PRAFFIC STUDIES AND PLAIS FOR CERTADI STRATEGIC POIMES IR STILLWATM, OHLAHOMA

By
CONRAD Patcerson givan Bachelor of Science Oklehome Agricuttural and Mechanical College Stillwater, Olflahona 1947

Submitted to the Faculty of the Graduate School of the Oklohowa Acricultural and Hechanicol College
in Partial fulpillment of the Requirements
for the Degree of
Masmer Of SCIbNG:
1950

TRAFFIC STUDIES AND PLANS FOR CERTAIN STRATEGIC POINTS IN STILLWATER, OKLAHOMA

CONRAD PATTERSON SUNN
MASTER OF SCIENCE
1950

THESIS AND ABSTRACT APPROVED:

Dean, Oklahoma Institute of Techrology

256552

PREFACE

This study of Stillwater traffic was undertaken with the view of determining the local causes of congestion and the locations within the city at which it occurrs. The results of this study are interpreted in a plan for improving the conditions at certain strategic points.

The writer wished to express his appreciation to Professor Ren G. Sexton, Head of the School of Civil Engineering, for his assistance in obtaining basic reading material covering various phases of the problem and for his advice during the preparation of this report.

TABIE OF CONTENTS

Chapters Page
I PRESENI CONDITIONS 1
II A TRAFFIC LOOP 4
III THE PARKING PROBLEM 21
IV INTERSECTIONS AND INTERNAL TRAFFIC 31
V BIBLIOGRAPHI 38

CHAPIER I

PRESENT CONDITIONS

Stillwater, Oklahoma is a city of approximately 25,000 people of which about 17,000 may be considered as permanent residents, the other 8,000 being college students and their families. The street system is composed of nam row disorderly paths, laid out, in the main, on a semblance of a rectangular system erratically connected to the namow winding streets of College Gardens that were apparently laid out without regard for sight distance or elimination of multiple street intersections.

There exist no streets for direct routing of traffic to different parts of the city from the college, which is the principal means of support for the tow, nor from the business district on Main Street. Main Street is the oldest business street in the tow; it is 72 feet wide curb to curb or six traffic lanes if the street were unobstructed by parked cars. Present parking regulations on Main Street allow it to be congested to as little as 20 feet, or a width less than adequate for a two lane street. Angle parking is allowed on both sides of the street with double parking allowed behind each row of angled cars. Movement of cars into and out of parking places further reduces the efficiency of the street, and creates an accident hazard. Left tums are allowed at intersections to further complicate the traffic pattern, and add to the general congestion and confusion. Heavy pedestrian traffic further confuses the picture.

Streets in the residential section are narrow and are blocked by parked cars. Blight caused by comercial encroachment is widespread throughout the city, due to failure to provide an adequate street system. The evidence that the street system is at fault is that the comnercial blight does not center, but like the blood born cancer, breaks out all over and each blight may be
supported by a trade area of only ten or twenty city blocks. Further evidence is the fact that there are three well defined "string" business sections in the town, and it is only a ten or fifteen minute walk from any of the three to either of the other two.

Inefficient and improperly constructed intersections create traffic accident hazards and add to the general confusion of the traffic pattern. Traffic controls are inadequate, inefficient and obsolete. Street lighting in residential areas is non-existent except for a few obsolete lights at intersections in the older parts of town. Walks are a non-existent item in all newer parts of town; so pedestrians must walk in streets which were never meant to carry more than two lanes of traffic even without parked vehicles.

Two state highways serve the city; Highway 51 connects with State Highway 33 at Oilton for traffic eastbound and is paved to Oilton. West of town Highway 51 is a gravel road past Lake Carl Blackwell but is a connection with U. S. Highway 77. Highway 40 is a paved highway from the Kansas line on the north to Stillwater and from Stillwater to its junction with State Highway 33, nine miles south. Stillwater bound traffic from the south two thirds of the state enters the city from the south over Highway 40. Traffic from the north and northwest and some from the northeast parts of the state enters the city on Highway 40 from the north. In addition some rural traffic enters over these highways, although a considerable anount of rural traffic enters over section line roads.

At the present time both highways follow streets through town that are not desirable transcity routes. Highway 40 dumps its load of high speed traffic onto Main Street, Highway 51 onto Sixth Avenue. The congestion on Main Street has already been mentioned. Sixth Avenue is a narrow street with two very bad intersections and passes two elementary schools. Sixth Avenue carries
about 60 to 70 per cent of all east west crosstom intracity traffic. There is one elementary school on Main Street north of the business district.

A Booster organization has been formed by cities and towns along Highway 51. to press for improvement of that highway as a trans-state route; and Highway 40 is being talked as the new routing for U. S. 77 .

No adequate dispersal is possible for terminal traffic. This traffic forms 80 to 90 per cent of all traffic entering and leaving Stillwater. The peculiarity of this traffic is that only a small part of it is destined for the downtown area. Week ond traffic is very heavy throughout the year, and traffic jans are a serious daily occurrence. The street system is quite inadequate to handle the influxes.

Stillwater is a growing city. Assuming that the citizens become progressive, rather than passive, the growth should continue, and a city of 40,000 to 50,000 could result in 20 years. As will be shom in the later seations of this thesis, the growth of Stillwater is blocked on the north and west by Oklahoma. A. and M. College, and growth to the south will be retarded by blighted areas and by Stillwater creek.

At the present time there is no heavy industry in Stillwater, but if transportation is made available it might move in.

A planning report of this type should include a discussion of corrective measures for present faults and present a pattern by which orderly growth can be accomplished without repeating past mistakes.

The scope of a thesis, such as this, is too limited to be considered a complete planning report. A few of the elements will be discussed in some detail with maps and drawings being used to illustrate the details.

CHAPTIER II

A TRAFFIC LOOP

As pointed out previously, the through traffic on Highway 40 must traverse Main Street to pass through Stillwater, and also terminal traffic must fight the Main Street congestion before it can reach a point of dispersion to the part of tow that is its dostination. Most of this traffic must pass through the school zone at Jefferson Elementary School. Highway 51 makes a very bad intersection with Lowry Street and another at Washington Street; also its present route intersects Main Street at grade and passes two elementary schools. Sixth Avenue is the only crosstom street east and west; it is narrow, crowded by parked cars and carries a very heavy load of local traffic. Highway 51 is also the principal connector to Lake Carl Blackwell, a popular resort west of town. As the lake is very popular with out of tom residents, as well as local residents, Sixth Avenue west of Main Street has a very heavy traffic load. The portion of Sixth Avenue east of Main Street is the connector between the rapidly building east section of tow with the business section and the west part of town.

Washington Street has served as a dispersion route for traffic from the north, but with its closing to make way for the new library this route will no longer be a satisfactory dispersion route.

If Highway 51 should be paved and become an all weather trans-state highway, or if Highway 40 should become a part of U. S. Highway 77; or if both conditions should become a reality, their present routing in the city would probably cause such a chaotic traffic condition that even the merchants would agree to proper corrective measures. Through traffic should not be forced into a city's heaviest traffic in order to get to the other side of town. Week end traffic is composed largely of students on their way home on

Saturday or on their way back on Sunday. At the beginning of a semester or sumner term they are on their way into town; at the end of a term they are on their way out. At Thanksgiving, Christmas and Easter they take advantage of the vacation to go somewhere and, of course, must return. During football season, the week ends the tean is at home, there is an influx of heavy traffic the morming of the game, and a congestion of traffic after the game as thousandsof out of tow cars attempt to use the narrow, choked streets of Stillwater to reach a point to get on the highway home. Nany residents of Stillwater will have driven to the game and will be using the same streets and adding to the congestion. Since the games are held on Saturday afternoon the downtown streets are blocked with farmer's cars double parked while their owners visit.

A loop route around Stillwater is proposed as the first element of the plan. The loop will serve to correct many of the shortcomings of the Stillwater traffic system if the loop is properly located and correctly designed. The loop, however, is more than a corrective measure; it is, in fact, an element necessary to planning for the future.

The proposed traffic loop would enclose all or a major part of the present city. Two routes have been studied and will be discussed in this chapter. A complete survey was not attempted for either route, in fact, a detailed survey was attempted at only three points. The topography was obtained for these three points. The topographic detail was obtained at the intersection of MaElroy Avenue and Washington Street; a mile west of this intersection at the intersection of McElroy and the section line road; and at the wye a mile north of MaElroy Avenue.

For convenience I have designated the routes as Loop 1 and Loop 2. Map number 1 is a diagram of the approximate route of Loop 1 , Map number 2 is a
diagram of the approximate routing of Loop 2. If the two maps are compared it will be noted that the only difference in the two loops is that in Loop 1 the north leg of the loop follows the present route of MCElroy Avenue; but for Loop 2 the north leg lies approximately along the section line road a mile north of McElroy.

The purpose of the two loops is the same: (a) to provide a route around the city congestion for through traffic; (b) to provide a route for the systematic dispersal of terminal inbound traffic to its neighborhood destination; (c) to provide a concentration thoroughfare for outbound traffic originating in parts of town other than the commercial district; (d) to provide an alternate crosstown route for people living in the western section or eastern section, or the north or south sections; (e) and to provide a convenient inbound and outbound route capable of handling high traffic intensities, for the intermittent loads during football season and other times of heavy traffic.

The two loops will utilize the same route for approximately seven miles of their length and will have other features in comon. Both loops will be of the limited access, divided parkway type. A two level cross-section, as show in part A of Plate 1 , is the recomended section. The altermate section, a single level section, is shown in part B of Plate 1. The initial development should be four lanes, with the fifth and sixth lanes to be added when needed. The four lanes to be built first, as shown in Plate 1, would be the two extreme outside lanes, and the two adjacent inside lanes. The paving is to be seven inches thick, and either properly designed hot mix asphalt concrete or Portland cement concrete. All intersections will be of the two level interchange type; the design of the intersection being fitted to the topography. In the portion of the route cormon to both loops a total of four interchanges, a railroad overpass, two street overpasses and a bridge are required.

The four interchanges required are at the two intersections of the loop with Highway 51, at the intersection with Main Street, and at the intersection with Washington Street. The Washington intersection is designed to handle traffic from the city or to the city but not to handle farm road traffic from the south. The other three interchanges are to be of the four-way type. The interchange at Main Street is on a skew which will increase the expense somewhat.

The route of the loop, along the south side of town, lies within the flood plain of Stillwater Creek. To be effective as a loop the roadway must be above highwater; so it will be necessary to build a fill of probably five or ten feet in height through parts of the route, though some parts of the route will probably require higher fills to allow sufficient clearance at Main Street and at the railroad. The route lies between the creek and the part of town that is subject to periodic flooding. The roadway fill can be made to serve a dual purpose by providing flood protection for the south part of the city.

The choice of Sixth Avenue as the east side and west side service street is not a particularly good choice since, on the west side, its traffic must pass through two school zones. The traffic entering tow from the loop at the west intersection should disperse before reaching a point midway between the loop and Washington Street. It is probable that the loop traffic entering Stillwater on East Sixth Avenue will be dispersed before reaching the railroad. The south part of the loop affords a relief route for traffic destined for the downtown area, which is just slightly longer than the Sixth Avenue routes; but due to lack of obstruction and higher speed limit should prove attractive to this element of traffic.

A right-of-way two hundred feet wide should be sufficient, except at interchanges and along the south leg of the loops. At interchanges the re-
quired right-of-way width will be determined by the design of the individual interchanges. Along the south leg the required width will depend on the field location of the route, which will determine the height of fill necessary for a freeboard of about five or ten feet above high water.

Re-routing of local farm to market traffic that now uses the county maintained section line roads, that will be blocked, is a problem that will have to be solved in the instance of both loops. There are also half section roads which are presently utilized that must be considered as a part of the same problem. It is the opinion of the writer that the design of the loop should exclude farm to market traffic, except at the regular interchanges, and then only if the vehicle is in condition to maintain the minimum speed limit of 30 miles per hour; of course, during periods of ice, snow, rain or fog the minimum would have to be lowered radically. In order to care for rural traffic, a rerouting over remaining county roads might be possible in some places, but parallel roads equivalent to the present road would have to be supplied at other points. In both loops the section line easements are included within the right-of-way for each loop; so additional right-of-way will have to be procured where rural traffic cannot be conveniently re-routed over other existing rural roads. In the portion of the loop common to both loops the half section road marked "Field Road", and the section line road north from this road might prove to be of sufficient importance to require that the traffic they carry, not be interm rupted or re-routed.

Referring to Map 1, Loop I will be seen to have three intersections requiring interchanges. Intersections at Duck Street and Main Street (Highway 51) are to be of the foum-way type; as will the one at Washington Street. The details of the interchanges at Washington Street are shown. A railroad underpass and a creek bridge are necessary on the north leg of Loop 1.

It is believed that football traffic will utilize the loop to reach the parking lots, which the colloge is getting ready to provide, as the main portion of this traffic, even now, drivas as close to the Stadium as it can get immediately won arrival in tow. The interchanges at Washington and at Duck on the north leg will allow this traffic dual direct entry to the parking lots; and when the gene is over, two direct short outlets to the loop are available to home bound out of tow fans. Sone of the out of tow traffic will undoubt edly use the internal streets but the relief provided should be sufficient to eliminate the snail $15 k e$ movenent thet was observed during the 1949 season. During that time the movenent of traffic on Hest Street, Haplo Avenue and Knom block Street were observed from the porch in front of mapartrent. After the more poorly attended games, five to ten minutes were required for a car to move three hundred fect on Wegt Street or Maple Avenue though the time on Knoblock for the same distance was usually about two minutes. After the Honecoming game the times on all three streets were much longer, as mach as thirty minutes time being required on Kaple or West Street to rave a block. Eyhibit 1 is a series of four photographs covering a period of twenty minutes, showing progressive steps in the dissolution of congestion at West and Maple.

Plate 2 is the plan of the interchenge at the Washington Street inter section with Loop 1. Wachington is shom widened to foux lenes, each lene eleven feet wide. This widening should extend two thousand feet to twentyfive hundred foet north and south of the interscetion of the center lines of Washington Street and Mowlroy Avenue.

A typical section of lashington street as widened is show on the plate. It should be noted that an inland four feet wide and ejghteen inches high is show dividing the north and south bound traffic. The islend should be continued through the interchange area for a distance of a thousand feet on each

PICTURE NUMBER I Both lines of traffic stopped on Maple Ave.

PICTURE NUMBER 3
Picture shows street as jam began to clear.

PICTURE NUMBER 2
Traffic on near lane has begun to move.

PICTURE NUMBER 4
Twenty minutes after Picture No. I; Movement restored.
side of the Melroy center line. At the point where widening of the highway begins the two treffic directions showld begin seporation; the space between the north bound and the south bound trafinc way being graded up but not paved. Noticeable signs of waming should be placed about five hundred feet ahead of the changes in highway character, to notify drivers of the division or narrowing of the highway.

The interchange is designed for the loop route to overpess Washington Street, and to take advantage of present street routes in the area. Fill anounting to as much as 20 feet high will be required to provide a fourteen foot clearance for the overpass above Washington Street. The ground drops sharply to the east; the fall amounting to about thirty-two feet in a distance of nine hundred feet. The elevation of the roedvay will be about 942 feet above mean sea level datum at the east abubnent of the overpass and the grade at thet point will be zero. Two streets east of the overpass are availeblo on the north of the loop, as interchange turnouts. The first, Bellis, is only 300 feet from the overpass; so was not considered as usable due to the excessive grade required to reach its elevation of about 912 feet. The second street, Ramsey, is 300 feet east of the first and its elevation is probebly about six feet lower of about 906 feet. A spur fill will be required to carry the approach and tumout lenes. The same street will be utilized for both entering and leaving the loop. Ramsey will also be the street used on the south side of the loop to carry outboud trafic to the cestbound lanes of the loop, and to provide egress for eastbound loop trafice that desires to go north or to cone to the college. North Ramsey, south of the loop, ends at NeGeorge Avenue near the north entrance to the stadiun; so provides a direct route to that point for football trafice from the eastoond lanes of the loop. Comell Avenue will serve as the connector from Ransey to Washington for trafic inter-
changing from eastibound to northbound, or interchenging from northbound to eastbound. Forth of the loop Tyler Avenue will be utilized as the connector between Ransey Street and Weshington Street. West of Washington Street, Monroe Street is to be extended from its present terminus with the "Farn Road" (Plate 2) to serve as the south comnector with the loop. Comell Avenve is to be the connector between Washington Street and Monroe Street for interchanging traffic; see Plate 2. Traficic bound for Stillwater or the college is afforded the choice of three routes; Monroe Street is to be made sinty feet wide into tow through the west edge of the campus, and connecting with the stadium by means of the Farin Rodd; Washington and Ransey provide access principally to the Stadium, the college, and the part of town between Washington Street and Duck Sireet. North of the loop and west of Washington an wnaned pair of streets are to be utilized for interchanging between the westbound lanes of the loop and the southbound lane of Washington Street.

Another interchange of importance to football traffic will be the Duck Street intersection. Knoblock Street will be used as the west side exit and entrance west of Duck Street, and Duncan Street will be used east of Duck. Both Knoblock and Duck would provide direct routes between the Stadium parking lots and the loop. The two interchanges then provide a total of five routes for the footboll crouds. If entronce to the paxting lots is free flowing, congestion should not develop on the loop or on the connectors. Duck Street will also serve that midtom residential area for generol service teminal traficic.

Traffic destined for the downtom comercial area vill find it convenient to use the interchange at the intersection of Main and the loop. Traffic outbound from the northem end of the comercial area would also use this interchange.

In addition to the three interchanges a railroad grade separation will be
necessary as will a bridge over Booner Greek. Also the west mile of the north leg will reguire a considereble amont of remgading to eliminate excessive grades. Right-of-way procurement for the nom leg of Loop 1 will be expengive and difficult. The reguired zight-of-way will, in places, encompass the inprovements in the form of residences.

Provision should be made to allow access to Loop I fron future development south of the east end of the north leg, and north and norbheast of the 100p. This area has been receiving considexable attention recently, and with construction of a school in this aree interest in this section as a residential area should increase. Wth the quick access to other paris of the oity, that would be available through the loop, the growh of this area would be practically assured.

Loop 2 will follow approximately the route shom in map 2 . The cross section of the loop will be either section A or section B, Plate I. Attention is called to the note on each section in xeference to the acceleration lane show in these cross sections. These lanes are used to allow entering treffic an opportunity to reach trafinc speed beroxe entering the traffic Lanes, and to allow trafpic leaving the loop an opportunty to slow to a safe interchange speed. Plate 3 is a plan of the only interchange necessary on the north leg of Loop 2. This interchange is located at the wye near Boomer Lale, a mile north of hoblroy Avenue.

At the present time the wye intersection is the junction of two, two lane paved roads. In the plan, as ghow in Plate 3, these existing two lane roeds will be used to carry southbound trafiic through the interchange aree the north-south branch of the wfe is an extension of Washington Street end, for the purpose of identisiaation, that portion south of the present wre will be referred to as Washington street. Highwey 40 follows the sottheast branch of the

we, curring iato the north end of Main Staet, which will be catled the Matn Street branch. Only the highuy north of the we will be roferred to as Mighway 40 .

The present wy junction, while not having a particularly bad accident record to the present time, does have the potentialities to become a man killer. Prafic entering the wre from Weahington Street mast enter headmon into opposing trefsic from Highway 40 , that canot bo geen until it is too late. The Washington traffie aters at the crest of a hill that hidea the oncoming traffic. The plan of the interchange shows a double lane branching east frow Wesiniafou, uncerpessing the Main Street branch and joining high way 40 at a point where visibility of hostile troffic is good. This lane should be built evea though the loop is not. This new lane would carry porthbound trafic into northboud traffic, moking it easier for trefric from Washington Street to enter Highway 40 and eliminating the hezard of crossing almost headmon the trafic traveling in the opposite direction.

The design of the interchange was determined to a considerable extent by the topograply. The location of the interchange is six hundred to eight hundred feet south of the section line, due to the nature of the intersection and to take advantage of nore favorable topography at thas location. The loop overpasses the wye, so thore are three levels to the interchanga. The Main Street branch is widened to four eleven foot lanes separated by a four foot parktay. The outbound lanes branch to the right to fom a junction whth the neu outbound lanes from Washington. All interchange routes are to be single lanes twelve feet wide. Assuning a speed of ebout twenty minles per hour for cars on the interchange lenes, and assuming a continuous streon of cars a^{+}, rinimsn safe spacing, the maximura rate per lane is $26 / 0$ to 3520 cars per hour. This is a computed value so actual maximum capecity would probably be about

1800 cars. This load would probably be excesaive over a long period but should not cause congestion for periods of less than two hours duration. The interchange is designed to handle ry200 cars per hour inbound to the tom and college. Inboud treffic destined for the college may use the Washington leg or the Main Street leg of the wye. That portion using the hain Street brench would tura onto Duck Street to reach MoGeorge Avenue of other interval avenues, leading to the college. The syster has a probable total inbound cepacity for a two houx period of 8,000 cars. This rate is made larger then anything to be expected during the next five years. The outbound capacity is approxinately the same as the inboud capacity.

Three overpasses are required in the desiga of the interchange. They are show in Plate 1. The main overpass, carrying loop traffic over the we, is shown as a single overpass, 250 feet long by 155 feet wide; hovever, two overpasses, each with a roaduay width of 42 feet, will provide a gaving of 46% in deck concrete. The 42 foot width will allow for future widening to three lazes in each direction when the city grows sufficieatiy, or Highway 40 and 51 are inproved to four lanes across Oklahoma.

The north leg of Loop 2 does not pass through or near any extenbive residential developments so right-of-way procurement would be sonemat less expensive than the right-of-way for the north leg of Loop I. It will be neceasary to procure an additional nile of right-of-way on the east and west legs of the loop if the routing shom in the map is rollowed. A saving in right-of-way can be obtained by cutting through from the wre interchange, southwost to re-enter the comon portion of the loop near the mest end of the north leg of Loop 1. The saving wodd amount to a hale mile more or less, depending on the field location.

A fill of about brenty feet in height will be reguired to go chrough the

Iow Iand south of Boomer Dem. The present roed on the top of the dor is too naprow to be willized for even one direction of the loop, however, the new fill could be made a thiciening of the den which world reduce the arount of fill to be placed by as much as 20, A bridge across the spillway chanel is also rem quired.

Provision should be made in the east mile of the north leg for a future interchange with a thoroughfare to wrban developnent north and northeast of Loop 2, and a mile north of Sixth avente on the east leg provision should be made to allow access to the loop from developments ly ing east and west of the east leg of the loop. This provision will also provide relief for Sixth Aveaue since trafic bound for the college or the west parts of tow will choose to use the loop, because of its lack of congestion and higher speed linit.

Loop 2 would probably be the more desirabie location as the difference in right-of-way cost would probably nale it somewhat less expensive from that standoint, and suitable grades are more eamily obtained. Approaches to the Stadiun are adequate to hendle football crowdy, though Loop 1 mould appeer to provide for agreater anown of dispersion for this traffic. Through east west trafric would probobly use the south leg of the loof alnost exclusively; but would tend to divide wore evenly between the north gnd south legs of loop 1. Worth south trepfic will tend to divide about evenly between the east leg and west leg of both loops; the weat leg receiving the greatesh momt of trapic in both loops. It is the opinion of the witer that a portion of the through trafice will continue to make use of hain Street. This is the portion of the through traficic that would stop and trade in stillwater is it were not for the present congestion of hain Street.

It is hy belief that either of the loops will accomplish the following:
(1) Reduce congestion on Main Street;
(2) Reduce congestion on Sixth Avenue;
(3) Reduce congestion on all streets during football games by providing direct access to the Stadium for out of town cars;
(4) Provide dispersion for terminal traflic without present congestion;
(5) Obtain goodwill for Stillwater from highway users;
(6) Provide a base for planned development of outlying areas.

CRAPTER III

TRE PARKIVG PROBLEM

Parking of cars in cities has been such a serious problen it is now beginning to receive a great deol of attention from city planers. A great deel has been witten on the subject; but mfortunately it has been written loy men whose experience has been in the field oi big city planing. The mall city presents a more difficult problem, and less lucrative returas. The authors of texts and articles glibly state that the principles applied in planning the city which hes already reached a population of several hundred thousand, and the principles to be applied to the smaller cities, are the same. On the surface this statement would appesr to be true. Closer study of the two conditions, however, reveals some startling differences. In the larger cities the merchants and citizens alike realize that something mast be done so they are rilling to accept reguired changes. In the simill cities the merchents and citizens may be aware of the needs but are not receptive tovard corrective measures. The greater incones of the larger cities allow large expenditures for corrective measures; while the maller city, because of limited income, is mable to pay for much less expensive plaming neasures. With the above in mind I will attempt to deseribe the parking problem in Stillwatex, Oklahona, and will also set forth wat I believe to be a solvtion of the problen. The parking problen in Stillwater is not confined solely to the downtom area, but is general, cansing congestion on residential streets as well as in the comercial area.

An exinit, Exhibit 2, page 22, is composed of pictures of cars parked at the curb in resicential areas. Picture nombex 1 shows the excessive use of Duck Street for parking, the truck heving barely enough roon to pass between the two lines of parked cars. Picture nwaber 2 is of the trafic con-

PICTURE NUMBER I
Parking, north of Sixth, on Duck St.

PICTURE NUMBER 3
Parking in 500 block, W. Maple Ave.

PICTURE NUMBER 2
Traffic stoppage caused by parked cars narrowing the street.

PICTURE NUMBER 4
Parking in 200 block S. West
dition coused by allowing parking on both sides of laplo Avenue which has a curb to curb widh at this point of thirty feet. The car in the right foregrowad was forced to gtop, as indicated by the driverts arm signel, to allow the car approaching from the east to pass. Picture number 3 is a long renge shot of the parking condition at the time picture nuber 2 was taken, openiags between parked cars are driveway entrances, or crosswalls. Pjeture mamer 4 shows the present parking situation on a section of West Street that has parking prohibited on one side only, two leaes of traffic are available to slow traffic except at the fer end where the bus is parlced. These pictures are not locslized conditions, but are represeatative of the general condition encountered throughout the tom.

A bus line uses Mople Avenue, and the excessive width of the buses very effectivels blocks the streot to all treffic except the cars folloving the bus. Few of the city's streeta are wide enowg to accomodete the present buses even though curb parking were eliminated, but with paring peritied the buses are a menace, perticularly on a street as narrow as male Avenue.

The residentigl parking problen has been brought on by a combination of factors. Perhaps the rost important one factor is the lack of adequate zoning segulations. This lack has alloved overintensive land use for rental purposes without provision for sufficient offstreet paring facilities for the cars of the renters. A second cause in, of course, the streets thenselves. Iandlords insisted on narrow streets to reduce their share of the cost, and hone owers were agreeable since it meant less expense to them as well. This second element could have been elininated by proper planing and street zoning regulations.

There appear to be two solutions to the resideatial parking problem:
(1) Require lendowners aloag the streets to provide adequate offstrect parking facilibies, and prohibtit parking at the curb;
(2) Require the property omess to widen the streets to a width of not Iess than 40 feet in single unit residence areas, provided that offstreet facilities are available for at least one car per single unit.

Duck Street was originally designea as a dividod 4 lene boulevard. This would male it an excellent traffic carrier if it were not for tho excessive parking allowed on it. Three and four lanes of cars have been observed parkod for blocks. Pieture 1 of Eshibit 2 shows the crowding caused by allowing this parking. All parking should be elinineted on Duck to permit it to prom perly carry four lanes of traficic. Ducle has recently been designated a fire lane, yet in Ats preseat condition to is not adequate for a fire lane. As frequently is the case, a car in front of the Fire Departmont truck is unable to nove out of the way due to cars parked in a solid line at the curb.

The college parking problem is not entirely divorced fronn the city problera so it will be discussed. At the present time the narrov Janes of Horrill Avenue and Presidents Drive are designated for parking. Cross walls and fireplugs have been marked as no parking zones, and the speed limit set at 20 miles per hour then driving on the lancs. With the teen age drivers typicel disregard for law and safety, the college students bresk all of these regulations every day. It is not unusual to see from one to three cars parked in the no parking zone of the high capacity fire hydrant across from Morrill Hall, and it is the exception rather than the rule to find the cross walks free of parked cars. Speed limits megn mothing to the driving demons, and I have observed them driving the trong way on these one way streets at excessive rates of speed.

The following are quotations from Enrolled Senate Bill No. 3 - By Porter.

An Act entithed the Thiform Trantie Code'. Secion 8 Paragraph (c) Ho person shall stop, stand, ox pers a vehicle axcept when necessary to aroid conflict with other brafic, on tranie control device, in any of the following places:
(1) On a sidevelk:
(2) In the front of a public on private drivevers;
(3) Within an intersection:
(4) Whthin fifteen (15) feet of a fire hydrant;
(5) On a crosswalk;
(6) Whin twenty (20) fect of a crosswalk at in intersection;
(7) Within thirty (30) feet upon the approach to any flashing beecon, stop sigh, or traffic control signal loceted at the side of a roedway;
(11). Alongside or opposite anystreet, excavetion, or obstruction when stopping, standing, or parking would obstruct traffic;
(12) On the roadvey side of any vehicle stopped, or parked, at the edge, or curb of e street. 2

Parts 8, 9, and 10 were not included as they were not particularly applicable to the Stillwater problem.

Section 8 part 11 is supficiently general to cover the removal of parked cars on the residential streets. The eldest decision relative to parking vohicles on a public rightmon-way was one handed dow in 1812 in an English Court by Lord Chief Justice Hllenborough. This decision is quoted here from a talk delivered by Harold S. Buttenhein before the first fighway Transporta-

1. Stallvater Police Department BuIletin, OKLAHOMA LAKS-RULES REGULATIONS, pp. 25-26.
tion Congress. The court said, "Rvory maubhorized obstruction of a highrey to the anoyence of the Ging's subjects is a fuisance. The Ifng's highvay is not to be used as a stable youd. ${ }^{2}$ In addition Anericen courta, when colled upon, have rondered shnilar dectsions, declaring in substance thet streets are for the use of moving trafic, and thet when vohicles parked at the curb interfere with the free rovencat of traffic, the periong mast be discontinued. Thus in the light of tho wordine of the Uniform Trafic Coda and of court decisions, it cennot be argusd that the city does not have the authority to prom hibit parking at the curb.

The comerical area on Man Strect is a separate problem. Parkiag on Main con be classed under two heads - angle parking and dowole parking. Main Street is ra feet wide but the parking system usualy leaves only two lanes of trafic. Thie condition is prevalent when the traffic movement is the heaviest; the very times that the street should be clear. Parling meters were instolled in the hope that they would irpove parking conditions on hatu Street. Their principal benefit, to date, hes been the additional revenve to the city.

Main street should be capble of honding four trelve foot lanes of traffic with an eight loot separation in the center of the street, end an eight foot lane of perbing parallel to each curb. Double parking should be prohibited and the prohibition enforced as stringently as the matimn fine vill allow. Mancipally owned or privately financed ofestreet porking facilities will be required near the dowtow area; actually these facilities are needed now. Angle parking aot only reduces the apparent travel area of a street excessively, but cars backing across one traffic lane into enother, further reduces the

[^0]carrying capacity of the street. The rinor accident rate is always high on streets' where angle parkige is pernitted. Elimination of angle parking and double parking should increase the capacity of Noin Street to about 1260 ears Without excessive congestion. This value is probably too high since left turas are peraftted, and the present setting of the traffic control lights causes aultiple stops in the length of a block when troffic is heary.

An unsigned article appears in Public Works Magazine for April $1950{ }^{3}$ which is the report of a study made in Washington state to provide a means of computing street capacities. It is a study besed oa three factors afiecting capacity, street width, panking (prohibited, peraitted one aide, or permitted both sides), and whether or not left turns are pernitted. This method was used in arriving at the $72 l u e$ or 1260 ears for lain Street with parallel parking both sides, and left tums perntted, since it is a 72 foot street. The present congestion free volume would be that of a 40 foot street with parking permitted both sides, and left turas pormitted; which vould be about 675 cars per hour. In explanation of this last figure it should be noted that the method is based on the assumption that eight foot lanes parallel to the curb are used for parking.

There are, near the business district, blighted areas wich if turned into attractive offstreet paring lots would serve two purposes: (1) Elum ination of unsightly blight; (2) provide a place for customers of downtom merchants to park. If merchants in the dowtown area would join together to provide adequata offstreet parking near the comercial area, and eliminate dowatow congestion, they would find that they would soon be repaid by increased business volune. At first those people who are accustomed to jump

[^1]in tho exr and drive to a paridxt space two to eight block fron the store till be anoyed at having to park in a 100 two on three blocks from the store.

The parking cunterit is an imitant to all trontic. He passes a point five to ton times, turn through pedestrion treffic and in general adde to the traffic congestion. Thimination of this pest is not ontirely possible since sone people will cruise looking for a moter with the on it, when there are parkine stalls available.

If the panking fee were increased on lain Street to ten cents an hour (30 mante meters) and on side streets to 5 cents an how, wile using a rate of tea ceats for fous hours on five cents for two hours or frection thereof in the parking lots, e narmm parking efticiency could be obtained. Curb parling restrictions would bo reroved for Sundeys and Folidays except around the post office where sitten minte parking restictions should be in force seven days a week. The all day parker would find the thain Street and side street thetere too expensive while the parking lots would be reasonable in cost and near the wom area. Persons wh live close to tom and now have three or four blocks to work would be cacourged to leave their cars at home and to walk to work.

Parking on leshingtoa Street in the comercial area on that street rem duces its effectiveness. Typical of the striag type of comerclal developnent on a naxrow street, meny of the buildings are substandard, and traffic is unaecessarily irmeded by parked cars. Parking on Sixth Arenue near its inter section with Washington Street xeduces the efficiency of Sixth and increases accident hazard. If the aree that has been blighted, by the string development, were tumed into an attractive shopping ceater with adequato internal

[^2]offstrect parking, business would improve and, with the alinination of curbside parking, traffic congestion will be relieved.

The business district centered near the northesse comer of the canpus, has at least partially solved the paring problen by widening in front of the places of business so thet cars are not parked in the trafic way on moblock. This digtrict shous evidence ox blight in mon dowi rooming houses (outside appearance), apartment house development, and the almost conplete absence of singlo fanily dwellings. The string development extends north from third Avenue along Knoblock Streot a distence of 1500 feet and south of Third avenue a distance of ebout 100 rect. Phis development parallels closely the eastem edge of the main carpus.

Earlier planing and localization by zoning wold have saved nuch of the affected area from the incipient blight that is evident in all of the blooks containing comercial establishnents. The parking problem in this area is primarily one of lack of parking space rather than one of congestion due to parking. Had localization of this comercial development been resorted to in tine, offstreet parking could have been provided without much trouble. The conditions in the area are not yet serious, but the affected merchents should begin thinkiag in terms of orderly development for the future. Provision of onfstreet parking facilities by these nerchants will have the effect of extending the trade area they will be called upon to serve.

The parking problem is probably the first internal traific problen that should be attacked. Its solution will materially reduce the effect of other shortcomings of the traffic system. The solution in residential areas is to require property owners to provide offstreet parking for all cars owned by the persons living in the property, and prohibit parking at the curb; or to require all owners in a block to widen the street, with good paving, to a width
of not lees than forty rect.
The solution in the comercial dombown area is to provide onstrect parking stations near the area, elininate angle parking and double parking, and nake curb parking wattractive to any but the short tera parker. The parking stations nay be either privately owned or mancipally owned or both and should be made atiractive in price to the long tema parker.

GLAPTER IV

The street systen of the original city does not perpecty join with the strect systems of later additions; noither was the original sureet system laid out to conform to the section linc roads. The result is a series of poor to bad intersections at the lines between the original tomsite and additions to the tom, and at the lines betreen adjacent additions. In one addition the architects atterpted an organic plan. The intersections in this area lack sight distance, and three and four streets form blind junctions.

Many of the poop intersections of the city are of the offset type. One of the worst intersections of this type is the intersection of Sixth Avenue and Lowry Street (see lap 1 or $\operatorname{lap} 2$ for location). Lowry is a low density street from a traffic stondpoint, but Sixth Avenue is a high density street. At the present tine Sixth Avenve serves in a dual role: as the route into and across the city, for traffic on Highuay 5], and as the earrier of traffic between the cast and west parts of tom, With increasing land utilization east of the twin dans, the traffic load carried by Sixth Avenue will increase, until the loop route is in operation. With the loop in operation, traffic should level off at a volume about equal to the present trafic voluae. At the prosent tine the traffic pattem within and near this intersection is very complex. Attempts were made to prepare a draming which vould illustrate the interferences caused by the prosent design of the intersection. The drawing becene such a maze of almost indistinguishable lines, thet the idea of including such a drewing was abandoned. A few of the undesirable characteristics of this intersection are: (1) poor visibility for vehicles approaching the intersection; (2) a bus stetion from which buses enter directiy into the intersection and tum nowth or south on loury, or go east on Sixth, taxis operating
from the bus station may enter the intersection by way of the bus drive, and patrons cars parked on the east side of the station back directly into the intersection from a parking lot located west on Lowry street and almost on the centerm Iine of Sixth Avenue; (3) a filling station located east of Lowy Street and south of sixth, its driveway discharging into the intersection of both streets; (4) a motor company is located across Sixth from the filling station and cars leaving the notor company may be headed into the trafic strean or backed into it on Sixth but on Lowy they mast be becked into the traficic stream; (5) a Iuraber comeny on the east side of Lowry is on the center line of Sixth Avenve west of the intersection and customers beck directly into the intersection; (6) chamelization of trafic is by painted line only, ollowing cars to weave on the center line as they pass through the intersection.

Ro evidence of congestion due to traffic load has been observed by the writer. Records of the police deparbment indicate the intersection to have high accident potentialities. The lack of safety seens to be about equally attributable to lack of visibility, center line weaving, and traffic producing buildings uithin the intersection. There were at least three serious accidents within the intersection in 1949; one of which was practically head-on, and caused by veaving. Safety and not traffic load is to be considered in determining the design of the intersection. An elliptical traffic circle is the reconmended design. Plate 4 is a drawing showing the present street as solid lightweight lines, the existing buildings in light dashed lines, and the recomended circle in heavy solid lines. Not show are residence buildings that might be effected and a frutt stand south of Sixth across from the west end of the bus station. The circulatory intersection will have the effect of elininating all of the undersirable characteristics of the existing intersection, Since the traffic producing business buildings will have to be removed to weke

rocn fon the traffic circle, and sinco all traffic foves in the same direction there is no opportwity to meet traffic head-on. Channelization of traffic, by neans of raised islands, should begin at least 50 feet ohead of entry to the circle on all four appoaches.

Hore elaborate rethods of correction could be devised but they would be too costly and could not be justified by loads or by additional safety. Sinpler methods, such as closing Lomy Street, would cost leas than the circle but would not correct the faults of the intergection.

Other offset intersections in the city, with the exception of the intersections at Sixth and Washington and Wamington and Fourth, will not require as extensive a redevelopment as the ones described above. There is a grade school located at the inteasection of Wathington and Sixth Avenue in addition to extensive comurcial development which gives this intersection traffic characteristics sirilar to the traffic characteristics of the intersection at Lowry Street and Sixth Avenue. The traficic on both Washington Street and Sixth Avenue is relatively heavy, and the large volume of grade school age pedestrian traffic would alter the conditions in favor of more costly means of correction. Four way stop signs have, so far, prevented this intersection from producing serious accidents. Congestion is apparent all along Washington Street and especially at this intersection. A large portion of the drivers are in the teen-age grow becanse of the proximity of this intersection to Fratemity Row and to the college. Published figures show thet this clase of drivers had nearly twice as many seriour accidents as any other age group of comparable size. (Personal observation of the students of Oklahoma A. and M. College, driving ears, has given me no reason to believe they are careful drivers. The accident potential, at washington and Sixth Avenue, coupled with the cost of congestion would probably justify a more elaborate and costly cor-
rection than could be justified for Lowry and Sixth.
Another intersection requiring special montion is also on Sixth Avenue at its intersection with Duck Street. Through this intersection must pass a heavy load of traffic from $\mathcal{L o u r}$ directions. Duck Street, at this point, is four lanes with a center parkway dividing northbound from southbound traffic. On the east side of Duck Street are two filling stations, one on the corner north of Sixth Avenue and one on the corner south of Sixth. The parkways have been cut back from the intersection far enough to allow cars leaving or entering the filling stations to cut across traficio and the curb hes been removed sufficiently to allow cars to leave diagonally into the intersection, without regard for the stop sign or other trafic. In one veek I observed five near accidents at this comer and the same type comer just a block east. These observations convinced me that, at least sone drivers will dash out against traffic, without regard for other people. Traffic congestion is primarily on Duck Street, often lining up for a block in each direction from the intersection before traffic on Sixth Avenue thins sufficiently for sone of the cars to cross. The long wait frecuently causes drivers to become iapatient, and to force their way into the cross trafific. To rectify the existing condition at Duck and Sixth I would recomend a complete re-design of the intersection, beginning with the filling stations. They should be required to replace the curbs at the comer and for a sufficient distance back fron the corner so that cars leaving them could not enter directly into the intersection. Replace, or require the filling stations to replace, the parkways to the original curb lines of the block. Channelize traffic through the intersection and on Sixth Avenue; the left turn lanes being clearly marked. Install a 105 second light; 45 seconds green, I5 seconds anber, and 45 seconds red. It may be found that too much greentime has been allotted to Duck Street, in which
case the mok Street green should be shortened and the total period reduced by that amount. The principal turning movement off of Duck is to the left so it quite likely will be found adventageous bo allow left tums on amber only, with a 40-25-40 distribution. A mounted officer should be assigred to the cormer for sixty to ninety days to arrent everyone attermting to lave a filling station counter to traffic, making a turn from the impoper lane or failing to make a left turn on amber from the left tum lane if he has it blocked for cara behind hin that might want to make such a turn.

Another type of intersection is the so-colled "dead end" intersection. The one of this type that has come most forcibly to ry attention is the inter section of West Street and College Avenue. This intersection is about 200 feet east of a taxi stand. College Avenue ends at this intersection. There is at present no stop sign on College Avenue at this intersection. West Street in this ares is less than 30 fect wide and parking is allowed on the east side of the street. College Avenue is also narrow and parking is alloved on the south side only. Fwo way traficic is alloved on both streets. In adition to the congestion that frequently exists on these streets there is the ever preseat danger, to cars traveling north on West Streot, thet a taxi or some other car ariven by a wild driver will dash out of College Avenue and hit head-on the northound car. The trafic ontering West Street fron College Avenue is usually traveling at too high a speed to negotiate a right tum without suinging across West Street into the northbound lene, just missing the cars perked at the curb on the east side of the street. The city hes only recently prohibited parking at the curb on the uest side of the street.

There are three solutiong for this problem that might be used: (1) widen West Street to 65 feet, dividing traffic with a center parkway 16 feet wide;
(2) make College Avenue a one way street, for the block between West Street
and Knoblock Strect, for traffic traveling west fron West Street; (3) close, destroy and relinquish a auficiont anomb of the east end of that block of College Avenue to prevent its further use as a streot.

As pointed out in Chapter II, widening of bect Street or corplete elimination of parking is necessary, but a divided street 65 sect wide is not required. The present street widh is sufficient is parking is eliminated and the College Avenue intersection is closed or hade a one way tura off of West Street.

The one way street would cost the least, but vould crease a hazard from Wrong way drivers, who are all too numerous aromd the campus.

Closing the halt block, or slighty less, of Gollege Avenue bould not be overly expensive and in view of benefit to be derived, from elinination of an accident potential, is the desirable method of correction.

Main Street traffic has already been discussed from the standpoint of the parking problem. In that discussion the practical load potential was computed assuming that left tums would be permitted. Elimination of left turns, on Sain Street, coupled with the elimination of angle parking and double parking, would increase the apscity to about 1350 cars per hour. Elimination of traffic lights at alternate intersections with on increase in green tine on hain Street would increase movenent, and with left turns prohibited, a street capacity of 1800 cars per hour could be expected.

There are other streets, other intersections, men may other problems not discussed in this study. One problen which I should like to see studied in groater detail, than I have found evidenco of, is the problem of a nethod of analysis of operation for a trafic network under varying conditions of loadiag.Beker, 值ehal Jx. The York Gity-County Comorehensive PlannigeGuryey. Yorls, Pennsylvania: Yorl Chomber of Commerce, 19k.Buthenhein, Harold S. City Highvars and City Parking-AnAnericas Crisis. Address before the First Highway Trens-portation Congress, Weshington, D. C., I946.
Lewis, Horold Maclean. Planing the Modern City. Now Vork;John miley and Sons, Inc., Vol. I and II, 1949.
Molcher, Fritw. The Steadyflou Trafic System. Cembridge:Harvard University Press, 1935.
Stillwater Police Departmeat Bulletin, 0kiahoma Laus-RulesReculetions. Stillwater, 1949.HENo to Find the Practical Capacity ofStreess." Public Worls, LXXXI (Apric, 1950), 40-41, 58-59.

Typed By
Ferm B. Hall

[^0]: 2 Harold s. Buttenhein, CTTX MTCHWAYS AND CITY FARKIMG-AM AMERICAT CRISTS, Address before the First Mighway Trensportation Congress, Washington, D. C., September 26, 1946 .

[^1]: 3 How to Find the Practical Capasity of Streots," Public Works, LXXXI (April, 1950), 40-41, 58-59.

[^2]: 4. Buttenhein, On. Git., p. 9
