COLOR FIDELITY OF SOME COMMERCIAL COLOR FILMS

100 WRAG U.S.A.

COLOR FIDELITY OF SOME COMMERCIAL COLOR FILMS

By

AUGUSTUS N. HILL

Bachelor of Science

Oklahoma Agricultural and Mechanical College

Stillwater, Oklahoma

1941

Submitted to the Department of Physics Oklahoma Agricultural and Mechanical College In Partial Fulfillment of the Requirements

> for the Degree of MASTER OF SCIENCE

OKLAHOMA AGEIGULTURAL & MECHANICAL COLLEGE LIBRARY MAY 6 1949

APPROVED BY:

C.A remont

Chairman, Thesis Committee

A. Rersh Member of the Thesis Committee

the Departmen Head of

Dean of the Graduate School

PREFACE

The idea for this paper was a direct result of the writer's skepticism of the glowing advertisements of the various manufacturers of color films. Also, if color film could be used for direct application of scientific research, especially that in the realm of color, considerable effort could be saved. Letters to manufacturers got very little information as to the limitations of color films for such uses.

The writer wishes to acknowledge the assistance given him by Dr. S. W. Eager on photographic problems, Mr. C. Fremont Harris on problems of optics and lighting, and Mr. J. R. Wells, Tipton, Oklahoma, for the use of his Harrison Color Corrector Set and the many helpful suggestions he offered during the experiment.

TABLE OF CONTENTS

v

Chapter 1	I-The Problem 1
Chapter]	IIA Brief Historical Background of Color Photography
Chapter 1	[IIConditions and Procedures Followed14
Chapter]	IVAnalysis and Conclusions
Table of	Transmissions
Bibliogra	phy

Chapter I

The Problem

For many years, man has sought ways and means to reproduce that which he has seen. Early stages of his development along this line are reflected in the ancient hieroglyphics left as memorials to the great men of times gone by. Attempts to use colors in addition of the hieroglyphics are evident in faint colorative stains still discernible.

Following this have been many means of expression and reproduction. Oil painting, early lithography, black and white photography, each has had, and still has, its place in the process of reproducing what man has seen and experienced about him. Added to this list now is color photography.

While color photography is not a new science, it has been only during the past fifteen or twenty years that it has enjoyed any marked degree of popularity among amateur photographers. In this time great advances have been made in the manufacture and processing of color film for the amateur. No longer is it necessary to own expensive equipment to enjoy this fascinating means of artistic reproduction. Indeed, if one is to believe the claims made either directly or by implication in the various and numerous advertising lay-outs of manufacturers, it would seem one needs only his eyes and "This Blah-Blah" film for artistic results to rival those of the great masters of painting. All colors will come out as pure as colors in dew-kissed roses. Exactly as it is in nature. Of course, such extravagant claims take on airs of wishful thinking to the man who uses his inquiring faculties at all. To the man with a scientific background, such claims are not well founded.

As an instrument of scientific endeavor, color photography has been widely advertised. Claims are made that the exact color of any object can be recorded for all time by use of certain color films. This has been advocated in the field of the biological sciences, especially. After having read much adver-

tising on the subject, one is immediately faced by several questions. If there is any deviation of color rendition, is it constant, or does it vary with wavelength? Does the color shift vary with the color temperature of the source being used? Is the color shift characteristic of a certain basic type, i.e., subtractive or additive, processes? How will exposure time affect the fidelity of a particular color film?

All these questions must be answered before one can make any conclusive statements as to the adaptability of color film to precise uses. An effort will be made to answer them in this paper.

Chapter II

A Brief Historical Background

of Color Photography

As previously mentioned, the desire to reproduce in color has existed in mankind for many centuries. In fact, early Japanese manuscripts have been found describing a process of reproduction which is very similar to modern lithography and color-printing. This process involved transfer of color by superimposing many color screens on a marble slab or silk. No mention was made of how colors for each screen was determined.

Significant advances in the realm of color reproduction were not made until the period beginning with the early 17th century and continuing to the present. As far back as 1611, Antonius de Dominis postulated in a published work that all colors were formed by the absorption of white light by objects² Indeed, he carried his theory farther by postulating that the fundamental colors were red, green, and violet and that all other colors were the result of differential absorption of white light by these fundamental colors. This theory is in striking agreement with present theories along this same line.

Shortly after Antonius de Dominis propounded this theory, Aquilonius (1613) advanced the theory that red, yellow, and blue were the primary colors. To support his theory, Aquilonius set up a method of color synthesis using half-circles of light of the three colors.

Nearly fifty years later, Sir Isaac Newton (1666) discovered the solar

- 1 E. J. Wall, History of Three-Color Photography, p. 2.
- 2 Ibid., p. 5.
- 3 Ibid., p. 6

spectrum by use of a prism⁴. With the discovery of the solar spectrum, which was continuous throughout the entire spectrum from the reds to the violets, there was positive proof that white light was the summation of many colors and not only three. This discovery did much to spur interest in color research.

Early in 1700, J. C. Le Blon, a French printer, introduced to Europe a color-printing process which is the very essence of modern color-printing techniques? Le Blon first made use of copper plates to print with Newton's seven colors by superposition on a white background. As his colors were transparent, he got credible works. The process was tedious and time consuming, but it certainly was an advancement. The process, when used by others, resulted in a great deal of variation in results due to the fact that each operator used his own inks and there was no standardization of color between them. This lack of standardization in inks, however, was not the greatest source of variation. Le Blon had proposed no method for determining the composition of each color, so the actual rendition of color was entirely dependent upon the conception of the operator as to what colors and intensities composed another color. This, of course, presented a great limitation. In 1722, Le Blon changed his printing process to include only four keys (plates), one each for red, yellow, blue, and black to be printed upon "pure white". Here was modern color-printing in its infancy.

About 90 years later (1812), the world was introduced to the first practical mechanical method of reproducing colored pictures, lithography. A Bavarian by the name of Senefelder began working colored pictures on marble

- 4 Ibid., p. 6.
- 5 Ibid., p. 7.
- Tbid., p. 15.

"stones" by using an etching through a grease coating. The grease would repel water in the regions in which it was left, but at the same time would be receptive to colored inks. In the regions where there was no grease, the water would cling and repel the ink. This work had to be done entirely by hand and was extremely laborious. Men spent years in apprenticeship before they were permitted to work their own "stones", and even then they were ultra-specialists in certain types of work.

While so much work was going on in the field of color-printing and reproduction, efforts were being redoubled to explain just why combinations of three colors could give the necessary impressions of all colors. It remained for Thomas Young to suggest a plausible explanation. Young's theory of color vision explained, and still does, for that matter, many of the questions which had been raised. Young assumed that each normal eye contains three types of color-sensitive receiving areas. Each type shows a marked preference of one of the three primary colors: red, green, and blue-violet. Following Young's theory, as one looks at the spectrum, the impression of gradual color changes is caused by the change in the relative stimulation of these color-sensitive areas, or receptors. On the violet end of the spectrum, the blue-violet receptors are stimulated strongly and transmit this stimulation to what Young called the "sensorium" part of the brain. As the eye views successive portions of the spectrum, the various receptors are stimulated. In the case of the yellow, for instance, it was presumed that the red and green receptors are equally activated. For white light, all three types of receptors are activated equally. This theory of Young's fell into disuse, and it remained for Helmholtz to popularize it by performing a series of experiments and building up eye-color-sensitive curves. Consequently, this theory is most frequently

7 D. A. Spencer, Color Photography in Practice, p. 15.

8 R. A. Houstoun, A Treatise on Light, p. 344.

referred to as the Young-Helmholtz theory of color vision, today.

Shortly after Young published his theory of color-vision, Clerk Maxwell was the first man on record to propose the possibility of reproduction of scenes by color photography." Maxwell pointed out that if the filtering out process were done by glass-filters in front of a camera instead of by the color receptors of the eye, identical end results could be possible. Here is an effort to build up what one thinks he sees rather than to reproduce actually the spectral wavelengths. A red flower appears red because it absorbs all but the red rays from white light, and these in turn stimulate the red-sensitive receptors of the eye. If this same red flower were to be viewed through a red filter, only the red rays from the petals would be permitted to pass through it. Following this line of reasoning, Maxwell proposed that successive pictures be made of the same object using the ordinary sensitive emulsions and red, green, and violet filters. This process would give what is known today as "separation negatives". It was then necessary to make a "positive" of each of these negatives. In order to integrate them into a single picture, Maxwell proposed that each of these separation positives be projected from a projector using the corresponding filter. If all three were projected simultaneously on a common screen, a color picture should result from the addition of the three colored lights. One of Maxwell's best friends, Thomas Sutton, carried out Maxwell's instructions in a demonstration for the Royal Academy of Sciences in 1855. For some unexplained reason, Maxwell and Sutton chose to use four filters and projectors: red, green, yellow, and blue. A contemporary reported "that a sort of photograph was produced in the natural colors."

9 Wall, Op. Cit., p. 18.

10 Spencer, Op. Cit., p. 18.

11 Wall, Op. Cit., p. 31.

In France, there was a young and wealthy nobleman who not only was a patron of the sciences but who also worked diligently in his own small way. He had several friends who were members of the Academie des Sciences, but he was not himself a member. In 1862, Ducos du Hauron12 sent his "Solution physique due probleme de la reproduction des coleurs par le photographie" to his friend. This friend read the paper and was greatly impressed with it. All his efforts to present this paper to the Academie were blocked by the prejudice of the members to a nobleman in science and also by the lack of proof of many of the things that du Hauron postulated in his paper. Du Hauron published his paper privately in 1868; it received a great deal of attention abroad, and was red in the Academie des Sciences shortly afterward. In his paper, du Hauron predicted, without designing or building models, nearly all of our present methods and processes in color photography. Most notable was his postulation of the "subtractive" color-printing process. Here the colorprinting would be done in colors complimentary to those used in the actual photographing.

From the preceding paragraphs, it will be deduced that the trends for the perfection of a natural color process were aimed toward means of reproducing what a normal eye sees. A few of these processes developed in later years, such as the Lumiere process, Dufaycolor, Kodachrome, and Ansco Color will be discussed in later paragraphs. One process which was aimed to reproduce the actual wavelength was invented by Gabriel Lippmann in 1891¹³

It is well known that standing waves may be set up by light waves as well as by sound and other wave motions. If light is incident normal to the first surface of a glass plate, a phase change of half a wavelength takes place. If

- 12 Ibid., p. 33.
- 13 Houstoun, op. cit., p. 151.

it then is reflected perfectly from a second medium so that both the incident and reflected wave are traversing the same direct path, standing waves will be set up with nodes at the second surface and at distances of integral multiples of the half-wavelength from it. Between the nodes will be antinodes. Lippmann used this principle in his color reproduction. He backed a glass plate with a sensitive emulsion with a reflecting layer of mercury behind the emulsion. The light will enter the glass, pass through the film, be reflected by the mercury surface, pass through the film again, and then through the glass. Nodes and antinodes will be set up in the film by the principles of standing waves mentioned above. The sensitive emulsion will not be affected at the nodal points, but it will be affected a maximum amount at the antinodes. Thus, when the film is developed and fixed, there will be a great number of reflecting planes of silver at half-wavelength distances from the back surface and half-wavelength distances between each other. The thicknesses of the silver layers will be very thin and practically transparent. Now, then, if this plate is viewed with white light normal to the surface, the individual layers of silver will each reflect its own waves. All the constituent rays will be reflected, but only those whose wavelengths are such that they will reinforce themselves will be seen on reflection. All others will be destroyed by destructive interference. By this action, the natural colors originally incident upon a certain area of the film will be seen upon reflection. It can be seen readily seen that this process would result in only the spectral wavelengths incident. It has one very serious drawback, namely: the film must have a very fine grain emulsion. Present day emulsions give good results, but the care which must be exercised in developing and handling makes this process very difficult to use.

In the following discussions, the term additive color process shall

apply to those processes in which the positive permits passage of the color with which the negative was made in the parts of the image where this color is present. A subtractive process removes from white light those primary colors with which the negative was taken, in the parts of the image where those colors were absent.

The first commercially successful additive color process was the Lumiere Autochrome plate. This plate has since been introduced as a roll film. In Autochrome an irregular mosaic screen is used as the needed filters. This mosaic screen is prepared by taking three portions of potato starch grains and dyeing them red, green, and blue-violet, respectively. After dyeing, these grains are mixed as thoroughly as possible and then sprinkled on a sticky surface. Any surplus grains are brushed off lightly. Regions not filled by starch grains are filled in with pulverized lamp-black. This entire plate is then pressed under high pressure, and the starch grains thus are flattened into irregularly spaced red, green, and blue-violet filters. Upon this mosaic screen surface, a panchromatic emulsion is deposited. In development, the exposed film is developed once, reversed, and redeveloped so that there are areas behind the mosaic screen which will transmit light in varying intensities according to the intensity of the light incident upon it after passing through the screen. So, upon projection, the taking mosaic serves as a projection screen for color addition.

Another additive process which enjoyed considerable use by amateur photographers in this country before World War II was Dufaycolor. Dufaycolor film was a mosaic screen type of film as was the Autochrome.¹⁶ Its distinguishing

14 Spencer, op. cit., p. 136.

15 J. E. Mack and M. J. Martin, The Photographic Process, p. 183.

16 Ibid., p. 383.

feature being a regular geometric screen rather than an irregular mosaic screen. This screen is built up by "cross-hatching" the face of the film with alternate rows of red and a combination of blue and green squares. This is achieved by successive inkings and rulings. In the completed product, the little squares formed are about 0.002 sq. mm. While this is approximately three times as large as the average potato starch grain, it still cannot be detected by the eye on normal projection and is further rendered less undesirable by the geometric pattern.

Of particular interest to the amateur photographer are two relatively new types of films. These are Kodachrome and Ansco Color. Both of these films are of the subtractive color process type, both are "integral tripacks", and both are "dye-coupled" emulsions. The meaning of subtractive color process has already been dealt with. By "integral tripacks" is meant the building up of the film on one base with the three color sensitive layers on this one film base. The implications of "dye-coupled" will be treated with individually as the dye-coupler process is the distinguishing difference between Kodachrome and Ansco Color.

Kodachrome film, introduced in 1935, is the first integral tripack type of color film to be introduced.¹⁷ As the case in all tripacks, it has three emulsion layers, each specially sensitized, built up on a single gelatine or cellulose base. The first emulsion next to the base is one which is of the panchromatic type and more especially sensitive to red. The second layer from the base is an orthochromatic emulsion and sensitive to green. The top layer, and third from the base, is a non-color sensitized emulsion which will respond only to the blue or violet rays. Between the red-sensitized and green-sensitized layers is a very thin gelatine layer dyed a light red color. The green-

17 Spencer, op. cit., p. 136.

sensitive and blue-sensitive layers are separated by a thin yellow gelatine layer. As to filter action, the blue layer needs no filter since it will react only to the blue light. The yellow filter just before the green-sensitive layer will pass both green and red light. The red filter will pass only the remaining red rays to affect that layer of emulsion. Upon development, the entire film is developed and then the image is reversed and dissolved. Following this, it is redeveloped through a series of operations:

1. All three of the reversal positive images are developed in a dyecoupler developer. Here a certain component of the developer reacts chemically with silver halides of the image to give a blue-green (minus red) image in all three layers.

2. The two top layers are then bleached out by a very carefully controlled diffusion process, leaving the minus-red image on the third layer. After bleaching, the two top layers are again redeveloped to produce a magenta (minus-green) image.

3. The outermost layer then is bleached and redeveloped to produce the yellow (minus-blue) image.

4. The silver image which is left now is removed, and the final "transparency" is ready for projection as a series of three colored-layers: bluegreen (cyan), magenta, and yellow.

It is apparent from the above process that this film requires precision control during development, and it is because of this that the manufacturer recommends its return for development. In fact, the original cost of the film is a price figured on that procedure.

Since it is known from Planck's radiation law that the color distribution of the light from the same source operating at differing temperatures, or from fixed temperatures of different sources, is not the same, Kodachrome is "balanced" for a particular type of light. Daylight has a much larger portion

of blues and violets and is approximately equalled by a black-body radiating at a temperature of 5900°K. Ordinary tungsten filament lamps operate with a "color temperature" of approximately 3200°K. A certain type of tungsten filament lamps designed to operate on 70 volts are actually operated at 110 volts. These lamps, called photoflood lamps, are brilliant and have a color temperature of approximately 3400°K. To allow for these three basic types of lighting, Kodachrome is issued in types balanced to each. If a certain type of film is used with a type of lighting for which it is not balanced without a compensating filter, the results will be a "cold" or "hot" according to whether or not the film is balanced for red or blue predominance in the source. For example, if Kodachrome Type A (tungsten, 3400°K.) is used outdoors without a peach-colored compensating filter, the results will be "cold", or predominantly blue, transparency because the film was originally manufactured so as to filter out some of the excessive red found in the lower temperature source. So, in daylight, the same reds would be filtered out and leave the blue portions of the spectrum.

The color film now known as Ansco Color was first introduced in America as Agfacolor in 1937¹⁸ Ansco Color is also an integral tripack, dye-coupler film. Its distinguishing feature is that a single, specialized developer which contains one essential element of a series of dye-stuffs reacts with the other constituents which are incorporated in the emulsion at the time of manufacture to produce an insoluble dye wherever a silver image is formed on development of the exposed film. The color produced, of course, is dependent upon the second constituent contained in the film. The constituent needed to produce red in one layer, that for yellow in a second, and that for blue-green in a third.

18 Ibid., p. 138.

After exposure, the Ansco Color film is developed and reversed as is Kodachrome, but, from this point on, the processes differ widely. In Ansco Color, the reversal positive is developed only one time in the special developer so the colors are formed in one processing. Then the silver image is dissolved, leaving a subtractive color image. The end result is the same as in Kodachrome, but the process is simple enough to be carried out by the advanced amateur in his own dark-room with little special equipment.

One interesting aspect of a dye-coupler film is that the image is actually almost grainless,¹⁹ and the objectionable mosaic screen is not present to be seen upon extreme enlargement. It must, of course, be pointed out that this apparent grainlessness is no better than the grain of the emulsion used. This defect is largely overcome in Kodachrome due to the fact that the dyes formed in this process diffuse between grains a great deal. Both Ansco Color and Kodachrome permit of greater sharpness in the image than is possible using a mosaic screen.

19 Mack and Martin, op. cit., p. 388.

Conditions and Procedures Followed

Since the object of this paper was to investigate the color fidelity of some commercial color films, it was decided to use the two brands of color films most readily available to the amateur and the laboratory worker. Of these, the types of each which were color balanced for use specifically to daylight and tungsten sources were used. From here on, these films will be referred to as follows:

- Film "A": A film balanced for use with 3400°K. sources and should be processed by the manufacturer.
- Film "B": A film balanced for use with 5900°K. sources and should be processed by the manufacturer.
- Film "C": A film balanced for use with 5900°K. sources and may be processed by advanced amateurs or commercial firms other than the manufacturer.
- Film "D": A film balanced for use with 3200°K. sources and may be processed by advanced amateurs or commercial firms other than the manufacturer.

It would be very difficult, indeed, to make any measurements of spectral color shift unless the actual wavelength to the light used is known. In order to achieve this end, monochromatic light sources were set up. Sources with bright-line spectra, such as the mercury arc, sodium arc, helium and hydrogen spectrum tubes, were used. A great number of combinations of filters were tried before it was possible to get what appeared to be monochromatic light as observed through a Gaertner wavelength spectrometer. The lines finally used were (with their sources):

7065 AU-Helium gas spectrum tube.

6563 AU-Hydrogen gas spectrum tube.

6158 AU--Sodium waper lamp (actually the mean of the 6154 AU and 6161 AU lines).

- 5893 AU-Sodium vapor lamp (actually the mean of the 5890 AU and 5896 AU lines).
- 5780 AU--Mercury vapor lamp (actually the mean of the 5770 AU and 5791 AU lines).

5461 AU-Mercury vapor lamp.

4916 AU-Mercury vapor lamp.

4471 AU--Helium spectrum lamp.

4358 AU-Mercury vapor lamp.

These sources, then, would give monochromatic light over a fairly well proportioned span of the visible spectrum. While it is realized that more sources may have lead to more conclusive results, the economic factor had to be considered.

Original plans called for these monochromatic sources to chine upon a reflectance plate, and the exposures to be made with the reflected light. A large sheet $(14^{\text{m}} \times 16^{\text{m}})$ of $\frac{1}{4}^{\text{m}}$ aluminum plate was polished and then coated with an even coating of magnesium oxide (MnO). Magnesium oxide smoke, obtained by combustion of magnesium ribbon in air, was used because it has very high and uniform reflectance for the entire range of the visible spectrum. Then the reflected light from this plate was measured, it was found that many of the intensities would be so low that undesirably long exposures would be necessary. This made it necessary to use an exposure from the direct light.

First efforts at determining the exposure for the direct light indicated that these exposures, also, would be very long. In order to overcome some of this long exposure, a photosphere was designed about the spectrum tubes so that a larger portion of the emitted light could be directed into the lens of the camera. Various schemes were used, but the one which seemed to give the best results involved two parabolic mirrors (see Fig. 1).

Fig. 1

A parabolic mirror (actually the reflector from an automobile headlight) was cut to accomodate a spectrum tube along a vertical axis through the focus of the parabola. This mirror was suitably mounted on a base with strap-iron legs. Immediately in front of this mirror and facing it, was another parabola mirror of the same dimensions as the first. At the focus of this parabolic mirror, was placed a small spherical mirror. With this arrangement, it was possible for rays of light from the spectrum tube to rendered parallel by the first mirror. These parallel rays, upon striking the second mirr or, would then

be reflected through its focus, at which point was the spherical mirror. This spherical mirror reflected these rays out through a hole cut in the second parabolic mirror. After passing from the photosphere, the light was passed through the necessary filters and lens to the camera.

Considerable difficulty was experienced in locating the small mirror at the proper position, but worthwhile results were achieved. The amount of light incident upon the exposure meter used was increased by about 20%. When the spherical mirror was replaced by a small plane mirror, an additional gain of 5% was achieved.

There was still the probability that an image of the spectrum tube would

be formed in the camera even after the light was rendered parallel by use of a lens system and a very short focussing distance on the camera were used. To reduce this chance to the minimum, the mirror surfaces of the parabolic reflectors were coated with magnesium oxide smoke. This coating of magnesium oxide seemed to reduce the amount of the light from the photosphere but very slightly, while the image of the spectrum tube was eliminated entirely.

Although monochromatic light was to be used, there was some question as to whether or not there was any necessity to correct the exposures for color balance of the film to the color temperature of the source. By theory, this color correction would render the light from a particular source in balance with a black-body radiating at the temperature at which the film was balanced. However, by reasoning, the aim was not to arrive at a balance of all colors in this experiment, but to expose to monochromatic light only. If only one wavelength were in the light, then a balance should not be necessary. It was finally decided that exposures would be made both with and without color correction for the color temperatures of the <u>bare sources</u>. The color correction was achieved by using filters taken from a Harrison Color Correction Set, Series VI, and exposures corrected according to the filter factors furnished by the manufacturer.

The color temperature of the various sources used were:

Helium spectrum tube--4300°K.

Hydrogen spectrum tube---6500°K.

Sodium vapor lamp--2800°K.

Mercury vapor lamp-5900°K.

The color temperature of the mercury arc lamp was such as to make it not necessary to correct to achieve color balance when using a film rated as a daylight type.

The exposures necessary were determined by use of three exposure meters: a Sixtus, German-made and reputedly very sensitive in low intensities; a Weston II, a very popular and sensitive meter; and a DeJur 5B. Upon taking readings, if the three meters agreed upon the same exposure, it was taken to be reliable. If only two agreed, the exposure was taken with misgivings. However, if no two agreed, it was necessary to estimate which <u>might</u> be right. It was these latter exposures which had the greatest number of retakes necessary. (On the whole, the Sixtus did show a reliability in the low readings.)

Since a basic intent of the experiment was to observe the effect of exposure on the color rendition, three exposures were determined: first, fifty per cent over the <u>indicated</u> exposure (\pm 50%); second, the same as the indicated exposure (\pm 0%); and third, fifty per cent less than the indicated exposure (\pm 50%). Color correction filters made it necessary to multiply these exposures by the proper filter factors.

In order that the fidelity of the transparencies resultant to the exposures determined above could be checked in some manner, a means had to be devised. If the color film were capable of reproducing only the spectral wavelength to which it was exposed, the comparison would have been a simple case of using a wavelength spectrometer to determine this one wavelength produced. However, since color film of the types used in this experiment are "tripacks" and depend upon three-color reproduction to simulate what the eye sees, it would be incorrect to make such an assumption. If, on the other hand, the film actually recorded other colors besides the one, as does happen, it would be reasonable to expect a maximum transmission of the subject wavelength when the transparency is illuminated with white light. It was on this latter premise that all further checking was done.

Comparison of the transmission of the transparencies formed by exposing the film to the various monochromatic lights as outlined above was done by

using a Gaertner Polarizing Spectrophotometer. The Gaertner Polarizing Spectrophotometer consists of three essential parts: 1) a wavelength spectrometer; 2) a Martens polarizing photometer; and 3) photosphere and holders to illuminate the samples.

Light from the lamps of the photosphere is reflected from a magnesium oxide-coated disc out of the photosphere to a pair of rhombs made of soft crown glass. These rhombs split this single beam into two equal beams. One of these, the upper one in practice, is directed through the sample of unknown transmission, and the second beam is passed through a standard sample, or no sample at all--a "blank beam". This latter case is the condition used in this experiment. From the sample helders the light proceeds to another pair of rhombs which reunite the beams into another beam, composed of two sharply divided halfcircles of light, one from each sample holder. This beam is then directed upon a Wollaston biprism which serves as the polarizing element of the Martens photometer.

While this beam is said to be reunited, actually it is still of two parts, upper and lower. As they pass through the Wollaston biprism each is separated into two plane-polarized beams². The ordinary polarized beam is lost, leaving the extraordinary beams which are polarized in planes at right angles to each other. Upon emergence from the Wollaston biprism, they are directed through the Micol prism which is used as an analyzer. Rotation of the Nicol prism will result in an increase in intensity of one of the beams. The angle of rotation Θ is a measure of their relative intensities in that the amplitudes of each beam varies with the angle Θ : one beam as the sin Θ , and the other as the cos Θ . The ratio of intensities varies as the cot² Θ , if the sample is in the upper

¹ Bulletin 126, <u>Optical Instruments of Recent Design</u>, Gaertner Scientific Corp., p. 12.

² Ibid., p. 15.

beam and the standard in the lower beam. From the analyzer the beam is directed into the entrance slit of the wavelength spectrometer which uses a constant deviation prism to disperse the beams into their respective spectra, one above the other. It is the job of the operator to adjust the analyzer prism so that the two fields are of equal intensities; this "match point" is obtained when the dividing line between the two half-circles is no longer visible.

The procedures outlined above were followed through, and exposures made for each of the wavelengths chosen for all four types of film used, for 450% and -50% as well as for the basic indicated exposure, and corrected and uncorrected for color temperature balance. Some two hundred fifty exposures were made and analyzed.

Chapter IV

Analysis and Conclusions

A. Analysis

The data contained in the tables included with this paper were plotted in ordinary Cartesian coordinates. When this was done, the three curves for each wavelength, uncorrected for color temperature, were plotted separately from those for temperature corrected exposures. It was from these graphs that the spectral shifts were determined. Upon determining the spectral shift from the subtraction of the monochromatic wavelength from the wavelength of maximum transmission through the transparencies, the spectral shift was plotted against the wavelength of the monochromatic light used for the source.

Film "A" there was a very large spectral shift noted in the yellow region toward red, or longer wavelengths. This shift was so very pronounced that the yellow-doublet from sodium was a definite orange color. This was true of both exposures corrected and uncorrected for color temperature. A shift toward short wavelengths was found to take place between 4300 AU and 5400 AU, but this shift was only about one-sixth as great, in the maximum, as took place above 5400 AU. Zero shift was indicated by all three exposures at approximately 4400 AU and 5400 AU. The shift for the 6563 AU light could not be determined due to the fact that the transparency made for this wavelength indicated increasing transmission in the long wavelengths; it is possible that the maximum shift was reached beyond the visual range of the observer. Film "A" had the maximum shift about 5900 AU (corrected) and at an estimated 6500 AU (uncorrected). In general, the spectral shift for the 450%, 40%, and -50% exposures gave very closely parallel curves. The exposures for 40% showed the least shift throughout the spectrum. The -50% exposures had less shift in the red and more shift in the green and blue regions than did the 450% exposures.

Film "B" showed the same general characteristics as Film "A" except that the maximum shift in Film "B" occurred at about 6000 AU (uncorrected) and was slightly less in magnitude. In general, there is a shift towards the longer wavelengths above 5200 AU (approximately) and shift toward short wavelengths between 4400 AU and 5200 AU. The shift toward blue was not as great with Film "B" as with Film "A" when corresponding types of exposures are considered. The graphs for the corrected exposures for Film "B" indicated an increasing shift to the blue but did not exhibit a maximum from which to compute the spectral shift. In general, the spectral shift for the $\frac{150\%}{200}$, $\frac{10\%}{200}$, and $\frac{-50\%}{200}$ exposures resulted in parallel graphs with the $-\frac{50\%}{200}$ exposures exhibiting the least shift in the green and blue regions. What happens through much of the spectrum for the transparencies made with exposures corrected for color temperature correction annot be inferred since these graphs, as a whole, indicated the possibility of a maximum outside the visual range of the observer.

Film "C", in the uncorrected series, exhibits a maximum shift at approximately 5900 AU. This shift is in the order of 1500 AU toward the red, enough to make the 5893 AU yellow-doublet appear a very definite red. The shift is toward redness from approximately 5200 AU upward and below 4400 AU. If one should extrapolate the pertions of the curves that are definitely known, a shift to the blue of approximately 700 AU at 4800 AU can be inferred. The 40% transparency exhibits the greatest shift above 5200 AU and below 4400 AU. The zero spectral shift for Film "C", uncorrected, is found at approximately 5300 AU and 4400 AU. The data for Film "C", corrected, is so very meager that no conclusions could be deduced from it.

Film "D", uncorrected, exhibits a maximum shift toward the red of about 1300 AU in the neighborhood of 5900 AU. The uncorrected series, by extrapolation, indicates a maximum shift toward the blue of approximately 500 AU in the vicinity of 4800 AU. The 450% and 40% exposures, uncorrected, are roughly

parallel in their shifts, but the -50% behaves somewhat irregularly. Using the method of extrapolation, the $\pm50\%$ exposures would be expected to maintain a shift toward the red throughout. Similarly, the $\pm0\%$ exposures would appear to shift slightly toward the blue only from 4500 AU to 5100 AU. In the corrected series for this film, the maximum shift toward the reds is not determined since the spectral shift curve is still increasing at the longest wavelength exposures successfully made. In this series, i.e., corrected, the 5893 AU transparency was a cherry red. This corrected series shows the -50% and $\pm0\%$ exposure curves almost coinciding throughout, at least to 5900 AU. the $\pm0\%$ and -50% curves, by extrapolation, show shifts of about 250 AU toward the blue at the neighborhood of 5000 AU. The $\pm50\%$ curve has a blue shift only between 4500 AU and 5100 AU. The range of the blue shift for the $\pm0\%$ and -50% curves appears to be between 4600 AU and 5500 AU.

B. Conclusions

An examination of the spectral shift curves shows that the variation of exposure time in both color corrected and color uncorrected cases does not affect the shift very greatly. The principal effect observed in both cases seemed to point out that the under-exposure tends to increase the blue content of the resultant transparency slightly and the over-exposure tends to increase the red content slightly. This means that if a transparency appears to be too dark, under-exposed within the range of this experiment, a more intense lighting would tend to offset this darkness without sacrificing color rendition. Similarly, film over-exposed within the range tested in this experiment, could be improved by a decreased intensity of lighting.

The shapes of the transmission curves for the transparencies made with monochromatic light were very closely similar whether the source was corrected for color temperature or not. The curves showed the same maxima and minima; these were, in most cases, displaced only in per cent of transmission but not

in actual color rendition. Likewise, the spectral shift curves are very similar for both color temperature correction and uncorrection. From these indications, it may be deduced that the rendition of a particular spectral wavelength is neither enhanced or harmed, materially, by color temperature correction. So in general, if any of these films were to be used to make any picture in which several colors were to appear together, the color temperature correction would be desirable to properly apportion the color intensities to some standard. If monochromatic light were to be used for making a spectrogram, the intensities of the colors would be in proper proportion by color temperature correction, but the color fidelity would be none the better.

Film "A" and Film "B" were manufactured by the same company. In both cases the characteristics, as evidenced by the spectral shift curves, are generally similar. There is a variation of intensity between the two films without any color correction. Both Film "A" and Film "B" have similar shifts toward the shorter blue and greens in those regions and a shift toward the longer reds in the yellow and red regions. In amateur photography this combination may seem very desirable to many since it would add to color cortrast. To the researcher this variation would be detrimental.

Film "C" and Film "D" were manufactured by the same company. The general conclusions comparing Film "A" and "B" may apply also to Film "C" and Film "D". The main difference being that with the latter two films there is not as great a tendency to have a region which shifts toward the shorter blues. Instead, as far as color fidelity is concerned, the fidelity of Film "C" and Film "D" is slightly better in the green and blue regions. Here, it should be pointed out that there is a tendency for these two films to shift all colors toward the longer wavelengths, hence giving results which are consistently too red.

Throughout this experiment, effort was made to use the 7065 AU line of the helium spectrum tube. First efforts failed to get it to record on any type of film used with the indicated exposures. Second efforts, using four times as great exposure, also failed. From this, it has been deduced that the films are not sensitive to light of this wavelength, or, if at all, very slightly.

25

The net results of this experiment may be summarized as being:

1. Reaffirmation that color film at its present stage of development is not applicable to those uses in which a high degree of color fidelity is desired.

2. Color film is a medium for getting pleasing color pictures whose color rendition failures are probably not readily discernible by the normal eye except in the most gross cases.

3. Exposure time, within the limits of these tests, affects the color intensity but not the fidelity.

4. Color temperature correction is not necessary for monochromatic light.
5. Films made by the same manufacturer and then balanced for different color temperatures at the time of manufacture can be relied upon to give closely similar results.

TABLE I

. . .

Transmission for Pilm "A"

6563 AU, Uncorrected

Wavelength	Trai	nsmission	$(\cot^2\theta)$
(AU)	L 50%	1 0%	- 50%
<u>ennn</u>			
0000			
7800	A 41A		
7600	0.340	A 1 A A	a sa matan
71400	0.320	0.420	0.180
7200	0.310	0.270	0.170
7000	0.270	0.240	0.150
6800	0.270	0.220	0.125
6600	0.220	0.180	0.110
6400	0.165	0.130	0.085
6200	0.102	0.095	0.060
6000	(NM)	(111)	(NM)
5800	0.020	(nm)	(nm)
5600	0.010	0.009	0.007
5400	0.005	0.004	0.003
5200	0.003	0.002	0.002
5000	0.001	0.001	0.092
1800			
1.600			
1.1.00			
1.200			
42.00			
	6563 AU, Corr	rected	
8000			

7800			
7600	0.330	0.360	0.320
7400	0.340	0.320	0.280
7200	0.330	0.330	0.280
7000	0.280	0.270	0.250
6800	0.260	0.255	0.220
6600	0.230	0.230	0.190
6400	0.170	0.160	0.150
6200	0.130	0.130	0.110
6000	0.075	(NM)	(1111)
5800	(NM)	(NM)	(MM)
5600	0.016	0.014	0.015
5400	0.007	0.007	0.006
5200	0.004	0.004	0.004
5000	0.002	0.002	0.002
4800	0.001		
4600			
1100			

TABLE II

Transmission for Film "A"

6158 AU, Uncorrected

Wavelength	Transmission $(\cot^2 \Theta)$		
(AU)	土 50%	± 0%	- 50%
8000			
78 00	0.330	0.180	0.200
7600	0.370	0.350	0.310
7400	0.350	0.365	0.305
7200	0.330	0.350	0.310
7000	0.305	0.300	0.270
6800	0.280	0.290	0.250
6600	0.220	0.240	0.220
6400	0.180	0.190	0.170
6200	0.140	0.130	0.120
6000	(NEI)	(IMI)	(NM)
5800	(me)	(છાટા)	(NM)
5600	0.018	0.028	0.015
5400	0.007	0.007	0.006
5200	0.004	0.004	0.003
5000	0.002	0.003	0.001
4800	0.002	0.002	0.001
4600			
1100			

4400 4200

6158 AU, Corrected

8000			
7800	0.280	0.230	0.180
7600	0.380	0.230	0.200
7400	0.300	0.310	0.240
7200	0.290	0.310	0.250
7000	0.310	0.290	0.250
6800	0.280	0.260	0.220
6600	0.240	0.220	0.185
6400	0.180	0.170	0.135
6200	0.130	0.130	0.100
6000	(NEI)	(於近)	(MH)
5800	(313)	(N25)	(NM)
5600	0.013	0.013	0.014
5400	0.007	0.006	0.005
5200	0.004	0.004	0.003
5000	0.003	0.003	0.002
4800	0.001	0.001	0.001
4600			
4400			
4200			

Transmission for Film "A"

5893 AU, Uncorrected

Wavelength	Transi	nission (co	ot ² 0)
(40)	↓ 50%	± 0%,	- 50%
8000			
7800			
7600			
7400	0.170	0.100	0.080
7200	0.160	0.085	0.0%
7900	0.130	0.075	0.060
6800	0.120	0.070	0.052
6600	0.115	0.070	0.048
6400	0.110	0.065	0.045
6200	0.105	0.060	0.040
6000	0.085	0.050	0.035
5800	(MM)	0.034	0.022
5600	0.040	0.020	0.014
5400	0.025	0.013	0.008
5200	0.015	0.008	0.005
5000	0.008	0.005	0.004
4800	0.005	0.004	0.003
4600	0.004	0.003	
1700		~	
4200			

5893 AU, Corrected

8000			
7800			
7600	0.280		0.150
7400	0.310	0.210	0.150
7200	0.310	0.220	0.130
7000	0.280	0.210	0.113
6800	0.230	0.220	0.120
6600	0.270	0.200	0.110
6400	0.265	0.200	0.110
6200	0.230	0.170	0.100
6000	0.190	0.140	0.003
5800	0.130	0.095	0.005
5600	0.080	0.060	0.030
5400	0.050	0.035	0.020
5200	0.035	0.022	0.012
5000	0.020	0.012	0.007
4800	0.075	0.005	0.004
4600	0.005		
4400			
4200			

. •

TABLE IV

Transmission for Film "A"

Wavelength	Transı	aission (cc	t^20
(AU)	- 50%	± 0%	- 50%
8000			
7800			0.500
7600	0.150		0.500
7400	0.170	0.140	0.550
7200	0.165	0.130	0.530
7000	0.160	0.120	0.560
6800	0.150	0.120	0.590
6600	0.140	0.110	0.590
6400	0.140	0.125	0.575
6200	0.130	0.115	0.560
6000	0.100	0.100	0.550
5800	0.085	0.085	0.500
5600	0.055	0.060	0.480
5400	0.035	0.035	0.420
5200	0.020	0.025	0.300
5000	0.010	0.015	0.220
4800	0.005	0.005	0.140
4600	0.003	0.003	0.095
4400	-		0.090
4200			0.090
5780	au, Correc	ted	
\$MYA			
7800	0.100		
7600	0.620	0.170	0 1.20
7/.00	0.520	0 1.50	01.60
7200	0:580	0.480	0.400
7000	0.550	0 1.00	0 1 70
6800	0.550	0 480	0 1.70
6600	0.500	0.400	0.470
61.00	0.560	01.20	0.170
6200	0.560	0.460	0.470
6000	0.510	0 1 20	0.470
5200	0.1.1.0	0.320	0.340
5600	0.130	0.300	0.200
5400	0.210	0.220	0.000
5200	0.210	0 150	0.220
5000	0.240	0.190	0.120
1.800	0.100	0.077 0.077	0.000
4000	0.015	0.020 2.002	0.000 0 009
4 0 00	0.043	0.007 0.007	0.007
4400	0.090	0.007	0.01
4200	0.050	0.007	

TABLE V

Transmission for Film "A"

5461 AU, Uncorrected

Wavelength	Transı + 50%	nission (co	$pt^2\theta$)
(40)	- 30%	Ξ 040	-)0,0
8000			
7800			
7600			
7400	0.300	0.290	0.250
7200	0.315	0.250	0,210
7000	0.325	0.250	0.210
6800	0.280	0.240	0.200
6600	0.290	0.250	0.210
6400	0.310	0.270	0.220
6200	0.340	0.285	0.240
6000	0.380	0.320	0.265
5800	0.400	0.350	0.315
5600	0.440	0.370	0.340
5400	0.440	0.345	0.330
5200	0.370	0.310	0.285
5000	0.310	0.200	0.180
4800	0.210	0.110	0.105
4000	0.150	0.075	0.006
4400	0.10	0.055	0.007
4xill	0.140	0.005	0.007
54	461 AU, Correc	ted	

8000			
7800			
7000	0 000	0.005	0 160
7400	0.310	0.223	0.170
7200	0.200	0.205	0.10
4000	0.200	0.205	0.1.0
6600	0.300	0.200	0.140
61.00	0.200	0.209	0.140
6200	0.270	0.220	0.165
6000	0.320	0.200	-0.220
5800	0.360	0.305	0.265
5600	0.380	0.280	0.280
5600	0.390	0.330	0.285
5200	0.325	0.290	0.230
5000	0.230	0.180	0.160
4800	0.750	0.090	0.074
4600	0.100	0.065	0.040
1100	0.110	0.050	0.030
4200	0.110	0.075	0.040
•			

, •

TABLE VI

. . . .

Transmission for Film "A"

Wavelength	Tr	ansmission	$(\cot^2 \theta)$
(AU)	± 50	\$ ± 0\$	- 50%
5 /		· ·	
8000			
7800	-		
7600			
7400			
7200			
7000			
6800			
6600			
6400			
6200			
6000			
5800	0.00	1	0.002
5600	0.00	4	0.003
5400	0.00	4	0.004
5200	0.00	5	0.004
5000	0.00	B 0.00;	0.006
4800	0.01	5 0.00/	0.007
4600	0.01	B 0.00/	0.0075
4400	0.02	4 0.000	5 0.010
4200	0.02	1 0.00	3
	4916 AU, Co	rrected	
¢000			
9000 9000			
7600			
7000			
7400		,	
7200	,		
7000 4000			
6500 6400			
0000 4100			
6200			
6200	0.00	,	
CULU EGOO	0.00	L 0.00'	n
2000	0.00		۵. ۱
5000	0.00		1 1
2400 5200	0.00		₩ }
2400 5000	0.00		+ 7
2000	0.00		(``
4000	0.01		J 5
4000	0.01		Э Ф
4400	U.UL	z 0.000	2
han)			

TABLE VII

Transmission for Film "A"

Wavelongth	Trans	iission (ca	ot ² 0)
(AU)	± 50%	7 OX	- 50%
8000			
7800			
7600			
7400			
7200			
7000			
6800			
6600			
6400		0.001	
6200	0.001	0.001	0.001
6000	0.002	0.002	0.002
5800	0.003	0.003	0.003
5600	0.005	0.004	0.004
5400	0.006	0.006	0.005
5200	0.010	0.008	0.007
5000	0.018	0.015	0.014
4800	0.035	0.025	0.030
4600	0.050	0.050	0.050
4400	0.055	0.055	0.058
4200	0.055	0.070	0.060
4	471 AU, Correc	ted	
enna			
7000			
7600			
7000			
7400			
7200			
7000 4000			
6600			
6000			
6000	0.001	0.001	
6200	0.001	0.001	0.000
6000	0.002	0.02	0.002
5800	0.003	0.003	0.003
5000	0.003	0.004	0.003
5400	0.005	0.004	0.003
5200	0.006	0.006	0.004
5000	0.013	0.012	800.0
4800	0.020	0.023	0.018
4000	0.040	0.034	0.027
4400	0.062	0.048	0.035
4200	0.055	0.047	0.049

TABLE VIII

Transmission for Film "A"

4358 AU, Uncorrected

Wavelength (AB)	Trans⊪ ⊥ 50%	ission (co ±೧೫	ot ² 0) - 50%
8000			لايومي مر
7800			
7600			
7400			
7200			
7000	0.110	0.090	
6800	0.110	0.080	0.015
6600	0.100	0.075	0.015
6400	0.120	0.085	0.020
6200	0.140	0.110	0.030
6000	0.195	0.140	0.050
5800	0.270	0.200	0.080
5600	0.330	0.230	0.140
5400	0.400	0.350	0.200
5200	0.440	0.400	0.245
50 00	0.450	0.420	0.290
4800	0.450	0.380	0.280
4600	0.390	0.370	0.245
4400	0.375	0.350	0.220
4200	0.340	0.340	
	4358 AU, Correc	ted	
8000			
7800			
7600			
7400			
7200			
7000			
6800	0.080	0.045	0.007
6600	0.080	0.048	0.008
6400	0.095	0.055	0.010
6200	0.120	0.075	0.018
6000	0.180	0.115	0.029
5800	0.230	0.175	0.007
5600	0.300	0.230	0.095

0.300

0.380 0.410

0.460

0.420

0.380

0.315

5400

5200

5000

4800

4600

4400 4200

0.300 0.360

0.380

0.340 0.290

0.290

0.135 0.190

0.220 0.225

0.210

TABLE IX

٩

þ,

Transmission for Film "3"

6563 AU, Uncorrected

Wavelength	Transmission $(\cot^2 \theta)$		
(AU)	± 50%	± 0%	- 50%
8000			
7800			
7600	0.330	0.320	0.290
7400	0,390	0.350	0.250
7200	0.390	0.320	0.260
7000	0.370	0.320	0.250
6800	0.345	0.285	0.230
6600	0,300	0.250	0.190
6400	0.230	0.210	0.160
6200	0.165	0.150	0.125
6000	0.110	0.090	0.080
5800	(NE)	0.045	0.050
5600	0.022	0.020	0.020
5400	0.010	0.009	0.008
5200	0.005	0.005	0.005
5000	0.0035	0.004	0.004
4800	0.0035	0.004	0.0035
4600	0.003	0.004	0.004
4400			
4200			
	6563 AU, Correc	ted	
8000			
7800			
7600	0.420	0.425	0.190
7400	0.410	0.360	0.220
7200	0.410	0.340	0.205
7000	0.390	0.365	0.205
6800	0.340	0.340	0.190
6600	0.320	0.285	0.175
6400	0.245	0.225	0.150
6200	0.190	0.180	0.095
6000	0.120	0.130	0.070
5800	0.052	0.055	0.035
5600	0.026	0.021	0.017
5400	0.010	0.010	0.007
5 3	0.006	0.006	0.005
5000	0.0045	0.0045	0.00%
4800	0.004	0.0045	0.00%
4600	0.004	0.004	0.094
4400		0.007	0.0045
4200			

TABLE X

Transmission for Film "B"

6158 AU, Uncorrected

Wavelength	Transmission (cot ² 0)		
(AU)	± 50%	1 07	- 50%
8000			
7800	0.430	0.330	
7600	0.460	0.360	0.330
7400	0.430	0.440	0.425
7200	0.425	0.400	0.400
7000	0.400	0.380	0.375
6800	0.330	0.350	0.360
6600	0.320	0.310	0.300
6400	0.260	0.255	0.230
6200	0.170	0.170	0.170
6000	0.110	0.100	0.090
5800	0.060	0.050	0.050
5600	0.020	0.029	0.020
5400	0.009	0.608	0.008
5200	0.005	0.005	0.005
5000	0.004	0.0045	0.004
4800	0.004	0.634	0.004
4600	0.004	0.004	0.004
14(0)	~ • • • • •	a ta a asi	~ • • • • • •
1200			

6158 AU, Corrected

8000 7800			
7600	0.380	0.310	0.350
7400	0.420	0.340	0.360
7200	0.400	0.350	0.350
7000	0.360	0.340	0.340
6800	9.340	0.315	0.330
6600	0.300	0.280	0.280
6400	0.240	0.210	0.245
6200	0.160	0.165	0.155
6000	0.090	0.100	0.095
5800	0.040	0.040	0.043
5600	0.015	0.016	0.016
5400	0.006	0.0055	0.006
5200	0.004	0.004	0.004
5000	0.0025	0.0035	0.003
4800			
4600			
4400			

TABLE XI

Transmission for Film "B"

5893 AU, Uncorrected

Wavelength	Transmissio		
(AU)	150%	± 0%	-50%
8000			
7800			
7600			0.130
7400	0.125	0.095	0.080
7200	0.105	0.085	0.075
7000	0.100	0.080	0.060
6800	0.080	0.070	0.050
6600	0.080	0.065	0.045
6400	0.080	0.058	0.045
6200	0.065	0.050	0.040
6000	0.050	0.042	0.030
5800	0.035	0.026	0.020
5600	0.020	0.015	0.010
5400	0.010	0.008	0.006
5200	0.008	0.006	0.005
5000	0.005	0.005	0.004
1800	0.005	0.005	0.001
1,600	0.005	0.005	0.004
11.00	0.002	0.007	a sa anté
4400			
400			

5893 AU, Corrected

8000			
7800			
7600	0.260	0.280	0.250
7400	0.270	0.280	0.260
7200	0.305	0.290	0.260
7000	0.300	0.300	0.250
6800	0.280	0.290	0.240
6600	0.280	0.285	0.230
6400	0.260	0.265	0.210
6200	0.240	0.250	0.180
6000	0.180	0.190	0.135
5800	0.100	0.120	0.008
5600	0.070	0.075	0.045
5400	0.040	0.050	0.026
5200	0.028	0.035	0.020
5000	0.019	0.030	0.015
4800	0.010	0.020	0.011
4600		0.018	0.010
4400			
4200			

TABLE XII

. #¹⁹⁶

Ĩ

Transmission for Film "B"

5780 AU, Uncorrected

Wavelength	Trans	mission (co	ot ² 0)
(AU)	± 50%	1 0%	- 50%
8000			
7800	0.680	0.690	0.550
7600	0.625	0.640	0.530
7400	0.650	0.625	0.580
7200	0.670	0.630	0.560
7000	0.650	0.650	0.580
6800	0.640	0.620	0.620
6600	0.625	0.620	0.600
6400	0.630	0.600	0.580
6200	0.620	0.600	0.560
6000	0.580	0.580	0.550
5800	0.490	0.500	0.470
5000	0.420	0.420	0.420
5400	0.330	0.320	0.320
5200	0.220	0.230	0.225
5000	0.113	0.120	0.125
4800	0.055	0.050	0.050
4600	0.025	0.025	0.022
1400	0.032	0.025	0.025
4200	0.050	0.050	0.040

TABLE XIII

Transmission for Film "B"

Wavelength	Trans	aission (c	$(t^2\theta)$
(AU)	± 50%	Ŧ 0%	- 50%
8000			
7800			
7600	0.450	0.330	0.220
7400	0.370	0.290	0.220
7200	0.350	0.290	0.200
7000	0.335	0.280	0.200
6800	0.340	0.265	0.200
6600	0.340	0.270	0.200
6400	0.330	0.300	0.205
6200	0.350	0.310	0.220
6000	0.360	0.315	0.250
5800	0.360	0.330	0.260
5600	0.320	0.300	0.270
5400	0.260	0.280	0.250
5200	0.195	0.190	0.180
5000	0.110	0.100	0.100
4800	0.045	0.042	0.040
4600	0.020	0.019	0.020
4400	0.020	0.020	0.020
4200	0.052	0.030	0.030

TABLE XIV

Transmission for Film "B"

4472 AU, Uncorrected

Wavelength	Transa	ission (co	t ² 0)
(AU)	▲ 50%	1 0%	- 50%
4000			
8000			
7000			
1000			
7400			
7000			
6800			
6600			
64.00			
6200			
6000	0.001	0.0005	0.0005
5800	0.001	0.001	0.001
5600	0.0015	0.0015	0.001
5400	0.0015	0.0015	0.0015
5200	0.002	0.002	0.002
5000	0.004	0.0945	0.003
4800	0.009	0.012	0.006
4600	0.030	0.018	0.011
4400	0.032	0.030	0.017
4200	0.026		0.022
L.	.72 AU. Correc	ted	
	,,~,		
8000			
7800			
7600			
7400			
7200			
7000			
6800			
6600			
6400			
6200	~ ~~~	~ ~~~ ~	
6000	0.0005	0.0005	0.0005
5800	0.001	0.001	0.001
5000	0.0015	0.0015	0.001
5400 5000	0.0015	0.0013	0.001
5200	0.002	0.0025	0.0015
2000 LØM	0.004		0.000
4600	0.010	0.022	0.007
4000	0.024	0.020	0.020
4400 1,200	0.050	0.045	0.0/0
	V.V/V	4 • 44 J	A CARA

.

TABLE XV

ંસ

Transmission for Film "B"

4358 AU, Uncorrected

Wavelength	Transmission $(\cot^2 \theta)$		
(AU)	± 50%	± 0%	- 50%
8000			
7800		÷ .	
7600	i	t	
7400			
7200	· · ·		
7000			
6800		ĩ	
6600	0.004	0.002	0.0005
6400	0.005	0.003	0.001
6200	0.0075	0.004	0.0015
6000	0.014	0.010	0.004
5800	0.025	0.018	0.005
5600	0.045	0.028	0.010
5400	0.072	0.040	0.015
5200	0.100	0.060	0.025
5000	0.118	0.090	0.040
4800	0.150	0.110	0.060
4600	0.150	0.125	0.070
4400	0.130	0.138	0.070
4200	0.135	0.100	0.080

40

TABLE XVI

11.75g.w

Transmission for Film "C"

6563 AU, Uncorrected

Wavelength	Transmission $(\cot^2 \Theta)$		
(AU)	⊥ 50%	± 0% `	-50%
8000			
7800	0.270	0.240	
7600	0.260	0.200	
7400	0.260	0.195	
7200	0.245	0.185	0.060
7000	0.235	0.175	0.065
6800	0.230	0.160	0.066
6600	0.215	0.150	0.066
6400	0.180	0.135	0.065
6200	0.130	0.105	0.062
6000	0.086	0.070	0.060
5800	0.050	0.039	0.045
5600	0.012	0.012	0.018
5400	0.004	0.001	0.008
5200	0.0035	0.003	0.004
5000	0.004	0.0035	0.003
4800	0.005	0.001.5	0.0035
4600	0.0035	0.004	0.0045
4400		•	0.004
1,200			

6563 AU, Corrected

8000			
7800			
7600	0.260		0.135
7400	0.270	0.140	0.095
7200	0.270	0.150	0.075
7000	0.250	0.150	0.068
6800	0.240	0.145	0.068
6600	0.215	0.138	0.064
6400	0.180	0.120	0.065
6200	0.140	0.100	0.055
6000	0.085	0.065	0.040
5800	0.040	0.031	0.024
5600	0.012	0.010	0.010
5400	0.004	0.004	0.004
5200	0.003	0.0035	0.0025
5000	0.0035	0.004	0.004
4800	0.004	0.0045	0.0045
4600	0.0045	0.004	0.0035
4400			
4200			

TABLE XVII

Transmission for Film "C"

6158 AU, Uncorrected

Wavelength	Transmission $(\cot^2 \Theta)$		
(AU)	1 50%	1 0%	- 50%
8000			
7800	0.390		
7600	0.460		0.340
7400	0.460	0.410	0.310
7200	0.490	0.450	0.340
7000	0.490	0.430	0.330
6800	0.440	0.400	0.310
6600	0.345	0.340	0.280
6400	0.270	0.280	0.215
6200	0.190	0.200	0.160
6000	0.120	0.140	0.100
5800	0.055	0.055	0.045
5600	0.015	0.010	0.012
5400	0.004	0.0045	0.004
5200	0.003	0.003	0.003
5000	0.0035	0.004	0.0035
4800	0.0045	0.005	0.004
4600	0.0025		0.004
1400			
4200			

6158 AU, Corrected

	,		
8000			
7800			
7600	0.430	0.445	0.305
7400	0.450	0.440	0.330
7200	0.475	0.465	0.370
7000	0.460	0.460	0.350
6800	0.430	0.400	0.325
6600	0.360	0.340	0.280
6400	0.300	0.275	0.220
6200	0.180	0.190	0.175
6000	0.120	0.125	0.120
5800	0.043	0.050	0.049
5600	0.010	0.014	0.013
5400	0.0045	0.004	0.004
5200	0.0035	0.003	0.0035
5000	0.004	0.004	0.004
4800	0.0045	0.005	0.005
4600	0.0035	0.0035	0.0035
4400			
L200			

l es l pino

TABLE XVIII

Transmission for Film "C"

5893 AU, Uncorrected

Wavelength	Transa	ission (c	ot ² 0)
(UA)	± 50%	± 0%	- 50%
8000			
7800			
7600	0.140		0.140
7400	0.150	0.110	0.115
7200	0.150	0.095	0.100
7000	0.138	0.100	0.085
6800	0.140	0.105	0.090
6600	0.135	0.105	0.090
6400	0.130	0.105	0.085
6200	0.115	0.095	0.078
6000	0.038	0.070	0.060
5800	0.060	0.045	0.038
5600	0.020	0.019	0.015
5400	0.009	0.007	0.0055
5200	0.006	0.005	0.0045
5000	0.0075	0.005	0.0045
4800	0.008	0.008	0.0055
4600	0.003	0.003	0,004
4400	-	-	
4200			

5893 AU, Corrected

8000			
7800			
7600			
7400	0.115	0.120	0.060
7200	0.115	0.110	0.060
7000	0.110	0.100	0.059
6800	0.115	0.092	0.059
6600	0.120	0.100	0.060
6400	0.120	0.095	0.062
6200	0.110	0.090	0.060
6000	0.090	0.075	0.050
5800	0.055	0.043	0.030
5600	0.025	0.020	0.015
5400	0.011	0.009	0.005
5200	0.009	0.006	0.0045
5000	0.010	0.007	0.005
4800	0.00?	0.007	0.006
4600	0.004	0.003	0.003
4400			
4200			

TABLE XIX

Sec. et an

Transmission for Film "C"

Wavelength	Transı	aission (c	ot ² 0)
(AU)	▲ 50%	± 0%	- 50%
8000			
7800	0.540		
7600	0.540	0.600	0.610
7400	0.575	0.610	0.620
7200	0.600	0.610	0.600
7000	0.640	0.610	0.580
6800	0.640	0.625	0.620
6600	0.650	0.625	0.620
6400	0.640	0.610	0.590
6200	0.620	0.610	0.590
6000	0.590	0.610	0.550
5800	0.560	0.560	0.520
5600	0.500	0.500	0.470
5400	0.405	0.405	0.380
5200	0.280	0.280	0.265
5000	0.150	0.160	0.140
4800	0.055	0.058	0.055
4600	0.020	0.016	0.016
<u>hh00</u>	0.008	* * * * * * *	0.0075
4200	~ + ~ ~ ~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TABLE XX

Transmission for Film "C"

Wavelength	Transı	mission (co	ot ² 0)
(AU)	± 50%	± 0%	- 50%
8000			
7800			
7600	0.270	0.205	
7400	0.270	0.200	0.170
7200	0.280	0.210	0.180
7000	0.280	0.225	0.190
6800	0.290	0.245	0.210
6600	0.320	0.280	0.220
6400	0.345	0.315	0.265
6200	0.380	0.340	0.295
6000	0.440	0.410	0.360
5800	0.450	0.405	0.375
5600	0.450	0.405	0.390
5400	0.380	0.355	0.355
5200	0.280	0.260	0.260
5000	0.160	0.150	0.150
4800	0.065	0.055	0.060
4600	0.016	0.013	0.015
4400	0.055	0.009	0.009
4200		-	-

TABLE XXI

-

Transmission for Film "C"

Mavelength	Transa	ission (co	t ² 0)
(AU)	- 50%	≚ 0%	- 50%
8000			
7800			
7600			
7400			
7200			
7000			
6800			
6500			
6400	0.002	0.002	0.0015
6200	0.0025	0.003	0.002
6000	0.003	0.003	0.0025
5300	0.0025	0.0025	0.002
5600	0.0015	0.0015	0.0015
5400	0.0015	0.0015	0.001
5200	0.003	0.002	0.0025
5000	0.008	0.006	0.007
4800	0.025	0.025	0.023
4600	0.042	0.033	0.032
4400	0.025	0.025	0.018
4200			
4472	AU, Correc	ted	
4472	AU, Correc	ted	
4472 8000 7800	AU, Correc	ted	
4472 8000 7800 7600	AU, Correc	ted	
4472 8000 7800 7600 7400	AU, Correc	ted	
4472 8000 7800 7600 7400 7200	AU, Correc	ted	
4472 8000 7800 7600 7400 7200 7200	AU, Correc	ted	
4472 9000 7800 7600 7400 7200 7200 7000 4800	AU, Correc	ted	
4472 8000 7800 7600 7400 7200 7000 6800 6600	AU, Correc	ted	
4472 8000 7800 7600 7400 7200 7000 6800 6600 6400	AU, Correc	ted 0.002	0.000
4472 8000 7800 7600 7400 7200 7200 6800 6800 6600 6400	AU, Correc 0.0015	0.002	0.002
4472 8000 7800 7600 7400 7200 7200 7000 6800 6800 6600 6400 6200	AU, Correc 0.0015 0.0025	0.002 0.0025 0.0025	0.002
4472 8000 7800 7600 7400 7200 7200 6800 6600 6600 6400 6200 6000 5800	AU, Correc 0.0015 0.0025 0.003 0.0025	0.002 0.0025 0.003 0.003	0.002 0.003 0.003
4472 8000 7800 7600 7400 7200 7200 6300 6600 6600 6400 6200 6000 5800 5600	AU, Correc 0.0015 0.0025 0.003 0.0025	0.002 0.0025 0.003 0.0025	0.002 0.003 0.003 0.0025
4472 8000 7800 7600 7400 7200 7200 6300 6600 6400 6200 6000 5800 5800 5600	AU, Correc 0.0015 0.0025 0.003 0.0025 0.002 0.002	0.002 0.0025 0.003 0.0025 0.0015	0.002 0.003 0.003 0.0025 0.0015
4472 8000 7800 7600 7400 7200 7200 6300 6600 6400 6200 6000 5800 5800 5600 5400 5400	AU, Correc 0.0015 0.0025 0.003 0.0025 0.002 0.0015	0.002 0.0025 0.003 0.0025 0.0015 0.0015	0.002 0.003 0.003 0.0025 0.0015 0.001
4472 8000 7800 7600 7400 7200 7200 6800 6600 6600 6600 6600 6600 5800 5800 5600 5400 5400 5400 5400	AU, Correc 0.0015 0.0025 0.003 0.0025 0.002 0.0015 0.0025	0.002 0.0025 0.003 0.0025 0.0015 0.0015 0.0025	0.002 0.003 0.003 0.0025 0.0015 0.001 0.0025
4472 8000 7800 7600 7400 7200 7200 6800 6600 6600 6400 6200 6000 5800 5600 5600 5400 5200 5200 5200 5000 1000	AU, Correc 0.0015 0.0025 0.003 0.0025 0.002 0.0015 0.0025 0.0025 0.007	0.002 0.0025 0.003 0.0025 0.0015 0.0015 0.0025 0.0025 0.009	0.002 0.003 0.003 0.0025 0.0015 0.001 0.0025 0.006
4472 8000 7800 7600 7400 7200 7200 6800 6600 6600 6600 6200 6000 5800 5600 5600 5400 5200 5000 4800 4800	AU, Correc 0.0015 0.0025 0.003 0.0025 0.002 0.0015 0.0025 0.0025 0.0025 0.007 0.030	0.002 0.0025 0.003 0.0025 0.0015 0.0015 0.0015 0.0025 0.009 0.030	0.002 0.003 0.003 0.0025 0.0015 0.001 0.0025 0.006 0.025
4472 8000 7800 7600 7400 7200 7200 6800 6600 6400 6200 6000 5800 5600 5400 5400 5200 5000 4800 4800 4800	AU, Correc 0.0015 0.0025 0.003 0.0025 0.002 0.0015 0.0025 0.0025 0.007 0.035 0.035	0.002 0.0025 0.003 0.0025 0.0015 0.0015 0.0015 0.0025 0.009 0.030 0.040	0.002 0.003 0.003 0.0025 0.0015 0.001 0.0025 0.006 0.025 0.034
4472 8000 7800 7600 7400 7200 7200 6300 6600 6400 6200 6000 5800 5600 5400 5400 5200 5200 5000 4800 4800 4800 4800	AU, Correc 0.0015 0.0025 0.003 0.0025 0.002 0.0015 0.0025 0.0025 0.007 0.035 0.025	0.002 0.0025 0.003 0.0025 0.0015 0.0015 0.0015 0.0025 0.009 0.030 0.040 0.025	0.002 0.003 0.003 0.0025 0.0015 0.001 0.0025 0.006 0.025 0.034 0.032

TABLE XXII

Transmission for Film "C"

Transm	uiscion (co	$t^2 \Theta$)
± 50%	± 0%	- 50%
0.0045	0.0045	0.003
0.007	0.006	0.0045
0.015	0.015	0.009
0.030	0.028	0.020
0.074	0.064	0.050
0.140	0.145	0.105
0.240	0.250	0.180
0.320	0.320	0.215
0.375	0.380	0.295
0.380	0.400	0.320
0.380	0.370	0.320
0.330	0.320	0.260
0.250	0.230	0.180
	Transm 1 50% 0.0045 0.007 0.015 0.030 0.074 0.140 0.240 0.320 0.320 0.375 0.380 0.380 0.380 0.330 0.250	Transmission (co 150% $\pm 0\%$ 0.0045 $0.00450.007$ $0.0060.015$ $0.0150.030$ $0.0280.074$ $0.0640.1450.240$ $0.1450.240$ $0.2500.320$ $0.3200.380$ $0.4000.380$ $0.3700.320$ $0.3200.320$ $0.3200.250$ 0.230

.

TABLE XXIII

Transmission for Film "D"

6563 AU, Uncorrected

Wavelength	Trans	mission (co	$t^2 \Theta$
(AU)	± 50%	± 0%	- 50%
8000			
7800	0.150		
7600	0.140	0.120	0.080
7400	0.130	0.090	0.050
7200	0.125	0.090	0.038
7000	0.125	0.085	0.038
6800	0.110	0.080	0.033
6600	0.110	0.072	0.010
6400	0.105	0.078	0.040
6200	0.085	0.063	0.035
6000	0.055	0.045	0.030
5800	0.038	0.023	0.018
5600	0.010	0.009	0.007
5400	0.004	0.00%	0.0035
5200	0.003	0.0035	0.003
5000	0.001	0.005	0.0045
4800	0.007	0.007	0.006
4600	0.006	0.006	0.006
4400			0.004
4200			

6563 AU, Corrected

8000			
7800			
7600	0.170	0.240	
7400	0.180	0.125	
7200	0.160	0.110	0.055
7000	0.160	0.110	0.050
6800	0.145	0.105	0.050
6600	0.140	0.100	0.050
6400	0.130	0.095	0.050
6200	0.100	0.074	0.045
6000	0.053	0.058	0.033
5800	0.032	0.030	0.020
5600	0.011	0.008	0.009
5400	0.004	0.004	0.0035
5200	0.0035	0.0035	0.003
5000	0.005	0.005	0.004
4800	0.008	0.006	0.006
4600	0.007	0.0075	0.005
4400	0.004	0.004	0.004
4200			

TABLE XXIV

Transmission for Film "D"

6158 AU, Uncorrected

Wavelength	Transmission $(\cot^2 \theta)$		
(AU)	± 50%	₹ 0 %	- 50%
2000			
2000	0.360		
7800	0.100		
7600	0.180	0.164	0.240
7400	0.220	0.160	0.225
7200	0.200	0.170	0.220
7000	0.185	0.165	0.220
6800	0.185	0.160	0.200
6600	0.160	0.140	0.1.90
6400	0.140	0.125	0.160
6200	0.110	0.105	0.115
6000	0.090	0.060	0.080
5800	0.031	0.034	0.040
5600	0.012	0.0 <u>14</u>	0.019
5400	0.004	0.0045	0.006
5200	0.0035	0.004	0.005
5000	0.0045	0.0045	0.008
4800	0.006	800.0	0.013
4600	0.006	0.006	0.013
4400	0.004	0.004	0.010
4200	٠		

6158 AU, Corrected

8000			
7800			
7600	0.220	0.165	0.085
7400	0.250	0.140	0.085
7200	0.220	0.140	0.085
7000	0.220	0.140	0.085
6800	0.210	0.130	0.085
6600	0.170	0.120	0.082
6400	0.150	0.110	0.076
6200	0.090	0.090	0.070
6000	0.045	0.060	0.050
5800	0.019	0.034	0.029
5600	0.007	0.010	0.010
5400	0.005	0.004	0.004
5200	0.009	0.0035	0.0035
5000	0.013	0.005	0.005
4800	0.010	0.007	0.007
4600		0.007	0.007
4400			
4200			

TABLE XXV

Transmission for Film "D".

5893 AU, Uncorrected

Wavelength	Transa	uission (co	t ² 9)
(UA)	⊥ 50%	± 0%	- 50%
8000			
7800			
7600			
7400	0.094	0.090	0.090
7200	0.090	0.072	0.065
7000	0.090	0.072	0.050
6800	0.088	0.070	0.050
6600	0.088	0.070	0.048
6400	0.082	0.070	0.050
6200	0.072	0.065	0.045
6000	0.055	0.048	0.038
5800	0.036	0.025	0.021
5600	0.010	0.0095	0.008
5400	0.0045	0.0045	0.004
5200	0.004	0.004	0.004
5000	0.005	0.005	0.005
4800	0.008	0.009	0.0075
4600	0.0075	0.006	0.006
4400			0.003
4200			¥-
58	193 AU, Correc	:ted	
8000			
7800			
7600	0.160	0.125	
7400	0.140	0.095	
7200	0.130	0.020	0.042
7000	0.125	0.078	0.040
6900	0 1 20	0 075	0 010

7800			
7600	0.160	0.125	
7400	0.140	0.095	
7200	0.130	0.030	0.042
7000	0.125	0.078	0.040
6800	0.120	0.075	0.040
6600	0.120	0.075	0.044
6400	0.115	0.075	0.044
6200	0.095	0.065	0.040
6000	0.060	0.048	0.033
5800	0.040	0.024	0.020
5600	0.015	0.010	0.009
5400	0.0055	0.0045	0.0045
5200	0.005	0.004	0.004
5000	0.006	0.0055	0.0055
4800	0.010	800.0	0.009
4600	0.006	0.006	0.006
4400		-	
1.200			

.

TABLE XXVI

Transmission for Film "D"

Bavelength	q	ารอาสเ	alagion (e	$at^{2}(a)$
(AII)	15	1 (1)(1) (1)(2)	T U& (C	- 50%
(no)	- 2	0,0	2 0/0	-)0/2
8000				
7800				
7600	0.4	75	0.425	0.370
7400	0.4	80	0.440	0.425
7200	0.4	.75	0.440	0.425
7000	0.4	60	O.LLO	0.425
6800	0.4	35	0.450	0.440
6600	0.4	.90	0.450	0.450
6400	0.4	.90	0.450	0.440
6200	0.4	.80	0.460	0.440
6000	0.4	.60	0.460	0.425
5800	0.4	35	0.410	0.390
5600	0.3	190	0.375	0.330
5400	0.3	30	0.295	0.280
5200	0.2	40	0.230	0.220
5000	0.1	.60	0.150	0.140
4800	0.0	80	0.075	0.075
4600	0.0	40	0.032	0,030
4400	0.0	23	0.020	0.023
4200	0.0	23	0.023	0.023
	5780 AU. C	orrea	rteđ	
	7100 mg 0	~~. + ~ ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
8000				
7800				
7600	0.4	25	0.340	0.330
7400	0.4	40	0.410	0.410
7200	0.4	.50	0.425	0.420
7000	0.4	70	0.455	0.420
6800	0.4	75	0.450	0.440
6600	0.4	75	0.450	0.440
6400	0.4	.80	0.460	0.450
6200	0.4	.80	0.450	0.425
6000	0.4	.70	0.450	0.420
580 0	0.4	40	0.400	0.350
5600	0.3	80	0.370	0.345
5400	0.3	120	0.305	0.289
5200	0.2	45	0.230	0.210
5000	0.1	.60	0.145	0.125
4800	0.0	080	0.070	0.074
4600	0.0	130	0.030	0.034
4400	0.0	20	0.020	0.020
4200	0.0	23	0.020	0.020

TABLE XXVII

¢.

,

Transmission for Film "D"

5461 AU, Uncorrected

Wavelongth	Transmission (cot ² 0)		
(AU)	⊥ 50%	∓ 0%	- 50%
8000			
7800			
7600			
7400	0.160	0.160	0.110
7200	0.175	0.160	0.095
7000	0.180	0.145	0.105
6800	0.190	0.160	0.115
6600	0.205	0.190	0.135
6400	0.245	0.210	0.160
6200	0.270	0.255	0.210
6000	0.325	0.305	0.255
5800	0.365	0.350	0.285
5600	0.390	0.360	0.300
5400	0.360	0.355	0.310
5200	0.290	0.285	0.250
5000	0.200	0.185	0.170
4800	0.115	0.110	0.080
4600	0.050	0.045	0.035
4400	0.023	0.030	0.018
4200	0.030		0.030
54	61 AU, Correc	eted	
8000			
7800			
7600			
7400	0.110		
7200	0.115	0.080	0.100
7000	0.110	0.085	0.105
6800	0.123	0.100	0.110
6600	0.140	0.110	0.115
6400	0.165	0.150	0.170
6200	0.200	0.190	0.200
6000	0.260	0.200	0.220
5800	0.300	0.270	0.305
5600	0.320	0.310	0.310
5400	0.315	0.335	0.320
5200	0.240	0.265	0.260
5000	0.160	0.175	0.180
4800	0.080	0.085	0.095
4600	0.035	0.038	0.035
4400	0.025	0.025	0.025
4200			0.023

TABLE XXVIII

Transmission for Film "D"

4472 AU, Uncorrected

Wavelength	Transmission ($\cot^2 \Theta$)		
(AU)	± 50%	± 0%	- 50%
8000			
7800	,		
7600			
7400			
7200			
7000			
6800	0.003	0.0015	0.0015
6600	0.0025	0.002	0.0025
6400	0.003	0.003	0.003
6200	0.004	0.004	0.004
6000	0.0045	0.004	0.004
5800	0.0045	0.004	0.004
5600	0.0045	0.003	0.003
5400	0.003	0.0025	0.002
5200	0.004	0.004	0.003
5000	0.005	0.009	0.0075
4800	0.025	0.028	0.024
4600	0.043	0.039	0.049
4400	0.043	0.039	0.048
4200	0.038	0.039	0.048
4	472 AU, Correc	ted	
\$000			
7800			
7600			
7000			
7400			
7200			
6800	0 0015	0.0035	0.0015
6600	0.002	0.0025	0.0035
6100	0.002	0.002	0.0025
6200	0.0035	0.0095	0.0027
6000	0.0099	0.0055	0.004
5000	0.001		0.004
5600	0.004	0.002	0.004
51.00	0.009	0.002	0.0029
5200	0.003	0.0024	0.002
5000	0.003	0.007	0.003
1.800	0.022	0.007	0.0009
4600	220.0 ACA A	0.029	0.020
1100	0.020	0.025	0.028
1.200	0.030	0.032	0.020
4000			V • V & O

.,

TABLE XXIX

Transmission for Film "D"

Wavelength	Transmission ($\cot^2 \Theta$)			
(AU)	± 50%	± 0%	- 50%	
8000				
7800				
7600				
7400			0.150	
7200			0.155	
7000	0.019		0.160	
6800	0.018	0.004	0.200	
6600	0.022	0.005	0.240	
6400	0.034	0.008	0.240	
6200	0.050	0.018	0.270	
6000	0.080	0.039	0.315	
5800	0.130	0.072	0.380	
5600	0.200	0.140	0.430	
5400	0.250	0.190	0.460	
5200	0.290	0.245	0.450	
5000	0.325	0.290	0.450	
4800	0.340	0.305	0.410	
4600	0.305	0.290	0.410	
4400	0.255	0.235	0.330	
4200	0.170	0.200	0.270	
	4360 AU, Correc	ted		
8000				
7800				
7600				

7400			
7200			
7000			
6800	0.029	0.004	0.004
6600	0.033	0.005	0.004
6400	0.050	0.006	0.005
6200	0.075	0.014	0.010
6000	0.110	0.030	0.022
5800	0.190	0.060	0.045
5600	0.260	0.110	0.086
5400	0.310	0.170	0.140
5200	0.350	0.220	0.185
5000	0.385	0.270	0.215
4800	0.385	0.280	0.240
4600	0.360	0.270	0.245
4400	0.320	0.190	0.205
4200	0.210	0.130	0.180

BIBLIOGRAPHY

- Bulletin 126. Optical Instruments of Recent Design. Chicago: Gaertner Scientific Corp., 1936.
- Houstoun, R. A. <u>A Treatise on Light</u>. London: Longmans, Green and Company, 1938.
- Lovibond, J. W. <u>Measurement of Light and Colour Sensations</u>. London: George Gill and Sons, 1934.
- Mack, J. E., and Martin, M. J. The Photographic Process. New York: McGraw-Hill Book Company, Inc., 1939.
- Robertson, J. K. <u>Introduction to Physical Optics</u>. New York: D. Van Nostrand Company, Inc., 1941.
- Spencer, D. A. <u>Color Photography in Practice</u>. London: Sir Isaac Pitman and Sons, Ltd., 1938.
- Wall, E. J. <u>History of Three Color Photography</u>. Boston: American Photographic Publishing Company, 1925.

Typist:

7

.

Martha J. Hill