SOIE FIXED POINT THEORBUS FOR COMPACT COMTINUA IN MITRIC SPACES

By
WIIJIARI AMDRTM HOLIEY
"
Bachelor of Science Orlahoma Agricultural and Mechanical College 194.9

Submitted to the Faculty of the Graduate School of the Oklahoma Agricultural and Nochanical College in Partial Fuleillment of the Requirements
for the Degree of
MASTER OF SCIERCS
1950

ii

SOL F FIXED POINT THEOREMS FOR COMPACT CONTINUA
IN THETA SPACES

WILITAK ANDREW HOLES
MASTER OF SCIENCE
1950

THESIS AMD ABSTRACT APROOVLD:

Thesis Adviser

Faculty Representative

266804

A famous unsolved problem is this: Does every continuous transfomation of a bounded contimum if in the plane onto a subset of itself, where \mathbb{H} does not separate the plane, leave some point of 1I invariant? The question has been answered in the affirmative for most continua wich are not indecomposable. A solution of the problem for several simple types of continua is given hore. These include the 1-cell, the 2-cell, and the n-cell, or respectively, any homeomorphic image of the unit interval, the unit circle, or the unit sphere in Euclidean n-space. In addition it is shown that locally connected continua which do not contain a simple closed curve, variously called dendrites, acyclic curves, or trees, possess the fixed point property.

First the following lema is established:

Leman 1.

If a point set II has the property that every continuous transformation of $\mathbb{I f}$ into itself leaves some point of \mathbb{K} invariant, and if H1 is any homoomorphic irage of H^{1}, then ${ }^{11}$ has this property.

Proof: Iet T be a honeomorphism which carries if into $K 1$, and T' any continuous transformintion of \mathbb{M}^{\prime} into itself. Let T'I be a transformation on \mathbb{I} defined as followss $T^{11}(x)=T^{-1}\left(T^{1}(T(x))\right)$. That T'I is a continuous transformation of M into itself follows from the fact that T^{-1}, T^{\prime}, and T are continuous transformations. But by
hypothesis some point x_{0} of M is invariant under the transiormation T'I, so that $\mathrm{T}^{\prime \prime}\left(x_{0}\right)=x_{0}$. Therefore:
$T^{\prime \prime}\left(x_{0}\right)=x_{0}=T^{-1}\left(T^{\prime}\left(T\left(x_{0}\right)\right)\right.$, so that:
$T\left(x_{0}\right)=T\left(T^{-1}\left(T^{x}\left(T\left(x_{0}\right)\right)\right)=T^{y}\left(T^{(}\left(x_{0}\right)\right)\right.$.
But then $T\left(x_{0}\right)$ is a point of \mathbb{M}^{1} which is invariant under T^{T}. The leman is therefore true.

Theorm 1.

If Y is a 1-cell, then every continuous transformstion T of M into itself leaves some point of il invariant.

Proof: A I-cell is any honeomorphic image of the unit interval I. By lemsa 1 it is sufficient to show that evory continuous transformation I of I into itself leaves some point of I invariant.

Assume that I is a continuous transformation of I into itself wich leaves no point of M invariant. Let H be the set of all points in I such that $x<T(x)$ where x and $T(x)$ are the coordinants of the point and its image. Let K be the set of points for which $x>S(x)$. That His closed may be shom as follows. Suppose that x_{0} is a linit point of H wich is not in H . Let $\left(\mathrm{x}_{\mathrm{p}}\right)$ be a sequence in H converging to x_{0}. Then since T is continuous, the sequence $\left(T\left(x_{f}\right)\right.$) converges to $T\left(x_{0}\right)$. By assumption $x_{0}>T\left(x_{0}\right)$. Let E_{1} and E_{2} be disjoint neighborhoods of radius ϵ containing x_{0} and $T\left(x_{0}\right)$ respectively. Then for some integer is if $n>k, x_{n}$ is in E_{1}, or $x_{0}-\epsilon<x_{n}<x_{0}+\epsilon$, and $T\left(x_{n}\right)$ is in Σ_{2}, or $T\left(x_{0}\right)-\epsilon<T\left(x_{n}\right)<T\left(x_{0}\right)+\epsilon$. Bux $T\left(x_{0}\right)+\epsilon<x_{0}-\epsilon$, and hence $T\left(x_{n}\right)<x_{n}$ for $n>k$. This contradicts the fact that x_{n} is in H, for which ky dofinition, $x_{n}<T\left(x_{n}\right)$. Thorefore, the assumption that

H is not closed is false, and hence H is closed. Similarly K is closed. Since x and $T(x)$ are by assumption distinct for each x, every point of the continuum I is in either H or K. Then H and K have a point or a limit point in cominon. Being closed sets they, therefore, have a point z in common. But this means that $T(z)<z$ and $T(z)>z$, which is impossible. Hence the assumption that for each x, x and $T(x)$ are distinct, is false, so that I has the fixed point property.

In the next theorm use is made of the following definition:
A continuous transformation T of a point set X into a point set Y is said to be inessential if there exists a function $F(p, t)$, continuous in p and t separately, and a point z such that:

1. For each fixed t in the unit interval $I, F(p, t)$ is a continuous transformation of X into Y.
2. For a fixed point p in $X, F(p, t)$ is a continuous transformation of I into Y.
3. $F(p, 0)=T(p)$ for every p in X.
4. $F(p, 1)=z$ for every p in X.

Theorm 2.

If \mathbb{M} is a 2-cell, then every continuous transformation T of 1 into itself leaves some point of M invariant.

Proof: First, it is shown that under the assumption that no point of \mathbb{M} is left invariant, there exists a continuous mapping $T{ }^{1}$ of \mathbb{M} into its boundary S_{2} which leaves each point of the boundary fixed. If x and $T(x)$ are distinct points, then a ray from $T(x)$ through x is uniquely defined. Iet $T^{\prime}(x)$ be a transformation which carries a point x in M into a point y on the boundary, where y is the intersection of the ray from $T(x)$ through x with the boundary of M.

If x is on the boundary, then the intersection of the ray from $T(x)$ through x is x, so that $T^{\prime}(x)$ leaves the points of the boundary fixed. If x_{0} is a point of \mathbb{I} and $\left(x_{1}\right)$ a sequence converging to x_{0}, then the sequence ($T\left(x_{1}\right)$) converges to $T\left(x_{0}\right)$. Hence the ray Irom $T\left(x_{i}\right)$ to x_{i} converges to the ray from $T\left(x_{0}\right)$ to x_{0}, and the points on the boundary $T^{\prime \prime}\left(x_{i}\right)$ converge to $T^{\prime}\left(x_{0}\right)$. $T^{\prime \prime}(x)$ is therefore continuous.

Second, it follows that if there is a continuous transformation T^{\prime} of II into its boundary S_{2} which leaves each point of the boundary fixed, then the identity transformation on the boundary is inessential. For consider the function $F(x, t)=F^{\prime}((1-t) x)$, where x is a point on the boundary and ($1-t$) x is the point in M obtained by multiplying the components of x by ($1-t$). It is clear that the function is continuous in both variables, that $P(x, 0)=T^{\prime}(x)=x$, and that $F(x, y)=T^{\prime}(0)$ for each x. Hence by definition the icentity transformation is inessential.

Third, it is shown that the icentity transformation of the boundary circle S_{2} of M is not inessential. For, suppose that the identity transformation is inessential. Then there is a function $P(x, t)$ and a point z satisifying the conditions in the definition.

Let $\sigma(p, q)$ be a real valued function on the circle S_{2} defined as follows: $\sigma(p, q)$ is the length of the smallest are from p to q, positive if measured in a counter clockwise direction on S_{2}, and negative if measured in a elockrise direction. This function is uniquely defined for those points p and q for which we use it as is shown bolow. It follows from the continuity of $P(x, t)$ that, given any positive number ϵ, there are numbers δ_{1} and δ_{2}, such that, if $d(x, y)<\delta_{1}$ and $\left|t_{1}-t_{2}\right|<\delta_{2}$, then $\mid 6\left(F\left(x, t_{1}\right)\right.$, $\left.F\left(y, t_{2}\right)\right) \mid<\epsilon$. From this, given any positive number ϵ, there exists an ${ }^{2 I} \epsilon$, narely the least integer greater than $1 / \delta_{2}$ in the statement above, such
that if $n>\mathbb{N}_{\epsilon}$ and if $t_{1}=i / n, i=(0,1,2, \ldots, n)$, then
$\left|6\left(F\left(x, t_{i}\right), F\left(x, t_{i-1}\right)\right)\right|<\epsilon$ for every x. Letting $\epsilon=\pi / 2$, there is then an $\mathbb{N} \pi / 2$, for which $\left|6\left(F\left(x, t_{i}\right)-F\left(x, t_{i-1}\right)\right)\right|<\pi / 2$. But then for $n^{\prime}>H$, there is only one smallest arc from $P\left(x, t_{1}\right)$ to $F\left(x, t_{i-1}\right)$ for each i and x, so that $G\left(F\left(x, t_{1}\right), F\left(x, t_{i-1}\right)\right)$ is unique, and is therefore a continuous function of x for each i.

Let $\nabla(x)=\sum_{i=1}^{n^{\prime}} 6\left(F\left(x, t_{i}\right), F\left(x, t_{i-1}\right)\right)$, where n^{\prime} is a fixed number greater than $I \pi / 2^{*}$. The function $V(x)$, then, is the sum of a finite number of continuous functions of x, and therefore is itself a continuous function of x.

The function $V(x)$ is a continuous real valued function which gives the variation of x as t takes on values from 0 to 1 in the prescribed manner. Since $F(z, 0)=z$ and $F(z, 1)=z, \nabla(z)$ has the value $2 n \pi$, where n is one of the numbers $0, \pm 1, \pm 2, \ldots .$. Further, it is clear that z is the only x on S_{2} for which $V(x)$ is an integral multiple of 2π.

For sone points x on the circle, $V(x)<2 n \pi$. If not, then for every point $x, V(x) \geqslant 2 n \pi$. Let x_{n} be a point such that $6\left(z, x_{n}\right)=-1 / n$. The sequonce $\left(x_{n}\right)$ converges to z. Further $V\left(x_{n}\right)=2 n \pi+2 \pi-1 / n$, for each n, since $V\left(x_{n}\right)>2 n \pi$, and the length of the are fron x to z in a positive diroction is $(2 \pi-1 / n)$. The sequence $\left(V\left(x_{n}\right)\right)$, then converges to $2 n \pi+2 \pi=2(n+1) \pi$. But aince $V(z)=2 n \pi,\left(V\left(x_{n}\right)\right)$ does not converge to $V(z)$, and $V(x)$ is not contimous. This is a contradiction. Thereiore the assumption that for every $x, V(x) \geqslant 2 n \pi$ is false, so that for some $x, V(x)<2 n \pi$. Similarly for sone $y, V(y)>2 n \sigma_{0}$.

Let H be the set of all x on the circle for which $V(x) \leqslant 2 n \pi$, and K the set of all y for which $V(y) \geqslant 2 n \pi$. The set H is closed, for if x_{0} is a boundary point of H and $\left(x_{i}\right)$ a sequence in H converging to x_{0}, then
by continuity $\left(V\left(x_{i}\right)\right)$ converges to $V\left(x_{0}\right)$. But $V\left(x_{i}\right) \leqslant 2 n \pi$ for each i, so that $\nabla\left(x_{0}\right) \leq 2 n \pi$, wilich means that x_{0} belongs to H. Similarly the set K is closed. Clearly every point of the circle is in one of the closed sets H or K. Hence the sets H and K must have at least two boundary points in common on S_{2}. But then for some point x^{1} distinct from z, $V\left(x^{1}\right)$ is in both H and K, and therefore $V\left(x^{1}\right)=2 n \pi$, which is impossible. Therefore the assumption that the identity transformation on S_{2} is inessential is false.

Hence the identity transformation is not inessential, contradicting the result proved in part two of the proof under the assumption that no point is left invariant under T. Hence the theorm is true.

The fixed point theorm for an n-cell. may be proved in an analogous way.

Theorm 3.

If \mathbb{M} is an n-cell and if I is any continuous transformation of M into itself, then some point of M is left invariant under the transformation T.

Proof: An n-cell is the homeomorphic inage of the region R_{n+1} in E_{n+1} space bounded by the unit S_{n} sphere. Suppose that I is any continuous transformation of R_{n+1} into itself such that for each $x, T(x)$ and x are distinct. Then there is a continuous mapping $T^{\prime \prime}(y)$ of the interior of R_{n+1} into its boundary S_{n} which leaves each point of the boundary fixed. For let $T^{1}(x)$ carry x into the point on the boundary S_{n} of R_{n+1} which is the intersection of the ray from $T(x)$ through x with the boundary. It follows then that the identity mapping of S_{n} is inessential, for let $F(x, t)$ be a function defined as follows:
$P(x, t)=T^{\prime}((1-t) x)$, where x is on the n-sphere. Then the function $F(x, t)$ is continuous, and $P(x, 0)=x$, and $F(x, 1)=z$. But this contradicts the fact that the identity transformation is not inessential. I Therefore the theorm is true.

The next theory shows that certain locally connected continua possess the fixed point property.

A point set H is said to be locally connected at a point p, if p belongs to \mathbb{M} and every open subset of \mathbb{M} that contains p contains a connected open subset of \mathbb{M} containing p .

If if is a locally connected continuum, then H is a connected in kleinem inner limiting set. ${ }^{2}$ un may then be considered a Moore space satisfying axioms 0,1 , and 2 , in which regions are open connected sets. ${ }^{3}$ Hence if p and q are any two points of such a region, then there is an are from p to q contained in the region. 4 Use is made of this in the following lemmas and theorms.

Lemma 2.

If II is a locally competed continuum which contains no simple closed curve, then $I I$ has the property that one and only one arc exists between any tiro of its points.

[^0]Froof: That in has the property that one and only one are exists between any two of its points nay be shown as follows: Suppose p and q are two points of \mathbb{H}. Then, since H is locally comected, it is a connected space in which regions are open connected sets, so that there exists an arc from p to q contained in M. Further, there cannot exist two distinct ares from p to q. For suppose paq and pbq are two distinct ares from p to q. The intersection of the two ares is a closed set, and the component of the intersection which contains p is a closed set. Consequently there is a last point r of this eomponent in the order from p to q on paq and pbq. Thore is also a first point s of the remainder of the intersection. 5 The arcs $r s$ on pag and $r s^{\text {s }}$ on pbq have only r and s in comnon, thus forming a simple closed curve in H. This contradicts an hypothesis of the theorm, and the assumption that two distinct arcs exist from p to q is false. The lemna is therefore true.

Let it be a continum having the property that one and only one are exists between any two of its points. Then a branch Cy with respect to a point y of an arc $A B$ of M is the set of all points x in M for which the arc xy contains no point of $A B$ except y •

Lemms 3.

If M is a continuux having the property that one and only one arc exists between ary two of its points, and 4 contains no simple closed eurve, and if $A B$ is an are in M, then every point in M not in $A B$ belongs to one and only one branch.

Proof: To shov that a point p in M not on $A B$ belongs to at least one branch, considor the arc pB from p to B . Let p ' be the first

[^1]point of $p B$ on the arc $A B$ in the order from p to B. Then the are ppt contains no point of $A B$ except p^{\prime}. Hence p belongs to the branch $C p^{\prime}$. How suppose that p belongs to two branches Cx and Cy , where x and y are distinct. Let p^{\prime} be the first point of the intersection of the arcs $y p$ and $x p$ on $x p$ in the order froan x to p. Then the arcs $y p \prime$, $x p^{7}$, and xy forn a simple closed curve in M, contradicting an hypothesis of the leman.

Lenmar 4.
If \mathbb{M} is a locally connected continuum and \mathbb{H} contains no simple closed curve, and if $A B$ is an are from A to B in M, and $C x$ and $C y$ are distinct branches with respect to AB , then Cx and Cy are mutually separated closed sets.

Proof: Suppose on the contrary that Cx and Cy are branches which are not mutualiy separatod. Lat p be a linit point of Cx contained in Cy. Since M is locally connected, it may be considered a Moore space satisfying axions 0,1 , and 2 , in which regions are open comnected sets. Let g be a region containing p. Then from the assumption, g contains a point x^{\prime} of $C x$ and y^{\prime} of Cy. There is an arc from x^{\prime} to y^{\prime} in g. Since x^{t} is a point of $C x$ and y^{\prime} is contained in an arc containing x^{\prime}, X^{i} is contained in an arc containing x and hence belongs to both Cx and Cy , contradicting Lemms 3. Sindilariy Cx cannot contain a limit point of Cy. Hence Cx and Cy are mutually separated sets. That, the sets are closed thon is evident from the fact that M is closed. Lemra 5.

If M is a locally connected compact continuxan and M contains no simple closed curve, and if T is a contimuous transformation of M into itself and $A B$ is an arc in M, then there is a point x in $A B$ such that
either $T(x)$ is identical with x or $T(x)$ is contained in the branch $C x$. Proof: Suppose that for every x in $A B, x$ and $T(x)$ are distinct and $T(x)$ is not contained in Cx. Consider a division of the arc $A B$ into two sets H and K. Let x be in H if, in case $T(x)$ is on $A B, x$ precedes $T(x)$, ox, in case $T(x)$ is not on $A B, x$ precedes y, where $T(x)$ is in the branch Cy. Let x be in K if x follows $T(x)$ when $T(x)$ is on $A B$, or follows y when $T(x)$ is in the branch Cy.

It is cloar that neither H nor K is vacuous, since \mathbb{H} contains A and K contains B. Further, every point of $A B$ is in either H or \mathbb{K}. For if x is in $A B$, then $T(x)$ is distinct from X by assumption, and if $T(x)$ is on $A B, T(x)$ must either follow or precede x. If, on the other hand, $T(x)$ is not on $A B$, then by Lemma $3, T(x)$ is in Cy for one and only one point y, which is distinct from x by assumption, and x nust oither precede or follow J.

The set H is closed. If not, there is a 7 innit point p_{0} of H which is not in H . Iet $\left(p_{1}\right)$ be a sequence in H converging to po. Constcer the sequence $\left(y_{1}\right)$, where $\gamma_{1}=T\left(p_{1}\right),(i=0,1,2, \ldots)$, if $T\left(p_{1}\right)$ is on $A B$, or is the point y for which $T\left(y_{1}\right)$ is in the branch $C y$, in case $T\left(p_{1}\right)$ is nui on AB. That the sequence $\left(y_{i}\right)$ converges to y_{0} can be shown as follows: First, suppose that $T\left(p_{0}\right)$ is a point of $A B$. Let R be any region containing Yo. Then there exists an integer is such that for $n>k, T\left(p_{n}\right)$ is contained in R. But R is comeeted and hence contains the arc from $T\left(p_{n}\right)$ to $T\left(p_{0}\right)$. Further, y_{n} lies on this are, since otherwise there would exist two distinct ares fron $T\left(p_{n}\right)$ to $T\left(p_{0}\right)$, contradicting Lemena 2. Consequently, for $n>k, \gamma_{n}$ lios in the region $I_{\text {, }}$, and J_{n} converges to $J_{0}=T\left(p_{0}\right)$. On the other hand, suppose that $T(p)$ is not a point of $A B$. Then
$T\left(p_{0}\right)$ is in Cyo. Let R be a region containing $T\left(p_{0}\right)$ which does not contain yo. Since R is comnectod, by Lemma 4 , it is a subset of Cyo. But $T\left(p_{1}\right)$ for $i>k$ for some integer k is contained in C_{0}. This means that $y_{i}=J_{0}$ for $i>k$, and the sequence $\left(y_{i}\right)$ thus converges to J_{0}.

As po was assumed to be a linit point of H which was not in H , P_{0} is in K . By desinition of K , then, y 0 , which is $\mathrm{T}\left(\mathrm{P}_{0}\right)$ in case $T\left(p_{0}\right)$ is on $A B$, or a branch point if not, precedes p_{0} in the order from A to B on $A B$. However, p_{i} precedes y_{i} for every i, since the p_{i} are in H. There exist disjoint intervals on $A B ; I_{1}$ containing y_{0} and I_{2} containing p_{0}, having the property that if x belongs to I_{1} and y belongs to I_{2}, then x precedes y. Since y_{0} is a sequential limit point of the sequence $\left(y_{i}\right)$ the interval I_{2} contains y_{n} for $n>k$ for some integer k. Sinilarly the interval I_{2} contains $\left(p_{i}\right)$ for $n>k^{1}$ for some k^{\prime}. But then for $n>k$, and $n>k^{2}, J_{n}$ precedes p_{n}, which contradicts the fact that p_{n} belongs to H. Therefore the set H is closed.

Similarly the set K is closed. From this and the fact that H and K include sil of AB , it follows that $I I$ and \mathbb{K} have a point p in common. But this is impossible, as distinct points p and $T(p)$ on $A B$, or p and y for $T(p)$ in the branch Cy, cannot both follow and procede each other. Hence the lemma is true.

Theorm 4 -
 closed curve, then every continuous transformation T of M into itself leaves some point of M invariant.

Let A and B be two points of M and let A_{2} designate the arc $A B$. Suppose that no point of M remains invariant under the transformation T.

Then by Lemma 5 there is a point s_{1} in A_{1} such that $T\left(s_{1}\right)$ is containod in the branch Cs_{1}. Let A_{2} be an are in Cs_{1} from $\mathrm{T}\left(\mathrm{s}_{1}\right)$ to s_{1}. Then A_{1} and A_{2} have only the point s_{1} in common. By Leman 5 , again, there is a point s_{2} in A_{2} such that $\mathrm{T}\left(\mathrm{s}_{2}\right)$ is contained in Cs_{2}. But s_{2} is distinct from s_{1}, since $T\left(s_{1}\right)$ belongs to the are A_{2}. Further, Cs_{1} and Cs_{2} with respect to A_{2} have no point or linit point in comion by Jemma 4, so that A_{1} and A_{2} have no point or limit point in comnon except s_{1}. In general then a sequence of points $\left(s_{i}\right)$ and a sequence of arcs $\left(\Lambda_{i}\right)$ are obtained such that $A_{j} A_{i}=0$ except when $j=1+1$, when the sets have only the point s_{i} in comnon. Further for each i, A_{1} contains $T\left(s_{i}\right)$.

Since the sequence (s_{1}) is infinite, there is a point s_{0} and a subsequence ($s_{n_{1}}$) such that the sequence ($s_{n_{1}}$) converges to s_{0}. Hence the corresponding sequence of arces $\left(A_{n_{1}}\right)$ has a limiting set A_{0}, which is a continumus. 6 By continuity of T, the sequence $\left(T\left(s_{n_{1}}\right)\right.$) converges to $T\left(s_{0}\right)$. That $T\left(s_{0}\right)=S_{0}$ can be shom as follows:

Assune that $T\left(s_{0}\right)$ and s_{0} are distinct points. Let D be a connected domain containing $T\left(s_{0}\right)$ whose closure does not contain so Then there is an integer k such that for $n_{1}>k, s_{n_{1}}$ is not in $\overline{\mathrm{F}}$, and $\mathrm{F}\left(s_{n_{1}}\right)$ is contained in D. Let A_{i}^{\prime} be the component of $A_{n_{1}}$ containing $T\left(s_{n_{1}}\right)$ in \bar{D}. Then (A_{i}) is an infinite sequence of mutually exclusive continua. Further, since $A_{n_{1}}$ contains $s_{n_{1}}$ not in \bar{D}, the boundary of D contains a point of A_{1}^{\prime} for each 1 . This is a sufficient condition that M be not connected im kleinem at $T\left(s_{0}\right)$, and hence not loeally connected at $T\left(s_{0}\right) .7$ This contradicts an hypothesis of the theorm. Therefore, the assumption that $T\left(s_{0}\right)$ is distinct from s_{0} is false, and the theorm is true.

[^2]
BIBLTOCRAPIY

Hurewicz, Witold and Henry, Wallman, Dimension Theory, Princeton Univarsity Press, 1941.

Moore, R. L., "Foundations of Point Set Theory," American Hathematical Society Colloguium Publications, Vol. XIII, Ilew Ycrk, (1932).

Whyburn, G. T., "Analytic Topology, Amorican Wathematical Society Colloguium Publications, Vol. XXVIII, Mow York (1942).

[^0]: IHurevicz, Witold and Wallinan, Henry, Dimension Theory, pp. 37-39. $_{\text {P }}$
 ${ }^{2}$ fore, R. Le, "Foundations of Point Set Theory," American Mathematical Society Colloquium Publications, XIII, p. $94 \cdot$
 $3_{\text {Ibid., p. }} 96$.
 Livid. , p. 86.

[^1]: ${ }^{5}$ Toid., Theorm $64(\mathrm{a}), \mathrm{p} \cdot 4.5$.

[^2]: ${ }^{6}$ IoId. Theorm 42, p. 28.
 ${ }^{7}$ Iold.s Theorm 8, p. 95.

