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Problems concerning mininmal minervas end completely deflated information
pattems erise in the theory of zerco-sum two-person gemes with n moves.
Wo shell show that two information patterns have the ssme class of
minimal minerves if nnd only if they have the seme completely deflated
forme Ye shall treat informmtion patterns in & purely formal way, es
independent mathematical emtities, meking no atiempt to relate thea to
the theory of gumes.
In this psper we use conventional set-theoreticsl notation as
follows,
{ayug,...,%}mmmmmlymmmupnz".‘ﬁ,
{8ys2,0 o o o3 8 ) for ordered n~tuples,
% for chbetruction, reed *the x's such that® ,
= for difference of sels,
A for the null-set,
€ for inclusion,
€ for membership,
endy U end (| for union end intersection.
Wedemtebylntham{l,a,....n}ofﬂw!h‘utumiuw
intecerse Wo denote by J,, the set of ull subsete of L. Also, if A is
a subset of I, then we denote L ~A by =i
1, into & in such a way that
) = A
PA+1) €112 e e ep i} e
Definition 2. If S is & subset of I, ond F is en information
function, them we cnll the ordered couple {S,F e patiern of information.

* s & fumetion T vhich maps



Definition 3. If {S4F)is a pattern of informetion, then by &
minervg vith respect 0 {(5,F) we morn a semuense (13,40y o « o9 4. 0F
(et Least tw) olements of I, such thats
(1) LER(1)s 1,€P(1y)s o o o0 4, €F(L )3
(18) ir 1155. then 4,6=5 for k=2 o « s 1§

{411) if 1€-59 then 4,65 for k=25 o o og T &

Ve coll r the lonrih of the winerve, mnd i, end 1 its forminel elements.
ILCy0dze o o o9 I )15 & subsequence of {1;,5,9 « o o5 1 ) vhich 1s
itself & minerve, then we call (J)ed,e « » o0 §,) o gulminerys of
(L15d.9 o o o3 1 Yo 4 subminerve of {i;,1,5 o « o9 1.) 15 eslled prover
if it is not idemtical With(d;ed.9 « « o3 § ) o 4 minerve is ealled
ainimed if it hao no proper subminervas with the same terminal olements.

Remarks. It 1o clear frow Definitions 1 and 3 thet if
(11.12..... 1,,)15 a minerve with respect %o eny information peattern
(59F) o them,

$<i,Ce 0 0<d_ o

It is alse clear that (&.%,..-.%)hamaﬂa{wmiml
minerva) with respect to 5,7 if =nd only if it is & minerve (or minimal
minerve) with respect to (=5,F Y,

It is ecsily soen, finelly, thet e minerva{ijs o o o5 4 V15
ninimel minerva if mad only if

i, § Fg,)
for 8=1y o s op r = 2 md k= 8+25 « ¢ o9 T & & minorve of length two
is clways e minimel ninerva.

Ve now introduce two functions® J end J*, both of vhich ssome
mhaetao.f!nanvalm. J depends on four srguments Ay 7y ks 1, where



A is u subset of I , ¥ is an informatlon function, snd k and 1 are
elaaentsmfln; J% depends on merely the three arguments Ay Fy and ke
Definition 4. Mﬂhmymhaﬂorln.mﬁl?mmtm

function. Then we sets
(1) I(2Foks0) = A

for k eny clement of I
(i1) J{aeTsksi+1) = A

for k eny element of =A and 1+1 eny element of I ;
(1) HaeFokel+1)= 3 [ € 203 <Xy ond F(3)ST0) V(20T k02]]

for k any element of 2 and 1+1 eny elememt of I .

I AsFek)} = J(ApFskek=1) o

Definition S. By aon imgsediste deflation of en informution neitern
{59G) will be meent emy informetion pattern {5,F) for which there are
integers N cnd M such thats

MEGIA) end M € I%(5405 A ) Ude(=5,04 3)3
F(A)= 6(A) = {u} s
Mi)= 6(1) for 1 F A .

Definition 6. “n informstion patiern is said to be gomnletely
doflated if it doos not possess sny imasdiate deflationse.

Renrke It is seen immedintely frem Definitions 5 cnd 6 thet en
information pettemn {5,F) is completely deflated if end only if the
following condition holde for all j end k i I s

4f J € I9(5,7pk) Uan(=5,7,k), then J & F(k)e
1% is cloo clesr that, starting with any information pettern
(.‘.i.G) we cony by miccessive deflations, obtain en inforemtion rettem



&5,F) which 1o completely deflated; whon {35,F) end(5,5) ere so
related, wo call (S,F) a completely deflated form of (5,00« %e ehall
see later that an information pattern has only ome completely deflated
forme

Zheoren 1. If (5,F) 1s an information pattern, 4 emy subset of I,
and k eny member of I, them
J(29Fsksd) S J(Apigkyi+ 1)
for 14 1<k,
Proofe This will be proved by sn induction on i. If iS 0, them
J(AgFskei)= A s 80, clearly,
J(2eTsksd) SI(5ePskei+1)e
How we wish to ghow that if
J(AgFsked) S J(AgFeked +1),

J(2ePoksed ¢ 1) F J(AeTskod + 2)e
tot } be eny nmember of J(A;Ffpksi+l)e "hen
F(J)€ Pk) UI(as7sks1)
end heneo, using the induction hypothesis,
P(3)E #(k) Ua(asFskpd +1)e
Hence J € J(4sFeksit 2)y as wns to Lo shown.
lamn le et {i3, « « o5 1) e & ninimel ninerve with respect to
(M).mdlutinmdikbomyMof{!.v.. es 1.} Thenm
1, & I#(5o7edy ) UTn(=5,7sd, )e
Droofe e shall prove only thet $.& J#(S,Fedy)e "he proof that
1§ I#(=5754;) would be cmalogous.



If 82k, then 1 >4 by Definitions 1 cnd 3, and hence 1 & JH(5y7s4, )
by Definition 4 (1ii). Hence we need consider omly the case that s<k.
we now distinguieh tw cuses, according s

HG 3

12’ 13’ e o op I‘_G-S

i, €=5
1,9 dg9 « « = 1 €5,

In the first case, we see by Definition £ (ii) that, for

k=25 ¢ » 03 T »

EEER R A
g0 thoet, clearly,

1, &3%(5,708,)
for s<ke

"hus we sre left with the case that sdk and
(1) $,€=5
(2) 1.0 430 « o o 4,65
we shall prove the lemme for this case by an induction on s.

For the czse 5= 1, the lemum 1s obvious, since J#(5,F,4.), for
E=2) ¢ ¢ o3 T » contains only members of S.

tiow we wisgh to show that, u:_&.r-(s,y.zi) Lor X=81% a » a5 ¥ ¢
then 4,1 £ 35(5,Fydy) for X=8+2, o o oy ¥ == vhich is to show thet

P, YER(L) Va(5,7et 08, - 2)

for k=842 ¢ o op Yo 5ince <Iyp o o op 4.7 is & minimel minerva,
1, &P(1,) for k=8+2; « » o9 T  end by the induction hypothesis
15 8%(5,Fydy )e  Thus L, §I(5,Fsdy sy~ 1)y and hence, by Theores 1,



858 J(5pFsdpoh = 2)e Dt 4 €P(L )y end therefore
P(a,,1) $7(8,) V35,703, 51, = 2)s
a8 w8 1o be shoune
lame e 1ot {55F ) be mn imediete deflation of (5,0 )amd let A
end s be integers such that,
F3)=6()) for J# A,
P(A W{mnt=a(n)
A& F(N)
ond suppose that 5 is an integer less them Ly and that S €J(5,7, A ,1)
for some i in I ; then S € J(34F9 Agl)e
Proof. This will be proved by en induction om 1. If 1=0, them
J(5e0s Aed) = A
end the lemas is vacuously truee. 'low we wish to show that if our lemms
is true for 1=k, then it is true for i=k +1l. By hypothesis,
6 €J(5905 Apditl)y
and therefore,
6(8 ) S AIVI(5465 Ast)e
sinee SCuU<A o F(6)=0G(5), and tharefore,
P(S)YSE(A) V(5505 Asd)e
tow G{A)=F(A)U{mena « & F{ 8); tius we ses thet
P(8 )SP(A) UI(5,05 A l)e
If &°* 18 eny integer that belongs to F(S) emd to J(5,5y A}, then
&% <  end by the induction hypothesis §° € J(S54FyAii)e IHamce
(5 YSF(A) Ua(s47y Ayt)
nd
S €3(5575 Nyt 1)

ap wes 10 De shoulie



The proof of the next lewmn, which is very similar to the proof of
Leme 2 will be omitted.
Iesaa 3¢ Yot {5,F) be en imiediate deflation of {5,6), ond leot
Aend U be integars such thet
F(3)=6(3) forJ# A,
r(n) UiMd= gy,
MEF(A) ,
and suppose thut Ois an integer less them U, nnd that & € J(=5,0y A,1)
for some i in I ; them 6 € J(=34Fy Agi)e
lesm ¢. Tot {5,F) be an imiediste dofletion of (5,G) 4 end let
Aznd M be integers such that
(1) PJ)=06()) for J#F A,
(11) ME 395564 A ) UT#(=s,04A)
(112) MER(A)
(4v) sn)=r(A)U{ul,
Then
MEIH 597y A Y Ude(=5,Fy 1) o
Proofe ‘e shell prove the leamm for the case that u € J¥(S,0,A ).
The proof in case M € J¥{=5,0y A) 13 very similar,
Since
M€ (5409 A)
we have
(1) GluU)SG(AIUI(5,55 AsA= 2)e
Yow let b be an arbitrary member of P{U). Gince &€ P( M), we
heve
(2) 8K M



Sinces moreover, by {iv) of the hypothesis of cur lewm wo heve
A€ A)y we see that
(3) < ™
From (3), end (i) of the hypothesis, it follows thuat
Flu)=a(u),

S€a(u)e
From (1) we therefore have
& €G( A) V(5,85 X5 A= 2),
80 that either § € G{A) or S €J(3,0, Ay A= 2)s If S€C(A), then
from (2), togethor with (iv), we have
SeF(A)e
If S € {5539 NgA= 2)p then, by (2) and Lerw 2, we ses that
S €I(59Fy Ay A= 2)e
Thus every elesent 6 of F(M) belongs edther to F{A) or to
J(Se7s NgN= 2), 50 we conclude thet
P(u)SP(A) Va5, Ay 2= 2),
and hence
M E35(3479 Ny
as was to be shown.
Theores 2. If (5oF ) is an immedinte deflation of (5407, then
(5oF ) end (54G) have the ssme clsas of minimel minervas.
Exoof. Since (5,72 is an imusdinte defletion of (5,0 ), there sre
integers N ond M such that
FA)=c{1) for 1F A,
A ViUl =6 ),



MEF(A) o
M E JH{ 5454 A UJ#(=5C5 Ao

It is immediately spparent from these conditions that & sewuence
{igedos o » o3 4.7 5 Where 4 F U for 5=1, o o «» T'y i3 & minimal
minerva vdth respect to (S,F) if end only if it is & minimsl minerve
with respect 10 (35,073 and the same is true for soquences
(3.1,12. TR W 3 whm'ai'# Afor 8=1y o ¢+ o Pe

Hence we con restrict oursslves to sequences
(igsd e o o esMy o e epAy o o o3 4.) ¢ loreover, since by hypothesis

M € 35( 5455 N) UT#{(=5G4 1)y
we 800 by Lomusa 1 that there are no such minimal winerwes with respect
10 (5937 o« Finally, by Lemma £, we ses thet

M€ 39557 AU gu(eseFy A)3
henessy agedn by Leamma 1, we soe that thers are no such minimel minerves
with respect o (5,7,

Lazme 5o 1ot {SyF? be a completely deflated information patterns
let 4; and i, bo integers; both of which belong to S, and such thet
126?(11): md let r be an integer grester them 2. Them either

(i) +here is an integer s satisfying 3<s r, and elemente

igs o o o3 1 0f T such tnt{lys o o oy 159l 08 018
minerve, and 1,&?(11) for §=3p ¢ o o9 8 5 OF

(2) there are eleamts i35 « « < 4, of I such that the r-tuple

<{iLe o o o5 ige1,sd,) sctisfies the following conditions
() S.JES for =1y e e ep T o
(1) 1361"(1"_1) for =2 caaop Py
(%) :aéepul) Ud(SeFedy g2y~ 1) for =35 e o« es T o



Ixogfe "™his will be proved by an induction on r.
Lot r=3. Since {3,7?1s completely defleted end 1,€ F(1,),
then (cfs Remark following Definition 6)

1, §3(5,Fety ody- 1) &
Therefore

1"(12)¢?u-1) UJ(W.&:&- 2) »
end there exisis en integer i; such that

€ 7(1,)

1,87(1,) Ua(s,7 08 2) &
If 1,€=5, then (13,1,41;) e @ minerva, and the elemmnts i3,i.,1)
satisfy condition (A)e If 4,€S them (1g,d,,i, ) satisfies condition (B).

Now we went to show that, if our lemma is true for r=k, it is

also true for r=k+1l. If conditien (2) holds for r=k, it holds
8 fortiopd for r=k t1; for if s<k then certainly s€k +1. Hemco we
suppose thet thare is & k=tuple Ly « « oy 1,51, D satisfying condition
{(B)e Gincey them

1, §7(3,) V(57515 58y= k +1)
and hence

P4 ) ¥ P(1,) Us(5,Pedysty= k41 = 1) =

P(4,) Ud(3s7s8y o8y = (K +1) +1)e

Thus there exists an integer i, ., such thais

’hleﬂ’t)

L, $7(4) U:(s,r.:l.sl- (x+1)+1) .
Thus we conclude that the k +1 « tuple

(lapolys =« o0 108y 7



sotisfies condition (4) or condition (B), according as i, ,4€=S or
1 ,1€5» which completes the proofs
he proof of the noxt lomam, which is very similer to the proof
of Temwm 5, wll be cuitted.
igmm 6. Lot (5,F 7 be a completely deflated informstion petterns
let 4, end i, be integars, both of which belong to =S, end such thet
1261‘(11); and let r be an interer greeter than 2. "hen either:
(2) there is an integer s satisfying 3€s <r and clements
igs o o o9 4 of I such that (Lo o ooy 13.12.115'13 a
minerve snd 1.1“111) £or J=33 ¢ o oy By OF
(3) there sre elements 155 « o op 4 of I such that the r~tuple
(ips o o igsi el ) satisfies the following conditions
() 1,€-5for J<1y a0 ap vy
(r) i€ P(i,_l):‘torazz. o wiay Py
(¥) 4,&F(8,)Ud(=5oFsty= §+1) for J=35 ¢ o oy r o
Leope . Le‘t(tl,j.z. .o .,l.,}boaminomﬁthmpae’t'bo
(5oF Yuch thety £or =1y o « o5 T = 2, 4;47(4.)s Then there exists
e subsequence (M, Mys o e .,,u')of {1525 « o o3 T = 2) such that

(1,,1.1,‘3. cee Lo gl >

is e ninimel ninervs with respect to (5,F e

Prgofe is will be proved by mm induction on re If r=2, them
{ijs1,74s itself & minimel minerva with respect to (S5,F ). Assume
the lenm is true for r<k, ond let (L ed,s o o op L8y, Yo =
ainerve such thet for =1y o o op k=1, 1,4 (1, ,)o If
{iysdys o o o3 Spod 1 ) 13 not & miniml minerve them 1, €P(1) for



some d =md 3 satisfying

1€9€B 1<k =1,
Henooy if & .19 o « o» §5_; is left out, the resulting seuence will
still be a minerve. This minerva is of length less then k end our
lemea now follows by means of the induction hypothesise

lagms 8. let (5,F)be a completely deflated information petterns
mnd let 4; end 4, be integers, both of which belong to S, or both of
which belong to =5, and let 4,€F(1,)e Then there are clements
igs o « o & of T ouch thet Ly « o o5 1g91,51, > 10 & uinimel minerve.

Erogfe Teking r=1,t1l, we see that there camot be elements
_ga.....gungth(n)onmssmmmm
(B) would imply

81 398 < oo oCiy<yy
end hence 4. would have to be negutive, contrary to the definition of I .

Hence thers is & minerva {1,y « o o 1,51, 2 such thats

1J¢F‘(l1) for J=35 e e cp B o
Byhm?ﬂunthmudstsambw(ﬂv,uz...u/‘.)ef
{8y 51y o o o5 3D amuch that

Chuys Lo o 0 o0 Ly 010 4y )
is o minimal minerve.

‘heores 3 If {SyF 2 end (5,0 2are both completely deflated
information patterms, end F#G, then (5,F? and (5,6 have different
clasoes of miniml minervese

Propfe ieot § be en integer for which F and G cre different. Ve
suppose thet J& 3 (if J€ =5 the proof is similar). Without loss of
generelity we esn assume that there exists mm integer k which belongs to



P(3) but not to G(J)e If X€ =5 then (ky)) is & minimel minerva with
respect t0 { 5,F) « Sinee k&C(J)s (ksJ 7 15 not & minimel minerve with
respect t0 (5,67« Suprose thet k€ 53 then by Lemwma 8 there exist
integers 435 1,0 o o o9 4, much that (31, 15 o o ep L0 ky IV s
minimsl minerva with respect to (5,F' but not with respeet to <5,0 2
since k §G(J). Hemce wo conclude that (5,F) and < 35,0 2 have different
clesses of minims) minervas.

Theorem 4o Dvery inforartion paitterm has a unique completely
deflated forme

Proefe From & previous remark we know that every informatiom
pettern has at lesst one completely deflated form.

Lot (SyF; 7 and{5,F, be completely deflated forms of the
information pattern {5,F)+ "hens by Theorem 2, we see that (S5,F)
and ¢ 5oF ) have the same cluss of minimal minerves; end similarly (3,3'23
end {(5,F? have the seme cless of minimal minervese Thus <S,Fy7 and
< 54F,) have the same cless of minimel minerves, so by Theorem 3 we
conclude that Fj=F,s as was o be shown.

Dheorem Se Two information patterns have the scme class of minimel
minerves if end only if they have the same completely deflated form.

Progfe 3By Thoorems 2 end 3.



POOMIOTES

1)e See MeKinsey [1] . T™is definition and the following two ere
due to Je Ce Co HeRinsey.

2)e GSee Juine [2]e This definition is due to ¥e Ve Mine. The
definition given here differs from that given by Juine in two wayse
Pirst, in ‘he definition of J*{A,Fekedi+1), we impose the condition that
J be less than ke Second, Juine defines

I#( 257 sk) = % I(2sFsked)s
whilo we define

T LgFek) = J(AyFekek = 1),
However, we shall see, by heorem 1, that

J(AeFokok = 1) = 2 J(2eFskpl)e
Ik
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