdl.,H‘wanP(x-—n)nndnl-:o Then

EIyA-OH_é’Rxad:+éLHxad:m{LP(xma)xd:

The moment at B may now be found by statics since Mg = RL = Fb,
(G) The Method of Reel Work does not apply.
(E) Ey the Mathod of least Works
As has been pointed oub, this method is substantially the same as
the method of virtusl work., Here, there is no deflection of the olag-
tic ourve at the left reaction. Then for valuss of x between gero and

8 Eznnz;undforva.luosofxbe‘bmanaandL,H:-Rz.-P(:-a).
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M2z
=1

L
m-{a(m)ﬂu+{ (Rx - Px ¢ Pa)%x

U=

L
nﬁ-o-{'(mﬁn{ (Rx = Px + Pa)udx
This may be rewrittsn

0-[h2dx+{LRxadx=z‘P(x-a)mdx

which is exactly the same form as the virtual work equation. Therefore
2
R = 22w (5L - b)

(J) By the Theorem of Three Momsutss
In order to apply this theorem, an additional spen of zero length
mist be assumed to extend beyond point 2 into the wall,
v
(2 (s)

//
& r'd
L =L v

"La = 0

1)

R
The simple moment diagram for span 1.1 is shown below,

L+a

. Pab

L
BA.% BA X
+ 2 (L, + L,) + ML= B 2

2 2 2
5y 1 e g
o+zp.la(1,+o)+o-.,s§?};¢%°1;;no%

2L, = = 2 (L + o)

R
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{E) By Moment Distributions

This methed, juet ms did the method of slope deflection, mast pro-
ceed on the assumption that the fixed-end mements for the span are
elready lnown, since the fixsd-end moments are morely redistributed as

the joints are allowed to rotate in turn.

; f n

i
&
= Fb% Fo. B, Moments
Le
» Poéa Balanoing Moment = Pbla
Le Carry-over Momeut 2L%
J i Pab (2a. + b)

The fizsd-end moments are sssumsd to be negative if the top fibers

of the beam are in tension. The carry=over fector is “-15 o

2. Loa.d Uriformly Distributed the Bnbire length of the Beeam.

AR w 1bso/T%e IHHIHHHIHH%
& % —i /
R
(A) By Double Integrabions
o e - e B
B g = %E B
wi® RuL2

mnan,%'-G. o CI'T""E—
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- Rx® wmx* wiPzx Ri%
Bly==g~~%3% *"¢ ~"% *Ca

wion x= 0, y=2 0, 00 Ca=0
wvhenx = L , y= 0, so

RI® wi® wi® RI®
T e eTyree

Re£w
o m - fe R
The deflsction at any point may be found by the use of the equa~
tion for the elastio curve; shown above. If the point of maximum de~
flection is desired, the equation for the slope of ths slastic curve
may be set equal to zero and solved for x.

(B) By Area-lomentss

\\\\\\ w Ibe./rt. \\\

A i

’f
\
\\

-ul?
2Bl

e

21, 2
tA‘OE%a%ng“%oéa%g from which
R'ﬂ-g-wl.
w2 wi?

To determine the deflection of any point on the elastlo curve it

is zecessary only to take the moment of the area under the M/BI disgrem



between that point and B, since the tangent at B is parallel %o the
originsl position of the beam.
(c) By the Conjugate Beam Method:

|
G

2

8
ki

—

The momend: in the conjugate beam at R is oqual to the deflection
in the real beam at R. It is known, however, that this deflection is

EOT00

RL L 2L wl? L 8L
=0 FF 7% “BW*3°7T

R= -g-wL

If the shoar equation for the conjugate beam is set equal to zero,
the distance x, to the point of maximum deflection may be found., The
maximan deflsction thén will be equel To the moment in the conjugate
beam at this point.
(D) By Colunn Analogy:

let the analogous celum be loaded with the moment dlagram for a
gimple span, remembering theat the centrold of the infinlte column area
lies at the hinge (ses sketch on page 49). ’

Y _ i wi? 2L 1 _12,_01‘
5 -f Gl esmca O So.} 8 05 aEI‘
BT BTETL T
o .
wi,2
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wL? wl?
CRE R SEEEL oL Eb of By statics, R = £ vl

L 3
wL2
“8
Infinite. a ;
Width A B ;,1./31
L
(B) By the Method of Slope Deflections
o
=
—
.--"""!
o
=
wi2
M, =0 a - = 6 meeace
A » O o MFm MFBA 17

2 EI
(1) um-w%’-«i—(mk.ro-o)-o

2
(2) Mma%-q.i_(aea-»o-o)

a2
From equation (1) 8, = %ﬁ: s ‘then

wi?  BI 21 _ wl?
Yoo " YZ" L ° 4EEI " 8

“he positive sign indicetes that the resisting moment at B acts in
a clockwise direotion = i.e., there is tension in the top fibers.

(F) By the Method of Virtual Work:

BANAAN N M 1bso/26. \ A\ N\

¥

W
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RI® wi®
O8=yr ="

n-%wz.
3 wi® _ _ wl?
e Tt Ao R et
(6) Tne Method of Real Work dees not apply.

(E) By the Method of leaat Worlks:

N\

LJASANNANNNT Th6e/B6  ANARNN
-fm P '—*"—"‘i

B

IS

L - .

NN

2
W
Hx""h-—-z-

L
ZEI0 = { (Rx - wx?)%x

L
s 0= SuU _ wx®
=1y, = 0= B/ 3% : z{n:--r)m
which may be written
0 fhadx era
= - d:
L Jo z
from which, B = 5 vi

(J) By the Theorem of Three Moments:

1\;\\3\\\\ ™ Tbeo/fte NN\ \

- L .

A

]

J T

| &
n

Simple Momsnt Diagram



WL, & 2p(L, ¢ Ly) + gLy = = 6A1%) _ BAgka

=

2
o+21{a(b+0)409=§§3'=-.-§14 %o%-o
- o W2
oe ekl S
My = - wL/B
(K) By lMoment Distributions

A MY v tmseZze 8 VL VAN

2 L 3

FoB ol -3

]
i
e
S
IE%I'
n

IH

L%  Bal, Mom. Cs0oMs —WLQ

&

0 Final Mom. = % wi?

BEAIME FIXED AT SO0TH ENDS

1. Concentrated Load at Amy Point

.

Y/ ////) 7/1//4

AN

(A) By Double Integration:

For values of x betwoen | For values of x betwsen

¢ and as e and ILs

EI%“M:'MA_‘:’?AX Elg-%‘ua*v’&!'“?(x*&)

2

b1

v,z V,x2
. X a
BI GL o X + e & Gy Bl ghe Myx o e 2 (x - 0)2 2 C1
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mnz-o,g-o,;oclno

when x = a
2 2
M&aaa-v.&a = Aa-rvna -0+ (!
- : 8
0= Cy
Mx2 Vx® Hx2 Vx
- ik A A A P
Bly==2—*%—"C Myt "gk-aPscy
whonz"-o,yﬂo,n".ca-o
when x = a
Moa2 7,a° | Ma2 Vo2
S ot S -0 ¢ (!
o l"r' 6 2
0=2¢,

whanx-L,yﬂo,and%=O

Therefore

v,L®

A P 2
MAL+T -E-(L"ﬂ.) a 0 (1)
¥,12 v,18
3 A Rors o
e s wp{Low 0 = 0 (2)
Multiplying eq. (1) by L/3
MLE V,18
A A PL . _ 2.

Subtracting eq. (3) from eq. (2) (note that L - a = b)
M,L2 2
_%_.-»cu%_(z.ab)-o (2)

2
end from eg. (1) Vh-m%g—*—b)-
The other two unkuown reactions, My and Vy, may be fouad by statics.

BI.ijml'-‘;ab

Pa?(a + 8b
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1t should be observed that, if the two end momsnts for any span
be known, the end shears may he determined by adding to the simple
cshear at the end of the greater moment the aligebraic difforence of the
end momente divided by the span length. Therefore, if a is greater

M5 - My e ok
than b, Vy = 3> = —=p== , aad Vg = §& & —ret

Ia this problem if e = b = 1/2, it is found that M; « ¥; = ~ PL/8
and that V, = V5 = B/2 ,

(B) By Area-lloments:

P
“%: a . _E b ‘ '
i —
_\‘ x\“""--_._._,....-»—""l, _4
X L i
il

M/EI Diagram Shown by Parts

The angle change betwesn A and B is equal %o gero, and the tan=
gential deviation of A from a tangent drawn to the elastic curve at B

is equal to zero.

A= Q= —— @ L P o @ M = Pb o b
i BI 7 EBY 2
i Val? 2
0= M,L + e (1)

IH L, VAl 2%, 2b
t -0”._‘&01-0-4' °L°_-2,b§ s
A BI 2 B °¥°F BTEINCE
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M2 V,I°
0o f— - B (50 ) (2)

Multiplying eq. (1) by %L.

e S i
s sl Sk (3)

Subtract eq. (3) from eq. (2)

-M, L@
..%..-»oe-%i(aq-zb«-zm-o (¢)

2
By statics 1t is found that My = -;’%i‘l and that Vg = wa

(C) By the Conjugate Beam Method:
The ends which are fixed in the real beam becoms free ends in the
conjugate beam, which is assumed to bo held in equilibrium in space by

the pasudo-pressures exerted by the M/EI diagram,

L.‘.a "‘Tﬂ L+b
—————" 4‘_ e Pab
e IEY

& —>
A,(/ |
M, gl
& .-.--
5 o I e ey B
Bl
Pab L L+a . L 1 gL
Eldy = 0= My (oonje) = F= o T T5— + Yy oG+ Ug T o 5
0 = Pab(L + a) + ¥,L2 + 212 (1)
= JPab L L+b L 2L - W
EIAB'O MB(QOnjo) Toﬁ‘o S "u‘an?.s ‘.%050"3‘
e 0 = Pab(L + b) +mﬁza+u31.a (2)

1tiplying eg. (1) by 2
0= Pob(L ¢ a) + 24,L% ¢ %La (8)



85

subtracting ey, {(8) from eq. (2)
0= Peb(L + b = 2L = 22) = O - SHzL? {4)

mBLz = Pab(-3a)

= - 22

M, = =£%§& from eq. (1)

(D) By Column Analogy:

Lot the analogous columa be loaded with the moment diagram of o

simply supported beam.

- 2ab , Pofy _ Pub | Fofp
M,_B 2L ¥ 4 1T

"%"Maa““ia“o“a%?""%‘?

(B} Since the basic equebions of the elope doflection mothod contain

the ‘terms Mﬁ’a‘b and %‘ba” and since M, = .MFe.'b and HB = MFba." it is oot
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Possible to use the method in the sclution of this problem.
(F) By the Method of Virtual Works
/

P
G do» %
C * n/if

MA_-E'. %

vA - (p“ 1 lbo)

[y

First, let a unit load be applied at tho left{ end of the beam,
which is taken as the origin. For valuss of x between zerc and a,
ImeA-r?Axandn&-xa and for valuos between a and L, llxwll&-i-
?Ax-P(:-a)nndmx-xu Then
BipA = O = f (M,x + ?Axa)d.x + { (M + VAx’ = Px2 + Pax)dx
from which it is found that

3M,L2 + 2V,1® - 2PL® ¢ 3PalL® ~ Pa® = 0 (1)

Next, let tﬁe right end of the beam be taken as the origin and
the uwnit load applied at the right end.

For wvaluss of:!:betmnnuroandb,l(x“lla +?Bxandmxﬂxa and
for values between b end L, M, = My + Vgx = P(x = b) and m; = zc Then

= - 2 2, 2
Blpb = O {b (MB:: + Vpx Jax + f (HB:: + Tox Px2 + Pbx)dx
from which it is found that
saaaﬂr.2 @ 2‘3‘31.3 - 2PL® ¢+ SPOL? « Fb® = O (2)
rewritten
2 3 . 8 =
8,12 + VL Fb 0 (3)
Now, multiply equation (3) by two.
2 s _ s .
GMAI_' 4 Z‘ILL 2Pb 0 (4)

1 equation (4) is subtracted from equation (1) it is found that
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8,12 = = §Pab?
M, = - 252
V, may now be determined from equation (1) and M, and V, found by
staties,
(G) The Method of Real Work deces mot apply.
(H) The Method of least Work may be applied in much the same way as
was the Method of Virtual Work. Instead of applying a unit load at
each ond in turn, the partial derivative of U with respect to V‘_ ig set

equal to sero.

(3) By the Theorem of Three Momentss

s -
3 RS A
N N =
¢ ) (&
L ' E i
i \“ ‘ "'{
o
!
Alma

o+zua(0¢1.)+uaz,no=a%,,

zmaz_.-;uax,-«.%tl(z.-;b) (1)

o .8 Pab L sL-b-a)
E;;Ii-ZHe(L-PO)*O ‘”'L-nTbeo [

MaLe-aMaL*wE%E(Lv&a) (2)

The simultenoocus solution of equations (1) end (2) produces the
values
Mp » = Pab?/1.2

Mg = - Pa%p/12
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(K) The Method of Moment Distribution does not apply simce there ie
no rotation of the joints when the load is applied.

2. Load Uniformly Distributed Over the Entire Length of the Beam.

AN 180/260\ V)V
e & ]

< L

Y/ %////z/

(A) By Double Integrations

wx©

d
EI%'I&“H&+VAI*T

v, x2

EI%'“A‘*'%’“%"%

mnx-o,%mo,pooqcl-o

M x®
Bly ~ 2 _+
7= -

vhen x = 0 » ¥ 2 0, 0o 63 = O

whenx-L,gno,mdyﬂo.thomfom

=R w ;

ei, + SV,L - wi? = 0 (1)

VL -wl®= 0 2
12, + 47,1 Wl (2)

If equations (1) and (2) are solved simultaneously 1t will be
found that
v, = wl/2

M = - w.2/12
k. wl?/1

In cases of this sort, where there is symmetry of loading and
support, some time may he gelned by observing that V& “ TrB - %Ié s Thue
removing the necessity for the simultemeous solution of two equatlons.

By synmetry, also, Hﬁ = HB o
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The maximmm deflection occcurs at nid-gpan so when x = -{z‘,'- 2 Y= A
in the equation of the slastic curve.

HAL ?AL ‘
BIA = S ¢ o= = Fi7

& wi® wi®

e B B e

A= _ﬁ_
384E]1
(B) By Area-Moments: E
" ?k\\\\\\\\w Ibﬂc/“&\\\\\\\\_ *E
AT L=
X B i
N
) 2

e

The deviation of poi.n;b A frem a tangent drawn et point B is equal

to geroe.

.2 w2 L, % L
t‘&'o ?omubo!*ﬁnlloz

-”1 2
H.& 1z wL
411 other unknown recctions may be found by etatics and by taking

advantage of the symmetxry.
With respect to a tanpgent drawn to the elastic curve at the mide

point



60

A e Sl “wL" - wl®
3e4B1  O6R1 | S84BT

(¢) By toe Conjugnte Beam Methods

¥
N
S 11 111111 N—
y *|/ 2 |“ MB.-,,H}L
= = BT ET

The defleotion of the real beam &l point A ia equal to zero.

Therefors the moment in the conjugate beam at A is equal to zoro.

M
z wi? L A L
suBEIOLoE’QBIQLQ'ENO
wi@
¥y ° - 1y

The maximum moment in the conjugete beam is at its center and ie

ecual to the maximm deflectlon in the real beam.

J¥2 2z L 3 L ¥Mop g
bt 2h L E1 EF &k £F L

(D) By Column Analogys:

\ ,,La
/ .
. B, /1
E-— L i

¢

Tha statioally determinate condlition chosen will be that of a

eimple opan, which provides an analogous column losded ag shown above.
Vote that the load is a comcentric load and that Hn/I will therefore

bo equal te zeoro.
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It may be obsorved that, since the load is concentric, the indeter-
minate moment at eny peint in the beam is equal to the P'/a stress in

2
the analogous colunmn, io.e. ?2‘-

(B) The Method of Slope Deflection does not epply.
(F) By the Method of Virtual Works

Lot the origin be taken at A and ths uait load applied at 4 so

that pA = 0o o
PS . =
o \ANNNCET2 NN =2
e j ok 2

\

V,+(p=1 1b.)

2
wx -
Mx-MA-bVAx-——z »B_=x

L 2
sips = 0 = / (M, ?axw“—%-)xdx , from which

IZMA-t-BVL-SwLauO

A
1

Now, since VA = g—

13“,& + 4wll = 2wl = O
Moo= - w2
A 2

(¢) The Method of Real Woric does not apply.

-
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(E) By the Method of least Work:

The procedure closely parallels that shown for virtual work. Again,

the partial darivatl.m of U with respsct to Vy is equal to zero. Then
H: H - V X o

agm-fL(n -l-?A:-T)dz
mxano-mxm-fz(ﬁ*eva -%-g)m

Note that this equation is the same as that for virtual work.
Therefore
wiLe

(3) By the Theorem of Three Momentss

, 2\\\\\\pzbsa/n\\\\\\§
DENOY OEEC
A K
i La= L §
iLl"O im = O
| wL®

!AIEO -&2!11?- Aa..,ol

wi® L
o+au1(o_+1.)+mmo-=ro—i—z—o-§

wi®

AR Sk 3

By symmeiry l&l - Moo ‘therefare

&L L= - "Ls
151'1.2
oh*=-1
(K) The lMethod of Moment Distributiocn deoes not apply.

3, Load Varying Uniformly from Zero at One End to a Maximum at the Other,

This problem is included oaly to point oubt & speclel method which may



be applied teo the solution of problems involving distribubed loads.

The
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analysis will first be made by msans of double integration end thea by the

speciel method so that there will oxist some basis for somparilson,

(A) By the Method of Doudble Inbegration:

s
w8
PN
NG
PSSy
| B
NS
Az/ \(\!\B
/-n-—-——-—-—x oo
= N
Z : N
- RN
a h = h iﬂm \‘
= 2 °T L% N
d Jqx x =X
EIE?; -HI-H +Vx-L s e F
EIl & = M,x + k‘ -Wx® ¢ (c, = 0)
T e !
M, x2 an 5
BEly = A. m@""o:. + (Cp= 0)
when x = 1 , $E= 0, and y = O . Whea $X = 0
YAL WLR-
].ZIIA_#GVAL-.WL'O
wieny =0
2 a
ML VA.L m-o
“'5"' 6 " 60 '

(1)

(2)

17 oquations (1) and (2) are solved simultaneously it will be

found that MA = = % and V‘a m % o The moment snd shear at B ars

found by statios %o be My = - = ond Vg = {5 e



(B) By a Special Method of Integration:

\-—mm
N s
oy 2%
\ F2 e
X PN
H \
E N
\'-m.a‘..
AL 4B
-~ N
s x i 28
P P
A e L =™
A how 2 TQ
- < -ra A

As has been shown proviously, the woment at end A of a fixed-ended

beam due to o comcentrated load P applied at distence & from end A is

2

Gl ?L%‘;.. . Now, assume the distributed lcad to be made up of an

A
infinite numbar of concenirated loads of magnitude dP acting at the

‘ veriable distance x from sud A. Then the differentiel moment at A dus

ik 2
dPoer :) o Note now that 4P =

tothslmdd?wﬂlboduaﬁm
hxdx---i:z'—o Thsn

“A'“%I"exu-x)a’“zzg(x“ban33“"1-*3“)&2

s E
HA"--I-FJ (x%1L2 - 2x°L + x%)dx
[+]
AT "TFIT T TE
WL
W 1w :

The moment at B mey be found similarly.

CONTINUOUS BEAMS

Of the ten methods of analysis studisd previously in this report, all

‘ but three prove to be generally impractical or laborious in the avalysis of

L

“sontinuous beams, Therefore, this seotion will be lirdted o the study of
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only these three methode~=(1) slope deflection, (2) the theorem of three
momente, and (3) moment distributlion., The beams ohosen will be of constant:
cross=-gseotion, although all of these procedures apply as woll %o beams of
variable oross=section. The stiffmess ratic I/L, for which K is the ccamon
aotation, will vary then inversely with the length of the span.

It is believed advisablo, in the interest of clarity, to use oumsrical
valuss for the span lengths and the loads. Since the moment of inertis of
the oross-section is to remain constant, it will not be necessary % employ
& numerical valus in its steed. In gomeral, the basic equations reguired
will not be restated each time they are ussd, It falls upon the reader to
refer to Part II of this report to acquire familiarity with such eguations.
Vihore the fixed-end momouts are mseded in the solution they will not be here

derived, but will be taken from the portica of this report desling vith fixeds

ended beans.
1, Beam Continuous Over Two Spansy All Supports Simple.
2000 1bs,
gt MY
KE e ¢

(4) By the Method of Slops Defleciions

Unless it is desired to debermine the angle of rotation at the
supports, one need be concernsd only with the relative atiffuess of the
spans. As was weﬁously noted, Ky/Ky = Lypfly if the moment of imertia
is constont (eince K is proportional to I/L). Then By =~ KaLa/l._l in
whieh any convenient velus may be choeen for Kp . In this problem ls®

K, = 53 th.enltz’-ﬁ%%ﬂtlu The fPized-end moments at A and B in the
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first spen ere mnumsrically equal to wL2/12, the moment at A being teken
as negative and that at B positive. In tho second span the fixed-end

moment at B is equal to = Pab?/L2 and that at C equal to = Pab/L2,

2
Moy = Uy ® &gg&é)_ = « 9870 fte~1bse

a2
M = = 2000 g © = -« 1125 ft.~1bse
2
My, ® 200009)°3 . 3375 Pt.-1bs.

The following relationships may be further nobted:

(2) My =03 (b) M, =03 (o) M, + ¥, =0

Now, using the basic slope«deflection equations:
Mab==957o+4s(4ea*zeb)uo, or
160, + 8¢, = 9370/8 (1)
M, = 9370 + 8EQ, + 16B&, (2)
M = ~1126 + 6E(4e, + 28,) s or
W o= - 1125 + 2089 + 1086, (3)
Mc'b = 3376 + IOEQb + Z(EBG =0, or .
108, + 208 = - 5575/B (4)
Now, from equations (c), (2), end (3)
80, + 36, + 108, = - 8245/B (6)
From equation (4)
8, = = 6,/2 -~ 169/8 (6)
If equations (6) and (6) ere combined to elimimate 8, , it is
found that
86, + 31§, = - 6555/8 (7)
The simultensous solution of equatioms (1) and (7) show that
o, = 793/8 , @, = =~ 416/6 , and 6, « 39/8 . Then equations (2) and

(3) mey be used to show that M, = 9080 f%.~lbs, and M == = 9056 fio~
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Ibs, which is a olose check. The solution will be assumed o be

correct.
(B) By the Theorem of Three Momontss 2000 1bs.
be |
AL T2 AW 9 "
[ .
d 15° T

"% =15/2 % - 9

: _, =
The gemeral equetion is MLy + 23:52(1.1 + Lp) & Malp » = I;&f"l

e % Agiso In this problem Ml = My = 0o
_ 6 2 1 (15)2 38
0+ eMx(16 + 12) + 0= = 37 7§ (15) F (F00)(28)% 3
€ 1 2000(9
-5z % (12) EEESAIL ()
B4M, = = 422,000 = 67,600 = = 489,500

489,500
na -, oo 54

= « 9060 ft.=1bs.
{C) By Moment Distributions

In order to determim what proportlon of the unbalanced memsnt at
a jolint is tvaken by each member es the joint is unlooked, it is nececs~
sary to determine the distribution factors for the mombers. The dis-

tribution factor for member 1 at e joint where n members moet is
K

K
s R"l g OF ﬁ. o Thus in this problem, the distribue
1 2 30000 n

tion fector for member AB at joint B is 4/9 or 0.445, and that for BO
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5/8 or 0,566, Joins A and C will be unlocked in succession, balenced,
and the moment carried over to B. Thean joint B will be unlocked and
balanced. It will be unmecessary te carry over the balancing moments
from B to jointe A and C, since anything cerried over to the simple
end joints will be reflscted back to B in the same proportion and,
henco, will not affect the final moment at B, To facilitate checking
the tabulations e line should be drewn beuneath each balanciug momsnt.

Here, only one balanoing operation is required. 2000 1bs.
e | B L

LU oo 1beo/23e] {1111 LY
A K=4 B Ew§ | C
3 !? b
157 5 e 120
' |
o445} .5686
= 9370 = 9370 | - 1126 « 3376

+ 9370 Co 0o iy = 4686 | - 1687 C, 0. M < 33TH
Bals M, <+ B00OO 163‘43 Bel. H,

v} = Q066 | ~ 2085 Q0

Pinsl Momente in Fi.=Lbso

It may De seen that there is practically ne differesance in the
accurecy of the three mothoeds, the resuits differing by abeut 0,056
per cent in this caseq

2. Beam Continuwous Over Two Spansp Pixed at One End end Overhanging the

Other
3000 1bs., 5000;Ibae
b —sbe 90 67 1000 1bs./E%.
A E= 2 B .S

| N b 100 s

AR
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(o) By the Method of Slope Defleotions

2
My, = - 3000 25 80 - . 4320 £o.-1bs,
My = 3°°‘1’59 8 « 8isd #t.51ns,

1000(10)2 _
Mo = = Moy = = -—1-2(-2— 8350 ft.-1bss

Knovm relationshipss

() M, = = 5000 £t.=1bss, {v) N, +¥ =0, {c) e =0

8lope-deflection eguations:

L, @ = 5000 = = 4320 + ZE(49, + 2,) , or .

8% +49b-~sso/s . (1)

a

uba-eéao-z-zs(zea-rwh), or

M~ 4E0 + 8B + 6480 (2)
B, = - 8350 + BLQ + 0) , e

M, = 1288, - 8330 (3)
" 8830 + /(0 + eeb) s OF

ch.a 6EQ, + 8330 (4)

From equations (b), (2), and (3)
49, + 209, = 1850/B (5)
Fow, if equations (1) and (5) ere solved simultencously, it will

be found that &, = 122/B and that §, = = 146/ . Then from equation

(2)
¥ - 4(-148) « 8(122) + 6480 = 6872 ft.=lbso

and from equation (3)
%, - 12(122) =« 8830 = = 6866 f.~1lba.

and from oquation (4)
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My, = 6(122) + 8330 » 8082 ft.~1bs.

The six foot~pound difference betwsen 1§, and “bo indicate & emall
error in the simultanscous solution of the equations, but the error is
not large emough to oause any worry. 7To get an exact cheok, oune should

solve the equations on a caloulator and remeve the errors by successive

approximation.
(B) By the Theorem of Three Momentss
1000 1bse 30004 ibso l
Loteem R e ] &
° 9 . ! 1000 1ba./ft.
(©) (2) 3) 19
1 i .I
L, = 16¢ Ly = 100 Ly =10
4 Az
{ﬁ g & 70 =gl —aie— B0 --nl

By inspection,; HI e = BODO fto~1bz. Then for gpans 1 = 2 and
2= 32
- 1 3000(2
=5000(18) + 2Ma(16 + 10) + Hp(10) = -g-g —g- o (5 S (8)

“%6 %lomaomﬂ(s)

~76,000 + 60Ma + 10Mg = = 269,200 - 260,000 , or
60Ma « 10Mg = = 434,200 (1)
How, for spans 2 = 8 and 8 = 4:
10M, » 20,(10 + 0) + O = ~ 250,000 , or
10, + 20M; = - 250,000 (2)
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The siummltansous solution of equations (1) emd (2) provides the
values Mp = « 6870 £to=1lbs, and My = ~ 2086 fi.~1bs., waich oclosely
chock the wvalues obtalasd by slope dsflections

(c) By lMoment Distribution: A
1000 1bs, mg}"“ N f
8t 1 g0 i LI 1000 .1bs./Pt. |
! e
-
3 & ”
160 L 100 2
-~
P
L
Bt LS o T Y
) 1 | .4] .8 1
= 5000 | = 4320 - = = e‘i:s:z;
= 680 + 340
+ &98 - 8761 ¢ 1314 = 667
= 433 o 21
e &b @ 881 + 31 = §8
3 & - 9+ 13 - 7
= 4 R !
ﬂ - 1 P 1 " 1
b W e | - —— —
« 5000 |~ §000 = 8871} - 6871 = 9080

Pinal Moments are in ft.<kbso

S, Beem Continueus Over Three Spausy Both Ends Overhenging.

600 lbso GOOOIbl.
1
HH_HHJ[BHJLJJLW‘?’H’M/Ro NEEEARI RN
B Kwe K=a ¢ Eas D
— [T TS ¥ 249 I e

{A) By the Methed of Slope Deflections

500{12)2
ul—."ﬂb CI ]!qu’ » o —é—-’—ﬂ = §000 ft.-1bs.

o . 5oo(18)2 B000{18)
Moo @ = Mp o @ “"f.‘o," e g=bor 2 24,750 £He~1bao




500{24)2
¥poa = = Mpae ™ = "‘1‘%“)"" - 24,000 ft.~Ibs.

Enowa relationshipss:

(a) My = - 12,000 £t.-1bso (v) “ao' = 16,000 £t.~1bs.
(o) Mg + By = 0 (4) uob*ucdno

Sigpe-Deflection Equationss

M

b = = 12,000 = ~ 6,000 + ss(-saa . 2ab)

‘249, + 126, = - 6,000/B : (1)
M, = 6,000 « GB(29, + 4Q,)

K, = 1288, + 248§ + 6,000 (2)

M = 24,760 + 48(4Q + 20 )

I = 1688, + §E6 -~ 24,760 (8)
M, = 24,750 ¢ m(aeh + 4.-a°)

M, = 8B3 + 1689 + 24,750 (4)
M .=~ 24,000 + $B(46 + 20,)
M,, = 16,000 = 24,000 + &(2@0 - 49d)

89, + 129, = = 8,000/8 {8)

From equatlens (o), (2), and (3)
123% ES «neb Y 8390 « 18,750 = 0

120, + 40Q, + 60 = 18,760/% (7)

Prom equations (d), (4), and (6)
BEeb+ZBEecétEad+ 760 = Q

80, + 289, + 603 = - T50/B (8)
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TABIE I
Oporetion | Bq. Hoo| O e, o, 3 %&;‘:ﬁ“ g::;k
1 » 28 | &2 - 6000/B | - 6964
2 + 6 | ¢12 | - 8000/E | - 7982
3 +12 | +40 [+ O +18760/8 | +18810
4 > 8 |+28 |+ 8 |- 760/B |- 708
14 2¢ 1! ¢ 1 | +0.5 - 280/8 | - 248.5
2 29 ‘ + 6 f+12 | ~s8000/8 |- 7982
$$ 12 8 [+ 1 |[+3.883 |+0.667 + 1562/ | « 1667
4 4 + 8 |+28 |+ 6 |- 750/8 |~ 708
2 6 + 8 | +12 | - 8000/ |- 7982
1 = § 8 22,838 |=0.867 - - 1812/8 | - 1615.5
40 7 + 8 |+28 |+ 8 |- 750/B |- 708
6 59 + 6 |+12 | ~8000/B |- 7982
6 = 2,838 8 + 1 [+0,236 + 640/ |+641,236
728 7 + 1 |+ 355 |+0.75 | ~98.76/8 | ~ 88.5
59 8 + 6 | +12 | -8000/E | - 7982
6t = T¢ 9 «B.264 |= 0,75 | +753.75/B [+729.736
8 ke 8! + 1 |+ 2 |-1883/E |- 183
3 -5.284 gt + 1 | 0,28 | - 224.8/B | - 228,27
8! « gt 10 4 177 | =1108.5/8 { -1106.73
(from 10) 9 =« 626/8
(from 9°) o, =252k - 1383/8 = - 681/B
(from 7¢)

® +285.5 + 469.6 = 98.75 ., , 659,25

(from 17) e = <329.63/B

- 260/ = -

579.63




T4

The four equations = (1), (8), (7). and (8) ~ contain the four
unknown slopes and may be solved simultansously. Where there are more
then three equatiouns to solve simultaveousiy it ie generalliy most con-
venient to set up the equatioms in tabular form end systematicelly re-
duce the number of unkmown quantities unbtil a solution is had. Tsble I
shows the solution of this problem in the aforementloned memner. Using
the valusee shown in Table I for 03 s €y s € » and Qd s it is possible
to determine the moments at the supports. Thus, from eguation (2),
M, = 14,850 ft.-lbss From equation (8), I, = - 14,850 £i.~lbs. From
equation (4), M, = 28,680 ft.~lbs. From equation (6), N,z = - 28,720
fto-1bs, Note that there is a very slight disorepancy between M, and
M4 o Such discrepancies ere typical of sglide rule solutions,

(B) By the Theorem of Three Moments:

600 1bs. 9t 5000 lbse

T AR I

@ @
g _:_ 12¢ “. 18¢ : 240 i a,ﬂ’
My = 12000 £t.=lbso | , = ~16000 ‘fto-1bs.

2
4y
Ay
= I, e La - Le 2

1
The oemposite aree Az is equal to the sum of triangular arsa of

the mowent diagrem due to ths eoncentrated load and the parsbolic area
of the moment diagram due to the distwributed load.
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2
128, + 2U(12 » 18) + 181, = - %% 500312 12) (6)
8

-§5F - 2B 19) (9) - S 1, 5000 (45 (o)

=144,000 ¢ 60M, & 18i, = - 216,000 - 729,000 = 607,000 = = 1,562,000
60M, ¢ 18M, = = 1,408,000 (1)
18k, ¢ 2My(18 + 24) + 24M, = = 729,000 - 807,000

- %:% i &éﬁ)_a (24) (12)

18My + B4g ~ 584,000 = = 729,000 - 607,000 = 1,728,000
18H, + 84M, = - 2,680,000 (2)
The simultansous solution of squations (1) and (2) shows thet
M, = ~ 14,850 ft.~1bs, and that M; = - 28,700 ft.~1bs., which check
the valuss found by slope=deflection.

(C) By Moment Distribubions

500 1be. 5000 1bs,
. y
LT T TIT 00T 800 wbse/fte [TTTTTTITTTTITTL]
E= g E= 4 K= 3§
g § 121 k) 189 k3 249 T & |
! I
of1 6] o4 | lo572 | o428 1]o]
C1200C | = 3000 =6000 | <24760 | =24760 - =24000 | =18
- 6000| +5000
= | % 6625 | =18080 | + 8700 = 4360
- 6625 | # 6262 | = 1460 | + 2920| = 2180 + 1090
3 1416 - 2832 | + 1890 < 945 | = 8465 + 6910
- 1416| ¥ 708{+ 717 = 1435 | + 1075 = B8] |
= 2|+ 6Bl- 4 + 2| 263 + 537
e 2= I|% 77 | = _164f+ 118 |. = 58
= 28|+ 47| = * 18|= 2 + 63
+ 23| = 11|¥ 12 | = 25{+ 19 P—1
- )+ 14|- 9 + 4| = a4 + . 9
+ 7l 8|¥ 2 | - s5|l% 3 - 1
==ls 8l- 2 s 1
=12000 1 =12000 §_=3 5 =28723 | =28723 =16000 § =16000
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PART IV

CONCLUSIONS

Statically Determinate Beams: Of the methods avallable for deter-

nining deflections of statically detemminate besms, the methods of double
integration end of ares-moments are more universally understood and em-
ployed than eny of the others. This doubtless is a result of the treand,
in elemsntery mechenics textbooks, toward the presentation of these two
methods to the exclusion of others, However, this does not seem t0 be an
undesireble bias since the area-moment method usually provides a solution
more readily than eny other method.

In cases where the beem is symmetrically loaded and supported end
where it is desired to find the meximum deflection, the use of double in-
tegration is perhaps almost as easy as the ares-moment wethod, Bub leck
of aymmetry, in a simple beem, complicates the solution by double integra-
tilon much more than is the cese with some of the other methods., In general
the difficulty of meking a solution by double integration is proportional
%0 the difficulty encountered in evaluating the constemts of integration,
which are peculier to this method,

There is actually very little differsnce between the area-moment and
conjugate beam methods, The only difference lies in the dissimiler frames
of mind, or philosophies, with which the attack is begun. For sotme stu-
dents the conjugate beem methed may be more egsily remembered becasuse it
is the duplication of e cammon, everyday operation--that of finding the
moment at a given section of a beam. Care muat be exercised, however, in
choosing the proper type of support for the conjugate beam. Very little
difficulty is ceaused by this if a few simple rules are learned.



77

The methods of work very often provide an expedient meens for finding
the deflections of stetically determinate beams. TFreguently thoy mey be
erployed with as much fecility es is possible by the ersa-~moment msthod.
The method, however, hecomes increasingly complicated as the number of
loads on the structure increases. Separaie moment equations must be set
up, integrated, and evaluated between certain limits corresponding io
adjecent, ebrupt changes in the sheer dlsgren.

Other methods, such as the Theorem of Thrse ioments and the slopee
deflection method, are rather sasily epplied but involve more or less arti-
ficial spproaches., Further, tasy require the use of baslic fommules which
are easily forgotten or misepplied if not fraquently used.

In short, it would seem that the area-moment method is the one mos?t
readily used in the greatest variety of conditions. In addidion it is
easily camprebendod emd eesily recelled, so that it provides an excellent
tool for occasional use a8 woll as one for routine use.

Staticelly Indeterminate Beems: Nor single~spen indeterminate beem

anelysis, it is rather hard to choose beltween the eres-moment method end
the Column Ana2logy. The Column Analogy seaus somewhat easier %o apply, but
i%s edventege over the area~moment method is herdly great snough %o Justify
i%s use Lor occasional problems of the type covered in this report. For
single~spon bents, for curved beems, or for arches it is a singularly
useful methed.

The Theorem of Three Moments should not be discounted for the solubion
of single-span beams, In some ceses (perticularly for single-span inde-
terminates which overheng cne hinged support) this method provides a

solution more readily then does any other,
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Tuo methods of work ere generally cumbersome to apply and would cer—
tainly not seem deasireble for sporadic uss,

For multi-span indeterminate beems the method of moment distribution
1s %o be preferred by far for generel use. Uhers theve is only one redun-
dant reaction the Theorem of Thiee lMoments provides = setisfectory method
of solubtion. I the number of redundanis exceods two, necessiteting the
solution of three or more equations simulteneously, the Theorem of Three
lioments sclution becomes unwieldly as campared to thal by moment
distributlon,

The method of slope-deflection, which usunlly involves the solution
of three or more egquations simultencously, is fresught with the possibility
for error. The solution cen almost never be sccomplished the first time
without mistake unless the equations are seb up end solved in a systematic
menneyr and a constent check meintained es the solubtici progresses. The
moethod shown previousily in Teble I provides one way of reducing the
possibility of error,

It should be repeated that the method of moment distribution far ex-
cels any other for detemmining the moments in multi-szpan beams. The
method, furthermore, is easily used for determining the moments in the
nembers of multi-story continuous structures. It is regretteble that so
nany engineering students ere graduated with very little or no knowledge
of this importemt method of analysis.

The epplications ahown in this report are by no means the only uses
for meny of the methods described. Some of them, for example the methods
of work; furnish useful meems for determining the deflections of trusses.

There are many other appliczfions for the methoda, and it is %o be hoped
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that the examples shown in this report may serve to introduce some of the

-

mathods and indicate the manner in which they may be applied.
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