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1 

l. Introduction 

The purpose of this thesis is to present a new type of Analysis of Wind Stresses 
for one-story bents. The "WOrk is based on Papers No. 2, 3, 4/50 "WOrked out by 
the same author at the Oklahoma Institute of Technology in 1950. 

The present method is dependent upon the system of balancing fixed-end moments.1 

Each wind-moment is derived as an infinite, geometrical series. It is shown 
that each step forms one external and one internal circle, which in summation 
gives a very simple algebraic expression. The author calls this summation of 
the circles, 

New Distribution Factor. 

The total "WOrking moment multiplied by this factor gives ·the direct 'Wind moment 
at the corresponding part of the loaded bent. 

A problem given by Prof. J. E. Lothers in Graduate course 534 at OIT as a one 
hour test 

was solved by this method in 
1 minute and 48 seconds 

by a student who had not read this thesis and had only been instructed to use 
the last four formulas. 

The solution obtained by this 
method is as precise as the 
slope-deflection method and 
varies from 10 to 42 times 
shorter, 

For checking his own nu.mberical results, the author used the same two legged 
bent as that of Mr. Morris' of 20 years ago. The author's results -were the 
same as Mr. Morris' Slope-deflection results with only one exception in the 
last moment - in column Bat the bottom there was a very small differencei 
0.0105%. Encouraged by some of the professors at the school, the author 
checked the old computation of Mr. Morri"s and found a small error in his 

· numerical solution of elastic equations ••• an error equal to the difference 
of 0.0105%. The author's method is exact. 

1 This method was developed in connection with the calculation of 
secondary stresses in trusses and is described in the book by o. Mohr 
"Abhandlugen aus dem Gebiete der Technischen Mechanik, "P• 429, 1906. In 
the USA,' the method was first used by s. Hardesty and is fully explained in 
th_e book by J. A. L. Waddell, "Bridge Engineering," 1916. The e:>..1;en~ton of 
the method to the analysis of highly statically indeterminate frame structures 
is due to K. A. Calisev, who used it in analysis of building frames with and 
without lateral constraints. See "Technicne Listy,n 1923, No. 17-21, Zagreb. 
A German translation of his paper appeared in Pub. Inter. Assoc. of Bridge 

,Structural Eng., vol. 4, pp. 199-215, 1936. The final form of the method .of 
successive approximations was obtained in the paper by H. Cros8, Trans. ASCE, 
vol. 96, 1932 and in the same pape~discussion by c. T. Morris. 



By means of this method: 

(1) No advanced mathematics are used in practical 
computations. 

(2) There are no simultaneous equations to solve. 

By means of this method in illustrative ex~le No. 1: 

only .36 m:>ves on the slide-rule i..rere used and exact 
results reached. 

By means of the Morris-Cross Method: 

in 4 step approximation, 88 moves on the slide-rule 
were used and the results differed 1%. 

These points show as well as any explanation the big advantage of the new 
method. 

2 



2, Wind Analysis - general notes 

Internal stresses involved by lateral pressure of the wind are being computed 
by three types of methods: 

I. Very Approximate (max. dif. : 10-30%) 

II. Approximate (max. dif.: 6-10%) 

III. Exact (classic) (no dif.) 

I. Very approximate methods working with max. error,l 10-30% are: 

(a). A. Smith Method.2 

(b). Fl.eming's Method I-III.3 

II. Approximate methods working with max. error, 6-10%, are: 

(a). Morris-Cross Method.4 

(b). Morris-Cross Method Simplified.5 

(c). Grinters Correction moments Method.6 

(d). Morris-Ross Method.7 

1 ¥.18.ximum error is the maximum difference between the results worked 
out by the very approximate method and the classic method. 

2 Theory of Frameworks with Rectangular Panels, Transactions ASCE 
1915, vol. 55, P• 418. 

3 Engineering News, March 13, 1913. 

4 Transactions ASCE 1932, po 66. 

5 Theory of Modern steel structures, by L. Grinter, New York 1949, 
p .. 123. 

6 Ibid, P• 122. 

7 The design of Tall Building Frames to Resist Winds by Co Morris and 
A. Ross, Jr. The Engineering Experiment Station Bulletin No. 481 1929; 
State University of Ohio. 

3 



III. Exact (classic) methods working without any error (theoro) are the 
following: 

(a). Slope deflection method.8 

(b). Work methods.9 

4 

The methods of the first group are for rapid calculation and are so inaccurate 
that their use is limited to only some types of structures and usually for 
preliminary analysis only. 

The methods of the second group are mon! exact· .but" the ·max:tmum deviation of the 
·classic· solution · is significant · enough . if only a few steps are taken. They are 
nearly correct when many steps of distribution are applied. In such cases, 
when many steps are required to obtain the desired accuracy, the use of classic 
methods is to be recommended.10 

8 Bulletin No. 80, University of Illinois, 1915 by Wilson and Maney -
For symetrical, three-span bent, 12 stories high. These calculations are 
summarized in 12 tables covering 31 pages. Calculations involve 60 simul
taneous equations with 60 unknowns. The method is perfectly feasible, but 
for practical use unworkable. 

9 Stress in Tall Buildings, Bulletin No. 8, College of Engineering, 
Ohio State University, by Cyrus Melick, 1918. The method was developed for 
a 4 story building (6 weeks work); for more, it is un,.JOrkable. 

10 Wind Stress Analysis simplified by L. E. Grinter, Transactions ASCE, 
vol. 99, 1934, a discussion by Raymond C. Reese, p. 649; "The method of 
starting with no wind moments in the girders and gradually transferring from 
the columns into the girders will bring convergence fairly rapidly in simple, 
synnnetrical bents in which the relative stiffnesses of the different members 
do not vary too much. When the members vary in their relative stiffness, ihe 
method of starting with no moments in the girders is too slow and tedious a 
process. In this particular case, twenty-three cycles of operations failed 
to come very close to the desired results." 



3. Base for NDF 

The -author's idea was to find an easy, short method of wind stress analysis 
which could produce results close to those of the exact methods. 

The author hoped to find the easiest method in the same way as presented in 
his paper, 

"New Elastic Theory.u 

5 

This New Elastic Theory solves the beam-, girder-, and column-~ments by direct 
multiplication of Fixed End Moment and a special factor (Stupen vetknuti •• 
Einspannung Grad •• 'Which could be translated as the "grade of fixing") • 

This idea expressed mathematically should be: 

When 
M • Total working moment = Total shear times story-height then: 

M times Factor of fixed end is equal to the resisting moment 
at the corresponding end of ~he member in question. 

This special factor was really fotmd and is called 

A ratio of 

Final Distribution Factor. 

New Distribution Factor: of all column-NDF of the computed 
story. 

The whole paper is an algebraic derivation of these three types of factors: 

and 

(1). New Distribution Factor. 

(2). Sammation of all Stories NDF. 

(3). Final Distribution Factor. 

The base for derivations of these three types of factors is the idea of 
geometric deformation by an infinite distribution in every step of successive 
correction. 

Partial realization of this idea can be found in the Cross-Morris Method of 
Wind Analysis. It was shown by Mr. Morris that the idea of geometric de
formation applied in Wind Analysis must be combined with the method of 
successive correction by additional moments. (The n-step distribution method 
by Cross gives l0wer resting moments as it is the value of the total working 
moment). The Morris expression for this case is: Loss of moment involved by 
distribution. 

Mr. Morris tries to solve this loss of moment by additional moments added to 
the first wrking moment in n-external circles (n-correction1 s steps). By 



this new approximation, the errors increase doubly: 

(1). Cross n-step distribution (not finished appr.) 

(2). Morris n-step circles (not finished appr.) 

and by unprecise distribution. 

These errors of the Morris-Cross Method try to correct Mr. Grinter by his 
Corrected Method based on the New Working MomeJ;J.t. The working moment corrected 
is: Total shear times stories height times correction factor (usually - 50%).1 

This method is a practical short-cut of the Morris-Cross Method and gives re-
sults much closer (Max. error: 4%). But the error is not defined and the 
method with his Jrd grade of approximation cannot be called a scientific 
method.2 

The author chose another way to eliminate all these possible errors and to get 
results very close to those of slope deflection. He works the whole problem 
with general algebraic symbols, looking for general relations between moments 
and stiffness factors of members and transforms these relations in the final 
formulas, which are multiplication factors of the total t~rking moment. 

The author was very surprised when, at the end of his long and sometimes very 
difficult research, the investigations gave very simple formulas which can be 
used in any practical problem and solved by anyone who knows the basic opera
tions of arithmetic. 

1 This method is the most popular method in the USA at the present 
time. 

2 The author shows, in his Engineering Paper No. Tu 4/1950, that this 
Correction factor can be found exactly and is equal to the ratio of 

l 

\ 
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4, A SUlllillation for NDF 

(1). Calculate the moments in the columns due to the lateral forces, conside~ 
ing the joints fixed against rotation, but free to deflect laterally. 

(2) • The sum of the moments at the top and bottom of all the columns of a story 
is equal to the shear in the story, multiplied by the story height, and, 
as the deflections of the columns in the story due to the lateral forces 
are equal, the colum.~ moment s and shears are proportional to the values 

~ of the columns.1 

(3). Distribute t he moments at the joints, considering them free to rotate but 
not changing their location. 

(4). Carry over the distributed moments using a carry-over factor. 

(5) • Bala.nee the column moments in each story by making their sum equal to the 
shear in the story times the story height (total working moment for the 
story). 

(6). The difference betv.reen the sum of all the first circle moments and the 
world.ng moment is called the first moment difference. 

(7) • This completes the first external circle and the next external circle for 
distribution of the first moment difference can be repeated. 

(8). Internal circles (distribution of each world.ng moment) and external 
circles (first step dif. moment, second step dif. moments, etc.) form 
infinite series. 

1 When all columns of a story are of equal height, the val.ue of 

I · I 7 can be replaced by -y:- • 



5, Nomenclature 

a = Stiffness Factor of member I.-II. 
b = Stiffness Factor of member III.-IV. 
C = Stiffness Factor of member V.-VI. 
d = Stiffness Factor of member VII.-VIII. 
d(l,2) = Distance of cone. load from the column 1 s ends. 

d(I, II) • Distribution Constant. 
k = Stiffness Factor of any member. 
n = Any number. 
p = Internal Factor of NDF. 
q = Internal Factor of NDF. 
r - Ratio of two successive members of geom. series. -u = Column ratio (L1:L3). 
w = Fix End M:>ment ratio (FEMr:F'EMir). 
X • a+ b. 
y = b+ c. 
z = a+ c. 

A,B,C,D,E,F,G,H = Members of geometric series. 
N = Member of any geometric series. 
S = Sum of any geometric series. 
I = Moment of inertia. 
K = Total New Factor of Distribution (NDF). 
L • Length of member. 
M = Total -working moment. 
V = Total -working shear. 

K(I II III IV V VI VII VIII) ~ New Distribution Factor 
' ' ' ' ' ' ' II, or III, ••••• • 

(NDF) at point I, or 

LK • Sum of all column-NDF. 
MD : n-circle moment difference. 

n 

Uil 

Urn 
Kr 
U" 
M:i. 

: First circle moment at I. 

: n-th circle moment at I. 

: Final NDF at I. 

= Starting moment at column I.-II. 

~ = Starting moment at column V.-VI. 

M(I,II,III,IV,V,VI,VII,VIII) : Final column or girder moments at point I, or 
II, or III, ••••• • 

8 



6, Investigated bent 

For theoretical investigation a simple two-legged bent with the bottom of the 
columns fixed will be used. The load and dimensions are shown on Fig. 1. The 
stiffness factors are a, b, c. 

I· 
L 

.. 1 

p (x) III IV (y) 

II (b) V 

M21 M:t 
(a) (c) 

L 

l\ I VI ~1 
Fig. 1 

The wind pressure is working from the left towards the right side and involves 
total 'WOrking moment'.1-

M :-,:: PL (1) 

A.ocording to the shear equation the total wrking moment is equal to ~he sum 
of all column moments 

(2) 

The total working ooment will be distributed to 4 starting moments (Fig. 1) 

1\ - Ma 
(3) - 2z 

~ - Mc - (4) 2z 

1 Expression "total working moment" is a special term for this work and 
is based on the shear equation. In reality this moment does not existo 

9 
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7. First .external and internal oircle 

Determination of M by eq. (1) will be the base for the first external and in
ternal circles. First internal circle is an infinite distribution of M:J_ and~ 
by the Cross Method and is forming an infinite series of members. Sum of one 
series will be called the first circle moment • 

; • , ; 

Sum of column-first circle moments will be called first external circle. 
Difference between total -working moment and first external circle is 

Mn- : M - UI - UII - Uy - UVI 
1 1 1 1 1 

(5a) 

and will be called first moment difference .• 

FigJ:1. 2 and 3 show graphically the second and nth circle. 

First moment difference replaces the function of the base in the second circle 
for external and internal circle then the whole procedure of the 1st circle 
will be repeated for the 2nd circle. The second moment difference then re
places the function of the base and the procedure can be repeated for the third 
time, etc. 

~l 

Fig. 2 

UI 
n 

Fig., 3 

(5b) 

(5) 



ll . 

8. First Internal Circle Distribution 

UI 
1 UI\ UIII 

1 
UIV 

1 
UV 

1 JJVI 
1 

-M - M -M - M 
1 1 2 2 

M1a M1a M1b M2b M2c l~c 
2x X X \ / y y 2y 

M2b / M1b 
2y 2x 

M2ab - M2ab - M2b - M1b - M1bc - M1bc 
---.. 

4xY 2:icy- 2:icy- \ / 2:xy 2:icy- 4:icy-

I 
I 

M1b2 M2b2 - -
4'x:r 4:icy-

2 M1ab 2 M1ab M1b3 M2b3 Mzb2c 
2 

M2b c 

8"2(-y 4"2(-y 4-jf-y \ / 4:icy-2 4¢ 8¢ 

Mzb3 / M1b3 

8~ 8ef 
~ab3 M2ab3 ~b4 - M1b4 _ l.fib3c 3 

- - - - M1b c 

16x2y2 8ff sx2y2 \ / sx2y2 sx2y2 16x2y2 

- M1b4 / - M2b4, 

16x2y2 16N 

M:i.ab4 M:i.ab4 M1b5 M2b5 M2b4c M2b4c 

32x3y2 16x\r2 16x3y2\ / 16*2y3 16x2y3 32x2y3 

> \ \/ \ \ \ 
{ { ( ( < < 0 0 

0 0 0 0 0 0 

Fig. 4 
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Table of Series A and B 

Series A Series B 

No. of Symbol of Algell>raic Value No. of Symbol of Algebraic Value 
Member Member Member Member 

1 \ 
M1abO 

1 Bl - ~ab 
2 X y0 4xy 

2 A2 
M1ab2 

2 B - ~ab3 
2'3;!,y 2 42x2,y2 

3 A3 
M1ab4 

3 B3 -
~ab5 

2;x3? 43x3y3 

M ab6 ~ab7 
4 A4 

l 
4 B4 -27~'J 44-y/+y4 

M ab8 M:2ab9 
5 A5 

l 5 B5 -29-x?y'+ 4'5x5y7!> 

• . • • • • 
• • • . • • 
• • • . • . 
• . . • • . 

n-1 ~-1 
M1ab2(n-2) 

n-1 B - M2ab2n-3 

22n-.3;i-y-2 n-1 4n-I:x.11-y-1 

An 
M1ab2(n-1) 

Bn - M2ab2n-l 
n 22n-!x'lyl1-l n 

4nx'lyl1 

• • • • . • 
• • • • • • 
• • • • . . 
• . • • • • 

00 Aoo 0 00 Bro 0 

Fig. 5 



9, Investigation of moment UI 
l 

Exact investigation of all members forming column-first circle 
moment Ur 

1 
shows that it is a function of three algebraic groups 

The starting moment (M:i.) was determined from eq. (3). The 
summations of the (A) members and (B) members (Fig. 5) are 
to be investigated here. 

(6a) 

The derivations of the (A) and (B) series taken from Fig. 4 
and distributed and presented by Fig. 5 show that both series 
are: 

(a) • infinite series - number of members is 
infinite. 

(b). convergent series - condition of con
vergency: 

B 
n 

(c). geometric series - ratio. of two suc
cessive members is constant: 

--

= 

A n 
A n-1 

B 
n 

= 

= 

Using the formula for the sum of members of the infinite 
convergent geometric series 

f.N 
0 

N -- = 1--- ~ 

(6b) 

(6c) 

13 



For our series the sUll'lS are: 

M:i_ab0 

Oo 2Jcy"o ~>\ - SA - = b2 0 

1 
~ 

(6d) 

and 

~ab 
CIO LB = = -

4xy 
0 b2 

1 - 4xy 

(6e) 

' 
By substitution of eqs. (J), (4), (6d) and (6e) into eq. 
(6a) the relation between the column-first circle moment 
and stiffness of the members of' the bent can be determine,d. 

= 

--

= 

= 

- M:i. .-+ [ 2M:J. ay 

4xy 

+ [ 
Ma 

-~ 2z?Y 

2z 4xy 

2a:J" - be Mfz ( ------
4xy - b2 

Mzab 

1 -

~ab J (6:f.') 
b2 

Mc b 

J ~ 
b2 

1) (6g) 

14 



The expression 

2& - . be 
4-y;y - b2 

. C 

is the internal .factor (p) and 

a -2z -

is the distribution constant. 

p 

A .function of the internal factor and di~tribution 
constant is 

dI-II ( p - l) --

and will be called 

NEW DISTRIBUTION FACTOR FOR I = NDFI 

Total -working moment (M) nroltiplied by NDF1 gives the 
direct column-first circle moment. 

= MK I 

15 

(6i) 

(6j) 

(6h) 

(6) 
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Table of Series C and D 

Series C Series D 

No. of Symbol of Algebraic Value No. of Symbol of Algebraic Value 
Member Member Member Member 

1 cl 
M1ab0 

1 Dl 
M2ab -2o:xyo 2xy 

M1ab2 M2ab.3 
2 02 22-yfy 2 D2 - 2.3x2y2 

M1ab4 M2ab5 
.3 c.3 24x3y2 .3 D.3 - z5x.3y.3 

M1ab6 M2ab7 
4 04 2'6,!tyJ 4 D4 - 27x!i-y4 

M:J.ab8 M2ab9 
5 05 28x5Y4 5 D5 - z9x5y5 

• • • • • • 
• • • • • • 
• • . • • • 
• • • • • • 

C 

n-1 
M1ab2(n-2) 

n-1 Dn-1 - ~ab2n-.3 · 

22 fo-2~ xn-iyn-2 22n-.3:r1-1r-1 

M1ab2 (n-1) 
n D - Mzab2n-l 

n 
22(n-1Jry1-i n 22n-l:ifr 

• • • • • • 
• • • • • • 
• • • • • . 
• • • • • • 

00 coo 0 ro DCD 0 

Fig. 6 



10. Investigation of moment u111 

Exact investigation of all members forming column-first circle 
moment u1 

1 
shows that it is a function of three algebraic groups 

Ic + in 
0 0 

The starting moment (M:i_) w.s determined from eq • . (3) .- The 
summations of the (C) 1Itembers and (D) members (Fig. 6) are 
to be investigated here. 

(7a) 

The derivations of the (C) and (D) series taken fromAFig. 4 
and .. distributed and presented by Fig. 6 show that both series 
are: 

(a). infinite series~ nwnber of members is 
infinite. 

(b). convergent series - dondition of o.on
vergency: 

(c). geometric series - ratio of two suo-. 
cessive members is constant: 

Using the formula for the sum of members of the infinite 
convergent geometric series 

""' 
~N = N 

0 

(7b) 

(7c) 

17 



For our series the sums are: 

MJ.ab0 

Clo 

20,,.,.0 LO = Sc --• 
b2 

1 - i+x3' 

(7d) 

and 

Mzab - 2Jcy" 
~D • SD = -

b2 
1 -

(7e) 

4X3" 

By ~ubstitution of eqs. (3), (4), (74) ~d (7~) into eq. " 
(7a) the relation between the column-first ei-rcle moment 
and stiffness of the members of the bent can be determined. 

--

--

--

M.iab 

2Jcy" 

b2 
1--- ---

4,cy-

[ 
2~ !:ab .l 

- ~ + ---k-i--------~-:~~- 2_J 

~ 
2z ( 2 - 1 ) (7g) 

18 



The expression 

-- p (6i) • (7i) 

is the internal factor (p) and 

a -- (6j) = (7j) 
2z 

is the distribution constant. 

The function of the internal factor and distribution 
constant is 

~-II ( 2p - l ) · = 

and v.i.11 be called 

NEW DISTRIBU'l'ION FACTOR FOR II . • NDFII 

Total working moment (M) multiplied by NDFrr gives the 
direct column-first circle moment 

MKII 

(7h) 

(7) 

19 



11. Investigation of moments UIIIi ~ UIVi 

Beam-first circle moments according to conditions of static 
equilibrium must be equal to their corresponding column
first aircle moments {equilibrium in every joint) and we 
can assume that 

C: 

and 

= 

Substituting from eqs. (7) and (10) into eqs. (8a) and 
(9a) we derive directly the formulas for beam-first 
circle moments 

: - MKII 

and 

--

Other investigations at points III and IV are not 
necessary. 

20 

(Sa) 

(9a) 

(8) 

(9) 
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Table of Series E and F 

Series E Series F 
No. of Symbol of Algebraic Value No. ~of Symbol of Algebraic · Value 
Member Member Member Member .· 

I 

1 El 
M2b0 c 

l Fl 
___ M1b c 

/ 
20,Py 2xy 

2 E2 
~b2e 

2 F2 
_ M1b.3c 

22x y2 23Yl-y2 

3 E.3 
~b4c 

3 F 
M1b5c 

24~3 .3 - 2;;,;:, 

4 E 
~b6c 

4 F4 
_ ::;i,b7c 

4 26x.3y4 27-:t!+y!+ 

5 E5 
~b8c 

5 F5 
_ M:J.b9c 

28x4y5 29x5y5 

• • • • • • 
• • • • • • 
• • • • • • 
• • • • • • 

~b2(n-2) 0 M b2n-.3c 
n-1 En-1 n-1 Fn-1 - l 

27}.(n!..~)x11-2y11-1 22n-2:x,n-lyn-l 

n En 
~b2(n-1) 0 

22Cn-I);i-Iyn n F 
M1b2n-lc ,.. 

£Zn-I~ 

• • • • • . 
• • • • • ,; 

• • • . • • 
• • • . • • 

00 E 
00 

0 00 Foo 0 

Fig. 7 



12. Investigation of moment lJv: 
1 

Exact investigation of all members forming column-first circle 
moment Uv 

1 
shows that it is a function of three algebraic groups 

00 -

UI : - ~ + ~) + l) 
1 .. 

The starting moment (~) was determined from eq.. (4). The 
summations of the (E) members and (F) members (Fig. 7) are 
to be investigated here. 

(10a) 

The derivations of the (E) and (F) series taken from Fig. 4 
and distributed and presented by' Fig. 7 show that both series 
are: 

(a). infinite series - number of members is 
infinite. 

(b) • convergent series - oondi tion of con
vergency: 

(c). geometric series - Jtatio of tw suc
cessive members is constant: 

-- --

--

2 b 

Using the formula for the sum of members of the infinite 
convergent geometric series 

= -- N 

(10b) 

(lOc) 

22 



For our series the sums are: 

M2b0 c .. 2oxoy 
~E = ~ ·-

b2 
1 -

(10d) 

4-x:, 

and 

Mi_bc - .~ I'F • SF ·-• 
b2 

l - ~ 

(lOe) 

B;r substitution or eqs • (.3) , (4) , (lOd) and (lOe) into eq. 
(10a) the relation between the oolumn-.f'irst oirole moment 
and stiffness of the members of the bent oan be determined. 

UV'. . 1 = 

• 

--

Mi.be 

2:iey--------
1 -

b2 

- ~ + [--2-~_cx _____ M.i._b-:c- 2] (lOf) 

[ 
2~x ~c l - ~ + __ 4:iey-________ b2-- 2J 

&-':-
2z 

( 2 2xc - ab 

l+x3" - i,2 
- 1 ) (10g) 

2.3 



The expression 

2xc - ab 
4ii - b2 

is the internal factor (q) and 

C 

2z 

is the distribution constant. 

-- q 

--

The function of the internal factor and distribution 
constant is 

dv-vr ( 2q - 1) = Krr 

and will be called 

NEW DISTRIBUTION FAGrOR FOR V a NDF'.v 

Total working moment (M) multiplied by NDFv gives the 
direct column-first circle moment 

Uvl = 

24 

(lOi) 

(lOj) 

(I Oh) 

(10) 
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Table of Series G and H 

Series G Series H 

No. or Symbol or Algebraic Value No. or Symbol of Algebraic Value 
Member Member Member Member 

-

1 Gl 
M2b0 c 

1 H - M1b c 
2 -rPy 1 4xy 

2 M1b3c 
2 G2 

M2b c 
2 H2 -

2,x l 42N 
~b4c M b5c 

3 G3 3 HJ - l 
25x2y3 4'J~i3 

4 G4 
~b6c 

4 H4 - M1b7c 

27-z?y4 4W 

5 G5 
~b8c 

5 H5 -M1b9c 

29J(+y5 55x5y5 

• • • • • • 
• • • • • • 
• • • • • • 
• • • • • • 

n-1 Gn-1 
~b2(n-2)c 

n-1 H - M:J.b2n-3c 

22n-,:x_n-2,_n-I n-1 ~-!;xll-1yli-l 

Gn 
M:zb2(n-1) 0 

Hn - M:J.b2n-lc 
n 22'ii-I:i1-l,_n n 

4n:i1yll 

• • • • • • 
• • • • • • 
• • • • . . 
• • • • • . 

00 Goo 0 00 Hoo 0 

Fig. 8 



13. Investigation of mome.nt .UVI 
. 1 

Exaot investigation of all members forming column-first circle 
moment llv1i_ 
shows that it is a function of three algebraic groups 

The starting moment . (M.i) was determined from eq. (4). The 
summations of the (G) members and (H) members (Fig. 8) are 
to be investigated here. 

(lla) 

The derivations 9f the (G) and (H) series taken from Fig. 4 
and distributed and presented by Fig. 8 show that both series 
are: 

(a). infinite series - number of members is 
infinite. 

(b). convergent series - condition of con
vergency: 

(c). geometric series - Ita.tio of t-wo suo
cessive members is constant: 

--

--
H 
n 

~-1 
= 

Using the formula for the sum of members of the infinite 
convergent geometric series 

N 

(llb) 

(llc) 

26 



For our series the sums are: 

~b0 c 
... 
ia = SG - 2ry -

1 - b2 
(lld) 

4x:r 

and 

M_i_bc 

... 
4x:r ~) = -

b2 
1 -

(lle) 

4x:r 

By substitution of eqs. (3), (4), (lld) and (lle) into eq. 
(lla) the relation between the column-first circle moment 
and stiffness of the members of the bent can be determined. 

--

:: 

= 

Mibc 
2rJy 

1 - 1 -

_ Kz + [--2--~ __ c_x------~-:-c--J (llf) 

_ ~ + [--;t-1-~-~-x-------~-z_e __ 
2z 4xy b2 

( 2cx - ab 
4x:r - b2 

- 1 ) (llg) 

27 



The expression 

2cx - ab 

4x:J' - b2 
q (lOi) C (lli) 

is the internal factor (q) and 

c - dv-vr (lOj) = (llj) 
2z 

is the distribution constant. 

The function of the internal factor and distribution 
constant is 

a_ (q-1) 
-v-VI --- Kvr 

and will be called 

NEW DISTRIBillION FACTOR FOR VI = NDF:vr 

Total worldng moment (M) multiplied by NDFvr gives the 
direct column-first circle moment 

-- MKvr 

(llh) 

(11) 

28 



14. Conclusions of the first circ~~ 

Investigations of the first circle moments in points I, II, 
V, VI result in the following conclusions: 

(1). Any column-first circle moment is equal to the 
total working moment times the corresponding New 
Distribution Factor 

ucr,Ir,v,vr)1 MK(r,rr,v,vr) 

(2). The New Distribution Factor is a function of the 
distribution constant and internal factor 

Kr II ~(p-1) 

Kr I a 
(2p-1) -2z 

KV C ( 2q - 1 ) 2z 

KvI ..2.. ( q - 1 ) 
2z 

(3). First moment difference according to eqs. (5a), 
(7), (8) 1 (10) and (11) is 

M - MKr - MKII - MlCv - MKVI 

= M ( 1 - Kr - Kr! - Kv - KvI' ) 

The expression 

(12) 

(6h) 

(7h) 

(10h) 

(llh) 

( 1 - KI - Krr - Kv - Kvr) : K (13) 

and the first moment difference 

= MK (14) 

29 



15. Investigation of second circle 

According to Chapter 7l in the second circle the first 
moment difference (~ J replaces the base for the e»
ternal. and internal. c±rcles and the whole procedure of 
the first circle can be repeated with this new base. 

Using Figs. 4, 5, 6, 7, 8 transiormed for the second 
circle, in the condition of transformation, 

(M) will be replaced by MD:!. = MK 

and using the conclusions of the first circle from Chapter 
14 every column-second circle moment can be determined 
directly. 

The column-second circle moments are: 

UI = MJ\KI • MKKr 
2 

Un ... MniKrr - MKKII - -2 

Uv • ~Kv - MKKv -2 

Uvr2 = MniKVI = MKKvI 

The second moment difference according to eqs. (5b),(15), 
(16), (17), (18) and (13) is 

~ • MDi - Ulz - UII2 - U'v2 - lJvI2 
2 

= MK - MKKr - MKKrr - MKKv - MKKvr 

• MK ( 1 - Kr - Krr - Kv - Kvr ) 

11n - MK2 -2 

.30 

(14) 

(15) 

(16) 

(17) 

(18) 

(5b) 

(19a) 

(19b) 

(19) 



16. Investigation of nth circle 

For our investigation it is important to derive general 
formulas for any column-circle moment and for any moment 
difference. The procedures of Chapters 9 - 14 can be 
repea.ted.l 

Thus column-third circle moments ai,,: 

UI • MK2K 
3 I 

UII = MK2KII · 
.3 

Uv.3 s: MK2Kv 

UVI - MK2K .... VI 
.3 

and the third moment difference is again 

--
Oolumn-fourth circle moments are: 

UI - MK.3JcI -4 

trII 3 • MK Krr 
4 

tlv-4 = MK.3Kv 

Uvr4 ::: MK.31Cvr 

and fqurth moment difference is again 

(20) 

(21) 

(22) 

(2.3) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

1 Complete derivations of the third and fourth circle can be 
found in the author's Engineering Paper Tu - No.2/50, Oklahoma 
Institute of Technology, stillwater 1950. 

.31 
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Oolunm-nth ci r cle moments are : 

UI = MK(n-l)KI 
(30) n 

UII - MK(n-l)K (31) - II n 

Uvn = MK(~l)!Cv (32) 

Uv~ = MK(n-l)K 
VI (33) 

and nth moment difference is 

~n - MKn (34) -



17. Conclusions concerning circle moments 

Closing the investigation of column-circle moments we can 
derive the following final principles: 

(1) • column-nth circle momeht is equal to the 
total working moment (M) 

times 
(n-1) power of total New Distribution Factor (K) 

times 
New Distribution Factor for (I, II, V, VI) 

u 1 
(I, II, V, VI) 

n 

- MK(n-l)K 
- (I, II, V, VI) 

(2). nth moment difference is equal to the total 
working moment (M) 

times 
(n) powr of total New Distribution Factor (K) 

= 

(J). column-circle moments form 4 series, which are 

(a). infinite series - number of members is 
infinite 

(b). convergent series - o:>ndition of con
vergency 

u > u (I, II, V, VI) (n-l) (I, II, V, VI) (n) 

(c). geometric series - ratio of two successive 
members is constant 

II, V, VI) (n) 

II, V, VI) ( ) 
n-1 

MK(n-l)x 
(I, II, V, VI) 

• K 

II, V, VI) 

33 

(35) 

(.36) 

(.37) 

1 
Index (I, II, V, VI) is to be read: nat point I, or II, or 

v, or VI". 



(4). moment differences form one series which is 

(a). infinite series - number of members is 
infinite 

(b). convergent series - oondition of con
vergency 

Mo 
n-1 > ~n 

(e). geometric series - :r:atio of tw successive 
members is constant 

= 
n 

MK 

Mrl = K 

.34 

(.38) 



1~. Summations of column-circle moments, 

Using the formula. for sununation of members of infinite 
convergent geometr:ic: series 

00 

1=N N 
0 

the summation of all column- Gircle moments at I is 

.. 
ru ( ) ~ SU • L, II , V, VI (I , II.~ V, VI) 

··~ MK (I , II, V' vrt 
1 K 

(K), ~,ccord.:i~g t.o eqo (13) ~ (1 - KI ~ KII - ~ ... J\rr) 
subst:i. tuted 1.n eq. C39) 

--

thF.i expT.'essivn l:_K w'.l11 be \"::aJ.led 

SUM OF ALL COLUMN NEW DISTRIBUTION FACfORS 

the 1°a.ti.o cf a:ny NDF at point (I, II ~ VY VI) and the sum of 
NDF 

K 
(I 9 II 9 V ~ VI) 

rK 

w1ll be nalled 

FINAL NEW DISTRIBur ION FACTOR 

35 

(39) 

(40) 

(41) 

Thh i Fl:o.1:t"i N~w Di :2t:r-·:1bu+; l o:n Fad,:J:t- w:t11 hereafter be called s:l.mp1y 

FU~~l .D.l8-%BJJ3:[Ll.91.! E~QT..Q~ 



!!lo General conclusions 

To the eoncl usions cf the first circle J Chapter 14, and the 
conclusions of all circle moments, these general con= 
clusions can be added ; 

and 

(1)., final column moments M(I II V VI) are equal 
j ' ' to the total working moment times the Final 

Distribut.ion Factor for (I, II, v.~ VI) 

MvI --
(2) o summation of all New Distribution Factors 

__ J,(ap +_~ - 2_!_ 
2z 

(.3) o r :ati,o of K (I, II, V., VI ) and 1:K 

KI - a ~p - 1) n= :3(ap + ~q) - 2z 

Kn a (2E - 1) 
"lT ~· 3(ap + cq) - 2z 

Kv _ c (2q - 1 ) 
.._~,,_.LIQ rK .3 (ap + ' - 2.z GqJ 

~I ::;: -~ (q ~~!L_-~ 
IK 3 (ap -+ cq) - 2z 

36 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 
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20. Review of internal and external ci rcles 

\\,, 

Circle Base: Column Circle Moments: Circle Moment Difference: 

Ext.- Inter. o I I I 
1. MK - MK0Kr - MK0Kn - MK0Kv - MK°Kvr..., 

'\ .. 

\ 
1. MK0 (1-Kr-Krr-Kv-Kvr)-~ MKl 

l 
2 . 

11 1 1 1 1 MK - MK KI - MK Kn - MK Kv - MK Kvr..., 
r'\ 

' 2. MK1 (1-K:r-Kr:r-Kv-Kvr)- - MK2 

l 

3. 
t 2 · 2 · 2 2 · 2 

MK ,.. MI< Kr - MK Kn - MK Kv - MK Kvr ""I 

\ 

3. 
'2 ~ MK.3 MK (1-K:r-Kr:r-Kv-Kvr) -

I l 

4. t 3 3 I 3 MK3Kv - MK3Kvr ""I MK - MK Kr - MK Kn -
\ 

\ 

4. MK3(1-K:r-Krr-Kv-Kvr)-• MK4 
~ 

n+l tn Mif n n n 
MK - Kr - MK Krr - MK Kv - MK Kvr ... 

I\ 
\ 

n+l MKll(l-K:r-Ku-Kv-Kvr)-~ MKn-1 
~ 

i 

CX) 0 0 0 0 0 

00 0 0 

"" 
~Inter. Cir. MKr MKn MKv MKvr 

l::K l:K 1:K I:K 

) EJFf; .. Circles M M = -1i. = 
0 1 - K Kr+Krr+Kv+Kvr I:K 

~ig . 9 



PART II 

Special Cases 



p 

21, Case No, 1 - Simple t1,J0-legged bent with the bottom 
fixed - both columns are the same length 

For calculation of wind stresses i1. case Noo 1 (Figo 10) 
equations (47), (48), (49), and (50) can be ~rectly 
applied and simplified in the follo,.,rl.ng wa:y. 

~r 
(xt III IV (yj 

II (b) 

T 
(a) (c) 

~ 

I l 
Figo 10 

2 
KI - a(2a:y - be - 4xy + b ) -

KI! = a[2 (2a:y - be) - 4xy + b~ 

KV - c[2 (2cx - ab) - 4xy + b~ -

~I - c(2cx - ab - 4xy + b2) -

(51) 

(52) 

(53) 

(54) 

1 By substituting for (p) and (q) the right values according 
to eqs. (6i) and (lOi) the term (4:xy - b2) can be eliminated and 
eqs. (47 - 50) can be written 

______ .. .... _ = a(2ay - be - 4X'J + b2) 
}:K 

from which K1 = a (2ay - be - 4xy + b2) 

and analogically for KII' Kv, KvI. 

(51a) 

(51) 



then final column moments according to eqs. (42 - 45) are: 

= a(2~ - be - 4xY + b2) 
rK M 

Mrr - a(2 (2a.y - be) - 4:;y + b~ M - I:K 

= c~ (2ax-ab~ - 4?!l + b2] M 
[K 

Mvr = c(2cx - ab - 4!l + b2) M 
De 

Numerical value of IK is the sum of K1 + KII + Kv + Kv1 
according to eqs. (51 - 54) and eq • . (40). 

For practical purposes the so-called "NDF - Chess board" 
will be used.2 

NDF Algebraic NDF Numerical NDF 

KI a(2ay - be - 4-ry + b2) 

KII a~ (2ay - bo) - 4x:, + b~ 

c~ (2xc - ab) - 4-ry + bj 

~I c (2xc - ab - 4x:, + b2) 

M --

2 See illustrative examples No. 1, 2, and 3. 

(55) 

(56) 

(57) 

(58) 

Final 
Moment 

Mrr 

.39 



22. Case No. 2 - Simple two-legged bent with the bottom 
hinged - both columns are the same length 

For calculation of wind stresses in case No. 2 (Fig. 11), 
eqs. (47 - 50) can be directly applied and simplified into 
eqs. (51 - 54) ,1 then transformed for the condition 

MI = MvI = 0 

and the condition 

a = a' - 3/4 a -

= c' = 3/4 C 

(x) , .. III 
L2 

IV~ (y) p 

II (b) V 

(a) (c) 

I 

Fig. 11 

(59) 

(60)2 

(61) 

1 The simplification of eqs. (47 - 50) is made for conven
ience of fa~ter solution. If this simplification and transformation 
should be involved in practice, eqs. (47 - 50) could be applied. 

2 This substitution, valid for hinged ends only, was applied 
according to the slope-deflection relations for a structural member 
with one hinged end. See Elementary Structural Analysis by 
J.B. Wilbur and C.H. Norris, New York, 1948, page 421. 

• = 0 

from which 

= and a' = 3/4 a 



By substitution of eqs. (59 - 61) in the eqs. (47 - 50) we can 
write directly the finaJ. moment equations: 

~I 

M 
V 

= 

= 

1 + 

1 ... 

M 3 

c(b + 2a) 
(62) 

a(b + 2c) 

M 
4 

a(b + 2c) 
(63) 

c(b + 2a) 

3 Algebraic transformation presented in Chapter 22 can be 
checked with the complete derivations in Engineering Paper Tu -
No. 3/50 worked by the author at O .I.T., Stillwater, 1950. 

4 · In numerical computation the moment Mv, = M - ~· 



23, Case No, 3 - Simple two-legged bent with the bottom 
fixed - the columns are different lengths 

For calculation of wind stresses in case No. 3 (Fig. 12), 
eqs. (47 - 50) can be again applied when corrected for the 
new condition. 

The starting moments in this case will be : 

M ~ Ma 
= • 1 a C 2z 1 L1 2(- + ....... ) 

11 13 

Mc Mc 
= 3 • a C 2z'L,. 

2(- + -) 
11 13 

~ L2 -, 
p (x) III IV (y) 

II (b) V 

T 
T 

(a) (c) 

I i L3 

Fig. 12 

VI 

when the ratio 

Ll 
u 

L3 = 
eq. . (40) has to be corrected 

LK = KI + KII + uKv + uKvr 

(64) 

(65) 

(66) 

(67) 



Repeating the same procedure as presented in Chapter (6 - 20) 
with new starting moments given by eqs. (64 - 65) the following 
final eqs. may be derived : 

Kr - a (2ay - ubc - 4xy + b2) -

KII - a~(2ay--ubc) - 4xy + b2J -

= uc~(2cx - ~)-- 4:x;v·+ b~ · 

Kvr 

fl'Om which we can define eqs. (51 - 54) as transformations 
of eqs. (51a - 54a) for the special condition u • 1. Eqei.:. 
(51a-- 54a) are fundamental and all others, (eqs. · (51 - 54r· 
62 .- · 63, 62a - 63a) are algebraic transformations for special 
conditions. Every tlilO-legged bent can be computed by egs. 
(51a - 54a). 

(51a) 

(52a) 

(53a) 

(54a) 

'' 
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24. Case No. 4 - Simple t-wo-legged bent with the bottom 
hinged - the colums are different lengths 

For calculation of wind stresses in case No. 4 (Fig. 13), 
eqs. (62 - 63) can be used when the new conditions are to be 
considered • 

These new conditions are: 

a - a' = - O, 75a 

C - c' = - o, 75c 

M:r = Mv1 = 0 

and 

Ll - = u 
13 

I· 12 ~ 
p lII 

(b) 

Fig. 13 

IV (y) . 

vT T 
(c) 1· 

I l 
Repeating the transformations by which eqs. (£2 - 63) were 
derived, \.JG may find the following final eqs. 

1 

M.r1 = 

--

M 

2 
1 + 2u - 3b u 

1 + 2a 
~'h2 

1+2u-~ 2c 

M 1 

1 + 2u - 3b2 u 
1 + 2c 

1 + 2u - 3112u 
2a 

Eqs. (5Za~ .. 53a) can be applied directly. 

(60) 

(61) 

(59) 

(66) 

(62a) 

(63a) 



25. Case No, 5 - Three-legged bent with the bottom fixed 
or hinged - the columns are different lengths. 

For calculation of wind stresses in case No. 5, 
eqs. (47 - 50) can be used and corrected for condition 
represented by Fig. 14 and derived in a new series in 
Fig. 15.l . 

Final moment equations are : 

MI = a!& - cb - 2& + b2L M rK 

MrI = aG(~ - cb) - 2xy,.. bl 
IK 

= cG (ex - ab) - 2?2: + bi 

n 

MvI - c{cx - ab - 2& + b2) M - I 

ll 

The sum of all K(I, II, V, VI) is equal to 

IK - 2KI + 2KrI + Kv + Kvr -
when the columns are of different lengths, th~ proper-
tionaJ. constants have to be used (case No. J) 

1 Complete derivation of the infinite series for bents 

(68) 

(69) 

(70) 

(71) 

(72) 

with three or more legs is presented in Engineering Paper1 '.No. 4/50. 

2 Applications of the proportional constant in case No. 5 
is shown in illustrative example No. 5. 
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Three-legged bent w:!. th bottom fixed - the columns are tbe .. same.J,eni?th 

(x) ~---- L2 
------

p 

II (b) 

(a) 

I 

I 

IV 

V 

(c) 

VI 

IV 

Fig. No. 14 

II 

(b) II 

(a) 
1 

I 

First Internal Circle Distribution for Case No. 5 

I II III IV V VI IV l III II I 

M:i.. Mi r,~ I-1:z }1J_ M:i.. 

-M1a - M1a -~b -~c ! -~b -M:i_b -M:i_ a ---1 --
/x X"" /y y "': y~ vx X '\_ 

-r,;_a/ --~ "'-M:J.b " -11:i._b/ "\.~b ""..},_ a - }1:2c 
- ·-· 

2x 2y 2x 2y 2x 2y 2x 

~ab ~b2 M:i_b2 _ M:J_ be _::ib2 l~b2 ~ab 

/2xy 2xy"' ?Y :xy '\. :xy '\. / 2:xy 2xy~ 

~ab/ Mi b ~ "'~b .'\,_ be _::gb/ M:i_b j~ab 1-4zy 4xy 2xy 4xy 2:xy 4Y:Y 2:xy 
i 

2 -M:i_bJ -}~bJ -~b2c -~bJ -M:i_bJ -}1:i._ ab2 I -M:J_ ab 

/2,t-y 2.J-y" /2-if 2-xy\ 2:xy2"' / 2-:if'y I 2-:if'y < 

2/ / "" "'· / 

"" i " 2 -M:J_ab -~be I I -M:i_ ab 
I ! 

4Yl,y I I I I 4:xyJ I I I ' 4x2y i 
I 

I I I 

I ) ) ) ) I ) l ) I 

I 
0 0 0 0 0 0 0 0 0 0 

Fig. No. 15 
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26. Case No. 6 - Four-legged bent with the bottom fixed or 
hinged - the colunms are different lengths. 

Calculation of wind stresses in case No. 6 (Fig. 16}, by NDF 
requires an exact investigation of additionall convergent series, 
in which new members of the bent (four-legged bent is a comple:x:tty 
of three portals), are involved. 

Direct derivation of basic and additional series is represented 
by Fig. 17 and Fig. 18. For convenience of investigation the 
derivation is resolved into t'WO figures. The first represents 
derivation of basic series without influence of a third portal 
(the joint (3) is locked). When the basic series are determined 
and NDF found, the joint (3) will be relocked and additional 
series added to th6 basic ones. This method which is called by 
the author n separation of primary series of secondary, tertiary 
and so forth seriesn is based upon the principles of superposition 
and will be sho,.Jn to be one of the most important tools of in
vestigation. Without this method, complicated cases, like No. 7 
and No. 8 could not be solved. 

(x) III IV (y) VII VII {y) IV III (x) 
~----II·----(-b-)---v--i-----{-b)----~v~· ----~-)----II T 

(a) (c) (c) {a) 

I VI VI I 

Fig. 16 

Basic series need not be investigated and their summation are 
e:xpre~sed by eqs. (47 - 50). Summations of additional. series 
can b~ determined directly from Fig. 18 . and added to the first 
ones. 

1 Complex trusses and bents can be solved by NDF in t"WO ways. 
Exact - when the additional series will be taken into account. 
Appro:x:1mately - when additional series will be neglected and NDF 
will be computed from basic eq. (47 - 50) only. · 

2 It is shown in Engr. Paper No. 5 that influence of second-
ary series is very small (1-3%) and the error involved by neglect
ing additional series is usually not important in practical use. 



First Internal Circle Distribution for Case No. 6, Joint No. 3 - Locked 

II III. IV , V. IV . 

- M:i. - M 2 

f M1a + M:t_b + ~b + ~c ... Mzb 
X X 

"' / 
y y y 

+ ¥-2b / "'+ Mi_b 
2:y 2x 

_ ~ab - ~b2 - M:J.b2 - Mibc M b2 
- l 

2xy 2xy ~ ~ 
2xy 2xy 2xy 

- M:l_b2 - ~b2 

'- 4x3" 4xY 

+ Mi_ ab2 t 11i_b3 + ~b3 + ~b2c + ~b3 

4Yl-Y ~ '-......._ / 4x:r2 4x3"2 4¢ 
/ "'-... 

Fig. 17 
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Joint No. 3 - Relocked 

II , IIL IV, V. IV 

-4, M2b / 
2y 

_ M2b 2 _ M2bc - M2b2 

/ 2-?- 2y2 2y2 
/ 

Mb2 / 
- 2 ..,. M1b2 

4y2 4xy 

+ M2ab2 + M2b3 + M1b3 + M1b2c + M1b3 

4"if" 4¢ ............. / 4"if" 4xy?- 4¢ 

/ + M2b3 MJ.b3 ± Mlb3 + -
8if 8~ 8ef 

_ M1ab3 _ MJ.b4 _ M2b4 

I 
- M2b3 - M2b4 

BYl'-1 BYl'-1 "-. / 8:xy3 8~ 8~ 

I' "" 

Fig. 18 



Final nx>ment equations for case No. 6 are: 

~ : c I? (2cx - ab) _ b (2cx - ab) _ ~ M L 4x:r - b2 2y(2:xy - b2) J 

l\l_ • c[2c-x- ab 
--vr [ 4:xy - b2 

_ b. (2cx - ab) _ ~ M 

4y(2:xy - b2) j 

When the columns are not of the same length the propor-
tional constant (u) eq. (68) has to be applied. For our 
case 

11 
for 2nd column ul = 12 

' 1i for 3rd column u2 -.·~ 
1, 

and 1 
u3 = _J,_ for 4th column 

14 

The shear eq. (40) may be found in the following way: 

M -- MKr + MKn ± MKvu± + MKvrll:t + 

+ MK.vu2 + MKvrUz + MKru3 + MKrru3 

from which the sum of all K(I II V VI) may be determined 
' ' ' 

= 

50 

(73) 

(74) 

(75) 

(76) 

(66a) 

(66b) 

(66c) 

(77) 



27. Case No •. 7 - Unsymmetrical rectangular frame 

One of the most complicated cases of wind analysis by NDF 
is case No. 7 (Fig. 19). The bottom of the columns are 
connected with horizontal beams through which new additional 
series can circulate and be carried- over into the upper part 
of the frame. 

Without the help of the method of separ~tion this case could 
not be solved. Probably the easiest procedure for in
vestigation of this type of structure is the following: 

(1) • resolve the investigated frame into 
two, free-body sketches and solve 
each separately. (Figs. 20 and 21) 

(2). carry-over the bottom series from one 
sketch to the other and then work as 
an additional series. 

For convenience of investigation -we may work with M:i_ and M2 
separately. 

p III IV 

II (b) VT 
(a) Fig. 19 (c) 1i 

I (b) vtl 
L2 

r-----------, 
I 

51 

Fig. 20 . I 
t · - ~g-.-: ---r-

1----- ________ J 



Series involved by !:1:J at I: 

Series i"1volving M:t at (I) were derived in Fig. 6. 
"series G" and the summation is 

00 

I.c 
0 

--

If joint (II) can rotate freely, the SU11lillation of all 
carry-over moments from (II) to (I) for base ~ is exactly 
one-half of "series C11 • This summation of all carry-over 
moments forms a new base for distribution and replaces in 
eq. (7d) the expression 1'f1.. The new summation of all 
carry-over moments is agal.Il one-half of the preceding series. 
Thus this procedure can be repeated indefinitely. 

1st member 

2nd member 

3rd member 

nth member 

ro member 

4M_iay + 2M:i_ay 

4x:r - b2 4xy - b2 

6(2M:i_) (ay)2 

(4xy _ b2)2 

6(22)?\ (ay)3 
+-----

(4:icyr - b2) 3 

7 
+ 6(2n-l)M_i_(ay)n 

(4xy _ b2)n 

~ 
0 

All members of this series form an infinite convergent 
geometric series. 

52 

(7d) 



Summation1 of all members 

- 6Ma2y -
Similarly the same procedure can be repeated for base 11:2 
and t~e summation of all members 

- .3Mabc - 2 
4xy - b + ab 

from which, according to eqs. (6a and 7a), the column
first circle moment at I and II is 

U (I, II) --

K - a (4xy - b2) - 4ay + Jbc 
and then · tt 

(I, II) - (4'\Y _ i,2) + 2ey (4,\y _ b2) + ~ 

Since the 11:r II M:rr and Mv. Mirr 

= 

(79) 

(80) 

(42-4.3) 

(81) 

(82) 

(8.3) 

1 Complete investigation and derivations of box-frame-series 
can be found in Engineering Paper Tu - 5/50. Graphically these 
three types of series f'orm a broken plane of 4th degree in space. 
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28. Case No. 8 - Series of two rectangular bo~frames 

Derivation of NDF for a series of tw rectangular box
frames (Fig. 22) may b_e determined by the same way as 
in case No. 7. The frame will be resolved into tw 
horizontal parts. Both will be solved separately and 
later carry-over series added. 

Final equations for NDF are: 

K (I, II) = a (84) 

1 (2:xy ... b2)- iex 3ab l cs5) 
K(V, VI) = e[(2:xy - b2) + ex+ 2(2:xy - b2) + e~J 

Summation of (K) is 

= 4KI 2KvI (87) 

p (x). III IV (y) IV (x) 

II (b) V (b) nT 
(a) (e) (a) Li 

I (b) VI (b) . I 1 
I· 

Fig. 22 
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29, Case No. 9 - Simple t~legged bent, of which, joints 
can not translate 

Derivation of NDF for structures in case 9 (Fig. 23, 24, and 
25) m~ be determined by the same w~ as cases ·N~. 1 - 4, 
when the new condition of joints, which can not translate, is 
considered. 

The base for the series is not a simple distributed total 
worldng moment, but an FEM at the member where pressure is 
affected. A second new condition -in :which external. circles 
do not -exi~, essenti&lly simplifies the computation. 

The new procedure will be sho'WD. first on the simplest 
structure (Fig. 23a). Assuming that the final eq. should 
serve for computation of any lateral pressure, the load 
(P) is placed unsymmetrically between point I and point II. 

(x III IV 

II (b) T T d,2 p 

t 
(a) 1:r. Fig . 23a d1 

I J_l 
I· 12 --f 

The FEM at I and II are FEMI and FEMrr• With this, base 
derivation of series can start. 

I II III IV 

FEMI FEMI I 

- ' 

FEMI Ia FEMIIb 
- -

/ 
X X 

~ 
FEMrra' ~ FEMrib - -2x 2x 

Fig . 23b 
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When the ratio 

w 

the final formulas for (M) are: 

FEM b Ilx 

Derivation of NDF in case No. 9a is a very simple 
transaction and serves to show the new procedure of 
investigation. It is of interest to show the same case 
for columns "With hinged bottoms and to prove that the 
substitution used in eqs. (60-61) is exactly correct 
for one story bents. 

(x) III IV 

II (b) t 
p ~ + 

Fig. 24 di 
-L 

12~ 
According to eqs. (61>-61) our NDF should be 

KII [ a• w wa' J = l-7-2- 2x 

• 
b~l:: ;-> 

D - KIII 
.1...a - b 

4 

56 

(88) 

(89) 

(90-91) 

(92) 

T 
Ll 

l 

(93-94) 



The series· in the structure of (Fig. 24) can be developed 
by normal procedure of the NDF and checked with eqs. (9.3-94). 

Fig. 25 presents the series: 

I II III IV 

~ FEM:rr 

-FEM ~ -FEMIIa -FEMIIb 
f"";' I 

"-.... / 
X X 

~ 
-FEl\ra FEM ' 

I ~~Ib 

2x 2 2x 
. 

FE~Ia FEM1a FEl\b 

2x 
'----.. / 

2x 2x 
~ 

FEM:ra ~Ia ~~b 
4x. 4x. 4x. 

-FE~a -FE~Ia2 -FE~1ab 

1f '----.. /~ 4Yf- ~ I 
I I I I 

I I I I 
I I I I 

0 0 0 0 

Fig. 25 

It is evident that serie:!I I is equal to zero and, therefore, 
NDFI is equal to zero also. Summation of all members of 
series II must be the summation of tw geometric series. 

FEMrrb 
00 

4FEMrib 
iNFEMII 

X 
C: C 

a 4x- a 
1--

4x 

(95a) 
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and summation of series with FE~ at II .. 

FE~b 
2FEMrb 00 

iNFEMI 
2x -:::: -a 4x- a 

1- -
4x 

The final moment is 

- ·---

--· 

from which 4x - a -- 4a + 4b - a = 4b + 3a 

Substituting this expression in eq. (95d) 

-- Ja 
b +.-· -,;-

By visual inspection it is evident that NDFII 

--
b(l - ...!...) 

2 

b + 3a 
4 

= - Krn 

and is exactly the same one as derived by eqs. (60-61)1 
and expressed by eqs. (9.3-94). 

(95b) 

(95c) 

(95d) 

(95e) 

(95) 

1 
This proof is probably the f':, rst one made by exact mathe-

matical check for this recommended short-cut. 
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30, Gase No, 10 - Three-legged bent which joints can not 
translate 

Derivation of NDF for structures in case No. 10 (Fig. 26) 
can be done by the procedure of case No. 9. Series form
ing the first circle moments are derived in Fig. 27. 

(x) III 
I 

(a) 

I 

(b) 
IV VII 

V (d) 

(c) 

VI 

NDF at corresponding poihts of structure are: 

KI - 'W' -
a - b2 

2(x - 4? 

K 1- a - b2 II -
(x - "J;y) 

Kv 2bc 
= 4xy - b2 

Kvr = be 

4xy - b2 

~II 
2bd 

:: 
4xy - b2 

~III - bd -
4xy - b2 

59 

(96-97) 

(98) 

(99) 

(100) 

(101) 

(102) 
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First Internal Circle Distribution for Case No. 10 

I IL IIL IV , .. 

FEMI FEMI I 1 

.... FEM1ra 
I 

... ~FEMub 
2 

X X 
~ /" 

~ 
,:-:.:.fEMrra 

' ' 
• , ,. • <I .. - "'FEMIIb 

3 
2x 2x 

2 FEMrrb2 + FEM11b 
4 ---w 2:xy 

2 - FEM11ab2 - FEM11b3 - FE1'1:(Ib3 - FEMnab 
5 

S~y 
- 'fY ify 8~y 

I I I 

1;? 7 ~ t CX) 

v. VI. VIIo VIIIo 

FEM11bc ~Ibc FEM11bd I FE~1bd 
4 - -2:xy w 2:xy 4xy 

FEMrrb3c 3 I 3 FEM:r1b3d FEMrrb C FEMrrb d 
6 

s,?-f 16N sx?-,2 16x?-/-
I I I 

7 7 7 '7 
0 0 0 0 00 

Figo 27 
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61. 

Jl. Illustrative example No. 11 

To illustrate the procedure of computation the calculations will be presented 
for the 'Wind stresses in a bent - Case No. 1, (Fig. 28). 

Load: 

(x) (y) 
p a 12 lb p I.II TV Dimension~ 

II (b) VT 1i i;:: 
12 ft 

~ :: 20 ft 

(a) c,) 1i 
Stiffness factors: 

1 in.3 

Til 
a = 

Fi g. 28 b = 3 in.3 

I C = 2 ir.3 

~ ~ 
a+b =- X ~ 4 in.3 

---- ~ b:--+ e y 5 in.3 = --

NDF: A1g. NDF: Num. NDF~ MNDF. IK . Moments ~ 

KI a(2ay-bc-4JCY+b2) 1(4-71) -67 ]44 6'1 
336 

280714 ~ 

KII a[2 (2ay-bc)-4JCY+bj 1[2(4)~71 J -6.3 ...2.1 
144.336 2-7 .,000 ' ~I -~Il 

Ky c~(2cx-ab)-4:xy+b~ 2[2(1.3)-~ -90 1443§2 380572 l\r -~ 

~I c (2cx-ab-4:xy+b2) 2(13-71) -116 144116 
336 

490714 Mv-I 

rK = -336 1440000 l!!l M 

All moments in lb-ft 

1 Transactions ASCE, Vol. 96, 1932, page 66 o 
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32. Illustrative ex.ample No. 21 

To illustrate the procedure of computation the calculations will be presented 
for thew.ind stresses in a bent - Case No~ 2, (Fig. 29). 

Load: 
p (x) .. III IV ( ) 

p = 167 lb 

T T Dimension: 
II (b) V 

Ll: 15 :rt 

(a) (c) 1 12 C 20 :rt 
L 

I L.3:: .30 :rt 

Stiffness factors: 
Fig. 29 a = 1 in.3 VI 

Colunm ratio: b = 2 in3 

I. ~ :1:J.:u 
C = 4 in3 

12 
3 in3 13 2 X = 

y • 6 in3 

NDF Alg. NDF Num. NDF 
1~F Moments 

KI aGay-ube>-~+b2 J 1 (8-68) -60 60 f/99 • .37 lb .rt = 25040.37188 

KI! a~ (2ay-ubc)-~+bj 1[2(8)-68] C -52 2504 .. .37lg~ 702 • .30 lb rt 

Kv {2<2c~b~ t(4{ 2(20)-68 J = -56 ....2.2 2504 • .37188 727.50 lb .rt 

Kvr f-~b21 t(4) (20-68) = -96 ..22 2504 • .37188 1279.10 lb .rt 

.. 
Kr + KII + u(Kv + Kvr) - 188 tK • = 

1 Theory of Modern Steel Structures, by L. E. Grinter, Volo II, page 124, 
Problem 100. 



33. Illustrative example No. 3 

p (x) .m 
II (b) lL(~) T T 

I (a) 

NDF: 

KI 

KII 

Ky 

Kv:r 

IK 

I 
TTTTTlTi 

L 
r 

Fi g • .30 

L2 

Alg. NDF: 

a (2ay-ubd--4:xyfb2) 

a~ (2ay~ubd)•4:xy+bj 

(e) 

-' 
' 

d~ ~ (2<:b-abu"'"l )-4:xy+b2 J 
0 

- - Kr+ Krr + uKv 

L3 

VI l 

Num. NDF: 

1(8-56) 

1 (16-56) 

2 (!) (24-56) 

0 

-

To illustrate the procedure of computation the 
calculations will be presented for the wind 
stresses in a bent - Case No. 3 and No. 4 -
-(Fig. 30). 

·a 1 fn3 

b 2 in3 

C 4 1in3 

1i 10 ft 

L 2 15 ft 

L'3 20 f't 

NDF: 

-48 

... 40 

m.32 

0 

-104 u 

p 

M . 

et 

d 

X 

y 

NDFM 
IK 

1~ 

1©4. 

l~M 

0 

--

. 100 lb 

' 
1600 lb ft 

0.75.e 3 in3 

0.50c 2 1n3 

atb 3 in3 

b -t e1 5 1n3 

Moments: 

461 lb f't MI 

.385 lb f't MII 

308 lb ft Mv 

0 Mvr 

1l_:L3 = 0.5 

~ 



34. Illustratiye example Noo 4 

p (!2. III . IV (y) 

III {a) • 
(b) {er T T Li 

1 L3 I I 

To illustrate the procedure of computation the 
calculations will be presented P0r the wind 
stresses in a bent - Case No. 4, (Fig. 31). 

p 100.00 lb a 1.33 1n3 

M p (1i_) 1000.00 lb-ft b 2.00 1n3 
' 

a' 0.75a 1.00 1n3 C 2.66 in3 

Fig . 31 lrT l c' o.75e 2.00 1n3 Ll 10.00 ft 

U i ~ :L.3 0.33 L2 15.00 ft 

L J L2 ,- • 
L3 30.00 ft 

NDF: Alg. NDF: Num , NDF NDF.M Moment: -1:K 

1 1 
KII 

1+2u-~ 

1 1000 

1 + 1266 - 2 10254 
798000 lb-ft Mrr 

' ' 2a 1.66 - 3 
1 t 

1 + 2u:. 3b2 
· 2c 

1 1 r!.) 
~ 

1(3) 1000(3} 
2 ·,u 

1 + 2u - .2!t:... 1 + 1.66 .. 3 
4.930 

6o6.oo lb-ft ~ 
1 + 2c 1066 - 2 

1 if 2U - 3b2u 
2a 

-·· f.:' 



35.. Illustrative example No. 5 

P (x4 III IV (y) VII VIII (x) 

III (b) v I Cb) lrx T 
Fig. 32 I (a} (c) (a) 1i 

I VI 1 
~~ L2 ---I 

NDF: Alg. ,NDF: Num. NDF: 

K(Ij X) a [cay~ubo,)..-2~2] 1(6-44) 

K(II" IX) a~ (ay-ube)~2:xyfb~ 1(12-44) 

Kv cu~ ( cx~~'-2:xy.;-b~ 4<z> (S...44) 

KvI cu8c>,~)~2:xy~b2] 4 (!) (L.,-44) 

IK - 2 (KI • K11> + u(Kv + Kv-I) 

To illustrate the procedure of computation the 
calculations will be presented for the wind 
stresses in a bent - Case No. 5, (Fig. 32). 

p 100 lb a 1 in.3 

M P11:t 1000 ft lb b 2 1n3 

X a f b 3 in3 C 4 in3 

y 2b ,4, C 8 in3 1i 10 ft 

u Li :L:2 0.25 Lz 20 ft 

L.3 40 ft 

NDF: NDF 
IKM 

Moments : 

-.38 
1~ 

2J,9 M(I, X) 

-.32 ~ 201 M(II, IX) 159 

-36 ~ 227 1\r 159 

-40 
1~ 

25-.3 
~I 

- ·159 All moments in lb ft 

°' V, 



35, Illustrative example No. 6 To illustrate the procedure of computation the 

I--L2 -+-Lz -+-~ -I 
p (x) III IV (y hII VII (y) IV III (x) 

r;I (b) vr (b) ~ (b) ~II T 
Fig. 33 I (a) I (o) (c) I (a) I L:i_ 

1 L3 

b 1 I 

VI VI 

~ 

calculations will be presented for the wind 
stresses in a bent - Case No. 6.P (Fig. 33) • 

p 41060 lb a loOO in3 

M p (LJ.) 1000000 lb ft b 3o00 in3 

X a+b 4.00 in3 C 2.00 in3 

y 2b + C 8000 in3 Li 24000 ft 

u 1:J.. :L3 o .. 666 L2 12.00 f't 

L3 36.00 f't 

NDF: Alg. NDF: Num. NDF: NDF: ~~FM: M:,ment: 

KI a~bcu + 17(2em-ab) _ 1 J iG12 9(7.66) J -0 .. $93 0.893M 137 M:r 4xY-b2 8:xy(2:xy-1>2) ~ + 256(55) - 1 6.515 

KII .. ~(2!\}""bcu) + 17(2c:m-ab) _ ~ 
4Jcy'-b2 4xY (2:xy-1>2) 

1~12) + 9(7 .66) _ ~ 
119 128(55) 

-0.785 0.785M 
6.515 

121 MII 

Kv cu~(2c,o.abu-1) _ b(2o,o-abu..J.)- -j 2(~J~Ul,5l - 3(11,5) -j -1.130 l,13Qi.f 173 Mv 4xY-h2 -Zy(2:xy-b2) 119 16(55) 6.515 

~I ""E.,._abu-1 _ b(2c>ab1r1) _ 1 J 
4xY-b2 lJ (2:xy-b2) 

2c,1f:·5 _ 3(11.5) _ 1 J 
119 32(55) 

-1 .. 235 ~M 
6.515 

189 Mvr 

IK - 2~1 ~ Kitj + 2u[Kv + Kvtj = -6.515 All moments in lb f't °' °' 



37. Illustrative example No. 7 To illustrate the procedure or computation the 
calculations will be presented for the wind 
stresses in a bent~ Case No. 7, (Fig. 34). 

}> __ !.x).. III II (yl 
I~ (b) . Iv a 1.00 1n3 p 100 lb 

b · . J.00 in3 M p (L:i_) 1500 lb .ft 
I 

(a) (c) 11 C 

Fi g. 34 I 

~l II (b) 

C 2.00 in3 X a~b 4 1n3 

11 15.00 .ft y b + C 5 in3 

~ 20.00 .ft 

J· Lz ~ 

NDF: .Alg.· NDF: Num. NDF: NDF ~ NDFM• Moment : rr. 

K (I, II) a ~~1>2)-1.ey + 3bo ~ f-20 18~ 
o.87 o.~ 326.25 lb .ft M(Ijl II) l '7J.c}l0 + 71+3 0 

U.:xy~b2)+2ay (4:xy0 b2)+ab 4.00 , 

~b2)-4ox 3ab ~ ! 

K(V, VI) 2~~32 + 9 ~ lolJ 1 .;13M 4230 75 lb f't M(V, VI) 
c 4:xy~b~)+2cx + (4:xy=b2)+bc 71+16 71+6 . 4.00 

I 

IK - 2(KI + Kv) .... 2~.87 t 1.1~ - 4.00 

$ 



38. I Illustrative example No,Q 8 
. . To illustr~te. the procedure · of computation the 

calculations will be presented for the wind 
stresses in a bent - Case No. 8, (Fig. 35). 

p III IV .IV III (x) 

(b) V (b) ·IrT 

' 

a 2.00 in3 p 300 lb 
. 

b 3ct00 in3 M M(11_) 3600 lb ft 

(a) Fig. 35 (c) (a) 11. e 5.00 in,; X a+ b 5 1n3 

!~II (b) 
v~ 

(b) II~l IV-'IV 
11 l II I 

. 
11 in3 1i J.2.00 f't y 2b + C 

Lz 15.00 ft 

i.-- 12 + 12 --f 

NDFi Alg. NDFt Num. NDF: NDF: !ill.FM Moment: 
iK . 

K (I, II) at (2,r;y-1>2)-2'g + :,be ~ f~M 45 j l.1+20 M(I, II) 1 •. t20 ~oOO lb .ft 
(2:xycsb2)c}ay _2 (2jcy·bb2)+ab · 110.-2.i + 22~ 10.67iJ'1 

t 2 . J 5~~~0 +~ K(V, VI) 
c 12:;y:,b )~5ex + Jab . 2.500 2.50~ · M(V, VI) . . 840.00 lb f_'t 

(2:xy-b2)+ex 2(2:xy=b2)+bc ·. 11~25 22otl 10.670 

I:K =- 4K(r, II) ·-t- 2K(v, VI) = 4[1.420]+ 2[2.500}1.0.670 
$ 



39. Illustrative eY..ample No o c}l 

To illustrate the procedure of computation the calculations will be 
presented for the vrind stresses in a bent - Case No o 9, (Fig., 36)0 

a 4o00 in3 p 100.00 lb 

b 2 .. 00 in3 FE~ -125 .. 00 lb ft 

a' 3.,00 1n3 FE~I 125000 lb ft 

Ll 10 .. 00 ft d(ls2) 5 .. 00 ft 

12 10000 ft Xt:: a' -f, b 5.,00 in3 

(x) III IV 

II (b) T T dz p + (a) Ll 

I I 1.1 1 
r L2 --j Figo .36 

M I 
0.,00 lb ft 

~I FEMII..12__ 125+ -- 75.,00 lb ft 
:x: 

-· ·-' 

MIII -l<EM!:t ~ . -125..2.... 
5 

-75000 lb ft, 

MIV -FEM:r b I2x 
-125:rn- -.37050 lb ft 

' 

1 Example Noo 9 was given as a one hour test in Course 
Civ., Eno 42.3 at Oklahoma Institute of Technology in 1950., By 
NDF it can be solved in a few minuteso 
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AO, Illustrative example No, 10 

To illustrate the procedure of computation the calculati.ons will be presented 
for the wind stresses in a bent - Case No o 10, (Figo 37)o 

a 2.00 in3 ~ 100000 lb 

b 4.00 in3 FEMI -llloll lb ft 

C B.oo in3 FEMrI 222022 lb ft 

d 4o00 inJ d1 10000 ft 

1i 15.00 ft ~ 5 .. 00 ft 

~ 25 .. 00 ft c' Oo75c 6000 in3 

L.3 15000 ft d' 0.75d 3.00 in3 

X afb 6000 in3 

y b + c' + d' 13000 in3 

III IV VII VII 

p II (b) V (d) 1;T 
(a) (c) + 1i 

Fig. 37 I VI 11 
r L2 L3~ 

[ a J MI FE~ -w .-
222 ~22 (- ' - 2*) -149000 lb ft I 2(x .:,·b2) 

4Y 

~I IB~Ir- \z)J 222022(1 - l04) 142050 lb ft 
(x-- 296 

J.v 

1\r rn~1 [ Zbo J 222022..k~ 36.10 lb ft 
4r3" ._ b2 

29 

MvII IBM [ 2bd J . II 4xy - b2 222o22~ 18.05 lb ft 

-

Mv-I ·= OoOO lb ft 1\rrn = OoOO lb ft " 

. -
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