THE EPFECT OF HARMONICS ON THE PREDICTION OF SINGLE-PHASE MOTOR PERFORMANCE

THE EFFECT OF HARMONICS ON THE PREDICTION OF SINGLE-PHASE MOTOR PERFORMANCE

by
Earl J. Hitt
Bachelor of Science Oklahoma Agricultural and Mechanical College Stillwater, Oklahoma

1949

Submitted to the School of Electrical Engineering Oklahoma Agricultural and Mechanical College In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

1950
 Chairman, Thesis Committee

PREFACE

The induction motor is one of the most important types of electric machinery in use today; it might be said that it is second only to the transformer in importance. It is to be expected then, that a great amount of research would be done to determine the operating characteristics of the induction motor.

There are two methods available for determining the performance of induction motors and they are (1) the method of loading and (2) the equivalent circuit method. It is generally conceded that the load test is the most accurate for all types of motors; however, the equivalent circuit method requires less equipment and gives comparable results. The equivalent circuit method, in its usual form, requires the following tests of the machine: (1) the no-load test, (2) the blocked rotor test and (3) the measurement of stator resistance. The performance of single- and polyphase machines from the equivalent circuit has been covered fairly well in present day electrical literature, but much work is left to be done. The method of the fourterminal network is given in some detail in this paper and will be found to be one of the more accurate and expedient methods available, but the use of this method, as well as all others, results in inaccuracies because of:
(1) unjustified treatment of exciting current,
(2) the assumption that circuit parameters are constant,
(3) the failure to consider stray load loss,
(4) the assumption of sinusoidal currents and voltages throughout the motor.

Some work may be found in the literature on the first three items listed above; however, very little work has been done on the fourth, especially as applied to single-phase motors. The usual procedure, when considering the performance characteristics of induction motors, is to neglect the effect of harmonics and in most instances the results obtained are sufficiently accurate. With harmonics present, however, the motor can be expected to show some departure from normal operation.

It has been shown ${ }^{1}$ that two types of harmonics exist in induction motors;
(a) time harmonics, introduced by the impressed emf,
(b) space harmonics, introduced by the counter emf of the motor.
In analyzing a motor considering harmonics, the motor could be thought of as several motors connected on the same shaft, each identical to the motor under consideration, and drawing power; one from the fundamental, one from the third, one from the fifth, and one from the seventh harmonic emf. The reactance of the harmonic motors is n times that of the fundamental, where n is the order of the harmonic. The resistance is also somewhat greater

1 Doggett, L. A. and Queer, E. R., "Induction Motor Operation With Non-sinusoidal Impressed Voltages", Electrical Engineering, XLVIII, (October, 1829) p. 759.
for the harmonic motors, but not n times as great. It was further shown that to all but the fundamental frequency, the running induction motor acts practically as though blocked; i.e., the slip is in the neighborhood of one. The conclusions were that, with harmonics of 10% or less, the effect of harmonics are negligible for all types of induction motors and for all conditions except the no-load condition. It was found that, at no-load, an increase of $I^{2} X$ occurred, but it was not considered serious and the lightly loaded induction motor could be expected to smooth out the impressed emf wave.

In the split-phase single-phase motor it is possible to have all the harmonics present, but modern winding practice does lessen their magnitudes. The problem is complicated by the fact that there is no way to obtain the wave forms of rotor current and voltage. In this thesis the problem is approached from the input current and voltage and the waveforms of these quantities were obtained through the use of the magnetic oscillograph and then analyzed for harmonics. The question is how much the effects of these harmonies are and how much is being neglected.

ACKNOWIEDGEMENT

The author is indebted to Professor Charles F. Cameron for his valuable suggestions, guidance and detailed reading and checking of the manuscript.

TABLE OF CONTTENTS
CHAPTER I Predicting Motor Performance 1
Introduction 1
Performance of Induction Motors. 2
The Single-Phase Motor 4
Predicting Performance by the Four-Terminal Network
Method. 5
Calculation Sheet. 9
Circle Diagram 16
CHAPTER II The Harmonic Analysis 22
Waveforms and Data 24
Analysis of Findings on Harmonics. 30
Fourier Equations of Current and Voltage 32
Diagram of Connections 33
Circuit Constants Considering Harmonics. 33
Slip and Torque at Harmonic Frequency. 40
CHAPTER III Results. 42
Calculation and Comparison of Equivalent Circuit Constants . 42Comparison of Calculated Performance Characteristics . . 45
Conclusions. 52
BIBLIOGRAPEY 56
APPENDIX Waveform Ananlysis. 58

CEAPMER I

pREDTOTMG WOTOR PMOMORMMCE

INTRODUCTON. The alternating current induction aotor has been classified in many different ways, but may siaply be classified as single-phese or polyphase. In each class will be found many types of motors, each built for a particular service and each requiring special operating characteristics. For example: one load requirement may make desirable a constant speed at all loads, while another load may require variable characteristics; i.e., a change in slip with a change in load. To classify all induction motors, it may be saic thet they belong to that group of electrical apparatus which is known as asyochronous; i.e., they operate at a speed sonewhat less than the synchronous speed of their rotating inuxes.

The induction motor was invented by Tikola Tesla in 1888, and much improvement has been made in its operating characteristics since its invention. The common use of this motor may be largely attributed to its sinple, rugged and inexpensive construction.

The theory of operation and construction of the polyphase motor is simpler than that of the single-phase motor and although the single-phase notor lacks the symmetry inherent in the polyphase motor it is very conmonly used. This nay be largely attributed to the growth of the single-phase system of trans-
mission and distribution in this country. Since the use of the induction motor is so common it follows that much research would be done on the operating characteristios of the motor and a search of electrical literature will reveel a wealth of informetion on both the single-phase and the polyphase motor.

PBREOEMAOCT OF INDUCTION ITOTORS. In generel, the performance of induction motors may be obtained by direct or indireet methods. The direct method necessitates the use of the laad test which may be performed in two different ways depending upon whether the output of the machine is measured directly or calculated from the input and losses. The performance of the motor is usually obtained by the use of the dynamoneter, prony brale, or a calibrated generator. One nanutacturer ${ }^{1}$ states that most induction motors, rated fron I to 300 horsepower, are tested by use of the electric aynamoneter, as it offers the most satistactory method of obtaining complete performance and speed-torque characteristies; thet fractional horsepower motors are tested by use of the prony brake, although this is not suitable for large motors; that the equivelent eircuit nethod is used for nachines too large to be loaded conveniently. Loading devices are quite often unavailable, not to mention that they are bulky and costy for even mediun sized machines, therefore, they are applied only to the salaler machines. Load tests will not be covered further: as sufficient information may be found in any good text on alternating current machinery.

1 Westinghouse Rlectric Wanufacturing Co., Tactory Mesting of Electric ipoaratus, East Pittsburgh, Pe., 1943.

The indirect nethod, which may be referred to as the equivlent circuit method, makes use of tests that may be applied to a motor without special equipment. The indirect method slways begins with the equivalent circuit and the accuracy obtainable is dependent upon the choice of an equivalent circuit which will closely represent the motor under all load conditions.

The induction motor is essentially a transformer, the magnetic path of which is separated by the aix gap of the motor into two relatively moving parts, one part carrying the primary and the other the secondary windings. The secondary is usually of the form of a squirrel cage winding; i.e., it consists of identical copper or aluminum bars cast solidly to conducting end rings. Thus, the secondary is short-circuited, or as in the case of the wound rotor machine, may be closed through an external resistance. The distinguishing feature of the induction machine is the fact that current is "induced" into the secondary, thet is, no emf is directly applied to the rotor Motion is ereated by electromagnetic forces corresponding to the power that is transferred across the air gep by induction. Thus, wth the machine being considered as a transformer, it may be represented by an equivalent circuit, and the performance predicted fairly aceurately if the circuit constants are carepully determined in advance. He tests for the detcrmination of the circuit constants are essentially the same for singlew or polyphase machines. the Anerican Institute of Electrical Engineers test code ${ }^{2}$ for in-

[^0]Quetion machines gives authoritative methode for all the usual tests on polyphase mechines and will not be discussed further.

THE SIMGLEPFASE POTOR The performance of the single-phase motor is inferior to the polyphase, but any applications require the single-phese notor and, because of the extent of the singlephase aistribution systen, they are very coman. There are two popular theories for explaining the operation of the single-phece induction motor: (I) the double-revolving field theory ${ }^{3}$ and (2) the cross-field theory. ${ }^{4}, 5$ Both theories lead to the same conclusions and the results of eech are identical.

The end result is to pre-determine the performance of the single-phsse motor and to do so necessitates the calculation of the current. Nany expressions for the current have been derived, but for this investigation the gethod of the four-terminal network theory was uced. The use of this theory for the prediction of motor performance from the equivalent circuit hes been presented in a text ${ }^{6}$ and is an oxcellent treataent of the four-terainal network nethod as applied to induction motors in seneral. The four-terminal network theory was recently extended ${ }^{7}$ and improvenent was made

3 Puchstein, A. F. and Lloyd. T. C. Alternatine-Current Machines, p. 333.

Ibid., p. 343.

5 Robin Beach, "A Physical Conception of Single-Phase Motor Operation", Electricel Ingineering, IKIII, (July, 1844) pp. 254263.

6
Tarboux, J. G., Elternating-Current Machinery.
7 Mexmon Reeder, Jr., WThe Four Terminal Network Method of Predicting Single-Phase Induction $\begin{aligned} & \text { Potor Performance Characteristics }\end{aligned}$ Fron Test Datan, 0klahome 5 . \& M. College (Thesis), 1948.
in it for predicting the performance of single-phase motors. The necessary developments and equations are presonted here briefly.
 1 shows an exact equivelent circuit for the split-phase singlephase notor axd it has been show that the rotor exciting branch of this circuit is the complicating parametex. The corstants of this circuit cannot be found fron the usual tests of a singlephase motox, however the circuit of Figure 2, the approxinate equivalent cireuit, may be solved and the constants determined by test.

The circuit of Figure is a four-terminal network with the inout terminals at and b and the output terminals at c and d. It has been shown that the voltage and current relations in a four-terminal network hay be represented as

$$
\begin{align*}
& Y_{1}=A V_{2}+B I_{2} \tag{1}\\
& I_{1}=C V_{2}+B I_{2} \tag{2}
\end{align*}
$$

where the subscript 1 denotes sending end and subscript 2 denotes receiving end.

Referring to Figure 2 and by applying Eirchhofi's Law

$$
\begin{align*}
& \nabla_{1}=I_{1} Z_{1}+I_{2} Z_{2}+V_{2} \tag{3}\\
& I_{1}=I_{0}+I_{2} \tag{4}\\
& \nabla_{0}=I_{2} Z_{2}+V_{2} \tag{5}
\end{align*}
$$

but

$$
\begin{equation*}
Z_{0}=V_{0} Y_{0}=Y_{0}\left(Z_{2} Z_{2}+V_{2}\right) \tag{6}
\end{equation*}
$$

Figure 1. The exact equivalent circuit of the singlephase induction motor.

Figure 2. The approximate equivalent circuit of the single-phase induction motor.

Substituting the value of I_{0} of equation (6) into equation (4),

$$
\begin{equation*}
I_{1}=Y_{0}\left(I_{2} Z_{2}+V_{2}\right)+I_{2} \tag{7}
\end{equation*}
$$

and substituting equation (7) into equation (3),

$$
\begin{align*}
& \nabla_{1}=z_{1}\left[I_{2}+Y_{0}\left(I_{2} Z_{2}+\nabla_{2}\right)\right]+I_{2} Z_{2}+\nabla_{2} \\
& \nabla_{1}=\left(Z_{1} Y_{0}+1\right) V_{2}+\left(Z_{1}+Z_{1} Z_{2} Y_{0}+Z_{2}\right) I_{2} \tag{8}
\end{align*}
$$

Comparing equation (8) with equation (1) shows that

$$
\begin{align*}
& A=Z_{1} Y_{0}+1 \tag{9}\\
& B=Z_{1}+Z_{1} Z_{2} Y_{0}+Z_{2} \tag{10}
\end{align*}
$$

Rearranging equation (7),

$$
\begin{equation*}
I_{1}=Y_{0} \nabla_{2}+\left(Z_{2} Y_{0}+1\right) I_{2} \tag{11}
\end{equation*}
$$

and comparing equation (11) with equation (2) shows that

$$
\begin{align*}
& C=Y_{0} \tag{12}\\
& D=Z_{2} Y_{0}+1 \tag{13}
\end{align*}
$$

Returning to the two general equations of the equivalent circuit, equations (1) and (2), from equation (1),

$$
\begin{equation*}
\nabla_{2}=\frac{\nabla_{1}-\mathrm{BI}_{2}}{A} \tag{14}
\end{equation*}
$$

but from Figure 2,

$$
\begin{equation*}
V_{2}=I_{2} Z_{R} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}=\frac{V_{1}}{A Z_{R}+B} \tag{16}
\end{equation*}
$$

Substituting this value of current into equation (15),

$$
\begin{equation*}
\nabla_{2}=\frac{\nabla_{1} Z_{R}}{A Z_{R}+B} \tag{17}
\end{equation*}
$$

and using equations (6) and (7) in equation (2),

$$
\begin{equation*}
I_{1}=\frac{V_{1}\left(C Z_{R}+D\right)}{A Z_{R}+B} \tag{18}
\end{equation*}
$$

Multiplying both the numerator and denominator of the right hand side of equation (18) by A, equation (18) becomes,

$$
\begin{equation*}
I_{1}=\frac{V_{1}\left(A C Z_{R}+A D\right)}{A\left(A Z_{R}+B\right)} \tag{19}
\end{equation*}
$$

Adding and substracting, simultaneously, BCV_{1} in the numerator of the right hand side of equation (19) and rearranging gives

$$
\begin{equation*}
I_{I}=\nabla_{I} \frac{C}{A}+\frac{\frac{\nabla_{1}}{A^{2}}}{Z_{R}+\frac{B}{A}} \tag{20}
\end{equation*}
$$

Equation (20) gives the input current in terms of the fourterminal network constants and it may be seen that the following relations hold.

$$
\begin{array}{lrl}
K^{\prime}=C / A & \text { (an admittance) } & \text { (a) } \\
K^{\prime}=1 / A^{2} & \text { (a complex ratio) } & (b)\{-(21) \\
K=K_{1}+j K_{2}=B / A & \text { (an impedance) } & (c)
\end{array}
$$

Using the above constonts in equation (20) and grouping Z_{R} with the resistive component of $\mathrm{F} / \mathrm{Z}_{\mathrm{R}}$ is considered a variable load resistance whose velue depends upon the rotor speed), equation (20) takes the form,

$$
\begin{equation*}
I_{1}=\mathrm{x}_{\mathrm{K}} \mathrm{~V}_{1}+\frac{\mathrm{K}^{n V_{1}}}{\left(Z_{\mathrm{R}}+\mathrm{K}_{1}\right)+j K_{2}} \tag{28}
\end{equation*}
$$

Equation (22) represents the input current and consists of a constant component and a variable component. It has been shown that $X_{1}=I_{n}$, the no-loed current. ${ }^{8}$ This, however, cannot be true unless the machine is ariven at synchronous speed, but this error is considered slight compered to the errors in obtaining the test data.

The proper substitutions in equations (21) gives the values of x and $\mathrm{K}^{\mathrm{GP}} V_{1}$ as

$$
\begin{align*}
& X=\frac{B}{A}=Z_{0}-N^{\prime} Z_{1} \tag{23}\\
& X^{\prime \prime} V_{I}=V_{0}-I_{n} Z_{1}\left(I-X^{\prime} Z_{1}\right) \tag{24}
\end{align*}
$$

where $\mathbb{K}^{4}=I_{n} / V_{n}$ (the no-load voltage is the rated voltage V_{1}). It should be noted nere that, unless otherwise specipically stated, all quantities axe vector quantities and must be handed as such.

GALCULATION SHETI. The calculation sheet is a means to an end. It is used for the sole purpose of saving tine in the calculation of the performance. In any such procedure it is necessary that the sheet be as simple and straight-formerd as possible

8 Ibid. $p .84$.
and for that reason certain simplifying substitutions are made. In this case the procedure envolves actually two sheets; one a preliminary calculation sheet and the other the final or calculation sheet.

The network conetants are obtained from the usual no-load and bloched rotor tests. These tests yield the following:
(a) Blocked rotor test, main winding, I_{b}, V_{b}. W W_{b}
(b) Mo-load tost, main winaing, I_{n}, V_{n}, W_{n} *
(c) Pesistance of the stator winding H_{1}; which may be geasured by the "In drop" method or by the use of a bridge.

From the blocked rotor test the following equivalent values are obtained.

$$
\begin{aligned}
& z_{e}=\frac{\nabla_{b}}{I_{b}} \\
& E_{e}=\frac{W_{b}}{I_{b}^{2}}
\end{aligned}
$$

The total resistance R_{e} is also equal to

$$
R_{e}=R_{1}+\frac{R_{e} R_{0}}{R_{E}+R_{0}}
$$

but since the resistance to the shunt branch is so much greater than \mathbb{R}_{g}, the resistance of the secondary, the resistance R_{e} nay be assumed to be equal to

$$
R_{e}=R_{1}+R_{2}
$$

fror which the value of R_{2} may be obtained.
Since $Z_{e}=R_{e}+j X_{e}$, it follows that the value of the equiv-

Qlent reactance may be obteined from the relation

$$
X_{\theta}=\sqrt{Z_{\theta}^{2}-R_{e}^{2}}
$$

ana making the assumption that the stator and rotor reactances are equal, then, $X_{I}=X_{2}=0.5 X_{e}$. From this the stator and rotor impedances are readily obtained.

$$
\begin{aligned}
& Z_{1}=R_{1}+j X_{1}=z_{1} / \theta_{1} \\
& Z_{2}=R_{2}+j X_{2}=z_{2} / \theta_{2}
\end{aligned}
$$

The no-load current is completely determined with the phase angle between it and the applied voltage given. The phase angle θ_{n} nay be found from the relation,

$$
\theta_{n}=\cos ^{-1} \frac{W_{n}}{V_{n} I_{n}}
$$

and using the applied voltage, $V / 90^{\circ}$, as a reference, the no-load current will be $I_{n} / 90^{\circ}-\theta_{n}$.

Applying Kirchhoff's Law to the circuit at no-load, the voltage drop across the shunt or exciting branch is obtained as

$$
\begin{aligned}
V_{0} & =V_{n}-I_{n} Z_{1} \\
& =V_{n} / 90^{\circ}-\left(I_{n} / 90^{\circ}-\theta_{n}\right)\left(Z_{1} \angle \theta_{1}\right)
\end{aligned}
$$

and

$$
Y_{0}=\frac{I_{n}}{V_{0}}
$$

Frof equivalent circuit theory, the variable load impedance is

$$
z_{R}=\frac{s^{2} R_{2}}{1-s^{2}}
$$

If it is further assumed that the rotor speed is practically a linear function of the power output, then values of s may be assumed a starting points for the calculation of performance. The equation may be written

$$
S=\frac{W_{S}-k\left(N_{S}-M_{I I}\right)}{W_{S}}
$$

where k is the per cent of rated load at widn the performance is desired, N_{S} is the synchronous speed and N_{f} is the full load speed.

Prom Qquation (22) the stator current could be re-written as

$$
\begin{equation*}
I_{1}=(n+j n)+\frac{r+j n}{x+j y} \tag{25}
\end{equation*}
$$

where,

$$
\begin{aligned}
& m=V_{1}(C / A) \cos \left(90^{\circ}+\beta\right) \\
& n=V_{1}(C / A) \sin \left(90^{\circ}+\beta\right) \\
& r=\left(V_{1} / A^{2}\right) \cos \left(90^{\circ}+\phi\right) \\
& s=\left(V_{1} / A^{2}\right) \sin \left(90^{\circ}+\phi\right) \\
& x=Z_{R}+(B / A) \cos r \\
& y=(B / A) \sin r \\
& u=x^{2}+y^{2}
\end{aligned}
$$

After making the proper substitutions and rationalizing equation (25) the expression for the current becomes

$$
\begin{equation*}
I_{1}=\left[m+\left(\frac{r x+s y}{u}\right)\right]+j\left[n+\left(\frac{x s-r y}{u}\right)\right] \tag{25a}
\end{equation*}
$$

and it will be seen that the phase angle between I_{1} and V_{I} is

$$
\theta=\tan ^{-1} \frac{m+\left(\frac{r x+s y}{u}\right)}{n+\left(\frac{x s-r y}{u}\right)}
$$

from which the power factor may be found by taking the cosine of the angle θ.

Now, by making a comparison of equations (25) and (25a) with reference to the circle diagran given in Pigure 3 , it will be seen that since I_{1} is made up of the components on and Da,

$$
\operatorname{Pa}=\left(\frac{r X+s y}{u}\right)+f\left(\frac{X B-r y}{u}\right)
$$

and

$$
\begin{aligned}
& P e^{\prime}=\frac{r X+s y}{u} \\
& a e^{\prime}=\frac{X s-r y}{u} \\
& \theta_{R}=\tan ^{-1} \frac{P e^{\prime}}{a e^{\prime}}=\tan ^{-1} \quad\left(\frac{r X+S y}{X S-r y}\right)
\end{aligned}
$$

Referring to the triangle pad, Figure 3, by trigonometry

$$
\begin{aligned}
& a d=P a \cos \left(\theta_{\mathrm{R}}+\phi\right) \\
& P a=P a \sin \left(\theta_{\mathrm{R}}+\phi\right)
\end{aligned}
$$

Referring to the triangle Pfh, Figure 3, by trigonometry

$$
\begin{aligned}
& \mathrm{In}^{\prime}=I_{b} \cos \theta_{b}-I_{n} \cos \theta_{n} \\
& \mathrm{In}^{\prime}=I_{b} \sin \theta_{b}-I_{n} \sin \theta_{\mathrm{n}} \\
& \mathrm{EI}=\sqrt{\left(P h^{\prime}\right)^{2}+\left(\mathrm{h}^{\prime}\right)^{2}}
\end{aligned}
$$

Figure 3. Circle diagram of a single-phase induction motor.

$$
\delta=\tan ^{-1} \frac{p h^{1}}{f h^{1}}
$$

and

$$
f x=p \cos (\delta+\phi)
$$

It is now necessery that the rotor and stator copper losses be separated. The length h'1' represents the stator copper loss and may be caloulated by

$$
\begin{equation*}
h^{\prime} L^{\prime}=\frac{\left(I_{b}^{2}-I_{n}^{2}\right) I_{1}}{\mathbb{V}_{I}} \tag{26}
\end{equation*}
$$

Som the entele diagram it will be seen that

$$
\begin{aligned}
& \mathrm{II}^{\prime}=\mathrm{In}-\mathrm{H}^{\prime} \mathrm{I}^{\prime} \\
& \mathrm{IL}_{2}=\frac{\mathrm{IL}^{\prime}}{\cos \phi}
\end{aligned}
$$

and the point is loosted.
Meferring again to the cirole diagran, Figure 3, fron the triangles pdb and Pfis, the following melations may be written

$$
\begin{aligned}
& b d=p a \cot (\delta+\phi) \\
& b c=b d\left(\frac{f L}{W K}\right)
\end{aligned}
$$

It follows thon, from the above calculations, that the power output, po, may be obtainea from

$$
P_{0}=V_{1} \times a b=V_{1}(a d-b d)
$$

and the forque, in synchronous watts, may be found from

$$
\begin{equation*}
T=T_{1} \times a c=V_{1}(a d-c d) \tag{28}
\end{equation*}
$$

The torque in oz-ft may now be obtained from the equation

$$
\begin{equation*}
T=\frac{118.8(\mathrm{ad}-\mathrm{cd}) \mathrm{V}_{1}}{m_{\mathrm{S}}} \tag{29}
\end{equation*}
$$

The power iaput, watts, is eiven by the equation

$$
\begin{equation*}
P_{i}=\operatorname{ae} \times V_{I} \tag{30}
\end{equation*}
$$

and the efficiency, the ratio of the power output to the power input, is obtained from

$$
\begin{equation*}
E f f_{0}=\frac{a b}{a e} \tag{31}
\end{equation*}
$$

The calculation sheets ${ }^{9}$ are given in Figures 4 and 5 and the complete perfomance cheracteristics may be obtained and plotted. Considering the assumptions made in the foregoing develoment, the accuracy is fairly good. All the values obtained fron the blocked rotor and no-load tests and given on the caloulation sheet of Figure 4 are considered to remain constant for a particular motor.

CIROLE DIAGRAF The circle diegran is another popular method of deteraining the performace of induetion machines. The circle diagram method, however, is not as accurate as the method using the calculation sheets. This nethod is based upon the isct that the Quation for the current I_{I}, ecuation (22), is made up of a constant component and a variable componert; the variable component being the locur of a circle. The four-terminal network theory nay be used to advantage in finding the necessary paraneters for

9 Ibid. 2 pp. 35-45.

$$
\begin{aligned}
& \nabla_{b}=\ldots \quad I_{b}=\quad \quad V_{b}=\square \\
& V_{n}=\quad I_{n}=\longrightarrow \quad W_{n}= \\
& \cos \theta_{b}=V_{0} / V_{b} I_{b}=\ldots \quad \cos \theta_{n}=V_{n} / V_{n} I_{n}=
\end{aligned}
$$

$$
\begin{aligned}
& z_{1} / \theta_{1}=R_{1}+j X_{1}=\quad \quad Z_{2} / \theta_{2}=R_{2}+j X_{2}= \\
& Z_{e} / \theta_{e}=R_{e}+J_{e}=\quad V_{0}=V_{n}-I_{n} Z_{1}= \\
& Y_{0}=I_{n} / \nabla_{0}=\quad V_{I}(0 / A) / 90^{\circ}+\beta=I_{n} / 90^{\circ}-\theta_{n}= \\
& n=I_{n} \cos \left(20^{\circ}-\theta_{n}\right)=\quad n=I_{n} \sin \left(90^{\circ}-\theta_{n}\right)= \\
& \mathbb{Z}^{\prime}=\left(I_{n} / V_{n}\right) /-\theta_{n}=\quad \pi_{1}^{\prime} Z_{1}^{2}=Z_{1}^{2} \angle 2 \theta_{1}-\theta_{n}= \\
& K L C=z_{e}-W Z_{1}^{2}=\quad y=K \sin r= \\
& I+\mathbb{K} Z_{1}=1+\mathbb{Z} Z_{1} / \theta_{1}-\theta_{n}=\quad I_{n} Z_{1}=I_{n} Z_{1}\left(80+\left(\theta_{1}-\theta_{n}\right)=\right.
\end{aligned}
$$

$$
\begin{aligned}
& r=\mathbb{Z}^{\prime \prime} V_{1} \cos (90+\phi)=\quad s=\mathbb{K}^{\prime \prime} V_{1} \sin (00+\phi)= \\
& \mathrm{fn}^{9}=I_{\mathrm{b}} \cos \theta_{\mathrm{b}}-I_{\mathrm{n}_{\mathrm{n}} \cos \theta_{\mathrm{n}}}=\ldots \quad \mathrm{Ph}^{2}=I_{\mathrm{b}} \sin \theta_{\mathrm{b}}-I_{\mathrm{n}} \sin \theta_{\mathrm{n}}=
\end{aligned}
$$

$$
\begin{aligned}
& \delta+\phi=\cdots \cot (\delta+\phi)= \\
& \mathrm{xy}= \\
& \text { _ } \mathrm{sy}= \\
& f \mathrm{~K}=\mathrm{Pf} \cos (\delta+\phi)=\ldots \quad h^{\prime} \mathrm{L}^{4}=\mathrm{R}_{1}\left(\mathrm{I}_{\mathrm{b}}^{2}-\mathrm{I}_{\mathrm{n}}^{2}\right) / \mathrm{V}_{1}= \\
& A / \phi / 2=z_{1} X_{0}+I=\quad \quad \mathrm{fL}=\left(\mathrm{fh}^{\prime}-h^{\prime} \mathrm{L}^{\prime}\right) / \cos \phi=
\end{aligned}
$$

Figure 4. Preliminary calculation sheet.

Calculation sheet				
(1) Slip				
(2) $\mathrm{z}_{\mathrm{R}}=\left(\mathrm{R}_{2} \mathrm{~s}^{2}\right) /\left(1-\mathrm{s}^{2}\right)$				
(3) $K \cos r+$ (2)				
(4) $\mathrm{y}^{2}+(3)^{2}$				
(5) rXx (3)				
(6) (5) +sy				
(7) (6)/4)				
(8) $m+$ (7)				
(9) $s \times$ (3)				
(10) (9)- ry				
(11) (10) $/ 4$				
(12) $n+$ (11)				
(13) $P_{1}=V_{1} \times$ (12)				
(14) $\mathrm{I}=\left[(8)^{2}+(12)^{2}\right]^{1 / 2}$				
(15) $(90-\theta)=\tan ^{-1}$ (12) /(8)				
(16) P.F. $=\sin (90-\theta)$				
(17) $\mathrm{Pa}=\left[(7)^{2}+(12)^{2}\right]^{1 / 2}$				
(18) $\lambda=\tan ^{-1}$ (11)/(7)				
(19) $\mathrm{ad}=(17) \times \sin (\lambda-\phi)$				
(20) $\mathrm{Pd}=(17) \mathrm{x} \cos (\lambda-\phi)$				
(21) $\mathrm{bd}=$ (20) $\mathrm{x} \cot (\delta+\phi)$				
(22) $\mathrm{cd}=$ (21) $\mathrm{x}(\mathrm{fK}-\mathrm{PL}) /(\mathrm{tK})$				
(23) $P_{0}=V_{1} \times($ (19)- (21) $)$				
(24) $\mathrm{T}=112.8 / \mathrm{N}_{\mathrm{s}}($ (19)-(22) $)$				
(25) EPT. = 23) / (13)				
(26) $\mathrm{Hp} .=$ (23) / 746				

Figure 5. Calculation sheet for a single-phase induction motor.
the construction of the circle diagram.
It has been shown that the diameter of the circle diagram ${ }^{10}$ is

$$
\begin{equation*}
\text { Diameter }=\frac{E^{3} V_{1}}{\sqrt{X_{2}}} \tag{32}
\end{equation*}
$$

and if the voltage reference is taken as $j V_{2}$ this expression for the dianeter becones

$$
\text { Dianeter }=\frac{V_{1} K^{6}}{\bar{V}_{2}}
$$

It was further shown that the coordinates of the circle are

$$
\begin{aligned}
& \mathrm{h}=\frac{V_{1}}{2 K_{2} A^{2}} \cos \phi \\
& \mathrm{k}=\frac{V_{1}}{2 K_{2} A^{2}} \sin \phi
\end{aligned}
$$

also it was shom that the alemeter of the circlo should be tilted by the angle ϕ, which is easily determined from the networle constant A.

As previousiy mentioned the quantity N_{1} is the no-load current and displaces the center of the circle by the megneiude of the no-load current and in the direction of its ansle from the original coordinates, (h, k). The circle diegran is shown in Figure 3 , page 14.

The separation of the rotor and stator copper losses is as follows: it wes stated previously that the length

10 Ibia., pp. 13-16.

$$
\begin{equation*}
n^{\prime} I^{*}=\frac{\left(I_{b}^{2}-I_{n}^{2}\right) R_{1}}{V_{1}} \tag{26}
\end{equation*}
$$

but when the circle is tilted there is no length on the con－ ventional circle diagran which representa the stator copper loss． The point I may be located approximately by the use of the above formule as follows：locate the point $L^{\text {first，then the horizontal }}$ projection to the line representing the in－phase component of the blocked rotor curreat，such as line xf on Pigure 3 ，will locate the point I．Sone simplification can be nade on the above method by making more assumptions，but the simplified forevas hold only for motors rated at less than $\frac{2}{⿳ 亠 口 冋 口 灬 ~ h o r s e p o w e r . ~}$

The procedure for using the oircle diagram to predict the motor performance is as follows．The usual blocked rotor and no－loed teets are made on the motor and fron these tests and the formulas on pages 10 and 11 of this chapter，$I_{b}, I_{n}, \theta_{b}, \theta_{n}$ and the network constants $Z_{e}, R_{e}, R_{1}, R_{2}, X_{e}, X_{1}, X_{2}$ and X_{o} are first obtained．Next the network constants are calculated from equations（9），（10），（12），（13）and equations（21）．The diameter of the circle may then be found from equation（32）．To find the current assume a value of rotor speed as a fraction of synchronous speed and determine the load inpedence．

$$
\begin{equation*}
z_{R}=\frac{s^{2} R}{I-s^{2}} \tag{33}
\end{equation*}
$$

Then the current I_{1} may be found from equation（22）．The next step is to detemine the stator copper loss as previously indicated and locete the point I from equation（26）．The
performance may now be found from the circle diagran as follows: for any value of input current, I_{1} (the distance Oa on the circle diagrany, the performance charecteristics are represented by the following quantities from the circle diagram (Figure 3):

$$
\begin{array}{ll}
(a e) V_{1}-\text { Power input (watts) } & \text { (a) } \\
(a c) V_{1}-\text { Torque (synchronous watts) } & \text { (b) } \\
(a b) V_{1}-\text { Power Output (wetts) } & \text { (c) })-(3 A) \\
\text { ae/Oa - Power factor (decimal) } & \text { (d) } \\
a b / a e-\text { Efficiency (decimal) } & \text { (e) }
\end{array}
$$

OHyDMER II

THE RAMMONTO ARLYSTS

The importance of the equivalent circuit has already been shown, however, certain assumptions are aecessary in the usual solution of the circuit ond certain inacouracies result from these assumptions. One of the assumptions usually made is that the impressed voltage is slnusoidal. Although great care is taken to minimize the harmonic content of the output of modern alternators, it is practically impossible to remove all harmonics from the alternator output. It has been shown that only the higher odd harmonics are present in a three-phase alternator; the third and multiples of the third harmonic are cancelled, or very nearly so, in the machine.

Plgures 6, 7, 8, 9 and 10 show the almost negligible haraonic content of an ordinary commercial supply voltage. These figures aiso show the harmonio content of the input current when applied to a single-phase motor and it will be seen that the harmonic content is sonewhat increased.

Even when the applied voltege ig a pure sinusoidal wave, harmonics are produced in a motor. In tbis case the hamonics are the result of a non-sinusoidal distribution of flux in sqace Which is caused by minaing distribution and the limitation of the rumber of slote per pole. The result is that the countex enf and the primary cumpent are non-stmusoidal waves. Hamonios
produced in this manner are given the name "space" hamonies.
The flux in a notor is the result of curront flowigg in the stator and rotor and just as the fundamental produces flux so do the hemonice. Thus, it mill be seen that the flux in a motor must adapt itsels to the tine variation of the anput voltage and When the impressed voltase contains harmonics these same hamonios appear in the motor. These harmonics are given the name "time" hamonicr.

To complete the distortion in the notor, there exists the effects of magnetic saturation wion cases the nagnetining current to be non-sinusoldal also.

It is logieal, then, that the harnonie content of the input current may contain a larger amount of ach hamonic than the inpressed voltage. In the analysis that follows no attempt is made to differentiate between the types of harmonics or to deteraine their effects separately. The purpose is, however, to analyze the effect of the total hamonic content of the input current and impressed voltage as waveforms of these quantities may be obtained easily.

It has been shown that it is theoretieally possible to have all the possible harmonics present in a single-phase winding. This is readily seen fron the equation

$$
\begin{equation*}
n=k-1 \tag{35}
\end{equation*}
$$

where k is a positive integer exclusive of zero and n is the

1 Liwschitz-Garick, M. and Whipple, C. C. 典lectric Machinery Vol. II, D. 496.
order of the hermonic. Equation (35) is independent of the number of pheses and then applied to a single-phese rotor it yields, for integral slot mindings, all diglts from 0 to infintty inaicating that it is possible to have an infinite number of hermonios in a single phsse wiading. 留ith proper vinding alstribution, it is possible to elininete any, and reduce the renainder, of the possible hemonics.

WAVETORMG AND DEA. The waveforas preseated here were obtained by use of a megnetic oscillograph; the traces being obtained on photographic filn. Three tests were used and they inelude (1) the synchronous speed test, (2) the no-load test and (3) the blocked rotor test. In addition oscillograms were obtained at two speeds slightly less than synchronous.

The synchronous speed test gave the waveforns of voltage and current shown in Figure 6 with rated voltage applied. The waveform of voltage and current at less than synchronous speed are shown in Figures 7 and 8 end were aleo obtaned with rated voltage agplied. Pigure 9 is the waveforms of voltage applied to, and the current in the motor at no-load. No appreciable change will be noted in these first four oseillograms with respect to hemanie content. fowever, the blocked rotor condition, shom in Pigure 10 , indicated as appreciable increase in the harmonic content of the ingut current and no increase in the harmonic content of the impressed voltage. Since the blocked rotor waveforms were also obtained at rated voltage it may be assumed that the effects of saturation caused the increase in harmonic content.

Figure 6. Waveforms of input current and applied voltage in a Century single-phase motor at synchronous speed. The larger waveform represents the input current.
$V=118.5$ volts, $I=2.92 \mathrm{amps}, W=49$ watts, $N_{s}=1800 \mathrm{rpm}$

Figure 7. Waveforms of input current and applied voltage in a Century single-phase motor at slightly less than synchronous speed. The larger waveform represents the input current.
$V=118.5$ volts, $I=2.92 \mathrm{amps}, W=76$ watts, $N=1794 \mathrm{rpm}$

Figure 8. Waveforms of input current and applied voltage in a Century single-phase motor at slightly less than synchronous speed. The larger waveform represents the input current.
$V=118$ volts, $I=2.92 \mathrm{amps}, W=91$ watts, $N=1789 \mathrm{rpm}$

Figure 9. Waveforms of input current and applied voltage in a Century single-phase motor at no-load. The larger waveform represents the input current.
$V=116$ volts, $I=2.83 \mathrm{amps}, W=66$ watts, $N=1783 \mathrm{rpm}$

Figure 10. Naveforms of input current and applied voltage in a Century single-phase motor under blocked rotor conditions. Rated voltage was applied. The larger waveform represents the current.
$V=114$. volts, $I=22.6 \mathrm{gmps}, W=2.2 \mathrm{kw}, \mathrm{N}=0$
 used to detemine the hamonics present in the voltage and current waves shown by the oscillograns. Analyzing the waveforms of voltage applied to the motor mevealed a very small harmonie content as was expected. In per cent of the fundanental it was found that there was
(a) 0.26% third hamonie,
(b) 1.53% fifth hammonie,
(c) 0.13% seventh hamonic.

These values bear out the theory of negligible third and multiples of the third hamonic present in ordinary commercial supplies and it is seen that the higher odd hamonics are also very shall.

At synchronous speed with rated voltage applied the singlephase motor acts as an energy absorption device and the power applied to the notor represents the friction and windage, core and a seall stator copper loss. This may be shom as folloms: Sinee, at synchronous speed, $S=1, Z_{R}$ approaches infinity and I_{8} is essentially zero. In the conventional circie diagram I_{n} is not equal to I_{s} (synchronous speed current) as is assumed to be true of an ideal motor, therefore, I_{n} of ingure 3 could be more accurately represented by the input current at synchronous speed, I_{s}. Sone error might be attributed to the diference in power

2 See appendix for graphical method of harmonic analysis.
$3 S$ is the ratio of rotor speed to the synchronons speed of the motor flux.
Z_{A} is equal to $\left(S^{2} \mathrm{R}_{2}\right) /\left(1-S^{2}\right)$, the load which can be represented as a variable resistance.
factor of I_{n} and I_{g}. It was observed that there was a change in power factor as the speed was varied from symehronous speed to no-load speed. The data and findinge are giton in the table below.

rpm	$\begin{gathered} \text { Syn. Speed } \\ 1800 \end{gathered}$	1794	1789	$\begin{gathered} 10-10 a d \\ 1783 \end{gathered}$
Toltage	118.5	118.5	118	116
Current	2.92	2.92	2.92	2.83
Watts	49	76	91	66
Tower Pector	0.142	0.250	0.264	0.201

As the speed is Varied fron synchronous, \mathbb{Z}_{R} is no longer infinity, although it is still much larger than the impedance of the exeiting branch, and some current flows in the rotor circuit of the notor supplying some of the rotor core and copper losses. There is also some increase in losses because of the addition of stray losd loss caused by the hamonics of the current.

At synchronous speed it was found that the inout current contained the rollowing per cent harmonics
(a) 1.15 多 third harmonic,
(b) 2.16 fifth hamonic,
(c) 0.54 seventh hermonic.

At no-load, the power input represents the rotor and stator copper loss, core loss, friction and windege and stray load loss. Some increase in the hamonic content of the input current was, therefore, expected and found. At no-loed there was
(a) 1.55% third hamonic,
(b) 2.35 fifth harmonic,
(c) 0.32% seventh hemonic.

Under blocked rotor conditions, the motor is essentially a transformer with a short-circuited secondary. The losses are the stator and rotor coper losses and core losses. However, there is an increase in the hamonic content of the input current. Under blocked rotor conditions there was tound to be
(a) 8.53% third harmonic,
(b) 1.82\% fifth hamonic,
(c) 0.60% seventh haxmonic.

Since the recctances X_{1} and X_{2} are found from the blocked fotor data, there will be a definite error because of the greatly increased thitid hamonic.

FOURTER EQUAPTONS OF OURRENT $\leq N D$ VOLTAGE. From the graphical analysis, the Fourier Series equetions of the current and voltage may be obtained. At synchronous speed,

$$
\begin{array}{r}
I=4.04 \cos \left(\alpha-39.4^{\circ}\right)+0.0467 \cos \left(3 \alpha-169.7^{\circ}\right)+ \\
0.0872 \cos \left(5 \alpha-26.1^{\circ}\right)+0.0218 \cos \left(7 \alpha+162.95^{\circ}\right)
\end{array}
$$

At no-load,

$$
\begin{array}{r}
i=3.9 \cos \left(\alpha-90^{\circ}\right)+0.0605 \cos \left(3 \alpha-170.35^{\circ}\right)+ \\
0.0917 \cos \left(5 \alpha-43.5^{\circ}\right)+0.0126 \cos \left(7 \alpha+128.5^{\circ}\right)
\end{array}
$$

Under blocked rotor conditions,

$$
\begin{array}{r}
i=30.35 \cos \left(\alpha-87.9^{\circ}\right)+1.08 \cos \left(3 \alpha+113.3^{\circ}\right)+ \\
0.551 \cos \left(5 \alpha+125.8^{\circ}\right)+0.182 \cos \left(7 \alpha+83.45^{\circ}\right)
\end{array}
$$

The voltage under blocked rotor conditions is

$$
\begin{array}{r}
v=161.5 \cos \left(\alpha-90.4^{\circ}\right)+0.46 \cos \left(3 \alpha+135^{\circ}\right)+ \\
2.46 \cos \left(5 \alpha+33.6^{\circ}\right)+0.21 \cos \left(7 \alpha+87.5^{\circ}\right)
\end{array}
$$

DIAGRan OF CONHECPIORS . The connection diagram used to obtain the data for this investigetion are shown in Figure 12. The direct current motor provided the driving force for obtaining the synchronous speed data and the speed was determined by the use of a stroboscope and target mounted on the cougled shafts of the two machines. Synchronous speed was then easily obtained by adjusting the speed of the direct current motor until the target image remained stationary.

The oscillograph was connected direetly to the input of the induction motor for all tests with one exception. Under blocked rotor conditions, because of the high short-circuit current, it was necessary to use a shont for the current element of the oscillograph.

The testing was gleatly facilitated by use of the induction motor test table unon which it was possible to place all motors and instrumente. The corolete set-up of test equipment is shown in the photograph of Figure 12.

CIRCUIT COMSTANME CONSTDERIPY BARPONTCE. In the foresoing analysis it was found that under blocked conditions the harmode content of the current was fairly large; i.e., in per cent of the fundamental, the third harmonte was 6.53%, the fifth harmonic was 1.82% and the seventh harmonic was 0.6%. It follows, then, that since the circuit constants are almost entirely determined from the blocked rotor data, these constants will be in error.

Figure 1l. Photograph showing testing table and complete test set-uy.

Figure 12. Diagram of connections for obtaining data for harmonic analysis.

It will be remembered that the equivalent impedance is given by

$$
z_{e}=\frac{V_{b}}{I_{b}}
$$

and the equivalent resistance is given by

$$
\mathrm{H}_{e}=\frac{W_{b}}{I_{b}^{2}}
$$

where $H_{2}=n_{\theta}-n_{1}$. The equivalent reactance mey be found from the equation

$$
x_{e}=\sqrt{Z_{e}^{2}-R_{e}^{2}}
$$

where $X_{1}=X_{2}=0.5 X_{e}$. The voltage across the exciting branch is given by

$$
V_{0}=V_{n}-I_{n}^{Z_{I}}
$$

where V_{n} is the no-load voltage, I_{n} is the no-load current and Z_{1} is the primary impedance. The admittance of the exciting branch may then be found from the relation

$$
I_{0}=\frac{I_{n}}{V_{0}}
$$

The above equations nay be corrected for the error caused by harmonies through the use of the harmonic analysis and the following symbols will be used. The subscript "1" will be added to denote the fundamental, the sabsoript " 3 " will be sdded to denote
the thixd hammonic, etc., and the added subscript "n" will mean the "nth" barmonic.

The equitalent inpedance of the motor may be found mon

$$
\mathrm{a}_{\mathrm{b} 1}=\frac{\mathrm{V}_{\mathrm{b} 1}}{\mathrm{I}_{\mathrm{b} 1}}
$$

The equivalent resistance will be given by the equetion below if it is assumed that the input power of the harmonics is negligible. Thus,

$$
F_{a 1}=\frac{W_{b}}{I_{b I}^{2}}
$$

where $R_{2}=R_{e l}-R_{1}$. me equivalent reactance may be found Tron

$$
X_{e l}=\sqrt{z_{e 1}^{2}-R_{e l}^{2}}
$$

where $X_{11}=X_{81}=0.5 X_{e 1}$.
Since the reactonce of an alternating current circuit is proportional to the frequency, the reactance to each of the harmonics may be found from

$$
X_{e n}=n X_{e l}
$$

where n is the order of the harnonic. The reaistance to each harmonic will be slightly greater but not n times as great and the incease in resistadee will be considered neglisible for this analysis.

It was pointed out that the no-load speed of the single-phase motor is not symohronous for an ideal motor end it was suggested.
that the synchronous speed test be used instead. Then,

$$
V_{01}=V_{51}-I_{51} Z_{11}
$$

where $V_{s I}$ is the applied fundamentel voltage and $I_{s 1}$ is the fundenentel input current, both being obtained from the test at synchronous speed. The admittance of the exciting branch may be found from

$$
Y_{O I}=\frac{I_{S 1}}{V_{O I}}
$$

To determine $F_{o n}$, the equivalent cireuit at synchronous speed must be analyzed. As previourly stated the motor acts as an energy absorption device at synchronous speed and with rated voltage applied the losses represented are (1) the stetor copper loss and (2) the core loss. Figure l3a shows the equivalent cireuit of the motor at synchronous speed with the usuel parallel representation of the exciting branch and the circuit of Figure 136 represents the parallel exciting branch with series branch needed to calculate $R_{o l}$ and $X_{o l}$.

The impedance, $P_{o e}$, is related to $Y_{o l}$ and

$$
z_{O e}=\frac{1}{Y_{01}}
$$

and

$$
r_{o e}=R_{o e}+j X_{o e}
$$

The equivalent series resistance may be found by firet finding the equivalent resistance of the eircuit of Ficure $13 b$.

(a)

(b)

Figure 13. Equivalent circuits of a single-phase splitphase motor when operated at synchronous speed. (a)Paraliel representation of the exciting branch. (b)Exciting branch represented by an equivalent series resistance and reactance.

Figure 14. General equivalent circuit which may be used for the fundamental or any of the harmonics, where n is the order of the harmonic.

$$
R_{e s}=\frac{U_{s I}}{I_{S I}^{2}}
$$

and $F_{o e}=R_{e_{s}}-R_{1}$, then, the equivalent series reactance is given by

$$
X_{o e}=\sqrt{z_{o e}^{2}-R_{o e}^{2}}
$$

The parallel reactance $X_{o l}$ and the parallel resistance $R_{o l}$ may be found from the following relations:

$$
\begin{aligned}
& G=\frac{1}{R_{o l}}=\frac{R_{o e}}{R_{o e}^{2}+X_{o e}^{2}} \\
& b=\frac{1}{X_{o l}}=\frac{X_{o e}}{R_{o e}^{2}+X_{o e}^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& R_{o l}=\frac{R_{o e}^{2}+X_{o e}^{2}}{R_{o e}} \\
& X_{o l}=\frac{R_{o e}^{2}+X_{o e}^{2}}{X_{o e}}
\end{aligned}
$$

The reactance to the "nth" harmonic may then be found from

$$
X_{O n}=n X_{O I}
$$

and

$$
Y_{o n}=\frac{1}{R_{o n}}-j \frac{1}{X_{o n}}
$$

Thus, all of the constants of the equivalent circuit have been determined considering harmonics. The equivalent circuit of Figure 15 may be applied to the fundamental or any of the hermonies present.

SLIP AMD TORQUE AT HARRONIC FREQUNCY. In any harmonic analysis, applying to induction motors, it is necessary to determine whether the harmonics aid or oppose the fundamental in producing torque. This relationship nay be found by obtaining the angular displacement, slong the time axis, of the harmonics with respect to the fundanental throughout the entire load range. This relationship is not constant and varies over the laad range which means, for example, that although the third harmonic may aid the fundemental at no-load it may oppose the fundamental at half load and aid it again near full load. There is no method at hand by which this variation say be predicted and any attempt to apply performance celculations to the higher harmonies results in pure conjecture.

It is possible to determine the slip at the various harmonic frequencies. For example: if the third harmonic is considered for a four pole single-phase motor operating on 60 cycles (noload speed 1782 rpm), then, if the third harmonic is assumed to oppose the fundamental.

$$
\begin{aligned}
& \text { Synchronous speed }=3 \times 1800=5400 \mathrm{rpm} \\
& s=5400+1782=7182 \mathrm{rpm} \\
& s=\frac{7182}{5400}=1.33
\end{aligned}
$$

If it is assumed that the third hamonic aids the fundamental

$$
\begin{aligned}
& s=5400-1782=3618 \mathrm{rpm} \\
& s=\frac{3618}{5400}=0.67
\end{aligned}
$$

If some nethod were available for determining the effect of hamonios in producing torque, the performance of the menine could be determined by considering the fundamental arid each harmonie separately in their proper magnitudes, phase relation and frequency and combining the results. Rowever, the overall effect of hammonics may be found without the aid of this analysis as will be shown in the following chapter.

CHAPTER III
 RESULTA

The performance vas calculated for a ${ }^{2}$ horsepower Century split-phase single-phese motor wich was chosen because complete performance characteristtos were available for comparison of results.

Test data on this machine mas obtained as followe:
At Synchronous speed (1800 rpm)

$$
V=118.5 \text { volts }, \quad I=2.29 \text { amps, } \quad I=49 \text { watts. }
$$

At no-load (1782 rpa)

$$
V=116 \text { volts, } \quad I=2.83 \text { amps, } \quad W=66 \text { wetts. }
$$

Under blocked rotor conditions

$$
V=114 \text { rolts, } \quad I=22.6 \mathrm{amps}, \quad W=2200 \text { watts. }
$$

In addition, the waveforms of voltage and current were obtained as shown in Tigures 8 , 9 and 10 of Chapter II and analyzed for hamonics. The resistance of the stator winding, R_{1}, was neasured and found to be 2.42 ohms.
 The gample calculation shown below is the calculation of circuit constants using the funcamental components of current and voltage under blocked rotor conditions. This removes the error caused by hisher harmonics in letermining these constants.

From the hamonie analysis or voltage and current under
blocked rotor conditions

$$
V_{b 1}=114 \text { volts, } \quad T_{b 1}=21.45 \text { ambs, } \quad V_{b}=2200 \text { watts }
$$

Fron the harmonic analysis of voltage and current at synohronous speed

$$
V_{\mathrm{BI}}=113.5 \text { Volts; } \quad I_{S 1}=2.80 \operatorname{anps}, \quad W_{s}=49 \text { watte. }
$$

Detailed calculations of constants are as follows:

$$
\begin{aligned}
& \theta_{b 1}=\cos ^{-1} W_{b} / V_{b 1} I_{b 1}=2200 /(114 \times 21.45)=26.2^{\circ} \\
& \theta_{51}=\cos ^{-1} W_{S} / V_{\mathrm{SI}} I_{S I}=49 /(118.5 \times 2.86)=61.7^{\circ} \\
& 90^{\circ}-\theta_{s 1}=90^{\circ}-91.7^{\circ}=8.3^{\circ} \\
& 2_{\mathrm{EI}}=\mathrm{V}_{\mathrm{bI}} / \mathrm{I}_{\mathrm{BI}}=114 / 21.45=5.3 \text { ohms } \\
& F_{e 1}=W_{b} / I_{b 1}^{2}=2200 / 21.45^{2}=4.78 \text { ohms } \\
& R_{2}=R_{\text {el }}-R_{1}=2.34 \text { ohns } \\
& X_{e 1}=\sqrt{Z_{e l}^{2}-F_{e l}^{2}}=\sqrt{5.3^{2}-4.76^{2}}=2.34 \text { ohms } \\
& X_{11}=X_{21}=0.5 X_{\theta 1}=0.5 \times 2.34=1.17 \text { ohns } \\
& Z_{11}=R_{1}+j X_{11}=2.42+j 1.17=2.69 / 25.8^{0} \text { ohms } \\
& Z_{21}=R_{2}+j X_{21}=2.34+j 1.17=2.62 \angle 26.6^{\circ} \text { ohms } \\
& Z_{e I}=R_{e I}+j X_{e I}=4.76+j 2.34=5.3 / 26.2^{\circ} \text { obas } \\
& V_{o 1}=V_{S 1}-I_{S 1} Z_{11}=114 / 80^{\circ}-\left(2.86 / 0.3^{\circ} \times 2.68 / 25.8^{\circ}\right) \\
& =-6.37+j 109.69=109.0 / 93.3^{\circ} \text { volts } \\
& T_{01}=I_{51} / V_{01}=2.86 / 8.3^{\circ} / 109.0 / 83.3^{\circ}=0.026 /-85^{\circ} \text { mhos } \\
& z_{01}=I / X_{01}=I / 0.026=38.5 \text { ohms } \\
& R_{e s}=W_{s} / I_{S}^{2}=49 / 2.30^{2}=5.99 \text { ohms } \\
& R_{\text {oe }}=5.99-2.42=3.57 \text { ohms } \\
& X_{o e}=\sqrt{Z_{01}^{2}-R_{0 e}^{2}}=\sqrt{38.5^{2}-3.57^{2}}=38.60 \mathrm{hms} \\
& R_{o l}=\frac{R_{o e}^{2}+x_{o e}^{2}}{R_{0 e}}=\frac{3.57^{2}+38.6^{2}}{3.57}=414 \text { ohms } \\
& X_{o l}=\frac{R_{00}^{2}+X_{0 e}^{2}}{X_{0 e}}=\frac{3.57^{2}+38.6^{2}}{38.6}=38.40 \mathrm{hms}
\end{aligned}
$$

Table I gives a comparison of equivalent circuit constents as determiaed fron the usual four-terminal network theory with the equivalent cirouit constants as deternined by the hamponic analysis ussng the iundanental components of ourrent and voltage. The per cent error was computed using the values obtataed by the method of the hatmonic analysis as being the correct values for the equivalent circuit constants.

PABLE I
Usual

	Usual Tour-Terninal Network iethod	Hamonic Analysis	$\begin{gathered} \text { Per Cent } \\ \text { Mrror } \end{gathered}$
R_{1}	2.42	2.42	
R_{2}	1.89	2.34	19.4
H_{0}	4.31	4.76	10.4
X_{1}	1.32	1.17	12.8
X_{2}	1.32	1.17	12.8
X_{6}	2.64	2.34	12.8
Z_{1}	$2.76 / 28.6^{\circ}$	$2.68 / 25.8^{\circ}$	2.6
2_{2}	2.31/34.9 ${ }^{\circ}$	$2.62 / 86.6^{\circ}$	13.4
Z_{0}	$5.05131 .4^{0}$	$5.30 / 26.2^{\circ}$	4.7
Y_{0}	$0.0255 /-81.5^{\circ}$	$0.026 /-85.0^{\circ}$	1.9
* Error	in the ragnitude		

Table II show the variation of circuit constants for the various harnonics through the seventh hamonic. This table shows that the reactances increase with the order of the hamonic; i.e., the reactance for a particular hamonic is egual to n times the
reactance of the fundamental. The assumption is made that although the resistances in the equivalent circuit will increase they will not be n times the resistances of the fundamentel and the increase will be considered negligible.

TABIEII

	Fundanental	3 ra	5 th	7 th
R_{1}	2.42	2.42	2.42	2.42
E_{2}	2.34	2.34	2.34	2.34
He_{e}	4.76	4.76	4.76	4.76
X_{1}	1.17	3.51	5.85	8.19
X_{2}	1.17	3.51	5.85	8.18
X_{e}	2.34	7.08	11.70	16.38
23	$2.69 / 25.8^{\circ}$	$4.26 / 55.4^{\circ}$	$6.33 / 67.5^{\circ}$	$8.54 / 73.5^{\circ}$
72	$2.62 / 26.6^{\circ}$	4.22/56.30	$6.30 / 60.2^{\circ}$	8.52/74.050
Z_{e}	$5.30 / 26.2^{\circ}$	$8.46 / 55.85^{\circ}$	12.65/67.9 ${ }^{\circ}$	$17.06 / 73.8^{\circ}$
Y_{0}	0.028 -85.0°	$0.00901 /-74.5^{\circ}$	$0.00574 /-65.2^{\circ}$	$0.00443 /-57.1^{0}$

Comparing the values of lable I above shows that the error in calculating the circuit constants is quite high, being over 10% in most cases. Bone error is also apparent in the engles computed for the variour parameters. These errors will sffect the calculated performance of the motor and lead to false conclusions.

COMPAEISON OF CALOULATED PRRPOHAMCE GHRAGTERETICS. TO conpare the calculated performance asing the two sets of constants
previously calculated in this chapter the method of the fourterminal network theory was used throughout.

The performance characteristics were first calculated and plotted using the usual form of the four-terminel network theory. The next set of characteristic curves were calculated and plotted using the cireult constante obtained from the hamonic analysis in conjunction with the test values of voltage, current and power. The third set of curves were obtained by using constants obtained from the hamonic analysis and the fundemental components of voltage and current. Detailed calculations will be shown for the second ease only.

Using the values of the circuit constants as calculated on page 42 and listed in Table I, column 3.

$$
\begin{aligned}
& I_{n} / 90^{\circ}-\theta_{n}=2.83 / 11.6^{\circ} \\
& m=2.83 \cos 11.6^{\circ}=2.77 \\
& \mathrm{n}=2.83 \sin 11.6^{\circ}=0.569 \\
& K^{*}=0 / A=Y_{0} /\left(Z_{1} Y_{0}+1\right)=\left(0.026 /-85^{\circ}\right) /\left(1.037 /-3.3^{0}\right) \\
& =0.0251 / 81.7^{\circ} \\
& K^{4} Z_{1}^{2}=0.0251 /-81.7^{\circ}\left(2.69 / 25.8^{\circ}\right)^{2}=0.1817 /-30.1^{\circ} \\
& K / r=Z_{e}-K \cdot Z_{1}^{2}=4.76+j 2.34-0.1572+j 0.091 \\
& =4.6+j 2.43=5.21 / 27.8^{\circ} \\
& y=\pi \sin r=2.43 \\
& K \cos Y=4.6 \\
& A / \phi / 2=Z_{1} Y_{0}+1=1.037 /-3.3^{\circ} \quad \phi \quad \phi=-6.0^{\circ} \\
& K^{\prime \prime}=1 / 4^{2}=1 /\left(1.037\left(-3.3^{\circ}\right)^{2}=0.93 / 6.6^{0}\right. \\
& K^{* V} V_{1} \angle 90^{\circ}+\phi=0.93 / 6.6^{\circ} \times 115 / 90^{\circ}=107 / 96.6^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& z^{\circ}=K_{1}^{2 p} V_{1} \cos \left(90^{\circ}+\phi\right)=107 \cos 96.6^{\circ}=-12.3 \\
& s=\pi^{r y} V_{1} \sin \left(90^{\circ}+\phi\right)=107 \sin 96.6^{\circ}=106.3 \\
& r y=-12.3 \times 2.43=-29.9 \\
& s y=106.3 \times 2.43=259 \\
& I h^{\prime}=I_{b} \cos \theta_{b}-I_{n} \cos \theta_{n} \\
& =2 \kappa .6 \cos 31.4^{\circ}-2.83 \cos 78.4^{\circ}=18.73 \\
& B h^{\prime}=I_{b} \sin \theta_{b}-I_{n} \sin \theta_{n} \\
& =22.6 \sin 31.4^{\circ}-2.83 \sin 78.4^{\circ}=9.01 \\
& P \hat{L}=\sqrt{\left(f h^{9}\right)^{2}+\left(P h^{5}\right)^{2}}=\sqrt{18.73^{2}+9.01^{2}}=20.8 \\
& \delta=\tan ^{-1}\left(\operatorname{Rn}^{\circ}\right) /\left(\operatorname{tn}{ }^{\circ}\right)=\tan ^{-1} 9.01 / 18.73=25.7^{\circ} \\
& \delta+\phi=25.7^{\circ}+6.6^{\circ}=32.3^{\circ} \\
& \cot (\delta+\phi)=\cot 32.3^{\circ}=1.584 \\
& \mathrm{fH}=\mathrm{PE} \cos (\delta+\phi)=20.8 \cos 32.3^{\circ}=17.58 \\
& n^{\prime} L^{\prime}=R_{1}\left(I_{b}^{2}-I_{n}^{2}\right) / V_{1}=2.42\left(22.6^{2}-2.83^{2}\right) / 115 \\
& =10.57 \\
& \mathrm{fL}=\left(\mathrm{fh}^{\prime}-\mathrm{h}^{\prime} \mathrm{H}\right) / \cos \phi=(18.73-10.57) / \cos 6.6^{\circ} \\
& =8.81 \\
& (f X-f L) / f(X=(17.58-8.21) / 17.58=0.533
\end{aligned}
$$

The above calculations are the calculations outlined in Chapter I, Figure 4 , on the prelininary calculation sheet. The remainder of the calculations are made using the calculation sheet of Figure 5 , Chapter I, and are shown in Higure 15. The performence ourves, plotted from the data of Tigure 15, are shom in Figure 16 as sold Iines and the dashed curves are the performance characteristics suplied by the manuracturer. It will be seen that the calculated curves do not follow the manfacturer's date perfectiy. However,

CALCULATION SHEET					
(1) Slip	0.991	0.986	0.980	0.875	0.869
(2) $\mathrm{Z}_{\mathrm{R}}=\left(\mathrm{R}_{2} \mathrm{~s}^{2}\right) /\left(1-s^{2}\right)$	127.6	78.3	56.2	44.4	36.0
(3) $K \cos r+(2)$	132.2	82.9	60.8	49.1	40.6
(4) $\mathrm{y}^{2}+3^{2}$	17450	6875	3700	2410	1650
(5) $\mathrm{F} \times$ (3)	-1626	-1020	-748	-604	-499
(6) $5+\mathrm{sy}$	-1367	-761	-489	-345	-240
(7) 6)/4	-0.078	-0.111	-0.132	-0.143	-0.146
(8) $m+7$	2.69	2.66	2.64	2.63	2.62
(8) s X 3	14050	8830	6460	5220	4315
(10) - P - r	14080	8850	6510	5250	4345
(11) (10) 4	0.806	1.288	1.76	2.18	2.635
(12) $n+(11)$	1.375	1.858	2.329	2.749	3.204
(13) $P_{1}=V_{1} \mathrm{X}$ (12)	158.1	213.5	268.0	316.1	368.5
(14) $\mathrm{I}=\left[(8)^{2}+(12)^{2 / 2}\right.$	3.02	3.24	3.52	3.80	. 4.14
(15) $(90-\theta)=\tan ^{-1}$ (12)/ (8)	$27.1{ }^{\circ}$	$34.9{ }^{0}$	$41.4{ }^{0}$	46.25°	50.7°
(16) P.F. $=\sin (90-0)$	0.456	0.573	0.662	0.722	0.774
(17) $\mathrm{Pa}=\left[(7)^{2}+(11)^{2}\right]^{\frac{1}{2}}$	0.810	1.293	1.762	2.185	2.636
(18) $\lambda=\tan ^{-1}$ (11)/7	95.6°	94.9^{0}	$94.3{ }^{\circ}$	93.8^{0}	$93.2{ }^{\circ}$
(19) $\mathrm{ad}=(17) \mathrm{x} \sin (\lambda-\phi)$	0.810	1.292	1.761	2.183	2.63
(20) $\mathrm{Pd}=(17) \mathrm{x} \cos (\lambda-\phi)$	0.014	0.038	0.071	0.107	0.156
(21) $\mathrm{bd}=(20) \mathrm{x} \cot (\delta+\phi)$	0.022	0.061	0.112	0.169	0.248
(22) $\mathrm{cd}=$ (21) $\mathrm{X}(\mathrm{fK}-\mathrm{fL}) /(\mathrm{fK})$	0.012	0.032	0.060	0.090	0.132
(23) $P_{0}=V_{1} \times($ (19)- (21) $)$	90.7	141.6	189.7	231.5	274.0
(24) $\mathrm{T}=112.8 / \mathrm{N}_{\mathrm{g}}(19$ - (22) $)$	0.05	0.079	0.107	0.131	0.156
(25) Eff. $=23 / 13$	0.573	0.663	0.708	0.733	0.744
(26) $\mathrm{Hp}=$ (23)/746	0.122	0.19	0.255	0.311	0.368

Figure 15. Performance calculations using constants from the harmonic analysis and test values.

Figure 16. Comparison of calculated performance curves with the manufacturers curves of performance. The calculated curves were obtained by use of the four-terminal network method using the constants obtained from the harmonic analysis with the test values of current and voltage.

Pigure 17. Comparison of calculated performance curves with the manufacturers curves of performance. The calculated curves were obtained from the usual four-terminal method.

-	-					-	-																	
	1000								Rem															
	900																							
	c^{200}																							
						\pm																		
																					1			
	1500																							
10	7.0																							
						F																		
\bigcirc	62																							
																					-			
6	0.0																							
												Eff												
	0.9																			$1 /$				
											,	.								1				
8								\bigcirc	1				,						1					
	- 20.1																		*					
\cdots								,	,															
5	0					7		,		-							1							
	0.5					1	1	-								\%								
							7								,		1				\bigcirc			
								-						,		1								
	1			1		1																		
-4	*) 4										-		aps											
														,										
								-	T			1												
			1																					
	$\cos ^{2 n .2}$											\cdots												
$\frac{n}{2}$																								
${ }_{5}$		1							,															
	crab	1						,						ntues	O	Sinco		Phá	S ${ }^{\text {a }}$	taron				
						5		$\#$						C HP		4 Pa			OCr					
		1		-					-			-												
	曲	T												mor	RTM				V	72				
															Rta	A 6		893						
														Sodid		ress-	Cato	cuat	de	arse				
						1		0.2	2			0.3					4			0.5	5			
											tors	epon	ver											
+	\| 1						\| +			,			-	,	-	+13		,	,	-	,	-	,	\#

Figure 18. Comparison of calculated performance curves with the manufacturers curves of performance. The calculated curves were obtained by use of the four-terminal network method using the constants obtained from the harmonic analysis with the fundamental components of current and voltage.
the large exrors are considerably above full load.
Fjecure 17 gives the calculated performance by the usual four-terminal networ theory (solid lines) as compared to the manufacturer's performance data. The calculatod curves do not follow the manufacturer's data ond the larger error is above full load.

Figure 28 shows the calculated performance using the fundanental components of voltage and current with the circuit constants deterained from the harmonic anclysis. Nere again the cajeulated curves do not fit the aanuiacturer's perfornance curves and further, do not fit as well as in Pisures 16 and 17. The ourves of pigure 18 are given here to show that the hemmics do affect the performance of the motor.

A comparison, at full low, of the per cent error in performance with reference to the manufacturer's performance data is shown below. This comparison is node between the data of Figures 16 and 17.
per Cent Error

Usual
Four-Terminal Germonie Metwors theory

Analysis

Watts	6.4%	6.4%
Current	6.2%	5.9%
Power Factor	$0.46_{\%}^{6 \%}$	0
Efficiency	6.0%	4.5%

CohCLuSIOMB. Single-phese motor theory is a dificult theory to master. similary, the performence of single-phase motors is difficult to predict and in nany cases the results
obtainod from usual nethods are unsatisfactory. This is readily seen when the many assumptions used to caloulate the performance characteristios are pointed out. However, some method is necessary for predicting single-phase notor performance and the four-temanal networir method is presented in this investigation as being no worse and in many cases a little better then nost methods. It is evident, then, that the work is not complete. Much work is left to be done. Rerhaps, with further investigation, other improvements can be made by use of new teste and new caloulation procedures. With the improvement in prediction methods must come improvement of single-phase motor theory. This does not mean that existing methods of analyzine single-phase motors are not good. These methods are vexy good in so far as illustrating what happens inside the motor.

The results of this investigetion show that considerable error is introduced into the calculation procedure by the usual method of determining the equivalent cixcuit constants. A method Por correcting for this error is presented in this thesis. Sinee the circuit parameters are deternined from the blocked rotor test and since the effect of harmonics is greatest for this test, it follows that considerable erior in the circuit parameters can be expected using usual methods of calculation. To correct for this error it is necessaxy that the voltage and current waves be analyzed for harmonics. The corrected values of eircuit constants may then be calculated fron the fundamental componexts of voltage and current. Table I of this chapter shows the magnitude of this error to be of the order of 10 per cent. The error is not con-
fined to the magnitudes of the circuit paraneters. A study of Table I will show that some erior exists in the computed angles of these paraceters. The conclusion nust not be arawn that these corrections are always necessary. The necessity of such corrections will depend upon the accuracy desired, the instruaents available and the hermonie conteat of the source.

It is also necessary to note that the improvenent, gained in the harmonic analysis to detemine circuit paraneters, was lost in the method of calculation to deternine the parfornance. at this point, to illustrate the overall improvencen made, the table of page 51 will be repeated.

Per Cent Error

Usual
Four-Terminal Networl Theory

Rarmonic
Analysis

Watts	6.4%	6.4%
Current	6.2%	5.9%
Power Factor	0.46%	0
Efficiency	6.0%	4.5%

The overall inprovenent will be seen to be extremely small in most cases, but the errors remaining to be corrected for are small also.

This investigation mas concucted to determine the magnituae of the errors introduced in mating the usual performance caleulations and not in an effort to improve upon existing methods of predicting motor performance. It is probable that other scheres can be devised to take into account the affects of hamonics. perhaps, the four-terainal network method can be inproved. On the
other hand, the search for an entirely new scheme for preaicting motor performance may be necessary.

The investigation of the effect of harmonics on single-phase motor performane is important to the general knowledee of the entixe subject of single-phase motors. The hamonic method of caloulating the circuit paraneters is presented as an improvement over conventional methods. To logically negleet the affects of hamonics, it is necessary to know how nuch is being neglected and what erroxs are being introduced.

BTBLTOMNETY

Agerican Institute of Rlectrical Engineers, Test Code Por Polyphase Gaduction Yachines, Ho. 500. (Aueust, 1037), Wew York

Beach, Robin, "A Physical Oonception of Bingle-Phase Hotor Operation. Electrics Engineering, IXIII (July, 1944), pp 254-263.

Dogett, E. A. and queer, 5. R. "Induction Potor Operation With Ton-sinusoidal Impressed Voltages". Journal of American Inctitute of Zlectrical Mncineers, XITHIT (Oetober, 1920), p 759.

Tarapetof?, V. Jr. and Denison, Boyd C. Experimental Blectricel Zngineering, Vol. II. Hew Yorts John wiley and Sons, 1841.

Kerchner, R. H. and Corcoran, G. F., Alernacing-Current Gircuits. New York: John Tiley and Sons, 1943 .

Liwsehitz-Garick, Mrield Garmonies in Induction Motors". Transactions of $\frac{\text { Mnericen }}{1942), ~ I n s t i t u t e ~ o f ~ B l e c t r i c a l ~ E n g i n e e r s, ~}$

Liwschitz-Garict, M. and wipple, C. C. Electric Gachinexy, Vol. II. New York: D. Van Mostrand Company, 1946.

Hanuele, J. Pactory Testiou of Electrical Apparatus. East Pittsburgh, Pat Westinghouse Electric and lanuracturing Company, 1943.

Horrill, W. J. Warnonic Theory of Noise in Induction Motors". Transactions of Gnerican Institute of Electrical Engineers, LIX (August, 1940), p 474.

Ruchstein, A. F. "Theories Used To Expiain Single Phase Motors". Slectrical Encineering, XXTI (Gebruery, 19A7), p208.
puchstein, A. F. and Lioyd, T. C. "Single Phase Induction Motor Performance". Tlectrical Gneineering, (October, 1937), pp 1277-1284.

Puchstein, h. P. and Lloge, T. C., Alternating-Gurent Machinery. New York: Joun Wiley and Sons, 1942.
Reeder, Harmon, Jr., "The Four-Terainal Network Hethod of Predicting Single-thase Induction Motor Perforamee Characteristics From Test bata". Thesis, Qtlahoma sticultural and Mechanical College. Stillwater, OkIahoma. 1048.

Tarboux, J. G., Alternating Current Machinery. Scranton, Pa: International Textbook Company, 1847.

Veinott, C. G. "Performance Calculations on Induction Motors". Transactions of American Institute of Electrical Engineers, II (September, 1932), pp $\frac{143-755 .}{}$

APPMODI

WAVBFONA AMATYIS

The waveform to be analyzea is that of Ifigure 10, pege 29, and was obtained by means of an osclllograph. The diagram of connections is shown in Figure 12, page 34. 直 study of the oscillograms of Chapter II revealed that the wave of stator input current contains a deinite haxmonic and that this wave is symetrical with the time axis, thus, it is safe to assume that only odd hamonics are present and, therefore, only onehalf eycle need be analyzed. It will be renenberea that if even order harmonics are present in a wave, the wave will not be symmetrical with the x or tige axis.

The general equation of the pourier Series is

$$
\begin{aligned}
y=A_{0} & +A_{1} \cos \alpha+A_{3} \cos 3 \alpha+A_{5} \cos 5 \alpha+A_{7} \cos 7 \alpha+\ldots \\
& +B_{1} \sin \alpha+B_{3} \sin 3 \alpha+B_{5} \sin 5 \alpha+B_{7} \sin 7 \alpha+\ldots
\end{aligned}
$$

however, for any alternating current wave that is symmetrical with respect to the horizontal time axis $A_{0}=0$, hence, A_{0} can be onitted from the expression given above having only odd haxmonies.

As shown in Figure 19, the enlarged wave wes traced and the time axis (from 0° to 780°) is divided into 36 parts, divizions of 5°, and the megnitude of the ordinates at the midpoint of each

Figure 19. Trace of enlarged wave of blocked rotor current to be analyzed for harmonics. Ordinates (y) were erected and measured at each 5 degree interval starting with 2.5 degrees. The maximum value of y is 48.7 units.
section is recorded (measured ordinate y of Tables). Values of
 parallel colums.

The resultant sumation of products of "y sind" and "y cosap are detemined soparately. The value of B_{1} mey then be found by taking the aleboraic sum of the positive and negative parts of "y $\sin \alpha^{\prime \prime}$ and dividing by 10. Sinilarly, the value of A_{1} may be found by taking the algebraic sum of the positive and negative parts of "y cos a^{*} and dividing by 10.

$$
\begin{aligned}
& \mathrm{B}_{1}=\frac{y \sin \alpha}{36} \mathrm{Z}=\frac{y \sin \alpha}{18} \\
& \mathrm{~B}_{1}=\frac{y \cos \alpha}{36} \times 2=\frac{y \cos \alpha}{18}
\end{aligned}
$$

The relues of $B_{3}, A_{3}, B_{5}, A_{5}, B_{7}$ and A_{7} are found in the
 "y $\cos 5 \alpha^{\prime \prime}, " y \sin 7 \alpha^{\prime \prime}$ and "y $\cos 7 \alpha^{\prime \prime}$ respectively.

The series can be further simplified as follows, let

$$
\begin{align*}
& A_{n}=C_{n} \cos \theta_{n} \tag{1}\\
& B_{n}=-C_{n} \sin \theta_{n} \tag{2}
\end{align*}
$$

Substituting these values for A_{n} and B_{n} in the series given above,

$$
\begin{aligned}
y= & c_{1} \cos a \cos \theta_{1}+c_{3} \cos 3 a \cos \theta_{3}+\ldots \\
& -c_{1} \sin \alpha \sin \theta_{1}-c_{3} \sin 3 \alpha \sin \theta_{3}-\ldots . \cdots
\end{aligned}
$$

and collecting terms gives the general equation of the harmonics

$$
y=c_{n}\left(\cos n \alpha \cos \theta_{n}-\sin n \alpha \sin \theta_{n}\right)
$$

which is equal to

$$
\begin{equation*}
y=o_{n}\left[\cos \left(n \alpha+\theta_{n}\right)\right] \tag{3}
\end{equation*}
$$

The value of C_{n} is obtained an follows: square equation (I) and (2) and add, then,

$$
A_{n}^{2}+B_{n}^{2}=C_{n}\left(\sin ^{2} \theta_{n}+\cos ^{2} \theta_{n}\right)=C_{n}^{2}
$$

from which

$$
C_{n}=\sqrt{A_{n}^{2}+B_{n}^{2}}
$$

The value of θ_{n} may be obtained as follows: dividing equation (2) by equation (1),

$$
\tan \theta_{n}=\frac{-B_{n}}{A_{n}}
$$

There will, of course, be two raiues of θ_{n} deterained by the above equation, but an inspection of equations (I) and (2) will indicate which is to be used.

The Fourier Series equation will then be of the form

$$
\begin{aligned}
y=0_{1} \cos \left(\alpha+\theta_{1}\right) & +c_{3} \cos \left(3 \alpha+\theta_{3}\right)+c_{5} \cos \left(5 \alpha+\theta_{5}\right) \\
& +o_{7} \cos \left(7 \alpha+\theta_{7}\right)+\ldots \cdot(4)
\end{aligned}
$$

In this analysis,
y is proportionel to i (the instantaneous current)
A is zero (as previously shown)
0 will be replaced by I (the amplitude of the harmonic).

FUNDAMENTAL

$\sin x$	$\begin{aligned} & \text { Produets } \\ & (\mathrm{y} \sin \mathrm{x}) \end{aligned}$		$\begin{gathered} \text { Angle } \\ x \\ \hline \end{gathered}$	Meas. Ord. y	$\cos x$	Products$(y \cos x)$	
	Pos.	Neg.				Pos.	Neg.
. 04362	0.06		2.5	1.30	. 99905	1.30	
. 13053	0.56		7.5	4.30	. 99144	4.26	
. 21644	1.70		12.5	7.85	. 97630	7.66	
.30071	3.48		17.5	11.60	. 95372	11.05	
. 38268	6.07		22.5	15.85	.92388	14.65	
. 46175	9.19		27.5	19.90	.88701	17.65	
. 53730	13.10		32.5	24.40	. 84339	20.55	
. 60876	17.25		37.5	28.30	.79335	22.45	
. 67559	21.55		42.5	31.90	.73728	23.50	
. 73728	25.90		47.5	35.20	. 67559	23.80	
. 79335	30.50		52.5	38.45	. 60876	23.40	
. 843339	34.60		57.5	41.00	.53730	22.00	
. 88701	38.30		62.5	43.20	.46175	19.90	
. 92388	41.70		67.5	45.10	. 38268	17.27	
. 95372	44.40		72.5	46.60	.30071	13.98	
. 97630	46.50		77.5	47.70	. 21644	10.30	
. 99144	48.00		82.5	48.40	.13053	6.32	
. 99905	48.70		87.5	48.70	. 04362	2.12	
. 99905	48.40		92.5	48.40	-. 04362		2.11
. 99144	47.10		97.5	47.60	-. 13053		6.21
. 97630	45.20		102.5	46.35	-. 21644		10.01
. 95372	42.60		107.5	44.70	-. 30071		13.40
. 92388	39.25		112.5	42.50	-. 38268		16.28
. 88701	35.50		117.5	40.05	-. 46175		18.50
. 843339	31.35		122.5	37.20	-. 53730		20.00
. 79335	26.95		127.5	34.00	-. 60876		20.70
. 73728	22.55		132.5	30.60	-. 67559		20.70
. 67559	18.25		137.5	27.00	-. 73728		19.90
. 60876	14.30		142.5	23.50	-. 79335		18.65
. 53730	10.85		147.5	20.20	-. 84338		17.05
. 46175	7.65		152.5	16.60	-. 88701		14.73
. 38268	5.09		157.5	13.30	-. 92388		12.30
.30071	2.97		162.5	9.90	-. 95372		9.44
. 21644	1.49		167.5	6.90	-. 97630		6.73
.13053	0.52		172.5	4.00	-. 99144		3.96
.04362	0.06		177.5	1.35	-. 99905		1.35
Sum of Products	831.64					S62.16	232.02
	831.64					30.14	

TABIE II
THIRD HARMONIC

$\sin 3 x$	Products$(y \sin 3 x)$		$\begin{gathered} \text { Angle } \\ \mathrm{x} \\ \hline \end{gathered}$	Meas. Ord. y	$\cos 3 x$	Products$(y \cos 3 x)$	
	pos.	Neg.				Pos.	Neg.
. 13053	0.17		2.5	1.30	. 99144	1.29	
. 38268	1.65		7.5	4.30	. 923388	3.97	
.60876	4.78		12.5	7.85	. 79335	6.23	
. 79335	9.20		17.5	11.60	. 60876	7.06	
. 92388	14.65		22.5	15.85	.38268	6.06	
. 99144	19.72		27.5	19.90	.13053	2.60	
. 99144	24.20		32.5	24.40	-. 13053		3.18
. 92388	26.15		37.5	28.30	-. 38268		10.85
. 79335	25.30		42.5	31.90	-. 60876		19.40
. 60876	21.40		47.5	35.20	-. 79335		27.90
. 38268	14.70		52.5	38.45	-. 92388		35.50
. 13053	5.35		57.5	41.00	-. 99144		40.60
-. 13053		5.63	62.5	43.20	-. 99144		42.80
-. 38268		17.26	67.5	45.10	-. 923388		41.70
-. 60876		28.35	72.5	46.60	-. -79335		36.90
-. 79335		37.80	77.5	47.70	-. 60876		29.00
-. 92388		44.70	82.5	48.40	-. 38268		18.55
$\underline{-.99144}$		48.25	87.5	48.70	-. 13053		6.36
-. 99144		48.00	92.5	48.40	. .13053	6.32	
-. 92388		43.90	97.5	47.60	. 38268	18.21	
-. 79335		36.75	102.5	46.35	. 60876	28.20	
-. 60876		27.20	107.5	44.70	.79335	35.45	
-. 38268		16.28	112.5	42.50	. 92388	39.30	
-. 13053		5.23	117.5	40.05	. 99144	39.70	
.13053	4.86		122.5	37.20	. 99144	36.90	
. 38268	13.02		127.5	34.00	. 92388	31.40	
. 60876	18.64		132.5	30.60	. 79335	24.30	
. 79335	21.40		137.5	27.00	. 60876	16.45	
. 92388	21.70		142.5	23.50	. 38268	9.00	
. 99144	20.00		147.5	20.20	. 13053	2.63	
. 99144	16.45		152.5	16.60	-. 13053		2.17
. 923388	12.28		157.5	13.30	-. 38268		5.09
. 79335	7.85		162.5	9.90	-. 60876		6.03
. 60876	4.20		167.5	6.90	-. 79335		5.47
. 38268	1.53		172.5	4.00	-. 92388		3.70
.13053	0.18		177.5	1.35	-. 99144		1.34
Sum of Products	309.38	359.35				315.07	336.54
	-49.97					-21.47	

TABLE III

FIFTH HARMONIC

$\sin 5 x$	$\begin{aligned} & \text { Products } \\ & (y \sin 5 x) \end{aligned}$		$\begin{gathered} \text { Angle } \\ x \end{gathered}$	Meas. Ord. y	$\cos 5 \mathrm{x}$	$\begin{aligned} & \text { Products } \\ & (y \cos 5 x) \end{aligned}$	
	Pos.	Neg.				Pos.	Neg.
. 21644	0.28		2.5	1.30	. 97630	1.27	
. 60876	2.62		7.5	4.30	. 79335	3.37	
. 88701	6.96		12.5	7.85	. 46175	3.62	
. 99905	11.60		17.5	11.60	. 04362	0.51	
. 92388	14.65		22.5	15.85	-. 38268		6.07
. 67559	13.45		27.5	19.90	-. 73728		14.66
. 30071	7.32		32.5	24.40	-. 95372		23.30
-. 13053		3.69	37.5	28.30	-. 99144		28.10
-. 53730		17.12	42.5	31.90	-. 84339		26.90
-. 84339		29.70	47.5	35.20	-. 53730		18.90
-. 99144		38.10	52.5	38.45	-. 13053		5.02
-. 95372		39.10	57.5	41.00	. 30071	12.30	
-. 73728		31.80	62.5	43.20	. 67559	29.20	
-. 38268		17.25	67.5	45.10	. 92388	41.70	
. 04362	2.03		72.5	46.60	. 99905	46.60	
. 46175	22.00		77.5	47.70	. 88701	42.25	
. 79335	38.40		82.5	48.40	. 60876	29.50	
. 97630	47.50		87.5	48.70	. 21644	10.53	
. 97630	47.25		92.5	48.40	-. 21644		10.48
. 79335	37.70		97.5	47.60	-. 60876		28.95
. 46175	21.40		102.5	46.35	-. 88701		41.10
. 04362	1.95		107.5	44.70	-. 99905		44.70
-. 38268		16.30	112.5	42.50	-. 92388		39.30
-. 73728		29.50	117.5	40.05	-. 67559		27.10
-. 95372		35.50	122.5	37.20	-. 30071		11.16
-. 99144		33.70	127.5	34.00	. 13053	4.44	
-. 84339		25.80	132.5	30.60	. 53730	16.42	
-. 53730		14.50	137.5	27.00	. 84339	22.70	
-. 13053		3.07	142.5	23.50	. 99144	23.30	
. 30071	6.06		147.5	20.20	. 95372	19.26	
. 67559	11.22		152.5	16.60	.73728	12.24	
. 92388	12.29		157.5	13.30	. 38268	5.09	
. 99905	9.90		162.5	9.90	-. 04362		0.43
. 88701	6.12		167.5	6.90	-. 46175		3.18
. 60876	2.44		172.5	4.00	-. 79335		3.17
. 21644	0.29		177.5	1.35	-. 97630		1.32
Sum of Products	323.43	335.13				324.30	333.84
	-11.7					-9.54	

TABLE IV
SEVENTH HARMONIC

$\sin 7 x$	$\begin{aligned} & \text { Products } \\ & (y \sin 7 x) \end{aligned}$		$\begin{gathered} \text { Angle } \\ \mathrm{x} \end{gathered}$	$\begin{gathered} \text { Meas. } \\ \text { Ord. } \\ \text { y } \end{gathered}$	$\cos 7 x$	$\begin{aligned} & \text { Products } \\ & (y \cos 7 x) \end{aligned}$	
	Pos.	Neg.				Pos.	Neg.
. 30071	0.39		2.5	1.30	. 95372	1.24	
. 79335	3.41		7.5	4.30	. 60876	2.62	
. 99905	7.85		12.5	7.85	.04362	0.34	
. 84339	9.78		17.5	11.60	-. 53730		6.23
.38268	6.07		22.5	15.85	-. 92388		14.65
-. 21644		4.31	27.5	19.90	-. 97630		19.43
-. 73728		17.98	32.5	24.40	-. 67559		16.50
-. 89144		28.05	37.5	28.30	-. 13053		3.69
-. 88701		28.30	42.5	31.90	. 46175	14.70	
-. 46175		16.24	47.5	35.20	. 88701	31.20	
. 13053	5.02		52.5	38.45	. 99144	38.10	
. .67559	27.70		57.5	41.00	. 73728	30.20	
. 97630	42.15		62.5	43.20	. 21644	9.34	
. 92388	41.60		67.5	45.10	-. 38268		17.25
. 53730	25.00		72.5	46.60	-. 84339		38.30
-. 04362		2.08	77.5	47.70	-. 99905		47.70
-. 60876		29.45	82.5	48.40	-. 79335		38.40
-. 95372		46.40	87.5	48.70	$\underline{-.30071}$		14.60
-. 95372		46.20	92.5	48.40	. 30071	14.52	
-. 60876		28.95	97.5	47.60	. 79335	37.70	
-. 04362		2.02	102.5	46.35	.99905	46.30	
. 53730	24.00		107.5	44.70	. 84339	37.60	
. 92388	39.25		112.5	42.50	. 38268	16.27	
. .97630	39.10		117.5	40.05	-. 21644		8.66
. 67559	25.15		122.5	37.20	-. 73728		27.40
. 13053	4.44		127.5	34.00	-. 99144		33.70
-. 46175		14.10	132.5	30.60	-. 88701		27.10
-. 88701		23.95	137.5	27.00	-. 46175		12.45
-. 99144		23.30	142.5	23.50	. 13053	3.07	
-. 73728		14.89	147.5	20.20	. 67559	13.65	
-. 21644		3.59	152.5	16.60	. 97630	16.20	
. 38268	5.11		157.5	13.30	. 92388	12.29	
. 843339	8.35		162.5	9.90	. 53730	5.32	
. 99905	6.90		167.7	6.90	-. 04362		0.30
. 79335	3.17		172.5	4.00	-. 60876		2.44
.30071	0.40		177.5	1.35	-. 95372		1.29
Sum of Products	324.84	329.81				330.66	330.09
	-4.97					0.57	

The remainder of the analysis is devoted to the evaluation of the rumanental, thixd, fifth and seventh barmonics of the input current under blocked rotor concitions. Tables I, II, III and IV show the preliminary calculations necessary for obtaining the constants of the Fourier Series equations.

Fron Table I the constants A, B and O are determined as follows:

$$
\begin{aligned}
& B_{1}=\frac{y \sin \alpha}{18}=\frac{831.4}{18}=46.2 \\
& A_{1}=\frac{y \cos \alpha}{18}=\frac{30.14}{18}=1.675 \\
& C_{1}=\sqrt{A_{1}^{2}+B_{1}^{2}} \sqrt{1.675^{2}+46.2^{2}}=46.25 \\
& \theta_{1}=\tan ^{-1} \frac{-B_{1}}{A_{1}}=\tan ^{-1} \frac{-46.2}{1.675}=-87.9^{\circ} \text { or } 02.1^{\circ}
\end{aligned}
$$

The correct angle to use may be found from the relation of equation (2)

$$
\begin{aligned}
& B_{n}=-C \sin \theta_{n} \\
& 46.2=-46.25 \sin \theta_{1}
\end{aligned}
$$

and to make the equality true, θ_{1} must be negative. Therefore, θ_{1} is equal to -67.9° and the equation may be written as

$$
y_{1}=46.25 \cos \left(\alpha-87.9^{\circ}\right)
$$

The above method may be used in conjunetion with tables II, III and IV and the results are as follows:

$$
y_{3}=3.02 \cos \left(3 a+113.3^{\circ}\right)
$$

$$
\begin{aligned}
& y_{5}=0.839 \cos \left(5 \alpha+129.2^{\circ}\right) \\
& y_{7}=0.278 \cos \left(7 a+83.45^{\circ}\right)
\end{aligned}
$$

The per cent hamonic may be determined frox the above equations and

$$
\begin{aligned}
& \%_{3}=\frac{C_{3}}{C_{1}} \times 100=\frac{3.02}{46.25} \times 100=6.53 \% \\
& \% C_{5}=\frac{c_{5}}{C_{1}} \times 100=\frac{0.839}{46.05} \times 100=1.88 \% \\
& \% C_{7}=\frac{C_{7}}{C_{1}} \times 100=\frac{0.278}{46.25} \times 100=0.60 \%
\end{aligned}
$$

It is next neeessery to determine the instantaneous ourrent equations. Since the equations are now in terns of arbitrary units, they must be converted to current. This may simply be done as follows the complete expression, arbitrary units, is

$$
\begin{array}{r}
y=46.25 \cos \left(\alpha-87.9^{\circ}\right)+3.02 \cos \left(3 \alpha+113.3^{\circ}\right)+ \\
0.839 \cos \left(5 \alpha+129.2^{\circ}\right)+0.278 \cos \left(7 \alpha+83.45^{\circ}\right)
\end{array}
$$

From the blociced rotar test, $I=22.6$ amps and

$$
i=\sqrt{2} \times 22.6=31.95 \text { amps. }
$$

From Figure 10, $\mathrm{J}_{\mathrm{m}}=40.7$ units and

$$
\begin{aligned}
& i_{\mathrm{m} 1}=\frac{46.25}{48.70} \times 31.95=30.35 \mathrm{amps} \\
& i_{\mathrm{n} 3}=\frac{3.02}{48.70} \times 31.95=1.98 \mathrm{amps} \\
& i_{\mathrm{n} 5}=\frac{0.839}{48.70} \times 31.95=0.551 \mathrm{amps}
\end{aligned}
$$

$$
i_{\mathrm{m} 7}=\frac{0.278}{48.70} \times 31.95=0.182 \text { ambe }
$$

The equation for the instantaneous current may now be written as

$$
\begin{array}{r}
i=30.35 \cos \left(\alpha-87.9^{\circ}\right)+1.98 \cos \left(3 \alpha+113.3^{\circ}\right)+ \\
0.551 \cos \left(5 \alpha+129.2^{\circ}\right)+0.182 \cos \left(7 \alpha+83.45^{\circ}\right)
\end{array}
$$

Thus, the waveform analysis has given the amount of hamonic in the input ourrent of the motor onder bloched rotor conditions.

- Margaret Fitt -

[^0]: 2 nIEF, Test Code For Polyphase Induction Machines, No. 500, (August, 1037).

