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One of the most difficult problems facing the design 

engineer is the determination of networks which will have given 

response characteristics. In general, the determination of 

these networks, known as the synthesis problem, is extremely 

difficult; in tact all methods presently available are approxi

mation methods. In this paper an entirely new approach for 

solving this problem is developed whereby input and output time 

functions are used to obtain network charact~ristics. Knowing 

this, a method is given whereby an appropriate network may be 

c~nstructed. 

259567 
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INTRODUCTION 

This Thesis will be divided into three parts, which will be 

explained here. In the first part, entitled 11Networks. From the 

Zero and Pole Point of View" is discussed certain properties of 

networks which have been extracted from the literature, and which 

are helpful to an understanding of this paper. It is believed 

that the method of presentation will give the engineer a clear 

picture of the significance of the application of the pole and 

zero theory as applied to communication networks. There is also 

presented a method for obtaining a duplicating or compensating 

network when the phase and amplitude versus frequency character

istics are known for a linear network whose component con

struction is unknown. 

The second portion of the Thesis entitled "A Method for 

Solving the Synthesis Problem'', deals with the Synthesis Problem. 

The synthesis problem may be stated in the following manner. 

Given a four terminal linear network whose internal construction 

is unlmown, and given the input and output time functions, to 

construct a network which has the same characteristic as the 

given network. By using the input and output time functions, a 

technique is developed which allows for the construction of a 

plot of the phase and amplitude characteristics of the unknown 

network. The employment of the technique described in the first 

part of the paper then makes it possible to duplicate or, in 

some cases, compensate a given network. Several examples are 

given which indicate the results to be expected from this method. 
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The solution to the synthesis problem as developed in this 

paper is especially applicable to the servo-mechanism control 

probl em. To discuss a simp'ie example, assume a gas furnace is 

given and it is desired to control its temperature. For a 

temperature measuring devices thermocouples are used which 

develop an output voltage wh1oh 11 a function of the temperature. 

~his voltage 11 to be fed to a 171tem to control the ga1 valve, 

wh1oh in turn oontro1a the tUJ1naoe temperature, One war to de

rive an output time runotion tor the thermooou.ple1 11 to 1uddenl7 

1nozteaae the 11.1 pre11ur1 a known amount. 'rhi·, re1ult1 in a unit 

1t1p runotS.on, and m1.k11 a reoording or the thormooou.ple output 

voltage againat time. Uaing th• teohn1~uo1 d11or1bod ln thia 

paper, a notwork oan be round whioh h11 th1 1o.m1 ro1pon11, on a 

voltago ba1t1, to a unit 1top tunot1on, With tbi1 1ntoflfflAtion 

an o1ootr1oal oontrol 1y1tom oan 'bo do1l;n1d to obtain an optimum 

oontro1 or tho f'\lftl&oo temporaturo, In othor word•, a log1oal 

171tom wlll bo dov1lop@d tol' dot111mtnin1 A pha10 and ampl1tudo 

vor1u1 tro~ueno7 oh111aoter11tto rrom 1n input and output timo 

tunotlon. tt S.1 111.0 1bovm how to u10 tho tnro:mAt1on to obtain 

oorroot1on 1n a oontro1· 111·tom, 

To oxpAnd tho d11ou11ton r\Ultho,, u1ln; tho t1ohn!ciuo1 

outltnod, an oloot11loa1 notwork oquiv1lon'b om bo round tor ANY 

ltnoll' 171tom Whon tt1 input And output tlmo runotlon1 aro known, 

Pol' OXAfflPlo, tho dlapl1oomont tlmo runott~n ot tho output or a 

lovor 171tom ro11 a ,:tvon input di1pl.Aoomont timt runotion oould 

be known. Lotting voltage equal d11plao1mont, an e1ootr1oal 
" network oi.n be found Wbioh will have an output voltage pro-
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portional to input voltage, and these voltages woul d be direc tly 

proportional to t he displacements in t h e origi nal sys t em. 

Therefo r e it is evident that the method is not limited to 

ele ctrical systems alone , although only elec t r i cal systems will 

be di scussed i n t he body of t h e paper. 

The third part , entitled "Suggest Applications" , in a dis

cussion of the general developments applied to servomechanism 

design. The development is in terms of poles and zeros, and 

the method of attack proposed is different from that pursued in 

current literature . One purpose of this paper is to show that 

network concepts can be explained in terms of poles and zeros; 

and an endeavor has been made to use only this concept in each 

step of the discussion. It is hoped that this paper will result 

in a more general use of the pole and zero network concept . 

It is assumed that t he reader is acquainted with Fourier 

and LaPlacian Transformsl and their application to network 

1 Cambell , G. A. and Foster, R. M., Fourier Integrals for 
Practical Applications 

Gardner, M. F. and Barnes, J. L., Transients J:g Linear 
Systems 

Goldman, Stanford, Transformation Calculus and Electrical 
Transients 

The above books will be referred to constantly throughout 
this paper, and the following notation has been adopted. C&F 
will refer to Campbell and Foster , G&B will refer to Gardner and 
Barnes , and G to Goldman. If a number or a letter follows the 
above symbols , this indicates the transform applicable in that 
volume; if the symbol is followed by P. and a number , that is 
the page number . Although Fourier and LaPlacian Transform 
Tables are not always directly interchangeable (GP. 225), in 
this paper none of the exceptional cases arise. 
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analysis. An acquaintance with the Theory of Functions of a 

Complex Ve.ria.ble2 is helpful in understanding the development of 

the plotting techniques described in the first part of the paper. 

Sufficient information has been included, however, to allow a 

complete understanding of the actual application of the develop

ments. In the third part of' the pa.per, this background is 

assumed in connection with the discussion of' the Nyquest Sta ... 

bility Criterion, 

ES j_&£_ ~ 

I ' ' ' 

a o~sticHS.~ w. '·~ Zin,0J1s:,u11 st ia. o.ea:I:s ~I 

Knopp, Kon:ztad., !l:heo:rz s.t Z,im,elicn;H, m• 1• 
Guillaman, I. A.,~ M.athimtJ,jo~ st Oµ:cµit N?:&lrsia. 

' 



NETWORKS 

FROM THE 

ZERO AND POLE 
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POINT OF VIEW 
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NETWORKS FROM THE ZERO AND POLE POINT OF .Tiil! 

In this part of the thesis certain properties of Fourier 

and LaPlacian Transforms and Functions of A Complex Variable are 

discussed which are useful for an understanding of the method to 

be developed for duplicating., or compensating, a given network 

when its phase and amplitude versus frequency characteristics 

are known. Those port:lons of the theory of interest to the 

development have been extracted from· the li te;r•ature. A different 

point of view is used from that in present literature., and it is 

hoped that this method will give a clear picture of the 

theoretical concepts. 

An ~alogy might be madEJ at this point co:ncern1.ing a man 

who walks i11to .a flower shop, to buy a "bouquet, and findl3 

himself lost in the, nU111ber and. variety of flowers available; 

yet he Only ne1?ds a few for his bouque.t. An a,ttempt will be 

:mJJ.de to select th§l proper bouquet. 

In the following discussion it will be assumed that the 

prop@r we.'J to io.entify netwo~ ... lrn is by the locat:ion of thei:r 

poles and zG:ros .1 The mean:i.ng of the ter-ms ''pole '1 ano. 11 zero" 

1 Bode, I-Ienr;ik W .. ., Network Analysis and Feedback Amplifie;i;" 
:Design 

Mulligs:1n, .Jr., H. H., ''The Effect of Polar and Zer•o 
Loca. t:i.ons on the TransiEm t Eespon.se o:f Lineap Dyn&i.mi~ Systems, 11 

i9fi_gf-;d5~g! o~ the ~nstitute of Hadio E_ngineers, XXXVII ( Mfly, 

Valley, Jr.11, G. En @nd, Wallman~ Flen,Py, Vac1.11J111 FJ_1u1J~ 
Arn:elAfiErr~, Cb.apt. v:u:r: i$ especially good. · · 

G&B P .. 152. 
" -- -· " ' 
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will become clear from the discussion. Later it will become 

apparent that for all practical networks the network character

istics are completely identified by the location of the corre

sponding poles. The diffiouli·ty, as far as present literature 

is concerned, is that an actual picture of the situation is not 

clearly presented. It is very well for the inathem.atician to 

develop the theory without diagrams and models, but the engineer 

is often not abl@ to visualize just what is taking place.· One 

of the pr.incipl~ ~eason~ for- this is that there is no method for 

p:r~senting a fou~ dim@nsion~l syst@m 5,n a single drawing;, ~o the 

math@matics a~@ d@v@loped without showing pictori~lly wh~t it 

In th@ lite~@t~r@ of th@ Th@GPY or f'l,;!:D,otio.n~ of a 0©mp1e~ 

Vari~bl@ 1 th§ ~en@~~l m@thod ~f plotting~ fµnotlon of four 

v@~ia~les. i~ tg mak@ twg~dim@P,Si©n~l ~lots~ U§ing th$ con~ 

venti~n~l notgtion, tb.i~ m§thgd. i§ q@v~1©p.@d.in th@ follQwing 

w ~ f ( ~) ';:; u, + jv 

1b.@ f@Q ti@n§ z Md. w ar@ th@n plgtt©d. $@pg:J:l~rt@l'Y"', If th@ 

@!;J,U@, tign t;;1 @~D~t=HH:HHJ ;L.:g, :gol@.:r ~©Q~~in~te~ i /:l,Il~ twg tliP@@"' 

dim©n.1;1;i,Qri,@,l plgtm g~~ mag@~ g, !@'©m@t~i@~J .. pictlJJ.!§ of a ~@l@ and 

a ~@~o is d.@v@lo~@§."' ".!:'h~t ig if th@ @q;1ui.tion is e~:rrr-e~rned a~H 

w ;;; .~ ej9 

and i and @jS are plotted i@pa~at@ly. 
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Before proceeding further it will be necessary to develop 

a simple Theorem which is of fundamental importance. Let it be 

assumed that the voltage transfer transforms of a series o:f 

networks are known. Isolate each network from the previous one 

by a vacuum tube, the vacuum tube being considered as infinite 

input impedance, zero output impedance, and is linear. Such a 

tube is termed as a 1tperfect vacuum tube.'' 

Theorem: If the voltage transfer transforms of a group of 

networks are known, when the networks are connected in series, 

and each network is isolated by a perfect vacuum tube, the 

transforms are multiplied together in the Complex S Plane. 

To demonstrate this Theorem let the group of networks have 

the voltage transfer transform F1(s), F2(s), ••• Fn(s). Let 

the input voltage to the first network be E(s), and the output, 

voltage associated with each network be e1(s), e2(s), •••• 

en(s). Assume, for simplicity, that each isolating vacuum tube 

has a gain of M, which may be greater than, equal to, or less 

than unity. For network 1 the output voltage will be 

e1{s} ~ F1(s) E(s) 

Connect the second network to this system through an isolating 

vacuum tube, and the equation is 

e2(s) = e1{s) M F2(s) = E(s} M F1(s) F2{s) 

and in general: . 

en(sJ = E(s)Mn-lF1(s)F1(s) • •• Fn(s) 

This completes the proof. 

To aid this discussion, two networks have been selected 

and each of these networks will be developed in the S Plane. 
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':t'he same notation employed by Gardner and Barnes2 will be used 

throughout the discussion~ Figure·l shows two networks together 

with their projections in the S Plane. A resistance and capaci

tive network is driven by a constant voltage generator, and a 

resistance and inductive network is driven by a constant current 

generator. The output voltage is measured as shown in the· 

q.iagrams. The diagram on the le.ft represents the struc'tures of' 

these networks in the S Plane. These Figures may be considered 
! 

as cones centered at the points -R/L and -1/Rc. 
' I 

' I ' 

These·oones are developed in the .following manner. Using 

the previously ·mentioned concept, neglecting the phase oharao

teristio f'o:i- the present, there results the amplitude functicn: 

:W ~ R -
For the RC network this will.be 

where oc = 1/aC. I:f' the equation is expressed as a reciprocal 
' I ' ' 

relationship, and both sides are squared, the result being 

I -
cl -R 

This is immediately recognized as the equation for a circular 

oone. It develops that if' the cone· is cut parallel to the S 
,, 

Plane, the section is, found to be a circle centered at, S = OC.. 

A.s the parameter R. is 1noreased, the radius of the circle will 

2 G&B, lQ.g,. cl t. · 
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AMPLITUDE 

:Jw 
Vc<s) = !cs) l ( s + ~) 

AMPLITUDE 
, l"o 



decrease. 

The resistance and in.ductance network may be treated in a 
. . . 

similiar manner, and it will be found that a circular eross 

section results when it 1s out parallel to the S Plane. 
. . 

In the RL network case, at the point S = -R/L, th~ ampli-

tude is zero. In the theory of functions this is known as a 

zero. In the RC network o~se, a·b the point S = -1/RC, the 

amplitude becomes infinite. In the function theory this is 

known. as a pole. Both ze:tt~e and poles are olass1:f'ied as singu

larities. As far as networks in the s·p'lane are concerned, to 

determine zeros and poles, it is onl1 neoessar1 to examine the 

equation to determine the values of Sat wh1oh the equation 

become zero o:tt 1nf1n1te. In more oompl1oated networks seve~al 

poles, or ~ero1, mar @x11t ~ta ~in;le point. The n'Ul't'l.bar of 

pol11 o~ 1ero1 11 1qual to the o~dor or the pole, er zero~ 

10 

R@tu%'n1:n; to 11'~\U"I l, a e:rem1·-1uitch@d aria 11 shown 1n 

fHtob et th@ p1"@j®@tien1 in th~ S Pll'ln@. 'rh:tm o:ro1g ... hm.toh@d l!l.:t'@A 

is a "@ut" on th® jw ax11, Th11 out :rop:r@1~nti tho mt®~df mt~to 

W'f!Plitud@ ~@ip§ni® er tho n0twerk. A1 th; l@o~t1on ot th@ pol@ 

o:r:- 21~:!:ie 11 v~ri:1id1 th@ @ut iffl m~d@ 1n a diftoztent plao@ on thi 

con@, and th@ :rtH'lpontHl au%tv@ will ohm;,. Coru1ider tl1@ RO 

netwol'lke Thie notwo:rk 1s a h1gh t:rec;,uenar out netwoI'k·• If the 

oapaoitr 11 1no~eao~d, loavin; the r011stanoe unehwi.ged, the 

f:requenor to~ a g1v@n 1ttenu1tien 1~ low,~. In th@ S Pl~ne, · 

this moves the oon0 ro:rwa~d; the sidea booomin; eteepe:r when 

the out is made on· the jco axis• In the RL netwo1"k oase, ··1 t is 

seen that varr1ng the Q or the 0011 movcui the oone back and 



11 

forth on the real axis. When a cut is made on the jm axis, it 

is seen that the response varies with the Q of the coil. 

From the previous discussion one distinct advantage of 

treating networks in terms of poles and zeros is apparent. If 

networks are pictured as shown in Figure 1., it is seen that 

poles and zeros have a geometrical significance which bears a 

direct relationship to their name. For a given type of network, 

the cones will always have the same shape. This is the princi

ple employed to find the steady-state response curves for 

ne·tworks using an electrolytic tank.3 

One other point is to be noted when dealing with networks 

from the pole and zero point of view. Negative as well as 

positive frequencies are involved. Negative frequencies are the 

result of the mathematics and are not physically realizable.4 

It should be pointed out., however., that all physical networks 

projected onto the S Plane have their frequency characteristics 

projected as an image in the negative frequency region. 

Networks involving resistance., inductance, and capacity may have 

conjugate poles, one lying in the negative frequency region., 

3 Huggins., w. J • ., 11A Note on Frequency Transformations for 
use with the Electrolytic Tank, 11 P:roceedin~s of the Institute 
of Radio Engineers, XXXVI (March., 1948)., 21. 

4 In certain special cases negative frequencies are useful 
from the computational standpoint, but this will not be dis
cussed here. 
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the image of the one in the positive frequency region . If the 

cones for a network with conjugate poles are developed, it will 

be f ound that they also have a circular cr oss-section par~l l el 

to the S-Plane. In this case, however, it will be found that 

the center or each circle is different for each out. 

There are certain other advantages of thinking of networks 

1n terms of polea and ze?'Ofh In the S•Plane, 6 has the di

mensions or a ren1ntanoe, and all paoo1va networks should have 

poles 1n the - !) region. Thi o 1s what mathemo.t1o1ans oall the 

negative halt-plru1e . If a pole l1ea 1n the +S rag1on, the 
' 

positive half-plan@, thin 1nd1oatao a power oouroa. In a general 

way, 1t oan be mtatad that o.mp11fiaro ohould be designed to have 

their poleo in the negative half-plane, ruid oooillatoro with 

their poleo 1n the pooitiva half•pl~ne.S 

In W1 eArl1@r pArt or thio p~per it was mentioned that four 

dimenoionffl war@ nead@d to fully r@p~@ffl@nt n@tworkffl, Althou;h 

th@ loo~tion or the pol@§ ruid ~@PO§ oompl@t@ly d@fin@ ruiy 

natwork, they h~v@ i roup dim@n§ion~l ~@~P@@@nt~tion, No 

phy§i@~l ffl@thod 1§ ~Viil~~l@ to ~OPtPiY ~p~phi@~llf thio iflfOP• 

nmtion. Ith~§ b@@n §heWfl h~w to obti1n th@ ~mplitud@ oh~r~o-

5 In th@@~§@ er ~l1f1@P§ th1§ 1§ ~ §uff1@1@nt but net 
g N@@@§§gpy gfi~ Ouff1@1@nt a@n~1t1@fie In th@@~§@ @f @§@11= 
l~t@P§f th1§ 1§ §,' n@@@§§~Pf @§fi~1t1©fi, but fi§t ~ N@@@§§iPf ~fid 
fluffl@iemt tfond1tl©fie fllh@ @:@tU§,i @Ofi~ltl@fi§ ffl~f b@ ~@t@rmin@d 
rrem NfijU@§t'§ fflt~~ility 0Plt@~1en, 

V§,ll@f Md W@.llmm, ,W, W• 
Bed@, W• !LU• 
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teri s tic by taking a cut on the joo axis of the magnitude 

function. The problem of phase relationships has not been con-

s idered. It will be shown t hat it is possible to construct a 

Figure in the S-plane repr esenting phase similar to that whi ch 

the represent s amplitude . In t he case of phase , however , the 

F' lgure is not solid like the cone , but has the shape of a warped 

sheet. This sheet can be moved back .and forth in the same 

manner as the cones, a cut on the jc.o axis determining the pha·se 

for a given networ~ • . 

Consider the RC network of Figure l . The equation for the 

phase of this network in the complex S-Plane is 

w 
Q = Tan- 1 • oc:. +?, 

This case is illustrated in Figure 2, which shows a phase 

sheet 1n the upper halt-plane , its image in the lower half

plane not being shown for reasons of olarity. The cross-hatched 

area represents a cut on the positive frequency axis and is the 

phase oharaoter1st1c for this particular value of RC. 

Con id r th two networks of Figure l again, When the RC 

network 1B oonn@ot@d tc the output of th0 RL network through a 

perf~ot v .ouW11 tub@, th0n by th th~o m d@v0lop@d ~lier, th 

twe n ·we~l , m ltip 1~ h ~ooult w l b 

oonstrult if R/L d 1/R ~@ ,~ep@~lf ehcm n, th~t 1, oomp n• 

n tien 11 e~tiin d re~ th ~~ n@twefk, Aneth@~ dvant~;o of 

tuiins pel@n ~nd ~@~en te ol&iu11rr a n@twc:rtlc iffl now lil.ppo.rent , 

To oomp@nn~t@ &nf n@two~k, who~@ th@ ;qu~tion ot tha network 1s 

known , find ~noth@r notwo~k Whioh h&n th@ mMt~ number or zaros 



. PHASE 

-Jw 

FIGURE 2 



as the network to compensated has poles, and these zeros the 

same location as the poles. Moreover, this network must have 

the same number of poles as the network to he compensated ha.s 

zeros, a.nd these poles are to be located at the same points as 

the zeros. 

Actually this idea comes directly from the Theory of 

Functions of a Complex Variabls.6 There it is shown that any 

rational complex fraction of the form 

R(z) = G~z~ 
F z 

1.5 

where G(z) and F(z) are polynominals in z, that the function 

R(z) is completely characterized by the location of isolated 

poles, R( ~) is assmned regular, which is always true of network 

transfe~ ftm~tions. 

It is also shown that if G(z ) has a root ot the ro~m (z - a) 

and F( ia) has e. root o!' the form ( z • a'), the number of these 

isolated poles, as determined by the polynominal of F(z), is 

reduced by one, This is called a "removable singularity."7 

FU:11 compensation :!s merely the creation of a sufficient number 

of removable singularities to take care of every pole of F(z). 

The actual application bf this in practice wi11 be discussed 

more fully :1.n the section erttl t1ed "suggested Applicatit:ms." 

6 For ijxample, Osgood, Chapter VI, .lo.c.. ~it. 

7 !n dth@r develepments of Funct1or1s of a O~mplex Variable, 
a removable singularity is called a doubtful point. The teJ?nl. 
removfibl~ singula~ity appears more appropriat~ fram the 
engineering startd.poin t, inasmucli as 1 t inditH!it@~ whs.t happens* 
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The two networks of Figure 1 were not chosen at random, 

but were chosen to show particular points about compensation. 

Assume a constant voltage generator feeds the RC network; 

couple the output to the grid of a pentode considered as a 

perfect constant current amplifier; if the pentode has the 

proper value of R/L in its output circuit, then compensation is 

obtained. Sometimes it is possible to find a constant current 

network which has the proper compensation characteristics, but 

not a voltage network having the desired characteristics. The 

above technique indicates how to handle this situation. It is 

also noted from the theorm on the addition of networlcs by means 

of isolating vacuum tubes, that the gain of the tube~ ,!l2! 

affect the compensation; it is only the location of the poles 

and zeros. Gain merely enters as a factor which can be taken 

care of by either positive or negative attenuation, depending 

upon the final use of the output voltage. For this reason, 

the gain term is sometimes referred to as sensitivity. 

Although very simple networks were chosen for illustration, 

these same ideas may be carried over to more complicated 

networks. The above compensation theorm is general 

regardles s of the complexity of the network. 

There is a method for using the above ideas to either 

dupl i cate or compensate a given network when the amplitude and 

phase versus frequency characteristics for a network are given. 

Dr. R. G. Piety of Phillips Petroleum Company is responsible for 

the basic ideas underlying this method. 
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Consider the voltage transfer transform of a generalized 

network . The equation is 

h m IJ (s + "~) JI, (:s ·a. + i=::~s +o-:.j- -+ a12.) 
F(s) ~ ~- r:-"""-~~~~~s=-·~~~~~~~~~~~ 

TT (s + ~~) 1T (s~ + ~°'-s s +oe~ i- B~) 
K=I S=d 

This equation may be reduced to the dimensionless form 

in the following manner, 

n 
TT 

F( s) = 
3-:1 

r 
TI 

K::./ 

Figure 3 shows the results of this procedure .in the case 

of an elementary network. In this Figure are shown two three 

dimensional drawings ; one case with a pole on the negative real 

axis, and one showing a single conjugate po+e• The cut on the 

jw axis is now dimensionless, and is shown by the cross-hatched 

area. The cuvve shown for the pole on the negative real a.xis 

may be thought of as a. series RC network connected to a constant 

voltage source , with the output voltage taken across the con-
I 

denser. The cr6ss~nat~hed area defines the amplit~de !or this 

voltage. The cross~hatched area of the single conjugate pole 

would ~epre sent the voltage across a parallel RLC netwo~k con~ 

nected to a constant our~@nt sou~oe. 

Now consid@~ th@ voltage transfer transform of any ele

m~ntary netwo~k, and e4p~ess it !n polar form , first making the 

netwe:rk dimensionless by U$e of tne above technique. If the 
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natural logarithm of this equation is taken, there results 

where 

R = (real2 + imaginary2)1/2 

g = Tan-1 imaginary 
real 

19 

It is desirable to express attenuation in decibels instead 

of nepers. This may be accomplished by taking the logarithm of 

the amplitude to the base 10, and multiplying the result by 10. 

The equation for attenuation in decibels is, 

F(s)db = lOLog10 (real2 + imaginary2) 

Obviously a series of these terms can be added by the procedure 

indicated in the previous theory to obtain a composite amplitude 

function. 

Figure 4 has been prepared to show certain basic networks, 

togethe~ wtth the equations fo~ oon tructing a se~1es of runpli· 

tud~ ~d p~ase c~~ves, 4it ou hall ~f then twor~s qensist 

of~ sl~tive anq c~pacit1ve elements, the p.r oedu~ to b des~ 

c~ibe~ is not limit@~ t ijQ netwer~~ ~lone@ Wetwe~ka oont i ing 

oonjug~te pol©s ma ~iso pe u§e~ for oo~strvet1n th~se @urves 

us.i 8 he~~ ~edu~ pµtJine~ previously. Th@~§ netwe~~s w@rb 

ro§~§l1 ~@legt§~ fg~ demqnstrat~on urpe§es, A16e ~now in 

1i6u~e 4 ~ ce~ a po~~1 1~ o~mp nsating n~twork, What is 

at t@ ~nd of this section. 
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Figure 5 shows plots or ' the amplitude functions for three 

of these curves. The procedure for constructing thes·e curves 
,. 

is to let OC = l. A curve is then cons .. tructed of attenuation 

versus w, this curve being marked at the point w = 1. These 

curves may be constructed of: lucite or any other suitable 

material. It is obvious that the curves must be designed for 

the particular semi-log paper on which plots of network ampli

tude functions are to be made. 

The step by step p,rooedure · for using these network curves 

is given below• 

l. Pl'ot an tt nu t1on versus c,,J curve for the unknown 

n twork which is to b - duplicated. Th r tio should b so 

select d that them in point or inter st re Ont red bout 

the point,~ l 

2 Seleot one curv whioh approach s the one to b 

duplioated, sliding 1t to th right d l ft until the most 

at1sf oto:rr loo tion is obt ind . Movement in the v rt:toei.l 

direction i permitted 1na muoh duplication is only to be 

within som amplitude function Note the -otu l ttenu tion 

of then twork curve t th1 po1n Add th v lu shown by 

21 

th tt nu t1on ourv to thos obt 1n d trcm th n-twork att nu 

tion ourv through th a point A r mult on n twork ct 

thi typ will b u ed in th duplio t1on prco It 1 n oe • 

rr to not th point wh r ~ • l or our 'n t rk ou~vc r ll 

on the ~ o l '1'h oC oho en tor oonmtruotion of the ourve 

to be duplicra.ted 1 known From this th ~ :ratio oan be 
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determined for the duplicating network. Suppo se t he value, 

CX: = 100, has been selected for the network to be duplicat ed., 

and it was found the reference point of a standard ne t work curve 

fell on the point~ = 1.2. This woul d mean that when this 

network was constructed, the parame t er of oC. must equal 1.2 x 

100. 

3. Continue in this manner, using different attenuation 

curves in the manner indicated above, until the recons tructed 

origi nal curve is a straight line. 

4. If just the amplitude characteristic is desired, suf

ficient info~mation is available to construct a duplicating 

network on an amplitude basis . If exact duplication is desired., 

t hen phase curves mu.st be used in conjv.nction with the ampli

t ude curves . It is noted that these two curves cannot be used 

independently of one another. 

5. A series of' network can be constru.ated1 as found 'by 

the above procedure, isolating each one from its predecessor by 

vacuum tube. The theorm shows that if th ph se nd ampli

tude charaoterist:to have 'bee1i.,. duplicated xa()tly, th n w1 thin 

th r ie of -orne mp itud function the ~uat1on of the 

dupl1oat1n6 network must be 1dentiea.l with that fo:r the original 

networik, 

'One thing should be pointed out at this time in res ~ds to 

the netwe~~§ §hown n F 6 L~. fi~~t twe netwo~k~ have 

1d nt1o ou:rv tu 1 ado ns quently only on@ ou.rve 1 n ces-

s ry for the two o ses. Rev r al of th on ourv will result in 

the eurv - for th oppos t@ type network. 
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There is an obvious point about netwQrks which was hinted 

when Figure 1 was discussed, and is also ~ssociated with the 

terms for the possible compensatipg networks mentioned previous-

ly. Consider the two networks shown in Diagram A and B, the 

output voltage transforms for which are given, 

t-------1 ,,-----. 

C 

E Cs) I( E0 (s) E cs} S R.C 
SRC i-1 

L 
Eo(s) = Ee~) S Fi. 

5 k-+ 1 

DIAGRAM B 
In these networ•ks, if RC = L/R, it is seen that it is 

impossible to differentiate one network from the other by means 

of t he output voltages. Although this is a simple example, it 

shows that there is no uniqueness for networks; that is, many 

networks will have the same response characteristic, although 

the actual elements and method of construction are different. 

In complicated networks where economy of manufacture enters, 

this property of networks is not just of academic interest. 

Sometimes a little additional work will result in real economies. 

It was for this reason, 'also, that RC networks were chosen for 

the demonstration networks. They .are cheap and easily con-

structed. 



A METHOD FOR SOLVING THE SYNTHESIS PROBLEM 



25 

A METHOD FOR SOLVING THE SYNTHESIS PROBLEM 

In this section a method for solving the synthesis problem 

in networks is developed. Some computed examples using the 

technique developed herein are also given. The method by which 

this result is to be accomplished is by the use of what might 

be called a new type of operational algebra, due to Dr. R. G. 

Piety of Ph:tllips ·Petroleum Company. This operational method 

was specifically developed to find auto-correlation and cross

correlation functions 1 in order to aid in the interpretation of 

siesmograph records. This problem will not be discussed here, 

although the concepts developed for its solution can be extended 

to the network synthesis problem. The method will give the 

phase and amplitude characteristic of any linear four-terminal 

network when the . input and output time functions are known. 

As was pointed out in the introduction, the method will give 

an anlog electrical network for any linear system when the input 

and output time functions are known. 

The synthesis proble~ is to find a network which will have 

the same response as a given system when the input time function 

and the output time function are known. For example, a sealed 

four-terminal network might be given, and only its input and 

output time functions known. It is desired t o either duplicate, 

or compensate, this network. i If the phase and amplitude versus 

1 James, Nichols, and Phillips, Theory of Servomechanisms. 

Wiener, Norbert, Extrapolation, Interpolation and 
Smoothing of Stationary Time Series. 
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frequency characteristic can be determined from this information, 

the methods described in the first part of this paper can be 

used to duplicate, or compensate, the network. As was pointed 

' out, however, the duplicate may not have the same arrangement 

of components in its construction. 

For the type of systems to which it is applicable, the 

method of synthesis discussed in this paper is straightforward. 

Although a knowledge of the properties of Fourier and LaPlacian 

Transforms is necessary for a thorough understanding of the 

technique, t h is is not necessary, however, in order to be able 

to use the technique. The method may be compared to the problem 

of using log tables, as compared to understanding the theory 

underlying their general development. 

Several systems are ava i lable for describing the proper-

ties of a network, the most conventional one being to show t .he 

relationship between phase and 8.11').plitude versus frequency. 

Another method, not quite so well known, but of equal value, is 

the concept of indicial admittance.2 Idicial admittance is 

defined as the time function of the current which enters an im-

pedance in response to a unit step function of voltage. It can 

be shown that all the characteristics of a network may be des-

cribed in terms of indicial admittance, including the voltage 

2 Karen and Biot; Mathematical Methods in ~n~ineerin3. 

Carson, J • R,, Electrical Cir.oui t Theo:r;r and pperational 
Calculus. 

GP• 97. 
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output across some impe danc e in the network due to a unit step 

function of voltage input. The indicial admittance concept is 

used in this part of the paper. As used here it i s the situation 

existing when a unit step function of voltage is applied to two 

terminal s of a four terminal network, and the output voltage 

mea.s·ured against time. 

The method of synthesis developed here is not limited to 

unit step function inputs, as will become clear from the follow

ing development . This type of input was chosen as a convenient 

means for showing the theory of development. In passing, it 

might be menticmed that the only reason for introducing indicial 

admittance here is that the previously cited references will 

show that it is a unique method for defining a network. There 

are other unique methods besides the two mentioned in the pre

vious paragraph, for example, by , the location of the poles and 

zeros as shown in the first part of the paper. 

The operational algebra for use 

in solving the synthesis problem will 

nwo be developed. Assume a time series, 

as shown at the right, starting ~t t = o. 
Divide this time series into equal intervals 

of time ~1', de~ignating the amplitude 

at to as ao, at t1 as a1, ••• tn as an• 

The time series can be descri.bed in the 

following manner: 

Clo 

AMP~\ Tl.LD r-

A'l' 

to +- 41' +-e.ti."1' 

T, MI::. -----

+ • • • + ant-nAi' 
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where each of the te rms has the following significance: 

A'i is t he interval between 9onsecutive points in the time 

series 

t-n A"'t' indicates a time to be associated· with each ampli

tude I delayed n o..1" uni ts .f'rom the origin. 

an is the amplitude of the time seriesat the time 

• 
Let n rep re sent an amplitude associ ted with a unit 
' 

1mpuls .3 ooouring t t"'nA"'( The 'b sic property of a unit 

impul e, ssooi t d with an amplitud function, whioh makes it 

useful in thi m thod will boom ol r s the d velopment 

p:t'OO ds 

Am t hod for r pr s nting a time eries or n1 complexity 

at qu lly p o@d d1morot · point 1 now avail bl ~4 Lt it be 

um d that ll ls brio op r tion ot any pow r 

001 t1v, n d1-tr1but1v l w old Th t uoh aumpt1cn 
' is proper will d ,,lop l tr 

3 G&B p 2$5 
C&F P · 7 
G 100 

4 'l'b1 met~ or cp:rc nt:tn1 
Tr of'orm •. @ 3 .n ,: 

t1m §@ri ~ h m the Fourier 

G&B P 10 

O&F Pe 207. 

G j . 
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There is a theorem which states5, "that any function of 

time f(t) which contains no frequency components greater than 

W0 cps is uniquely determined by the values of f(t) at any set 

of sampling points spaced 1/2110 second apart."' It is seen from 

this theorem that the specified impulses can uniquely determine 

the time series within some upper frequency limit. In other 

words, the time series is assumed to be made up of frequencies 

with no component higher than Z,~"r". 

Assume that the output time series from some four~terminal 

network, due to a unit step function input, is known. The 

expression for this time series in terms of the operational 

algebra is 

f(t) = :£. . h 

where "17' is c.hosen in a manner to be described later. 

The conventional mathematical expression used in LaPlacian 

and Fourier Network Transform Theory is: 

(Network Transform)(Input Transform)= Output Transform 

In this paper it is desired to obtain the network frequency 

function. From the above relationship, the Fourier Transform is 

.. , . ' ... 
5 Oliver, Pierce and Shannon, nThe Philosophy of PCM," 

Proceedings of the Institute of Radio Engineers, XXXVI 
(November, 1~8~1130. · ~ · . 

This theorem was developed much earlier~ but apparently 
these authors are not acquainted with this work. 

Ferrar, w. L., 1'0n the Cardinal Function Interpolation 
Theory;" Proceedings of the Royal Society .2f Edinburgh, 45 
( 1925), 269-282. 
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Network Frequency Function= Fourier Transform (Out ut Time Series) 
Fourier Transform Input ime Series 

It is desired to express the unknown network in terms of an 

amplitude . and phase versus frequency relationship. It will be 

shown that the above expression does just this. 

When the same A'T is selected for the unit step function6 

as for the network output time series, the unit step function in 

terms of the operational algebra is 

00 
f(t) = L. t-mA"( 

m 

when this is divided into the output time series, the result is 

f( t), = ~ ~ an-m t-(n-m) A"Y 
n rn rn~n 

the Fourier Transform of the above equation7 can be found in 

tables, and the result is 

f(w)' = ::E.~ an-m exp-jw(n-m) 
h m 

m~n 

The above equation is immediately recognized as a Complex Fourier 

Serie s . Expressed in a more familiar form, this equation is 

6 The unit step function contains frequencies of all orders. 
The output from any _network whose input is a 1,l11it step function, 
can be looked upon made up of those particuliar frequencies it 
allows to pass, and the operations the network performs on these 
frequencies. 

Goldman, Stanford, Frequen~y Analysis, Modulation, and 
Noise, p. 124. 

7 G&B 10 

C&F 207 

G j 
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f (w)' = ~~ an.- m( (C os co t:::.."r( n- m) - jSin@ A'r(n-m) . )) 
h h') 

This is a func tion made up of real and imaginary parts which 

describes the network. It is also apparent that the operational 

algebra is merely a symbolic notation which indicates the method 

of operation. This algebra is handled in the same manner as any 

power series; the symbolism adopted merely helps in establishing 

a clear cut method of operation. 

There is a point about the sampling theorm upon ' which the 

entire developm~nt hinges. When . samples are taken by unit 
·! 

impulses, it is necessary to reconstruct the function, using 

·the same notation as Oliver et a.1,8 in the following .'. form: 

r( t) = f (...n...) Sin fl' ( 2W o t - n) 
ZNo rr (2 Wot - n) 

This function may be expressed s a series of functions of the 

form Sin wt centered at each sampling point. The transform of 
wt 

'this function is :9 

6 011v r, P1@ e@, and h nnon, Sll• o1t. 

Th@ above author aoo1gn ne nam® to th1ffl ,runot1on, but 
Ferrar, . op. o1t crn.ll 1t a Ct\:ttd.1nal Funot1on. ·Th1tJ term will 
b~ u1 d h@no@fo~th 1n th1e p~per to d ;o~1b~ th1 ftmot1on. 
Th r 1i another rt1oleJ 

Hardy, a. J., "On An ~fl~{!Jsr l Equation, n Proo@ dings 
Londo;,. M th s o , ( 1909), ~-4,7 2. 

-
Hardy crn.lls th1o funot1on ru1 "M Funot1on". 

9 C&F 862.l 

G&B .'.3.0l 
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A time series expressed in the above manner will have the Fourier 

Transform 

= Tan-1 f!? 
(.\) p an exp-j(.i)n 

When two time series are divided, the inverse tangent functions 

will cancel. This completes the proof of the procedure. It is 

to be noted that this proof fails unless the Ai for the input 

and output time functions are identical. 

There is a question about the accuracy of the method 

developed in this paper, that is, over what frequency range is 

the method accurate? The previously quoted Theorem of Oliver, 

Pierce and Shannon indicates that the highest frequency present 

in the Cardinal Function, call it fc, is 

l :rc - 2~T 

In words, it is as if the output time function from the network 

were passed through a perfect filter with a cut-off frequency 

There is a Theorem called the Paley-Wiener Criterion for 

Realizable FilterslO which shows that a perfect filter is im

possible to realize in practice. In terms of physical networks, 

evaluated by the foregoing technique, this means that as the 

plotted frequency approaches fc, the Complex Fourier Series 

10 Valley and Wallman, p. 721-727, loc • .£...!!• 



Amplitude terms approach zero more rapidly than i n the actual 

network. To show this, when the Complex Fourier Series i s 

evaluated at f = 1/2 A1"' , t he equation is 

33 

If a suffi cient number of t erms are present in the. above ex

pression, it is a general property of Fourier Series that an ';t 

an-1• That is, alternate : terms of the series tend to cancel 

and the 'sum will be small. Reasoning physically from the above 

discussion, it 'is seen that' the highest frequency fh which can 

plotted must satisfy the relationship 

fh-<. ' l 2 Af 

In actual practice it has ·been found that the following relation

ship is satisfactory 

The above relationship was used in plotting all the examples in 

this paper. In a sample computation, it is shown that the curves 

of amplitude and phase versus frequency lose their smoothness 

when this relationship i xoeeded. It has b en soertained by 

making numb r or computation th t th1o relationship must hold. 

No r1gorou proof of th1 rel t1on hip ha yet been found l· 

though it 11 not@d that lO ~ 2ff , It 1n an experiment l value 

tound to hold 1n praotioe, Just how well this relationship holds 

will' be indicated whan tho 'l'haoratioal versus Computed network 

oharaoteristios are disoussad. 
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From the previous discussidn of the Complex Fourier Series 

for finding the phase and amplitude versus frequency character

istic of an unknown network, it is apparent t hat the smaller A'Y 

is chosen, the closer will be the approximation i n a given 

frequency range . It is al so observed that the work necessary to 

obtain a solution will be in direot proportion to the ratio of 

chosen Ai'S 

There is a convenient transform whioh will aid in all 

calculations involving the ao.tual determination of the phase and 

amplitude oharaoteristios from the Complex Fourier Series. This 

transform is the scale ohange 1transformll 

J r ( f) = aF ( ajco') 

The above transform states the relationship for a scale 

change . The advantage of this transform is in determining the 

phase and amplitude versus fre~uenoy components from the Complex 
I 

fourier Series. To find the phase and amplitude versua frequen-
• I I t 

oy oharaoteristio for the unknown network, the Complex Fourier 

Series must b valu ted for peoifio frequencies. Using the 

above transform, a table may b pr pared with a fixed series of 

relationships, and this table u d for all oomputat1ons. 

In all the illu tr tive computed examples, A1"' w m d 

equal to 0.1 seoondo by the ppl1oat1on ot the so le oh nge 

ll O&F 20$ 

G&B 8 

Gk 
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transform. The following frequencies were chosen for compu-
1 

tational purposes; 0.000, 0.139,· 0.278, 0.418., 0.556, 0.695, . 
o.834, and 0.973 cycles per second. With the above frequencies, 

nA't'w will be 50 or some integer multiple thereof. I t was f or 

this reason this particul ar· relationship was chosen. I t is noted 

that the highest frequency chosen, 0. 973 cycles per second and 

the time interval 0.1 seconds , just satisfy the s t ated relat ion

ship between A"r and fh• 

A two place trigometrio table was constructed using th se 

relationship to olv ll the illu tr tiv n tworks~ A portion 

of th1 t bl is -hown in Figur 6 to indio t th m thod of 

construotion. It 1 net no aary, obviou ly, to u in th 

relationships shown here. 0th r ·relationsh1ps on be used. It 

shoul d bo noted, however, that th fact $0 is th b ic angl 

makes the chart rather o 17 to pr pro In 1 vont, it 1 

recommended that whatever bam1o angl 11 ohos n th t 1t have an 

integer relation hip with 900 

In th di cu ion otu l n twork oomput tion, low 

pan protetfli) f1l r n two~k 1 u 1llu tr tion 

A thoush t r h nd t o w cnl 2;· it no rr 
to val 4S r@ l &n~ 45 ima; tor oh r ~u nor 

o.mplitud latio hip t oe ju t pol 

4 i I u 1 ;h , 

th 

t 

t %'ml 

tu 

t ticn t th1 p- p r h d fifty 

I mput tien will new b giv n, 



f 0.1 o.z 0.3 0.4 o.5 o.6 0.7 

0.139 SIN -.087 .... 17 -.26 -.34 -.42 -.5o -.57 
cos 1.000 .98 .97 .94 .91 .87 .82 

0.278 SIN -.17 . -.34 -.5o -.64 -.77 .... 87 .... 94 

cos .98 .94 .87 .77 .64 .50 .34 

0.4l8 SIN -. 26 ... 50 .... 71 -.87 .,..97 -1.0 -.97 

cos .97 .87 .71 .50 .26 o.o -.26 

0.556 SIN .... 34 ... 64 -.87 -.98 -.98 -.87 -.64 

cos .94 .77 .5o .17 -.17 -.50 ... 77 

0.695 SIN .... 42 -.77 -.97 -.98 -.82 ... 50 -.087 

cos .91 .64 .26 ... 17 -.57 -.87 -1.00 

0.834 SIN -.50 ..... 87 -1.o -.87 -.50 o.o .50 

cos .87 .50 o.o .... 50 .... 87 -1.0 -.87 

0.973 SIN -.57 -.94 ..... 97 ... 61+ .... 087 .50 .91 

cos .82 .34 .26 ... 77 .1.00 .... 87 ... 42 

SAMPLE OF CHART USED IN DETERMINING 

FOURIER SERIES COEFFICIENTS 

FIGURE 6 

o.8 0.9 

-.64 -.71 

.77 .71 

.... 98 -1.0 

.17 o.o 

-.87 -.71 

-.50 -.71 

-.34 o.o 

-.94 -1.0 

.34 .71 

... 94 -.71 

.87 1.0 

-.50 o.o 

.98 .71 

.17 .71 



using the previously develop techniques. In Figure 7 is shown 

four ne~orks with _~he val~es of the components for which so~ 

lution was obtained. Obviously other values could have. been 
' , • .•• , I• 

selected for the components, but this would have made no dif-
' 

ference be~ause all have been computed using the scale change 
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Transform. llso shown is the equation giving their response to 

a unit step function, U(t). The output equations were solved 

by the taPlacian Transform method, the particular transforms 

applicable being indicated by the method adopted in this paper. 

The method used to obtain these solutions was to compute 

the network response to the unit step function input, U(t), 

and then piot this result. The time series for the output time 

function was taken from the plot. The reason for doing the 

computations in this manner, was that by plotting the output 

time function and then taking the values for computation from 

the curve, the procedure would be similar to that in a practical 

case. In a practical case the output would be taken from an 

oscilloscope 9r _some simiiar device. This is also the reason 

for only using two place trigometric tables for making compu

tations. It was assumed that in a practical case no values 

could be read better than two places'. 

Figures 8 to 11 show the response of the networks to a 

unit step function, and also the theoretical ampl.itude and phase 

versus frequency characteristic. The computed phase and ~11-

tude versus frequency characteristic, using the Complex Fourier 

Series, is also shown. Network Number 1 is a high cut network, 
! 

and 1 t has been plotted for two values of ~1" ~ This shows 
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that the smaller A, is chosen, the nearer to the theoretical 

curves the·computed curves approach. Of course, more terms are 

necessary to compute the curve for the smaller A"(. 

Network Number 2 was chosen because it has certain unique 

features for a network ~aving poles on .the negative real axis. 

It pos'sess overshot when the unit step function is applied, and 

the steady state response has a peak at 0.189 cycles per second 

which is greater than the input voltage. It 1s noted that the 
I 

computations did not indicate this peak, although the phase 

characteristic correspond fairly well. 

Network Number 3 is a band pass network, a typical network 

in a resistance coupled vacuum tube amplifier. Its response to 

a unit step function starts at zero and returns to zero. It was 

chosen for . this reason. 

Network Number 4 is a protot'Y'Pe "T" low pass filter. Its 

characteristics were so chosen as to aid in determining the 

theoretical response to a unit step function. Again this is of 

no importance as tar as using the computational technique is 

concerned, because the scaling factor was used in determining 

the characteristics·. It is noted that the network possess conju

gate complex poles, and hence "ringsn, as can be seen from the 

~esponse plot. This practical network was chosen to indicate 

that the methods of this paper are not restricted to those oases 

whe?le poles are on the· real axis. 

The complete computation of Network Number 1 will now be 

carried out for A1"' = .,05 to show how to use the previously 

developed technique. This computation will be the only one 
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completely carried through; however, all other computations were 

made in the same manner. 

In Figure 12 is shown a method for carrying through the 

division. Column l is the time and Column 2 is the output 

voltage associated with the time taken from the response curve. 

Column 3 is the results or the division~ and is obtained by 

subtracting each term in Column 2 from the previous one. That 

this is actually division can be readily proven by the reader by 

set;ting up the actual equations and dividirtg in the ordinary 

manner.12 This is merely a short cut method which saves pap~r 
,• I 

and time . The reason the method indicated here is practical is 

that the amplitude or eaoh unit impulse of ~he time series 

representing the unit step tu.notion has the same value. Column 

4 is the value of A7' used to make the computations with the aid 

of the prepared table ot tr1gometr1o tu.notions. It is noted 

that the scaling factor is two in this case. That is, after 

computing a frequency component with the aid of the table, say 

0.139 cycles per second, when the frequency 1s plotted, this 

value must be multiplied by two. In this oase 2 x 0.139 = 0.278 

cycles per seoond. 

In Fi;ure lJ 1s shown thG oompleta oomput~tions for the 

t~t>ms of tha Oomplax Fout1iafl Se:rii~~. En.oh. ta rim :tn the table has 

been mult1pl1®d by 100. One 11ddltiont1l £r11qu1no1, 1.11 cycles 

12 In th1~ exrunpl~, nll the Complex Fourier Series terms 
a.re positive, however, in all the other exe,mples, negative terms 
appeared. Division is, never-the-less, carried out in a similar 
manner. 
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COMPLEX 
OUTPUT FOURIER Ai TIME VOLTS TERMS 

o.oo o.oo o.oo o.o 
0.05 .21 .21 0.1 

0.10 • .39 .ia 0.2 

0.15 .52 .13 0.3 

0.20 .63 .11 0.4 

0 •. 25 • 72 .09 o.5 
0.30 .78 .06 o.6 

0.35 .82 .04 0.7 

0.40 .a6 .04 o.a 
0.45 ~89 .0.3 0.9 

0.50 .92 .03 1.0 

0.55 ~94 .02 1.1 

0.60 .95 .01 1.2 

o.65 .96 .01 1.3 

0.10 .97 .01 1.4 

0.75 .98 .01 1.5 
o.ao .99 .01 1.6 

o.es .99 .oo 1.7 

0.90 1.00 .01 1.8 

0.95 1.00 .oo 1.9 

FIGURE ll 
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per second, is included. This frequency does not satisfy the 

relationship between fh and ~,Y. It is included to indicate 

what happens to the approximation when the relationship between 

~ 1 and fh is not maintained.· It is seen that if this term 

were plotted, the curves showing the relationship between phase 

and amplitude versus frequency will no longer have a smooth 

relation ship. 

It has possibly occurred to the reader that this develop

ment of input functions in terms . of the unit step function is 

more involved than necessary. Why not use the unit impulse as 

the input time series? The unit impulse has the Fourier Trans

form of Unity,13 hence the amplitudes of the output time series, 

taken from the plot of the output time function, are the ampli

tude terms of the Complex Fourier Series. This point will now 

be discussed. 

Assume the network voltage transfer transform is, as usual 

in practice, a rational proper fraction. For simplicity, futher 

assume that the network has only first order poles. Now a proper 

rational fraction can be factored into a series of partial 

fractions. In network theory, the result of each factors re

sponse to an input function can be summed to obtain the output 

time function. These factors will have only three forms:14 

13 C&F 403.1 

G&B 1.01 

G 1 

14 Barnard, s. and Child, J. J., Higher Algebra 
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(1) K ( 2) 
(S + a}2 + B2 

K' (3) (s + a)2 + B2 
K"S 

S + a 

In words, any network, regardless of complexity, can be repre-

sented by three fundamental networks, if it is a rational proper 

fraction and all poles are of the first order.15 In the case 

assumed, first order poles, only the above networks need be 

discussed. 

Now a unit impulse is approached in practice by a single 

square wave if the width of the wave is small compared to the 

shortest time constant of the circuit, and further, this time 

must be short compared to the recipricol of the frequency of the 

highest mode. If the square wave satisfies the above character-

istics, and has unit area, it may be considered a unit impulse. 

Waidelich has prepared a table of LaPlacian Transforms showing 

network responses to this type of input.16 A portion of this 

table is shown in Figure 14, giving the response characteristics 

of the fundamental networks discussed above. The response to a 

unit impulse is also shown in the table. 

15 As a matter of interest, it can be shown that these are 
the only networks necessary to duplicate another network, regard-

. less of complexity, if the , above networks are allowed to occur n 
times. Using adding circuits, and the Theorm developed in the 
first section of this paper, it is seen that another method for 
duplicating an unknown network is indicated. The first network 
is recognized · as a series RC network, the voltage taken across 
the condenser; the. other two networks are series RLC networks. 
In the first equation, the voltage is taken across the condenser; 
in the second case, across the resistance. 

· 16 ,Waidelich, D. L., "Response of Circuits to Steady-State 
Pulses," Institute of Radio Engineers, XXXVII (December, 1949), 
1396. 



F( s) 
,', 

1 
S + a 

exp-at 

RESPONSE 
UNIT IMPULSE 

G&B 1.102 
C&F 438 
G 10 

1 exp-at sinBt 
(S + a)2 + BZ B 

s 
{S + a]2 + BZ 

G&B 1.303 
C&F 448.1 
G 20 

sin(Bt + C) 

C = tan-1 B/-a 

RESPONSE 
APPROXIMATION 
UNIT IMPULSE 

(Waidelich) 

exp-at 
1 - exp - aT 

exp-(a)(t--T) 
2B X 
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sinBt - e.xp-aTsinB(t-T) 
coshaT - cosBt 

cos(Bt+C) - exp-aTcos(B(t-T)+C) 
co'sh aT - cosh Bt 

FIGURE 1!!: 
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Ernest Frankl7 discusses the case of elementary network 

response to a pulse of unit height and varying width . I t i s 

shown that as the time of duration of the ' pulse decrease s , t he 

amplitude of the response decreases. This, of cour se , can be . 

seen from the Transforms of Fi gure 14. The above case does not 

approach the criterion of the unit impulse , as defined previous

ly. If the stated oondit1ons can be satisfied, the use of the 

~1t impulse in this method of analysis has the advantage de

scribed previousl1 in det rm1n1ng the oo ff1oients of th Complex 

Four1 r S rt1 • 

Th requ1r ment on the pprox1mat1on tor unit 1mpul 

ha o rt in definite limit tions in actu l pr ct1o Th e 

limit tion oan best b de oribed b1 noting that the width of 

the pulse :!.s decreased, the amplitude mu t inore se. For hort 

time oon 't t circuit, or thoa h v1ng high rrequ noy mode of 

r epon e, . th volts to b appl1 -d c xeeed the r ting of th 
• 

elem nt or th 1 t m. or oo'U2'a o ling rotor o b used 
.. 

in some o s, 1 u ing t nth mpl1tud unit 1mpul • Th 

r quirem nt on th width of th puls 1 anoth ~ di - dv ntage 

when u 1ng th1 oono pt, in• -much it 1 o um d th t th -

oh r oto~1 t1on er th n twork unkno 

It 1 b 11 v d th t in mo1t pz- et1o l pp 1o t1cm tho unit 
' 

,top runot1on, wh1eh wan uo d r ~ ll ampl o loul t1cno, 1 

prob bly th~ moat pr&ot1oal input to ua It 1o o y te senor t, 

nd from an anal7tioal 1tandpo1nt, it ha1 been developed to the 

17 .Frank, Ernest , Pulsed Linear Ne t wor ks 



point where its characteristics ror most systems is quite well 

known. 
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SUGGESTED APPLICATIONS 

The previously discussed synthesis method is not so useful 

in the applications shown; that is, if a network is given, a 

phase amplitude characteristic is obtainable directly from the 

network. The technique should 'be more useful in finding electri

cal n~.twork eg,uivalents for linear systems--that is, electrical 

analoss. One practical application where the previous develop

ments should .prove eapao1ally useful is 1n servomechanism design 
' 

where elootr1cal control nyntomn are used. In general, ·tho 

des1sn onsinoo~ 11 presented with the ayntom which ban to bo 

oontrolled. for oxmnple, tho a1l"plane, tho nh1p, tho rookot, 

~nd no forth, h&vo &lro&dy boon don1~ed, 1nd 1t 11 don1red to 

oonmtruot A oorvom@ChAn1um oontrel 111tom. ~ho methodn dovolopod 

1n thin p~po~ uhould p~evo oupoo1&lly helpful in thono n1tu• 

at1onu. Given A uyutom, A tent could be dev1nod wh1oh would g1vo 

input !llld output t1m@ 8@~101, &nd fpom th.11 1nfot'ffl&t1on o.n 

eleotr1o&l notwork &nalo; or tho 111tom could bo oonntruoted. 

Tho don1gn or tho control 1r1tom oan proo@od from th11 point., 

Oorta.1n p&:rtn or tho pPov1oun dovcalopmentn will bo d.11• 

ounnod tl'om thin pcint or v1ow. It 11 AlWAfl oao1o~ to d11ou11 

pl'1no1ploa with an aotu&l @XAfflf)lo, 10 tho fupna.01 wh1oh wan dia

ounnod 1n tho 1nt%'oduat!en will bo uood &I tan ox~lo. A noho• 

m&t!O d1A!l'Affl et 'bh:11 tUI'fi&OO 11 §hewn 1n f11U%'8 1$. 

rm,;!n@ tho re1low1n; o1tu&t1on. A ;an ruf!n&o@ 11 g1von 

and 1t 11 den1Pod to m&1ntA1n tho t@fflf)oraturo or the turnaoa at 

some prodotorm1nod valua. It will bo annum,d that the entire 
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system is linear in the temperature range of operation. To 

control the gas supply., a soloniod valve is used which i s so 

des i gned that it changes the gas supply proportional t o the 

current in the coil. Further., t his curren t i s supplied by a 

54 

pentode., a constant current devi ce. The t emp erature of the oven 

is measured by thermocoupl es., and the design is such that the 

reference temperature produces zero volts in the output. To use 

the p·rocedure of this paper., apply a unit step function or 

voltage to the grid of the pentode which against time., obtaining 

an output time series. Using the ynthesis teohniques, curves 

of amplitude and phase versus frequency may be plotted. Using 

the techniques described in the first part of this paper., an 

approximate duplicating network may be found. The tran.sform of 

these networks are repres nted b1 G2(s) and G1(s) in Figure 15. 
For the present assume that the fee'd'baek system for the 

amplifier 1s not en eoted into the ystem, If V(s) is the dis~ 

tur'bance transform, that i~ the variation in the gas supply from 

that required to cause zero volts at the thermooouples, and d{s) 

is the variation tran -'torm ot th ystem, that is, the rro:r, 

the equation !or the syetem 1 l 

1 Th qu to w ll own 1t will not bed rived h re~ 
Consult . any ot the ~efe~enoea ;1ven below. 

James Ni@hel§ 1 Phil -p, leg oit. 

McColl, LeRey A.8, Ii'unda.msnta.l The(:) 1?';{ _g! Servomechanisms 

Brown, Go:i,don S , and Campbell, :Donald P., 'Priinc1ples .2£ 
Se:rvo:mechanisms. 
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d(s) 
D(s) G1(s) 

= ~l-+___,G~1~(-s~)-- G~2~(-s~)--=G3-(~s-.-J 

Assume the amplifier is flat and has a gain M, the equation 

becomes 

d( 8 ) = D ( s ) G1 ( s ) 
1 + M G1 ( s ) -G 2 ( s ) 

An examination of this equation shows that even in this simple 

system the response will be quite complicated. The valve, G2(s), 

has resistance, inductance, mass, damping, and negative com-

pliance. Nothing can be said about th~ furnace, G1(s), although 

it should have some fairly simple long time constant electrical 

equivalent network. In any case it is apparent that no operations 

can be performed on the numerator (the furnace was given to the 

designer} and all operations must be performed on the denominator. 

An examination of the equation for this systems indicates 

that design characteristics might be best applied to the ampli

fier G3(s). Assume that the amplifier is designed, as suggested 

in the first part of this p aper, so as to create removable singu

larities in G1(s) and G2{s). The equation now becomes 

d(s) = D( s) G1 ( s) 
-l -+ _M ·. 

It is seen from this equation that G1(s) is never reduced 

to zero, it can only approach zero. It is also noted that the 

same characteristic response for the gas furnace exists before 

t he control sys tem was added, but reduced ih amplitude. I t i s .. 



also seen that the characteristics of the furnace have been 

greatly simplified by the creation of the removable singularities. 

There are some· limitations to the removable singularities 

compensation technique. In practice this technique can rtot be 

applied in as easy a manner as first appears. The reason is 

obvious if it is noted that the transfer function of planer 

networks are normally rational proper fractions, that is, there 

are more poles and zeros. The reasons is obvious if it is 

remembered that the determinent ' of the transfer function of a 

network has a row and column missing in the numerator as compared 

to the denominator.2 Thi2 does not mean, however, that nothing 

ha~ been aooomplished by 1nt~oduo1ng these ideas; at least the 

direction to pursue in makin~ a design 1s elearl7 indicated. 

In ll the literature or ervomechani m design, stability 

is alw ys stated 1n terms or the Ny~uest Stab1l1t1 Or1ter on. 

Certain observations will now be made eoneernins this criterion.3 

It 16 desirable to discuss gener l d sign teoh111~ues in ourrent 

practioe, and point out diffe~ent direction in view of the 

developments ef thi paper. 

2 Anothe mp cation ef th1 t tement 1 that the b st 
that can be hop@d fo~ by gddi~! anotner mesh t an e 1sting 
netwo k, 1 to ub t1tute e pele for another, ruld further, only 
the mutual element§ between the added and existin; me1;1h are 
use!ul in creatin~ this ~em~va~le s1p~ular1ty. 

3 James, Ni@hols, lil:l,~ Phillip1;1, ~. e!t. 

Brown d Campb@ll, ~. Jl!!•· 
• Bode, le.£• J!ll• 
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In Figure 15 is shown a portion of a Ny quest Diagr am. 

Assume t he solid lines are for posi t ive frequen cy and t he dot t ed 

lines are for ne gative fre quency. The Number 1 is a hypothetical 

case f or a se rvome chanism. I t i s des ired to increase the sta

bility of this system, as in i ts present form it approaches the 

point -1 . 0 t oo closely. The conventional me.thod for doing this 

is to add another network, or change the gain so as to shift 

the · curves in the arrow direction, giving curve Number 2. This 

l a ter curve i s further away from t h e point -1.0, hence the system 

is more stabl e . 

It was shown in the last section that any network transfer 

function c an be br oken down i nto the sum of three fundamental 

types of networks . Using .t he principles enumer ated in this 

p aper, it woul d appear be t ter to examine this sum and ascertain 

wh ich pole i s causing the difficulty, and create a removable 

singularity by adding a proper zero for this particular pole. 

Or it may be possible to create a removable singularity for this 

pole, and add another pole which does not have the undesirable 

p roperties of the removed pole . 

In othe r words, the corrective network used should have at 

least t he same number of zeros as poles. In the creation cf 

removable sin gularities , it would be desirable to only add zeros, 

but as was indicated previously, this can only be done in theory. 

The best t ha t can be expected is that a zero and a pole will be 

added in t he same op e r ation . 

Two pos s ible ne tworks mee ting the criterion mentioned above 

are shown in Fi gure 16. Ne t work Number 1 will cancel a conjugate 
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NETWORK NO. 1 

l<s) R [ (s+~)2.. + .BaJ 
Voes)= ( 5 t- /\) ( .s -t- S) 

NETWORK NO. 2 

FIGURE 16 



59 

pole if it is properly designed. Depending upon the selection 

of Rand Rl, the zero can be made conjugate, but the pole will 

be of second order or two poles on the negative real axis. That 

is, a damped pole may be substituted for an undamped (conjugate) 

pole. 

Network Number 2 will cancel a real pole and it is further 

noted that it causes a shorter time constant to be substituted 

for the removed pole. That is, the pole is moved further back 

on the negative real axis. In other words, the time response of 

the system has been decreased. 

Some additional remarks will now be made about the creation 

of removable singularities. It is easier to take an actual 

example to illustrate the following point. Assume that a given 

network has the following voltage transfer transform: 

Eo(s) = Ei(s) (s + a) 
(s ~+ b) 

where E0 is the output voltage and Ei is the '' input voltage. The 

response of this network to a unit step function input is5 

Eo (a (a b) exp -bt) 

This network has a surge at t = 0 1 and it is desired to remove 

this surge. One way to remove this surge is to add another 

network, and a simple one to add would be a pole at s = -c. · The 

5 G&B 1.107. 

G 2 & 10. 
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equation becomes 

E0 (s) = Ei(s) (s + a) 
( s -+ - b) ( s· + e) 

Let c = na, and find the response of this network to a unit step 

function. 6 The output voltage is 

= Ei [.L bn 
( a - b) exp - bt 
b(na - b) 

( 1 - n') exp -natJ 
n{ a - b) 

It is observed that adding the other pole has complicated the 

response of the system, but that by the proper choice of design 

parameters, the surge can be reduced. If n = 1, that is, a= c, 

which is the case for a removable singularity, the response to a 

unit step function is 

E0 - Ei (1 - exp-bt) -~ 

It is seen that in this case, the surge has been removed, and 

the response . has been simplified. 

In the last term in equation above where n = 1, it is 

observed that the contribution of this term is markedly reduced 

in the case where the relationship a= c is only approximate. 

In practical systems, there are always tolerances, and the 

characteristics of components are influenced by such things as 

humidity, temperature, pressure, and other imponderables. How-

ever, the above discussion indicates marked advantages are to be 

gained by creating removable singularities, even if the relation-
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ship between the zero and pole are only approximate. Ordinarily 

the existing literature indicates the addition of additional 

networks to change response characteristics, but the creation 

of an additional pole adds a term in the response of the system, 

thus increasing the complexity of the response. Rather, do not 

add any poies or zeros to a network to change its characteristic; 

always add networks which will create, removable singularities. 

It can also be shown by carrying out computations in a 

manner similar to that above, that conjugate poles and zeros 

can be handled by a ' similar technique, and further, that if the 

relationship between the pole and zero is not exact, definite 

benefits are to be had in reducing the response of the conjugate 

term. 

In Figure 15 a feedback circuit has been indicated in con

nection with the control amplifier. This circuit was introduced 

to show certain points about control systems, in view of the 

general developments of this paper. In using a feedback circuit 

in an amplifier where steady state conditions prevail, it is 

common practice to so construct the feedback circuit that it has 

the same loss characteristic as the desired over all gain 

characteristic.? In terms of poles, this means that the feedback 

circuit should have the same voltage transfer transform as that 

which it is desired to correct. In considering transient 

response, however, any poles added in the feedback circuit will 

increase the complexity of the response because of the added 

7 Terman, E.T., Radio Engineer's Hand~ook, p. 395. 



poles. This can be demonstrated by elementary mathematics by 

considering two cases of a feedback amplifie'r; one with a pole 

in the feedback circuit, and one without. All servomechanisms, 
. ' . ' 

however, must control transients; if steady state conditions 

prevailed, there would be no need for a servomechanism. In other 

words, in designing a feedback circuit for the amplifier of this 

system, or any other system where the transient response is 

i~portant, the feedback system should not contain any singu

larities.8 The most benefit will be derived when the feedback 

is real. 

The effect of real feedback ~n any amplifier is to change 

the location of all the poles. It is difficult to make any 

general statements without considering actual circuits. Compu

tations for actual circuits however shows that real feedback 

results, in most cases , in an improvement in the reproduction 

of transient response of the system. 

Brown and Campbell9 analyze the case where positive feed-

back is used to overcome certain undesirable characteristics in 

a servomechanism. Tn their development it is shown that in 

theory marked gains in response can be anticipated using positive 

feedback. It is also shovm, however , that the demands made on 

circuit parameters are such that this type of feedback is not 

practical. 

The only point to note in the above discussion is that 

8 James, Nichols , and Phillips, loc. cit., p . 63. 

9 Brown and Campbell, loc . cit. 



networks in the feedback loop of an amplifier will not create 

removable singularities; but that in general real feedback will 

improve the response of the system. 

In this section it has been shown how to use all the 

precepts of the paper in the discussion of a simple gas furnace 

problem. The concepts used in the discussion of the problem 

were ~11 from the zero and pole point of view. It was shown 

that this is sufficient to determine the characteristics of the 

system. It was also shown that the creation of removable 

singularities is the proper design procedure, and fur.ther, that 

these removable singularities need not be perfect in order to 

obtain an improvement in response characteristics. 
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CONCLUSIONS 

In this thesis a new method for solving the Synthesis 

Problem has been developed. Given an input and output time 

function for any linear system, it is shovm how to obtain a 

phase and amplitude versus frequency characteristic. This 

identifies an electrical network. It is also shown how to ob

tain a network which will approximate the unknown network by 

means of elementary networks when the phase and amplitude versus , 

frequency characteristic is known. When this network has been 

found, in many practical cases, a network which will compensate 

the unknown system is also known. 

The work involved in obtaining these solutions is lengthy, 

but the procedure is straightforward. The method has a firm 

theoretical basis, hence some idea of the accuracy, or goodness 

of the solution is known before computations are started. 

Because it gives results in terms of electrical network 

equivalents, the method is expecially applicable to problems 

in servomechanism design. In this way the design of electrical 

control systems proceeds in an orderly manner. It is also 

indicated that such concepts as velocity and acceleration control 

functions are not necessary in a discussion of servomechanism 

design. All developments in this paper are from the zero and 

pole point of view, with a slightly different concept than that 

given in current literature. It is also shown that zeros and 

poles can be given a geometrical significance corresponding to 

their mathematical name. It is further shown that zero and pole 
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concepts are sufficient unto themselves for the identification 

of network characteristics. 

This paper is merely an introduction showing the power of 

the Theory of Functions of a Complex Variable in solving network 

problems. Many phases of continued development are pointed out. 

To mention a few, the actual problem of changing the Nyquist 

St ab i lity Diagram by means of removable singularities should be 

developed to a point where graphical solutions are possible. It 

was also pointed out that only three fundamental networks were 

needed to duplicate any network. This indicates another method 

for obtaining equivalent networks. The addition of circuits is 

well known in the art, and it follows that the fundamental 

networks would be used in the process. To obtain equivalent 

networks in this manner, response curves could be constructed, 

of lucite say, and used in the same manner as was done in this 

paper. However, direct ratios of input and output voltages 

would be used instead of the logarithm of this ratio. 

It was also pointed out in a footnote that with a given 
; 

network, addition of another mesh to the network to accomplish 

compensation, can at best remove one pole from the system, and 

substitute another pole, and further, only the mutual element 

between these meshes would contribute to this relationship. The 

actual conditions necessary to cause this substitution could be 

worked out from determinant theory. 

Recently it has been recognized .that the computations and 

the methods for synthesizing a network as developed in this paper, 

can be markedly simplified. The point which was recognized is 
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in relation to the representation of a network transfer function 

by its Complex Fourier Series. It was shown in the second 

section of this paper tha.'t the voltage transfer function could 

be expressed as 

F((.t)) = ao + ~ an(Cos n A')-- , (.1) -JSin n.b, (.I)) 
h 

When this equation is carefully examined, it is evident 

that if the real or imaginary components are known, the other 

component is uniquely determined. In other words, it is only 

necessary to use either the real or imaginary component alone to 

express a networks voltage transfer characteristic. 

Bode shows that for a minimum phase shift networkl that when 

the attenuation characteristic is known, the phase characteristic 

is unique. Stated in terms applicable to the devel9pments of 

this paper, if the real terms of a network transfer , function are 

known, then the imaginary terms are uniquely determined. 

The technique used. in this paper for determining network 

characteristics from input and output time series, envolved the 

computation of the ter•ms of a Complex Fourier Series. In the 

examples of this paper, the Complex Fourier Series was evaluated 

for both the real and imaginary terms. From the previous state-

ments it is apparent that it is in reality only necessary to 

evaluate one series, say that for the real terms. This will cut 

1 Bode, loc. cit. 

A minimum phase shift network is one whose poles are 
all located in the left half-plane. 



the computations necessary for determining the characteristics 

of the unknown network in half. It is further evident that in 

determining an equivalent network by means of dimensionless 
' network curves, th.at these curves need only be developed .for 

their real part. 
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