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PREFACE

One of the greatest practical problems in the design of modern aircraft
is the phenomenon of flutter, Test flights may reveal flutter in wing, aileron,
fuselage or tail assembly unless it is carefully considered at the time of
preliminary design. The purpose of this paper is to present the fundamental
nature of, and the basic methods of, handling the analysis of this problem of
flutter in preliminary design.

This paper will also include a method of solving systems of equations that
arise in the analysis by a cambination of matrix and Laplace transform methods.

References to the bibliography throughout the text are indicated by bracketed
numbers followed by the page numbers.

I wish to express my gratitude to Mr. and i L. J. Fila lately associated
with the Lockheed and Glenn L. Martin aircraft companies and Professor E, F. Allen
of the Mathematics Department for their aid in the final preparation of this

papers,

me' 19AB c. J. Ce
Stillwater, Oklahoma
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INTRODUCTION

In view of the recent interest and development in the design of high
speed aircraft, it seems proper to bring out the general methods employed
in dealing with one of the most important design problems involved, that
of aireraft flutter, The vibrations occurring in flutter phenomena can often
lead to loss of control or to structural failure in such aircraft parts as
wing, aileron, fuselage, and tail. The increasing size and cost of aircrafi,
the danger of actual flight testing, and the difficulty with which idealized
wind tunnel experiments are carried on makes it imperative that there be
developed analytical methods whereby the flutier characteristics can be
accurately predicted, All of the theoretical computations and experimental
measurements on aircraft vibration have the one basic objective in mind, and
that is to establish the maximum safe air speed of the aircraft.

Far convenience, this paper will deal for the most part with the
specialized problem of flutter in the wing or wing-aileron structure. Such
a problem is also discussed in [5, pp. 220-228]. It is known that when such
a structure is restrained to an initial position of equilibrium, it may became
unstable under certain conditions of motion. The theary oi small oscillations
is, in general, an approximate theory of the motion of a mechanical system
in the neighborhood of an equilibrium position and *'wrefore is tsed in tis
analysis of flutter. We shall consider the wing and alleron as our mechanical
system. The wing is considered as an elastic structure clamped to the airplane
fuselage which is considered as a rigid base. The wing is then taken to have
two degrees of freedom, corresponding to bending and twisting and a third degree
of freedom representing the relative deflection of the aileron. Still more
recent developments in aircraft design require an addition of a fourth degree
of freedom, that of relative tab deflection. However, in ouwr mresent discussion, we
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of the wing corresponding to twisting, and the angular deflection q= of the aileron
rolative to the direction of flight.

There are tiree kinds of farces affecting such a systems (1) the inertis
forces, (2) the restraining forces, and (3) the aerodynamic forces. The aerodynamic
forees are defined to be the forées due to the air pressure acting on the wing
or wing-aileron and are functions of the air speed. Since the eritical speed
for flutter is defined to be the lowest farward speed of the seroplane for which
free oscillations are steady, we shall employ Lagrange's equations of motion for
a gystem performing free oscillations. These equations contain statements regarding
the equilibrium of the sbove mentioned forces.

The mechanical system is treated as noneconservative amd this noneconservative
nature arises in two distinet ways. First, where mechanical ereryy is actually
tranaforned into heat, that is, where there is a damping effect and energy is
dissipated, and the other is due to Uie method of analysis alone. For example
we chose our system to consist of the wing and alleron slone and not the surrounding
m,ﬁhmmﬂnmzhoamﬂmunmahmbwnmwlmc
energy to the nearby air. The Lagrangian equations of motion of a gereral none-
conservative system of n degrees of freedom performing free oscillations can be
written in the fomm

(1) .-‘Uﬁ#u obus-g"n-o a“q’(t)-o

where j is a dummy swanmation index and both i and J have the range 1 to n, The
emfﬁciemm,bu,eumemmdrmalargemofmhnmocmm
and paraseters of the alrcraft structure. Some of these serodynamic factors are
wing density, location of stiffness axis (elastic axis) of the wing, location of
centers of gravity of the wing and aileron, aileron length, and chord length of
wing, There are various methods of solving equations of the form (1), and at

this point I shall give the matrix-Laplace transform method.



HATRIX-LAPLACE THRANSFORM METHOD

Define 4, B, C to be square matrices composed of elements "J’bﬂ’ 3
m&uh,auiq,&,!tobomlmmcmmghdm

? iif_ respectively. Then the n equations (1) can be written
as one matric differential equation

(2) & +B§+0q =0

Singe A contains the inertial properties amd C contains the stiffress properties
of the structure, matrices A and C are referred to as the inertial and
stiffness matyices respectively. The terms involving the velocities are

due to the damping forces, and therefore B is properly called the damping
natrixe

mm»-w«:u:mm:;muamum
E"(P)" ]o‘nq‘(t)dtmdnahﬂIhthamlmmtﬂxuﬁ:
elmfiio

Emuation (2) is equivalent to
3) ¥ +itBieiTtcqe0
mmtmw;‘l. Since A arises from the kinetic energy, A” -
exists. If we now take the Laplace transfora of each term we obtain
symbolically the equstion

feitngsitcgeo
and upon perfoming the indicated operation,

- (g +p) *+ P A~ Bog P B AT G0
Here p is a scalar and q,, g, are composed of the elements q(0) and § (0)
respectively, where q(0) = O in our case, since q-(0) is a stable equilibrium
point. A rearrangement gives
W GPeiepitBeaTClig
where I is a unit matrix, Ve may obtain froa this
5) 3= @Proptne it o) g
After the matrix multiplication of the right hand rember of equation (4),
one may cbtain from the resulting colusn matrix the subsidiary equations

and from these using a table of Laplace transforms cbtain the solutions in
the form
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n
> ¥
(6) qQ %_ a ain(:r t e Or)
where ar is 2 column matrix of constants,

A simple numerical example will suffice to demonstrate the machinery of the

computations, Consider a system to be represented by the following differential
equations of moctions

1
(7 ’idé_ ,aql*hz_o
Jﬁz—f- st suf=0
at

uhmq(o)- 2(0} ﬂé =0

vkl oy

Bquations(7) can be written in the matrix form

fd WCT B
g, W BT °ﬁ <
el W Sdtn 5N
1'?,?.53;(,,5.1)-5/12 E};: P;f/i]

Now from the initisl conditions q, = r)

e (5 + 1)
ok 3 ?ml)(zfos) g p-w. §
.Jhcspm# g o

q

6p° + 1
-2
q

(6p *1)(23:!*3} -é: (2 +3 “6 ’lJ

GPresto)




Using a table of Laplace transforms we obtain the solutions

(8) Gt = (sin V33 t 4 5sin —— )
I | s

5 - s o1
< = —l (sin v 3/2 © = 3 sin === t)
8v 6 Vo




STABILITY CONDITIOKS

The determinant of the matrix that premultiplies @ in equation (4) will be
observed to be identical with the determinstal or frequency equation® of the
clasalical method of sclving equations (1). Let us examine for a moment this
frequency equation -21+ua“ln+s"lc » 0, It is in general of degree
2n, where n is the number of degrees of freedom. The roots w are in general
emplmmdﬁeurmwwmm,»u:—-&mqu!mbeofmfwn
(9) q-?i & ot where w_ = ¢ + id,
Bmeotconﬂugﬁomplupaiu,ﬁn:ebﬁmwbowﬁtmmun form

=r % =
q %a. o%a o where the bar represents the conjugate

(10) Q-F b’:rt m(d'ti»gr) - 1";'.

If any of the ¢, are positive, we cdbtain at least one mode of oseillation with
increasing amplitude and the system is unstable.

A method by which cne could dbiain stability conditions or determine if a
systen is stable is tie applhatimdﬂmth‘s@atoﬂadﬂaﬂm&deqmm,
since a necessary snd sufficient condition for the real perts of all the roots
to be negative is that all the test functions shall be pouit.iniz

Consider now the differential equations of motion of the simplified flutter
problea that was discussed in the introduction., The damping farces will be

11’.?. Pe 204 ]

2 K 3. Routh, dvanced Rigid Dymamics, London 6th eds (1905) pp. 297-301

Fraser, Duncan, " On the Criteria for the Stability of Small Hotions!
Proc. fioy. Soes Serdes A, Vole 124, pe 642 (1929)
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noghoted’dmothocoofﬁcmofm linear functions of the welocities are
complicated functions of the frequency and their inclusion does not bring any
new aspect into the analysis. Using ql and qz as the gemeralised coordinates
and the generaliged forces in this case as moments, we cbtain the equstions

Q1) 2
wmEf o 0, £L g den,deo

dat

7T TR s

The coefficients® are given by
=g emy e
- e e
typ =y 35"
where
II'MOIM&OIWMMtSﬁmdm (elastic axis)
m, = mass of alleron
a = distance between elastic axis of wing and hinge axis of aileron
i, = radius of gyration of alleron
s, = distance of center of gravity from hinge axis
We shall assume no dynamic coupling between the coordinates ql and qz aund Uerefore
02-0. For an analysis of coupled modes see [2]. Thek“mmmt.iomaftlu
alr speed as they result fram aerodynamic forces.
Writing equations(Ll) in matrix fora with a, = 0

“ I8 T80

3 The system, however, is still non-conservative, See p. 2

% See discussion of coefficients on p. 2



Froam equation (12) we can write equation (4) for our specialized problem as

R

(T )
o o b { 1)
{ J = ( ) for convenience
2, dgp ol R e
-'E. o 1) 03 ama ®m
a5, 8y q©)=nr

o),

‘U

)
F o
)

2k

'22
'hmf(p)-phq pz(% + 2) ’il -m

£(p) = (0° + 8)(5° + h)

(3) forgandh = CJLF'EN

where unz = % uzzz,%

:Ef
é:
ns},
o

The solution will contain a linear combination of the sin v h and sinv g » The
inverse transform requires v h and v g %o be real and this will be true upon
exanining equations (13) when the following conditions are satisfied

(s) ("1.1‘1""'22:“’)2 . "':Jil% >0

2, 22
R

These same conditions zre obtained by the expansion of the determinantal equation,

which is essentially what was done above, For a discussion of that method and the
physical meaning of these stability conditions see [5, pp. 225-227].



As the number of degrees of freedom is increased, the expansion of the
determinatal equ-tion is increasingly more difficult. Therefore a graphical method
o.f determining the critical speeds is used. For any speed below this critical
value the oseillations resulting from any given initial disturbance eventually die
- away; at thé actual eritical spced the motion tends to become simply sinusoidalj
while for all speeds over a certain range whose lower liuit is the critical speed,
oscillations occur which increase to an indefinitely large amplitude however small
the initial disturbance may be,

From the above it is clear that at tle critical speed for flutter the determinane
tal equation will have at least one pair of conjugate pure imaginary roots. These
are sometimes referred to as critical roots. The diasgramatic method by which the
flutter speed of an aeroplane can be represented consists of showing the variation
of the damping factor c with the air speed far the several constituents of the
motion, A few graphss will illustrate this procedure.

10
“1
|5t
0 -
R<
=10 \
Pig. 1
\ -
=20
100 200 [0]6] 00

Airspeed (ft./sec.)
The curve e, of Fig. 1 represents the damping factor of one oscillatory

constituent which is damped far all speeds less than 240 ft/sec. and grows indefinitely
layye for all speeds greater than this value, while @, of the second constituent
remains damped for all speeds,

2 These graphs were obtained from [4, p.358]
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MATRIX ITERATION METHOD

The method by which one can obtain the frequencies of the several constituent
notions depends on the complexity of the roblem at hand. For a small number of
degrees of troodﬁl6 (3 or less) the Laplace transform-matrix method may be employed.
There is an approximate numerical method called the matrix iteration method which
handles large numbers of degrees of freedom and also is useful in taking care of
corrections due to our initial assumptions. A brief vutline of this method will
be given. '

le shall first replace the one second-order matric differential equation (3)
with the two first-order equations
(15) q=r

re-i

1 1

Cq-A *Bq

Define matrices s and U by tLiie following

)
- &)
e T | Jasraed
U=

PP et WL s o

where O and I are zero and unit matrices of such an order as to make U a square

matrix. Then equations (15) cac be written as one first-order metric differential

equation7.

(16) s=Us

6 See [10] for a discussion on the advisability of employing large numbers of
degrees of freedms.

7 The Laplace transform may be applied at this point rendering

s=(pi-ut 8
and using the first n elements, we obtaln the sase results as before.



We now seek solutions of the type
(17) s=aet w is a scalar
Substituting equation (17) in (16) and we obtain
(18) Ua = wa.
e must now get values of w and & that will satisfy equation (18). Consider
now the recurrence relation :

Ua, ,=Wwa, [r=0,1, 2, sesl
where a; is an arbitrarily given column matrix. HNow by a successive use of this
recurrence formula we can express 8, in terms of a, thusly

il ag = W) By

It can be shown that for large r the ratio of the elements of the column matrix
U’.otothl corresponding elements of the oolmmrixt}r'laoh approximately
a constant oqndtotl,ﬂlronliaﬂn greatest frequency of our oseillating
systen. The fundamental irequency and the intermediate overtones and their
corresponding amplitudes can also be dbtained by a method consisting of reducing
the numbers of degrees of freedom and repeating the iteration process. The iteration
process is a systematic method of ironing out the errcrs in the assumed column
matrix. For a detailed account of this method along with alds in computing the
real and imaginary parts of the complex characteristic roots see [3].



AN EXPERIMENTAL METHOD

In conclusion, it might be of some interest to observe briefly one of the
methods used in obtaining experimental results against which analytical methods
are checked,

Vibration equipment® capable of recording a musber of positions simultanecusly
is used so that frequency and relative phase and amplitude of various points on the
structure can be obtained so as to define deflection curves of the vibrating
structure. These deflection curves will correspond to the column matrix obtained
in the iteration method.

The wing is analyzed by placing pickups along two lines, one near the leading
edge and the other near the trailing edge, in order to determine two deflection curves
for the wing. From the two curves it is possible to determine the amount of bending
and torsion present at each wing station. The pickups are so placed on the wing
as to measure the motion perpendicular to t.he surface, For studying wing fore-and-
aft modes of vibration, both vertical and horizontal components are studied to
determine the amplitude as well as the direction of motion. The exciter used is a
rotating unbalanced weight driven by a variable-speed transmission through a
flexible drive shaft. The output of each pickup is put into a separate amplifier
and then into a multielement recording oscillograph so the frequency, amplitude, and
phase relation of each wing station studied can be recorded simultanecusly, thus
determining the wing deflection curves for each mode of vibration,

8 For a detailed list of such equipment and its range, see [2, p. 369-370].



SUMHARY

In the practical sense flutter means an oscillation which grows and finally
breaks the structure, The problem of flutter is comcerned with the motion of a
mechanical system in L he neighborhood of an equilibrium position ami therefore the
theory of small oseillations is employed in the analysis of flutter. In the theory,
eritical values are determined when free oscillations are steady. <Therefore the
W equations of motion for a system performing free cscillations are set
up using as generalized coordinates the degrees of freedom described by the bending
and twisting of the wing and the relative deflections of the aileron and tab.

The generaliged forces used are the moments due to inertisl, retraining, and
dynamical farces,

The solution of Lagrange's equations of motion is accomplished by writing them
as one matrix differential equation and applying the method of Laplace transforms
to this matrix equation. after the matrix subsidary equation is dbtained, the single
. equations that make up the matrix equation are solved by taking the imverse transform.

Due to the camplexity of the inversion of a matrix involving elements containing
a variable, the method at its present development is limited in the number of degrees
of freedom that can be employed. The author is at present working on the derivation
of formulae and methods whereby more degrees can be handled, Alse work is being
done on the extension of the Laplace-transfom theory so that formulae may be used
for obtaining the inverse tranafom of the subsidary matrix equation directly.

Stebility conditions are determined by cbtaining the conditions for which any
one of the constituent oseillations will not be a growing oscillation. For this
procedure, Routh's tests or direct expansion of the determinantal equation may be
enployed.

The matrix iteration method is also used in solving the differential equations
of motion, and a graphical method showing the variation of the damping factors
of the constituent motions with the air speed is employed in determining the critical
flutter speed.

4
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