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PART I

General Theory



1. Introduction

The purpose of this thesis is to present a new type of Analysis of Wind Stresses
for one-story bents. The work is based on Papers No., 2, 3, 4/50 worked out by
the same author at the Oklahoma Institute of Technology in 1950.

The present method is dependent upon the system of balancing fixed-end moments.l

Each wind-moment is derived as an infinite, geometrical series, It is shown
that each step forms one external and one internal circle, which in summation
gives a very simple algebraic expression., The author calls this summation of
the circles,

New Distribution Factor.

The total working moment multiplied by this factor gives the direct wind moment
at the corresponding part of the loaded bent.

A problem given by Prof. J. E. Lothers in Graduate course 534 at OIT as a one
hour test

was solved by this method in
1 minute and 48 seconds

by a student who had not read this thesis and had only been instructed to use
the last four formulas.

The solution obtained by this
method is as precise as the
slope~deflection method and

varies from 10 to 42 times
shorter,

For checking his own numberical results, the author used the same two legged
bent as that of Mr, Morris! of 20 years ago. The author's results were the
same as Mr, Morris' Slope-deflection results with only one exception in the
last moment - in column B at the bottom there was a very small difference:
0.0105%. Encouraged by some of the professors at the school, the author
checked the old computation of Mr, Morris and found a small error in his
numerical solution of elastic equations...an error equal to the difference
of 0.0105%. The author's method is exact,

3 This method was developed in connection with the calculation of
secondary stresses in trusses and is described in the book by O, Mohr
"Abhandlugen aus dem Gebiete der Technischen Mechanik,"p. 429, 1906, In
the USA, the method was first used by S. Hardesty and is fully explained in
the book by J. A. L, Waddell, "Bridge Engineering," 1916, The extension of
the method to the analysis of highly statically indeterminate frame structures
is due to K., A, Calisev, who used it in analysis of building frames with and
without lateral constraints. See "Technicne Listy," 1923, No. 17-21, Zagreb,
A German translation of his paper appeared in Pub. Inter. Assoc, of Bridge
Structural Eng., vol. 4, pp. 199-215, 1936, The final form of the method of
successive approximations was obtained in the paper by H. Cross, Trans. ASCE,
vol, 96, 1932 and in the same paper—-discussion by C. T. Morris.



By means of this method:

(1) Mo advenced mathematics are used in practical

computations.

(2) There are no simultaneous equations to solve.

By means of this method in illustrative example No, 1:

only 36 moves on the slide-~rule were used and exact
results reached,

By means of the Morris~Cross Method:

in 4 step approximation, 88 moves on the slide-rule
were used and the results differed 1%.

These points show as well as any explanation the big advantage of the new
method.,




W An sig = genersl note

Internal stresses involved by lateral pressure of the wind are being computed
by three types of methods:

I. Very Approximate (max. dif.: 10-30%)
II., Approximate (max, dif.: 6-10%)
III. Exact (classic) (no dif.)
I. Very approximate methods working with max. error,l 10-30% are:
(a). A. Smith Method.?
(b) . Fleming's Method I-1I1I.3
II. Approximate methods working with max. error, 6-10%, are:
(a) s Morris-Cross Method.%
(b). Morris-Cross Method Simplified.”
(¢). Grinters Correction moments Me‘thod.6

(d). Morris-Ross Method.’

1 Maximum error is the maximum difference between the results worked
out by the very approximate method and the classic method.

2 Theory of Frameworks with Rectangular Panels, Transactions ASCE
1915, vol. 55, p. 418,

3 Engineering News, March 13, 1913.
4 Transactions ASCE 1932, p. 66,

5 Theory of Modern Steel Structures, by L. Grinter, New York 1949,
p. 123.

6 Tbid, p. 122,
7 The design of Tall Building Frames to Resist Wind, by C. Morris and

A, Ross, Jr. The Engineering Experiment Station Bulletin No, 48, 1929;
State University of Ohio,



111, Exact (classic) methods working without any error (theor.) are the
following:

(a). Slope deflection method.®
(b). Work methods,?

The methods of the first group are for rapid calculation and are so inaccurate
that their use is limited to only some types of structures and usually for
preliminary analysis only.

The methods of the second group are more exact but the maximum deviation of the
classic solution is significant enough.if only a few steps are taken. They are
nearly correct when many steps of distribution are applied. In such cases,
when many steps are required to obtain the desired accuracy, the use of classic
methods is to be recormended.l0

8 Bulletin No. 80, University of Illinois, 1915 by Wilson and Maney -
For symetricel, three-span bent, 12 stories high., These calculations are
summarized in 12 tables covering 31 pages. Calculations involve 60 simul-
taneous equations with 60 unknowns. The method is perfectly feasible, but
for practical use unworkasble.

9 Stress in Tall Buildings, Bulletin No, 8, College of Engineering,
Ohio State University, by Cyrus Melick, 1918, The method was developed for
a 4 story building (6 weeks work); for more, it is unworkable.

10 Wind Stress Analysis simplified by L. E. Grinter, Transactions ASCE,
vol. 99, 1934, a discussion by Raymond C. Reese, p. 649; "The method of
starting with no wind moments in the girders and gradually transferring from
the columns into the girders will bring convergence fairly rapidly in simple,
symmetrical bents in which the relative stiffnesses of the different members
do not vary too much. When the members vary in their relative stiffness, the
method of starting with no moments in the girders is too slow and tedious a
process, In this particular case, twenty-three cycles of operations failed
to come very close to the desired results,”



3. Base for NDF

The author's idea was to find an easy, short method of wind stress analysis
which could produce results close to those of the exact methods.

The author hoped to find the easiest method in the same way as presented in
his paper,

"ew Elastic Theory."

This New Elastic Theory solves the beam-, girder-, and column-moments by direct
multiplication of Fixed End Moment and a special factor (Stupen vetlmuti ..
Einspannung Grad .. which could be translated as the "grade of fixing").
This idea expressed mathematically should be:
When
M = Total working moment
= Total shear times story-height then:

M times Factor of fixed end is equal to the resisting moment
at the corresponding end of the member in question,

This special factor was really found and is called

Final Distribution Factor.

A ratio of
New Distribution Factor: of all column—NDF of the computed

story.

The whole paper is an algebraic derivation of these three types of factors:
(1) New Distribution Factor.
(2)+ Summation of all Stories NDF.

and (3)s Final Distribution Factor.

The base for derivations of these three types of factors is the idea of
geometric deformation by an infinite distribution in every step of successive
correction,

Partial realization of this idea can be found in the Cross~Morris Method of
Wind Analysis, It was shown by Mr, Morris that the idea of geometric de-
formation applied in Wind Analysis must be combined with the method of
successive correction by additional moments, (The n-step distribution method
by Cross gives lower resting moments as it is the value of the total working
moment), The Morris expression for this case is: Loss of moment involved by
distribution,

Mr, Morris tries to solve this loss of moment by additional moments added to
the first working moment in n-external circles (n-correction's steps). By



this new approximation, the errors increase doubly:
(1) Cross n-step distribution (not finished appr.)
(2) s Morris n-step circles (not finished appr.)

and by unprecise distribution,

These errors of the Morris=Cross Method try to correct Mr, Grinter by his
Corrected Method based on the New Working Moment, The working moment corrected
is: Total shear times stories height times correction factor (usually - 50%) o1

This method is a practical shortecut of the Morris~Cross Method and gives re-
sults much closer (Max, error: 4%)., But the error is not defined and the
method Sith his 3rd grade of approximation cannot be called a seientific
method.

The author chose another way to eliminate all these possible errors and to get
results very close to those of slope deflection. He works the whole problem
with general algebraic symbols, looking for general relstions between moments
and stiffness factors of members and transforms these relations in the final
formulas, which are multiplication factors of the total working moment,

The author was very surprised when, at the end of his long and sometimes very
difficult research, the investigations gave very simple formulas which can be
used in any practical problem and solved by anyone who knows the basic opera~
tions of arithmetic,

1 This method is the most popular method in the USA at the present
time,

2 The author shows, in his Engineering Paper No. Tu 4/1950, that this
Correction factor can be found exactly and is equal to the ratio of

1

Yo
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A summation for NDF

(1) .

(2)

(3).

(4) .

(5) «

(6) .

(7.

(8) e

Calculate the moments in the columns due to the lateral forces, consider-
ing the joints fixed against rotation, but free to deflect laterally,

The sum of the moments at the top and bottom of all the columns of a story
is equal to the shear in the story, multiplied by the story height, and,
as the deflections of the colummns in the story due to the lateral forces
are equal, the column moments and shears are proportional to the values

I
LZ

of the columns.l

Distribute the moments at the joints, considering them free to rotate but
not changing thelr location,

Carry over the distributed moments using a carry-over factor.

Balance the column moments in each story by making their sum equal to the
shear in the story times the story height (total working moment for the

story) «

The difference between the sum of all the first circle moments and the
working moment is called the first moment difference.

This completes the first external circle and the next external circle for
distribution of the first moment difference can be repeated.

Internal circles (distribution of each working moment) and external
circles (first step dif, moment, second step dif, moments, etc.) form
infinite series.

% When all columns of a story are of equal height, the valus cf

I I
-EE— can be replaced by =7 .



5, Nomenclature

= Stiffness Factor of member I,.-II,

Stiffness Factor of member III.,-IV,

Stiffness Factor of member V.-VI.

Stiffness Factor of member VII.-VIII,

Distance of conc. load from the columm's ends.

= Distribution Constant.

Stiffness Factor of any member,

Any number.

Internal Factor of NDF,.

Internal Factor of NDF,

Ratio of two successive members of geom. series,
Colum ratio (Lj:L3).

Fix End Moment ratio (FEMy:FEMIy).

a+ b.

b+ c.

a+ c,

a0 oPp
[

-

N

S

muwunn

[oH
—
=
-
)
~—

b

N Mg 8RO B R

nnwuwnnnunnn

,B8,C,D,E,F,G,H = Members of geometric series.
Member of any geometric series,

Sum of any geometric series.

Moment of inertia.

Total New Factor of Distribution (NDF).
Length of member.

Total working moment.

Total working shear,

-

dZHERH®BH>
nnaeEnunNn

= New Distribution Factor (NDF) at point I, or

L

1, In,00, v, v v v, B SF 2R
’ ] (RN NN ]

Sum of g1l column~NDF,
n=-circle moment difference.

FH

UIl = First circle moment at I.
Uy = n-th circle moment at I,
n
1 Final NDF at I
p = 2 B &
Ml = Starting moment at column I.-II,
15 = Starting moment at column V.=VI,

M(I,II,III,IV,V,VI,?II,?III) = Final column or girder moments
IT, or III, eeeee

at point I, or



6, Investigated bent

For theoretical investigation a simple two-legged bent with the bottom of the
colums fixed will be used. The load and dimensions are shown on Fig. 1. The
stiffness factors are a, b, c.

P S v )

s
11 (b) v
4 Mo
(a) (e)

Fige 1

The wind pressure is_working from the left towards the right side and involves
total working momentl

M-= PL (1)

According to the shear equation the total working moment is equal to the sum
of all coluwm moments

M = Mp+ Mg+ My+ Myg (2)
The total working moment will be distributed to 4 starting moments (Fig, 1)

o= 2 (3)
- Me
B E = (4)

1 Expression "total working moment" is a special term for this work and
is based on the shear equation. In reality this moment does not exist.
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7. First external and internal eircle

Determination of M by eq. (1) will be the base for the first external and in-
ternal circles. First internal circle is an infinite distribution of and M2
by the Cross Method and is forming an infinite series of members. Sum “of one
series will be called the first circle moment.

Uy 3 U 3 Up ; U
, 5 Uy 5 Uy 5 Ui

Sum of column-first circle moments will be called first external circle.
Difference between total working moment and first external circle is

My = ¥-TUp - T - Oy -y (52)

and will be called first moment difference.
Figs.2 and 3 show graphically the second and nth eircle.

First moment difference replaces the function of the base in the second circle
for external and internal circle then the whole procedure of the lst circle
will be repeated for the 2nd circle. The second moment difference then re-
places the function of the base and the procedure can be repeated for the third
time, etc.

M /\Unz % ~ Mn(n_thIIn Ty N
\\H./ \\_,/ K\_,/ L

Ypp = My =Up, = Urg, = Uy, - Uyg, (5b)

Mo = ¥p(pa) - 1111[1 - Upp = Uy - Uy, (5)



8. First Internal Circle Distribution

U U U U U i
Ty %, I, IV, v, VI;
- M M - ¥, -,
Mja Mpa Mpb Mob Moc Mpe
2x x x v y Ry
Mob X Mpb
2y 2%
_ Moab Mpab Mob _ b _ Mbe _ Mbe
Lxy 2xy 2xy >< Rxy RXy Lxy
M b  Mpb?
Lxy 4xy
My ab® My ab> My b2 Mob? Mob° Mob
ha 12 il 2 ob e ob~c
8y Ly L2y Lxy? lxy® Exy”
Mpb? >< M b2
8xy .-
_ Mpap? Mpeb? [ bt bt _mple | bl
16x%y2 8xy? 8352 >< 8x2y2 8322 16x2y2
b A
Mpb Mpb
163272 16x°y°
My ab My ab My b5 S Mobe
32%52 16:2y3 163253 3

Fig- zp




Table of Series A and B

Series A Series B
No. of | Symbol of | Algebraic Value No. of | Symbol of | Algebraic Value
Member Member Member Member
1 ape 1 B i
A 2 xy° 1 LXy
2 3
) . Mla.'b ) 5 _ Mzab
2 2Py 2 12x2y2
5 i Mlab“’* i . _ Mzabs
3 25;3? 3 L3x3y3
My ab® Myab’
i A - 4 B -
4 2 g3 4 1ot
My ab® M,ab”
? 4 3 5 B <y
5 59;5?’- 5 L2x7y
; 4y ab? (0-2) Mpab>P2
n-1 An_l 22n—33p41yn-2 n-1 Bnnl 4n—1x_n-lyn-—1
n & ST an-T 5 Pa T T Ay
@ Ao 0 0 Bg, 0

Fig. 5
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9. Investigation of moment UI
1

Exact investigation of all members forming column-first circle
moment UI

shows that it is a function of three algebraic groups
e Zu A (6e)

The starting moment ( ) was determined from eq. (3). The
summations of the (A) members and (B) members (Fig. 5) are
to be investigated here,

The derivations of the (A) and (B) series taken from Fig. 4

and distributed and presented by Fig. 5 show that both series
are:

(a). infinite series = number of members is
infinite.

(b)s convergent series - condition of con=
vergency:

An—l > An 5 Bn--1> Bn

(¢). geometric series = ratio of two suc-
cessive members is constant:

r --E-_A b (6b)
A - = b
An..]_ ZI-TY
B 2
r = & = b 6
B B1 bxy {6e)

Using the formula for the sum of members of the infinite
convergent geometric series

ZN:SN_-_.._E__.

) 1 = N



For our series the sums are:

Mlabo
ZA = S& = L4 b2 (6d)
1T T
and
Mpab
ZB = SB - - m ) (69)
b
. Iy

By substitution of egs. (3), (4), (6d) and (ée) into eq.
(6a) the relation between the column-first circle moment
and stiffness of the members of the bent can be determined.

My ab® Myab
U & & 2xy° _ Axy
Ji 5 m— ”
Iy 1T Ty
2 - ab
B ~Eh4 — M22 (6£)
L = ¥
Ma Me
M, 252 - 7P
- 2z m - h2 _J
= omA (BT D g (6g)




The expression

2gy = be - p
ixy -
is the internal factor (p) and
a
22 = dI—-II

is the distribution constant.

A function of the internal factor and distribution
constant is

"
=

dprp (P - 1)

and will be called

NEW DISTRIBUTION FACTOR FOR I = NDFy

Total working moment (M) multiplied by NDF, gives the
direct column-first circle moment,

(61)

(63)

(6h)

(6)

15



Table of Series C and D

16

Series C Series D
No., of | Symbol of | Algebraic Value No, of | Symbol of | Algebraic Value
Member Member Member Member
Mla'bo Msab
1 C 5 1 D -
1 2%xy° 1 RXYy
Mlabz Rhabj
2 02 22 xzy 2 D2 - 23 x2y2
5 Mj_ab4 5 Mzab5
. 3 2hOy? 2 3 25x3y3
. My ab® 5 Moah’
% 4 26y3 * 4 2Ty
Mlabs Héabg
> C5 EQ;E;Z > D5 2935Y5
n-1 1o (7-2) n-1 D a2
22 (n=2) gn=1yn=2 n-1 22n-3,n-1.n-1
4y ab? (7-1) . Mpab?P1
. 22(n—1)xpyn-l " n 22n-lxpyn
o Con 0 o Doy 0

Fig. 6
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10, Investigation of moment Uill

Exact investigation of all members forming column-first circle
moment UIl

shows that it is a function of three algebraic groups
Uy = =+ 20+ ZD (72)

The starting moment (Mi) was determined from eq. (3). The
summations of the (C) members and (D) members ?Fig. 6) are
to be investigated here,

The derivations of the (C) and (D) series taken from Fig. 4

and distributed and presented by Fig. 6 show that both series
are:

(). infinite series = number of members is
infinite.

(b)» convergent series = condition of con-
vergency:

Cpe1 >> Ch Dn-1:> Dy

(c)s. geometric series — ratio of two suc-
cessive members is constant:

L Ch - b
i [l s s——ie—
. Cpe1 bxy (70)
r = 2o _ b2 (7¢)
D D1 by

Using the formula for the sum of members of the infinite
convergent geometric series

i i
N = 8 = N
s E= N

1 - rN



For our series the sums are:

Hla.b°
= _ 20 (o]
2¢ = & = e (74)
1 b
Lxy
and
Myab
2D = S5 =- = > (7e)
1 - b
Lxy

By substitution of egs. (3), (4), (7d) and (7e) into eq. .
(7a) the relation between the colum~first circle moment
and stiffness of the members of the bent can be determined.

Mla,bo M2ab
U = - 20xy° 2xy
Il - Ml ¥ .b2 . 2
1- T
7%y iy
= -“1*"‘|: 2::1: . H22 2] (7¢)
Ma - Me,y,
= - Ma & Zﬁ Ea 2
2z bxy - b°
g wE (2L - De_ _ ) (7g)

18



The expression

19

2ay — be | (61) = (71)

n
o)

by - BP

is the internal factor (p) and

is the distribution constant.

The function of the internal factor and distribution
constant is

G (2 -1) = Ky

and will be called

NEW DISTRIBUTION FACTOR FOR II. = NDFry

Total working moment (M) multiplied by NDFy1 gives the
direct column—first circle moment

UIIl = My

e dI—II (63) =

(73)

(7n)

(7)
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11, Investiﬁation of moments UIIIl and UIVJ_

Beam-first circle moments according to conditions of static
equilibrium must be equal to their corresponding column=—
first circle moments ?equilibrimn in every joint) and we
can assume that

n

- U (82)
IL,

UIIIl
and

- Uy (9a)

Substituting from egs. (7) and (10) into egs. (8a) and
(9a) we derive directly the formulas for beam-first
circle moments

Uilxl = - M (8)
and
Uy, = - M (9)

Other investigations at points III and IV are not
necessary.



Table of Series E _and F

”a B

Series E Series F
No. of | Symbol of | Algebraic Value No..of | Symbol of | Algebraic Value
Member Member Member Member -
Mob%e be
1 2°x°y 1 2xXy
2 !b3
Mzh c M-b“e
2 E 2 F -
2 22 72 2 232252
M,bhe M b7e
E F =
3 3 22y ‘ 3 250
6 7
b*ec b'e
v | o b oo | o e
4 20x3y4 4 27 xbeyhs
Mzbgc bgc
E B F -
? 5 28y 2 5 29x5y5
g . b2 B2) . . My b23
n-1 22 @=2] n=2 n-1 n-1 2202 yn=10-1
a 2h-I  o-Ln a "' -
n 2 \e-I] eI 5210 Txnyn
o0 E00 0 @ Fo 0

Fig. 7



22

12, Investigation of moment le

Exact investigation of all members forming column-first circle
moment UV

p !
shows that it is a function of three algebraic groups

8, & = >E 4+ 3
.3 M,+ ZE+ JF (10a)

The starting moment (M,) was determined from eq. (4). The
summations of the (E) members and (F) members (Fig. 7) are
to be investigated here.

The derivations of the (E) and (F) series taken from Fig, 4

and distributed and presented by Fig. 7 show that both series
are:

(a), infinite series = number of members is
infinite.

(b). convergent series - dondition of con-—
vergency:

E_, > E, 3 Fn_l> F,

(¢)s geometric series = 2atio of two suc~
cegssive members is constant:

g o= S . _B (10b)
E1:|-l bxy
F. 2

F oy = (10¢)

Using the formula for the sum of members of the infinite
convergent geometric series
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For our series the sums are:

Myb°c
el 0_0
3 = 5 o= & xybz (104)
1
Lxy
and
Mlbc
iF = SF = — = (10e)
1 - B
Xy

By substitution of egs. (3), (4), (10d) and (10e) into eq.
(10a) the relation between the colume=first circle moment
and stiffness of the members of the bhent can be determined.

o —— —

Myb°0 M be i
le e - MZ + 2ox°yb2 - 2xy -
' 1 - oy
3 y L xy
- b
= =M 4 [ i Mlzc 2 | (10f)
Lxy - b
2E-°-cx - 1&bc
- - Me 4 2% 2X 5
2z Lxy - b2
& ns (2 2x¢c = ab - I % (10g)



The expression

2xec = ab

I - B2 %

is the internal factor (q) and

5z = dyayr
is the distribution constant,

The function of the internal factor and distribution
constant is

dV-VI (2q - 1) = KII

and will be called

NEW DISTRIBUTION FACTOR FOR V = NDFv

Total working moment (M) multiplied by NDFy gives the
direct columm=first circle moment

5
£

(101)

(103)

(10h)

(10)



Table of Series G and H
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Series G Series H
No, of | Symbol of | Algebraic Value No. of | Symbol of| Algebraic Value
Member Member Member Member
Mzboc Mb e
2 xX°y 1 Lxy
, . MpbZe , . _mple
2 2% ? 2 W
. Mybe . Myboe
3 3 257243 8 3 B3
. . 1,00 . ; Mb7c
: T z =
M08 b7
2 % 29275 2 H 552575
M2b2 (n=2) a Ml‘bZn-Bc
n-1 Gn-l 2211- 5{1-57,11—1 n-1 Hn..]_ An:T xn-lyn-l
b2 (n-l) e Mlbzn'lc
G niay g n
n n [ALELE " 1Ay
o0 Gco 0 @ H o 0

Fig. 8
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13, Investigation of moment HVI
1

Exact investigation of all members forming colum=first circle
moment U?Il

shows that it is a function of three algebraic groups

W, = -+ Jo+ Fn (11a)

The starting moment (M,) was determined from eg. (4). The
summations of the (G) Members and (H) members (Fig. 8) are
to be investigated here,

The derivations of the (G) and (H) series taken from Fig. 4

and distributed and presented by Fig. 8 show that both series
are:

(a). infinite series - number of members is
infinite.

(). convergent series = condition of con=
vergency:

Gy » G 5 B ) Ry

(c). geometric series - ratio of two suc-
cessive members is constant:

G 2

T, = - = L. (11b)
H 2

r, = - = = (11e)

H — -
Hn_]_ Lxy

Using the formula for the sum of members of the infinite
convergent geometric series



For our series the sums are:

_7

M,b0
f—G = S5 = i - (114)
"
and
M be
iﬂ = S5 =- o4 = (11e)
'

By substitution of egs. (3), (4), (11d) and (11le) into eq.
(11a) the relation between the column~first circle moment
and stiffness of the members of the bent can be determined,

| Mzboc Mlbc
S 220 ) I
Wy, = ) = 2
1l - —;E‘f_‘ L - ——EL———-
L. by ] by |
2M_cx - be K
= - M2 + MZ Mlz (11£)
ixy - b
_Me i = T
2z Lxy - b2
= M-S (..J%QS_;:_J%%__ - 1) (11¢)



The expression
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2ex - ab = q (101) & (111)

is the internal factor (q) and

22

is the distribution constant,

The function of the internal factor and distribution
constant is

Gy (a - 1) = Ky

and will be called

NEW DISTRIBUTION FACTOR FOR VI = NDFyq

Total working moment (M) multiplied by NDFyp gives the
direct colum-first circle moment

HVI:L = WCVI

(11n)

(11)



14, Conclusions of the first circle

Investigations of the first circle moments in points I, II,
V, VI result in the following conclusions:

(1)e Any column=first circle moment is equal to the

total working moment times the corresponding New
Distribution Factor

U(1,15,v,v1); = M(1,11,7,71)

(?2)e The New Distribution Factor is a function of the
distribution constant and internal factor

S = = (p=-1)
11 = 3 (2 =1)
Ky = 5= (2a-1)
Ky1 = f;(q-l).

(3). First moment difference according to eqs. (5a),
(7): (8): (10) and (11) is

M, = M- MR- MK MK
Dy - My - My

= M(1l-K-EKp=-E-E)

The expression
(1-Kr-Kyp-Kp-Epp) = K

and the first moment difference

Mbl =

29

(12)

(6n)

(7h)

(10n)

(11h)

(13)

(14)



15, Investigation of second circle

According to Chapter 7, in the second circle the first
moment difference ( 5 replaces the base for the ex-
ternal and internal circles and the whole procedure of
the first circle can be repeated with this new base.

Using Figs. 4, 5, 6, 7, 8 transformed for the second
circle, in the condition of transformation,

(M) will be replaced by Mbl = MK

and using the conclusions of the first circle from Chapter

1 every colum=second circle moment can be determined
diractvly-

The columm=gecond circle moments are:

UI = MDIKI = MKKp

2
Ui, & FpKrr = My
e s

Wi, = Ypkyr = Miyp

The second moment difference according to egs. (5b),(15),

(16), (17), (18) end (13) is
M, = My - TUp, - Upp, - Uy, - By
= MK - MKKy - MEKyy - MRKy = MKEyy

= MK(]'—KI-KII_KV-KVI)

ME?

Sa
n

(14)

(15)
(16)
(17)

(18)

(5b)

(192)

(19b)

(19)

30



16, Investigation of nth circle

For our investigation it is important to derive general
formulas for any columm=circle moment and for any moment
difference., The procedures of Chapters 9 = 14 can be
repea.ted.l

Thus colum=-third circle moments are:

U, = MK?Ky
Y, *# ME%Kpy
W, = MKy
1, = MKy

and the third moment difference is again

: K3
M:I:'l"r

Colum=fourth eircle moments are:

U - MK
I I
Uy = MKy
A
G, o= W
4 .
W, = MKy
and fourth moment difference is again
= M4
M34

1

(20)
(21)
(22)

(23)
(24)
(25)
(26)
(27)

(28)

(29)

4

Complete derivations of the third and fourth circle can be

found in the author's Engineering Paper Tu = No.2/50, Oklshoma

Institute of Technology, Stillwater 1950.



Column~nth circle moments are:

: T R (30)
u o= mUxg (31)
o= m(n"l)xv (32)
o, = EO Vg (33)

and nth moment difference is

My = K (34)



17. Conclusions concerning circle moments

Closing the investigation of column=circle moments we can
derive the following final principles:

(1). column-nth circle momeht is equal to the
total working moment (M)
times
(n=1) power of total New Distribution Factor (K)

times
New Distribution Factor for (I, II, V, VI)

1 Mx(n-l)K

U(I, 11, V, VI)_ - (T, IT, 'V, ¥I) (35)

(2)« nth moment difference is equal to the total
working moment (M)

times
(n) power of total New Distribution Factor (K)

M - MK (36)

n

(3)e column~circle moments form 4. series, which are

(a). infinite series = number of members is
infinite

(b). convergent series - condition of con-
vergency

U U
(1, 11, V, VI)(B_l)j>> [ 0 1 L vx)(n)

(c). geometric series - ratio of two successive
members is constant

Mx(n-l)x(l, 11, Vv, VI)
= ey = K (37)
Dy ¥ K, o1, v, v1)

U, 11, v, VI) 0y

U, 11, v,

Index (I, II, V, VI) is to be read: "at point I, or II, or
V, or VI",

33



(4)

moment differences form one series which is

(a). infinite series - number of members is
infinite

(b). convergent series = condition of con=
vergency

Mbn41 :> MD“

(e). geometric series = ratio of two successive
members is constant

n
LN R -

"y T

n=-1

34
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18, Summations of column—-circle moments

Using the formula for summetion of members of infinite
convergent geometric series

2N

4 N > =

u
j22]
]

the summebion of all column~circle moments gt I is

el m
i i} _ (@, 11, v, vI) 39
(K), according to eq. (13), (1 - K )
substituted in eq. (39) Kv %I
1 - (1 - K - K KV KVI =
- - K
=R Ry r R = 2 (40)
the expression YK will be called
SUM OF ALL COLUMN NEW DISTRIBUTION FACTORS
the ratio of any NDF at point (I, II, V, VI) and the sum of
NDF
K
(T, 11, v, vI)
- % (41)

FINAL NEW DISTRIBUTION FACTOR

This Final New Diztribution Fastor will hereafter be cgiled simply
FINAL DISTRIBUTION FACTOR



19, General conclusions

Te the conclusions cf the first circle, Chapter 14,and the
conclusions of all circle moments, these general con-
clusions can be added :

(1)» final colummn moments M are equal

(1, 11, Vv, VI)
to the total working moment times the Final
Distribution Factor for (I, II, V, VI)

K

M MEI{—- (42)

I

M o= Mz (43)

M, - M (44)

(), =ummation of all New Distribution Factors

¥k = -2eptca) -2z (46)

2%
and
(3o zatlo of Ky 11 ¢ yr) and 3K

K T

i S ap = 1) (47)

2K 3(ap + cq) - 22

= S &2p = %) (48)

2K ‘ 3ap + cgq) - 22z

Moo, c(2g - 1) (49)

JK 3(ap 4+ cq) - 2z

s G HCERY (50)

3

(ap + ¢q) - 22z
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20, Review of internal and external circles
Circle Base: Column Circle Moments: Circle Moment Difference:
Ext ., |Inter.
T. | MK© - MKOKp - MKOK1 — MKOKy — MKOKyt 4
2 1-?1*’1 - MEYK. = MKYK.. - MEIK.. < MKIK
: " 5 II v VI )
) 1 2
2 MK: (1—KI-—KII-KV-KVI) —=1MK
1-12(2 MERK. - MK2K MKRK,, = MK2K
e L 1 % v I\
) » 3
3. MK~ (1=K =K1 =Ky=Ky) ——qu
[
' 3 3 I 3 3
be | MKZ - MKy = MKPKpp = MEOKy = MKZKyp -
\
he VK3 (1K =K 1 p=Ky=Ky7) —= M4
i —
ntl | MK = MCKp - MKPKpp < MRPKy - MKPKyp -.T:
N 1
n—
n+l MK (1=K =Ky p=Ky=Ky1) 1K
'
© 0 0 0 0 0
00 0 0
y - MK MKTT MKy MEyT
Zlnter' vl w3 | ST | 3T
S ExtoCircles M M = M
s ] - K Ky+K1 p+Ey+KyT 2K

Fig. 9




PART 1II

Special Cases



21, Case No, 1 - Simple two-legged bent with the bottom
fixed = both columns are the same length

For caleulation of wind stresses in case No. 1 (Fig. 10)
equations (47), (48), (49), and (50) can be djrectly
applied and simplified in the following way.

Ly .
(x) III IV (y,
11 (b) v
(a) (e) 5
I VI
77777 7777
Fig. 10
K = a(Ray - be - 4xy + b2) (51)
Ky = a|:2 (2ay = be) = Axy + b2:| (52)
KV - c[?(zcx - ab) = 4xy + b%] (53)
Ky = c(ex-ab- 4+ b) (54)

Bv substituting for (p) and (q) the right values according
to eqs. (61) and (10i) the term (4xy - b2) can be eliminated and
egs. (47 = 50) can be written

Ay _ a(2ay - be - 4x7 + b2

Ki + K71 + Ky + Kyz 2K

(51a)

from vhich K; = a(2ay - be - 4xy + b2) (51)

and analogically for KII’ Ky, Kyre



then final column moments according to eqs. (42 - 45) are;

G

Moy

HV

M1

Numerical value of YK is the sum of K
according to egqs. (51 = 54) and eq. .(4

a(2ay - be - 4xy + B2) o

al2(2ay - be) =

YK

IK

o[2 @ex—ab) - 4xy + B3] »

1"

IK

c(2cx - ab = 4xy + b?)

n

2K

3)+ Kr1 + Ky + Kyp

For practical purposes the so-called "NDF -~ Chess board"

will be used.

(55)

(56)

(57)

(58)

NDF

Al gebraic NDF

Numerical NDF

Final
Moment

a(ay = be = 4xy 4 b?)

xI—-—-"*

a[z (2ay - be) = 4xy + bz:l

X7

cEa(zxc - ab) = 4xy + bﬂ

c(2xc = ab - Lxy +

b?)

o=

_/

.
ZXMXV t X1

2

See illustrative examples No. 1, 2, and 3.




22, Case No, 2 -~ Simple two-legged bent with the bottom
hinged — both columns are the same length

For calculation of wind stresses in case No. 2 (Fig. 11),
eqs. (47 = 50) can be directly applied and simplified into
eqs. (51 = 54),1 then transformed for the condition

M = Moy = 0 (59)
and the condition
. . o - 34 a (60)?
e = e'! = 3/4 e (61)
Ly
P (x)' III I (y)
1I (b) v
(a) (e) L,
T VI_L
Fig. 11

1 The simplification of egs. (47 - 50) is made for conven-
ience of faster solution., If this simplification and transformation
should be involved in practice, eqs. (47 - 50) could be applied.

2 This substitution, valid for hinged ends only, was applied
according to the slope-deflection relations for a structural member
with one hinged end., See Elementary Structural Analysis by
J. B. Wilbur and C. H, Norris, New York, 1948, page 421.

from which s
0 " II_ and a' = 3/4a
I = T T



By substitution of egs. (59 - 61) in the egs. (47 - 50) we can
write directly the final moment equations:

M

c(b 4+ 2a)
a(b + 2c)

Yix

(62)
14

a(b + 2¢) (63)

c(b + 2a)

Algebraic transformation presented in Chapter 22 can be
checked with the complete derivations in Engineering Paper Tu -
No. 3/50 worked by the author at 0.I.T., Stillwater, 1950.

In numerical computation the moment Mv = M- HI



23, Case No, 3 = Simple two-legged bent with the bottom
fixed = the columns are different lengths

For calculation of wind stresses in case llo. 3 (Fig. 12),
egs. (47 = 50) can be again applied when corrected for the
new condition,

The starting moments in this case will be :

e 2 “
Ky g
c
_ 5 . Mo
2 - 2(_3 P 2z'L, (65)
L Iy
5
P (x) III W (y)
IT (b) v ki
(a) (e)
I
L
32 l ’
78
Fig. 12
VI
when the ratio 777 -
——--Ll o u (66)
X
eq.. (40) has to be corrected
2K - Kp + Kpp + uky + ukyp (67)



Repeating the same procedure as presented in Chapter (6 - 20)
with new starting moments given by eqs. (64 - 65) the following
final eqs. may be derived:

Kg - a(2ay - ube - 4xy + b) (51a)
Ky = al:z(zaw«- ube) - 4xy + b2:| (52a)
Ky = ucE(2cx - a—;’~)- Lxy + bﬂ (53a)
Ky = ue(Rex- 22 - 4xy 4 17) (54)

from which we can define eqs. (51 = 54) as transformations
of eqs. (51a = 54a) for the special condition u = 1. Eqgsa.
(51a—~ 54a) are fundamental and all others, (eqs. (51 = 54,-
62 = 63, 62a = 63a) are algebraic transformations for special
conditions, Every two-legged bent can be computed by egs.

(51a = 54a).




24. Case No., 4 = Simple two-legged bent with the bottom

hinged = the colums are different lengths

For calculation of wind stresses in case No. 4 (Fig. 13),
eqs. (62 = 63) can be used when the new conditions are to

considered .

These new conditions are:

a = al = O, 75a
c - c! = 0, 75¢
o= M = 0
and
L
—-—J-— = u
.
l J
~ Ly |
P (§) ITT v (y)

I (b) v T T
(a) () L I

derived, we mgy find the following final egs.

M

Mg = p)

1 4 2u - 20U

1+ 28

b2

14 2u e
M = : x
u

T '

14 ig

1 4 2u - 225u

2a

Eqs. (528« 53a) can be applied directly.

W

. .
Fig., 13 VT J,
yaN

Repeating the transformations by which egs. (92 - 63) were

(60)
(61)
(59)

(66)

(62a)

(63a)



25. Case No, 5 = Three-legged bent with the bottom fixed
or hinged = the columns are different lengths.

For calculation of wind stresses in case lo. 5,

egs. (47 = 50) can be used and corrected for condition
represented by Fig. 14 and derived in a new series in
Fig., 15.1

Final moment equations are:

My = Q_(gy—cb-bgy_-l-bﬂ_n
2K
o alaGay - o) - 2 4 o,
MII = YK
M _ ELé(cx - 8b) = 2xy 4 qau
2X
_ c(cx = ab = 2xy + b?) "
MVI = YK

The sum of all K is equal to

(1, II, V, VI)

2K

2Ky + 2Kyy + Ky + Kyp

When the columns are of different lengths, thg propor-
tional constants have to be used (case No. 3)

1 Complete derivation of the infinite series for bents

with three or more legs is presented in Engineering Paper No. 4/50.

(68)

(69)

(70)

(71)

(72)

2 Applications of the proportional constant in case No., 5

is shown in illustrative example No. 5.

45



Three-legged bent with bottom fixed ——— the columns are the._same length

46

= o+ L
P (x) III b2 W) w2 I,
II (b) v (b) 11
(a) (e) (a) i
il
I VI Il
Y/ /4 77 7
Fig. lo. 14
First IInternal Circle Distribution for Case llo, 5
1 11 IIT [ IV v VI Iv III II I
M ol M % My |
-Ma | =Mja | =M,b | =My | -Mb | =Myb | =Mja
/ x b4 ¥y —'y v b4 X
-}, a -Msz-I—le =e -I‘.leMzb M a
2x 2y 2x 2y 2x 2y 2x
2 2 2 2
Myab | Myb M b M be Myb M,b M,ab
2xy 2x.3>(w Xy Xy 2%y 2xy
Myab b7 | b be | 1,0/ b E_. ab
Lxy 2xy bxy 2xy | Axy _Xy Lxy
2 3 3 2 3 . ¢ 02 )
-1y ab | ~Mb7 | -Lb° | -MbRe ~M,b -Nlb3 -1, ab |
x2y 23%:&2 23572 ) ><x?y :. 2x2y N
-Mla.b2 -M,be ’ ' g\:l"lj_ab2
TUxR T 4R
0 0 0 0 0 0 0 0 0 0
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26, Case No, 6 = Four-legged bent with the bottom fixed or
- hinged = the columms are different lengths.

Calculation of wind stresses in case No. 6 (Fig. 16), by NDF
requires an exact investigation of additional* convergent series,
in which new members of the bent (four-legged bent is a complexity
of three portals), are involved.

Direct derivation of basic and additional series is represented
by Fig. 17 and Fig. 18, For convenience of investigation the
derivation is resolved into two figures., The first represents
derivation of basic series without influence of a third portal
(the joint (3) is locked). When the basic series are determined
and NDF found, the joint (3) will be relocked and additional
series added to the basic ones. This method which is called by
the author "separation of primary series of secondary, tertiary
and so forth series" is based upon the principles of superposition
and will be shown to be one of the most important tools of in-
vestigation, Without this method, complicated cases, like No. 7
and No, 8 could not be solved.

(;::)' II1 IV (y) viI VII (y) IV I (x)
II (b) v (b) v (b) II
(a) () () (a) L
I VI VI I
77777 7 77777 Y A
e By e gy —— s g ——

Fig. 16

Basic series need not be investigated and their summation are
expressed by eqs. (47 = 50). Summations of additional series
can bs determined directly from Fig., 18.and added to the first
ones.

Complex trusses and bents can be solved by NDF in two ways.
Exact - when the additional series will be taken into account.
Approximately - when additional series will be neglected and NDF
will be computed from basic eq. (47 = 50) only.

2 It is shown in En%r. Paper No., 5 that influence of second=-

ary series is very small (1-3%) and the error involved by neglect-
ing additional series is usually not important in practical use.

—



First Internal Circle Distribution for Case No., 6, Joint No. 3 - Locked

11 LT, Iv. V. Iv.
- - %
+ He + Hb + Wb + Mac + Mob
x x y y y
+ Mob + Mb
2y 2x
_ Myab A _ Mp? _ b _ bR
2xy 2%y 2xy 2xy 2xy
_ Mlb2>\/_ M2b2
. Lxy Lxy
4 Ypab? + Mt s Yot s MobPe s Yot
4%y 1=y Lxy? lxy? lxy?




Joint No., 3 = Relocked

49

II. III. IV V. v

4+ Mob

2y

_ Myp? _ Mpbe _ MobR

P 2y° 252 25>

- MpbR _ MbR

Ly? 4xy

+ Mpab? 1 Mob3 4+ M3 + Mpple 4+ M3
lxy? hxy? >< lxy? lxy? hxy?
4 Mgb3 4+ Mob3 4+ b2

exy? 8xy° ey
_ Mpab’ - vt _ Mpbh - Mgb® - Mob%
8x°y2 g 8xy> 8xy 8xy>

-

Fig. 18



Final moment equations for case No. 6 are:

2ay - be b* (2cx - ab) 1| m
| by -7 Sy (2xy-bR)

n
]

‘.

-
M e a|2(2a7 = be) +b2(2cx- a,g) < 1lu
| xy - PP lxy (2xy =b®)

o|2Rcx = ab) _ b(2ex = ab) _ 4|y

|y -bR 2y(agy - bP)

MV

2cx = ab b (2ex — ab)
B | - - 1M
I by -2 Lyl - 07) |

When the colums are not of the same length the propor-
tional constant (u) eq. (68) has to be spplied. For our
case

L_-L P

uq = < or 2nd colum

2
u, - = for 3rd column

3

and L
u - —I—.L for 4th column

L

The shear eq. (40) may be found in the following way:

M = MKy 4 MKpq + MEyug + MRypug +

+ MEgu, + MEyru, + MEqug + MEpyu,

from which the sum of all K(I I, v, VI) may be determined
¥ ) ]

2K = (Kp + Krp) (1 4+ ug) 4 (Kp + Kyp) (ug + up)

(73)

(74)

(75)

(76)

(66a)

(66b)

(66¢)

(77)

50

(78)



27. Case No., 7 = Unsymmetrical rectangular frame

One of the most complicated cases of wind analysis by NDF

is case No, 7 (Fig. 19). The bottom of the columns are
connected with horizontal beams through which new additional
series can circulate and be carried-over into the upper part
of the frame,

Without the help of the method of separation this case could
not be solved. Probably the easiest procedure for in-
vestigation of this type of structure is the following:

(1). resolve the investigated frame into
two, free-body sketches and solve
each separately. (Figs. 20 and 21)

(2) » carry-over the bottom series from one
sketch to the other and then work as
an additional series.

For convenience of investigation we may work with M; and Mé
gseparately.

P 111 v
11 (b) v

(a) Fig. 19  (c) L '

T (b) VI

51
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Series involved by M, at I:

Series involving My at (I) were derived in Fig. 6.
"series C" and the summation is

- g

n

If joint (II) can rotate freely, the summation of all
carry-over moments from (II) to (I) for base M is exactly
one=half of "series C", This summation of all carry-over
moments forms a new base for distribution and replaces in

eq. (7d) the expression M,. The new summation of all
carry-over moments is age&n one-=half of the preceding series,
Thus this procedure can be repeated indefinitely,

e
lay = B hxy - BB hay = VP

1st member

6(2M,) (ay)?

2nd member
by - BR)?
2 3
3rd member + 6@ )Ml(ay)
(4xy = v?)3
6 2!1--1 n
nth member i ( )Ml(ay)
(4xy - b°)"
o member 0

411 members of this series form an infinite convergent
geometric series,
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Summation’ of all members
y 6Ma
ZN]_ = % (79)
bxy = B* + 2ay
Similarly the same procedure can be repeated for base M,
and the summation of all members
ZNZ - 3Ma:c (80)
Lbxy = b 4+ ab
from which, according to eqs. (6a and 7a), the column-
first circle moment at I and II is
K
- I, IT
Uz, 11) = H—_(-i_k—)_ (42-43)
and then
2
Kg 1) =8 (4xy = b2) - ey | BbS (81)
’ (4xy - b°) + 2ay (4xy = b°) + ab
Similarly
K (bxgy = %) = hex 3ab
V, VI) = ¢ + ) (82)
(4bxy - b?) + 2ex  (4xy = b°) + be
Since the MI = MII and MV = My
XX = 2(Kp + Kyp) (83)

Complete investigation and derivations of box-frame-series
can be found in Engineering Paper Tu = 5/50., Graphically these
three types of series form a broken plane of Ath degree in space.



28, Case No, 8 — Series of two rectangular box-frames

Derivation of NDF for a series of two rectangular box-
frames (Fig. 22) may be determined by the same way as
in case No. 7. The frame will be resolved into two
horizontal parts. Both will be solved separately and
later carry-over series added.

Final equations for NDF are:

o , _

K(I, II) = 3 (21W = bz)"'zay + 3b02 (84)
(2xy - b°) + ay 2Qxy - b°) + ab
- , _

K(v ) (2xy b2) 2ex + 3ab . (85)
J (2xy = b°) ¢+ ex 2(2xy - bz) + cb

Summation of (K) is

YK = e + 2K 1 (87)
P (x) III IV (y) I ()
11 (b) v (b) =
(a) (c) (a) L
I (b) VI (b) I
P & -+ Iy —

54
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29, Case No, 9 = Simple two=legged bent, of which, joints
can not translate

Derivation of NDF for structures in case 9 (Fig. 23, 24, and
25) may be determined by the same way as cases Ne, 1 = 4,
when the new condition of joints, which can not translate, is
considered,

The base for the series is not a simple distributed total
working moment, but an FEM at the member where pressure is
affected. A second new condition in which external circles
do not-exist, essentially simplifies the computation.

The new procedure will be shown first on the simplest
structure (Fig, 23a). Assuming that the final eq. should

serve for computation of any lateral pressure, the load
(P) is placed unsymmetrically between point I and point II.

(x) III 1V
11 (b) __—£§ ;;;

-f—

(2) Fig. 23a Ll

1 Ll
— B—

The FEM at I and II are FEMy and FEMpy. With this, base
derivation of series can start,

-

I L I1I Iv
FEM; FEMr1
FEMy71a e i
FEMrra FEM1 b
2x T T ox

Fig. 23b



When the ratio

FE

e T

FEM (88)
the final formulas for (M) are:

My = FEMIIg_"E_':_ﬁ (89)

2%

My o= FEMp D o -Mppp (90-91)

M ~FEM.._b

w = TI—5=r (92)

Derivation of NDF in case No. 9a is a very simple
transaction and serves to show the new procedure of
investigation, It 1s of interest to show the same case
for columns with hinged bottoms and to prove that the
substitution used in eqs. (60-61) is exactly correct
for one story bents,

(x) III v g

IT (b) - T

dy
: (a) + y
1 Fige 24 Tl l

e L _4 |

According to eqs. (60-61) our NDF should be

al w wal
k1 = [1';:"2‘2::]

] - e
b(1 - %)
3

——a = b

V2

== Kroq (93-94)
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The series in the structure of (Fig. 24) can be developed
by normal procedure of the NDF and checked with egs. (93-94).

Fig. 25 presents the series:

I 1T III v
i FEMpy
' b4 i
e T
~FEM_ 2 \'\-FEMI =FEM, /b
2x_ 2 2x
FEMIIa. FEMIa ‘ FEM_[b
2x ><E 2x 2x
FEita My s Fm
4x 4x Lx
~FEM_a -FEMIIaz ~FEM_ _ab
ya il i /
/ / / /
0 0 0 0
Fig. 25

It is evident that series I is equal to zero and,therefore,
NDF1 is equal to zero also., Summation of all members of
series II must be the summation of two geometric series.

FEMy Ib

3 4FEMryb
ZNFEMII & _}T = e (95a)




and summation of series with EEMI at II.

FEM. b
0 —_ MI 2FEM-b
PR = 2 - _ £
. FEMI = N 4 T
Ax
The final moment is
Ui Be );NFEMII = ZNITEMI

__A4FEMdQ - )
1L = Lx - a

from which 4x - a La + Lb=a = Lb + 3a

1]

Substituting this expression in eq. (95d)

UG -

b+ —5—33

II

By visual inspection it is evident that NDFII

Bl o i
K e 2 pa K
IT *= 2g = =AI1Y
b + =

and is exactly the same one as derived by egs. (60-61)1
and expressed by egs. (93-94).

(95b)

(95¢)

(954)

(95¢)

(95)

This proof is probably the first one made by exact mathe-

matical check for this recommended short-cut.
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0., Case No, 10 = Three-legged bent which joints can not

translate

Derivation of NDF for structures in case No., 10 (Fig. 26)
can be done by the procedure of case No. 9. Series form-
ing the first circle moments are derived in Fig. 27.

(x) III IV (y) VII VILIE B
1] (b) v (a
: dp
(a) (e) Ly
I VI '
777 7757 -
p—— L2 %* L3 ‘_"_"ﬁ

NDF at corresponding points of structure are:

K1

KII

1

KVII

KVIII

a

26 - By
T

W -

_2bd

(96-97)

(98)

(99)

(100)

(101)

(102)
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First Internal Circle

Distribution for Case No, 10

60

I II. III. V.
PN s
e FEMIIa ~~FEMTTb
X X
~FEMr7a weEEM; 1D
2x 2x
+ FEMp ;b FEM b°
4xy RXy
- FEMpiab? - FEMy1ab? - FEMpqb3 - FEM b
8}(25' - 43.2}" Z,.xzy 8x2‘Y
» ’ 5 7
0 ? 0 0
v, VI. VII. VIII,
FEM {be FEM, be FEM;bd FEM_ ;bd
2xy  xy 2xy Lxy
FEMb7c FEM b20 FEM, 1074 FEM_ b%d
sxz;-z 163572 83272 165252
; 7 7 7
0 0 o . 0

Fig, 27




PART III

I1lustrative Examples



31, Illustrative example No. 1%

To illustrate the procedure of computation the calculations will be presented
for the wind stresses in a bent - Case No. 1, (Fig. 28).

Load:
P = 12 1b
P (x): 131 v (y)__ﬂ_ Dimension:
IT (b) v Ll = 12 ft
L, = 20 ft
Stiffness factors:
(2) ()
) Iy & o A ind
I VI ¢ = 2 ir3
777777777 7T """ a4b = x & 4 in3
SR bt+c = ¥ = 5ind
NDF ¢ Alg. NDF: Num, NDF: y%g Moment s:

X a (2ay=be-4xy+b2) 1(4~T1) 67 | 14482 | 28.m4 M

—

K a| 2 (2ay-be)=L4xy+b

~
~

[ 6 .r
i 1_2(4)-71] -63 11,4—3 27.000 MII “MIII‘

n

K -22-b-— bE -1—'r;|- 20 -
v | o[2(2ex-ab)-4xy+b7| | 2{2(13) WY Lhdmze | 38572 | My [ Mgy

Ky ¢ (2ex-ab-4xy+b2) 2(13-71) |-116 144%% 4914 | Myq

Y = |-336 144,000 = M

A11 moments in 1b=ft

Transactions ASCE, Vol. 96, 1932, page 66.
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32, Tllustrative example No. 2%

To illustrate the procedure of computation the calculations will be presented
for the wind stresses in a bent - Case No., 2, (Fig. 29).

Load:
5 (x). III Nj) B P = 167 1b
II' () 1y K Dimension:
Ll = 15 ft
L.
(a) (e) " I?L o= 20 £t
7777777 Stiffness factors:
Fig. 29 - a = 1in3
7777 Column ratio: b = 2 :1.n3
: 1 c = 4 in3
a 2 I =z=¢ X = 3 in3
Yy = 6 in3
NDF Alg. NDF Num, NDF 1@%@ Moment.s
K

K_ | a| 2ay-ubo-4xy+b? ] 1 (8-68) -60 || 2504.37-82| 799,37 1b £t

188

n

K. |2 2(233-ubc)-mi-bﬂ 1[2(8)-68] -52 || 25043722 | 702,30 1b £t

56| 727.50 1b £
2504..,3'?188 5

n

i
\n
o

Ky m[z (2cx-§§-w+b2:! %(4)[2 (20)—68]

Kot N%GP%)-WEZ] 4(4) (20-68) = -9 2504,371%8 1279,10 1b £

Fx = Ky + K4 uky + Kpp) = - 188

1 Theory of Modern Steel Structures, by L. E, Grinter, Vol. II, page 124,
Problem 100,



To illustrate the procedure of computation the
32e. Tllvsbrative example Ho, 2 calculations will be presented for the wind
stresses in a bent - Case No. 3 and No. 4 -
P (x) III V_(y) (Fig. 30).
II (b) v T T s 3 }"3 T8 15
(a) i[l-'l L3 b 2 in3 M- 1600 1b ft
I
Vi (e) c 4 in3 et 0.75¢ 3 in’
Fig. 30 - i In | 10 £t d 0.50¢ 2 in3
A L, | 15 ft x a+b 3 in3
3
b—— 5 — Ly | 20 f% b+ ¢! 5 in
NDF: Alg, NDF: Num, NDF: NDF: %I{)EH Moments:
K a (2ay-ubd=/4xy+b?) 1(8~56) -48 ié%” 461 1b £t | M
2
g aE(zaynubd)-Awa] 1(16-56) -10 1_15%4 385 1b ft Mg
K, du|:3(2dx~abu='l)u4xy+b2:| 2(%) (24=56) -32 i?ﬁ“ 308 1b ft My
Ky 0 0 g 0 & My
JX = Ky Kyp+ uky -104 = Lpily = 0.5

€9



34. Tllustrative example No. 4 To illustrate the procedure of computation the
calculations will be presented for the wind
P (x)_ II1 Iv (y) stresses in a bent - Case No. 4, (Fig. 31).
II - b
(b) T T P 100,00 1b a 1.33 in3
(a) @ . 3
I _ ‘L M P(Ll) 1000.00 1b-ft || b 2.00 in
a'| 0.75a| 1.00 in3 ¢ 2.66 in3
Fig. 31 J_ ¢t | 0.75¢ 2,00 in3 L | 10.00 £t
/77;?7 u LJ_:L3 0,33 L2 15.00 ft
L 30,00 ft
— o :
NDF: Alg., NDF: Num. NDF %)Fl_,_}i Moment:
K
E-l——- x » 1 f’% 798.001b-£t | M
II 3b 1,66 = 2 °
1iea T "2 v Ty
1+
14 2u- BEi
1 1
: -2 (g 100) ot | eos.001b-gt|
- 2b 1.66 = 3 ¥
14 2u o 14+ 166 = 2
1+ 2
b
14 2u - 32&

79



To illustrate the procedure of computation the
32, Illustrative example No. 5 calculations will be presented for the wind
» (x) III IV (y) VII VIIT (%) stresses in a bent - Case No. 5, (Fig. 32).
II ) v (b) X I P 100 1b a | 1in3
M Plp 1000 £ 1b | b | 2 in3
Fig. 32 | (a) (c) (a) In x a + b 3 in3 ¢ | 4 in3
v VI X ‘L y 2b 4 ¢ 8 in3 Ll 10 ft
777 7777777 W In:Ly 0.25 Ly | 20 £t
7T Ly | 40 £t
—n T 1,
NDF: Alg,. NDF: Num, NDF: NDFg Ni)F Moments:
K 2
- o 2 - =32 _ Q M
I{(11, IX) a[?("y ube) 2xy+b:| LiR=dad 15%M A (I1, I1X)
1 =36
Ky cu 2(cxh%.’.\_2ﬂ+b2] 4( 7) (8~44) 15%6“ 227 M,
Kyt cu[(cx-%b)-znqr-l-bz:l 4(%) (4=44,) =40 15%“ 253 MqI
Ix = 2(Kp + Kpp) + u(ky 4+ Kyp) --159 I A1l moments in 1b ft

99



35, Illustrative example No, 6 To illustrate the procedure of computation the
calculations will be presented for the wind
|-_L2 I stresses in a bent — Case No. 6, (Fig. 33).
P (XL III IV(y, VII VII(y)IV III (X) P 41,60 1b 1.00 in3
Ir| () v v (b)) [I I 1 M P(L;) | 1000,00 1b £t 3,00 in3
Fi 55 (a) (e) (e) (a) Ll l x a+b 4 .00 ir:t3 c 2,00 in3
& l Ly y |2v+e 8,00 in3 | Ly | 24,00 £t
I I
7’7/- . /77/-; i u L:,I,-,'I_'B_ 0.666 L2 12.00 ft
VI v Ly | 36.00 ft
T 07
NDF: Alg. NDF: Num, NDF: NDF: $EM: | oment:
K Ray-beu , b2 (2cxu-ab) 12 |, 9(7.66) 0.89
I a + o 1 - =0.893 0.9y | 137
I:{,_xy-b‘?' 8xy (2xy=b?) B _119 i 256(55) _J 6.515 I
K 2 (2ay=beu) | b (2cxu-ab) 2(12) | 9(7.66) - 0.78
II - 1 a1 0.785 | Q78y| 121 [ M
. Lxy=b? + 4xy (2xy=b2) 1 | 119 + 128(55) | 6.515 I
Kv o 2(203-&1)11-1) — b(20:e-abn"1) = 2(§) 2(11,5) _ 3(11.5) _ 1 -1,130 173 HV
4xy=b? 2y (2xy-b2) | 19 16(55) 64515
Kyp | ou|2e%abu”" _ b(2cx-abu=l) _ 2(3)[ =5 _ 3(11.5) _ 4 ~1,235 | Ls235y| 189 |
K | = 2[kp # Kpy] + 20Ky + K1 — -6.515 | A11 moments in 1b ft




37, Illustrative example No. 7

(x), _IIT

IV (yL

To illustrate the procedure of computation the
calculations will be presented for the wind
stresses in a bent - Case No. 7, (Fig. 34).

Ii ) e a 1.00 in3 P 100 1b
b 3,00 in? | M | P(I;) | 1500 1b £t
Higs 37 (a) () c 2.00 in3 x| a4b 4 in3
18 T8 .
Ly | 15.00 £t vy | veec 5 in3
I (b) VI L, | 20.00 £ f
= Iy — _
NDF: Alg. NDF: Num. NDF: NDF': NDFM' Moment :
) 3
2
K (4xy-b%)-~4ay 3be 7-20 . 18 (| 0.87 | 0.8% 6.25 1b £t | M
(@ 0| *| GaytPszay T Ggt)dab| | |70 T 743 L | FR (T, 1m).
2 x : . !
Koy, yo)| ofd=blzdex | 3ab glidt o 113 1‘%0 423.75 16 £t | My, 1)
’ (4xy-b?)42cx  (4xy=b2)4be TL416  TL4b be
XK. = 2(KI L Kv) _ 2 _0087 + lolﬂ = 4.00

L9



38, Illustrative example No. & To illustrate the procedure of computation the
' calculations will be presented for the wind
stresses in a bent -~ Case No. 8, (Fig. 35).
P (x) IIT IV (y) IV III (x)
11 (b) v (b) ¥ a 2.00 in°> || P 300 1b
b 3,00 in®> | M | M(1y) |3600 1b £t
(a) Fig. 35  |(e) @ 1L, c 50040 § x| a+b 5 inJ
L 12,00 £t v 2b4e | 1140
A (b) VI (b) I _J_
' 111 AN 11T L, 15.00 ft
— 1 —— 1
NDF: Alg. NDF¢ Num, NDF: NDF: %%.‘?M Moment :
K a| (22y=b2)- 22y Jbe o 11044 | 45 Le420 | 780,00 1b £t | (1, 1I)
@, 10 | | orey  2Ga-sdran|| | Torzz * 20 || 1R0] 1070 | A0
— — al
e b g 2,50 M
K o|f2xp=b)eBex  __ 38b || 5|110-50 18_{i2,500] 2300 O | 840.00 1b £ | (v, VI)
¥, W) (2xy-bR)4ex  2(2xy-bR)4be|| [110+25 ~ 220+ 10.670
1+
YK = 4K )+ X 4[1.420] + 2[ 2.500]410.670
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39, Illustrative exarmle lo, 91

To illustrate the procedure of computation the calculations will be
presented for the wind stresses in a bent - Case No, 9, (Fig. 36).

a 4,00 in3 P 100,00 1b
b 2,00 in3 FEM, -125,00 1b ft
al 3,00 in’ FEM_ 1 125,00 1b £t
L, 10,00 £t a(1,2) 5,00 £t
I, 10,00 ft Xe=a'4+b 5,00 in3
x) 111 WE
I w b T T
da,
P s
(=) '+‘ L,
T Bt

g, = Fig. 36

My 0.00 1b ft
b
Moo F.EHII_x_ 125-%- 75,00 1b ft
~FEM¢ 3D «125. -75,00 1b ft
Mrrr pp=ss 52 2
My ~FEM; - "125-A ~37.50 1b £t

1 Example No. 9 was given as a one hour test in Course
Civ. En, 423 at Oklahoma Institute of Technology in 1950. By
NDF it can be solved in a few minutes,
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I1lustrative example No, 10

To illustrate the procedure of computation the caleulations will be
for the wind stresses in a bent - Case No. 10, (Fig. 37).

70

presented

a 2,00 in3 P 100,00 1b
b 4.00 in3 FEM ~111,11 1b £t
c 8,00 in3 FEM 222,22 1b ft
d 4400 in3 dy 10.00 ft
L, 15,00 ft d, 5,00 £t
L, 25,00 £t e! 0,75¢ 6,00 in3
Ly 15.00 ft d! 0,75d 3,00 in3
x a+b 6,00 in3
y b+ c' 4 d 13,00 in3
111 IV VII VII
P 11 (b) v @ P
7@ T o
d
S " s
777777 77%_/
e By ——— N
2 —
M. FE W - §
T 20222 (= g0 = 22 =149,
S ) 22.22(- § = 552) 149,00 1b £t
_ Iy
= —5
S R 8 { — 222,22(1 - 104) 142,50 1b £t
) 296
= _éaL.:
M FEM__ | __2be 222.,22515% 36,10 1b £t
lxy = b?
B
0 N (. S, 2224
Y11 < ormmper 2222258 18,05 1b ft
My = 0,00 1b £t _— 0,00 1b £t
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