INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

- The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
- 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again beginning below the first row and continuing on until complete.
- 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
- 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 48106

CONTRACTOR AND THE INFACT OF AND LLAN FROM STATES OF THE WACHINE DATA ON SERVICE THAN A BOULLAN FREET OF THE THACT OF MACHINE DATA ON CONTROLLER TO THE THACT OF OKLANOMA, FREET OF THE THACT OF MACHINE DATA ON THE UNIT VERTICE THACT OF OKLANOMA, FREET OF THE THACT OF THACT OF THE THACT OF THE THACT OF THACT OF THACT OF THACT OF THACT OF THAT OF THACT OF THAT OF THACT OF THACT OF THAT OF

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

SENSITIVITY ANALYSIS OF THE MACHINE'S CONTROLLER AND THE IMPACT OF MACHINE DATA ON OVER-ALL STABILITY STUDIES

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

BY

ABDULAZIZ A. EL-SULAIMAN

Norman, Oklahoma

1977

•

SENSITIVITY ANALYSIS OF THE MACHINE'S CONTROLLER AND THE IMPACT OF MACHINE DATA ON OVER-ALL STABILITY STUDIES

APPROVED BY

samil 51 ゝ 50

DISSERTATION COMMITTEE

DEDICATION

This dissertation is dedicated to my wife, Laila Khalid Al-Mekanzi, for her patience and understanding during the initial stage of the preparation of this study and who became critically ill during this time as a result of the delivery of our first child. I also dedicate this dissertation to my son, Laith, who I have been away from since right after his birth, a year and 4 months ago.

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude and appreciation to his Majesty King Khalid Bin Abdulaziz, King of Saudi Arabia and his Vice Crown Prince, Fahd Bin Abdulaziz for their continuous financial support to his wife. Appreciation is also extended to Sheikh Mohamed Al-Nowiser for arranging this financial support.

The author wishes to acknowledge his indebtedness to both of his advisors, Dr. Marion Earl Council, chairman of his committee and Dr. John E. Fagan, dissertation advisor, whose direct supervision and instruction made this investigation possible. Sincere appreciation is also extended to the members of the doctoral committee, Drs. C. R. Haden, William Kuriger, and A. B. Schwarzkopf for their tutorship and assistance.

Special thanks is due to my parents, brothers and sisters for their encouragement and unlimited patience during my long stay in the United States while fulfilling my education pursuit.

The author also appreciates the financial support of the School of Electrical Engineering at the Riyadh University.

Appreciation is extended to Mrs. Wanda Gress for her assistance in typing this dissertation and also to Ms. Mary Ellen Kanak for her assistance in the graphical work.

iv

ABSTRACT

Presented in this work are some modifications of the synchronous machine by C. C. Young. The development of model III and $\frac{1}{2}$ was suggested. A study of the sensitivity analysis of the machine's controller parameters and their impact on the machine's controller response was an object of this dissertation.

Also, the impact of the machine data variation on the overall system studies is the object of this dissertation. This study could lead to the characterization of those parameters which do not effect the machine's controller model and the machine's model for future studies.

TABLE OF CONTENTS

Chapter			F Nu	age mber
I.	Intr	oduction and Remarks	••	1
II.	Theo	retical Aspects of Synchronous Maching Modeling	••	5
	2-1	Steady State Operation	••	8
	2-2	Machine Representation for Stability Analysis	••	12
	2-3	Model I	••	14
	2 -4	Model II	••	17
	2 - 5	Model III	••	20
	2-6	Model III & ½	••	23
	2-7	Model IV	••	25
III.	Sens	itivity Analysis of Machine Controller	••	30
	3 - 1	Introduction to the Excitation System	••	30
	3-2	Exciter Type I	••	33
	3-3	Exciter Type II	••	43
	3-4	Exciter Type III	••	48
	3–5	Exciter Type IV	••	59
	3-6	Linear Technique	••	59
	3-7	Introduction - Prime Mover	••	72
	3-8	Tandem Compound Double Reheater Type	••	73
	3 -9	A Philadelphia Electric Company Type	••	84

Chapter

IV.	Impac Studi	t of Machine Data on the Over-all Stability es
	4-1	Introduction
	4-2	Study of the System 96
	4-3	Result Anaylses of the Machine's Models Performance
	4-4	Performance of the Machine Models with Changing x_d .102
	4-5	Performance of the Machine Models Upon Changing x_d^{\prime} .108
	4-6	Performance of the Machine Models Upon Changing $x_d^{"}$.113
	4-7	Performance of the Machine Models Upon Changing x_q . ¹¹³
	4-8	Performance of the Machine Models Upon Changing \mathbf{x}_q^{*} .117
	4–9	Performance of the Machine Models Upon Changing $x_q^{"}$. ¹²⁰
	4–10	Performance of the Machine Models Upon Changing T'do
	4-11	Performance of the Machine Models Upon Changing T'qo
	4-12	Performance of the Machine Models Upon Changing T"
	4-13	Performance of the Machine Models Upon Changing H 126
	4-14	Performance of the Machine Models Upon Changing x_q and Holding x_d With Abnormal Value
	4-15	Performance of the Machine Model 5 Upon Perturbation Terminal Voltage of Machine 5 as well as Varying its Parameters
	4-16	Summary of Chapter IV
v.	Summ	ary and Conclusion143
Appendi	хА.	
Appendi	хВ.	
Appendi	хС.	

Chapter	Page Number
Appendix D ,	193
Appendix E	. 19 8
Appendix F	. 203
Appendix G	214
Appendix H	221
References	229

i

.

-

LIST OF FIGURES

Figure	Title	Page Number
2-1	Relation of Synchronous Machine Windings	. 7
2-2	Vector Diagram of an Ideal Synchronous Machine	. 9
2-3	Open Circuit Saturation Curve	. 11
2-4	Salient Pole Vector Diagram Including Effect of Saturation	12
2-5	Vector Diagram of Model I	. 15
2-6	Vector Diagram of Model II	. 19
2-7	Vector Diagram of Model III	21
2-8	Vector Diagram of Model III & ½	25
2-9	Vector Diagram of Model IV	27
3-1	Typical Exciter Response	32
3-2	One-To-One Relation of T _c and Time	33
3-3	Relation of System Time Constant and Exciter Output	33
3-4	Sensitivity of a Type I Excitation System Plottin the Effect on the Approximate Time Constant of the System when Time Constant T _R is Varied	ng he 35
3–5	Sensitivity of a Type I Excitation System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T_A is Varied	ng he 37
3-6	Sensitivity of a Type I Excitation System Plottin the Effect on the Approximate Time Constant of the System when Time Constant T _f is Varied	ng he 38

ix

Figure	Title	Page Number
3-7	Sensitivity of a Type I Excitation System Plotting the Effect on the Approximate Time Constant of the System when Gain K _A is Varied	. 40
3-8	Sensitivity of a Type I Excitation System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T _E is Varied	41
3–9	Sensitivity of a Type I Excitation System Plotting the Effect on the Approximate Time Constant of the System when Gain K_f is Varied	42
3-10	Sensitivity of a Type I Excitation System Plotting the Effect on the Approximate Time Constant of the System when Gain K_E is Varied	44
3-11	Sensitivity of a Type II Excitation System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T_R is Varied	45
3-12	Sensitivity of a Type II Excitation System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T _f is Varied	46
3-13	Sensitivity of a Type II Excitation System Plotting the Effect on the Approximate Time Constant of the System when Gain K_A is Varied	47
3-14	Sensitivity of a Type II Excitation System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T _E is Varied	49
3-15	Sensitivty of a Type II Excitation System Plotting the Effect on the Approximate Time Constant of the System when Gain K_{E} is Varied	50
3–16	Sensitivity of a Type II Excitation System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T _A is Varied	51
3-17	Sensitivity of a Type III Excitation System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T _R is varied	52

•

Figure

.

3-18	Sensitivity of a Type III Excitation System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T_A is Varied
3-19	Sensitivity of a Type III Excitation System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T _f is Varied
3–20	Sensitivity of a Type III Excitation System Plotting the Effect on the Approximate Time Constant of the System when Gain K_A is Varied 56
3-21	Sensitivity of a Type III Excitation System Plotting the Effect on the Approximate Time Constant of the System when Gain K _f is Varied 57
3-22	Sensitivity of a Type III Excitation System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T_E° is Varied
3-23	Sensitivity of a Type III Excitation System Plotting the Effect on the Approximate Time Constant of the System when Gain K _E si Varied60
3–24	Sensitity of a Type IV Excitation System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T _E is Varied
3-25	Root Locus of Exciter Type I64
3-26	Bode Diagram for Exciter Type I
3-27	Bode Diagram for Exciter Type I67
3-28	Root locus of Exciter Type II69
3–29	Bode Diagram of Exciter Type II
3-30	Bode Diagram of Exciter Type II
3-31	Sensitivity Analysis of Tandem Governor and Steam System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T ₁ is Varied

Figure	Title	Page Number
3-32	Sensitivity Analysis of Tandem Governor and Steam System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T ₂ is Varied	76
3-33	Sensitivity Analysis of Tandem Governor and Steam System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T ₃ is Varied	77
3-34	Sensitivity Analysis of Tandem Governor and Steam System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T ₄ is Varied	79
3-35	Sensitivity Analysis of Tandem Governor and Steam System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T ₅ is Varied	80
3–36	Sensitivity Analysis of Tandem Governor and Steam System Plotting the Effect on the Approximate Time Constant of the System when Gain K _G is Varied	81
3–37	Sensitivity Analysis of Tandem Governor and Steam System Plotting the Effect on the Approximate Time Constant of the System when Limits of Hard Limiter are Varied	82
3–38	Sensitivity Analysis of Tandem Governor and Steam System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T ₆ is varied	83
3-39	Sensitivity Analysis of Tandem Governor and Steam System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T ₇ is Varied	85
3-40	Sensitivity Analysis of Tandem Governor and Steam System Plotting the Effect on the Approximate Time Constant of the System when Gain K ₃ is Varied	86
3-41	Sensitivity Analysis of a PECO Type of Governor and Turbine System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T ₁ is Varied	87

Figure	Title	Page Number
3–42	Sensitivity Analysis of a PECO Type of Governor and Turbine System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T_2 is Varied	88
3-43	Sensitivity Analysis of a PECO Type of Governor and Turbine System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T_3 is Varied	. 89
3-44	Sensitivity Analysis of a PECO Type of Governor and Turbine System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T_4 is Varied	91
3–45	Sensitivity Analysis of a PECO Type of Governor and Turbine System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T_5 is Varied	92
3–46	Sensitivity Analysis of a PECO Type of Governor and Turbine System Plotting the Effect on the Approximate Time Constant of the System when Hard Limiter are Varied	. 93
4-1	Sample Test System	99
4-2	Transient Rotor Angle Upon Changing $\mathbf{x}_{\mathbf{d}}$. 103
4–3	Transient Rotor Angle Upon Changing \mathbf{x}_{d}	. 103
4-4	Per Unit Exciter Output E_{fd} Upon Changing x_d	107
4-5	Q-Axis Transient Voltage e' Upon Changing $x_d \dots q$	107
4-6	Transient Rotor Angle Upon Changing x'	109
4-7	Transient Rotor Angle Upon Changing x_d^{\dagger}	109
4-8	Per Unit Exciter Output E_{fd} Upon Changing x'_d	112
4-9	Q-Axis Transient Voltage e' Upon Changing x'_d	112
4-10	Transient Rotor Angle Upon Changing $x_d^{\prime\prime}$	114
4-11	Per Unit Exciter Output E_{fd} Upon Changing x''_d	114
4-12	Transient Rotor Angle Upon Changing x_q	. 115

xiii

Page Number

Title

Figure

4-13	Transient Rotor Angle Upon Changing x _q 115
4-14	Per Unit Exciter Output E_{fd} Upon Changing x_q 118
4–15	Q-Axis Transient Voltage e'_q Upon Changing x_q 118
4-16	Transient Rotor Angle Upon Changing x'_q 119
4-17	Per Unit Exciter Output E_{fd} Upon Changing x'_q 119
4-18	Q-Axis Transient Voltage e' Upon Changing x'_q 121
4-19	Transient Rotor Angle Upon Changing $x_q^{"}$ ¹²¹
4–20	Trnasient Rotor Angle Upon Changing T'124
4-21	Transient Rotor Angle Upon Changing T'124
4-22	Per Unit Exciter Output E_{fd} Upon Changing T'_{qo} 125
4-23	Transient Rotor Angle Upon Changing T"125
4-24	Per Unit Exciter Output E _{fd} Upon Changing T"127
4–25	Transient Rotor Angle Upon Changing H127
4-26	Transient Rotor Angle Upon Changing H128
4 - 27	Per Unit Exciter Output E _{fd} Upon Changing H128
4-28	Transient Rotor Angle Upon Changing x with x _d = 1.0 per unit130
4–29	Per Unit Exciter E Upon Changing x with x _d = 1.0 per unit130
4-30	Q-Axis Transient Voltage e' Upon Changing x with $x_d = 1.0$ per unit
4-31	Transient Rotor Angle Upon Changing Initial Voltage and x _d 132
4-32	Transient Rotor Angle Upon Changing Initial Voltage and x _d 133
4-33	Per Unit Exciter Output E _{fd} Upon Changing Terminal Voltage and x _d 133

Figure	Title	Page Number
4–34	Q-Axis Transient Voltage e' Upon Changing Initia Terminal Voltage and x _d	1 134
4-35	Transient Rotor Angle Upon Changing Initial Voltage and x'_d	134
4–36	Transient Rotor Angle Upon Changing Initial Voltage and x'_d	135
4–37	Per Unit Exciter Output E_{fd} Upon Changing Initia Terminal Voltage and x'_d	1 135
4–38	Q-Axis Transient Voltage e' Upon Changing Initial Terminal Voltage and x ¹ _d	136
4–39	Transient Rotor Angle Upon Changing Initial Terminal Voltage and x _q	136
4-40	Transient Rotor Angle Upon Changing Initial Terminal Voltage and x _q	137
4-41	Per Unit Exciter Output E Upon Changing Initial Terminal Voltage and x_q	137
4-42	Q-Axis Transient Voltage e' Upon Changing Initia Terminal Voltage and x_q	1 139
4–43	Transient Rotor Angle Upon Changing Initial Terminal Voltage and x'_q	139
4-44	Per Unit Exciter Output E_{fd} Upon Changing Initia Terminal Voltage and x'_q	1 140
4–45	Q-Axis Transient Voltage e' Upon Changing Initia Terminal Voltage and x'_q	1 140
5-1	Sensitivity of a Type I Excitation System Plotti the Effect on the Approximate Time Constant of t System when Time Constant T _f is Varied	ng he 144
5-2	Sensitivity of a Type I Excitation System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T _E is Varied	145

Figure	Title	Page Number
5-3	Sensitivity Analysis of Tandem Governor and Steam System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T ₃ is Varied	147
5-4	Sensitivity Analysis of Tandem Governor and Steam System Plotting the Effect on the Approximate Time Constant of the System when Time Constant T ₅ is Varied	148
5-5	Transient Rotor Angle Upon Changing x_d	149
5-6	Transient Rotor Angle Upon Changing x _d	149

LIST OF TABLES

.

Table Number	Title	Page Number
2-1	Machine Parameters Used for Each Model	29
3-1	Exciter Data	34
3-2	Governor and Turbine Data	74
4-1	Simulated Machine Parameter	101

•

LIST OF SYMBOLS USED

Excitation System Symbols:

•

К _f	Feedback gain of the exciter
ĸ _A	Regulator gain
ĸ _E	Exciter constant related to the self-exciter field
ĸ	Current circuit gain of the exciter type III system
К _Р	Potenetial circuit gain of the exciter type III system
к _F	Fast raise/lower contact setting, exciter type IV
s _e	Exciter saturation function
TA	Regulator amplifier time constant
т _Е	Exciter time constant
^T f	Regulator stabilizing circuit time constant
T _{f1} , T _{f2}	Regulator stabilizing circuit time constants (rotating recti- fier system)
T _R	Regulator input filter time constant
T _{RH}	Rheostat time constant, exciter type IV system
V _R	Regulator output voltage
V Rmax	Maximum value of V_R
V Rmin	Minimum value of V_R
R Ref	Regulator reference voltage setting
V _{RH}	Field rheostat setting
V _t	Generator terminal voltage
V _{Thev}	Voltage obtained by vector sum of potential and current signals, exciter type III system

- ΔV_t Generator terminal voltage error
- E_{fd} Exciter output (applied to the generator field)
- I Generator field current

Governor-Turbine System Symbols:

^F VHP	Very high pressure turbine power
F _{HP}	High pressure turbine power fraction
F _{IP}	Intermediate pressure turbine power fraction
F LP	Low pressure turbine power fraction
Р _М	Mechanical power
P ₀	Initial mechanical power
T _{SR}	Speed relay time constant
^т _{СН}	Steam chest time constant (control valves to HP (VHP) exhaust)
T _{RH1}	Reheat time constant (HP VHP exhaust to IP HP) exhaust
T _{RH2}	Second reheat time constant (HP exhaust to IP exhaust)
т _{со}	Crossover time constant (IP exhaust to LP exhaust)
к ₁ – к ₇	General model parameters
W	Speed
∆W	Speed deviation
S	Differential operator
Synchronous Machine Symbols:	

δ	Angle between the q-axis and the synchronous reference (degree)
t	Time (sec)
f	Frequency (hertz)
Н	Inertia constant (MW - Seconds/MVA)
К	Damping coefficient

.

Tm	Mechanical torque (per-unit)
Т _е	Electrical torque (per-unit)
x _l	Stator leakage reactance (per-unit)
x"d	Direct-axis subtransient reactance
x'd	Direct-axis transient reactance (per-unit)
x _d	Direct-axis synchronous reactance (per-unit)
Xq	Quadrature-axis synchronous reactance (per-unit)
X'q	Quadrature-axis transient reactance (per-unit)
X'' q	Quadrature-axis subtransient reactance (per-unit)
x _p	Potier reactance (per-unit)
T"do	Direct-axis subtransient open-circuit time-constant (seconds)
T'' qo	Quadratuer-axis subtransient open-circuit time-constant (seconds)
T'do	Direct-axis transient open-circuit time-constant (seconds)
T'qo	Quadrature-axis transient open-circuit time-constant (seconds)
iq	Quadrature-axis component of stator current (per-unit)
id	Direct-axis component of stator current (per-unit)
i Kd	Direct-axis amortisseur current (per-unit)
EI	Field current (per-unit)
∆e _i	Correct to field current for saturation (per-unit)
ě'	Phasor voltage behind transient (per-unit)
ě"	Phasor voltage behind subtransient (per-unit)
e'q	Field flux-linkages (per-unit)
e'd	Quadrature-axis iron-circuit flux-linkages (per-unit)
^E fd	Field voltage (per-unit)
Е р	Potier voltage (per-unit)
^X Kd	Direct-axis amortisseur flux-linkage (per-unit)

xx

^λ Kq	Quadrature-axis amortisseur flux-linkages (per-unit)
λ" đ	Direct-axis component of rotor subtransient flux-linkage (per-unit)
λ" ¶	Quadrature-axis component of rotor subtransient flux-linkage (per-unit)
I _t	Machine terminal current (per-unit)
V _t	Machine terminal voltage (per-unit)
λ _j	Flux-linkage of circuit j (per-unit)
^L ij	Inductance between rotor circuits i and j (per-unit)
L ajm	Inductance between stator circuit a and rotor circuit j maximum value (per-unit)
ω o	Base angular velocity
ωr	Angular velocity of rotor

CHAPTER I

INTRODUCTION AND REMARKS

Present day power systems are large and very complicated. With the current rise in the demand of electrical energy, power systems will continue to grow both in size and complexity. Our dependence on electricity is so great it is essential to have an uninterrupted supply of electrical power within set limits of frequency and voltage levels. This can be achieved by a well-coordinated operation and planned system.

Therefore, one of the most important steps in power system planning is studying the transient and dynamic stability characteristic of the systems. Stability studies involve the simulation of the behavior of generators and their control using a digital computer model program. The computation cost of this process is a function of the complexity of the model being used. The value of bus voltages to be maintained or compensated for load and circuit changes may be of great importance. Also, generator model complexity effects the accuracy of the stability study results which varies with many factors. The dynamic behavior of the real generators varies in a non-linear way with the electrical load on the generator.

The parameters of synchronous machine control equipment in a generation station have a considerable influence on the overall system performance. The parameters of exciter and governor need to be adjusted to satisfy the system from an overall performance standpoint.⁽⁵⁰⁾ There-fore a carefully chosen model to represent the generator must be accurate

over a range of operating conditions.⁽⁴⁹⁾ The loads are assumed to be linear in such stability simulation in order to simplify the solution. It is well known that the method of supply excitation to systems has an adverse effect on stability.⁽³³⁾

Recently, exciter parameters, such as exciter time constant, T_E , and exciter gain, K_E , were subject to discussion by Francisco P. Demello and C. Concordía. They noted that the parameters were important as well as what was the boundary of their values for the exciter determined by the exciter system stability, hence, machine stability studies.⁽²⁴⁾

M. K. El-Sherbing shows in his work that the stability of the system is affected by the excitation system and governor system. Both are found to have adverse effects on the damping of the system. Of the two, the voltage regulator has the more detrimental effect; moreover, the system stability is sensitive to gain regulator. (32) There has been a lot of work done in the stability area, but there has been a need for more studies in the literature on the excitation, governor-turbine, and machine data for purposes of modeling system stability studies. Therefore, it is important to draw conclusions on the behavior of the machine's controller as well as the machine upon variation of their data. The endresult is to study the sensitivity analysis of the machine's controller parameters and to see their impact on the machine's controller response. This could help to characterize those parameters which do not contribute a major change on the exciter and governor-turbine response for future The impact of machine data on the research work that was done in work. connection with this dissertation tests the machine's parameters in the sense that it checks which of these parameters influences the machine's

performance. Hence, this could lead to characterize these parameters which do not effect the machine model's representation, in their absence.

Chapter II, which is a review, presents some modifications of synchronous machine modeling by C. C. Young, (2,44) defining new terms of the machine, stating their physical representation and developing new model III and ¹/₂. The synchronous machine model has been classified based on the assumption used for each model. For instance, the number of rotor windings being used in machine model II is one, while the number of rotor windings in machine model IV is four. Therefore, machine model I represents the classical machine representation. In a sense the assumption has been adopted in Chapter II. Machine model II is characterized by transient voltage behind the direct axis transient reactance. Machine model III is suitable for a round rotor machine. It's characterized by two rotor windings and transient voltage behind the direct axis transient reactance. It was stated by H. E. Lokay and R. L. Bogler⁽⁵²⁾ that the priority of machine elements can be classified in the following order: 1) damping of machine, 2) excitation, 3) saturation, 4) system damping and 5) speed governor action. The machine damping is the next most important factor in the stability study over the saturation factor, therefore, the idea to develop the machine model III and $\frac{1}{2}$ is highly recommendable for digital representation to the stability studies. This model will be in between machine model II and machine model IV. The model is characterized by three coils in the rotor winding, voltage behind the direct axis subtransient reactance and no saturation factor being represented. Machine model IV is a more complicated model. It's char-

acterized by four rotor windings, voltage behind the direct axis subtransient reactance and the saturation factor is included.

Chapter III presents a study of data sensitivity analysis on the machine controller system using C.S.M.P. computer package for four types of excitation system (see appendix B) and two models of governor-turbine (see appendix E). Root locus technique and frequency response technique are used to study some coupling points of the excitation system data for the first two types.

Chapter IV presents the impact of the machine's data variation on the overall system studies. Performance of the four machine model's simulation (machine model two, machine model three, machine model four, and machine model five) upon variation of machine five data (figure 4-1) is the goal of this chapter. The system study is a model of a 345 KV transmission system typical of Northeast utilities in figure 4-1.⁽⁵⁸⁾ This consists of 10 machines being equipped with an IEEE type I excitation system⁽⁸⁾ and a Philadelphia Electric Company (PECO) generalized steam and hydro model.⁽⁶¹⁾ It is the EPRI 39 bus, 46 line, 10 generators.⁽⁶²⁾

Chapter V presents a summary and the conclusion of this work and an indication of those problems which remain subject to further research.

CHAPTER II

THEORETICAL ASPECTS OF SYNCHRONOUS MACHINE MODELING

The synchronous machines, both generators and motors, have several ways to describe their physical characteristics. A complete description of the dynamic behavior of the synchronous machine requires consideration of its electrical and mechanical characteristics as well as those of associated control systems. The necessary mathematical statements as well as a vector diagram will describe the machine's model in relation to the stability analysis of a power system.

The synchronous machine to be analyized is assumed to be an ideal machine proposed by Park. (1, 5, 6) The assumptions are:

 The stator winding is sinusoidally distributed around the air gap as far as the mutual effects between them and the rotor are concerned.

2) Nonlinearities such as the hysteresis and saturation effect of the flux interlinkage are neglected.

3) The stator-winding self and mutual inductances vary sinusoidally as the rotor moves and are of the form phase A.

 $L_{aa} = L_{aao} + L_{aa2} \cos 2\theta$ and $L_{ab} = -[L_{abo} + L_{aa2} \cos 2\theta]$.

The sinusoidal voltage output of the machines demonstrate the validity of assumption 1.

Basically machines have saturation effects and we will illustrate how these effects might be included by changing the representation of

the ideal machine.

Recently there has been expressed some doubt on the validity of assumption 3 in the case of salient pole machines but there is no evidence to suggest that it is unsatisfactory for round rotor machines.⁽²⁷⁾ These self and mutual inductances include fundamental and second harmonic frequency terms which make the solution really hard but which may be removed from the equations by using an axis transformation from R. H. Park.^(6,48)

At this time there is a need to define certain quantities of the synchronous machine. Basically synchronous machines are classified into two principle types, round-rotor machines and salient-pole machines. If the air gap is uniform the machine is called a round-rotor machine. For example, the steam-turbine generator is a round-rotor type. Salient pole machines have laminated rotors, to minimize eddy currents, and round-rotor machines have solid steel rotors, in which eddy currents can flow. The eddy current flowing in the solid steel rotor of a roundrotor machine performs the same damping function as the amortisseur currents except that they cannot be used for starting or for any condition where dangerous heating might occur. The basic difference in their representation is that there are now an infinite number of short circuited windings and the paths that the current take are a complex function of the frequency of the currents and saturation effects. The current paths in a round-rotor machine are usually referred to as "iron circuits" and the current is referred to as "iron current". It is assumed that the salient pole machine has the winding structure given in figure 2-1.

The stator has the three phase windings each located 120⁰ apart electrically. The rotor has one field winding and the damper

FIGURE 2-1 RELATION OF SYNCHRONOUS MACHINE WINDINGS

windings are represented by two orthorgonally closed circuits. The rotor has two axes that are symmetrical; one axis passes through the center line of the north pole and is defined as the direct axis; the other axis is located 90° from the direct axis and is called the quadrature axis. The angle θ is the angle between the center line of the "a" phase and the direct axis.

The installation of damper windings may take many different physical forms. The generators for one installation were supplied with a new type of damper winding which consists of a double cage arrangement in which the outer row of bars is made of high-resistance material and the inner row of bars is made of a low-resistance material imbedded in the iron. $^{(2)}$ For double frequency associated with the negative sequence the copper bars possess a high reactance and, therefore, force most of

the current through the high-resistance bars, but for the low frequency associated with the system oscillations, the current varies inversely with the resistance of the damper bars in which case most of the current flows through the copper winding.

The benefits from high-resistance damper windings will be decreased as the fault duration is decreased by the use of faster breakers and relays. Damper windings also have characteristics which tend to suppress spontaneous hunting and to reduce system voltages and recovery rates arising from short circuit. So in these respects low-resistance copper dampers are somewhat more effective than high-resistance dampers.⁽⁴³⁾

Damping windings have been installed in the salient pole machine because of the need requirement to increase starting torque for the automatic operation in the case of the motor. It has been found that the effect of the damper windings on the machine's behavior can usually be represented by two equivalent short circuit windings. These windings will carry current when the machine is subjected to a disturbance which causes the rotor to temporarily depart from synchronous speed.⁽³⁾

Electrical torques will be introduced in the case of disturbances which will help the machine to maintain the stability and to damp out any oscillations. If a machine loses synchronism and operates continuously out of step, then these windings will continuously carry slip frequency currents. If the machine is operated under steady state conditions, there is no current flowing in the damper windings.

2-1 Steady State Operation

When an ideal synchronous machine is operating at synchronous speed, under balance conditions and in a steady state condition, the

machine's performance can be described by a vector diagram. One form of a vector diagram is shown in figure (2-2). (28,29,30)

FIGURE 2-2 VECTOR DIAGRAM OF AN IDEAL SYNCHRONOUS MACHINE

The construction of this vector diagram is from the knowledge of terminal conditions V_t , I_t , and from machine reactances. From it one can find out some important quantities such as E_I , the voltage corresponding to the field excitation, the voltage back of the transient reactance, \tilde{e} ', and the angle between the rotor quadrature axis and a synchronously rotating axis δ . The reference axis is arbitrarily chosen when solving the system's steady state equation. All of the individual machine's axis and system phasors are measured in reference to reference axis δ . Under steady state conditions all amortisseur current and brake torques are equal to zero. The vector diagram, figure 2-2 could be adapted for either a salient pole machine or a round rotor machine. The only difference which affects the vector diagram is that the quadrature axis synchronous reactance x_q and direct axis synchronous reactance x_d are almost equal numerically for an ideal round rotor machine. Otherwise, the diagram is the same as that of the salient pole machine.

The effect of saturation has been shown to be important in an analysis of the steady state performance of synchronous machines. It is necessary during a transient oscillation to include the effects of generator saturation. Most transient stability analyses are made on the basis of constant field flux linkages during the first swing of the machine. The effect of saturation is very important when representing the excitation system because it directly influences the initial operating conditions of the excitation system.⁽¹⁾ Saturation effects are very complex. There are several methods to represent the saturation effect in the calculation of other values.

Most methods used for the analysis of a machine'e performance use a single index of saturation together with an open-circuit saturation curve of the machine so as to estimate the saturation effect on the field current. One index usually adapted is the Potier voltage which will represent the voltage back of a reactance called the Potier reactance X_p .⁽²⁾ The Potier voltage E_p is shown on figure 2-3.

The magnitude of this voltage is used to estimate the difference between the actual field current and the field current predicted when

saturation is neglected. This difference, e_s, is, therefore, added to the field current determined by neglecting saturation. So as to predict the actual field current figure 2-3 has been illustrated.

FIGURE 2-3 OPEN CIRCUIT SATURATION CURVE*

*e equals per unit saturation mmf corresponding to the voltage back of Potier reactance X_{n} .

Figure 2-4 illustrates the machine vector diagram showing es voltage. So far almost all of the methods in common have been using predicted field currents which are very close to measured values. This implies that no unique method has been adapted to represent the main field saturation for the purpose of stability analysis.

FIGURE 2-4 SALIENT POLE VECTOR DIAGRAM INCLUDING EFFECT OF SATURATION

2-2 MACHINE REPRESENTATION FOR STABILITY ANALYSIS⁽²⁾

A synchronous machine characteristic in relation to the stability study has a practical assumption regarding machine model interface with the exciter and the network. In describing the machine's model, with taking care of the saturation effect, it will be required to also represent the transmission line and transformer in detail. On the other hand, implying that it increases the complexity of the computation to the point that only a relatively simple system could be represented on even a large scale digital computer, it leads to higher computing costs without gaining many benefits. The simplification of the particular type of study being made needs to be recognized and as many

appropriate simplifying assumptions as possible need to be made. Therefore, the assumptions that are made for a stability analysis may not be used as well in the other kinds of studies, hence, one has to be careful in using a stability program for other branches of study.

There are some assumptions that can be made that are acceptable for power system stability analysis regardless of the detail of representation of the control systems, the load or the machines.⁽³⁾ These are:

1. Only fundamental frequency current and voltage, in this case d.c. and second harmonic components of the phase current and phase voltage, are represented in the stator and the connected system. Therefore, the d.c. offset current and the rest of harmonic currents and voltages are neglected.⁽¹⁾

2. The effect of machine speed variations is neglected.

3. Symmetrical components will be used in the representation of an unbalanced condition.

The first assumption assumes that all of the machine and system voltages and currents can be represented by a vector diagram. Generally, this first assumption gives substantially correct results for stability analysis with one important exception. This is that during a fault which occurs near the machine terminals, a significant amount of d.c. offset current may be produced in the machine stator and, therefore, a significant electrical torque may be produced by this current.⁽³⁾ This "d.c. offset torque" decays rapidly. Its magnitude is large and will have an important effect upon the actual machine angle and eventually the velocity will change during the fault. The generator when its torque is neglected gives conservative results (a system more
likely unstable than it may actually be), system designers often feel a desire to have some representation of the effect of the d.c. offset torque during a fault. This can be accomplished by making a separate and special calculation of this torque, in other words, we could correct the electrical torque during the fault period.

The third assumption represents the system by a symmetrical component model. This assumption reduces the calculation time of the model substantially.

These machine equations are relatively complex and taking in a large system these equations need further simplifying assumptions. The studies indicate⁽²⁾ for specific situations, other simplifying assumptions might be necessary with little effect on the result. Obviously, if the situation changes, the assumptions might have to change too.

To have an idea of what some of these assumptions might be and their effect upon the representation, five classes of models have been chosen. Four of the five models presented include most of the models currently being used for stability analysis.

2-3 Model I

In addition to the previous assumptions we could have the following assumptions:

1. The voltage behind the direct axis transient reactance is constant in magnitude but, of course, not in phase.

2. All generators in the same power plant have to be represented as one machine.

3. The amortissuer winding effects are neglected.

4. Stability is determined by the first swing of the machine including those with the longer period.

5. Damping torques are neglected.

6. Armature resistance is neglected.

The resulting model is the so-called classical machine representation for transient stability analysis. The vector diagram in figure 2-5 and the equations (2-1) and (2-2) will represent the "classical model".

$$\frac{\mathrm{d}\delta}{\mathrm{d}t} = \omega \tag{2-1}$$

$$\frac{d\omega}{dt} = \frac{180f}{H} \left(\frac{T}{m} - \frac{T}{e} + K\omega \right)$$
(2-2)

where T_m is the mechanical torque (per unit); T_e is the electrical torque (per unit); δ is the angle between the q axis and the synchronous reference (degree); and H is the inertia constant (MW - seconds/MVA). K is the damping factor.

Assumption one represents a great simplification of the synchronous generator in which transient saliency and saturation are neglected. Therefore, the rational of this assumption depends largely upon a good regulator and exciter that can maintain constant voltage behind a transient reactance and secondly, the assumption depends on the severity as well as the duration of the fault. For severe, long duration faults (greater than 6 cycles), a constant voltage behind transient reactance is often optimistic and the classical model may not give a proper indication of stability.⁽²⁾ Therefore, this representation is not good for dynamic stability studies where the damping is an important consideration. The amortissure currents contribute positive damping effect and thus, the damper winding effects the interaction of the field and stator. Also, the assumption of constant field flux linkages would not be added to the value of the representative model for it to represent the damper winding effect. Therefore, the amortissure effects need to be represented as well as the fixed field transient by an equivalent damping coefficient in the torque equation which is represented by $K\omega$ in order to give reasonable results. Saliency can be shown to have little effect on the power limit. (54,55)

Saturation in the synchronous machine has only a minor effect on transient stability because the currents induced in the rotor circuits by changes in the stator currents tend to maintain constant flux linkages in the rotor circuits.⁽⁵⁵⁾

The period of swing of the machine is short and the motion of the machine was calculated only to the crest of the first swing (one second or less). In so short a time, the effect of speed governors is negligible.

With the assumption of the machine's combination, it is quite true that if two or more similar machines are connected to the same node, they may be represented by an equivalent machine whose resistance and reactance parameters are obtained by treating them as if the corresponding resistances or reactances of the individual machines were connected in parallel. The equivalent inertia constant is the sum of the inertia constants of individual machines.⁽⁴⁾

The conclusion is the classical model is suitable for some transient studies. However, it may be necessary to use a more complicated model which would result in more reliable stability studies.

The advantages of model I are:

- 1) There is a simple approach toward transient stability.
- 2) It requires less computer time.
- 3) Data requirements are minimum (see table 2-1).
- 4) This model is adequate for studying first swing transient stability.

The disadvantages of model I are:

 The voltage behind the transient reactance is constant implying that there is abundant exciter action, therefore, we may lose the affect of exciter on the machine and that may cause questionable results.

2. It is very difficult to judge whether the results obtained are conservative or not.

2-4 Model II

In addition to the previous assumptions we could make some additional assumptions.

17

, t_i .

1) All generators in the same power plant are represented as one machine.

- 2) The amortissure effects are neglected.
- 3) Damping torques are neglected.
- 4) Armature resistance is neglected.

The vector diagram for this model is shown in figure 2-6 and the dynamic equations are shown in equations (2-3), (2-4) and (2-5).

$$\frac{\mathrm{d}\mathbf{e}'_{\mathbf{q}}}{\mathrm{d}\mathbf{t}} = \frac{1}{\mathrm{T}'_{\mathbf{d}0}} \left(\mathbf{E}_{\mathbf{f}\mathbf{d}} - \mathbf{E}_{\mathbf{I}} \right)$$
(2-3)

E_{fd} is the exciter output.

$$\frac{d\delta}{dt} = \omega \tag{2-4}$$

$$\frac{d\omega}{dt} = \frac{180f}{H} \left(\frac{T_{m} - T_{e} + K\omega}{m} \right)$$
(2-5)

In the vector diagram the correction for field saturation e_S is a function of the saturation index, where the saturation index is Potier voltage which has been exposed. The function used might be the opencircuit saturation curve, which was described earlier under the steady state vector diagram. The method used for representing saturation during stability analysis must be consistant with the steady state model.

At any instant of time the angel δ , rotor angle, and the magnitude of the field flux linkages e'_q are known from the solution of the dynamic equation (2-3). Therefore, it is necessary to find a value of E_q which will simultaneously satisfy the known conditions for every machine and the system conditions. Once E_q is known the field current can be found from the vector diagram relations. The field voltage and field current, calculated from the excitation system equation (2-3), can be used to predict the change in e'_q .

FIGURE 2-6 VECTOR DIAGRAM FOR MODEL II

The assumption of ignoring the amortissure currents implies that the amortissure damping is being ignored too as well as neglecting the shield effect of the amortissures between the field and stator during transient. The damping contributed from the armature is primarily of significance upon the inter-unit damping of closely coupled machines. The contribution to the inter-system damping is not as large. Therefore, the effect of amortisseur damping can be approximated by adding an equal element damping coefficient to the motion equation (2-5) in order to have a better solution. The shielding effects of the amortisseurs are relatively unimportant for rotation exciters, but it may be relatively unimportant for rotating exciters, but it may be relatively important for some static exciter systems.⁽²⁶⁾ To be more secure and avoid the doubt of the shielding effect, a more complicated model needs to be represented.

The advantages of this model are:

1) It exposes the representation of field transients, in other words, saturation effects are included which are a more accurate representation.

It is the simplest model to use for dynamic stability studies.

3) It requires a fair amount of machine data (see table 2-1). The disadvantages of model II are:

1) It requires more machine data than the previous model.

2) It requires more computing time than model I.

2-5 Model III⁽²⁾

This model is concerned particularly with round rotor machines (with solid iron rotors). The damping of the round rotor machine is provided by iron circuits while the salient machine eliminates these iron circuits.

The additional assumptions that are required are:

1) The armature resistance is neglected.

2) All generators in the same power plant are represented as one machine.

3) Transient saliency is neglected.

4) The quadrature axis iron circuit is represented by a single circuit whose constants are established for a rotor current frequency of one hertz.

This model will be represented by vector diagram figure 2-7 and dynamic and algebraic equations (2-6), (2-7), (2-8), (2-9), (2-10), (2-11) and (2-12).

FIGURE 2-7 VECTOR DIAGRAM FOR MODEL III

$$\tilde{e}' = (e_q' + Je_d') e^{j\omega t}$$

$$\frac{de_q'}{dt} = \frac{1}{T_{do}'} (E_{fd} - E_I)$$
(2-7)

$$\frac{\mathrm{d}\mathbf{e}_{\mathrm{d}}^{\prime}}{\mathrm{d}_{\mathrm{d}}} = \frac{1}{\mathrm{T}_{\mathrm{o}}^{\prime}} \begin{pmatrix} -\mathrm{E}_{\mathrm{d}} \end{pmatrix} \tag{2-8}$$

 $E_{d} = E'_{d} - (x_{q} - x'_{q}) I_{q}$ (2-9)

$$E_q = E'_q + (x_d - x'_d) I_d + e_s$$
 (2-10)

$$\frac{d\delta}{dt} = \omega \tag{2-11}$$

$$\frac{d\omega}{dt} = \frac{180f}{H} (T_m - T_e + K\omega)$$
(2-12)

Note equation (2-6) can be written in general form if we don't accept ignoring the saliency transient.

$$\tilde{e}' = \{e'_q + J[e'_d - (x'_q - x'_d) i_q]\}e^{j\omega t}$$

Therefore, at any instant of time all of the quantities are known.

Strictly speaking, x'_q and x'_d have quite different values, but trouble comes about if they are not equal because i_q needs to be found as well as \tilde{e} '. The procedure might be to assume a value of \tilde{e} ' and solve the system equations.⁽²⁾ The question is how far are we right when assuming the value for \tilde{e} '. Therefore, it is practical to only assume that $x'_q = x'_d$.

Model III can be represented as model I if we assume that internal voltage behind the transient reactance is constant.

As it has be shown, model II was derived with neglecting all damping winding or iron circuit effects. Therefore, amortisseur damping was not represented directly in the equations. But model III represents directly the major part of this form of damping by representing the quadrature axis iron circuit whose constants are appropriate for the usual order of magnitude of inter-unit oscillations. At no load all of the amortisseur's damping is produced by the quadrature axis iron circuit whose constants are appropriate for the usual order of magnitude of interunit oscillations. At no load all of the amortisseur's damping is produced by the quadrature axis iron circuit. At full load, for the usual range of reactances, the quadrature axis iron circuit continues to provide a major amount of this form of damping. X'_q and X'_d can be adjusted so as to represent more of the total damping effect of the iron circuit and for other frequencies. This requires information which is not available.

The advantages of model III are:

 Representation of the quadrature axis iron circuit may provide a direct representation of damping, hence, a better result.
 This model is used only for a round rotor machine where the field effects are represented and where a direct representation of inter-unit damping is desired.

3) It is simple and accurate enough to use for all kinds of stability studies.

The disadvantages of model III are:

1) Model III requires more computing time than does model II.

2) It requires more machine data (see table 2-1).

2-6 Model III & ½

This model represents the damper winding of the machine in both the direct and quadrature axis.

The additional assumptions that are needed are:

1) The armature resistance is neglected.

2) All generators in the same power plant are represented as one machine.

3) Saturation is not represented.

This model is illustrated in vector diagram figure 2-8 and dynamic equations as well as algebraic equations (2-13), (2-14), (2-15), (2-16), (2-17), (2-18), (2-19) and (2-20). For derivation of these equations see appendix A.

$$e_q^{"} = -(x_d - x_d^{"}) i_d + e_{q1} + e_{q2}^{**}$$
 (2-13)

$$e_{q}^{\prime} = -(x_{d}^{\prime} - x_{d}^{\prime\prime}) i_{d}^{\prime} + e_{q1}^{\prime} + \left(\frac{x_{d}^{\prime} - x_{d}^{\prime\prime}}{x_{d}^{\prime} - x_{d}^{\prime\prime}}\right) e_{q2}$$
 (2-14)

$$e_{d}^{"} = (x_{q} - x_{q}^{"}) i_{q} + e_{d}$$
 (2-15)

$$\frac{de'_{q}}{dt} = \frac{1}{T'_{do}} \left(E_{fd} - e_{q1} \right)$$
(2-16)

$$\frac{de_q^{\prime\prime}}{dt} = -\frac{eq_2}{T_{do}^{\prime\prime}} \left(\frac{x_d^{\prime} - x_q^{\prime\prime}}{x_d - x_d^{\prime\prime}} \right)$$
(2-17)

$$\frac{de''_{d}}{dt} = -\frac{ed}{T_{qo}}$$
(2-18)

$$\frac{d\delta}{dt} = \omega \tag{2-19}$$

$$\frac{d\omega}{dt} = \frac{180 f}{H} \left(\frac{T}{m} - \frac{T}{e} + K\omega \right)$$
(2-20)

** e_{q1} , e_{q2} and e_{d} have been defined in Appendix A.

The relative importance of representing damping winding over representing the saturation, amortissure winding has been represented; one winding in each of the direct and quadrature axis. The next model, model IV, will consider the saturation effects in addition to this model.

The advantages of model III & $\frac{1}{2}$ are:

1) Representation of damping winding in direct and quadrature axis will provide a direct representation of damping, hence, a better result.

2) It is modern, simple and sufficient enough for using in stability studies of the machine's representation.

The disadvantage of model III & $\frac{1}{2}$ is it requires more machine data (see table 2-1).

FIGURE 2-8 VECTOR DIAGRÁM FOR MODEL III & ½

2-7 Model IV

Model IV is the most complicated model so far. To define this model, in addition to the three assumptions stated previously, the following assumptions are made.

1) Machine subtransient saliency is neglected, that is $x_q^{"} = x_d^{"}$.

2) The braking torque is neglected.

3) All generators in the same power plant are represented as one machine.

Assumption one is valid for a round-rotor machine, but for salient pole generator $x_q^{"}$, it is some what larger than $x_d^{"}$, but the effect of assuming that $x_q^{"} = x_d^{"}$ is negligible for stability analysis.

The vector diagram is represented in Figure 2-9. Dynamic equations as well as algebraic equations are represented as equations (2-21), (2-22), (2-23), (2-24), (2-25), (2-26), (2-27), (2-28), (2-29) and (2-30).

$$\lambda_{\mathbf{q}}^{\mathbf{u}} = \mathbf{e}_{\mathbf{d}}^{\mathbf{u}} \tag{2-21}$$
$$\mathbf{x}_{\mathbf{d}}^{\mathbf{u}} = \mathbf{x}_{\mathbf{d}}$$

$$\lambda_{d}^{"} = \lambda_{kd} + \left(\frac{x_{d}^{*} = x_{k}}{x_{d}^{*} - x_{k}}\right) \left(e_{q}^{*} - \lambda_{kd}\right)$$
(2-22)

$$\frac{de'_{q}}{dt} = \frac{1}{T'_{do}} \left(E_{fd} - E_{I} \right)$$
(2-23)

$$\frac{d_{\lambda kd}}{dt} = -\left[\frac{\left(x_{d}^{"} - x_{g}\right)^{2}}{\left(x_{d}^{'} - x_{d}^{"}\right)T_{do}^{"}}\right] \quad (i_{kd})$$
(2-24)

$$\frac{\mathrm{d}_{\mathrm{ed}}^{\mathrm{u}}}{\mathrm{d}t} = \frac{1}{\mathrm{T}_{\mathrm{qo}}^{\mathrm{u}}} \left(-\mathrm{E}_{\mathrm{d}} \right) \tag{2-25}$$

$$E_{I} = e'_{q} + (x_{d} - x'_{d})(i_{d} - i_{kd}) + e_{s}$$
 (2-26)

$$\mathbf{i}_{kd} = \frac{(\mathbf{x}_{d}^{\dagger} - \mathbf{x}_{d}^{\dagger})}{(\mathbf{x}_{d}^{\dagger} - \mathbf{x}_{\ell})^{2}} \left[\lambda_{kd} - \mathbf{e}_{q}^{\dagger} + (\mathbf{x}_{d}^{\dagger} - \mathbf{x}_{\ell}) \mathbf{i}_{d} \right]$$
(2-27)

$$E_d = e_d'' + (x_q - x_d')i_q$$
 (2-28)

$$\frac{d\delta}{dt} = \omega \qquad (2-29)$$

$$\frac{d\omega}{dt} = \frac{180f}{H} \begin{pmatrix} T_m - T_e \end{pmatrix}$$
(2-30)

It has been shown that this model represents subtransient amortisseur in both direct and quadrature axis. Amortisseurs are repre-

FIGURE 2-9 VECTOR DIAGRAM FOR MODEL IV

sented in both axes and subtransient saliency is neglected. Of course, the equations will change, but the vector diagram will not. Also, the technique for solving the system equations will not change. This model requires ten items of data in addition to the data needed to represent saturation.

At any instant of time, the angle δ , the direct axis components of subtransient flux $\lambda_d^{"}$, and the quadrature axis component of subtransient flux $\lambda_q^{"}$ are known. Therefore, $\tilde{e}^{"}$ is known. Thus, the representation becomes that of a constant voltage behind a constant subtransient reactance at any point in time.⁽²⁾

Therefore, this representation is as simple as that of model I as far as the solution of the system equations is concerned. Once the system conditions are determined, it is a simple process to compute the rotor and stator currents as well as the variations of the rotor flux linkages.⁽²⁾ For round rotor machines, it is necessary to represent two quadrature axis iron circuits so as to be sure of a complete representation of the damping effect.

The advantage of this model is it represents the field effect and amortisseur effect implying a more accurate solution than others.

The disadvantages are 1) since it so complicated, computing cost compared to the other models is high; 2) a large amount of data is needed which probably discourages many power system engineers from adapting this model (see table 2-1).

CONSTANTS	MODEL I	MODEL II	MODEL III	MODEL III&z	MODEL IV	
Х _d	-	-	x	x	x	
x'	x	x	x	x	x	
X" d	-	-	-	x	x	
X q	-	-	x	x	x	
X'q	-	-	-	x	x	
X" q	-	-	-	x	x	
T'do	-	-	x	x	x	
T"do	-	-	-	x	x	
T'qo	-	-	x	-	x	
T" qo	-	-	-	x	x	
н	x	x	x	x	x	
K	x	x	x	x	-	
R	-	-	-	-	-	
x _e	-	-	_	-	x	

TABLE 2-1

.

MACHINE PARAMETERS USED FOR EACH MODEL

• .

.

CHAPTER III

SENSITIVITY ANALYSIS OF MACHINE CONTROLLER

3-1 Introduction to the Excitation System

The field windings of synchronous machines are provided with direct current from d-c devices called exciters. The excitation system is the source of field current for the excitation of the principal electric machine, including the means for its control. An excitation system, therefore, includes all of the equipment required to supply field current to excite an a-c generator.⁽²³⁾

Loss of excitation of an a-c generator generally means that the generator will act as an induction generator for only a limited amount of time. Therefore, a reliable source of excitation is essential. The common way of providing exciter is for each a-c generator to have its own exciter. Another way, which is impractical, is to have an exciter bus fed by a number of exciters operating in parallel and which will supply power to the fields of all a-c generators in the station.⁽³⁾

Several types of excitation systems provide automatic voltage regulation for a-c generation. The physical configuration is discussed as well as the four models of computer representing the excitation system. It is well known that the excitation system does effect the stability of the machine.⁽²⁴⁾ The lack of excitation data for purposes of modeling system stability studies has a severe impact on the stability studies being conducted.

Hence, data sensitivity of the excitation system in the sense of the effect of each parameter to the response of the exciter will be considered. In other words, the study on the behavior of the exciter models, considered to be a mathematical representation of almost all kinds of excitation systems (see appendix B), are classified by the IEEE committee as four models.⁽⁸⁾ Each of the four models have a non-linear term represented by the exciter saturation factor as well as a hard limiter. Therefore, the simulation technique has to be adapted to deal with this kind of system. Root locus and frequency response technique have been used for certain sample points because their responses are reserved only for linear systems. The aid of the digital computer, C.S.M.P. package, (12) enables us to simulate the mathematical representation of the excitation system. C.S.M.P. has three main sections regarding the executing of the problem. The initial section provides the initial conditions of all the variables; the dynamic section is where the integration subroutine is applied to solve the governor's equation; the terminal section is involved with the control statement, plotting, printing, etc. The output listing of programs for all exciter models, shown in appendix C, was used for the simulation. (47) This program provided us with the results of the effect of each parameter variation to the exciter response.

To see how that can be done, let's take one parameter of the exciter and that will be regulator amplifier time constant, T_A . The simulation program enables us to vary the value of T_A by fourty-one values. That is accomplished by incrementing T_A by $T_A + \Delta T_A$. So we have to have fourty-one exciter responses, in other words fourty-one computer runs.

The new variable named by system time constant " T_{C} " needs to be defined simply to furnish fourty-one exciter responses in one single curve rather than having fourty-one individual computer runs for varying only one parameter. That can be done by defining $TT_{C} = (1 - e^{-1})$ multiplied by the steady state value of the system. TT_C is an acceptable operating point at the exciter response. Therefore, we use the TT_C as a comparative quantity with exciter output, as seen in figures (3-2) and (3-3). So whenever the exciter response is equal or greater than the $\mathrm{TT}_{\mathbb{C}}$ quantity it causes the computer to record the value which is the system time constant. Each exciter response can be characterized by system time constant T_{C} and that enables us to see the system time constant variation in one single curve versus the time axis which really represents fourtyone exciter responses due to varying one single parameter. A typical exciter response is shown in figure (3-1) with a incremented change of So each incremental of AA corresponds to a new exciter response. ΔA. The same thing can be carried over to the rest of the other exciter. parameters. Exciter models behavior regarding given data is shown in table (3-1).

FIGURE 3-1 TYPICAL EXCITER RESPONSE

FIGURE 3-2 ONE-TO-ONE RELATION OF ${\rm T}_{\rm C}$ and time

FIGURE 3-3 RELATION OF SYSTEM TIME CONSTANT AND EXCITER OUTPUT

3-2 Exciter Type I

Figure (3-4) illustrates the behavior of exciter model, type I, upon changing the regulator input filter time constant, T_R . Physically T_R is the combined time constant of the regulator input filter of the

EXCITER	EXCITER TYPE 1		EXCITER TYPE 2		· EXCITER TYPE 3		EXCITER TYPE 4					
PARAMETER	**	Max	Min	**	Max	Min	**	Max	Min	**	Max	Min
T _R	0.00	.08	0.000	0.00	.08	0.000	0.00	.08	0.00	-	-	-
К _А	40.00	150.00	1.000	40.00	100.00	1.000	40.00	150.00	1.00	-	-	-
т _А	.02	0.40	•000	.02	1.00	0.000	.02	0.00	.50	-	-	- '
v _R	—	6.50	-6.500	-	6.50	-6.500	-	6.50	-6.50	-	10.5	-10.50
к _f	0.03	. 30	.003	.03	.03	-	.03	.30	.01	-	-	-
к _Е	1.00	5.00	.010	1.00	3.50	.100	1.00	15.00	.01	.10	2.0	01
т _е	.73	5.00	.010	.73	3.50	.100	.73	5.00	.01	.01	5.0	.01
S _{Emax}	.74	-	-	.74	-	-	.74	-	-	.85	-	-
^T f ₁	1.00	5.00	.010	-	-	-	1.00	5.00	.01	-	-	-
^T f ₂	-	-	-	1.00	5.00	.010	-	-	-	-	-	-

**original exciter data

TABLE 3-1 EXCITER DATA ч Т

.

SENSITIVITY ANALYSIS OF A TYPE 1 EXCITATION SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT CF THE SYSTEM WHEN TIME CONSTANT TR IS VARIED FROM 0.0 TO 0.08

FIGURE 3-4

exciter. By inspecting the figure regulator input filter time constant T_R doesn't contribute a significant effect on the system time constant of the exciter system. In other words, the output of the exciter does not effect it by changing T_R . The reason is, as we know the nature design of the time constant T_R , that it has a very small value. Therefore, its pole location, in a S-plan configuration, is an infinity relative to the other parameters of the exciter. Thus, it does not contribute a significant change on the exciter output.

Figure (3-5) shows the behavior of exciter model, type I, upon changing the regulator amplifier time constant, T_A . Physically T_A is the combined time constant of the exciter amplifier system. Looking to the figure, system time constant of the exciter shows a slight change upon changing the regulator amplifier time constant, T_A . The reason, as we know the nature design of regulator amplifier time constant, T_A , is that it has a small value compared to other parameters of the exciter. In other words, its pole location in the S-plan is far with respect to the others. The result is that there is little effect on the exciter output.

Figure (3-6) shows the behavior of exciter model, type I, upon changing the feedback time constant, T_F . Physically T_F is the combined damping time constant of the exciter. Again looking to the figure, feedback time constant, T_F , does not contribute a significant value to the system time constant of the exciter model. In other words, the output of the exciter is not effected by changing T_F . Damping feedback transfer function can be plotted in frequency response. The Bode diagram will show the pole effect cancelled by the existing zero. If we have zero

• IS SYSTEM TIME CONSTANT

.

SENSITIVITY ANALYSIS OF A TYPE 1 EXCITATION SYSTEM PLOTTING THE EFFECT ON THE APPPOXIMATE TIME CONSTANT OF THE SYSTEM WHEN TIME CONSTANT TA IS VARIED FROM 3.0 TO .40

FIGURE 3-5

SENSITIVITY ANALYSIS OF A TYPE 1 EXCITATION SYSTEM PLOTTING THE EFFECT ON THE APPRCKIMATE TIME CONSTANT CF THE SYSTEM WHEN TIME CONSTANT TF IS VARIED FROM .01 TO 5.0 38

·•• ---

located at the origin of the axis, they will cancel the effect of each other. This is why the feedback time constant, T_F , does not contribute any change to the exciter output.

Figure (3-7) shows the behavior of the exciter model, type I, upon changing the regulator gain, K_A . Physically K_A is the combined gain parameter of the exciter amplifier system. By inspecting the figure regulator gain K_A shows that the lower value of K_A does effect the output of the exciter, while the higher value of K_A does not contribute any change to the exciter output. The reason is that the existing hard limiter probably takes action which is recommended to limit the value of K_A .

Figure (3-8) shows the behavior of the exciter model, type I, upon changing the exciter time constant, T_E . Physically T_E is the combined time constant of the exciter system itself. Looking to the figure, exciter time constant, T_E , shows the linear relationship with respect to the exciter output. This is the most dominant parameter. It is classified by a greater value than T_R and T_A . The reason for this is that it plays a very strong role on the characteristic of the equation of the exciter system under the assumption that nonlinearity is not defined.

Figure (3-9) shows the behavior of the exciter model, type I, upon changing the damping gain parameter, K_F . Physically K_F is the equivalent damping gain parameter of the exciter. Looking to the figure, the feedback gain parameter, K_F , shows exponentially the changing relative to the system time constant of the exciter. In spite of knowing that the feedback parameter plays a strong role on the exciter model's stability as well as the nature value of K_F is so high relative to other values, I

. IS SYSTEM TIME CONSTANT

SENSITIVITY ANALYSIS OF A TYPE I EXCITATION SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN GAIN KA IS VAPIED FROM 1.00 TO 150.0

FIGURE 3-7

+ IS SYSTEM TIME CONSTANT

SENSITIVITY ANALYSIS OF A TYPE 1 EXCITATION SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN TIME CONSTANT TE IS VARIED FROM .01 TO 5.00

FIGURE 3-8

SENSITIVITY ANALYSIS OF A TYPE 1 EXCITATION SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN GAIN KF IS VARIED FROM .003 TO .3

FIGURE 3-9

could say it is very hard to predict the reason of K_F 's change exponentially bearing in mind that the hard limiter exists, thus, nonlinearity is defined.

Figure (3-10) shows the behavior of the exciter model, type I, upon changing the exciter gain parameter, K_E . Physically K_E is the equivalent gain parameter of the exciter system itself. Looking to the figure, the gain parameter, K_E , shows an almost linear relationship with the exciter response. It is the most dominant parameter of the exciter system model. Simply, it shows the variation with the exciter output. Secondly, it represents the term A_n of a characteristic equation which makes it an important parameter.

3-3 Exciter Type II

The behavior of the exciter model, type II, upon changing the regulator input filter time constant, T_R , is shown in figure (3-11). Looking to the figure, T_R does not contribute a significant effect on the system time constant of the exciter system. Therefore, the output of the exciter would not be effected either. The reason its value is so small is that you can hardly see its effect on the system's behavior.

Figure (3-12) shows the behavior of the exciter model, type II, upon changing the feedback time constant, T_F . Looking to the figure the feedback time constant, T_F , does not contribute a significant value on the system time constant of the exciter. Therefore, the output has not been effected by changing T_F . This is because of the small value of T_F as well as the adverse effect of the existing zero.

Figure (3-13) shows the behavior of the exciter model, type II, upon changing the regulator gain, K_A . Looking to the figure regulator

+ IS SYSTEM TIME CONSTANT

SENSITIVITY ANALYSIS OF A TYPE I EXCITATION SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN GAIN KE IS VARIED FROM .01 TO 15.0

FIGURE 3-10

SENSITIVITY ANALYSIS OF A TYPE 2 EXCITATION SYSTEM PLUTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT of the system when time constant to is varied from 0.0 to 0.08

FIGURE 3-11

CENSITIVITY ANALYSIS OF A TYPE 2 EXCITATION SYSTEM FLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN TIME CONSTANT OF IS VARIED FROM .01 TO 10.

FIGURE 3-12

SENSITIVITY ANALYSIS OF A TYPE 2 "RELATION SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE MYSTLM WHICH NAIN NAIN NAIL VARIED FROM 1.37 TO 100.

FIGURE 3-13

gain parameter, K_A , shows that the lower value of K_A does effect the output of the exciter, this is the same as type I, while the higher value of K_A does not contribute any significant change to the exciter output. This is because of the hard limiter's involvement.

The behavior of the exciter model, type II, upon changing the exciter time constant, T_E , is shown in figure (3-14). Again, the exciter time constant, T_E , shows the linear relationship with respect to the exciter output, which is the same as type I. It is the most dominant parameter which one would expect. Discontinuity exists at the end of the curve which shows that the exciter output at a higher value of T_E is less than the defined operating point, EfDITC.

Figure (3-15) shows the behavior of the exciter model, type II, upon changing the exciter gain parameter, K_E . Looking to the figure, the parameter, K_E , shows an approximate exponential relationship with the output. Again, it is also the most dominant parameter of the exciter and it has an adverse effect on the exciter response.

Figure (3-16) shows the behavior of the exciter model, type II, upon changing the regulator amplifier time constant, T_A . Looking to the figure the system time constant of the exciter shows a slight change upon changing T_A , obviously T_A is a larger value than T_R . Therefore, it has to effect the exciter output as its value is increased.

3-4 Exciter Type III

Figure (3-17) shows the behavior of the exciter model, type III, upon changing the filter regulator time constant, T_R . Looking to the figure, the filter regulator time constant, T_R , does not contribute any significant effect on the system time constant. It states early its

SENSITIVITY ANALYSIS OF A TYPE & EXCITATION SYSTEM FLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN TIME CONSTANT TO IS VANIED FROM +1 TO 3+50

* TO SYTTEM TIME CONSTANT.

FIGURE 3-16

IS SYSTEM TIME CONSTANT

.

.

42.24

SENSITIVITY ANALYSIS'OF A TYPE 3 EXC3TATION SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT CF THE SYSTEM WHEN TIME CONSTANT TR IS VARIED FROM 0.0 TO 0.08

nature design of a small value, abundant on its effect of the exciter system's behavior.

Figure (3-18) shows the behavior of the exciter model, type III, upon changing the regulator amplifier time constant, T_A . Looking to the figure, the regulator amplifier time constant does not effect the exciter response in this model, while it does show a slight effect on the previous two models. Appendix B shows the differences between type II and type III which is why we have a different result. Figure (3-19) shows the behavior of the exciter model, type III, upon changing the feedback time constant, T_F . This figure shows that the system time constant does not change under changing the feedback time constant, T_F . Thus, all three models show that the system time constant does not change under changing feedback time constant, T_F , for the same reason stated previously.

The behavior of the exciter model, type III, upon changing the regulator gain parameter, K_A , is shown in figure (3-20). Upon changing the value of K_A the system time constant does show a change at the first portion of the curve while it became steady at the rest of it. So, the exciter output is sensitive to the smaller value of K_A . K_A shows the same behavior with all three models.

Figure (3-21) shows the behavior of the exciter model, type III, upon changing the feedback gain parameter, K_F . The system time constant decreases exponentially with the increase of the gain parameter, K_F . this is because of the nature values of the data set assigned to the exciter system of this model.

Figure (3-22) shows the behavior of the exciter model, type III, upon changing the exciter time constant, T_E . The exciter time constant

SENSITIVITY ANALYSIS OF A TYPE 3 EXCITATION SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN TIME CONSTANT TA IS VARIED FROM .0 TO .5

+ IS SYSTEM TIME CONSTANT

.

SENSITIVITY ANALYSIS OF A TYPE 3 EXCITATION SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN TIME CONSTANT OF IS VARIED FROM +01 TO 5.0

FIGURE 3-19

.

* IS SYSTEN TIME CONSTANT

•

SENSITIVITY ANALYSIS OF A TYPE 3 EXCITATION SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT of the system when gain ka is varied from 1.0 to 150.

. . ..

SENSITIVITY ANALYSIS OF A TYPE 3 EXCITATION SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN GAIN KF IS VAPIED FROM .01 TO .3

FIGURE 3-22

is the one most dominated by the exciter response, as seen in the figure that a linear relationship does exist between them. Also, the fact of its value makes it play a strong role on the characteristic equation.

Figure (3-23) shows the behavior of the exciter model, type III, upon changing the exciter gain parameter, K_E . Again the exciter gain parameter is the one most dominated by the exciter response. It almost has a linear relationship with the exciter response. It plays a very strong role in the characteristic equation of the exciter system under the assumption that nonlinearity does not exist.

3-5 Exciter Type IV

Figure (3-24) shows the behavior of the exciter model, type IV, upon changing the exciter time constant, T_E . Again T_E has a linear relationship with the exciter response. This is reflected in its importance on the characteristic equation of the exciter system. K_E shows a linear relationship of this model too. The conclusion **is** that T_E and K_E are the most important parameters of the excitation system for all model types.

3-6 Linear Technique

The root locus technique and frequency response technique have been implemented to help in the understanding of the behavior of the exciter data. We are dealing with a nonlinear system but it is worth while to determine, for some sampling point of data, how the roots of the characteristic equation of a given system migrate about the S-plane as the parameters are varied. It is useful to see the behavior of the exciter model by adapting both root locus technique and frequency response technique.

+ IS SYSTEN TIME CONSTANT

SENSITIVITY ANALYSIS OF A TYPE 3 EXCITATION SYSTEM FLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT of the system when gain ke is varied from -0.1 to 15.0

. IS SYSTEM TIME CONSTANT

SENSITIVITY ANALYSIS OF A TYPE 4 EXCITATION SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT Of the system when time gongtant ve is vanied prom 401 to 840

The root locus method provides the engineer with a measure of the sensitivity of the roots of the characteristic equation to a variation in the parameter being considered. (13,14) Hence, it leads us to see the system performance of a relative stability of the excitation system.

Computer facilities provided us with the solution of the above technique.⁽¹⁵⁾ Another approach to test the relative stability of a system is the frequency response method. The advantage of it is the availability of sinusoidal test signals for a different range of frequencies and amplitudes of any given transfer function. Computer facilities provided us with the solution of this technique.⁽¹⁵⁾ The close and open loop transfer function of the excitation system are (for the first and second type) in equations (3-1), (3-2), (3-3), and (3-4).

The close loop transfer function of the exciter type I is shown in equation (3-1).

$$\frac{E_{fd}}{\Delta vt} = \frac{K_A (1 + S T_f)}{S^3 T_E T_A T_F + S^2 [(K_E + S_E) T_A T_F + T_E(T_F + T_A)] + \frac{1}{S [(T_F + T_A) (K_E + S_E) + T_E + K_A K_F] + (K_E + S_E)}$$
(3-1)

The open loop transfer function of the exciter type I is shown in equation (3-2).

GH =
$$\frac{K_A K_f S}{(1 + S T_A) (K_E + S T_E + S_E) (1 + S T_f)}$$
(3-2)

The close loop transfer function of the exciter type II is shown in equation (3-3).

$$\frac{E_{fd}}{\Delta vt} = \frac{K_A (1 + T_f S)^2}{T_E T_f^2 T_A S^4 + S^3 [T_f^2 T_A (K_E + S_E) + T_E T_f^2 + 2T_f T_E T_A]}$$

$$\frac{K_A (1 + T_f S)^2}{T_E T_f^2 T_A S^4 + S^3 [T_f^2 T_A (K_E + S_E) + T_E T_f^2 + 2T_f T_E T_A]}$$

$$\frac{K_A (1 + T_f S)^2}{T_E T_f^2 T_f (K_E + S_E) + T_A (K_E + S_E) + 2T_f T_E + T_A T_E}$$

$$\frac{K_A (1 + T_f S)^2}{T_E T_f (K_E + S_E) + 2T_f T_A (K_E + T_E) + T_E}$$

$$\frac{K_A (1 + T_f S)^2}{T_E T_f (K_E + S_E) + 2T_f T_A (K_E + T_E) + T_E}$$

$$\frac{K_A (1 + T_f S)^2}{T_E T_f (K_E + S_E) + 2T_f T_A (K_E + T_E) + T_E}$$

$$\frac{K_A (1 + T_f S)^2}{T_E T_f (K_E + S_E) + 2T_f T_A (K_E + S_E) + 2T_f T_E + T_A T_E}$$

$$\frac{K_A (1 + T_f S)^2}{T_F T_f (K_E + S_E) + 2T_f T_A (K_E + T_E) + T_E}$$

$$\frac{K_A (1 + T_f S)^2}{T_F T_f (K_E + S_E) + 2T_f T_A (K_E + T_E) + T_E}$$

$$\frac{K_A (1 + T_f S)^2}{T_F T_f (K_E + S_E) + 2T_f T_A (K_E + T_E) + T_E}$$

$$\frac{K_A (1 + T_f S)^2}{T_F T_f (K_E + S_E) + 2T_f T_A (K_E + T_E) + T_E}$$

$$\frac{K_A (1 + T_f S)^2}{T_F T_f (K_E + S_E) + 2T_f (K_E + S_E) + 2T_f (K_E + T_E) + T_E}$$

$$\frac{K_A (1 + T_f S)^2}{T_F T_f (K_E + S_E) + 2T_f (K_E + S_E) + 2T_f (K_E + T_E) + T_E}$$

$$\frac{K_A (1 + T_f S)^2}{T_F T_f (K_E + S_E) + 2T_f (K_E + S_E) + 2T_f (K_E + T_E) + 2T_f (K_E + T_E) + 2T_F (K_E + S_E)}$$

$$\frac{K_A (1 + T_f S)^2}{T_F T_f (K_E + S_E) + 2T_f (K_E + S_E)}$$

$$\frac{K_A (1 + T_f S)^2}{T_F T_f (K_E + S_E) + 2T_f (K_E + S_E)}$$

$$\frac{K_A (1 + T_f S)^2}{T_f (K_E + S_E + S_E + S_E + S_E)}$$

$$\frac{K_A (1 + T_f S)^2}{T_f (K_E + S_E + S_E + S_E + S_E + S_E + S_E)}$$

$$\frac{K_A (1 + T_f S)^2}{T_f (K_E + S_E +$$

The open loop transfer function of the exciter type II is shown in equation (3-4).

$$GH = \frac{S K_A K_f}{(1 + T_f S)^2 (1 + S T_A)}$$
(3-4)

Figure (3-25) shows the root locus of exciter type I behavior of a given value of the exciter parameter. There are three poles and one Zero located at S-plane with the Zero located at the value S = 0.0. Therefore, the segment of the root locus exists on the real axis between S = 0.0 and S = -1.0 in which is the first loci. The second segment of the root locus exists on the real axis between S = -2.34 until breakpoint, at S = -26.0, at real axis and then it goes to positive infinity which is the second loci. The third segment of the root locus exists on real axis between S = -50.0 until the breakpoint, at S = -26.0, at real axis and goes to negative infinity which is the third loci. The arrow shows the direction of loci in the curve. Fourteen different sets of data have been conducted. These data have been already used on C.S.M.P. simulation, on exciter model type I. It has been found that as the exciter parameter increases incremently, it has resulted in a breakpoint in-

FIGURE 3-25 ROOT LOCUS OF EXCITER TYPE I

crease too. The loci breakpoint is varying from S = -26 to S = -10 at the real axis. This shows that as the exciter parameter values increase, they become more dominant. Exciter model type I is stable in the sense of root locus analysis in which all loci at the left side of the S-plane satisfies the stability condition. The slower response has dominated the characteristic equation of the model, while the faster response has had a less effect on the characteristic equation of the exciter model.

Figure (3-26) and (3-27) show the Bode Diagram of the exciter model type I behavior of a given data set of exciter parameters. The gain and phase margin are easily evaluated from the Bode diagram. The critical point for stability is $\mu = -1$, $\gamma = 0$ in which the GH(j ω) plane, which is equivalent to a logarithmic magnitude of Odb and phase angle of 180° in the Bode diagram. Figure (3-26) and (3-27) represent the results of an assigned data set; this data set has been used in C.S.M.P. simulation of exciter model type I. It shows the phase margin is 70° while the gain margin is high. Based upon this result, the exciter model is stable. In addition, there has been fourteen data sets conducted. Also, these data sets have been used in C.S.M.P. simulation of exciter model type I. Their results were phase variance as well as amplitude of the Bode diagram. This causes the critical points to vary too. The phase margin, of fourteen data sets, is tolerated between 40° to 70° and that satisfies the stability condition. It is extremely hard to correlate the results obtained by C.S.M.P. simulation of a nonlinear system with results obtained by linear techniques although it did give a slight indication of model behavior.

FIGURE 3-26 BODE DIAGRAM FOR EXCITER TYPE I

•

.

ABSCISSA - RADIAN FREQ. IN POWERS OF TEN

FREGUENCY RESPONSE Problem identification — Fresp exciter type i

FIGURE 3-27 BODE DIAGRAM OF EXCITER TYPE I

Figure (3-28) shows the root locus of exciter type II behavior of given values of the exciter parameter. There are three poles and one Zero located at the S-plane with the Zero located at the value S = 0.0. Therefore, a segment of the root locus exists on the real axis between S = 0.0 and S = -.917 which is the first loci. The second segment of the root locus exists on the real axis between S = -.917 until breakpoint, at S = -10.5, at real axis and goes to positive infinity which is the second loci. The third segment of the root locus exists on the real axis between S = -20.0 until breakpoint, at S = -10.5, at real axis and goes to negative infinity, which is the third loci. An arrow shows the direction of loci in the curve. Fourteen different sets of data have been conducted; these data have been already used on C.S.M.P. simulation on exciter model type II. It has been found that as the exciter parameter increases incremently the resulting breakpoint increases too. The loci breakpoint varies from S = -10.5 to S = -1.25. This shows that as the exciter parameter values increase, they become more dominant. Thus, exciter model type II is stable in the sense of root locus analysis in which all loci, of the fourteen sets of data given (two of which are not stable) in the C.S.M.P. simulation program, is at the left side of the S-plane which is the necessary condition to satisfy the stability of any system. Again the slower response in exciter model type II controls the characteristic equation of the exciter system. The faster response has a less effect on the characteristic equation of the exciter model.

Figure (3-29) and (3-30) show the Bode diagram of the exciter model type II behavior of a given data set of exciter parameters. The gain and phase margin are easily evaluated from the Bode diagram. The

FIGURE 3-28 ROOT LOCUS OF EXCITER TYPE II

.

FIGURE 3-29 BODE DIAGRAM OF EXCITER TYPE II .

.

70

 .

FIGURE 3-30 BODE DIAGRAM OF EXCITER TYPE II

above mentioned figures represent the results of data sets given, these data sets have been used in C.S.M.P. simulation of exciter model type II, which shows phase margin was 35°. While the gain margin is high, the conclusion is that this system is stable with this data set. In addition, there has been fourteen data sets conducted. Also, these data sets have been used in C.S.M.P. simulation of exciter model type II. Their results were varied. The first two data sets show that the system is not stable because poles were located at the right hand of the S-plane. The other set shows a variance in the phase as well as an amplitude of the Bode diagram, hence this causes the critical points to vary also. The phase margin, of fourteen sets of data, is tolerated between 20° and 35⁰ and that shows that the system is a less degree of stability than exciter type I. The computer output listing of this section is in Appendix D.

3-7 Introduction - Prime-Mover

The second essential part of the machine's controller is the prime-mover. It is this input that causes a speed deviation of the rotor. We need to understand the importance of the prime-mover regarding the stability study and recognition of the effect of the governor-turbine data on the system stability. Therefore, the study of the behavior of the turbine-governor model is recommended in which we are trying to see the impact of each parameter of the governor-turbine to its response. By the aid of the digital computer, C.S.M.P. package⁽¹²⁾, it enables us to simulate the mathematical representation of the governor-turbine model. (See appendix E.) This includes the physical layout of the mechanicalhydraulic hydrogovernor and the mathematical models of the speed governing hydro system, the speed governing system for steam turbine, tandem com-

pound double reheater, and PECO governor turbine system. The study of the behavior of the tandem compound double reheater model and the PECO governor turbine system model is the subject of this section. Listing of computer output is provided in appendix F. The program provided the results of the effect of each governor-turbine parameter variation to its response.

The governor-turbine model's behavior regarding certain given data, table (3-2), will be discussed for the tandem compound double reheater and PECO model (see appendix E).

3-8 TCDR-Type

Figure (3-31) shows the behavior of the governor-turbine model, tandem compound double reheater IEEE type (abbreviated TCDR), upon changing the speed relay time constant, T_1 . The figure shows that there is not a significant change in the turbine response upon changing the speed relay time constant, T_1 . This is because of the nature of the value of T_1 ; it is very small. Figure (3-32) shows the behavior of the governor-turbine model, TCDR, upon changing the speed governor time constant, T_2 . The figure illustrates that the output is effected slightly upon changing the speed governor time constant. The output is increased upon increasing T_2 . In other words, as T_2 has a larger value, it starts to dominate the loci of the system.

Figure (3-33) shows the behavior of the governor-turbine model, TCDR, upon changing the servo motor time constant, T_3 . Again the figure shows that the output has a slight change with changing T_3 . The value of this is very small, thus, its effect is apparently too small.

Parameter	PECO			TCDR		
	**	Max.	Min.	**	Max.	Min.
т ₁	3.000	15.00	.050	.070	.15	0.00
T ₂	5.000	15.00	.050	.125	.30	.01
T ₃	.200	2.00	0.000	.125	.30	.01
T ₄	.050	2.00	.050	.250	.60	.05
т ₅	5.000	15.00	.000	7.000	15.00	1.00
FR	.285	-	-	-	-	-
T max	-	6.87	1.335	-	t. –	-
^т б	-	-	-	8.500	15.00	1.00
T ₇	-	-	-	.400	.99	.10
KG	-	-	-	15.000	25.00	.40
K ₁	-	-	-	.220	.50	0.00
к _з	-	-	-	.220	.80	0.00
к ₅	-	-	-	.300	.80	.01
к ₇	-	-	-	.260	.80	.05
P max	-	-	-	1.000	-	-
P _{min}	-	-	-	-1.000	-	-
Aux	-	-	-	2.000	-	-
lnitp	-	-	-	6.0	-	-

****Original** data

•

GOVERNOR AND TURBINE DATA

•

TABLE 3-2

SENSITIVITY ANALYSIS OF TANUEH - CUMPOUND GOVERNOR AND STEAM SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT Of the system when time cumptant to is varied foun 0.05 to 0.15

. 15 SYSTEM TIME CONSTANT

.

SENSITIVITY AMALYSIS OF TANDEN - COMPOUND GOVERNOR AND STEAM SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT of the system when time constant to is varied from 0.35 to 0.2

. IS SYSTEM TIME CONSTANT

SENSITIVITY ANALYSIS OF TANDEN CONPOUND GOVERNUR AND STEAM SYSTEM PLOITING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN TINE CONSTANT TO IS VARIED FROM 0.05 TO 0.2

FIGURE 3-33

· · _ · ·

••

Figure (3-34) shows the behavior of the governor-turbine model, TCDR, upon changing the steam chest time constant, T_4 . The figure shows that T_4 has almost a linear relationship with the output. T_4 has a larger value of the previous one and it has an effect on its characteristic equation under the assumption that the governor-turbine system is linear.

Figure (3-35) shows the behavior of the governor-turbine model, TCDR, upon changing reheat time constant, T_5 . Again the figure shows that T_5 has a linear relationship with the output of the model. Its higher value is relative with the previous one. It does dominate the characteristic equation which effects the root locus.

Figure (3-36) shows the behavior of the governor-turbine model, TCDR, upon changing steady state speed regulator, $K_{\rm G}$. Again the figure shows that $K_{\rm G}$ has a constant effect on the output of the model. The fact of its small value probably shows that there is no effect on the output of the model. Secondly, the existence of the hard limiter could have an effect of the holding of $K_{\rm G}$ effect on the output of the model.

Figure (3-37) shows the behavior of the governor-turbine model, TCDR, upon changing the limit of the hard limiter. Again the figure shows that the hard limiter variation has no significant values on the output of the model.

Figure (3-38) shows the behavior of the governor-turbine model, TCDR, upon changing the second reheat time constant, T_6 . At this point there is no effect on the output of the model at the first value of T_6 . But it does show a constant effect on the output of the model. This tells us that the small value of T_6 is not significant while the higher values have a significant change on the output model.

SENSITIVITY ANALYSIS OF TANDEN. COMPOUND GOVERNOR AND STEAM SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT Of the system when time constant to is varied from 0.1 to 0.6

FIGU: 3-34

. IS SYSTEN TINE CONSTANT

SENSITIVITY ANALYSIS OF TANDEN. COMPOUND GOVERNOR AND STEAM SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT of the system when time constant to is varied from 3.0 to 10.0

FIGURE 3-35

* IS SYSTEM TIME CONSTANT

SENSITIVITY ANALYSIS OF TANDEM COMPOUND GOVERNOR AND STEAM SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN GAIN KG IS VARIED FROM 0.5 TO 3.7

FIGURE 3-36

. IS SYSTEM TIME CONSTANT

SENSITIVITY ANALYSIS OF TANDEM COMPOUND GOVERNOR AND STEAN SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT Of the system when limits of the mard limiter are varied from plus or minus 1.0 to plus or minus 2.0

FIGURE 3-37

. IS SYSTEN TIME CONSTANT

.

SENSITIVITY ANALYSIS OF TANDLH. CONHOUND GOVERNOR AND STEAM SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT Of the system when gain to is varied from 0.3 to 0.7

Figure (3-39) shows the behavior of the governor-turbine model, TCDR, upon changing crossover time constant, T_7 . The figure shows that the first portion of T_7 does not have a significant value effect on the output model while it does show an almost linear relationship with output. Thus, the small value of T_7 does not have force to drive the characteristic equation while the higher value did effect it. This implies that there is some certain degree of change in the loci.

Figure (3-40) shows the behavior of the governor-turbine model, TCDR, upon changing the fraction parameter, K_3 . The figure shows that K_3 does not have any significant value effect on the output of the model. Apparently, it is just a constant parameter.

3-9 PECO Type

Figure (3-41) shows the behavior of the governor-turbine model, PECO type, upon changing the time constant, T_1 . The figure shows that T_1 does change the response of the PECO model at only the first portion of T_1 , while it suppresses the variation of the output limiter action.

Figure (3-42) shows the behavior of the governor-turbine model, PECO type, upon changing time constant, T_2 . Here the linear relationship exists between the output and time constant, T_2 . The figure shows that at the higher value of T_2 there is no change in PECO response, and again the hard limiter suppresses that change.

Figure (3-43) shows the behavior of the governor-turbine model, PECO type, upon changing the time constant, T_3 . T_3 has an exponential relationship with the model response. It appears that it has the most influence at first on small values while with a higher value of T_3 it does decay its effect. This is probably

SENSITIVITY ANALYSIS OF TANDEM CONPOUND GOVERNOR AND STEAM SYSTEM PLUTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT of the system when time constant to is varied from 0.0 to 10.0

.

FIGURE 3-39

. IS SYSTEM TIME CONSTANT

SENSIFIVITY ANALYSIS OF TANDEM COMPUUND GOVERNOR AND STEAM SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN GAIN KE IS VARIED FRUM 0.3 TO C.7

SENSITIVITY ANALYSIS OF A PECO TYPE OF GOVERNOHAND TURBINE SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT of the system when time constant ti is varied from -.01 to 1.05

FIGURE 3-41

•

. IS SYSTEN TIME CONSTANT

SENSITIVITY ANALYSIS OF A PECO TYPE OF GOVERNORAND TURDINE SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN TIME CONSTANT TO IS VARIED FROM 0.00 TO 2.0

FIGURE 3-42

. IS SYSTEM TIME CONSTANT

SENSITIVITY ANALYSIS OF A PECO TYPE OF GOVERNORAND TURBINE SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN TIME CONSTANT TO IS VARIED FROM -1.0 TO 1.0

FIGURE 3-43

due to the effect of the poles when they start to dominate and reduce the Zero effect.

Figure (3-44) shows the behavior of the governor-turbine model, PECO type, upon changing time constant, T_4 . It acts exactly like the previous one with the same reason.

Figure (3-45) shows the behavior of the governor-turbine model, PECO type, upon changing time constant, T_5 . T_5 does not have any influence on the system response. Its value probably does not have the range to effect the output of the system.

Figure (3-46) shows the behavior of the governor-turbine model, PECO type, upon changing the hard limiter. This kind of data causes no action to the hard limiter at the first portion of the curve, while it does act constantly at a later value of the hard limiter. So it is simply that the data action causes the model to behave like this.

SENSITIVITY ANALYSIS OF A PECD TYPE OF GOVERNORAND TURBINE SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT Of the system when time constant t4 is varied from -5. to 15.0

.

SENSITIVITY ANALYSIS OF A PECO TYPE OF GOVERNORAND TURBINE SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT of the system when time constant ts is varied from 0.0 to 20.

SENSITIVITY ANALYSIS OF A PECO TYPE OF UDVERNORAND TURBINE SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT of the system when limiter thin and thatvalked fron 3.0 to 10.

FIGURE 3-46

CHAPTER IV

IMPACT OF MACHINE DATA ON THE OVER-ALL STABILITY STUDIES

4-1 Introduction

:

Power system stability is concerned with maintaining the synchronous operation of all inter-connected generation and load so the loss-of-synchronism operation may be caused by loss of system components resulting in structure instability or by sudden load changes, energy imbalance, resulting in dynamic instability. Structure instability results from loss of capacity which can be initiated by such things as:⁽⁵⁷⁾

1) mechanical or thermal failure and maybe both,

2) relaying action either for desirable protection or due to a wrong setting or misoperation,

3) neutral phenomena (for example, lighting),

4) and human errors as well as intentional errors.

Dynamic instability can result from any of the following causes:

- 1) improper regulation,
- 2) self-excitation,
- 3) inadequate synchronizing power,

4) and inadequate dynamic reserve.

If an operation condition carries the presence of one of the first two causes above, it takes only a small imbalance (perturbation),

which is usually present, to initiate the corresponding dynamic instability. The third cause takes a large disturbance, such as a short circuit cleared by tripping a line to initiate the corresponding (transient) instability. ⁽⁵⁷⁾ The instability can occur during the first swing or second swing if the inadequacy of synchronizing power is the real reason of transient instability. Major failure can happen in an island separated from the inter-connection with gross generation-load imbalances by inadequate dynamic reserve. In a situation like this, it is not enough to have sufficient spinning reserve in an island, because dynamically it may be too slow and therefore, generation can be lost due to the speed protection's relay against unacceptable system frequency deviation. ⁽⁵⁷⁾

One of the primary objectives of electric utility industries is to maintain a satisfactory power supply to its customers all the time under any circumstances. This can be achieved by a well-coordinated plan and operation of the system. Therefore, one of the most important quantities of the power system is the machine data. The past history of electric power systems shows unsufficient study on machine data. You will find some machine's data given by manufacturers which is actually reflected in a physical system being used. But what happens is that you take the manufacturers machine data and switch these data in the simulation program. Thus, you may end up with an unstable system.

Several reasons can be pointed out to why this happens. First of all, the simulation program may have errors; secondly, the data given probably was wrong; and thirdly, both data and simulation programs can have errors. The machine data given by the manufacturer may be wrong

due to the measurement of the machine's parameters or the method of measurement that has been used. Therefore, it is worth investigating the machine's data and how it influences the stability studies. Especially up to this date, there has been no unified method to measure the machine data under operating conditions.⁽⁶⁰⁾ It is true that today teh trend is to adapt a unified method to measure the machine's quantities, but the ieda of investigating the impact of machine's data is highly recommended. This chapter will investigate the impact of the machine's data on the over-all system stability studies.

As we know at this time power systems are large and complex. Therefore, most of the stability studies in power systems are done by simulation. This consists of step-by-stop integration of the system differential equations by using one of the many numerical techniques. Thus, the simulation $\operatorname{program}^{(53)}$ will be used in this study.

4-2 Study of the System

In order to see the impact of changing the machine 5 data on an over-all system, a sample system was chosen. It is a model of a 345 KV transmission system typical of Northeast utilities in figure 4-1.⁽⁵⁸⁾ This consists of 10 machines being equipped with an IEEE type I excitation system⁽⁸⁾ and a Philadelphia Electric Company (PECO) generalized steam and hydro model.⁽⁶¹⁾ It is the EPRI 39 bus, 46 line, 10 generator.⁽⁶²⁾ Machine data, bus data, line data, excitation system data, and turbinegovernor system data are given in appendix G. This system has been used by several investigators on the ERC-RP-90.⁽⁵⁸⁾

The studies in this chapter will consider the sampling system subject to a .075 second three phase fault on the 26-29 line side of bus 29. The fault location is shown in figure 4-1. "The location and level of the disturbance was based on the following:"

> 1) "The fault was placed on the high side of the machine transformer, slightly distant from the machine, thus, avoiding the level of d-c components that would be established by a closer fault to machine 9."

> 2) "Machine 9 is loosely coupled to the system through the line (26-28), (28-29) and (26,29). Hence, a fault at bus 29 would serve to exhibit the model test under severe and small disturbance conditions, bus 29 being severely disturbed and the remainder of the system buses having only moderate disturbance." 3) "The clearing action, removal of line 26-29 further serves to loosely couple the machine 9 to the rest of the system."⁽⁵³⁾

Therefore, simulation will carry on under the above situation. Machine 5, of system figure 4-1, was chosen to vary its parameters. The attempt was made to see the impact of machine 5 parameters on the overall system stability studies. Those parameters are: direct axis synchronous reactance, x_d , direct axis transient reactance, x'_d , direct axis subtransient reactance, x'_d , quadrature axis synchronous reactance, x_q , quadrature axis transient reactance, x'_q , quadrature axis subtransient reactance, x''_q , direct axis transient open-circuit time constant, T'_{do} , direct axis subtransient open-circuit time constant, T'_{do} , quadrature axis transient open-circuit time constant, T'_{do} , quadrature axis transient open-circuit time constant, T'_{do} , quadrature sient open-circuit time constant, T''_{do} , and inertia constant, H. The

machine will be simulated by machine model 5, model 4, model 3 and model 2.

The comparative of the machine model's performance will be considered. There are several machine quantities to observe upon changing the machine parameters; for instance machine rotor angle, field voltage, terminal voltage, electrical power output, quadrature axis voltage, direct axis voltage, mechanical torque and turbine power. The quantities which are sufficient to tell the behavior of the system are: rotor angle, field voltage and quadrature axis voltage which will be used.

Next x, will be varied, of machine 5 of a given system (figure 4-1), n times and at the same time keeping the rest of the parameters and initial condition of the machine unchanged. The major change on the machine quantities is seen upon changing only the x_d parameter. The same thing can be done for the rest of the other machine parameters mentioned previously. Per unit quantities are being dealt with; machine parameters are in per unit. The per unit value of any quantity is defined as the ratio of quantity to its base value expressed as a decimal. For instance, if a base voltage of 120 KV is chosen, voltages of 108 KV, 120 KV and 126 KV become 0.90, 1.00 and 1.05 per unit, or it can be in a percentage scale in which the above quantities would become 90, 100, and 105 percent.⁽⁴⁾ The per unit system is adapted as a log in the industry's system, therefore, it is used internationally in the simulation of any power system problem. Hence, a small variation of any parameter in per unit will reflect a large quantity in scale of ohms, voltage and current. Therefore, a very sensitive scale is being dealt with, for instance, x_d to n + 1 set of data cannot be used. This is because

FIGURE 4-1 SAMPLE TEST SYSTEM

the system will become unrealizable in the engineering design point of view. Therefore, there is a limited ceiling for x_d which must be considered and that is when the system becomes unrealizable. Sampling the n set of data of x_d is enough to see the machine quantities behavior as well as its impact on the rest of the system.

Another point needs to be mentioned which is x'_d cannot exceed x'_d , which is well known. Also, x''_d cannot exceed x'_d . The same thing is true for x_q , x_q is more or equal to x_q' and x'_q is more or equal to x''_q . There is another relation that is well defined, that is x_d is more or equal to x_q . Therefore, precautions need to be taken of the basic relationships of these parameters in the sense that x'_d cannot be more than x_d , hence, n set of data has to be defined for the x'_d variation. The same is true for x''_d , x'_q , and x_q . Other parameters such as the inertia constant H and machine time constants T'_{do} , T'_{do} , T'_{do} , and T''_{qo} have to be limited to n set of data. Simply this is that n + 1 causes the system to be unrealizable in the sense of the design point of view.

Simulation has also been done which in this case perturbated the initial terminal voltage of machine 5 and investigates the impact of the variation of the machine data on the over-all system stability studies. Another case of simulation has been done which has perturbated one of machine 5 parameters and varies the other one parameter up to n set of data. Table 4-1 reflects that the machine 5 data has been simulated.

4-3 Result Analyses of the Machine's Models Performance

It needs to be pointed out that the stability or instability of the system will be evident as the swing curves are carried on. For

MACHINE 5 PARAMETER	SAMPLE VALUE PER UNIT	MINIMUM VALUE PER UNIT	MAXIMUM VALUE PER UNIT
× _d	.67000	.62000	2.0000
x'd	.13200	.10 0 00	.4000
x"d	.05400	.01000	.1750
xq	.62000	.18000	.7000
x'	.16600	.10000	.6000
x"q	.11620	.01000	.1600
T'do	5.40000	1.00000	15.0000
T' qo	.44000	.01000	1.0000
T" do	.05400	.01000	.8000
T" qo	.05400	.01000	.4000
H	26.00000	12.00000	40.0000
R	.00014	.00010	.0015

TABLE 4-1 SIMULATED MACHINE PARAMETER

-

stability the relative angular displacement of the machine groups should tend to return to or oscillate about a position or relative equilibrium, that is no one machine group should increase indefinitely in relative angular displacement with respect to the other groups.

Base to simulation has been done to the four machine models under variation to the machine 5 parameters. It was found that some instability occurs due to changing the data of machine 5 parameters. The reference simulation curve for all cases is shown as curve N in figures 4-2 to 4-45; this is the simulation of the study system data given in appendix G. It needs to be mentioned here that it is sufficient to observe the performance of the system study of the following machines: machine 5 (the data of this machine has been tested); machine 9 (the nearest one to the three phase fault on the system study); machine 1 (the furthest one from the tested machine); and machine 2 (some where in the middle of the system). Machine 1 was represented in simulation by curve A, machine 2 by curve B, machine 5 by curve E and machine 9 by curve I. Figures 4-2 to 4-45 reflected machine model 5 performance while the other machine models used a statement of their performance.

4-4 Performance of Machine Model with Changing x,

Figure 4-2 and 4-3 are a plot of the system's transient rotor angle. It plots for several values of the x_d parameter. The plot shows that the rotor angle of machine 5 is sensitive to the change of x_d . x_d causes machine 5 to be unstable at the value of 1.8 per unit. It was found that the rotor angle is directly proportional to x_d , and this is expected because x_d is an element of the A matrix. x_d causes machine 1 rotor angle to change conservatively noticing that the curve is degraded

FIGURE 4-3 TRANSIENT ROTOR ANGLE UPON CHANGING X_{d}

from reference curve N. As the value of x_d increases this causes the machine 9 rotor angle to slightly change from the reference curve. Changing x_d of machine 5 does influence the rotor angle of the tested machine as well as other machines to change.

The same test of x_d parameter applies to machine model 4 simulation. The system's transient rotor angle plots for several values of x_d parameters. Its amplitude has increased over machine model 5, increasing the value of x_d . x_d drives machine 5 to unstable limits at the value of 1.6 per unit while it was unstable at x_d equal to 1.8 per unit at machine model 5. This is due to representation of more damping winding assigned to model 5 than was assigned to model 4. So machine 5 is sensitive to the change of x_d under machine model 4 simulation. As the value of x_d is increased it causes the rotor angle of machine 1 to be degraded than the reference curve N, which acts the same as machine model 5 simulation. The rotor angle of machines 2 and 9 have a very slight change upon changing x_d .

The same test of the x_d parameter applies to machine model 3 simulation. The system's transient rotor angle plots for several values of x_d parameter. Its amplitude has increased over machine model 4. This is because there is less damping winding in machine model 3 than machine model 4. Increasing the x_d value drives machine 5 to instability at the value of x_d equal to 1.1 per unit while machine model 4 at x_d equals 1.6 per unit. Changing x_d parameters has influenced the change of the rotor angle. The rotor angle of machine 1 and machine 9 show change starting at 2.0 seconds. The same test of x_d parameter applied to machine model 2 simulation. The system's transient rotor angle was plotted for several values of x_d parameter. It appears that machine 9 acts unstable for all x_d values. Changing the value of x_d drives machine 5 to instability at the value of x_d equal to 1.0 per unit. The rotor angle of machines 1 and 2 has changes that are relatively small. Therefore, changing x_d is proportional to the rotor angle of the machines as it was stated earlier.

Figure 4-4 is a plot of per unit field voltage E_{fd} of the exciter system. It plots for several values of x_d parameter, machine model 5 simulation, comparing the reference curve N with other curves. This results in that almost each value of x_d causes the field voltage to be different from the referenced curve N. This implies that the amount of damping supplied by excitation system to machine 5 is changeable and depends on the x_d value as shown in figure 4-4. For instance, at x_d equal to .82 per unit, machine 5 required more damping by the exciter. At x_d equal to 1.4 per unit, it initially required tremendous amounts of field voltage while it slowed down under the normal reference curve N. This is what would be expected of field voltage to control the system. Figure 4-4 shows x_d does not provoke the field voltage of machines 1, 2 and 9. It remains constant.

The same test of x_d parameter applies to machine model 4 simulation. The per unit field voltage E_{fd} plots for several values of x_d parameter. The performance of machine model 4 holds the same behavior as machine model 5. So there is a tremendous amount of changed values of the field voltage when changing x_d parameter. In other words, the

amount of damping supplied by the excitation system to machine 5 is changeable and depends on the x_d parameter's assigned value. By changing x_d parameter, it shows a slight change in the field voltage of machines 1 and 9. But it does not show any change in the field voltage of machine 2.

Again, the same test of x_d parameter applies to machine model 3 simulation. The per unit field current E_{fd} plots for several values of the x_d parameter. The field current of machine 5 is changing as x_d is changed, but it shows a less amount of change than the two previous models. Apparently this is caused by the less amount of damping supplied by the exciter of machine 5. By changing the x_d parameter, the field voltage of machines 1, 2 and 9 is not provoked. This shows a less correlation of dynamic equations in this particular part.

The same test of x_d parameter applies to machine model 2 simulation. The per unit field voltage E_{fd} of the exciter plots for several values of x_d parameter. Increasing x_d values causes the field voltage of machine 5 to increase which is the amount of damping supplied by the exciter. Comparing it with other previous models, it shows a similarity with machine model 3 in the sense of the amount of field current being used for controlling the system. There has been no significant change on the field current in machines 1, 2 and 9.

Figure 4-5 is a plot of the machine's internal voltage e'_q using machine model 5 simulation. It plots for several values of x_d parameter. The internal voltage e'_q of machine 5 shows different curves for each one value of x_d since the change in e'_q is a direct measure of the d-axis damping provided by the exciter.⁽⁵³⁾ But e'_q in the other machines re-

main relatively uneffected by changing the value of x_d . The machine's internal voltage e'_q plots for several values of x_d parameter. e'_q of machine 5 degraded only at a higher value of x_d for all four machine models being used. Further, it shows a slight change at a smaller value of x_d for machine model 2 and 3. This is because of the influence of the exciter response over the e'_q value. Internal voltage of machines 1, 2 and 9 do not show any significant change upon changing the x_d parameter.

4-5 Performance of the Machine Models upon Changing x'

Figure 4-6 and 4-7 are a plot of the system's transient rotor angle. It plots for several values of the x'_d parameter, machine model 5 simulation, comparing reference curve N with other curves, which represent different values of x'_d . The rotor angle of machine 5 shows a slight change from referenced curve starting from 2.0 seconds. The rotor angle of machines 1 and 2 have been damped starting from 3.0 seconds of simulation. But machine 2's rotor angle shows a slight change upon changing x'_d . Therefore, x'_d has an influence over the machine's rotor angle of the system study.

The same test of x'_d parameter applies to machine model 4 simulation. Plots of the system's transient angle for several values of x'_d were observed. The transient rotor angle curve of machine 5 shows an increasing amplitude that is very high upon changing x'_d , while it does suppress the rotor angle of machine 9 (starting at 2.5 seconds). Also, machine 1's rotor angle has been suppressed (starting at 3.0 seconds). Machine 2's rotor angle did not significantly change.

FIGURE 4-7 TRANSIENT ROTOR ANGLE UPON CHANGING x^{*}_d

The plot of the system's transient rotor angle for several values of x'_d parameter is observed using machine model 3 simulation. The rotor angle of machine 5's amplitude is increased by increasing the value of x'_d . Machine 9's rotor angle does not change at all under varying x'_d . It's characterized by high amplitude of oscillation which is the severing of the 3-phase fault. Machine 1's rotor angle has been damped out (starting at 3.5 seconds) by increasing x'_d . So changing x'_d has an influence over the whole machine's system that can be true for other machines.

The plot of the system's transient rotor angle for several values of x'_d parameter is observed using machine model 2 simulation. Again machine 5's rotor angle increases the amplitude by increasing x'_d . This is also because of less damper winding being used for this machine model. Machine 9 was unstable for all causes tested of x'_d . Machine 1's rotor angle curves show a slight change but it is damped out (starting at 2.50 seconds) by increasing x'_d .

Figure 4-8 is a plot of the per unit field voltage E_{fd} of the exciter system using machine model 5 simulation. It plots for several values of x'_d parameter of machine model 5 simulation. Almost each value of x'_d causes the field voltage to be relatively different from the referenced field voltage of machine 5. That is because of the damping needed to suppress the system supplied by exciter. Field voltage of machines 1, 2 and 9 did not provoke it by changing x'_d parameter. This system is not dynamically correlated in this particular point of view.

The plot of the per unit field voltage E_{fd} of the exciter system, machine model 4 simulation, was observed for several values of x'_d para-

meter. Machine 5's field current showed oscillation as x'_d was increased. This tells us the amount of damping needed by the exciter. The field voltage of machines 1, 2 and 9 was not provoked by changing x'_d parameter. This is because the system was not dynamically correlated in this particular point of view.

The plot of the per unit field voltage E_{fd} of the exciter system, machine model 3 simulation, was observed for several values of x'_d parameter. The only machine severe field voltage was changed in machine 5, while the field voltage of machines 1, 2 and 9 did not change at all.

The plot of the per unit field voltage E_{fd} of the exciter system, machine model 2 simulation, was observed for several values of the x'_d parameter. Again the only machine severe field voltage was changed in machine 5 while the field voltage of machines 1, 2 and 9 did not change at all.

Figure 4-9 is a plot of the machine's internal voltage e'_q using machine model 5 simulation. It plots for several values of x'_d parameter. Internal voltage of machine 5 shows a tremendous amount of change as x'_d is increased. This change reflects that the change in this voltage is a direct measure of the d-axis damping provided by the exciter system.

The plot of the machine's internal voltage e'_q uses machine model 2, 3 and 4 simulation. It plots for several values of x'_d parameter. Internal voltage of machine 5 becomes larger by increasing x'_d . The internal voltage of machines 1, 2 and 9 did not show any change upon changing x'_d .

4-6 Performance of the Machine Models upon Changing x

Figure 4-10 is a plot of the system's transient rotor angle. It plots for several values of $x_d^{"}$ parameter using machine model 5 simulation. It is found that none of the machine's rotor angles changed. Therefore, $x_d^{"}$ does not contribute any significant change to the whole system under the existing situation described before.

The plot of the system's transient rotor angle, machine model 4 simulation, was observed for several values of $x_d^{"}$. Again there has been no change in the rotor angle of all of the machines due to the change of $x_d^{"}$.

Figure 4-11 is a plot of the machine's internal voltage e'_q using machine model 5 simulation. It plots for several values of the x''_d parameter. e'_q of machine 5 shows a slight change. Internal voltage of machines 1, 2 and 9 did not show any change at all upon changing x''_d . This is because x''_d did not effect the eigen value of the system.

4-7 Performance of the Machine Models upon Changing x d

Figure 4-12 and figure 4-13 are a plot of the system's transient rotor angle. It plots for several values of x_q , machine model 5 simulation, comparing reference rotor angle curve N with other curves which represent different values of x_q . The rotor angle of machine 5 is shown initially changing. Increasing x_q causes the transient rotor angle shaft up by constant quantity. Machine 1 does not change at all under such change of value x_q . The rotor angle of machines 2 and 9 remain unchanged too.

The plot of the system's transient rotor angle for several values of x_{d} is observed using machine model 4 simulation. Machine 5's rotor

FIGURE 4-11 PER UNIT EXCITER OUTPUT E_{fd} UPON CHANGING x_d

FIGURE 4-13 TRANSIENT ROTOR ANGLE UPON CHANGING x_q

angle shows a slight change upon changing x_q while the rotor angle of machines 1, 2 and 9 doesn't change at all.

The plot of the system's transient rotor angle for several values of x_q is observed using machine model 3 simulation. The transient rotor angle of machine 5 shows a high oscillation with increasing the value of x_q . But the transient rotor angle of machines 1, 2 and 9 does not show a change with the value of x_q changing.

The plot of the system's transient rotor angle for several values of x_q and x'_q was observed using machine model 2 simulation. Note that machine model 2 carried the same value for x_q and x'_q . Machine 9 was unstable and was not effected by changing x_q and x'_q . Machine 5's transient rotor angle shows a change while machines 1 and 2's rotor angle does not change by changing x_q and x'_q .

Figure 4-14 is a plot of the per unit field voltage E_{fd} of the exciter system. It plots for several values of x_q , machine model 5 simulation, comparing the reference curve N with other curves, which corresponds to different values of x_q of machine 5. It was found that the field current increased with increasing values of x_q . In other words, the system has been damped by the exciter system. The field voltage of machines 1, 2 and 9 remains uneffected with the changing of x_q .

The plot of the per unit field voltage E_{fd} of the exciter system for several values of x_q was observed using machine model 4 simulation. Machine 5's field current remained unchanged. This is the same for machines 1, 2 and 9. This shows the system dynamically uncoupled in reference to the field current.

The plot of the per unit field voltage E_{fd} for several values of x_q was observed using machine model 2 and 3. In both models the per unit field E_{fd} of machine 5 showed a slight change, while the other machine's field voltage remained unchanged with x_q changing.

Figure 4-15 is a plot of the machine's internal voltage e'_q , machine 5. It plots for several values of x_q . The figure shows e'_q of machine 5 changing slightly. The change in e'_q is direct provided by the exciter. The other machine's internal voltage remains unchanged.

The plot of the machine's internal voltage for several values of x_q was observed by using machine models 2, 3 and 4. Internal voltage of machine 5 shows the same change on machine model 5 while the other machine's internal voltage remain constant for all of the machines using machine model 2, 3 and 4.

4-8 Performance of the Machine Models upon Changing x

Figure 4-16 is a plot of the system's transient rotor angle. It plots for several values of x'_q using machine model 5 simulation. It is found that all of the machine's rotor angles remain uneffected by changing x'_q . One fact is this value of x'_q is so small, it probably could not make any change to the system's eigen value.

The plot of the system's transient rotor angle for several values of \mathbf{x}'_q was observed using machine models 3 and 4 simulation. Again all of the machine's rotor angles remain uneffected by changing \mathbf{x}'_q . This is because of the system's eigen value was not changed.

Figure 4-17 is a plot of the per unit field voltage E_{fd} of the exciter system. It plots for several values of x'_q by using machine model 5 simulation. Here again, the field current remains unchanged for all machines.

The plot of the per unit field voltage E_{fd} of the exciter system, using machine model 3 and 4, was observed for several values of x'_q . E_{fd} of the machines remained uneffected for the same reasons mentioned previously.

Figure 4-18 is a plot of the machine's internal voltage e'_q . It is plotted for several values of x'_q using machine model 5 simulation. e'_q of the machines being tested remained constant. This is because the system's eigen value did not change by changing x'_q .

The plot of the machine's internal voltage e'_q , using machine model 3 and 4 was observed for several values of x'_q . e'_q for all of the machines remained also uneffected.

4-9 Performance of the Machine Models upon Changing x"

Figure 4-19 is a plot of the system's transient rotor angle. It plots for several values of $x_q^{"}$ using machine model 5 simulation. It was found that all of the machine's rotor angles remained uneffected by changing $x_q^{"}$. This can be expected since $x_q^{"}$ is a very small value which cannot contribute to changing the eigen value of the system.

The plot of the system's transient rotor angle for several values of $x_q^{"}$ was observed using machine model 4 simulation. Again all of the machine's rotor angles remained uneffected by changing $x_q^{"}$ for the same reasons stated above.

The plot of the per unit field voltage E_{fd} of the exciter, using machine models 5 and 4, was observed for several values of $x_q^{"}$. It is found that the field voltage of machine 9 showed a slight change. Field voltage of the other machines remained uneffected.

The plot of the machine's internal voltage e'_q using machine models 4 and 5 was observed for several values of x''_q . Again e'_q of the machine remained uneffected by changing x''_q .

4-10 Performance of the Machine Models upon Changing T'do

Figure 4-20 is a plot of the system's transient rotor angle. It plots for several values of T'_{do} using machine model 5 simulation. Looking at the curves, it showed that the transient rotor angle remained uneffected for the machines being tested.

The plot of the transient angle, using machine model 4 simulation, was observed for several values of T'_{do} . The transient angle of machines 5 and 9 showed high oscillation upon increasing T'_{do} . The transient angle of machine 1 remained uneffected by such a change in T'_{do} . But the transient rotor angle did not show any change, by using machine model 3 simulation, on all of the machines.

The plot of the machine's transient rotor angle for several values of T'_{do} , using machine model 2 simulation, was observed. The rotor angle of machine 5 did change with the decreasing amplitude. The rotor angle of machines 1, 2 and 9 did not change although machine 9 severed instability due to the fault that existed in the system.

The plot of the per unit field voltage E_{fd} of the exciter system was observed using machine models 2, 3,4 and 5 simulation. Machine 5's rotor angle showed a slight change for all of the machine models. But the field voltage in the other machines remained uneffected by varying T'_{do} .

The plot of the machine's internal transient voltage e'_q was observed by using machine models 2, 3, 4 and 5 simulation. e'_q of machine

5 and 9 has changed slightly than the referenced curve N, while other internal voltage of the machine remained uneffected.

4-11 Performance of the Machine Models upon Changing T'

Figures 4-21 and 4-22 are plots of the system's transient rotor angle and the per unit field current E_{fd} . The machine's rotor angle remained uneffected while the field voltage of machine 5 showed a very slight change as well as machine 9. The field current of the other machines was not effected at all.

The plot was observed for the machine's rotor angle and the field current using machine models 3 and 4 simulation. Curves of both rotor angle and field current remain unchanged which showed the mode of the system was not changed by changing T'_{00} .

4-12 Performance of the Machine Models upon Changing T"

Figure 4-23 is a plot of the system's rotor angle. It plots for several values of T''_{qo} using machine model 5 simulation. Comparing the rotor angle curves with N reference curve showed a very slight change on the rotor angle of machines 1 and 5. But the rotor angle of machines 2 and 9 remained uneffected. The same test was applied to machine model 4 which showed that all of the machine's rotor angles remained uneffected.

Figure 4-24 is a plot of the per unit field voltage E_{fd} of the exciter system. The field current of machine 5 fluctuated around the reference curve N in which damping was supplied by the exciter which fluctuated too. The field currents of machines 1 and 9 were changed slightly with respect to reference curve N while the field current of machine 2 remained unchanged.

FIGURE 4-21 TRANSIENT ROTOR ANGLE UPON CHANGING T' go

FIGURE 4-23 TRANSIENT ROTOR ANGLE UPON CHANGING T" qo

4-13 Performance of the Machine Models upon Changing H

Figures 4-25 and 4-26 are the plots of the system's transient rotor angle. It plots for several values of the inertia constant H using machine model 5. Increasing the value of H causes the amplitude of the rotor angle of machine 5 to increase, while it showed a reverse on the rotor angle of machine 1, (increasing H serves to suppress the rotor angle oscillation as it was seen in figure 4-20). The rotor angles of machines 2 and 9 were suppressed too by increasing the inertia constant. Therefore, the amplitude of the rotor angle of machine 5 is directly proportional with the inertia constant.

The same test was applied to machine models 2, 3, and 4 with the system's rotor angle being observed. Generally looking at these curves, it was reflected that the rotor angle of machine 5 increased its amplitude for all of the machine models by increasing the inertia constant. It suppressed the rotor angle of machines 1, 2 and 9 by increasing H. Note that machine 9 severed the instability for all inertia values that had been assigned. This is due to the 3-phase fault at bus 29.

Figure 4-27 is a plot of the per unit field voltage E_{fd} of the excitation system. It is plotted for several values of the inertia constant H using machine model 5. The field current of machine 5 showed a slight fluctuation around reference curve N. The field voltage of machine 9 changed slightly while increasing H. The field voltage of the other machines remained uneffected. This test was applied for machine models 2, 3 and 4. The field voltage was observed during this test. It behaved relatively the same as machine model 5.

FIGURE 4-25 TRANSIENT ROTOR ANGLE UPON CHANGING H

FIGURE 4-27 PER UNIT EXCITER OUTPUT E_{fd} UPON CHANGING H

The plot of the turbine output power was observed for several values of x_d , x_d' , x_d' , x_q , x_q' and x_q'' using machine model 5. It was found that the turbine output power was not sensitive to any of the above machine parameters. This is what would be expected. The plot of the system's rotor angle, field current E_{fd} , and the internal voltage e_q' for several values of the rotor angle was observed using machine model 5 simulation. It was found that there had been no change on the above quantities upon changing the rotor resistance. The fact is it is too small to compare it with the other parameters, hence, it would not change the performance of the system.

4-14 Performance of the Machine Models upon Changing x and Holding x d with abnormal value

Simulation is carried on by holding the abnormal value of x_d and changing the x_q parameter using machine model 5. Figure 4-28 is a plot of the machine's rotor angle. Recall that figures 4-12 and 4-13 represent the machine's rotor angle simulation with varying only the x_q parameter. Comparing figure 4-28 with figures 4-12 and 4-13 you find that they are identical. The rotor angle, the field current and terminal voltage of the machine 5 are identical. The rotor angle of machines 1, 2 and 9 remain uneffected in both cases.

Again comparing figure 4-14, this is a plot of the field current upon changing x_q only, and figure 4-29, which is a plot of the field current upon changing x_q and holding x_d equal to 1.0 per unit, it showed a difference in the amount of damping used for machine 5. Figure 4-29 shows a higher field current used than in figure 4-14, this is reflected in the amount of damping supplied by the exciter to machine 5 upon changing

FIGURE 4-29 PER UNIT EXCITER OUTPUT E_{fd} UPON CHANGING x_q WITH $x_d = 1.0$ per unit

 x_d and x_q which is larger. The field current of machines 1, 2 and 9 remain unchanged for both cases.

Figure 4-30 is a plot of the machine's internal voltage e'_q . It is a plot for several values of x_q and holding the abnormal value of x_d . Comparing figure 4-15, which changes only the x_q values, and figure 4-30 we would find that figure 4-15, the internal voltage of machine 5, was more sensitive to the change than the internal voltage of machine 5 which was shown in figure 4-30.

4-15 Performance of the Machine Model 5 Upon Perturbation Terminal Voltage of Machine 5 as well as Varying its Parameters

The initial terminal voltage of machine 5 was 1.012 per unit, (this is given in appendix G). The simulation will consider the small perturbation of terminal voltage of machine 5 which is equal to 1.092 per unit. Figure 4-31, 4-32, 4-33 and 4-34 are plots of the machine's rotor angle, field current and internal machine voltage e'_q for several values of the x_d parameter. It was found that these curves are identical to the machine's performance by changing only the x_d parameter, this is shown in figure 4-2, 4-3, 4-4 and 4-5.

Figures 4-35, 4-36, 4-37 and 4-38 are plots of the machine's rotor angle, field current and internal machine voltage e'_q for several values of the x'_d parameter. It was found that there were no differences between this simulation and the one in which we only changed the x'_d parameter as seen in figures 4-6, 4-7, 4-8 and 4-9.

Figures 4-39, 4-40, 4-41 and 4-42 are plots of the machine's rotor angle, field current E_{fd} , and internal machine voltage for several values of the x_q parameter. By comparing these figures with figures 4-12, 4-13, 4-14 and 4-15, it was found that these figures were identical.

FIGURE 4-31 TRANSIENT ROTOR ANGLE UPON CHANGING INITIAL VOLTAGE AND x.

.

FIGURE 4-33 PER UNIT EXCITER OUTPUT E UPON CHANGING TERMINAL VOTLAGE AND x_d

TRANSIENT ROTOR ANGLE UPON CHANGING INITIAL VOLTAGE AND x^{*}_d

FIGURE 4-37 PER UNIT EXCITER OUTPUT E_{fd} UPON CHANGING INITIAL TERMINAL VOLTAGE AND x_d^*

PER UNIT EXCITER OUTPUT E UPON CHANGING INITIAL TERMINAL VOLTAGE AND x d

Figures 4-43, 4-44 and 4-45 are plots of the machine's rotor angle, field current E_{fd} and the internal machine voltage for several values of the x'_q parameter. Looking at these figures it showed that they were ddentical with figures 4-16, 4-17, and 4-18 when changing only the x'_q parameter.

Therefore, the conclusion of this simulation was that there was not a major effect to the system under the pertubation initial condition of the terminal voltage of machine 5 by 1.092 per unit.

4-16 Summary

It is known that power systems are large and complex. Nonlinearity does exist in machine representation, load representation and line representation. Therefore, most of the stability studies in power systems are done by simulation. This consists of a step-by-step integration of the system's differential equations by using numerical techniques. This chapter presents a computer simulation of a synchronous machine's performance under variation of machine 5's data and the impact of this data on the system's stability. The simulation reflected the following parameters.

The x_d parameter has an adverse effect on the system's stability. It causes machine 5 to be unstable at the value of x_d equal to 1.8 per unit (machine 5 simulation), 1.6 per unit (machine model 4 simulation), 1.1 per unit (machine model 3 simulation), and 1.1 per unit (machine model 2 simulation). Also, it has an adverse effect on the performance of other machines of the system study. It damps out the rotor angle of machines 1, 2 and 9 starting at 2.5, 2.5 and 3.0 seconds, respectively. Noted that the breakpoint of x_d which causes machine 5 to be unstable

FIGURE 4-43 TRANSIENT ROTOR ANGLE UPON CHANGING INITIAL TERMINAL VOLTAGE AND x^{*}

FIGURE 4-45 Q-AXIS TRANSIENT VOLTAGE e' UPON CHANGING INITIAL TERMINAL VOLTAGE AND x^{*}

is the difference in the values from one machine model to the other. That is actually reflected in the structure level of machine modeling.

The x_d parameter shows an adverse effect on the machine's performance under machine models 2, 3, 4 and 5. x_d causes a change on the machine's performance which was a lesser degree than x_d , which is obvious.

The test on x''_d shows no change in the performance of the machines for all levels of machine models.

The x_q parameters has become very important in the sense that it did change the machine 5's performance while it did not cause machines 1, 2 and 9's performance to be changed. Both x'_q and x''_q cause the machine's performance not to be changed.

 T'_{do} and T'_{qo} were not active parameters in the sense that no change of the machine's performance was noted.

The inertia of machine 5 has an adverse effect on the machine's performance under all of the machine models simulation. Thus, increasing the value of H causes the frequency of oscillation to increase, similarly the lower inertia value causes it to slow the frequency of oscillation of machine 5. The inertia of machines 1 and 2 act as a damping out of the rotor angle starting at 2.0 seconds by increasing its value.

The performance of the machines, by changing and holding x_d to 1.0 per unit and at the same time varying the x_q parameter, show an adverse effect on machine 5's performance.

Although the system is nonlinear, the reader should have some feeling of the variation structure of the machine's data. If <u>in fact</u>, we consider the whole system to be linear, this allows us to

represent the system by dynamical equations:

$$\dot{x} = \{A\} \quad X + \{B\} \quad U$$

 $Y = \{C\} \quad X$

Where the machine and network parameters can be considered as elements of matrix {A}, the machine's controller elements are elements of matrix {B}, and the output of the system is an element of matrix {C}. Therefore, any change of the machine's data causes the mode of matrix {A} to be changed. Hence, the eigen values of the system change too. So these changes on the system's eigen values will reflect the change in the physical structure of the system. Physically, changing any value of the inductance leads to the change of the permeabilities, lengths, and crosssectional areas of the associated magnetic circuit. Appendix H presents the definition of machine parameters as well as explains the physical interpretation of the machine data upon varying them.

CHAPTER V

SUMMARY AND CONCLUSION

This dissertation was conducted mainly to test four types of excitation systems (appendix B), two types of governor-turbine (appendix E), synchronous machine upon variation of their data, and the impact of machine data on overall system stability studies. The endresult is to study the sensitivity analysis of the machine's controller parameters and to observe their impact on the machine's controller response. This could help to characterize those parameters which do not contribute a major change on the exciter and governor turbine response for future work.

The curves in figures (5-1) and (5-2) reflect the behavior of exciter type I upon variation of the damping time constant T_f and the exciter time constant T_E , respectively. Figure (5-1) shows that the exciter response does not change upon varying the time constant T_f . This will lead to the conclusion that this parameter is not important to be represented in future digital simulation studies. Figure (5-2) shows that the exciter output holds a linear relationship with varying the exciter time constant T_E . The behavior of the exciter system is dominated by the slower response while the faster response has a lesser effect on the exciter response. Therefore, the conclusion can be stated that this parameter is essential to be represented in digital simulation studies.

* IS SYSTEM TIME CONSTANT

SENSITIVITY ANALYSIS OF A TYPE I EXCITATION SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN TIME CONSTANT TF IS VARIED FROM .01 TO 5.0

٦.

144

FIGURE 5-1

* IS SYSTEM TIME CONSTANT

SENSITIVITY ANALYSIS OF A TYPE 1 EXCITATION SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN TIME CONSTANT OF US VARIED FROM .01 TO 5.00

FIGURE 5-2

The curves in figures (5-3) and (5-4) reflect the behavior of the governor-turbine model, tandem compound double reheater IEEE type, upon variation of the servo motor time constant, T_3 , and the reheater time constant, T_5 , respectively. The governor-turbine response has a slight change with the variation of T_3 . This will lead to the conclusion that this parameter has some sort of correlation with the governor-turbine response. Changing the data of the governor-turbine system may cause the structure of the governor-turbine to also change. Figure (5-4) shows that the governor-turbine response holds a linear relationship with varying the reheater time constant, T_5 . The governorturbine system output is dominated by the slower response.

The end-result is to study the impact of the machine data on overall system stability studies. Figures (5-5) and (5-6) are the machines' (machines one, two, five and nine) swing curves, upon varying the direct axis synchronous reactance x_d of machine five (figure 4-1). "N" represents the reference simulation curve of the study system data which is given in appendix G. Varying the x_d value reflected an adverse effect on the machines' quantities as shown in figures (5-5) and (5-6). This simulation could characterize those parameters which do not contribute a major change in the machine's performance for future simulation stability studies.

Therefore, this dissertation's conclusions will be presented in the following points:

A) The modification of a digital representation of synchronous machine modeling by C. C. Young, which includes a development of machine model III and $\frac{1}{2}$.

SENSITIVITY ANALYSIS OF TANDEM - COMPOUND GUVERNOR AND STEAM SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN TIME CUNSTANT TO IS VARIED FROM 0.05 TO 0.2

15 SYSTEM TIME CONSTANT

SENSITIVITY ANALYDIS OF TANDER. COMPOUND GOVERNOR AND STEAM SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT OF THE SYSTEM WHEN TIME CONSTANT TO IS VARIED FROM 3.0 TO 15.0

FIGURE 5-6 TRANSIENT ROTOR ANGLE UPON CHANING X_d

B) The study of data sensitivity analysis of the excitation system. Four types of excitation systems were tested to see their performance. A conclusion can be drawn that the exciter type I and type II parameters can be classified into three categories:

- i) Essential parameters such as exciter time constant ${\rm T}_{\rm E}$ and exciter gain ${\rm K}_{\rm F}.$
- ii) Important parameters such as regulator gain $K_A^{}$, feedback gain parameter $K_{\underline{f}}^{}$ and regulator amplifier time constant $T_A^{}$.
- iii) Exciter parameters not as important such as regulator input filter time constant ${\rm T}_{\rm R}$ and feedback time ccnstant ${\rm T}_{\rm F}$.

Exciter type III parameters can be classified into the following three categories:

- i) Essential parameters such as exciter time constant T_E and exciter gain parameter $K_{\overline{E}}$.
- ii) Important parameters such as regulator gain ${\rm K}_{\rm A}$ and feedback gain parameter, ${\rm K}_{\rm f}.$
- iii) Parameters not as important such as regulator amplifier time constant, T_A , regulator input filter time constant T_R , and feedback time constant, T_f .

In exciter type IV all of the parameters are essential. Some parameters of exciter types I, II and III were not as essential to the effect of the exciter's response. Thus, the degree of the exciter dynamic equations can be reduced for digital representation of the above models. C) Study of data sensitivity analysis of governor-turbine system. Tandem compound double reheater model and a Philadelphia Electric Company (PECO) model were subject to a test of their performance. A conclusion can be drawn that the tandem compound double reheater model's parameters can be classified into three categories:

- i) Essential parameters such as steam chest time constant T_4 and reheat time constant T_5 .
- ii) Important parameters such as speed governor time constant T_2 , servo motor time constant T_3 , and cross-over timve constant T_7 .
- iii) Parameters not as important such as second reheat time constant T₆, fraction parameter K₃, hard limiter and steady state speed regulator K_C.

Also, a conclusion can be drawn that the Philadelphia Electric Company model's parameter can be classified into the following three categories:

- i) Very important parameters such as time constant T_2 and time constant T_3 .
- ii) Important parameters such as time constant T_{L} .
- iii) Parameters not as important such as time constant T_1 , time constant T_5 , and the hard limiter.

Some of the governor-turbine parameters are not essential to the effect of the behavior of the models. Therefore, the reduction of the dynamic equation's order is possible for the digital representation of the above two models.

D) Study of the impact of the machine data on overall stability studies' performance using synchronous machine models two, three, four and five simulation. A conclusion can be recognized that machine parameters have an adverse effect on the system stability and machine models four and five parameters can be classified into the three categories below:

- i) Essential parameters such as direct axis synchronous reactance x_d , direct axis transient reactance x'_d , quadrature axis synchronous reactance x_q and inertia constant H.
- ii) Important parameters such as direct axis subtransient reactance x''_d , quadrature axis subtransient open-circuit time constant T''_{d0} .
- iii) Parameters not as important such as quadrature axis transient reactance x'_q , quadrature axis subtransient reactance x''_q , direct axis transient open-circuit time constant T'_{do} , and quadrature axis transient opencircuit time constant T'_{do} .

A conclusion can be drawn that the machine model's three parameters can be classified into the following three categories:

- i) The essential parameters such as direct axis synchronous reactance x_d, direct axis synchronous transient reactance x'_d, quadrature axis synchronous reactance x_a, and inertia constant H.
- ii) Important parameters such as direct axis transient
 open-circuit time constant, T_{do}.

iii) Parameters not as important such as quadrature axis synchronous transient reactance x'_q , quadrature axis transient open-circuit time constant T'_{do} .

And finally, a conclusion can be drawn that the machine model's parameters can be classified into two categories:

- i) The essential parameters such as direct axis synchronous reactance x_d , direct axis synchronous transient reactance x'_d , quadrature axis synchronous reactance x_q , and inertia constant H,
- ii) And important parameters such as quadrature axis transient synchronous reactance x'_q and direct axis transient open-circuit time constant T'_{do} .

From this dissertation it can be concluded which parameters have an influential action on the system's stability. The conclusion of this study is that some of the machine's parameters do not influence the system model's performance for all the machine models. Therefore, the reduction of the dynamic equation's order is possible for the digital representation of the above four models.

APPENDIX A

DERIVATION OF MODEL III & 1/2 EQUATIONS

Park's model describing the dynamic characteristic of synchronous machine in a per unit form is given below. As stated, one winding of a damper will be represented in the d and q axis of synchronous machine referred to as X for d axis damping and g for q axis with the assumption mentioned earlier. The equation can then be written as:

Direct axis flux linkage

$$\lambda_{f} = -X_{af} i_{d} + X_{ff} i_{f} + X_{fx} i_{x}$$
(A-1)

$$\lambda_{d} = -X_{d} i_{d} + X_{af} i_{f} + X_{axd} i_{x}$$
 (A-2)

$$\lambda_{x} = -X_{axd} \mathbf{i}_{d} + X_{xx} \mathbf{i}_{x} + X_{fx} \mathbf{i}_{f}$$
(A-3)

Direct axis voltages

$$\mathbf{v}_{d} = \frac{d\lambda d}{\omega_{o} dt} - \frac{\omega_{r}}{\omega_{o}} \lambda_{q} - \mathbf{R}_{a} \mathbf{i}_{d}$$
(A-4)

$$\mathbf{v}_{\mathbf{f}} = \mathbf{r}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}} + \frac{d\lambda \mathbf{f}}{\omega_{\mathbf{o}} d\mathbf{t}}$$
(A-5)

$$\mathbf{v}_{\mathbf{x}} = \frac{d\lambda\mathbf{x}}{\omega_{0}dt} + \mathbf{R}_{\mathbf{x}}\mathbf{i}_{\mathbf{x}}$$
(A-6)

Quadrature axis linkage

$$\lambda_{g} = -X_{ag} \mathbf{i}_{q} + X_{gg} \mathbf{i}_{g}$$
(A-7)

$$\lambda_{q} = -X_{q} i_{q} + X_{aq} i_{g}$$
 (A-8)

Quadrature axis voltage

$$\mathbf{v}_{\mathbf{q}} = \frac{d\lambda \mathbf{q}}{\omega_{\mathbf{o}} dt} + \frac{\omega_{\mathbf{r}}}{\omega_{\mathbf{o}}} \quad \lambda_{\mathbf{d}} - \mathbf{ri}_{\mathbf{q}} \tag{A-9}$$

$$\mathbf{v}_{g} = \mathbf{R}_{g}\mathbf{i}_{g} + \frac{d\lambda g}{\omega_{o}dt}$$
(A-10)

Noted, equations (A-1), (A-2), (A-3), (A-7) and (A-8) are in five unknown currents. Equation (A-7) can be written as

$$i_{g} = \frac{1}{X_{gg}} (\lambda_{g} + X_{ag} i_{q})$$
 (A-11)

If field current, i_{f} , is eliminated from equations (A-1), (A-2) and (A-3) we will have:

$$\mathbf{i}_{d} = -\frac{1}{\mathbf{X}_{d}^{"}} \quad \lambda_{d} + \frac{1}{\mathbf{X}_{d}^{"}} \quad \frac{\mathbf{X}_{ax}}{\mathbf{X}_{xx}} \quad \lambda_{x}$$
(A-12)

Now taking i from (A-11) and put it in equation (A-8) which yields the following:

$$i_{q} = -\frac{1}{X''_{q}} \lambda_{q} + \frac{1}{X''_{q}} \frac{\chi_{ag}}{\chi_{gg}} \lambda_{g}$$
(A-13a)

where

$$x_{d}^{"} = x_{d}^{"} - \frac{x_{af}^{2} x_{xx}^{2} + x_{ax}^{2} x_{ff}^{2} - 2x_{af}^{2} x_{fx}^{2} x_{ax}^{2}}{x_{ff}^{2} x_{xx}^{2} - x_{fx}^{2}}$$
(A-13b)

and

$$\mathbf{x}_{q}^{"} = \mathbf{X}_{q} - \frac{\mathbf{X}_{ag}^{2}}{\mathbf{X}_{gg}}$$
(A-13c)

Further assumptions which must be made are:

 Relationships must exist between the rotor and stator coil inductances in each axis.

$$L_{ax} L_{fx} = L_{xx} L_{af}$$

$$X_{ax} X_{fx} = X_{xx} X_{af}$$
(A-14)

2) The time constants of the two rotor coils in each axis should be different by at least a factor of ten.⁽⁵⁹⁾ Hence, the following can be defined as:

$$X_{q} - X_{q}^{"} = \frac{X_{ag}^{2}}{X_{gg}}$$
(A-15)

$$x_{d} - x_{d}'' = x_{ax}^{2} / x_{xx}$$
 (A-16)

$$x_{d} - x'_{d} = x_{af}^{2} / x_{ff}$$
 (A-17)

$$x'_{d} - x''_{d} = \frac{x^{2}}{\frac{ax}{x_{xx}}} - \frac{x^{2}}{\frac{af}{x_{ff}}}$$
 (A-18)

Concordia had defined the so-called open circuit (that is, the armature is open circuited) rotor time constants as:

$$T''_{q0} = \frac{X_{gg}}{R_{g}}$$
 Radians (A-19a)

$$T_{do}^{'} = \frac{X_{ff}}{R_{f}}$$
Radians (A-19b)
$$T_{do}^{'} = (\frac{X_{gg}^{} - \frac{X_{fx}^{2}}{X_{ff}}}{R_{x}})$$
Radians

or

$$T''_{do} = \left(\frac{X'_{d} - X''_{d}}{X_{d} - X''_{d}}\right) \frac{X_{XX}}{R_{X}} \quad \text{Radians} \qquad (A-19c)$$

Proof of these relations are:

$$\frac{(X_{gg} - \frac{X_{fx}^2}{X_{ff}})}{\frac{R_x}{R_x}} = \left(\frac{X_d' - X_d'}{X_d - X_d''}\right) \frac{X_{xx}}{R_x} \text{ as follows:}$$

$$T''_{do} = \left(\frac{X'_{d} - X''_{d}}{X_{d} - X''_{d}}\right) \frac{X_{xx}}{R_{x}}$$

.

$$T_{do}^{"} = \begin{pmatrix} \frac{x_{ax}^{2}}{\frac{x_{xx}}{x}} - \frac{x_{af}^{2}}{\frac{x_{ff}}{x_{ff}}} \\ \frac{x_{xx}}{\frac{x_{xx}}{x}} - \frac{x_{ff}^{2}}{\frac{x_{xx}}{x}} \\ = \frac{\frac{x_{ax}^{2}}{\frac{x_{xx}}{x}} - \frac{x_{xx}^{2}}{\frac{x_{xx}^{2}}{x_{ff}}} \\ \frac{x_{xx}}{\frac{x_{xx}}{x}} - \frac{x_{fx}^{2}}{\frac{x_{xx}^{2}}{x_{ff}}} \\ \frac{x_{xx}}{\frac{x_{xx}}{x}} - \frac{x_{fx}^{2}}{\frac{x_{xx}}{x}} \\ \frac{x_{xx}}{\frac{x_{xx}}{x}} \\ \frac{x_{xx}}{\frac{x_{xx}}{x}} - \frac{x_{fx}^{2}}{\frac{x_{xx}}{x}} \\ \frac{x_{xx}}{\frac{x_{xx}}{x}} \\ \frac{x_{xx}}{x}} \\ \frac{x_{xx}}{\frac{x_{xx}}{x}} \\ \frac{x_{xx}}{x} \\ \frac{x_{xx}}{x} \\ \frac{x_{xx}}{x} \\ \frac{x_{xx}}{x} \\ \frac{x_{xx}}{x} \\ \frac{x_{xx}}{x}} \\ \frac{x_{xx}}{x} \\ \frac{x_{xx}}{x} \\ \frac{x_{xx}}{x} \\ \frac{x_{xx}}{x} \\ \frac{x_{xx}}{x$$

which is equal to the above and

$$\mathbf{T}_{qo}^{"} = \frac{L}{gg}_{g} \text{ sec or } \mathbf{T}_{qo}^{"} = \frac{X}{gg}_{g} \text{ Radians}$$

Next i_d , i_q , i_f , i_g and i_x will be found. Since we have five equations and five unknowns, the following can be implied to find the unknowns. Recall equation (A-7),

$$\lambda_{g} = -X_{ag} i_{g} + X_{gg} i_{g}$$

$$i_{g} = \frac{1}{X_{gg}} (\lambda_{g} + X_{ag} i_{g}) \qquad (A-20)$$

Recall equation (A-8),

$$\lambda_{q} = X_{ag} \mathbf{i}_{g} - X_{q} \mathbf{i}_{q}$$
$$\mathbf{i}_{g} = \frac{1}{X_{ag}} (\lambda_{q} + X_{q} \mathbf{i}_{q})$$
(A-21)
Equating equations (A-20) and (A-21) yields

$$\frac{1}{X_{gg}} \{\lambda_{g} + X_{ag} i_{q}\} = \frac{1}{X_{ag}} \{\lambda_{q} + X_{q} i_{q}\}$$
$$i_{q} (\frac{X_{ag}}{X_{gg}} - \frac{X_{q}}{X_{ag}}) = \frac{\lambda_{q}}{X_{ag}} - \frac{\lambda_{g}}{X_{gg}}$$
$$i_{q} (1 - \frac{X_{ag}^{2}}{X_{q}^{2}gg}) = -\frac{\lambda_{q}}{X_{q}} + \frac{X_{ag}\lambda_{g}}{\lambda_{q}^{2}gg}$$
$$i_{q} (X_{q} - \frac{X_{ag}^{2}}{X_{gg}}) = \frac{X_{ag}}{X_{gg}} \lambda_{g} - \lambda_{q}$$

Define

$$\mathbf{x}_{q}^{\prime\prime} = (\mathbf{X}_{q} - \frac{\mathbf{X}_{ag}^{2}}{\mathbf{X}_{gg}}) \text{ and } (\mathbf{X}_{q} - \mathbf{X}_{q}^{\prime\prime}) = \frac{\mathbf{X}_{ag}^{2}}{\mathbf{X}_{gg}}$$
$$\therefore \mathbf{i}_{q} = \frac{1}{\mathbf{X}_{q}^{\prime\prime}} \quad (-\lambda_{q} + \frac{\mathbf{X}_{ag}}{\mathbf{X}_{gg}}\lambda_{g}) \quad (A-22)$$

Equation (A-2) can be written as

$$\mathbf{i}_{\mathbf{x}} = \frac{1}{\mathbf{X}_{ax}} \quad (\lambda_{d} - \mathbf{X}_{af} \cdot \mathbf{i}_{f} + \mathbf{X}_{d} \mathbf{i}_{d})$$

Substituting i_x in equation (A-1) yields

$$\lambda_{f} = -X_{af} i_{d} + X_{ff} \cdot i_{f} + \frac{X_{fx}}{X_{ax}} \{\lambda_{d} - X_{af} i_{f} + X_{d} i_{d}\}$$

$$\lambda_{f} = i_{d} (-X_{af} + \frac{X_{d} X_{fx}}{X_{ax}}) + i_{f} (X_{ff} - \frac{X_{fx} X_{af}}{X_{ax}}) + \lambda_{d} (\frac{X_{fx}}{X_{ax}})$$

$$i_{f} (X_{ff} X_{ax} - X_{fx} X_{af}) = X_{ax} \lambda_{f} - X_{fx} \lambda_{d} + i_{d} (X_{af} X_{ax} - X_{d} X_{fx})$$
(A-23)

i of equation (A-2) can be eliminated by substituting it into equation (A-3).

$$\lambda_{x} = -X_{ax}i_{d} + X_{fx}i_{f} + \frac{X_{xx}}{X_{ax}} (\lambda_{d} - X_{af}i_{f} + X_{d}i_{d})$$

$$X_{ax}\lambda_{x} = i_{d} (-X_{ax}^{2} + X_{d}X_{xx}) + i_{f} (X_{fx}X_{ax} - X_{xx}X_{af}) + X_{xx}\lambda_{d}$$
(A-24)

Eliminate i_{f} from equation (A-23) and (A-24)

$$\begin{split} x_{ax}^{\lambda} &= i_{d}(-x_{ax}^{2} + x_{d}x_{xx}) + (\frac{x_{fx}x_{ax}^{-x}x_{xx}x_{af}^{-x}}{x_{ff}^{x}x_{ax}^{-x}x_{fx}x_{af}^{-x}}) |x_{ax}^{\lambda}f^{-x}f_{xx}^{\lambda}d \\ &+ i_{d} (x_{af}x_{ax} - x_{d}x_{fx})| + x_{xx}^{\lambda}d \\ i_{d} \left[x_{d}x_{xx} - x_{ax}^{2} + \frac{x_{fx}x_{ax}x_{af}^{-x}x_{xx}x_{af}^{2}x_{ax}}{x_{ff}^{x}x_{ax}^{-x}x_{fx}^{2}x_{af}} + \frac{-x_{d}^{x}x_{fx}x_{ax}^{+x}x_{d}^{x}f_{xx}x_{x}x_{af}^{-x}}{(x_{ff}^{x}x_{ax}^{-x}x_{fx}x_{af}^{-x}}] = \\ x_{ax}^{\lambda}x_{x} - (\frac{x_{fx}x_{ax}^{-x}x_{x}x_{af}}{x_{ff}^{x}x_{ax}^{-x}x_{x}^{2}x_{af}}) x_{ax}^{\lambda}f + \lambda_{d}(-x_{xx}^{+x}\frac{x_{fx}x_{fx}^{-x}x_{fx}x_{af}^{-x}}{(x_{ff}^{x}x_{ax}^{-x}x_{fx}^{2}x_{af}})) \\ i_{d} |(x_{d}x_{xx} - x_{ax}^{2})(x_{ff}^{x}x_{ax}^{-x}x_{fx}x_{af}) + x_{fx}^{2}x_{ax}^{2}f - x_{xx}^{2}x_{af}^{2}x_{ax}^{-x}x_{x}^{2}x_{af}^{2}) \\ i_{d} |(x_{d}x_{xx} - x_{ax}^{2})(x_{ff}^{x}x_{ax}^{-x}x_{fx}^{x}x_{af}) + x_{fx}^{2}x_{ax}^{2}f - x_{xx}^{x}x_{af}^{2}x_{ax}^{2}) \\ \lambda_{f}(x_{fx}x_{ax}^{2} - x_{xx}^{x}x_{af}^{x}x_{ax}) + \lambda_{d}(-x_{xx}^{x}x_{ff}^{x}x_{ax}^{x}x_{af}) + \lambda_{x}^{2}x_{x}^{2}x_{af}^{2}x_{ax}^{2}) \\ \lambda_{x}(x_{ax}^{2}x_{ff}^{-x}x_{xx}^{x}x_{af}^{x}x_{ax}) + \lambda_{d}(x_{xx}^{2}x_{ff}^{x}x_{x}^{x}x_{af}^{2}x_{ax}^{2}) \\ \lambda_{x}(x_{ax}^{2}x_{ff}^{-x}x_{x}^{x}x_{af}^{x}x_{af}) + \lambda_{d}(x_{fx}^{2}x_{ax}^{-x}x_{x}^{x}x_{af}^{2}x_{ax}^{2}) \\ \lambda_{x}(x_{ax}^{2}x_{ff}^{-x}x_{ax}^{x}x_{fx}^{x}x_{af}) + \lambda_{d}(x_{fx}^{2}x_{ax}^{-x}x_{x}^{x}x_{af}^{2}x_{ax}^{2}) \\ \lambda_{x}(x_{ax}^{2}x_{ff}^{-x}x_{ax}^{x}x_{af}^{x}x_{af}^{2}) + \lambda_{d}(x_{fx}^{2}x_{ax}^{-x}x_{x}^{x}x_{af}^{2}x_{ax}^{2}) \\ \lambda_{x}(x_{ax}^{x}x_{ff}^{-x}x_{ax}^{x}x_{fx}^{x}x_{af}^{2}) + \lambda_{d}(x_{xx}^{2}x_{ax}^{-x}x_{x}^{x}x_{af}^{2}x_{ax}^{2}) \\ \lambda_{x}(x_{xx}^{x}x_{ff}^{-x}x_{x}^{x}x_{x}^{x}x_{ax}^{2}) + \lambda_{d}(x_{xx}^{2}x_{x}^{-x}x_{x}^{x}x_{x}^{2$$

$$- \lambda_{f} \frac{(X_{fx} X_{ax}^{2} - X_{xx} X_{af} X_{ax})}{(X_{xx} X_{ff} X_{ax} - X_{fx}^{2} X_{ax})}$$

Bearing in mind that $X_{xx} X_{af} = X_{ax} X_{fx}$. Define X_d'' as

$$x_{d}^{"} = (x_{d} - \frac{x_{xx}x_{af}^{2} + x_{ax}^{2}x_{ff} - 2x_{fx}x_{af}^{x}x_{af}^{x}}{(x_{xx}x_{ff} - x_{fx}^{2})})$$

and

$$(x_{d}-x_{d}'') = \frac{x_{xx}x_{af}^{2} + x_{ax}^{2}x_{ff} - 2x_{fx}x_{af}x_{ax}}{(x_{xx}x_{ff} - x_{fx}^{2})}$$
$$i_{d}x_{d}'' = \lambda_{x} \{\frac{x_{xx}^{2}x_{ff} - x_{fx}x_{ax}}{\frac{x_{xx}x_{ff}}{x_{xx}x_{ff}}x_{ax} - x_{fx}^{2}x_{ax}}\}$$
$$-\lambda_{f}\{\frac{x_{fx}x_{ax}^{2} - x_{xx}x_{af}x_{ax}}{\frac{x_{xx}x_{ff}}{x_{ax}} - x_{fx}^{2}x_{ax}}\}$$
$$-\lambda_{d}(\frac{-x_{fx}x_{ax}^{2} + x_{xx}x_{ff}x_{ax}}{\frac{x_{xx}x_{ff}}{x_{ax}} - x_{fx}^{2}x_{ax}})$$

Therefore,

$$i_{d}X''_{d} = \lambda_{x} \left(\frac{X_{ax}^{2}X_{ff} - X_{fx}X_{af}X_{ax}}{X_{xx}X_{ff}X_{ax} - X_{fx}^{2}X_{ax}} \right) - \lambda_{d}$$

or

$$\mathbf{i}_{d}\mathbf{X}_{d}^{"} = -\lambda_{d} + \lambda_{x} \frac{\mathbf{X}_{af}}{\mathbf{X}_{fx}}$$
(A-25)

To find i_f substitute it for i_d in equation (A-23).

$$i_{f}X''_{d} (X_{fx}X_{af} - X_{ax}X_{ff}) = \lambda_{d} (X_{fx}X''_{d} + X_{af}X_{ax} - X_{d}X_{fx})$$
$$- X''X_{d}X_{ax}\lambda_{f} + (\frac{X_{ax}}{X_{xx}}\lambda_{x}) (-\lambda_{af}X_{ax} + X_{d}X_{fx})$$

First term:

$$\lambda_{d} \left(X_{fx} X_{d}^{"} + X_{af} X_{ax} - X_{d} X_{fx} \right) =$$

$$\lambda_{d} \left(-X_{fx} \frac{X_{ax}^{2}}{X_{xx}} + X_{af} X_{ax} \right) =$$

$$\lambda_{d} \left(-\frac{X_{af}^{2} X_{xx}}{X_{fx}} + X_{af} X_{ax} \right) = 0$$

Second term:

•

$$\frac{X_{d}^{u} \stackrel{X_{ax}}{X_{d}} \stackrel{\lambda_{f}}{(X_{fx}X_{af} - X_{ax} X_{ff})}}{X_{d}^{u} \stackrel{(X_{ax} \stackrel{X_{xx}}{X_{ax}} - X_{ax} X_{ff})}} \stackrel{(X_{ax} \stackrel{X_{xx}}{X_{ax}} \stackrel{X_{xx}}{X_{xx}}) = \frac{(X_{d} - X_{d}^{u}) \lambda_{f}}{(X_{af}^{x} \stackrel{X_{x}}{x} - X_{ax} \stackrel{X_{ff}}{X_{ff}})} \stackrel{(X_{xx})}{(X_{ax}} = \frac{(X_{d} - X_{d}^{u}) \stackrel{X_{xx}}{X_{xx}} \stackrel{\lambda_{f}}{X_{ax}}}{X_{xx} - X_{ax}^{2} \stackrel{X_{ff}}{X_{ff}}} = \frac{(X_{d} - X_{d}^{u}) \stackrel{X_{xx}}{X_{xx}} \stackrel{\lambda_{f}}{X_{xx}} - X_{ax}^{2} \stackrel{X_{ff}}{X_{ff}}} = \frac{(X_{d} - X_{d}^{u}) \stackrel{X_{xx}}{X_{xx}} \stackrel{\lambda_{f}}{X_{xx}}}{X_{xx}} = \frac{(X_{d} - X_{d}^{u}) \stackrel{X_{xx}}{X_{xx}} \stackrel{\lambda_{f}}{X_{xx}}}{X_{xx}} = \frac{(X_{d} - X_{d}^{u}) \stackrel{X_{xx}}{X_{xx}} \stackrel{\lambda_{f}}{X_{xx}} = \frac{(X_{d} - X_{d}^{u}) \stackrel{X_{xx}}{X_{xx}} \stackrel{\lambda_{f}}{X_{xx}}}{X_{xx}} = \frac{(X_{d} - X_{d}^{u}) \stackrel{X_{xx}}{X_{xx}} \stackrel{\lambda_{f}}{X_{xx}}}{X_{xx}} \stackrel{X_{xx}}{X_{xx}} = \frac{(X_{d} - X_{d}^{u}) \stackrel{\lambda_{f}}{X_{xx}} \stackrel{X_{xx}}{X_{xx}}}{X_{xx}} = \frac{(X_{d} - X_{d}^{u}) \stackrel{\lambda_{f}}{X_{xx}} \stackrel{X_{xx}}{X_{xx}}}{X_{xx}} = \frac{(X_{d} - X_{d}^{u}) \stackrel{\lambda_{f}}{X_{xx}} \stackrel{X_{xx}}{X_{xx}}}{X_{xx}} \stackrel{X_{xx}}{X_{xx}} \stackrel{X_{xx}}{X_{$$

=

$$\frac{X_{ax}}{(X_{xx})} \lambda_{x} \left| \frac{-X_{af} X_{xx} X_{d} + X_{d} " X_{af} X_{xx} + X_{d} X_{fx} X_{ax}}{X_{af} X_{xx} T (X_{fx} X_{af} - X_{ax} X_{ff})} \right| =$$

$$\frac{X_{af} X_{xx}}{(X_{fx} X_{af} - X_{ax} X_{ff})} =$$

$$\frac{X_{af} (X_{fx} X_{af} - X_{ax} X_{ff})}{(X_{fx} X_{af} - X_{ax} X_{ff})} =$$

$$\frac{X_{af} (X_{xx} X_{xx} X_{xx})}{(X_{fx} X_{af} - X_{ax} X_{ff})} =$$

Therefore,

$$i_{f} = \frac{(X_{d} - X_{d}'') \lambda_{f}}{X_{af} (X_{d}' - X_{d}'')} - \frac{X_{af} X_{ax} (\lambda_{x})}{X_{ff} X_{xx} (X_{d}' - X_{d}'')}$$
(A-26)

From equation (A-7) and (A-8)

$$\lambda_{g} = -X_{ag}i_{q} + X_{gg}i_{g}$$
$$\lambda_{q} = X_{q}i_{q} + X_{ag}i_{g}$$

Solving for i

$$X_{q}\lambda_{g} - X_{ag}\lambda_{q} = i_{g} (X_{q}X_{gg} - X_{ag}^{2})$$

$$X_{q}\lambda_{g} - X_{ag}\lambda_{q} = X_{gg}i_{g} (X_{q} - \frac{X_{ag}^{2}}{X_{gg}})$$

$$\frac{X_{q}\lambda_{g}}{X_{gg}} - \frac{X_{ag}^{2}\lambda_{q}}{X_{gg}^{2}X_{ag}} = i_{g} X_{q}^{"}$$

$$\frac{X_{gg}X_{gg}e_{d}^{"}}{X_{gg}^{2}X_{ag}} - \frac{(X_{q} - X_{q}^{"})\lambda_{q}}{X_{ag}} = i_{g} X_{q}^{"}$$

$$i_{g} = \frac{1}{X_{ag}X_{q}^{"}} (e_{d}^{"} - (X_{q} - X_{q}^{"})\lambda_{q}) = i_{g}$$

$$i_{g} = \frac{1}{X_{ag}X_{q}^{"}} (e_{d}^{"} - (X_{q} - X_{q}^{"})\lambda_{q}) \qquad (A-27)$$

Equation (A-2) can be written as

$$\mathbf{i}_{\mathbf{x}} = \frac{1}{\mathbf{X}_{ax}} (\lambda_{d} - \mathbf{X}_{af} \mathbf{i}_{f} + \mathbf{X}_{d} \mathbf{i}_{d})$$

Switch the value of i_{f} from equation (A-25) to the above.

$$i_{x} = \frac{1}{X_{ax}} \left(\lambda_{d} - X_{af} \frac{(X_{d} - X_{d}^{"})}{(X_{d}^{'} - X_{d}^{"})} \lambda_{f} + \frac{X_{af}^{2}}{X_{ff}} \frac{X_{ax}}{X_{xx}} - \frac{\lambda_{x}}{(X_{d}^{'} - X_{d}^{"})} + X_{d}^{i} d \right)$$

$$i_{x} = \frac{1}{X_{ax}} \left(\lambda_{d} - X_{af} \frac{(X_{d}^{-} - X_{d}^{"})}{(X_{d}^{+} - X_{d}^{"})} \lambda_{f} + \frac{X_{ax}}{X_{xx}} \frac{(X_{d}^{-} - X_{d}^{'})\lambda_{x}}{(X_{d}^{'} - X_{d}^{"})} + X_{d}^{i} d \right)$$

$$i_{x} = \left| \frac{\lambda_{d}}{X_{ax}} - \frac{X_{af}}{X_{ax}} \cdot e_{q}^{i} \cdot \frac{X_{ff}}{X_{af}} (\frac{X_{d}^{-} - X_{d}^{"}}{X_{d}^{-} - X_{d}^{"}}) + \frac{(X_{d}^{-} - X_{d}^{'})\lambda_{x}}{X_{xx}} + \frac{X_{d}^{i} d}{X_{x}^{'} - X_{d}^{"}} \right|$$

$$i_{x} = \frac{1}{X_{ax}} \left| \lambda_{d} - \frac{T_{do}^{'}}{R_{f}} (\frac{X_{d}^{-} - X_{d}^{"}}{X_{d}^{'} - X_{d}^{"}}) e_{q}^{i} + \frac{(X_{d}^{-} - X_{d}^{'})}{(X_{d}^{'} - X_{d}^{"})} e_{q}^{"} + X_{d}^{i} d \right| \qquad (A-28)$$

We could also define the following as: (59)

$$e_{q_1} \stackrel{\alpha}{=} i_f \stackrel{a}{\to} e_{q_1} \stackrel{af^if}{=} or e_{q_1} \stackrel{af}{=} E_I$$
 (A-29)

$$e_{q_2} \stackrel{\alpha}{\xrightarrow{}} i_x \rightarrow e_{q_2} \stackrel{axi_x}{\xrightarrow{}} x$$
 (A-30)

$$e_{d} \stackrel{\alpha-i}{g} \stackrel{\gamma}{d} e_{d} = X_{agg}^{i}$$
 (A-31)

$$e_{q}^{\prime\prime} \propto \lambda_{x} \Rightarrow e_{q}^{\prime\prime} = \frac{X_{ax}}{X_{xx}} \lambda_{x}$$
 (A-32)

$$e'_{q} \propto \lambda_{f} \rightarrow e'_{q} = \frac{\chi_{af}}{\chi_{ff}} \lambda_{f}$$
 (A-33)

$$e_d^{"} \propto \lambda_g \Rightarrow e_d^{"} = \frac{X_g}{X_g} \lambda_g$$
 (A-34)

There is now a need to eliminate the flux linkages from the voltage representation. Refer back to equation (A-8) and switch λ_q in equation (A-4).

$$V_{d} = \frac{d\lambda_{d}}{\omega_{o}dt} - \frac{\omega_{r}}{\omega_{o}} (-X_{q}i_{q} + X_{ag}i_{g}) - R_{a}i_{d}$$

$$i_{g} = -e_{d}/X_{ag}$$

$$V_{d} = \frac{d\lambda_{d}}{\omega_{o}dt} - \frac{\omega_{r}}{\omega_{o}} (-X_{q}i_{q} - e_{d}) - R_{a}i_{d}$$
(A-35)

From equation (A-2)

$$\lambda_{d} = -X_{d}i_{d} + X_{af}i_{f} + X_{ax}i_{x}$$

and

$$i_{x} = e_{q_{2}} / x_{ax}$$
$$i_{f} = e_{q_{1}} / x_{af}$$

Now switch λ_d in equation (A-9).

$$V_{q} = \frac{d\lambda_{q}}{\omega_{o}dt} + \frac{\omega_{r}}{\omega_{o}} \left(-X_{d}i_{d} + e_{q} + e_{q}\right) - ri_{q}$$
(A-36)

Equation (A-24) can be written as a function of (i_d, e_q, e_q) after eliminating λ_{f} .

$$e_{q}' = \frac{X_{af}}{X_{ff}} \lambda_{f}$$

$$e_{q}' = \frac{X_{af}}{X_{ff}} \left| -X_{af}' i_{d} + \frac{X_{ff}}{X_{af}} e_{q_{1}} + \frac{X_{fx}}{X_{ax}} e_{q_{2}} \right|$$

$$e_{q}' = \left| \frac{-X_{af}^{2}}{X_{ff}} i_{d} + e_{q_{1}} + \frac{X_{af}' X_{fx}}{X_{ax}' K_{ff}} e_{q_{2}} \right|$$

$$e_{q}' = -(X_{d} - X_{d}'') i_{d} + e_{q_{1}} + \frac{X_{af}' X_{xx}}{X_{ax}' K_{ff}} e_{q_{2}}$$

$$e_{q}' = -(X_{d} - X_{d}'') i_{d} + e_{q_{1}} + \frac{X_{af}^{2}}{X_{ax}^{2}} \frac{X_{xx}}{X_{ff}} e_{q_{2}}$$

$$e_{q}' = -(X_{d} - X_{d}'') i_{d} + e_{q_{1}} + (\frac{X_{d} - X_{d}'}{X_{d} - X_{d}''}) e_{q_{2}}$$
(A-37)

This is equation (2-14).

Equation (A-23) can be written as a function of (i_d, e_{q1}, e_{q2}) after eliminating λ_x .

$$e_{q}^{"} = \frac{X_{ax}}{X_{xx}} \left[-X_{ax}i_{d} + X_{xx}i_{x} + X_{fx}i_{f} \right]$$

$$e_{q}^{"} = \frac{X_{ax}}{X_{xx}} \left[-X_{ax}i_{d} + \frac{X_{xx}}{X_{ax}}e_{q_{2}} + \frac{X_{fx}}{X_{af}}e_{q_{1}} \right]$$

$$e_{q}^{"} = \frac{-X_{ax}^{2}}{X_{xx}}i_{d} + e_{q_{2}} + \frac{X_{ax}X_{fx}}{X_{xx}X_{af}}e_{q_{1}}$$

$$e_{q}^{"} = \frac{-X_{xx}^{2}}{X_{xx}}i_{d} + e_{q_{2}} + e_{q_{1}}$$

$$e_{q}^{"} = -(X_{d} - X_{d}^{"})i_{d} + e_{q_{2}} + e_{q_{1}}$$
(A-38)

This is equation (2-13).

Equation (A-25) can be written as a function of (i $_q, e_d$) after eliminating $\lambda_g.$

$$e''_{d} = X_{ag} \lambda_{g} X_{gg}$$

$$e''_{d} = \frac{X_{ag}}{X_{gg}} [-X_{ag} i_{q} + X_{gg} i_{g}]$$

$$i_{g} = -e_{d} X_{ag}$$

$$e_{d}^{"} = \frac{X_{ag}}{X_{gg}} \left[-X_{ag} i_{q} + X_{gg} \left(-\frac{e_{d}}{X_{ag}} \right) \right]$$
$$e_{d}^{"} = \frac{-X_{ag}^{2} i_{q}}{X_{gg}} - e_{d}$$

or

$$e_d'' = -(X_q - X_q'') i_q - e_d$$
 (A-39)

This is equation (2-15).

THE FIELD FLUX LINKAGE RATE OF CHANGE

Apply Kirchoff's voltage law to the field circuit.

$$\mathbf{E}_{\mathbf{fd}}^{\prime} = \mathbf{R}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}}^{\prime} + \frac{d\lambda_{\mathbf{f}}}{d\mathbf{t}}$$
(A-40)

 \mathbf{E}_{fd}^{\prime} is an exciter armature e-m-f

$$e_{q_{1}} = X_{af} i_{f}$$
 (A-41)

Also

$$\frac{X_{ff}}{R_{f}} = T_{do}^{*}$$
(A-42)

Therefore,

$$\frac{X_{af}^{\lambda}f}{R_{f}} = \frac{X_{ff}}{R_{f}} \cdot \frac{X_{af}}{X_{ff}} \quad \lambda_{f} = T_{do}' e_{q}'$$

Multiplying equation (A-40) by $\frac{X_{af}}{R_{f}}$ yields

$$\frac{X_{af}}{R_{f}} E_{fd}' = R_{f} \frac{X_{af}}{R_{f}} i_{f} + \frac{X_{af}}{R_{f}} \frac{d\lambda_{f}}{dt}$$
$$E_{fd} = X_{af} i_{f} + \frac{X_{ff}}{R_{f}} \cdot \frac{X_{af}}{X_{ff}} \frac{d\lambda_{f}}{dt}$$
(A-43)

$$E_{fd} = \frac{X_{af}}{R_f} E'_{fd}$$

 E_{fd} named the open-circuit armature voltage which would be produced by voltage E'_{fd} in a steady state. Equation (A-43) can be written as

$$E_{fd} = e_{q_1} + T'_{do} \frac{de'}{dt}$$

or

$$\frac{de'_{q}}{dt} = \frac{1}{T'_{do}} \{ E_{fd} - e_{q_1} \}$$
(A-44)

This is equation (2-16).

The above equation represents the rate of change of the flux linkage of the e'_q component. The rate of change of e''_d and e''_q is defined by the following.

$$\frac{de''_{q}}{dt} = -\frac{e_{q2}}{T''_{do}} \frac{X'_{d} - X''_{d}}{(\frac{X}{X} - \frac{X''_{d}}{d})}$$
(A-45)

This is equation (2-17).

$$\frac{d\mathbf{e}_{d}^{"}}{d\mathbf{t}} = -\mathbf{e}_{d}^{T} \mathbf{q}_{q0}^{"} \tag{A-46}$$

This is equation (2-18).

_

The mechanical motion equation is

$$\frac{d^2\delta}{dt} = \frac{180f}{H} \left(T_m - T_e - K \frac{d\delta}{dt}\right)$$
(A-47)

APPENDIX B PHYSICAL AND SIMULATION MODEL OF EXCITATION SYSTEM

B-1 Rototrol Excitation System

Rototrols for excitation systems are available having single stage or two stage amplification. The principle of the operation of both types depends on the energy available in the control circuit and the total power output required. The Rototrol is similar in design to the d-c machine. The two stage Rototrol can be used as either a pilot exciter or a main exciter. Either the one or two stage of the amplification is supplied in the four-pole machine, hence, the Rototrol can be directly connected to the shaft of the generator. Figure (B-1) is the schematic design of the excitation system with the Rototrol pilot exciter and the single-field main exciter.

Variable voltage is supplied to the main exciter field by the Rototrol pilot exciter which is connected directly to the field. It is under the control of the voltage regulator automatic control unit or the manual control unit.

The manual control unit consists of a bridge circuit excited by the voltage drop across the main exciter field. By the way, the Rototrol control field is differentially connected in a the bridge circuit. Under a normal deviation of the main exciter shunt field voltage from its hand set value causes an unbalance in the bridge circuit and current flows in the Rototrol control field to correct the voltage. The manual control unit, therefore, regulates the main exciter shunt field voltage

168

FIGURE B-1 SCHEMATIC DIAGRAM OF EXCITATION SYSTEM WITH ROTOTROL PILOT EXCITER AND SINGLE FIELD MAIN EXCITER

to maintain its constant at any value set by the operator without further attention on his part. The self-energized series field of the Rototrol provides all the excitation requirement of the pilot exciter when the a-c generator is operating with the regulated voltage output. The Rototrol pilot exciter supplies all the excitation requirements of the main exciter. In this respect, this scheme is identical with the exciter reheostatic system.^(19,20,21)

B-2 Static Voltage Regulator for Exciter

Figure (B-2) is a schematic diagram showing the Rototrol pilot exciter, an exciter, and an a-c generator. A static type of circuit for

the purpose of regulating the a-c generator uses Rototrols for the amplification. As seen the resistor path I_R and a saturation reactor path I_X , with the current in each path rectified, is fed into the control fields of the Rototrol. The Rototrol control fields are connected to be equal and opposite magnetically when the a-c generator voltage is normal at the regulated value. Under this condition the Rototrol output voltage is maintained at the required value by its self energizing shunt and series fields.⁽¹⁸⁾ If the alternating voltage does not have a normal deviation, the control fields adjust the Rototrol as needed to restore normal voltage.

B-3 Self-Excited Exciter and Direct-Acting Rheostatic Type of Voltage Regulator

Under a deviation that is not normal the a-c voltage will be adjusted by changing the resistance in the field exciter by the voltage regulator. The voltage sensitivity element of the regulator acts directly on the reheostat to vary its resistor.⁽³⁾ The schematic diagram of the self-exciter and direct-acting rheostatic type of voltage regulator is shown in figure (B-3).

FIGURE B-3 SCHEMATIC DIAGRAM OF SELF-EXCITER EXCITER AND DIRECT-ACTING RHEOSTATIC TYPE OF VOLTAGE REGULATOR

Other types of excitation systems such as a rotating amplifier d-c machine are designed as a power amplifier such as Amplidyne (General Electric), Regulex (Allis-Chalmers Manufacturing Co.), and Rototorl (Westinghouse Electric).

From the beginning of this appendix we have seen the physical lay-. out of some of the kinds of excitation systems. Most of the above physical models of excitation systems have been simulated by mathematical models shown in figure (B-4, B-5, B-6, B-7, and B-10).

B-4 Mathematical Models of the Excitation Systems; Classified in Four Models by IEEE⁽⁸⁾

The type I model continuously acts as the regulator and the exciter. The excitation system designed in type I is shown in figure (B-4). The type I excitation system is representative of the majority of modern systems which are now in service. Continuously acting systems with rotating exciters are included. Example of these are Regulex, Amplidyne, Alterrex, Rototrol and TRA regulator.

Figure (B-4) shows the transfer function of each unit of the system which is a satisfactory representation for computer studies. Machine terminal V_T , is the input applied to the regulator input filtering. Its time constant T_R is usually very small. A comparative of the regulator reference with the output of the regulator filter output is illustrated.

The voltage error inputs to the regulator amplifier by the first summing point.

The second summing point combines the voltage error input with the excitation major damping loop signal. K_A and T_A are the gain and time constant of the regulator transfer function. The hard limiter is suggested to control the input to the exciter. An upper limit will prevent over heating of the field winding. The lower limit is used some times on generators to be sure that there is no loss of synchronism due to insufficient excitation. Therefore, a lower limit might be functioned as of the light load on the machine.⁽²²⁾

The next summing point sees the saturation signal, $S_E = f(E_{fd})$, as well as the output from the hard limiter. This results in the input to the exciter. K_E and T_E are the gain and time constants of the exciter. Note that K_E is negative for a self excited shunt field. K_f and T_f are gain and time constant of the damping loop of the system.

B-5 Type II Excitation System-Rotating Rectifier System

The type II excitation system is similar to type I except that the major damping loop input is supplied from the regulator output as shown in figure (B-5).

B-6 Type III Excitation System--Static with Terminal Potential and

Current Supplies

Excitation system, type III, is shown in figure (B-6). It represents the static systems which cannot be represented by previous types. This is because the generator terminal current is used with potential as the excitation source.

173

FIGURE B-5 TYPE II BLOCK DIAGRAM OF EXCITATION SYSTEM

FIGURE B-6 TYPE III BLOCK DIAGRAM OF EXCITATION SYSTEM

An example of type III is the General Electric SCPT. The transfer function blocks are similar to type I except there is a signal added by the signal representing the self-excitation from the generator terminals. K_p and K_I are coefficient factors of the shunt excitation supply proportional to V_T and I_t . The multiplier accounts for the variation of self-excitation with change in the angular relation of field current I_{fd} and self-excitation voltage V_{thev} . The V_{Bmax} limiter causes the excitation system output to be zero if A > 1 which is when the field current exceeds the excitation output current, ⁽⁸⁾ where $A = (\frac{.78 \ I_{fd}}{V_{Then}})$.

B-7 Type IV Excitation System--Non-Continuously Acting

The type IV block diagram is for rheostatic systems with contacts for fast response, such as the BJ-30 by Westinghouse and the GFA4 by General Electric. If the deviation in the generator terminal voltage from the desired value exceeds the range \pm KV (typically .05 per unit), the output of the integrated is ignored and either $V_{\rm Rmax}$ $V_{\rm Rmin}$ is applied. Contacts to the exciter input reduces the generator voltage error quickly.

FIGURE B-7 TYPE IV BLOCK DIAGRAM OF EXCITATION SYSTEM--NON-CONTINUOUSLY ACTING

In block diagram, figure (B-7), the block marked by AUCT signifies an autioneering circuit which reflects the output of the integrator or the contact voltage $V_{\rm Rmax}$ or $V_{\rm Rmin}$.^(8, 10)

ţ

APPENDIX C COMPUTER PROGRAM SIMULATION OUTPUT LISTING OF TYPES OF EXCITATION SYSTEMS

```
... AEH2104 1.3 ...
TITLE TYPE I EXCITATION SYSTEM
     FIXED ISET
     PIXED ICNT
     FIRED IGUN
ENETEAL
AUX=0.0.5F00+0.0
     15E'T=0
      TISTE/KE
     TEMAX=.07
     TENINED.0
     THOELTHETCHAX-TEMINJ/40.0
      TEMIN=.01
     TENAX=5.
     TEDEL TE (TEMAX-TEMIN)/43.0
     KENIN=.01
     KEMAX=5.
     KEDELT# (KEMAX-KENIN)/40.0
     KAN4×=150.
     KAPIN=1.0
     KADELT= (KAHAX-KAHIN) /4J.0
     TEMIN=0.01
     TFMAX=5.
TFDELT=(TFMAX-TFMIN)/40.0
      TANIN=0.0
      TAVAX3.4
     TADEL T= { TANAX-TANEN3 /40+0
     KFMAX=.3
      KEP1N=.003
      KECELT+ (KENAX-KENINJ/40.0
      NOSORT
      IF ( (0.5+KA) .LE. VENAX ) GO TO 1
      KALIHSVANAX
      GO TO 3
    1 1F ( (0.5+KA) .GE. VRNIN ) GO TO 2
      KALTHEVENIN
      60 17 3
    2 KALIM#0.5+KA
    3 CONTINUE
     EFD55=(1.0/KE+KALIH)/(1.0+SE/KE)
EFD1TC=(1.0-EXP(-1.0))+EFD53
SORT
DYNAMIC
      VT=1.0-0.5+STEP(0.0)
PROCEDURE VISHORS(TR.VT)
   EF (TF) 10.20.10
10 VINT#FEALPL(1.0.TR.VT)
     GO TO 30
   20 VINT=VT
30 V1=VINT
ENOPEO
      W2=VECF+AUX-V1
      ¥3=¥2-¥7
PROCEDURE VANNESETA.V3.KA3
   IF (TA) 43.41.40
40 VAPRILCCALPL(0.0.TA.V3)
     60 10 42
   42 VALKAAVAPRI
ENOPEO
      45-L1=11(4-M(N.484AX.44)
      VA-SE -EFD
      ¥6=¥3-VA
      EFOPUISERAL PL (FFDQ.TI.V6)
      EFD=1.0/KE+EFDPRE
      200T+LEFO-23/TF
```

```
2=14164610.0.2001)
                   ¥7+KF +/ 0'31
                 NOSOFT
                   17 6 FEFP .NE. 1 5 GR TO 100
                   IF(1577-11 300.100.100
              300 1F (1+1-FPOLTC) 100+233+200
              200 TC+T1+C
                   1567+1
              100 CONTINUE
           SORT
           TEPHINAL
                   TINES DELT-0.001. FINTIM-5.0
                   METHOD PRSFA
                   60 TG (1000-1010-1020-1030-1035-1040-10501-1808
             1000 WRITE (3.51) TP.TC
           GO TO 1060
1010 WPITE (3.51) TA.TC
GO TO 1060
1020 WPITC (3.51) TF.TC
GO TO 1060
             1030 WRITE (3.51) KA.TC
GO TC 1060
            1035 #RITE (3.51) KF.TC
GD TG 1060
             1040 #417E (3.51) TE.TC
GO TO 1060
1050 #4175 (3.51) KE.TC
             1050 1SET=0
                   IF (1CHT-41) 500.510.510
              500 ICNT=ICNT+1
                   GO TO (2000,2010,2020,2030,2035,2040,2050) .IRUN
             2000 TRETRATEDELT
             GO TO 2060
2010 TATTATTACELT
            50 10 2060
2020 TF=TF+TFOELT
                   GO TC 2360
             2030 KATKA+KADELT
                   GO TO 2060
             2035 KF=KF+KFOELT
             GO TO 2060
2040 TE=TE+TEDELT
                   GO TO 2060
             2050 KEEKE+KEDELT
             2060 CALL REFUN
              SIG CONTINUE
               51 FORMAT (2(E20.8))
                   END
                   PARAMETER TR#0.03.TA=0.06.IRUN#2.ICNT#1
                   END
                   PASAMETER TARD.13.TF=0.35.IRUNE3.ICNT#1
                   END
                   PARAMETER TE=.01.KA=1.J .IQUN=4.ICNT=1
                   ËND
                   PARAVETER KA-SO.1 .TE-J.01.IPUN=S.ICNT=1
                   END
                   PARAVETER KF=+25+TE++25 +IRUN=6+ICNT=1
                   TINCE DELT=0.001. FINTIH=20.0
                   END
                   PARAMETER TERO.S.KER-.08 .IRUNET.ICHTEL
                   TIMEF DELT=0.001. FINTIM=25.
                    END
                   STOP
CUTPUT VARIABLE SEQUENCE
ESET TI KENELT KAHIN
                  TAMIN TANAX TAOLLT TANIN TANAX TEDELT KEMIN KENAX
Ramax Radelt Tamin tamax tadelt tamin tanax tadelt
REMEN REMAX

        KFCFLT
        220331
        KALIM
        KALIM
        EF0.55
        EF017C
        VT

        VI
        EFD
        2007
        V7
        V2
        V3
        220007
        V4P91

ZZODDA VINT
                  ٧I
                           E#D
                                                                220012 TC
                                                                                 ISET
                                    220007 CFUPAL 2
                           V6
TR
        ¥4
                  V5
ZZODIJ ISET
                                                                         TE
                  ICNT
                                    TA.
                                                                                  ×ε
                                             TE
                                                                KF
```

KA

INPUTS PAPANS INTEUS + NEM BLKS FORTEAN DATA COS 92114000 1714000 4+ 0= 4(300) 100(000) 21

ENDJOB

VA.

· · 、 Ŋ OUTPUTS 64(500)

PORTPAN	IN & LEVEL	21	MAIN	DATE -	77279	07/15/59	PAGE 0001
0001		DIMENSION	T#(43).TA(43).TF(43).	KA[43].TE[4]].	KE (41) . TC	26432.	
	1	1 TC2(43).	TC3(43).TC4(43).TC5(4	11.TC6(41).KF(473.70764	3)	
0002		INTEGER LA	UL(5)/*STST***EN T***	INE ***CONS**	TANT*/		
0003		#EAD \$3.50); {TR(1;.TC1{1;.t=1.4	1)			
0034		PEAD (3.50)) {TACI}.TC2(1).T=1+4	1}			
0075		RCAD \$3.50)} {TF{1}}+TCJ{1}+l=1+4	17			
0000		AEAD 13.50)} {KA[]].TC4[[].[=].4	1)			
0337		READ (J.SC)) {TF[]}.IC5[]).[=1.4	1)			
0308		READ CANSO)) (KT(1).TCU(1).1=1.4	1)			
9039		#540 43.50)} {KF{2}}.TC7{}}}.I=1.4	1)			
0310		00 10 1=42	2.43				
0011	10	#C 4D (5+ 51)) TRESS.TAESS.TFEES.KA	(1).KF(1)			
0012	• -	00 20 1442	P+43				
0313	20	AF 40 (5-51)	TCILI1.TC2(1).TC3(1)	.TCALI).TCTLI)		
0014		WAITE CO.S	500)				
0015	500	FORMAT(1	·////AIX. SENSITIVITY	ANALYSIS OF A	TYPE 1 E	XCITATION.	
		1 · SYSTEN	./4 TA. AS TIME CONSTA	NT TO IS VACIE	D FROM O.	0 10 0.05".	
		2 //472. 161	PIT.AX. TAT.SX. SYSTEM	TINE CONSTANT	**		
0.216		#417F 66.5	2) (1.TH(1).TCILL).1.	1.41)	-		
0017		WRITE LA.	510)	•••••			
0018	510	FOSVATENI	.////411. SENSITEVITY	ANALYSIS OF A	TYPE 1 E	XCITATION".	
			ATTATAS TINE CONSTA	ST TA IS VARIE	D FROM O.	0 10 .40 .	
		9 //47% IPL	IN . AX TA	TINE CONSTANT			
0.31.0	•		2) /1. TA(1). TC2(1).1=	1-413	•		
0010		METTE IA.	(27)				
0020		TOPMAT/IN) - / / / / / / / /	ANALYSTS OF A	-	YCITATIONS.	
0451	250		· · · · · · · · · · · · · · · · · · ·	NT TE IC VACTO	CO 6004 .0		
		1 - 313.5.** 1 - 441.4C	M	TTNE CONSTANT		1 15 5100 1	
	•		14 · 12 × 1 · 17 · 13× 1 · 31 3 · C *	1			
0022							
0023			1397 . <i> </i>				
0044	530		· /////4126 CAIN PA 16	MARCIJIJ UP -	TO 160	-01-	
				11 NE CONSTANT			
	•	C 774 / A 1 ***	M*************************************	1142 (043)44	-,		
0025	•		267 (11KM(170)(41171)=				
9920			2278 - ////////////////////////////////////				
0027	. 333					ACTINITUR'S	
		8 · 813114	**************************************	TINE FROM TAN		- •	
				1.411			
302P		WALLE (01)	367 (1985 (1783 67) 67) -	14417		:	
0024		84112 1013					
0030	240	-0		A 40 CICIAPPA			
	·	1 3131La.			0 I NOM 00	1 10 3.00 .	
	ł	2 //4/26*K	JN* • BX• • IE • • 3X• • 575 E	ITHE CONSIANS	•)		
0071		WRITE LO.	52) (I.TE(I).TC5(I).I=	1.417			
032		MAILE (0.5	5501				
0933	550	FORMAT [1	· ·////412. · SENSITIVITY	ANALYSIS OF A	TYPE I E	ACITATION".	
	:	1 · SYSTEN	AQX. AS JATH KE IS	ANDIED ANON .C	N TO 15.9	••	
	1	2 //472 61	M. • • ¥ • • KE • • 5X • • 5Y 5T EN	TIME CONSTANS	• >		
0034		WRITE IC.	52) [I.KE(I).TC6(I).I=	1.41)			
0075		CALL PRAL	DT ET = +TC1 + 43+ 1 + 43+ 1 + LA	BLI		•	
-1036		WRETE (6.10	2013				
J0 37	1001	FCONATLIX.	/IX."SENSITEVITY ANAL	YSIS OF A TYPE	I EXCETA	TECN .	

180

.

•

0038 0039 0040 0041 0042	1 •SYSTEM PL 2 /IX.•OF TH 3 •0.08•1 CALL PARLOT #EITE(6.100 1002 CORMAT(1X./ 1 •SYSTEM PL 2 /IX.•OF TH 3 • .40•1 CALL PARLOT #RITE(6.100 1003 FORMAT(1X./ 1 •SYSTEM PL	 OTTING THE EFFECT ON E SYSTEM WHEN TIME C (TA.TC2.43.1.43.1.LA 2) 1X.*SENSITIVITY AWAL OTTING THE EFFECT ON E SYSTEM WHEN TIME C (TF.TC3.43.1.43.1.LA 3)	THE APPROXIMATE TIME CONSTANT TR IS VARIED FRO BLD VSIS OF A TYPE 1 SECITA THE APPROXIMATE TIME CO CNSTANT TA IS VARIED FRO BLD	0NSTANT". CM 0.0 TO ". TION ". CNSTANT". CM 0.0 TO ".	
0038 0039 0040 0041 0042	2 /1X.+0F TH 3 +0.0R+1 CALL PAQLDT WE17E (6.100 1002 FORMAT(1X./ 1 *SYSTEM PL 2 /1X.+CF TH 3 * .40*1 CALL PRPLOT WRITE (6.100 1003 FORMAT(1X./ 1 *SYSTFM PL	E SYSTEM WHEN TIME C (TA.TC2.43.1.43.1.LA 2) 1X.*SENSITIVITY ANAL OTTING THE EFFECT ON E SYSTEM WHEN TIME C (TF.TC3.43.1.43.1.LA 3)	THE PERGASSING FREE FREE BL3 YSIS OF A TYPE 1 EXCITA THE APPROXIMATE TIME CO CNSTANT TA IS VARIED FRE BL3	TION *. CNSTANT*. DM 0.0 TO *.	
0338 0039 0040 0041 0042	3 *0.08*) CALL PARD DT WEITE (6.100 1002 FORMAT(1X./ 1 *SYSTEM PL 2 /1X.*CF TH 3 * .40*) CALL PARD DT WRITE (6.100 1003 FORMAT(1X./ 1 *SYSTFM PL	(TA.TC2.43.1.43.1.LA 2) 1x.*SENSIT[VITY ANAL 0TTING THE EFFECT ON E SYSTEM WHEN TIME C (TF.TC3.43.1.43.1.LA 3)	BLJ VSIS GF A TYPE 1 GRCITA The Approximate time c GNSTANT TA IS VARIED FR BLJ	TION *. CNSTANT*. DR 0.0 TO *.	
0338 0039 0040 0041 0042	CALL PRIL DT #FITE (6.100 1002 FORMAT(1X./ 3 *SYSTEM PL 2 /1X.*(FF TH 3 * .40*) CALL PROL DT #RITE (6.100 1003 FORMAT(1X./ 1 *SYSTFM PL	(TA.TC2.43.1.43.1.LA 2) 1x.*SENSIT[VITY ANAL OTTING THE EFFECT ON E SYSTEM WHEN TIME C (TF.TC3.43.1.43.1.LA 3)	BL) VSIS GF A TYPE 1 EXCITA The Appgolimate time c CNSTANT TA 15 VARIED FR BL)	TION *. CNSTANT*. DM 0.0 TO *.	
0039 0040 0041 0042	#EITE (6.100 1002 CDEWAT(11./ 1 *SYSTEM PL 2 /11.*(*F TH 3 * .40*) CALL PROLOT WRITE (6.100 1003 FOWAT(11./ 1 *SYSTFW PL	2) 1X.*SENSITIVITY AMAL DTIING THE EFFECT ON E SYSTEM WHEN TIME C (TF.TC3.43.1.43.1.LA 3)	YSIS OF A TYPE 1 SECITA The Appgoximate time co Gestant ta is varied fro BLD	TION *. CNSTANT*. DM 0.0 TO *.	
0040 0041 0042	1002 FORMAT(1X./ 1 *SYSTEM PL 2 /1X.*CF TH 3 * 40*1 CALL PRPLOT WRITE(6.100 1003 FORMAT(1X./ 1 *SYSTFM PL	1X. *SENSITIVITY ANAL DITING THE EFFECT ON E SYSTEM WHEN TIME C (TF.TC3.*3.1.43.1.LA 3)	YSIS OF A TYPE 1 EXCITA The Approximate time co GNSTANT TA 15 VARIED FRO BLJ	TION *. CNSTANT*. DM 0.0 TO *.	
0041 9042	1 •SYSTEM PL 2 /1x.•CF TH 3 • .40-1 Call PrpLot WRITE(6.100 1003 FORMAT(1x./ 1 •SYSTFM PL	011144 TH2 EFFECT ON E SYSTEM WHEN TIME C (TF.TC3.43.1.43.1.LA 3)	THE APPROXIMATE TIME CO CNSTANT TA IS VARIED FRO BLJ	CNSTANT .	
0041	2 /1X.*CF TH 3 * .40*) Call Prplot Write16.100 1003 format(1x./ 1 *Systfw Pl	E SYSTEM WHEN TIME C (TF.TC3.43.1.43.1.LA 3) 12.455651114114 ANAL	CNSTANT TA IS VARIED FRO	NM 0.0 TO *.	
0041 0042	3 • .40)) Call PAPLOT WRITE(6.100 1033 FOPMAT(1X./ 1 • SYSTFM PL	(TF .T C3.43.1.43.1.LA 3)	6.)		
0041 0042	CALL PRPLOT WRITE(6.100 1073 FOrmat(1x./ 1 •Systfw PL	(TF.1C3.43.1.43.1.LA 3)	6L)		
0042	#RITE(6.100 1003 FORMAT(1x./ 1 *Systew PL	3)		•	
	1003 FORMATLIX./ 1 *System pl	TH. ACCMETTINTY AMAI		1	
0343	1 *SYSTEM PL	TAT-SCASTILATIN WAYE	YSLS OF A TYPE 1 EXCLTA	TION **	
		OTTING THE FFFECT ON	THE APPROXIPATE TIME C	CHSTANT .	
	2 /1x+ "OF TH	E SYSTEM WHEN TIME C	ONSTANT TE 25 VARIED FR	CM +01 TO *+	
• • • •	3 *5+0 *1			•	
	CALL PPPLET	[KA .TC4 .43.1 .43.1 .CA			
	WHITELO.IJJ				
~~~		IX SLASITIVITY ANAL	TSIS OF A TYPE I EXCITA		
	1 - 37312 H - C	F EVELON THE SPREET GR	A 16 MADIED EDON 1.00 T	C 150 013	
0047		L 313124 BHC 4 0414 4	N 13 VANIED FROM 1999 D	0 100.0.1	
DOAR	********	71			
0 3 4 9	1007 FORMATE 1X./	12 - SENSITIVITY ANAL	YSTS OF A TYPE I EXCITA	TTON	
• • •	I SYSTEN PL	CITING THE EFFECT ON	THE APPROXIMATE TIVE C	ONSTANT .	
	2 /1X. "GF TH	E SYSTEM WHEN GAIN K	F IS VARIED FROM .003 T	C +3 +)	
0050	CALL PPPLOT	(TF.TC5.41.1.41.1.LA	e_)		
0051	#517E16.100	5)			
0052	1035 FORMAT(11.	1X. SENSITIVITY ANAL	YSIS OF A TYPE I EXCITA	TICN *.	
	· 1 *\$YSTE* PL	OTTING THE EFFECT DN	THE APPROXIMATE TIME C	CNSTANT .	
	2 /1x.*OF TH	E SYSTEM WHEN TIME C	UNSTANT TE IS VAPIED FR	04 .01 TD *.	
	3 *5.00*1				
0053	CALL PEPLOT	{xE.JC6.41.1.41.1.LA	tl)		
0054	#PITE(6.100	5)			
0055	1006 FORMATEIX./	14++SENSITIVITY ANAL	YSIS OF A TYPE 1 EXCITA	TION .	
	1 SYSTEM PL	OTTING THE EFFECT ON	THE APPROXIMATE TIME C	CHSTANT .	
	2 /1x. OF TH	E SYSTEN WHEN GAIN K	E IS VARIED FROM .01 TC	15.01)	
9938	50 FDRMAT (26F	20.8}}			
0057	- 51 FURMAT(6(F)	0.2)]			
0000	52 FUHMAT (1X.	43X + I J + F 1 4 + 5 + 3X + F 1 0 +	D]		
0039 0040	3100	•			

•

.

-

.

```
*** VERSION 1.3 ***
```

```
TITLE TYPE 2 EXCITATION SYSTEM. ROTATING RECTIFIER SYSTEM
TITLE WITH STATIC VOLTAGE REGULATOR
        FIXED ISET
        FIXED ICNT
FIXED IPUN
INITIAL
PARAMETER TR=0.0.KA=40..TA=.02.KE=1.0.KF=.03.TE=.73....
        AUX=0.0.EPDC=0
         ISET=0
         TF1+TF
         TF2+TF
T1=TE/KE
         KEFD=1.0/KE
         TRMAX.....
         TAMIN=0.0
         TROELT=(TRMAX-TRMIN)/40.0
         TEMIN=-1
         12#AX=3.5
         TEDELTALTENAX-TEMINJ/40.0 -
         KEMAKH3.5
         KEPIN=.1
         KEDEL T+ (KENAX-KENIN)/40.0
         KA#AX-100.0
         KAMINA1.0
         KADEL TE (KAMAX-KAMINJ/40.0
         TFMINEG.GI
         TF#43+10.0
TFCELT=[TFMAX-TFM1K3/40.0
         TANIN=0.0
         TANAX+1.0
TADEL T={TANAX-TAMIN}/40.0
NOSORT
         IF & CO.STKA) LE. VAMAX J GO TO I
         KALTPUVAPAX
         60 10 3
      1 IF ( (0.5+KA) .GE. VRMIN ) GO TO 2
         KALINSVANIN
         6C TO 3
      2 KALIM-0.5+KA
      3 CONTINUE
     EFDSS+(1.0/KE+KAL1H)/(1.0+SE/KE)
* EFD17C+(1.0-EXP(-1.0))+EFDSS
SORT
DYNAMIC

        YT41.0-0.5+STEP(0.0)

        PROCEDURE

        Y1+0-0.5+STEP(0.0)

        PROCEDURE

        Y1+0-0.5+STEP(0.0)

        IF

        IF

        IF

        IF

        IF

        IF

        IF

        IF

        60 10 30
    20 VINT+VT
30 VI-VINT
ENDPRO
        ¥2=¥#EF+AUX-¥1
         ¥3=¥2-¥7
PROCEDUSE 44+HOFS(TA.43+KA)
IF (TA) 40-41-40
40 44641=5EALPL(0-0-7A+43)
    GO TO 42
41 VAPRI-V3
43 VARAAVAINAT
```

182

```
42 V4+KA+Y4PR1
ENOPRO
        VSAL EHET (VRHIN. VRHAX. VA)
         V8-SE-EFD
         ¥6=¥5-¥8
        EFD#1=8EALPL(EF00+T1+V6)
EFD=1=0/#C+EFDP#1
V9=REALPL(0=0+TF2+V5)
         2007=(v9-2)/1F1
        2+14TGFL (0.0.200T)
        ¥7+8F+2001
     NOSOAT
  HUSONT

10 ( KEEP +NE+ 1 3 GD TO 100

10 (1527-1) 300+100+300

300 10 (EPD+EPD1TC) 100+200+200

200 TC+T1HE
        ISET=1
   100 CONTINUE
SOAT
TERMINAL
        TIMER DELT=0.001. FINTIN=1.0
 TIMER DELT-0.001. FINTIM-1.0
METHOD RKSFX
GD TO (1000.1010.1020.1030.1040.1050).1RUN
1000 WRITE (3.51) TR.TC
GD TO 1060
1010 WRITE (3.51) TA.TC
GD TO 1060
1020 WRITE (3.51) TF.TC
GD TO 1060
 1030 #RITE (3.51) KA.TC
 GO TO 1060
1040 WRITE (3.51) TE.TC
GO TO 1060
1050 WFITE (3.51) KE.TC
 1060 1SCT+0
         IF (ICNT-41) 500.510.510
   500 1CNT+1CNT+1
 GO TO (2000.2010.2020.2030.2040.2050). IRUN
2000 TR-TR-TROELT
 GO 10 2000
2010 TA-TA-TADELT
 GO TO 2000
2020 TF=TF+TFDELT
         GO. TO 2000
 2030 KARKA+RACELT
         GD TO 2060
 2040 TERTENTEDELT
        60 10 2000
 2050 KE-KE+REDELT
2060 Çall Aerum
510 Continue
    51 FOFMAT (2(620.8))
         END
         PARAMETER TA=0.0. IPUN=2. ICNT=1. TR=0.0
         END
         PARANETER TA=0.02.TF=.6 .IRUN=3.ICNT=1
         END
         PARAMETER TF=1.0.KA=25. . IRUN=4.ICNT=1
         END
         PARAMETER KA-100.0.TE-.4 .IRUN=5.ICNT=1
         TIMER DELT=0.001. FINTIN=2.0
         END
         PALAMETER TE-.8 .IRUNAS.ICHT-1
         END
         STOP
```

0001	DIWENSIGH TR(43) .TA(43) .TF(43) .KA(43) .TE(41) .KE(41) .TC1(43) .
	1 TC2(43), TC3(43),TC4(43),TC5(41),TC6(41)
0002	INTLEEP LAHL(S)/SYSIEM IIMECONSTANY/
0003	PEAD (3.50) (T=(1).TC)(1).[=1.41)
0004	READ (3.50) (TA(1).TC2(1).1=1.41)
0005	\$EAD (3,50) (TF(1),TC3(1),1=1,41)
0006	FEAD {3,50} {KA(]),TC+(]),1=1,41}
0007	FEAD \$3.50) (TE(1).TE5(1).1=1.41)
0008	PEAD (3,50) (KE(]).TC6(]).[=1.41)
0009	DC 10 1=42.43
0010	10 READ(5,51) TP(1).TA(1).TF(1).KA(1)
0011	DC 20 [#42+43
0012	20 READ(5,51) TC1((),TC2(I),TC3(I),TC4(I)
0013	WF1TE (6.500)
0014	500 FORMAT("I",///AIX."SENSITIVITY ANALYSIS OF A TYPE 2 EXCITATION",
	1 * SYSTEM*•/•3x•*AS TIME CONSTANT TO IS VARIED FROM 0.0 TO 0.08*•
	2 //47x. PUN'.8x. TR'.5x. SYSTEM TIME CONSTANT')
0015	WRITE (6.52) (I.TR([).TCI([].I=1.4]]
9010	WPJTE (6+510)
0017	510 FORMAT(*1*.///41X.*SENSITIVITY ANALYSIS OF A TYPE 2 EXCITATION*.
	1 • SYSTEM•+/43x++AS TIME CONSTANT TA IS VARIED FROM 0.0 TO .2 *+
	2 //47%. "HUN". RX. "TA". 5%. "SYSTEM TIME CONSTANT"]
0018	NRITE (6,52) (I.TA(I).TC2(I).I=1.41)
0019	PPITE (6.520)
0020	520 FORMATE 1///41%. SENSITIVITY ANALYSIS OF A TYPE 2 EXCITATION.
	1 * SYSTEM*./43X,*A3 TIME CONSTANT TF 1S VARIED FROM 0.01 TO 3.5*.
	2 //47%. PUN'.8%. TF'.5%. SYSTEM TIME CONSTANT')
0021	#7\$TE (6.52) (].TF({}.TCJ(]].I=1.4}}
9022	##ITE (6,530)
0023	530 FORMAT(*1*.///41%,*SENSITIVITY AMALYSIS OF A TYPE 2 EXCITATION*.
	1 * STSTEN*./ARX.*AS GAIN KA IS VARIED FROM 1.00 TO 100.D*.
	2 //474. "FUN" . AL. "KA" . SX. "SYSTED TIME CONSTANT" )
0024	wpite (6.52) (1.xA(1).TCA(1).I=1.41)
0025	<b>WPITE (6,540)</b>
0026	SHO FORMAT(")
	1 · SYSTEN A 3x. · AS TIME CONSTANT TE IS VARIED FROM .1 TO B.O.
	2 //47% · DUN · BX · TE · SX · SYSTEM TIME CONSTANT · )
0027	#PITE (6.52) [I.TE(I].TE3(I).I=1.41)
8026	#RITE (6.550)
0929	\$30 POWARTE
•	I * SYSTEM*./*** GAIN KE IS VARIED FADE 11 10 5.0**
	Z // // // · · · · · · · · · · · · · · ·
0030	
0031	
0032	WHIP ADDIDUT
4033	AND FUTHATIAATIATI AND BEEFT AN THE IDODITATE THE FARTINT.
	A THE ARE AND AND THE EFFELT ON THE AFTAULTRIC THE CURSIANT'S
	S ALVALT, THE STRICH BUEN ITHE CONSTANT IN IS ANNIED FROM 040 10 .0
0034	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0033	WHILLSOFIUGJ
6030	TARK LAMMUITIT'S SEMPTIFALL WARTED AL & ILLE & EXCLUSION

MAIN

FORTRAN IV & LEVEL 21

184

DATE = 77278

.

02/03/19

PAGE 0001

fortran	IV G LEVEL 21	MAIN	DATE = 77278	02/03/19	PAGE 8002					
	1 .5451	IEN PLOTTING THE EFFECT O	N THE APPROXIMATE TIME C	ONSTANT .						
	2 71%**	OF THE SYSTEM WHEN TIME	CONSTANT TA IS VAPIED PP	ON 0.0 TO *.						
	3 • • 2	• }								
0037	CALL	PPLOT(TF.TC3.43.1.43.1.L	ACL)							
0038	WP I TE (	(6+1003)								
0039	1003 FORMA1	ILIX./IX. SENSITIVITY ANA	LYSIS OF A TYPE 2 EXCITA	TION *+						
	1 *5*51	I "SYSTEM PLOTTING THE EFFECT ON THE APPROXIMATE TIME CONSTANT".								
	2 /1×+	OF THE SYSTEM WHEN TIME	CONSTANT TF IS VAPIED FR	ON .01 TO .						
	3 *3+5	• >								
0040	CALL P	PPLOT(KA.TC4.43.1.43.1.L	ADL 3							
0041	#PITE	6.30343								
0042	1004 FCFMAI	CIX./IX. SENSITIVITY ANA	LYSIS OF A TYPE 2 EXCITA	TION *.						
	1 *515	IEM PLOTTING THE EFFECT O	N THE APPROXIMATE TIME C	CNSTANT .						
	2 /1**	OF THE SYSTEM WHEN GAIN	KA IS VARIED FROM 1.00 T	C 100.*)						
0043	CALL I	*#PLOT(TE.TC5.41.1.41.1.L	AEL)							
	121TE	(6.1005)								
0045	1005 FORMA1	(LIX./IX. SENSITIVITY ANA	LYSIS OF A TYPE 2 EXCITA	TION .						
	1 *515	IEM PLOTTING THE EFFECT O	N THE APPROXIMATE TIME C	ONSTANT .						
	2 /1×.	OF THE SYSTEM WHEN TIME	CONSTANT TE IS VAPIED PR	CM +1 TO *+						
	3 *5.00	)*)								
0046	CALL P	PRPLDT (XE+TC6+41+1+41+1+L	AGL }							
0047	WAITE	(6.1006)								
004#	1006 FDENA	(1X./1X. SENSITIVITY ANA	LYSIS OF A TYPE 2 EXCITA	TION .						
	1 *5451	IEM PLOTTING THE EFFECT O	N THE APPROXIMATE TIME C	ONSTANT .						
	· 2 /1×.	OF THE SYSTEM WHEN GAIN	KE IS VARIED FROM +1 TO	5.01)						
0049	50 FOPMA1	[ [2[E20+8]]								
9050	51 FORMA1	[{{{F10.2}}								
0051	52 FORMAT	[ [1X+45X+13+F14+5+5X+F10	.6)							
0052	STCP									
0053	END									

```
186
```

```
BRARCONTINUOUS SYSTEM MUDELING PROGRAMMAN
                      *** VERSION 1.3 ***
SITLE TYPE 3 EXCITATION SYSTEM
      FIACD ISET
FIACD ICAT
FIACD IPUN
INITIAL
PARAMETER TR+0.0.KA=40. .TA+.02.KE41.0.KF+.03.TE+.73....
      15=1.0.5E=.74.VHHA2=0.5.VAHIN=-0.5.VALF=1.0.1CH1=1.IRUN=1....
      AU1=0.0.EFD0=0.0.KP=1..K1=1.0.VE4A1=6.5
      1571=0
      TIATE/KE
      16#41+.08
      TENIN=0.0
      TROLL T= [ THHAR-TRMIN J/40.0
      TEMIN=.01
      TEPAR=5.
TEDELT=ETENAL-TEMINI/40.0
      LEPAX+15.
      KENINT.01
      KEDELT= [KEMAX-KEMIN]/40.0
      KAMAA=150.
      KAPIN=1.0
   .
      KADEL T= (KAMAL-KAMIN) /40.0
      TENINPO.01
      TFMAX=5.
TFDELT={TFMAX-TFMIN}/40.0
      TARIN=0.0
      TAPAX=+5
TADELT=(TAMAX-TAMIN)/40+0
    . KEPIN=0.01
      KFNAX=.3
      KFDELT=[KFMAX-KFMIN]/40.0
NOSORT
      IF ( (0.5+KA) .LE. VEMAX ) GO TO 1
      KALINEVENAX
    60 TO 3
1 IF ( {0.5*KA} .GE. VRMIN ) GO TC 2
      KALIMEVPHIN
      GD TO 3
    2 KALIH=0.5+KA
    3 CONTINUE
      EFDSS=KALIH/KE
      EFDITC=(1.0-EXP(-1.0))+EFDSS
      SORT
DTNAHIC
      IFD=1 .-. 5+STEP(0.0)
      17=1.0-.5*STEP(0.0)
VT=1.0-0.505TEP(0.0)

PROCEDURE V1=HCF5(TR.VT)

1F (TA) 10.20.10
   10 VINTEREALPL(1.0.TR.VT)
      60 TO 30
  20 VINTAVT
   SO VIEVINT
ENOPRO
      V2=VREF+AUX-V1
      NOSORT
       VTHEN=CAES( CHPLX(KP+VT+KI+IT))
      A=(.78+1FD/VTHEN)++2
VTHEN1=VTHEN+SURT(1.-A)
      SFEA.GT.L.) VONAX=0.0
      SOAT
       ¥3=¥2-¥7
PROCEDURE VANHOFSETA.V3.KAJ
   IF (TA) 40.41.40
40 V4PR1=REALPL(0.0.TA.V3)
      60 TO 42
   41 V4PR1+V3
42 V4:KA+V4PP1
ENDPRO
```

```
ENOPPO
      VS+LIMITEVHNIH, VANAZ .V41
      VG=VD+VTHCH1
      VB=LIMITED.O.VBHAX.VS)
      EFOPRIALFALFL(FFD0.71.48)
      EFD=1.0/AL+EFOPRI
      2001=(EFD-2)/1F
      Z=INIGAL (0.0.2007)
      V7=KF+LOCT
    NOSORT
      IF I KEEP .NE. 1 3 GO TO 100
      IF(ISET-1) 300.100.300
  300 IF (EFD-EFDITC) 100.200.200
  200 TCATINE
      ISET=1
  100 CENTINUE
SORT
TERMINAL
      TIMER DELT=0.001. FINTEN=3.0
      RETHOD RESEX
      GO TO (1000-1010-1020-1030-1035-1040-1050)-14UN
 1000 WHITE 13.513 TR.TC
 GO TO 1060
1010 WRITE (3.51) TA.TC
GO TO 1060
 1020 WRITE (3.51) TF.TC
GO TO 1060
1030 WRITE (3.51) KA.TC
 GO TO 1060
1035 WAITE (3.51) KF.TC
      GO TO 1060
 1040 WRITE (3.51) TE.TC
 GO TO 1060
1050 «RITE (3.51) KE.TC
 1060 15ET=0
      IF (ICNT-41) 500.510.510
  500 ICAT=ICNT+1
      GO TO (2000.2010.2020.2030.2035.2040.2050) . [RUN
 2000 TRATRATROELT
      60 TO 2060
 2010 TASTANTACELT
      GO TO 2060
 2020 TF=TF+TFDELT
      GO TO 2060
 2030 KARKA+KADELT
      GO TO 2060
 2035 KF=KF+KFDELT
      GO TO 2060
 2040 TESTENTEDELT
      GO TO 2060
 2050 KEEKE+KEDELT
 2060 CALL RERUN
  SIO CONTINUE
   51 FOFNAT (2(E20-8))
      ENO
      PARAMETER TRED. 03.TA=J.06. IRUN=2. ICNT=1
      END
       PARAMETER TA=0.13.TF=.35 .IRUN=3.ICHT=1
       END
       PARAMETER TF=.01.KA=1.J.IRUN=4.ICNT=1
      END
      PAFAMETER #4-50.0.TE=0.01. IRUN=5. [CNT=1
      END
       PAGAPETES KF+.25.TE=.25.IRUN=6.ICNT+1
       TIMEP DELT=0.JUL. FINTIM=15.
      END
       PARAMETER TER.S .KF. -. 08. IRUN=7. ICNT=1
       TIMEP DELT=0.001. FINTIN+15.
       END
       STOP
```

PORTRAN	IV G LEVEL 21	· MAIN	DATE # 77278	03/15/50
0001	DIMENSION 1 TC2(43).	TR(43) .TA(43) .TF[43) TC3(43) .TC4(43) .TC5(	.KA{43}.TE[4]}.KE[4]}.T N]}.TC6(4]}.KF[43].TC7[4	:1(43). 43)
0002	INTEGER LA	BL(S)/ SYST EN T.	145 * .* CONS* .* TANT*/	
0303	READ (3.50	) (TR(1).TC1(1).1=1.	1)	
0004	READ 13.50	) (TAE1).TC2(1).1=1.	1)	
0005	READ (3.50	) (TF(1).TC3(1).1=1.	1)	
0000	READ \$3.50	] [KA(1].TCA(1).1=1.	•12	
0007	READ \$3.50	) (TE(1).TC5(1).1=1.	•1>	
0008	#EAD \$3.50	3 (<((1).TC6(1).1=1.	1)	
0009	READ (3.50	1 (KF(1).TC7(1).1=1.	13	
0010	00 10 1+42	.43		
0011	10 READ(5.51)	- T4613.TAEI3.TF(1).K	1113.KF{[]}	
0012	00 20 1=42	• 43		
0013	20 RE42(5,51)	TC1(1).TC2(1).TC3(1	.TC4([].TC7(]]	
0014	WRITE (6.5	00)		
0015	500 FORMAT(*1*	.////AIX. SENSITIVIT	Y ANALYSIS OF A TYPE 3 1	EXCITATION®.
	1 • SYSTEM+	./43x. AS TIME CONST.	NAT TR IS VARIED FROM 0.	.0 10 0.08*.
	2 //47x.**U	Nº . 8x. • TR • . JX. • STSTE	TINE CONSTANT )	
0016	¥8176 (6.5	2) ([.TA(]).TC1(]).1	•1•41>	
0017	BRITE CO.S	10)		
0018	SLO FORMATC	·///41x.*SENSITIVIT	Y ANALYSIS OF A TYPE 3	EXCITATION*+
	I + SYSTEN.	./43x. AS TIME CONST.	INT TA IS VARIED FROM O	•0 TO 3+0 *•
	2 //472. *PU	N* .8X. * TA* .5X. * SYSTE	TINE CONSTANT )	
9014	WRITE (6.5	2) [],TAL]],TC2[]).1	=1.41)	
9820	WRITE (6+5	20)		
0021	520 FORMAT(*)*	.////412. SENSITIVIT	Y ANALYSIS CF A TYPE 3	EXCITATION*.
	I SYSTEM.	. A 3X. AS TIME CONST.	ANT TE IS VAPIED FROM O	.01 TO 5.0**
	2 //47%	N*************************************	TIME CUNSTANT")	
2200	WRITE LC.S	2) (1.TF(1).TC3(1).1	-1.41)	
0223	WHITE (0.3			
0924	330 -0-41(-1-	WAY AND CAN UN TO	MADIED 6004 1.0 TO 18	IXCITATION".
	E - 3131EH.	474524**********************************		<b>1</b> • • •
8438			LATI	
0029		2/ \10NA(1/0+C4(1/0)		
0020	STE EDEWATION	- ////AIY-656NCITIVIT	ANAL WETE OF A TYPE 3	EXCETATIONS.
	1 + \$1\$ffm	JARY TAS GAIN NE IS	VANIED FROM 0.01 TO 0.	1 .
	9 2/A74 - 101	NI.AV. IVELAN. ISYSTE	TINE CONSTANTIS	
6078	-9115 14.9			
0029	HEITE LOUD	401		
8030	SAD FORMAT(*1*	·////AIX. SENSITIVIT	ANALYSIS OF A TYPE 3 1	FECTATION
	1	-/A3X. FAS TINE CONST.	ANT TE IS VARIES FROM	1 10 5.01.
	8 //478.491	WI. 8x	TINE CONSTANT	
6031	WRITE LA.S	2) (1.1811).7(511).1	=1-411	
0032	WR118 (c.5	50)		
0033	550 FORMATE 11	-///dela. "SENSITIVIT	ANALYSIS OF A TYPE 3 1	EXCITATION .
	1 . STSTEN	./ 49% AS GAIN KE IS	VARIED FROM .01 TO 1	5.0.
	2 //47%.*#1	N*.8%. *RE*.5%. SYSTE	TIME CONSTANT )	· · · · ·
034	UNITE 16.5	2) (1. ME(1).TC6(1).1	=1.01)	
0035	CALL PAPLO	T ( TR . TC1 . 43.1.43.1.L	NBL)	
0036	WRITEL6.10	01)		
8837	1001 FORMATE14.	/1X. SENSITIVITY ANA	LYSIS OF A TYPE 3 EXC3T	ATION .

.

.

.

PAGE 0001

PORTRAN IV	9 G LEVEL 21	MAIH	DATE = 77278	05/15/50
	1 *SYSTEM PLO	TTING THE EFFECT ON THE	APPRCAIPATE TIME CO	INSTANT .
	2 /1X. OF THE	SYSTEM WHEN TIME CONST	ANT TR IS VARIED FR	DH 0.0 TO
	3 *0.08*1			
0038	CALL PRPLOT	TA.TC2.43.1.43.1.LABL)		
0030	WPITEL6.1002	2 3		
0040	1002 FORMAT(1X./1	X. SENSITIVITY ANALYSIS	OF A TYPE 3 EXCITA	F10N *.
	1 SYSTEN PLO	ITTING THE EFFECT ON THE	APPPOXIMATE TIME CO	ONSTANT®.
	2 /1X. "OF THE	SYSTEM HHEN TIME CONST	INT TA IS VARIED FR	0M +0 TO *+
	3 • .5 • )			
0041	CALL PRPLOT	TF.TC3.43.1.43.1.LABL3		
0042	SBITE (6.1003			
0043	1003 FORMATCIA./1	X. SENSITIVITY ANALYSIS	OF A TYPE 3 EXCITA	FION .
	I +SYSTEM PLO	ITTING THE EFPECT ON THE	APPROXIMATE TIME CO	CNSTANT .
	2 /1x. OF THE	SYSTEM WHEN TIME CONST	INT TE IS VAPIED FR	CH +01 TO *+
	3 *5.0 *)			
0044	CALL PAPLOT	KA+TC4+43+1+43+1+LABL}	•	
0045	#RITE (6.1004	• •		•
0046	1004 FOENAT(1x./1	X. SENSITIVITY ANALYSIS	CF A TYPE 3 EXCITA	FICN .
	1 SYSTEM PLC	STTING THE EFFECT ON THE	APPROXIMATE TIME CO	INSTANT .
	2 /1X. OF THE	SYSTEM HHEN GAIN KA IS	VARIED FROM 1.0 TO	3 150."}
8047	CALL PAPLOT	KF.TC7.43.1.43.1.LAUL)		
0040	#RITE (6.1007	· · · · · · · · · · · · · · · · · · ·		
0049	1007 FORMATCIX./1	A SENSITIVITY ANALYSIS	OF A TYPE 3 EXCITA	TICN .
	1 SYSTEM PLC	ITTING THE EFFECT ON THE	APPQUAINATE TIME CO	JNSTANT .
		STATE BAEN GAIN RP 15	ATALED LANK .01 LO	•3 • 3
0030	CALL PEPLOTE	TE.TC3.41.1.41.1.LAULJ		
0031	#FITE(6.1003			
0034	1005 FUNNAIL1X.71	A - SCHSITIVITY ANALYSIS	OF A TYPE 3 EXCITA	
	I STATE PLU	TING THE EFFECT ON THE	APPROXIMATE TIME CO	JNSIANITA
		STREA WHEN TIME CLAST	INT TE IS WARTED PHO	28 -03 10
0.053		#E .TCA . A.L A.L. T A.M		
0055		NC		
0055	1004 FOCMAT/1/1	T. ICENCITIVITY ANALWEID	CE A 1408 3 844144	
	1 Secten (8 /	TTING THE REFERT ON THE	ADDONVINATE TIME CO	
		SYSTEM ANEN GAIN HE TP	WARTER EDON _0 1	273187174 20 18-0 11
0.054	6 FIAT UF 106 80 800041 10151	A BIDIEM BREA WAIN WE 13	TARLEY FRUM -VII	10 10+0 -1
6057	. 39 FURMAI (2112 61 E00417/4/E10			
0050	43 60CMAT /14 A	**************************************		
0030	4100	······································	•	
8040	310F			
	Env			

PAGE 0002

```
****CONTINUOUS SYSTEN HODELING PROGRAM****
                         *** VERSION 1.3 ***
TITLE TYPE & EXCITATION SYSTEM
       FIXED ISET
       FIND IRUN
INITIAL
PARAMETER VRPAX=10.5.VRMIN=10.5.SE=.85.KE=0.1.TE=0.01....
EFDD=0.0.VFEF=1.0.1CNT=1.IRUN=1
       I SET=0
       VRH- [VRHAX-VRHEN] ....
       KV=.05+VPHAX
       TI TT /XE
       TEHIN=.01
       TEPAA=5.0
       TECELT ... TEMAX-TEMIN) /40.0
       KEHINS-.01
       KE #AX =2.0
       KEDEL T= (KEHAX-KENIN) /40.0
NOSORT
       IF (VI.LE.VAMAX) GO TO 1
       VI-.SEVPHAX
       60 10 3
     I IFEVI-LE-VEMINE GO TO 2
       VIENGHIN
       63 70 3
     2 V1+. 5+V2HAX
     3 CONTINUE .
       EFD15+(1.0/XE+ V1 )/(1.0+SE/KE)
EFD1TC+(1.0-EXP(+1.0))+EFD55
SCAT
OYNANEC
       VT=1.0-0.5+STEP(0.0)
       VI -VREF-VT
       NOSCAT
       IF (VI.GE.KV) VREVPMAX
       IF(VI.LE.(-KV)) VR=VRMIN
IF(ADS(VI).LT.KV) VR=VRH
       SORT
       ¥2=VP-V3
       VJ=SE+FPD
       EPOPRISELALPLIEFDO.TI.V2)
       LF D= 1 . 0/KE+EFOPRE
     NOS CAT
       14 L KEEP -NE+ 1 3 GO TO 100
                                             .
  IF(15FT-1) 300.106.300
300 IF (EFD-EFDITC) 100.200.200
200 TC-TIME
       1527-1
  100 CENTENUE
SONT
TERMINAL
TIMER DELT=0.001. FINTIN-11.0
       HETHOD PASES
 GC TO (1040-1050). IRUN
3049 WRITE (3-51) TE.TC
GC TO 1040
1950 WRITE (3-51) KE.TC
```

1040 1 SET = 2 1050 1 SET=0 1/ (ICNT=41) SC0.510.510 SC0 ICNT=ICNT+1 G0 T0 (2040.2050).IRUN 2040 TE=TE=TEOELT G0 TD 20+0 2050 KE=KE=KEDELT 2040 E=KEDELT 2010 CALL HERUN 510 CONTINUE 51 FOFMAT (2(E20.8)) FNO PACAMETER TE=0.5.KE=-0.00. IRUN=2. ICNT=3 TIPER DELT=0.001. FINTIM=11.0 END CUTPUT VARIABLE SEQUENCE ISTY VEH KV ISCOLVL VEH KV ISCOLVL VI VE EFC V3 ISET ICNT TE TEMIN TEMAX TEDELT KEMIN KEMAX KEDELT EFDSS EFDITC VT VI VR VP 220003 EFDPHI 2200C4 TC 15ET 220005 TL V1 V2 KE PAPAMETERS NOT INPUT OR OUTPUTS NOT AVAILABLE TO SORT SECTION+++SET TO ZERC+++ SANIN EFOO CUTPUTS INPUTS PARANS INTEGS + NEN BLKS FORTFAN DATA COS 38(500) 55(1400) 13(400) 1+ 04 1(300) 51(600) 9

.

.

ENDUCB

•-

.

.

3

ORTRAN	IV & LEVEL	21	MAIN	DATE - 77097	03/11/48	PAGE 0001				
0001		DIMENSION	TE(41).KE(41).TC1(41)	.TC2(41)						
2002		INTEGER LAB (5)//5Y51. "EN T'."INE "."EGNS"."TANT"/								
0003		READ (3.50	) (TE(1).TC1(1).1=1.4	1)						
0004		READ (3.50	) (RE(1).TC2(1).1=1.4	1)						
0003		WRITE (6.5	401							
0006	540	BAD FORMAT(1) .///ALX. SENSITIVITY ANALYSIS OF A TYPE 4 EXCITATION .								
	1	1 * SYSTEM · /ASK. AS TIME CONSTANT TE IS VARIED FROM .01 TC 5.0 .								
		//47X.*RU	N*+8x. *TE*.5x. *SYSTEN	TIME CONSTANT*)						
0007		WRITE (6.5	2) (1.TE(1).TC1(1).1=	1.41}						
0008		WRITE 16.5	50)							
0009	850	FORMAT(11	.///41X. SENSITIVITY	ANALYSIS OF A TYPE 4 E	XCITATION .					
		1 * STSTEN ./49X. AS GAIN KE IS VARIED FROM011 TO 2.00 .								
		2/47x FU	N*.8X.*KE*.5X.*SYSTEK	TIME CONSTANT*)						
0010		WRITE 16.5	2) (1.KE(1).TC2(1).I=	1.413						
0011		CALL PROLO	TITE.TCI.41.1.41.1.LA	8L)						
0012		WRITE (6.10	35)							
0013	1005	FOGMATE 1X.	/IX. SENSITIVITY ANAL	VSIS OF A TYPE 4 EXCITA	TION .					
	1	SYSTEN P	LOTTING THE EFFECT ON	THE APPROXIMATE TIME C	ONSTANT.					
	1	2 /1×.+OF T	HE SYSTEM WHEN TIME C	CNSTANT TE IS VARIED FR	0M .01 TO*.					
			•							
		CALL PRPLO	IT IKE.TC2.41.1.42.1.LA	86.)						
0015		WRITE (6.10	06)							
0016	1006	FORMAT(1X.	/IX. SENSITIVITY ANAL	VSIS OF A TYPE 4 EXCITA	TION .					
	1	SYSTEN P	LETTING THE EFFECT ON	THE APPROXIMATE TIME C	ONSTANT .					
	1	2 /1×.+OF 1	HE SYSTEM WHEN GAIN #	E IS VARIED FROM01 T	6 2.0 •)					
0017	50	FORMAT (20	E20.8);							
0018	52	FORMAT (12	.45% .13 .F14.5.5%.F10.	6)						
0019		STOP								
0020		END								

•

.

· . -

.

• •

÷

·

•

.

.

.

•

•

.

APPENDIX D COMPUTER PROGRAM OF ROOT LOCUS AND FREQUENCY RESPONSE TECHNIQUE
```
ADOT LOCUS PROGRAM
   PPOBLEM IDENTIFICATION - STLOC EXCTER TYPE I
****
THE NUMERATOR IS GIVEN BY
THE POLYNOMIAL COEFFICIENTS - IN ASCENDING POWERS OF 5
            1.0000E 00
  0.0
THE POLYNONIAL ROOTS ARE
REAL PART
  0.0
INAGINANT PART
  0.0
*****
THE DENDHINATOR IS GIVEN BY
THE POLYNCHIAL COEFFICIENTS - IN ASCENDING POWERS OF 5
  1.1760E 02 1.6934E 02 5.3340E 01 1.0000E 00
THE POLYNCHIAL POOTS ARE
REAL PART
 -1.00000 00 -2.34000 00 -5.0000E 01
IPAGINARY PART
  0.0
            0.0
                     0.0
*****
YOU FORGOT YOUR OPTION CARD. ASSUME NOPT-0.
  MIN. GAIN = 1.000 01
                           MAX. GAIN = 3.00E 03
STATIC SENSITIVITY # 8.54701925-03 + GAIN
1 K = 1.000E 01
                 5 = 0.085 -0.8778
                                    -2.677
                                    0.0
                           0.0
 2 K = 1.205E 01
                      0.110 -0.8507
                                    -2.766
```

	K o	1.150	) + (	ĸ	+ 1	.1702	00 1
GAIN =	1.170	0006£	02	•	STATE	C SENS	51464648
-49.78							
0.0							
-49.72							
0.0							
-49.65							
0.0							

-49.57

0.0

0.0

-2.265

-2.977

```
194
```

```
3 K = 1.6128 01
                  5 =
                        0.138 -0.8224
                              0.0
4 K = 1.9346 01
                  5 = 0.170 -0.7929
```

.

0.0

5 #

```
SEAL PART
                                                                                                                                                                                                                                                                                                                                                                                                  THE POLYNHIAL
                                                                                                                                                                                                               BEAL PAST
                                                                                                                                                                                                                                                             THE POLYNOWIAL COEFFICIENTS
                                                                                                                                                                                                                                                                            THE DENOHINATOR IS GIVEN BY
                                                                                                                                                                                                                                                                                                                                                                                                                     ï
                                                                                                                      a Ninh
                                                                                                                                                                                INTELNTAR DADA
                                                                                                                                                                                                                              THE POLYNOHIAL
                                                                                                                                                                                                                                                                                          *************************
                                                                                                                                                                                                                                                                                                                          INACINARY PART
                                                                                                                                                                                                                                                                                                                                                                        THE POLYNOWIAL SOCTS ARE
                                                                                                                                                                                                                                                                                                                                                                                                                                                           ____ *
                                                                                                                                                                                                                                                                                                                                         -1.0000E 00
                                                                                                                                                                                                -5.25362-01
                                                                                                                                                                   0.0
                                                                                                                                                                                                                                             1.73002 02
                                                                                                                                                                                                                                                                                                           0.0
                                                                                                                                                                                                                                                                                                                                                                                      1.0000E 00
                                                                                                                                                                                                                                                                                                                                                                                                                    NUMERATOR IS GIVEN BY
  PADIAN FRED.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PROSLEN IDENTIFICATION --
                                                                                                                                                                                                                                                                                                                                                                                                                                           GAIN - 4.000000E 0J
                                                                                                                                    9.55993646-02
                                                                                                                                                                                                                                             3.70000 02
                                                                                                                                                                                                                                                                                                                                                                                     1.0000E 00
                                                                                                                                                                                                                              ROOTS ARE
                                                                                                                                                                                                                                                                                                                                                                                                     COEFF IC IENTS
                                                                                                                                                                                                 -4.5133E 00
                                                                                                                                                                   •••
   2.26783AE 01
2.261465E 01
2.2767277E 01
2.276727F 01
2.276727E 01
2.276727E 01
2.276727E 01
2.2767226C 01
2.165954E 01
2.15954E 01
2.15954E 01
2.15954E 01
2.15954E 01
                                                                                                                                    E XYNA
                                                                                                       PEAL PART
                                                                                                                                                                                                 -7.2961E 01
                                                                                                                                                                                                                                                              1
                                                                                                                                                                                                                                                                                                                                                                                                      1
                                                                                                                                                                                                             1
                                                                                                                                                                   0.0
                                                                                                                                                                                                                                            7.5000E 01 1.0000E 00
                                                                                                                                                                                                                                                            IN ASCENDING POVERS OF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FRESP EACITER TYPE
                                                                                                                                                                                                                                                                                                                                                                                                     IN ASCENDING
                                                                                                                                    1.0000000E UZ
INAGINARY PART
                                                                                                                                                                                                                                                                                                                                                                                                     POVERS
                                                                                                                                     NOMEG
     -
                                                                                                                                                                                                                                                                                                                                                                                                     g
                                                                                                                                     - 100
  2.242123E 01
2.272820c 01
2.272820c 01
2.267183E 01
2.260777E 01
2.260777E 01
2.253511E 01
2.25351E 01
2.225520E 01
2.225520E 01
2.225520E 01
2.225520E 01
2.200560E 01
2.200560E 01
                                                                                                                                                                                                                                                             u
                                                                                                                                                                                                                                                                                                                                                                                                      LA.
                                                                                                       MACHITUDE
                                                                                                                                                                                                                                                                                                                                                                                                                                   .
                                                                                                                                    XNON
                                                                                                                                     .
 -1.19503E-01
-1.197404E-01
-1.297262E-01
-1.297261E-01
-1.304201E-01
-1.500643E-01
-1.505272E-01
-1.692106E-01
-2.014353E-01
-2.014353E-01
-2.75236L-01
                                                                                                                                     •
                                                                                                       PHASE (RAD)
                                                                                                                                      NOODE
                                                                                                                                      .
```

•

**ISOAN** 

. **

1216

. 0 .

PHASE (DEG)

-6.4142AJE 00 -7.355361E 00 -7.355361E 00 -7.355361E 00 -8.374870E 00 -9.341870E 00 -1.0174376 01 -1.017437E 01 -1.154137E 01 -1.154137E 01 -1.354147E 01 -1.354147E 01

.

•

```
ROOT LOCUS PROGRAM
PROPLEM IDENTIFICATION - RTLOC EXCIT.TYPE II
 THE NUMERATOR IS GIVEN BY
- THE POLYNONIAL COFFECIENTS - IN ASCENDING POWERS OF S
           1.00000 00
  ...
REAL PART
  0.0
 SHAGENARY DART
  8.0
.......................
THE PELYNDHIAL COFFECTIONS - IN ASCENDING POWERS OF S
  5.000JE 01 1.010JE 02 5.2000E 01 1.0J00E 00
 THE POLYNOWEAL ROCTS ARE
REAL PART
  -1.0000E 00 -1.0000E 00 -5.0000E 01
 IPAGINARY PART
   0.0
            0.0
                     0.0
 *****
```

YOU PORGOT YOUR OPTION CARD. ASSUNE NOPTHO.

	N	11.	4.	GA	1 14	٠		2.0	<b>0</b>	01				PAX.	GAI	N =	ı	3.002	03		к =	1	• 1 5	io (	• (	ĸ	٠	5.	000	-01	3	
<b>S</b> TA	Ŧ 1	c	55	NS	11	1 v 1	T١	-	2.	000	001	8E-01	2 +	GAI	N					GAIN	5.000	000	465	: 0	ı		57/	110	: 55	NS11	1 41.	T۳
•••	••	••					••	***	•••	•••	• • •						***															
1		ĸ	•		2.	000	3	01	5	•	•	0.400	-0	• 534	9		-1.	883		-49.58 0.0												
2		ĸ	•		2.	391	E	01	3	•	¢	0.471	~0	.508 .0	1	•	-1. J.U	9e8		-49.50 0.0												
3	I	ĸ	•		z.	769	E	01	3	•	¢	.554	-0 0	.481 .0	3		-2. 0.0	102		-49.42 0.0												
•		×	•		3.	241	E	01		•	ې 		-0 0	• • 54 • V	<b>6</b>		-2.	730	<b>.</b>	-49.32 0.0 _												

...

THE POLYNOMIAL COEFFICIENTS - IN ASCENDING POWERS OF S SEAL DAPT THE POLYNDWIAL ROCTS ARE THE POLYMOMIAL COEFFICIENTS - IN ASCENDING POWERS OF THE NUMERATOR IS GIVEN BY DEAL VAT THE POLYNOWIAL ROOTS ARE THE DENDULHATOR IS GIVEN BY **** SWASINARY PART WHW = 9.0000645-02 #MAX = 1.0000000E 02 NOMEG = 100 JPAGINARY PART -1.00002 00 -1.00002 -5.365JE 00 -7.305JE 01 -5.0086E-01 0.0 0.0 1.47005 02 1.0000E 00 **9.9**9999665-02 1.072267E-01 1.1497556-01 1.2228666-01 1.3219406-01 1.4174767-01 1.628751E-01 1.628751E-01 1.628751E-01 1.6735175-01 2.056271E-01 2.1544757-01 PROUTHCY RESPONSE PROUTHCY RESPONSE PROUTHCY IDENTIFICATION - FRESP EXCIT.TYPE 11 PADIAN FRED. GAIN . 4. 000000E 03 2.JUCOE 00 0.0 4.23408 02 ••• . 2.711133E 01 2.707432E 01 2.707437E 01 2.70246 05 2.6647845 01 2.6647845 01 2.6647845 01 2.6697845 01 2.6697845 01 2.6697845 01 2.6697845 01 2.667757E 01 2.657645 15 01 2.657645 15 01 REAL PART 8 4.72365 02 1.00002 00 3-20416-01 . -2.430054200 -2.610830200 -3.610830200 -3.015981200 -3.242051200 -4.342605200 -4.342605200 -4.3426200 -4.3426200 -4.34213500 -5.41105200 -5.417405200 INAGINARY DART 7.9440E 01 . 2.722002E 01 2.721902E 01 2.721932E 01 2.721936 2.721915 01 2.7215305 01 2.7215305 01 2.720595 01 2.710756E 01 2.710756E 01 2.711456E 01 2.711456E 01 2.711456E 01 2.711456E 01 . 1.00000 00 MAGNI TUDE KNON . -2.015425-01 -1.02522-01 -1.02522-01 -1.102522-01 -1.10555-01 -1.35555-01 -1.459555-01 -1.459555-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.45955-01 -1.459555-01 -1.45955-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.4595555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.4595555-01 -1.459555-01 -1.459555-01 -1.459555-01 -1.4595 0 PHASE (PAD) NDODE -0 -5.121871E 00 -5.016402E 00 -6.25.12882 D0 -6.25.12882 D0 -7.35.2377E 00 -7.35.3577E 00 -7.35.7576 00 -7.35767E 00 -6.270517E 00 -6.270517E 00 -1.154867E 01 -1.154867E 01 -1.2470317E 01 NYQST PHASE (DEG) . ... 1516 .

.

٠

•

•

.

•

.

APPENDIX E A PHYSICAL AND SIMULATION MODEL OF GOVERNOR-TURBINE



FIGURE E-1 MECHANICAL-HYDRAULIC HYDROGOVERNOR

"In steady state the shaft speed signal,  $n_s$ , is compared to the reference-speed setting nr, modified by the permanent speed droop times gate position  $\sigma \cdot z$ . Sometimes the permanent speed droop is obtained by using generator power output rather than gate position. An imbalance between actual speed and the modified reference speed appears as a change in the input "a" to the pilot servo. When gate position is changing, a

transient droop signal C is developed to oppose fast changes in gate position. In mechanical-hydraulic governor illustrated, these signals are summed and transmitted through a system of floating levers from a mechanical motion to the operation of the pilot valve."^(45, 46)

The mathematical representation for a speed-governoring hydro system is shown in figure (E-2). This model shows an initial power  $P_o$ . This initial power is combined with the increments power due to the speed deviation to obtain the total power,  $P_{GV}$ , which is subject to the time lag,  $T_3$ , imposed by the servomotor mechanism.



FIGURE E-2 MATHEMATICAL MODEL OF SPEED-GOVERNING HYDRO SYSTEM

The second speed-governing system for the steam turbine is shown in figure (E-3) and its mathematical representation is shown in figure (E-4).

Typically the mechanical hydraulic speed-governing system consists of a speed governor, a hydraulic servomotor, a speed relay and governorcontrolled values as seen in figure (E-3). The mathematical representation of speed-governing for steam turbine is shown in figure (E-4). (9)



FIGURE E-3 SPEED GOVERNING SYSTEM FOR STEAM TURBINES



FIGURE E-4 MATHEMATICAL REPRESENTATION OF SPEED-GOVERNING SYSTEM FOR STEAM TURBINE

# STEAM TURBINE SYSTEM⁽⁹⁾

All compound steam turbine systems utilize governor-controlled valves at the high pressure or a very high, high pressure turbine. The steam chest and inlet piping to the first turbine cylinder and reheaters and crossover piping down stream all impose delays between the valve movement and change in the steam flow. The object in modeling the steam system for stability studies is to account for these delays. Flows into and out of any steam vessel are related by a simple time constant. The steam turbine configuration, as well as the mathematical representation, is shown in figure (E-5) and (E-6), respectively for only the tandem compound-double reheater. There are five major models of steam systems: nonreheat, tandem compound-single reheated, tandem compound-double reheat, cross compound-single reheat, and cross compound-double reheat. The time constants T_{CH}, T_{RH} and T_{CO} represent delays due to the steam chest and inlet piping, reheaters and crossover piping respectively. The fraction  $F_{VHP}$ ,  $F_{HP}$ ,  $F_{TP}$ , and  $F_{TP}$  represent portions of the total turbine power developed in the various cyclinders.



FIGURE E-5 STEAM SYSTEM CONFIGURATION--TANDEM COMPOUND-DOUBLE REHEATER



FIGURE E-6 MATHEMATICAL REPRESENTATION OF TANDEM COMPOUND-DOUBLE REHEATER



FIGURE E-7 GOVERNOR-TURBINE

In figure (E-7) R equals the steady state speed regulation; F equals the frequency; TC is the speed relay and steam bowl time constant; TS and  $T_3$  are the servomotor and reheat time constant;  $T_4$  and  $T_5$  are the reheater time constants;  $T_{mo}$  is the initial steady state torque, zero slip torque and D is the damping factor. APPENDIX F COMPUTER PROGRAM SIMULATION OUTPUT LISTING OF GOVERNOR-TURBINE SYSTEMS

```
### VERSION 1.3 ###
TITLE SIMULATION OF GOVERNOR TURBINE SYSTEM.TANDEM COMPOUND-TWO REHEAT
      FIXED ISET FIXED IFUN
      FIXED ICNT
INITIAL
      PAFAMETER 11=+07+12=+125+13=+125+14=+25+15=7+0+16=8+5++++
      AUX=2+J+INITP=6+0+TIMIN=0+0+TIMAX=+15+T2MAX=+3 +T2MIN=+01++++
      T3MAX=.3.T3MIN=.01.TAMAX=.6.T5MAX=15.0.T4MIN=.05....
      T541N=1.J.T64AX=15..T041N=1.0.T74AX=.59.T7MIN=.1....
      KGMAX=25..KGMIN=.4.K1MAX=.5.K1M1N=0.0.K3M1N=0.0.K3M4X=.8....
      K54AX=+8. K5MIN=+31. K7MAX=+8.K7MIN=+35. ICNT=1.IRUN=1
      ISET=0
      TIDELT=(TIMAX-TIMIN)/40.J
.
      T2CELT= (T2MAX-T2MIN)/4).)
      T 30EL T= (T3MAX-T3MIN)/40.0
      TADEL T= (T4 44X-T4 41N)/40.0
      TECELT-(TEMAX-TEMIN)/43.0
      T679LT=(T544X-T641N)/40.0
      T702LT= ( 77MAX-T7MIN)/43.3
      KGDELT= (KGMAX-KGMIN)/40.0
                                                                          .
      KOPELT= (NOMAX-KOMIN)/40.0
      PD(LT=(1.5- .3)/4).)
      KIDELT=(KIMAX-NIMIN)/40.0
      KOCCLIE(KOMAX-KOMIN)/40.0
       K705LT=(K7MAX-K74IN)/40.0
      NESOAT
      IF ( (-KG) .LE. PMAX ) GO TO 1
      KGLIM=PMAX
      GO TO 3
    1 IF ( (-KG) .GE. PMIN ) GO TO 2
KGLIM=PMIN
      GC TC 3
    2 KGLIM=-KG
    3 CONTINUE
      055=KGL1M# (K1+K3+K5+K7)
      PTC=(1.0-ExP(-1.0))+PSS +.42 -
SORT
DYNAMIC
      SPOERR=STEP(0.0)
      P1=SPDERF+AUX
      P24=AEALPL(0.0.T3.P1)
      P22=LECLAG(T1.T2.P2A)
      P2=KG=P25
      P3=INITP-P2
      PA=LIMIT(PMIN.PMAX.P3)
      95=REALPL (0.0.T4.P4)
      P6=95ALPL(0.0.T5.P5)
      P7=9EALPL().).76.P6)
      95==EAI PL (0.0.T7.P7)
      P54:K1+P5
      P64=83+P6
                                      .
      PES=PUA+PSA
      97A=# 5+ P7
      P78= P7A+P68
      PPA=PR+K7
```

.

****CONTINUOUS SYSTEM MODELING FRGGRAM****

```
1+05CFT
                                                     .
      IF ( KEEP .NE. 1 ) GO TO 100
      IF(ISET-1) 333.133.333
  303 IF (PTC-P) 100.200.200
  200 TC=TIME
     1557=1
  100 CONTINUE
                                                     .
SOFT
TERMINAL
      TIMER DELT=0.011. FINTIM=5.0 .OUTDEL=.1
      METHOD PASEA
      GD TD (1000.1010.1020.1030.1040.1050.1060.1070.1085.1090). IFUN
 1000 .FITE (3.51) T1.TC
     GG TO 10AU
 1010 AFITE (3.51) T2.TC
     GC TO 1383
 1020 #FITE (3.51) T3.TC
      GO TO 1040
 1030 ##1TE (3.51) T4.TC
 30 TO 1340
1040 #FITE (3.51) TS.TC
     50 10 1030
 1050 #RITE(3.51)TO.TC
     50 70 1353
 1060 #FITE(3.51) T7.TC
     GD TO 10H0
 1373 #RITE (3.51) PMAX.TC
     GC TO 1090
 1085 #FITE (3.51) KG.TC
GC TC 1080
 1090 .PITE(3.51) K3.TC
 1080 1527=0
      IF(I=UN+ED+10+AND+ICNT+GE+41) END FILE 3
      IF (ICNT-41) 500.510.510
  503 ICNT=ICNT+1
      GO TO (2000.2010.2020.2030.2040.2050.2060.2070.2085.2050). IFUN
 2000 T1=T1+T1DELT
      GO TO 2020
 2010 T2=T2+T202LT
      CECT DI 202
 2020 T3=T3+T302LT
      C0 10 2040
 2333 TA=T4+T4CELT
      60 TO 2040
 2040 T5=T5+T50ELT
      GC TC 2040
 2050 TE-TE+TECELT
      GO TO 2383
 2063 T7=T7+T70LLT
      GO TO 2040
 2373 PHAX=PHAX+PCELT
      PHIN= FYIN-POELT
      60 TO 2040
```

-

.

2395 KG=KG+KGDELT GD TO 2080 2090 K3=K3+K3DELT 2080 CALL REFUN 510 CONTINUE 51 FCGMAT (2(E23.8)) END PAFAMETER T2=0.05.T1=0.1J.IRUN=2.ICNT=1 END PASAMETER T3=0.05.T2=0.125.IRUN=3.ICNT=1 END PAGAMETER T4=0.1.T3=0.125.IRUN=4.ICNT=1 END PAPAMETER T5=3.3.14=3.35.18UN=5.1CNT=1 END . PARAMETER KG=.4.IFUN=0.ICNT=1 .T6=1.0 END PARAMETER T6=.8.T5=10.. IRUN=7.ICNT=1 END PAFIMETER KG=1.0.T7=.52.IRUN=8.ICNT=1 END . PARAMETER K3=J.1.KG=25..IRUN=9.ICNT=1 END PARAMETER T5=20. .K3= .4.IRUN=10.ICNT=1 END STOP CUTPUT VARIABLE SEQUENCE ISET TICELT TEDELT TEDELT TEDELT TEDELT TEDELT KGDELT KGDELT KGDELT KGDELT KEDELT KEDE 220014 P6 P78 P34 P7 ZZJ020 P8 ZZJ021 TC 150 Ped PTA P ISET T7 220022 ISET T2 T4 Т3 T5 T6 PMAX PMIN

CUTPUTS INPUTS PAFAMS INTEGS + MEM BLKS FORTRAN DATA CDS 66(500) 121(1400) 45(400) 6+ 0= 6(300) 104(600) 29

GU TU ZUMO

К3

ENDUCB

CUTPUTS

ĸG

:

FORTRAN LV	G LEVEL 21	MAIN	DATE = 77339	33/29/45
0001	DIMENSION	T1(43)+T2(43)+T3(43)	.T4(43).T5(43).KG(43)	)•K3(43)•
	1 PMAX(43)	TC1(43).TC2(43).TC3(4	43).TC4(43).TC5(43).1	16643).
	2 TC7(43).1	C3(42) .	16(43).T7(43).TC9(4)	3).TC10(43)
0002	INTEGER LA	SL(S)/ SYST EN T	IME ". CONS" . TANT"	•
0003	READ (3.5)	) (T1(1).TC1(1).1=1.4	al)	
3334	FEAD (3.50	) (T2(I)+TC2(I)+I=1+4	1)	
0005	PEAD (3.50	)) (T7(1)+TC3(1)+1=1+4	1)	
0006	READ (3.5)	)) (Ta(I)+TC4(I)+I=I+4	91)	
0 207	FEAD (3.50	)) (75(I),TC5(I),I=1.4	1)	
0009	- READ (3.50	) (KG(I)+TC6(I)+I=1+4	•1)	
3336	READ (3.5)	)) (KJ(1)+TC7(1)+I=1+4	•1)	
0010	EE AD (3.50	) (FMAX(1).TC3(1).1=)	.41)	
0011	PEAD (3.50	) (Té(I).TC9(I).I=1.4	-1)	
5512	9EAD (3.50	) (T7(I)+TC10(I)+I=I	.41)	
0012				
0014	13 HEAD(5.51)		([]++5(])+KG([]+K2(]	I.PMAXCII .
		10(1)+17(1)		•
3316		. • • 3 • • • • • • • • • • • • • • • • •	TCALLY TCBLIN TCAL	
3310		O(1) TCLO(1)		
0017				
3318	500 FCEMAT(11	.////33%. •SENSITIVITY	ANALYSTS OF TANDEM	
	1 + GUVERNO	F AND STEAM SYSTEM	42X. AS TINE CONSTAN	AT TI 15*.
	2 ' VAFIED	FR24 3.35 TO 2.151.		
	2 //472. 150	N* . 3x. * T1 * . 5x . * SYSTE	TIME CONSTANT .)	
0019	*FITE (6.5	2) (1.71(1).7C1(1).1	=1.41)	
2222	#FITE(6.5)	3)		
0021	510 FORMAT(*1*	.////33X. SENSITIVITY	ANALYSIS OF TANDEN	CCMPCUND .
	1 * GDVERNO	IF AND STEAM SYSTEM	42X. AS TIME CONSTAN	IT T2 IS+.
	2 • VAFIED	FREM 0.05 TO 0.21.		
	3 //47%. "61	N* .9X. * T2* . 5X. * SYSTER	<pre>K TIME CONSTANT*)</pre>	
2255	#SITE (6.9	2) (1.72(1).7C2(1).1=	=1.41)	
0023	WEITE (0.52	:03		
0024	520 FORMAT( 1	.////33X. 'SENSITIVITY	ANALYSIS OF TANDEM	CEMPEUND .
	1 · GDVERNU	AND STEAM SYSTEM	42X+ AS TIME CONSTAN	IT T3 IS*+
	2 • VAFIED	FRJM 0.35 TO 0.21.		
	3 7/478. 460	11 • 8X• 13 • 5X• 5YSTE	TIME CUNSTANT*)	
0025	WEITL LOSS	2] (1,13(1),1C3(1),1=	=1,41)	
0020	#FI15(6+53			601/201/201
3321		AVVISSA SENSITIVIA	ANALISIS OF TANDEM	
	1 · 6072810	EDON A 1 TA 1 41	AZATAS TIPE CENSTAR	14 15 .
	3 //47% 451	FRG# 0.1 10 J10-1	TINE CONSTANTIN	
0024	WRITE (6.5	2) (1.TA(1).TCA(1).1-	- IIME CONSTANT /	
3329	WEITE (6.54			
0030	540 FDEWAT( 1	.////33x.'SENSITIVIT	ANALYSIS OF TENDEN	COMPOUND .
	1 + G2VEANS	E AND STEAM SYSTEM	AZX. TAS TIME CONSTAN	T TS IST.
	2 * VARICO	FECH 3.0 TO 10.0".		
	3 //47%, 141	N' . 3x. 15 . 5x. SYSTE	TIME CONSTANT )	
2271	#FITE (6.5	2) (I.T5(1).TC3(I).I=	1.41)	
0032	BRITEL6.55	(J)		
0033	550 FORMAT(*1*	.////33X. • SENSITIVITY	ANALYSIS OF TANDER	CCMPOUND .

.

.

.

.

÷

PAGE 3331

FORTEAN	IV GLEVEL 21	MAIN	DATE = 77309	00/29/45
	1 · GDVE	NON AND STEAM SYSTEM	48X. AS TIME CONSTANT I	<g 15°.<="" td=""></g>
	2 * VAFI	ED FFCM 0.5 TO 3.7".		
	3 //47%.	PUN .BX. KG .SX. SYSTE	TIME CONSTANT .)	
3334	W= IT2 (	6.52) (1.KG(1).TC6(1).1=	1.41)	
0335	#FITE(E	.560)		
0036	560 FOFWAT( 1 * GOVE	HOF AND STEAM SYSTEM	42X. AS TIME CONSTANT A	<3 15*•
	2 • VAFI	ED FFGM J.3 TC 0.7*.		
	3 //472.	" UN . HX. KJ . 5X. SYSTE	TIME CONSTANT )	
0037		51523 LI.K3(I).TC/[ ].I=	1+41)	
0038	·	573) 		
, <u>, , , ,</u>	1 4 GOVF	NDA AND STEAM SYSTEM'N	362 ANALYSIS OF TRADER C	THE HARD'.
	2 - 11-1	128 ARE VARIED FRUM 140 129 1.79 404451.49.49967	TU 4.J'.	
0040	S PREINE SETTE L	-42) (I. DMAX(I). TCB(I).	1=1.41)	
3 1 4 1	45175(A			
2242	STT POSTATI	1	ANALYSIS OF ATANCEM C	SMPOUND .
	1 . GOVE	NOP AND STEAM SYSTEM	43X. AS TIME CONSTANT	T6 IS*.
	2 • VA=1	ED FREM 0.5 TO 3.7 .		
	3 //472.		TIME CONSTANT )	
3043	#F1T2 (	1.52) (I.TO(I).TC9 (I).1	=1.41)	
63-4	AFITE(L	.573)		
0045	S78 FCAMAT(	1///33x. SENSITIVITY	ANALYSIS OF TANCEM C	2MPOUND .
	1 * GOVE:	FNOR AND STEAM SYSTEM	46X. AS TIME CONSTANT	17 15.
	2 • VAFI	20 FRCM 0.5 TO 3.7%		
	3 //-7×.	"AUN" . F.A. + T7" , 5X . * SYSTE	TIME CONSTANT .)	
346	AFITE (	(.52) (I.T7(I).TC10(I). 1	=3+41)	
5547		-LOT(T1.TC1.43.1.43.1.LA	EL)	
0348	WFITELC			
0049	1001 PC~MA:(	TANA SUNSTITUTE ANAL	TSIS OF TANDEN COMPOUND	THE TIMES
		SIER SISIER FLUTTING IF	E EFFECT ON THE REPAIRS	TE VARIEOI
	3 + 2574	A 86 TC 9-1511	when the constant it	13 VAPILO I
0050	5 AL 1		Ft )	
1151	ARITELO	1995)	227	
6352	1002 FCFMAT(	X./1X. SENSITIVITY ANAL	YSIS OF TANDEM COMPOUN	D GOVERNOP!.
	1 * AND	STEAM SYSTEM PLOTTING TH	E EFFECT ON THE APPROX	MATE TIME .
	2 . CONS	TANT	WHEN TIME CONSTANT T2	IS VARIED .
	3 * F4CM	0.05 13 0.24)		
2253	CALL PRI	PLOT (T3+TC3+43+1+43+1+LA	el)	
0054	<b>W</b> #ITE(0	1003)		
0055	1003 FORMAT(	K./IX. SENSITIVITY ANAL	YSIS OF TANJEM COMPOUN	D GOVERNOP .
	1 * 443	STLAM SYSTEM PLOTTING TH	E EFFECT ON THE APPPONT	MATE TIME++
	2 · COP-	ANT IX CF THE SYSTEM	WHEN TIME CONSTANT T3	IS VAFIED*.
0064	3 * FRCM	J.J5 [0].2*)	er 1	
0050			01/	
2154	1334 EDEMATE	10047  X.21X.15/NSTTIVITY ANAL	VSIS OF TANDER COMPONE	ND COVERNOS!.
	1 4 4KO 1	STEAM SYSTEM PLOTTING TH	E EFFECT ON THE ADDEDY	LVATE TIME .
	2 • COAS	TANT - / IX - OF THE SYSTEM	WHEN TIME CONSTANT TA	IS VARIED!.
	3 • F#CM	0.1 TO 0.6"		
		•		

•

PAGE U002

FORTEAN IV	G LEVEL 21	MAIN	DATE = 77339	03/29/45
0059	CALL FRPL	DT (T5.TC5.43.1.43.1.LA	2L )	
0050	WFITE(6.1	005)		
3 361	1335 FORMAT(1X 1 • AND ST 2 • CONSTA 3 • F=CM 3	<pre>./lx.*SENSITIVITY ANAL FAM SYSTEM PLOTTING TH NT*./lx.*JF THE SYSTEM .U TO 10.J*J</pre>	YSIS OF TANDEM COMPOUN E EFFECT ON THE APPPOXI WHEN TIME CONSTANT TE	D GOVERNOR . Mate time . Is varied .
0062	CALL PEPL	UT (KG.TC6.43.1.43.1.LA	EL)	
>>+3	WFITE(6-1	2361		
0054	1006 FORMAT(1X 1 • AND ST 2 • CONSTA 3 • FROM 0	<pre>./1x.*52NSITIVITY ANAL CAM SYSTEM PLOTTING TH NT*./1X.*OF THE SYSTEM .5 TO 3.7*)</pre>	YSIS OF TANDEM COMPOUN E EFFECT ON THE APPEDXI WHEN GAIN KG IS VAFIED	D GOVERNOF*. Mate time*. *.
0055	CALL PSPL	DT (K3.TC7.43.1.42.1.LA	el. )	
0045	#PITE(6.1	007)		
0067	1037 FO4MAT(1X 1 • AND 5T 2 • CONSTA 3 • FRCM 0	<pre>./1k.*SINSITIVITY ANAL FAM SYSTEM PLOTTING TH NT*./1k.*UF THE SYSTEM .3 TO U.7*)</pre>	YSIS OF TANDEM COMPOUN E EFFECT ON THE APPEOXI MHEN GAIN KE IS VAFIEC	D GÖVERNOR". Mate time". '.
0068	CALL PPPL	OT (PMAX.TC8,43,1.43.1.	LASL)	
0069	WRITE(0+1	004)		
3373	1008 FORMAT(1X 1 • And St 2 • Consta 3 • Afe VA	*/1X.*SENSITIVITY ANAL EAM SYSTEM PLOTTING TH NT**/1X**UF THE SYSTEM RIEC FROM PLUS OR MINU	YSIS OF TANDEM COMPOUN E EFFECT ON THE APPROXIN WHEN LIMITS OF THE HAP S 1.0 TO PLUS OR MINUS 3	D GEVEPNDR". Matë time". D limiter". 2.0")
0071	CALL PEPL	CT (*0.TC9.43.1.43.1.LA	BC)	
03-2	wFITE(6.1	311)		
0073	1011 FCEMAT(1x 1 • AND ST 2 • CONSTA 3 • FFCM J	•/1X•*SENSITIVITY ANAL FAM SYSTEM PLOTTING TH NT*•/1X•*DF THE SYSTEM •3 TO 0•7*1	YSIS OF TANDEM COMPOUND E Effect on the Appfoxid WHEN GAIN TO IS VAFIED	D GOVERNOF ⁴ . Mate time:.
0074	CALL PEPL	UT ( T7.TC10.43.1.43.1.L	AUL)	
2275	¥4175(6.1	012)		
2376	1012 FORMATIIX 1 • AND ST 2 • CONSTA 3 • FFCM 3	./1X.*SENSITIVITY ANAL EAM SYSTEM PLOTTING TH NT*./1X.*UF THE SYSTEM .0 TO 10.0*)	YSIS OF TANDEM COMPOUND E Effect on the Appfoxid Whin time constant t7 :	D GEVEPNDE*. Mate time*. Is varied*.
3377	50 FORMAT (2	(52). ())		
0075	51 FORMATCIO	(+5.2))		
3079	52 ECRMAT (1	x.45X.13.F14.5.5X.F10.	5)	
2232	STCO	-		
0341	END			

PAGE 0003

•

#### ****CONTINUOUS SYSTEM MODELING PROGRAM****

*** VERSION 1.3 ***

.

P6=TM-DAMP+SD

TITLE SIMULATUON OF GOVERNOR AND TURBINE SYSTEM **PECO** MODEL . FIXED ISET FIXED IRUN FIXED ICNT INITIAL PAFAMETER TMD=9.0.TMAX=6.87.T1=3.C .T2=5.0.T3=.20.T4=.05.... T5=5.,FR=.285.ICNT=1.TMIN= 3..DAMP=.5.TIMAX=15.0.TIMIN=.05.... T2M1X=15.).T2MIN=.)5.T3MAX=2.0,T3MIN=0.0.0.T4MAX=2.0.T4MIN=.05.... T5MAX=15.0.T5MIN=.C.IRUN=1 ISET=0 TICELT=(TIMAX-TIMIN)/40.0 T2DELT=(T2MAX-T2MIN)/40.0 T3DELT=(T3MAX-T3MIN)/4J.J T4DELT=[T4MAX-T4MIN]/40.0 TEDELT=(T5MAX-T5MIN)/40.0 TDELT=(4.)-1.)/40. NOSOPT 55=1./FR+.5 IF((-SS).LE.TMAX) GO TO 1 SSLIM=TMAX GO TO 3 1 IF((-SS).GE.TMIN) GO TO 2 SSLIM=TMIN GO TO 3 2 SSLIM=-SS 3 CONTINUE TSS=SSLIM TTC=(1.0-EXP(-1.0))*TSS SCRT DYNAMIC SD=STEP(0.0) P1=SD/FR P2=TM0-P1 P3=LIMIT(TMIN.TMAX.P2) P4=REALPL(0.0.T1.P3) PS=LEDLAG(T3,T2,P4) TM=LEDLAG(T4.T5.P5)

```
NOSCAT
                IF 1 KEEP .NE. 1 ) GD TO 100
            IF(ISET=1) 300.100.300

333 IF( TM-TTC) 133.233.233

200 TC=TIME

ISET=1
            133 CONTINUE
          SORT
          TERMINAL
                 - IN-F DELT=0.001. FINTIM=6.0.0UTDEL=.1
                METHOD RKSEX
                GC TO (1000.1010.1020.1030.1040.1050). IRUN
           1000 #PITE (2.51) T1.TC
               GO TO 1090
           1010 #FITE (3.51) T2+TC
GD TD 1020
           1323 WRITE (3.51) T3.TC
GC TC 1050
           1030 #FITE (3.51) T4.TC
               GC TO 1040
           1040 WRITE (3.51) TS.TC
GD TC 1040
           1050 #FITE(2.51) TMAX.TC
           1080 ISET=0
                1F (ICNT-41) 533.510.510
            500 ICNT=ICNT+1
                GC TO (2000.2010.2020.2030.2040.2050).IRUN
           2333 T1=T1+T1DELT
                 50 TO 2040
           2010 T2=T2+T2DELT
                60 TO 2040
           2020 T3=T3+T30ELT
                60 10 2383
           2030 TARTA+TAD'LT
                6C TO 2040
           2343 TS=TS+TSUELT
                GO TO 2020
           2050 TMAXTTMAX+TDELT
                THIN=THIN-TOELT
           2080 CALL REPUN
            STO CONTINUE
             51 FCR-41 (2(520+8))
                 END.
                PARAMETER T2=3.35.T1=3.13.IRUN=2.ICNT=1
                END
                PARAMETER T3=0.05.T2=2.5 .IRUN=3.ICNT=1
                5 ND
                PARAMETER T4=0.1.T3=2.8 .IRUN=4.ICNT=1
                ENC
                PARAMETER 15=3-0-14=12-0-IRUN=5-ICNT=1
                5ND
                PARAMETER TS=15.). IFUN=6. ICNT=1
                END
                STCP
CUTPUT VARIABLE SEQUENCE
                                                            ZZ0001 SSLIM
ISET TIDELT TZDELT TZDELT TADELT TSDELT TDELT SS
SSLIN SSLIN TSS TTC SD P1 P2 P3
                       TTC SD P1
220009 220010 TM
                                                               220004 P4
                                              P6
                                                       220013 TC 15ET
220005 220006 PS
                                               T4
                                                               TMAX
220314 ISET ICNT
                       т:
                               72
                                       T.3
                                                       T 5
                                                                       TMIN
            INDUTS PAGAMS INTEGS + MEM ALKS FORTRAN DATA CDS
75(1400) 25(400) 2+ 0= 3(300) 69(600) 18
 CUTPUTS
 44(500)
```

.

FORTRAN	t۷	G LEVEL	21	MAIN	DATE =	= 77309	21/53/11
2001			DIMENSION	T1(43).T2(43).T3(43).	T4(43).T5(43)	.TMAX(43).	
		1	TC6(43).	TC1(43).TC2[43).TC3[4	3).TC4(43).TC	[5(43)	
0002			INTEGER LA	HELES//ISYST TEM TI.	IMECONST.	* TANT*/	
0003			HEAD (3.50	<pre>(T1(1).TC1(1).1=1.4</pre>	1)		•
2034			-CAC (3.50	<pre>(T2(1).TC2(1).(=1.4))</pre>	1)		
2525			-540 (3.5)	(73(1).TC3(1).1=1.	-1)		
0336			PEAD (3.50	) (TA(I).TCA(I).1=1.4	1)		
0007		•	SEAD (3.50	) (TS(1).TCS(1).1=1.4			
2008			SEAC (3.53	) (TYAX(1).TC5(1).I=1	.41)		
0009			DC 10 1:42	. 4 .			
6220		10	SEAD(5.51)	T1(1).T2(1).T3(1).T4	(1). T5(1). TMA	X(I)	
0311		-	DD 20 1=42	. 4 3			
0012		20	SEAU(5.51)	TC1(1).TC2(1).TC2(1)	.TC4(1).TC5()	1) .TC6(1)	
2213			#4:10 (0.5				
3314		500	F 35MAT (+1+	.////33X.15ENSITIVITI	ANALYSIS CE	A PECCE TYPE	OF .
		1	. GOVE SN 16	AND TUGHINE SYSTEMS	A2X. AS TIME	CONSTANT TI	151.
		2	· VANTED	FEGM			
			//478.151	NI.HK.ITII.SY.ISYSTER	TINE CONSTAN		
2015		5	#EITS (6.5		1.41)		
2216			WETTE IA	a)			
3017		51.0		. //// 33X. * GENSITIVITS	ANALYSTS OF	A DECO TYPE	CE .
		,	PLOY SALE	AND THE HINE SYSTEME .	ANALIS TIME	CONSTANT TO	161.
		-	t valiti	FE 14 1.0 TO 2.01	S7 A 1 A 3 1 1 ML	CONSTANT 12	19.4
			1 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14.84.1731.55.124CTCL	TIME CONSTAN		
0018		-	AD176 14-5		1 413	•1 • 7	
0010			AR1.2 1013	27 (10)2(17))(2(17)) 31	4 *** 1 1		•
2222		62.3	881/210404 602047/414				· ·
		525			ANALISIS OF	A PECU TYPE	UF*•
			- GUVE ANGA	AND TOADINE STSTEMP ./	428+*45 1145	CUNSTANT 13	12.4
			2 4 A 7 4 A 10 1	FRUM -1.00 10 1.00 ;			
				N. 434 - 13- 154 - 5751EN	TIME CUNSIAN	(1 • )	
2021			NATE 1010	(27 XI+)S(I)+(CS(I)+I=	1.41)		
3322			***********	33			
0.52 7		520	FC-MAIL*1*	·////JJX. · SENSITIVITY	ANALYSIS OF	A PECO TYPE	OF .
		1	C.V.L.NU-	AND TURBINE SYSTEM ./	42X. AS TIME	CONSTANT T4	15*,
		2	VANIEC	FPOM -5. TO 15.4.			
		3	7747X. 190	*** • BX • T4* • 5X • * SYSTE	TIME CONSTAN	it•}	
3024			#FITE (**5	<pre>2) (I.T4(I).TC4(I).I=</pre>	1+41}		
0025			#RITE(6+54	0)			
0326		540	ECSNATC 11	•////33x.* SENSITIVITY	ANALYSIS OF	A PECO TYPE	GF'.
		1	• SCVERNUS	AND TURBINE SYSTEMINA	42X. 45 TIME	CONSTANT 15	15
		2	• VARIED	FEGM 3.0 TC 23.0*.			
		3	//~7x.*50	NI + PX+ ITSI + SX+ ISYSTEN	TIME CONSTAN	·T•)	
3327			#FITS (6.5	<pre>2) (1.T5(1).TC5(1).I=</pre>	1,41}		
0025			#FIT216.55	5)			
5253		550	FCSWAT(*1*	.////33X.*SENSITIVITY	ANALYSIS OF	A PECO TYPE	OF .
		. 1	I GGVE FRUIS	AND TURBINE SYSTEM	42X. 45 LIMIT	ER THIN ANA	тмахт.
		2	• VARIED	14CM 0.J TG 2J.01.			
		3	//47x. +=U	**+8x+*T5*+5x+*SYSTE	TIME CONSTAN	(T+)	
0030			¥FITE (6+52	)(I+TMAX(I)+TCG(I)+I=	1+41)		
0031			CALL PROLO	T(T1.TC1.+3.1.43.1.LA	6L)		
JJ32			#FITE(6+10	013			
2223		1001	FORMATLIAN	/1X. SENSITIVITY ANAL	YSIS OF A PEC	O TYPE OF GOT	VSPNOR.

-

212

PAGE 0001

FORTRAN IV	G LEVEL 21	MAIN	DATE = 77309 ;	01/53/11
	1 AND TURSIN	E SYSTEM PLOTTING TH	E SEFECT ON THE APPROXIM	ATE TIME .
	2 . CONSTANT	. /IX. OF THE SYSTEM	WHEN TIME CONSTANT TI I	S VAPIED .
	3 . EBCA 0	1 TO 1.05")		
3034	CALL PAPLOT	(T2.TC2.43.1.43.1.LA	86)	
0035	#PITE(6.100	2)		
0036	1002 FORMATL1X./	1X. SENSITIVITY ANAL	YSIS OF A PECC TYPE OF G	OVERNOP .
	1 AND TUREIN	E SYSTEM PLOTTING TH	C REFECT ON THE APPROXIM	ATE TIME .
	2 . CONSTANT	+./1X.+OF THE SYSTEM	WHEN TIME CONSTANT T2 I	S VARIED .
	. 3 · FRCM 0.0	U TO 2.3*)		
3337	CALL PRPLET	(T3.TC3.43.1.43.1.LA	CL )	
0039	WEITE(6.100	3)		
0 3 3 9	1003 FORMAT(1X./	18. ISENSITIVITY ANALY	YSIS OF A PECO TYPE OF G	OVERNOR",
	1.AND TURGIN	E SYSTEM PLOTTING TH	E EFFECT ON THE APPEOXIM	ATE TIME .
	2 . CONSTANT	* . / 1X . * UF THE SYSTEM	WHEN TIME CONSTANT T3 I	S VARIED'.
	3 + EPCM -1.	) TC 1.)*)		
0040	CALL PRPLOT	(T4.TC4.43.1.43.1.LA	BL)	
0341	#SITE(0.100	4)		•
0342	1004 FCHMAT(1X+/	1X. SENDITIVITY ANALY	YSIS OF A PECO TYPE OF G	OVERNOR .
	1ºAND TUREIN	E SYSTEM PLOTTING TH	E EFFECT ON THE APPEOXIM	ATE TIME .
	2 CUNSTANT	+./IX. OF THE SYSTEM	WHEN TIME CONSTANT TA I	S VARIED.
	2 • 14/04 -54	*0 15.0*3		
0342	CALL PRPLOT	(T5.TC5.43.1+43.1+LA	31. 7	
))				0
0045		IX. SCNSIIIVIIT ARAL	FEERET ON THE ADDLOVIN	ATE TIMES.
	2 CONSTANT	THE STATEM	WHEN TIME CONSTANT TS T	S VACIED!.
		TO 20-11		
2245	CALL PEPLOT	ITMAX.TCD.43.1.43.1.	LABL )	
0047	79:TE (6.100	4)		
5548	1005 FC574T(1X./	12. SUNSITIVITY ANALY	SIS OF A PECO TYPE OF G	OVERNOR'.
	1+AND TUREIN	S SYSTEM PLOTTING TH	EFFECT ON THE APPEOXIM	ATE TIME .
	2 . CONSTANT	+ ./ IX . FOF THE SYSTEP	WHEN LIMITER THIN AND T	MAX .
	3.V41420 140	N 3.3 TO 13.43		
0349	50 ECAMAT (2(E	20.4))		
3050	51 FORMAT(6(FS	.2))		
2 2 5 1	52 FORMAT LIX.	40X+13+F14+5+5X+F13+	5)	
C 3 5 2	3 T CP			
<b>U</b> JS3	END			

213

PAGE 0002

.

APPENDIX G SYSTEM STUDY'S DATA

.

•



,

TEST SYSTEM BUS DATA

54UNT В	0000	0000	.000	.0000	.000	0000.	.0000	.0000	.0000	0000.	.0060	.0000	.000	0630.	0000	0000	0000			0000			0000		0000	0000	0000	. 6000	0000	0000.	, 000 C	.000.	.000.	0000.	0000	0000		0000	0000
5 FUNT G	0000-	0000	. 0000	.0000	.0000	0000	.0000	0000.	.000	.0000	.000	0000	0000	0000	.0000	0000	.0000	0000	0000	0000	.0200	0000	0000	0000	0000	0000	0000.	0000	6000	. 6000	.000	.0000	. 0000	.0000	. 6000	.0000	0000	0000	.0000
GEN Kvar	00.	00.	• 0 •	• • •	• • •	.0.	00.	00.	00.	60.	00.	00.	00.	.0.	00	00	00	00.	00	00-	00		00.	00	00.	00.	00.	00.	00.	145.10	205-50	205.70	104.10	167.00	211.30	100.50	.70	22.80	86.00
6£N N¥	.00	00.	00.	.00	• • •	• 00	00.	• 00	• 00	.00	• • •	• 00	00.	• 00	• •	00.	• 00	00.	00	00.	.00	.00	00.	00.	00.	00	• 00	• • •	• 00	250.00	563.30	650.00	632.00	508.00	650.0n	540.00	540.00	830.00	1000.00
LUAD HVAR	<b>c</b> 0 <b>.</b>	• • 0	2.40	184.00	• 00	00.	84.00	176.00	• • •	000.	00.	88.00	00.	00.	153.00	32,30	• 00	30.00	00.	103.00	115.00	.00	84.60	-92.20	47.20	17.00	75.50	27.60	26.90	• 00	4.60	00.	00.	.00	003	• 00	00.	• 00	250.00
LOAD Ни	• 00	• 00	322.00	500.00	• 00	60.	233.80	522.00	• 60	00.	• • •	8,50	• • •	c.	320.00	329.40	00.	158.00	• 00	690.00	274.00	<b>.</b> 00	247.50	300.60	224.00	139.00	281.00	206.00	283.50	<b>U</b> J•	9.20	00.	• 0 0	00.	• 0 0	00.	• 00	00 *	1104.00
ANGLE	-9.370	-6.800	- 4.650	-10.479	- 012.9.	-8.620	-10.910	-11.320	-11.120	-6.210	-7.030	-7.040	-6.920	-8.580	-8.570	-7.550	-3.550	-9,200	-2.920	-4.340	-5.140	-,690	890	-7.439	-5.430	-6.680	-8.700	-3.170	4 1 0	<u>-4,3ñ0</u>	000.	1.790	2.290	<b>,</b> 850	4.270	6.960	1.350	6.650	-10,920
νοίτς	1.0475	1.0469	1.0504	1.0058	0,00.1	1.0074	1979.	7299.	1.0281	1.0170	1.0125	1.0000	1.0142	1.0117	1.0158	1.0322	1.0339	1.0313	1.0500	6066.	1.0321	1.0500	1.0450	1.0377	1.0575	1.0521	1.0379	1020.1	0050.5	1.0475	.5%20	1544.	5799.	1.0123	1.0493	1°0635	1.027H	1.0205	1.0300
BUS TYPE	•••		0 (		•	0 1		0		10	0 11		2		12	1 2 4		18 0	19	20 0	21 0	22 0	23 0	24 0	25 0	26 0	27 0	28 0	2	50 1					5 <b>-</b>	56 1	37 1	30	

•

.

•

• •

۰. •

.

216

.

.

. .

## TEST SYSTEM LINE DATA in p.u. on 100 MVA Base

•

BUS	8U\$	RESISTANCE	REACTANCE	SUSCEPTANCE	TAP	PHASE
1	2	.00350	.04110	. 69870	0006	
ī	39	.00100	02560	. 7 . 0 0 9	.0000	- 00
2	3	.00130	01510	25720	.0006	004
2	25	.06700	00860	14600	.0000	••••
3	- 4	.00130	.02130	.22140	.0000	.00
3	18	.00110	.01350	21 580	.0000	-00
4	5	.00080	.01260	13420	-0000	• • • •
4	14	.00080	.01290	1 5520	.0000	.60
5	6	.00020	00260	.04340	.0060	. 00
5	8	.00050	05110	.14760	.0000	.60
6	7	.00060	.00725	.11300	-0000	. 60
6	11	.00070	.00820	13890	.0000	
7	6	.00040	.00460	07800	.0000	.60
8	9	.00230	.03630	36040	.0000	. 60
9	39	.00100	.02500	1.20000	.0000	••••
10	11	.00040	.00450	07290	.0000	.00
10	13	.00040	.09430	07240	.0000	.60
13	14	.00090	.01010	.17250	.0000	. 0.0
14	15	.00150	.02170	36600	.0000	. 0.0
15	16	.00090	.00940	17100	.0000	. 00
16	17	.00070	.00590	1 34 20	. 0600	- 60
16	19	.00160	01950	30400	.0000	.00
16	51	.00050	.01350	.25480	.0000	00.
16	24	.00030	.00590	06800	. 6000	0.0 0
17	18	.00070	.00820	13190	.0000	.00
17	27	.00130	.01730	32160	.0000	
21	55	.00050	01400	.25650	.0000	
22	23	.00060	00960	18460	.0000	. 00
23	24	.00220	03500	36100	.0000	. 00
25	59	.00320	.03230	.51300	. 0000	
26	27	.00140	.01470	23960	.0000	
26	85	.00430	.04740	78020	6000	.00
26	29	.00570	.06250	1.02700	.0000	.00
28	29	.00140	.01510	24900	.0000	
12	11	.00160	04350	.00000	1.0060	- 00
12	13	.00160	.04350	.00000	1.0050	.00
6	31	.00000	.02500	.00000	1.0700	.00
10	32	. 00000	.02000	.00009	1.0/00	- 00
19	33	.00070	.01420	.00060	1.0700	- 00
20	34	.00090	.01800	.00060	1.0090	.00
22	35	.00000	.01430	.00000	1.0250	.00
23	35	.00050	.02720	.06000	1.0000	.00
25	57	.00060	.02320	.00000	1.0250	.00
5	30	.00000	.01810	.00000	1.0250	.00
29	38	.00000	.01560	.00000	1.0250	.00
19	20	.00070	.01380	.00000	1.0600	.00

•

.

· -

.

.

.

-

•

## EXCITATION SYSTEM DATA

Unit	ĸ _A	к _Е	K _F	т _А	T _E	TF	V _{RMAX}	V RMIN	S _{E.75Max}	S _{EMAX}
					0.5					
L	5.0	0485	•04	.06	.25	1 1.0	1.0	-1.0	•08	.26
2	6.2	633	.057	.05	.405	.5	1.0	-1.0	.66	.88
3	5.0	0198	•08	.06	.50	1.0	1.0	-1.0	.13	.34
4	5.0	0525	.08	.06	.50	1.0	1.0	-1.0	.08	.314
5	40.0	1.0	.03	.02	.785	1.0	10.0	-10.0	.67	.91
6	5.0	0419	.0754	.02	.471	1.246	1.0	-1.0	.064	.251
7	40.0	1.0	.03	.02	.73	1.0	6.5	-6.5	•53	.74
8	5.0	047	.0845	.02	.528	1.26	1.0	-1.0	.072	.282
9	40.0	1.0	.03	.02	1.4	1.0	10.5	-10.5	.62	.85
10*	-	-	-	-	-	-	-	-	-	-
				•						

.

*Unit 10 has constant excitation.



Unit	$\frac{1}{tR}$	т _с	T ₃	T Š	Τ _ζ	т ₅ .	T _{MAX}
1	3.5	.2	9.65	74.4	-1.93	.965	10.4
2	1.835	.45	0	.1	13.25	54.0	6.46
3	.725	3.0	0	5.0	0	5.0	7.25
4	1.99	.24	0	.18	2.02	10.0	6.52
5	2.56	.121	0	.154	4.5	9.64	6.00
6	2.18	3.0	0	5.0	0	5.0	6.87
7	1.95	.2	0	.18	3.75	7.5	5.8
8	1.79	3.0	0	3.0	0	4.0	5.64
9	2.76	.38	0	.1	1.68	6.0	8.65
10*	-	-	<b>-</b> .	~	-	-	-

.

.

*Unit 10 has constant mechanical torque.

-

.

SYNCHRONOUS	GENERATOR	DATA	-	<b>v.u.</b>	on	100	MVA	Base
0.11010101000	CITATION CITA AND	******		<b>P</b> • • • •	~	200		

.

Unit	H	R	×ı	x _d	x' d	X"d	x' q	X" q	T " do	T " qo	^S 1.0	^S 1.2
1	42.0	.00014	.0125	.1	.031	.0155	-	.0480	.1020	.1020	.15	.425
2	30.3	.00027	.035	.295	.0697	.348	.17	.1190	.0656	.0656	.07	.391
3	35.8	.000386	.0304	.2495	.0531	.0265	.0876	.0613	.0570	.0570	.08	.283
4	28.6	.000222	.0295	.262	.0436	.0218	.166	.1162	.0590	.0590	.136	.591
5	26.0	.00014	.054	.67	.132	.0660	.166	.1162	.0540	.0540	.147	.6
6	34.8	.00615	.0224	.254	.05	.0250	.0814	.0569	.0730	.0730	.09	.291
7	26.4	.000268	.0322	. 295	.049	.0245	.186	.130	.0566	.0566	.139	.529
8	24.3	.000686	.028	. 290	.057	.0285	.0911	.0637	.0670	.0670	.083	.268
9	34.5	.0003	.0298	.2106	.057	.0285	.0587	.0411	.0479	.0479	.106	.447
10	500.00	.0001	.003	.02	.006	.0020	•008	.0056	.0700	.0700	.0	.0

.

.

#### APPENDIX H

#### **REACTANCES OF SYNCHRONOUS MACHINES**

The concepts of inductive reactance and of time constant for static circuits have been discussed by many authors. The following is a summarization of Kimbark's work (chapter XII) of the synchronous machine reactance.  $^{(3)}$  The impedances of three-phase machines are classified base to the symmetrical components, into positive-sequence, negative sequence, and zero-sequence impedances. To determine one of these, the rotor circuits are closed but not excited and the rotor is turned forward at synchronous speed, current of the proper sequence is applied to the armature windings and the armature terminal voltage of the same phase sequence as the current is found. Of course the ratio of voltage to the current is the impedance. "Any one machine has only one zero-sequence reactance and one negative-sequence reactance"⁽³⁾ but it has several different positive sequence reactances and that depends upon the angular position of the rotor and upon whether the positive-sequence armature currents are steady or are suddenly applied.

# H-1 Direct-Axis Synchronous Reactance x

Applying positive-sequence armature currents in a polyphase armature winding will set up a rotating magnetic field in the air gap. This field consists of waves of m.m.f. and of flux. The space fundamentals which rotate forward at synchronous speed with respect to the armature, are stationary with respect to the field structure. Applying armature

currents produce the same fundamental m.m.f. wave, regardless of the angular position of the rotor; but the fundamental flux wave varies greatly with the rotor position. If the rotor is so rotated that the direct axis stays in line with the crest of the rotating m.m.f. wave, a path of high permeance is offered (the paths are approximately as shown in figure H-1)^(3,53) and the fundamental flux wave has its greatest possible magnitude for a given armature current. Therefore, the total flux linkage of each phase winding of the armature has the greatest possible value for a given current in the winding, and the armature inductance and inductive reactance are greater than what they would be for any other position of the rotor.



FIGURE H-1 DIRECT AXIS SYNCHRONOUS REACTANCE FLUX PATHS

The flux linkage of an armature phase per ampere of armature current under these conditions if the direct-axis synchronous inductance  $L_d$ , hence the direct-axis synchronous reactance is  $x_d$ . Other methods to measure  $x_d$  are available in the literature such as a slip test. Therefore, changing  $x_d$  physically causes permeance which is presented by the rotor iron to the stator m.m.f. wave to be changed also. The mathematical derivation of  $x_d$  was found in Appendix A.

## H-2 Quadrature-Axis Synchronous x

It was mentioned previously that the magnitude of the spacefundamental wave of the air gap flux depends on the position of the rotor with respect to the space fundamental wave of m.m.f. and it is the greatest when the direct axis of the rotor coincides with the crest of the m.m.f. wave. On the other hand, the flux wave is smallest when the quadrature axis of the rotor coincides with the crest of the m.m.f. wave. The flux paths for these conditions are shown in figure H-2.^(3,53) Under this condition the armature flux linkage per armature ampere is the quadrature axis synchronous inductance L_q and the quadrature-axis synchronous reactance is x_q. In round rotor machine x_d and x_q are equal.



FIGURE H-2 QUADRATURE AXIS SYNCHRONOUS REACTANCE FLUX PATHS

The procedure for measuring  $x_q$  suggests it is similar to the first one used for measuring  $x_d$ . By applying positive-sequence currents to armature, the rotor would be driven forward at synchronous speed with the quadrature axis in line with the crest of the rotating m.m.f. wave. At the same time sustained positive sequence armature voltage would be measured, obviously, the ratio armature voltage to armature current would be  $x_q$ . A more feasible and easy to do measurement of  $x_q$  would be the slip test measurement which is explained thoroughly in reference 3. Definition for the synchronous reactance of both the d-axis and q-axis coils of the transformed machine have been defined.  $x_d$  is the self-inductance of the model's direct axis coil and  $x_q$  is the self-inductance of the quadrature axis coil of the model. One point that needs to be mentioned is that the effect of the fields or dampers are not represented in  $x_d$  or  $x_q$ .⁽⁵³⁾ The mathematical derivation of  $x_q$  were shown in Appendix A.

# H-3 Direct Transient Reactance x

"The conditions used in defining direct-axis synchronous reactance except that the positive-sequence armature currents are suddenly applied and the positive-sequence armature voltage is measured immediately after application of the current instead of after the voltage has reached its steady-state value. In both cases the rotor is rotated forward at synchronous speed, with its direct axis in line with crest of armature m.m.f. wave and with field winding closed but not excited."⁽³⁾ "By the theorem of constant flux linkage, at the instant immediately after application of the armature currents the field linkage is still zero. Therefore, the only flux that can be established immediately is that which does not link the field winding but rather passes through low-permeance linkage paths, largely in air,"⁽³⁾ as shown in figure H-3, "under these conditions the flux per ampere is small and is defined as direct-axis transient inductance  $L'_d$ ."⁽³⁾ The mathematical derivation of  $x'_d$  is in Appendix A. 225





FIGURE H-3 DIRECT AXIS TRANSIENT REACTANCE FLUX PATHS

#### H-4 Direct-Axis Subtransient Reactance x"

It has been assumed in defining x[']_d that there were no rotor circuits except the main field winding. However, there can be additional circuits on both axes. Salient pole machines have amortisseur windings as is shown in figures H-4 and H-5. A few salient-pole machines have field collars while in round rotor machines the solid steel rotor core furnishes significant paths for eddy currents.⁽³⁾ Again, if positive-sequence armature currents are suddenly applied in such time phase that the crest of the rotating m.m.f. wave is in line with the direct axis of the rotor, transient currents are induced in additional direct-axis rotor circuits as well as in the main field winding. "These transient currents oppose the armature m.m.f. and initially they are strong enough to keep the flux linkage of every rotor circuit constant at zero value. The additional rotor circuits are situated nearer the air gap than the field winding is. Consequently, the flux set up by the armature current is initially forced into leakage paths of small cross-sectional area and lower permeance than



#### FIGURE H-4

#### FIGURE H-5

would be the case if the only rotor circuit were the field winding."⁽³⁾ (See figure H-4.) Under these conditions the armature flux linkage per armature ampere is the direct axis subtransient inductance  $L_d^{"}$  and directaxis subtransient reactance is  $x_d^{"}$ . Mathematical derivation of  $x_d^{"}$  is in Appendix A.

# H-5 Quadrature-Axis Transient Reactance $x'_q$ and Quadrature-Axis Subtransient Reactance $x''_q$

These quantities are defined in the same way as  $x'_d$  and  $x''_d$  except that the suddenly applied positive-sequence armature current is in such time phase that the crest of the space-fundamental m.m.f. wave is in line with the quadrature axis of the rotor instead of the direct axis. The flux paths of figure H-6 are the same as those for a steady state flux (figure H-2).⁽³⁾ Consequently, for salient-pole machine,  $x'_q$  is equal to  $x_q$ . "Because field current is inducted by a changing direct-axis flux though not by a changing quadrature axis flux  $x'_d$  is less than  $r'_q$ ."⁽³⁾ Amortisseur windings restrict the quadrature-axis flux initially to low-permeance



FIGURE H-6 QUADRATURE TRANSIENT REACTANCE FLUX PATHS

paths as shown in figure H-5. Mathematical derivation of  $x'_q$  and  $x''_q$  are in Appendix A.

# H-6 Direct-Axis Transient Open-Circuit Time Constant T

"If the armature is open-circuited and if there is no amortisseur winding, the field circuit is not affected by any other circuit. Under these conditoins the change of field current in response to suddent application, removal, or change of e.m.f. in the field circuit is governed by the field open circuit time constant, or direct-axis transient opencircuited time constant, which is given by an expression similar to that of any simple R-L circuit"⁽³⁾

$$T_{do} = \frac{x_{ff}}{R_f}$$
 Radians

# H-7 Direct-Axis Subtransient Time Constant $T^{\prime\prime}_{do}$ and $T^{\prime\prime}_{d}$

"In machine with amortisseurs, there are on the direct axis of the rotor two coupled circuits at rest with respect to one another but both in rotation with respect to the armature. The two coupled circuit have two time constants. The longer one is the transient time constant, the shorter one, the subtransient time constant. Both time constants are affected by the impedance of the armature circuit. If the armature circuit is open, the time constants have their open-circuit value  $T'_{do}$ and  $T''_{do}$ . If the armature is short-circuited, the time constants have their short-circuit values  $T'_{d}$  and  $T''_{d}$ ."⁽³⁾

# H-8 Quadrature-Axis Time Constants T', T', T'', and T''

"In a machine with a solid round rotor, the changing amplitude of the quadrature axis component of alternating armature current or voltage can be represented fairly well by the sum of two exponentials. The time constants of these exponentials are  $T'_{qo}$  and  $T''_{qo}$  when the armature circuit is open,  $T'_{q}$  and  $T''_{q}$  when the armature is short-circuited."⁽³⁾ Some of the machine's time constants have been already defined in Appendix A.

#### REFERENCES

- (1) Concordia, C., <u>Synchronous Machines</u>, New York, John Wiley & Sons, Inc., 1951.
- (2) Young, C. C., "The Synchronous Machines," <u>IEEE Tutorial Course</u>, 1970.
- (3) Kimbark, E. U., Power System Stability Synchronous Machine, New York, Dover Publications, Inc., 1968.
- (4) Stevenston, W. D. Jr., <u>Elements of Power System Analysis</u>, New York, McGraw-Hill, Second Edition, 1962.
- (5) Park, R. H., "Two-Reaction Theory of Synchronous Machines Generalized Method of Analysis, Part I," <u>AIEE Trans</u>., Vol. 48, pp. 716-730, July 1929.
- (6) Park, R. H., "Two-Reaction Thoery of Synchronous Machine, Part II," <u>AIEE Trans.</u>, Vol. 52, pp. 352-355, June 1933.
- (7) Concordia, C. and Crary, S. B., "Stability Characteristic of turbine Generator," <u>AIEE Trans.</u>, Vol. 57, pp. 352-355, June 1933.
- (8) IEEE Committee Report, "Computer Representation of Excitation System," <u>IEEE trans. on Power Apparatus and Systems</u>, Vol. PAS-87, No. 6, pp. 1460-1468, June 1968.
- (9) IEEE Committee Report, "Dynamic model for Steam and Hydroturbine in Power System Studies," <u>IEEE Trans. on Power Apparatus and Systems</u>, Vol. PAS-92, pp. 1904-1915, Nov/Dec. 1973.
- Westinghouse Electric Corporation, Stability Program, "Data Preparation Manual," Report 70-736, Prepared by Byerly, R. T. and Sherman, D. E. and McCauley, T. M., Dec. 1972.
- (11) Schleif, F. R., Hunkins, H. D. and Martin, G. E., "Excitation Control to Improve Power Line Stability", <u>IEEE Trans. on Power Apparatus and Systems</u>, Vol. PAS-87, No. 6, June 1968.
- (12) IBM, <u>System 360 Continuous System Modeling Program User's Manual</u>, Program Number 360A-CX-16X.
- (13) Evans, W. R., "Graphical Analysis of Control System," <u>AIEE Trans.</u>, Vol. 67, pp. 547-551.
- (14) Evans, W. R., <u>Control System Dynamics</u>, New York, McGraw-Hill, 1954.
- (15) Melsa, James L, and Jones, Stephen K., <u>Computer Programs for Computational Assistance in the Study of Linear Control Theory</u>, New York, McGraw-Hill, 1973.
- (16) Dorf, Richard C., <u>Modern Control Systems</u>, Addison-Wesley Publishing Co., 1974.
- (17) Porter, F. M. and Kinghorn, J. H., "The Development of Modern Excitation Systems for Synchronous Condensels and Generators," <u>AIEE trans.</u>, Vol. 65, pp. 1020-1028, 1946.
- (18) Harder, E. L. and Valentine, C. E., "Static Voltage Regulator for Rototrol Exciter," <u>AIEE Trans</u>., Vol. 64, pp. 601-606, 1945.
- (19) Lynn, C. and Valentine, C. E., "Main Exciter Rototrol Excitation for Turbine Generator," AIEE Trans., Vol. 67, pp. 535-539, 1948.
- (20) Liwschitz, M. M., "The multi-stage Rototrol," <u>AIEE Trans.</u>, Vol. 66, pp. 564-468, 1947.
- (21) Kimball, A. W., "Two-Stage Rototrol for Low-Energy Regulating Systems," AIEE Trans., Vol. 66, pp. 1507-1511, 1947.
- (22) Dahl, O. G. C., <u>Electric Power Circuits Theory and Applications</u>, <u>Vol. II, Power System Stability</u>, New York, McGraw-Hill Book Co., Inc., 1938.
- (23) Westinghouse Electrical Corporation, <u>Electrical Transmission and</u> Distribution Reference Book, Fourth Edition, Pittsburgh, 1964.
- (24) Demello, Francisco and Concordia, C., "Concept of Synchronous Machine Stability as Affected by Excitation Control," <u>IEEE Trans. on Power</u> Apparatus and Systems, Vol. 68, April 1969.
- (25) Crary, S. B., <u>Power System Stability</u>, Transient Stability, Vol. I, New York, John Wiley & Sons, Inc., 1945.
- (26) Crary, S. B., <u>Power System Stability</u>, <u>Transient Stability</u>, Vol. II, New York, John Wiley & Sons, Inc., 1947.
- (27) Jackson, William B. and Winchester, Robert L., "Direct and Quadrature Equivalent Circuit for Solid-Rotor Turbine Generators, <u>IEEE Trans</u>. on Power Apparatus and Systems, Vol., PAS-88, No. 7, pg. 1121 & 1969.
- (28) Matsch, L. W., <u>Electromagnetic and Electromechanical Machines</u>, Scranton, in text Educational Publishers, 1972.
- (29) Weedy, B. M., <u>Electric Power Systems</u>, Second Edition, New York, John Wiley & Sons, 1972.

230

- (30) IEEE Committee Report, "Recommended Phasor Diagram for Synchronous Machines," <u>IEEE Trans. on Power Apparatus and Systems</u>, Vol. PAS-88, No. 11, pp. 1593-1969.
- (31) Laughton, "Matrix Analysis of Dynamic Stability in Synchronous Multimachine Systems," <u>IEEE Trans.</u>, Vol. 113, No. 2, pg. 1966.
- (32) El-Sherbing, M. K., <u>Digital Analysis of Excitation Control for</u> <u>Inter-Connected Power Systems</u>, Ph.D. Dissertation, Iowa State University, Ames, Iowa, 1969.
- (33) El-Sherbing, M. K., "Dynamic System Stability, Part I Investigation of the Effect of Different Loading and Excitation System," IEEE Trans. on Power Apparatus and Systems, Sept./Oct., 1973.
- (34) Krause, P. C., "Synchronous Machine Damping Excitation Control with Direct and Quadrature Axis Field Winding," <u>IEEE Trans. on Power</u> Apparatus and Systems, Vol. PAS-88, pg. 1222 and 1969.
- (35) Peterson, Harold A., <u>Transients in Power Systems</u>, New York, John Wiley & Sons, 1951.
- (36) Steven, "An Experimental Effective Value of the Quadrature-Axis Synchronous Reactance of a Synchronous Machine," <u>IEEE Proceedings</u>, Vol. 108, part A, pg. 559.
- (37) Clarke and Concordia, C., "Over Voltage Caused by Unbalance Short Circuit Effect of Amortisseur Winding," <u>AIEE Trans.</u>, Vol. 63.
- (38) Concordia, C., "Steady State Stability of Synchronous as Affected by Voltage Regulator Characteristics," AIEE Trans., Vol. 63, pg. 215.
- (39) Rankin, A. W., "Per Unit Impedances of Synchronous Machine I," <u>AIEE Trans.</u>, Vol. 64, pg. 569 and 1945.
- (40) Rankin, A. W., "Per Unit Impedances of Synchronous Machines II," <u>AIEE Trans.</u>, Vol. 64, pg. 839 and 1945.
- (41) Prentice, B. B., "Fundamental Concepts of Synchronous Machine Reactance," <u>AIEE Trans.</u>, Vol. 56, pg. 1937.
- 42) Carter, G. W., Leach, W. I., and Sndworth, J., "The Inductance Coefficients of a Salient to the Two Theory," <u>IEEE Proceedings</u>, Vol. 108A, pg. 263, 1961.
- (43) Wagner, C. F., "Damping Winding for Waterwheel Generators," <u>AIEE</u> <u>Trans.</u>, Vol. 50, Part I, Pg. 140, 1931.
- (44) Young, C. C., "Equipment and System Modeling for Large-Scale Stability Studies," <u>IEEE Trans. on Power Apparatus and Systems</u>, Vol. PAS-81, No. 1, 1972.

- (45) Ramey, D. G. and Skooglund, J. W., "Detailed Hydrogovernor Representation for System Stability Studies," <u>IEEE Trans. on</u> Power Apparatus and Systems, Vol. 69, June 1970.
- (46) Schleifand, F. R. and Wilbor, A. B., "The Coordination of Hydraulic Turbine Governors for Power System Operation," <u>IEEE Trans. on Power</u> <u>Apparatus and Systems</u>, Vol. 85, pg. 750, No. 7, 1966.
- (47) Atom, O, Project submitted to Professor J. Fagan, School of Electrical Engineering, University of Oklahoma, Norman, Oklahoma.
- (48) Park, R. H., "Definition of an Ideal Synchronous Machine and Formula for the Armature Flux Linkage," <u>General Electric Review</u>, Vol. 31, pp. 332-334, June 1928.
- (49) Dandeno, P. and Hauth, R. L., "Effect of Synchronous Machine Modeling in Large Scale System Studies," <u>IEEE Trans. on Power</u> Apparatus and Systems, March/April 1973.
- (50) Hanson, Oscar W., Goodwin, C. J., and Dandeno, P. L., "Influence of Excitation and Speed Control Parameters," <u>IEEE Trans. on Power</u> Apparatus and Systems, May 1968.
- (51) Calvert, J. F. "Forces in Turbine Generator Stator Windings," AIEE Trans., Vol. 50, pp. 178-196, March 1931.
- (52) Lokay, H. E. and Bolger, R. L., "Effect of Turbine-Generator Representation in System Stability Studies, <u>IEEE Trans. on Power</u> Apparatus and Systems, Vol. PAS-84, pp. 933-942, October 1965.
- (53) Fagan, John E., <u>Synchronous Machine Modeling Mechanization and</u> <u>System of Performance Study</u>, Ph. D. Dissertation, University of Texas, Arlington, Texas, May 1977.
- (54) Shackshaft, G., "General-Purpose Turbo-Alternator Model," <u>IEEE</u>, Vol. 110, No. 4, pp. 703-713, April, 1963.
- (55) Kimbark, E. W., "Introduction to Problem of Power System Stability," IEEE Tutorial Course, 1970.
- (56) Olive, D. W., "New Techniques for the Calculation of Dynamic Stability," IEEE Trans. Power Apparatus and Systems, July 1966.
- (57) El-Abiad, Ahmed H., "Advance in Power System Dynamics and Control," <u>The Fourth Iranian Conference on Electrical Engineering</u>, May, 12-16, 1974, Department of Electrical Engineering, Phalavi University, Shiraz, Iran.

- (58) Undrill, J. M., and Turner, A. E., "Construction of Power System Electromechanical Equivalents by Model Analysis," <u>IEEE Trans. on</u> <u>Power Apparatus and Systems</u>, Vol. PAS-90, No. 5, September/October 1971, pp. 2049-2059.
- (59) Olive, D. W., "Digital Simulation of Synchronous Machine Transients," <u>IEEE Trans. on Power Apparatus and Systems</u>, Vol. PAS-87, No. 8, August, 1968.
- (60) Kaminosono, Hiroshi and Uyeda, Kiyotaka, "New Measurement of Synchronous Machine Quantities," <u>IEEE Trans. on Power Apparatus</u> and Systems, Vol. PAS-87, No. 11, November, 1968.
- (61) "Philadelphia Electric Co. Stability Program Users Guide," <u>PECO</u>, 1976.
- (62) <u>EPRI</u>, "Coherency Based Equivalents for Transient Stability Studies," Report 904, January, 1975.