ELLIPTICAL DIAGRAMS FOR INDUCTION MACHINERY

By
ALF JOHAN STOLE
1
Bachelor of Science
Oklahoma Agricultural and Mechanical College Stillwater, Oklahoma

1950

Submitted to the Faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

Burthen

LIBRARY
NOV 261951

ELLIPTICAL DIAGRAMS FOR INDUCTION MACHINERY

ALT JOHAN STOLE

MASTER OF SCIENCE
1951

THESIS AND ABSTRACT APPROVED:

Preface

In many electrical engineering problems it is of great help in the understanding of the physical nature of the phenomena that are being studied if the actual apparatus can be represented by an equivalent circuit which has the same properties. An example of such an equivalent circuit is that for the induction machine. There is, however, a disadvantage with such equivalent circuits. When an equivalent circuit has been drawn, there is a tendency for the student to think solely in terms of the equivalent circuit, thus forgetting what takes place in the actual apparatus.

As a result of the equivalent circuit for the induction machine a circle diagram has been developed. This circle diagram is familiar to all students of the induction machine. Such a circle diagram, however, is possible only if the parameters of the equivalent circuit are constant; and only if this is the case, may the performance characteristics of the induction machine as obtained from the circle diagram be expected to be right.

Because of the fact that the parameters of the equivalent circuit do change, the true performance of the induction machine does not form a circle. The question then arises: Would it be possible to obtain some other kind of geometric pattern that would give the true performance of the induction machine? If some general geometric figure could be found that would fit the true performance better than the general circle diagram, then a research along this line would be justified.

TABLE OF CONTENTS

CHAPTER I
Introduction 1
CHAPTER II
Ho's Exact Circle Diagram. 6
Possible Reasons why the Current Locus does not follow Ho's Exact Circle Diagram 12
CHAPTER III
Elliptical Diagram - "The Two Tests Method" 17
Derivation of the Polar Equation of an Ellipse 18
Determination of the Ratio of the Major to the Minor Axis 20
Determination of each Axis of the Ellipse Separately 24
Example I, Ưsing the Measuring Method 27
Derivation of an Analytical Calculating Chart 40
Example II, Using the Analytical Calculating Chart 44
Discussion of the Results in Example I and II. 55
CHAPTER IV
Elliptical Diagram - "The Three Tests Method". 57
Example III 63
CHAPTER V
Conclusion 71
Bibliography 74

Chapter 1

Introduction

Since the induction machine was invented by Nickola Tesla in 1888; different schemes have been employed in determining the characteristics of this machine. At an early stage in the history of the induction machine, Steinmetz developed a set of equations by which the characteristics of this machine can be calculated. ${ }^{1}$ From 1894 to 1896 Heyland constructed a circle diagram from which the characteristics of the induction machine can be determined geometrically. ${ }^{2}$ Later different methods have been used to obtain similar circle diagrams, some of which were based on an exact equivalent circuit and some on approximate equivalent circuits. Fig. 1 below shows the exact equivalent circuit, and Fig. 2 shows a common approximate equivalent circuit.

Figure 1. The theoretical exact equivalent circuit representing one phase of an induction machine. All secondary quantities are referred to the primary.

IC. P. Steinmetz, "The Alternating Current Induction Motor," A.I.E.E. Transaction, XIV (1897), pp. 185-217.
${ }^{2}$ Thomälen, Electrical Engineering, p. 398.

In the circuit shown in Fig. 1.
V_{1} represents the applied voltage.
I_{1} represents the current in the stator or primary windings.
I_{2} represents the current in the rotor referred to the primary.
I_{0} represents the vectorial sum of the magnetizing current and the eddy and hysteresis current.
r_{1} represents the resistance of the stator.
r_{2} represents the resistance of the rotor referred to the primary.
x_{1} represents the leakage reactance of the stator.
x_{2} represents the leakage reactance of the rotor referred to the primary.

Go represents a conductance of such magnitude as to permit a current to flow through it equal to the eddy current and hysteresis loss current.
b_{0} represents a susceptance of such magnitude a.s to permit a current to flow through it equal to the magnetizing current.
R represents the load on the machine.

Figure 2. The approximate equivalent circuit representing one phase of an induction machine.

The circle diagram based on the approximate equivalent circuit was soon found to be of little value as the result obtained when using it is far off in most cases. Common for most of the approximate circle diagrams is that the magnetizing current is to be assumed constant, independent of load, and that the voltage drop caused by it is disregarded.

Different authors have succeeded in developing circle diagrams based on the exact equivalent circuit, hoping that the result obtained from an exact circle diagram would be much more accurate than that obtained from the circle diagram based on the approximate equivalent circuit. One of the exact circle diagrams is the Ho's Circle Diagram which is introduced on Page 6. The exact circle diagram, however, did not prove to be of much more value than the approximate one due to poor accuracy and has not come into general usage.

Manufacturers of induction machinery, not being able to use the circle diagrams as a means of obtaining the performance characteristics, have developed their own methods of changing them so a.s to fit their particular machines. 3

Common for all circle diagrams so far developed is the authors in their development have assumed no saturation. Most of them have pointed out that there is some saturation, and that the more saturation there is present, the greater the error will be in the result. This is where most authors leave the question of saturation. Any general attempt of introducing the saturation effects in the calculation of the performances of the induction machine is not found in any textbook.

Rudolf Richter goes a little bit further in his discussion of saturation than do most authors of induction machinery. 4 In his discussion of saturation, he points out that the error

[^0]introduced by assuming b_{0} constant in $F i g$. I is negligible in most cases. This circumstance can easily be understood from the fact that in the equation for the secondary current most authors do not even include b_{o}.

The error by assuming x_{1} and x_{2} constant, however, thus neglecting the saturation effects in the leakage reactances, may cause the result to be in great error, especially at higher currents. Mr. Richter further points out that if the effect of saturation on x_{1} and x_{2} was taken into account, the current locus would follow a curve which resembles an ellipse. Mr. Richter, however, does not attempt to find any method by which such an elliptical locus can be predicted.

The first attempt of actually using an elliptical diagram instead of a circle diagram in predicting the characteristics of the induction machine can be found in "Induction Motor Characteristics," Bulletin \#65, by C. F. Cameron, H. Webking, and J. Grantham. Two methods by which the elliptical diagram can be determined are shown in this bulletin. The first one, which has some discrepancies, assumes the d / D ratio, the ratio of the minor axis of the ellipse to the major axis of the ellipse, to be equal to saturation ratio at rated load. The second method, which probably is more accurate than any method developed up to now, requires one extra test run besides the no-load running test and the blocked rotor test. This extra test run is to be made at maximum power output.

The elliptical diagram from Method II in Bulletin \#65 will generally give results with much better accuracy than the approximate or exact circle diagram, but has the disadvantage of
requiring an extra test run, which in some cases may be difficult to perform. This leads to the question: Would it be possible to determine a reliable elliptical diagram by running an extra test at full load? This test would in most cases be easier to perform than one at maximum power output. It would be even better if a dependable elliptical diagram could be determined from only the no-load running test and the blocked rotor test.

Chapter II

H. Ho's Circle Diagram

Analytical and graphical methods have been developed in proving that the exact equivalent circuit leads to a circle. One of these methods was derived by a Japanese engineer, Mr. H. Ho. ${ }^{1}$ This method will be introduced here.

Figure 3. The theoretical exact equivalent circuit representing one phase of the induction machine. All secondary quantities are referred to the primary.

Fig. 3 above shows the exact equivalent circuit where the parallel exciting impedance, ($g_{0}-j b_{0}$), is replaced by an equivalent series impedance, $\left(r_{0}+j x_{0}\right)$. The other components of the circuit are as follows:

```
rl}= primary resistanc
x
r}\mp@subsup{r}{2}{= secondary resistance referred to the primary
```

[^1]$\mathrm{x}_{2}=$ secondary leakage reactance referred to the primary $R=$ resistance representing the load on the machine

All values are given per phase.
Each actual current in the exact equivalent diagram will be obtained by a superposition of the currents in two fictitious circuits, Fig. 4 and Fig. 5.

Figure 4

Figure 5
Figures 4 and 5. Ho's resolution of the exact equivalent circuit into two fictitious circuits.

From Fig. 4 the following relations may be obtained:

$$
\begin{align*}
\mathbf{E} & =\frac{r_{0}+j x_{0}}{\left(r_{0}+r_{1}\right)+f\left(x_{0}+x_{1}\right)} \tag{1}\\
I_{1 a} & =\frac{E_{1}}{\left(r_{0}+r_{1}\right)+j\left(x_{0}+x_{1}\right)} \tag{2}
\end{align*}
$$

$I_{\text {la }} \operatorname{lags} E_{1}$ by:

$$
\begin{equation*}
\theta_{l a}=\tan ^{-1}\left(x_{0}+x_{1}\right) /\left(r_{0}+r_{1}\right) \tag{3}
\end{equation*}
$$

The fictitious circuit shown in Fig. 5 may be simplified to the one shown in Fig. 6 by replacing the parallel combination $\left(r_{1}+j x_{1}\right)$ and $\left(r_{0}+j x_{0}\right)$ by an equivalent series impedance $\left(r_{h}+j x_{h}\right)$.

Figure 6. A simplified equivalent circuit of Fig. 5.
From Fig. 6 the following relationships may be derived:

$$
\begin{align*}
r_{h}+j x_{h} & =\frac{\left(r_{0}+j x_{0}\right)\left(r_{1}+j x_{1}\right)}{\left(r_{0}+r_{1}\right)+j\left(x_{0}+x_{1}\right)} \tag{4}\\
I_{2} & =\frac{E}{\left(r_{h}+r_{2}+R\right)+j\left(x_{h}+x_{1}\right)} \tag{5}
\end{align*}
$$

From Fig. 5:

$$
\begin{equation*}
I_{l b}\left(r_{1}+j x_{1}\right)=I_{o b}\left(r_{0}+j x_{0}\right) \tag{6}
\end{equation*}
$$

Also:

$$
\begin{equation*}
I_{o b}+I_{l b}=I_{2} \tag{7}
\end{equation*}
$$

Solving for $I_{o b}$ and $I_{l b}$ gives:

$$
\begin{align*}
& I_{o b}=\frac{r_{1}+j x_{1}}{\left(r_{0}+r_{1}\right)+j\left(x_{0}+x_{1}\right)} I_{2} \tag{8}\\
& I_{1 b}=\frac{r_{0}+j x_{0}}{\left(r_{0}+r_{1}\right)+j\left(x_{0}+x_{1}\right)} I_{2} \tag{9}
\end{align*}
$$

The three currents in Fig. 3 can now be found from the following equations:

$$
\begin{align*}
& I_{0}=I_{l a}-I_{o b} \tag{10}\\
& I_{1}=I_{l a}+I_{l b} \tag{II}\\
& I_{2}=I_{2}+0 \tag{12}
\end{align*}
$$

The circuit shown in Fig. 6 represents a series combination of constant reactance and variable resistance. It can be found in textbooks that the current in such a circuit will form a circular locus. ${ }^{2}$ Thus I_{2} in circuit Fig. 6 will form a circle. The diameter of this circle will, according to equation 5, be equal to $\mathrm{E} /\left(\mathrm{x}_{\mathrm{h}}+\mathrm{x}_{2}\right)$, and be lagging 90 degrees behind E .

From equations 1 and 9 the numerical ratios E_{1} / E and $I_{2} / I_{l b}$ may be found. Let this ratio be called m:

$$
\begin{equation*}
m=E_{1} / E=I_{2} / I_{l b}=\sqrt{\left(r_{0}+r_{1}\right)^{2}+\left(x_{0}+x_{1}\right)^{2}} / \sqrt{r_{0}^{2}+x_{0}^{2}} \tag{13}
\end{equation*}
$$

E leads E_{1}, and $I_{l b}$ leads I_{2} by an angle:

$$
\begin{align*}
& \alpha=\tan ^{-1} x_{0} / r_{0}-\tan ^{-1}\left(x_{0}+x_{1}\right) /\left(r_{0}+r_{1}\right) \\
& \alpha=\tan ^{-1}\left(r_{0}+r_{1}\right) /\left(x_{0}+x_{1}\right)-\tan ^{-1} r_{0} / x_{0} \tag{14}
\end{align*}
$$

From these relationships it can be concluded that also $I_{l b}$ will form a circie. Its diameter will be $1 / \mathrm{m}$ times the diameter for I_{2}; thus it will be $\frac{E}{m\left(x_{h}+x_{2}\right)}$. But since $E=E_{1} / m$, its diameter can also be written as $\frac{\mathbb{E}_{1}}{\mathrm{~m}^{2}\left(\mathrm{x}_{\mathrm{h}}+\mathrm{x}_{2}\right)}$. Then since I_{lb} leads I_{2} by α degrees, the diameter of the circle formed by $I_{l b}$ will lag ($90-\alpha$) degrees behind E. But as E leads E_{1} by α degrees, the

[^2]diameter of the circular locus described by $I_{l b}$ will lag $(90-2 \alpha)$ degrees behind E_{1}.

The exact circle diagram can now be drawn as shown in Fig. 7.

Figure 7. The exact circle diagram for the polyphase induction motor.

From the circle diagram shown in Fig. 7 the following equation can be written:

$$
\begin{equation*}
I_{l b}=\frac{E_{1}}{m^{2}\left(x_{h}+x_{2}\right)} \sin \theta_{l b} \tag{15}
\end{equation*}
$$

From Fig. 7 the following characteristics may be predicted: Input. The component $P D$ of the current multiplied by the phase voltage E_{1} gives the power input per phase.
Power factor. Power factor may be obtained by dividing the in phase current $P D$ by the total current $O P$, or by measuring the angle θ_{1} and find the cosine of this angle.
Primary copper loss. There is no distance shown on the circle diagram which represents the primary copper loss; this loss is to
be found from the formula.

$$
\begin{align*}
& \text { n the formula. } \tag{16}\\
& \text { Primary copper loss per phase }= \\
& I_{1}^{2} r_{1}=(O P)^{2} r_{1}
\end{align*}
$$

Secondary copper loss. The semi-circle with origin at $0^{\prime \prime}$ correctly represents the secondary circuit of the actual motor, except that the current $I_{l b}$ must be multiplied by m to obtain I_{2}. Therefore, the secondary copper loss is equal to $m(A B) E$, but E_{1} is equal to mE so that:

$$
\begin{equation*}
\text { Secondary copper loss per phase }=(A B) E_{1} \tag{17}
\end{equation*}
$$

Output. PA represents the power delivered to the load resistance R, or in other wards, PA represents the power output plus friction and windage.

$$
\begin{equation*}
\text { Output per phase }=(P A) E_{1}-F \& W \tag{18}
\end{equation*}
$$

Torque. Torque developed in the motor is equal to the input into the secondary circuit and is therefore represented by PB. In order to obtain shaft torque, torque due to friction and windage must be subtracted.
Thus:

$$
\begin{equation*}
\text { Torque per phase }=\left(P B \times E_{1}-F \& W\right) \times \frac{7.04}{\text { syn. rpm }} \tag{19}
\end{equation*}
$$

Slip. Slip may be found by dividing $P B$ into $A B$:

$$
\begin{equation*}
\text { slip }=(A B) /(P B) \tag{20}
\end{equation*}
$$

Possible Reasons why the Current Locus does not follow
Ho's Exact Circle Diagram

It has already been pointed out that the current locus in most cases does not follow the exact circle diagram derived by Ho. The question therefore arises: What are the possible reasons why the current locus does not follow the exact circle diagram? In order to find an answer to this question, Ho's circle diagram and the main equations governing it will be summarized below.

Figure 8. Ho's Exact Circle Diagram of the polyphase induction motor.

Referring to Fig. 8:

$$
\begin{align*}
& I_{1}=I_{l a}+I_{l b} \tag{21}\\
& I_{l a}=\frac{E_{1}}{\left(r_{0}+r_{1}\right)+f\left(x_{0}+x_{1}\right)} \tag{22}\\
& \theta_{l a}=\tan ^{-1}\left(x_{0}+x_{1}\right) /\left(r_{0}+r_{1}\right) \tag{23}\\
& I_{l b}=\frac{E_{1}}{m^{2}\left(x_{h}+x_{2}\right)} \sin \theta_{l b} \tag{24}\\
& \theta_{l b}=\tan +\frac{1}{}\left(x_{h}-x_{1}\right) /\left(r_{h}-r_{2}-R\right) \tag{25}
\end{align*}
$$

$$
\begin{align*}
& \alpha=\tan ^{-1}\left(r_{0}+r_{1}\right) /\left(x_{0}+x_{1}\right)-\tan ^{-1} r_{0} / x_{0} \tag{26}\\
& m=\sqrt{\left(r_{0}+r_{1}\right)^{2}+\left(x_{0}+x_{1}\right)^{2}} / \sqrt{r_{0}^{2}+x_{0}^{2}} \tag{27}
\end{align*}
$$

In order for the current locus to follow a circle as shown in Fig. $8, I_{l a}, \alpha, m$, and ($x_{h}+x_{2}$) must be constant quantities.

From tests on different kinds of induction machines it can be shown that some machines have current loci which follow fairly closely the exact circle diagram derived by Mr . Ho, while other machines have current loci which deviate largely from the exact circle diagram. Therefore, one or more of the four quantities mentioned above must change and cannot be assumed constant.

First only $I_{l a}, \alpha$, and m shall be considered. It will be shown that in most cases these three quantities may be assumed constant; in other words, the changes in these quantities are so small that they cannot account for any appreciable deviation from the circle diagram. By observing equations 22,26 , and 27 it is seen that in order for $I_{l_{a}}, \alpha$, and m to remain constant, r_{0}, r_{1}, x_{0}, and x_{1} must stay constant. All four of these parameters, however, change to some degree due to different causes:

The value of r_{0} will change due to change in core losses, which in turn change with the load.

The value of r_{1} will change with the resistivity of the primary windings, and resistivity will change with the temperature which usually changes with the load.

The value of x_{0} will change because of saturation in iron due to the main flux. In most cases, however, this saturation effect
is very small. 3
The value of x_{1} will change due to saturation in the teeth of the stator. ${ }^{3}$

$$
\begin{equation*}
I_{l a}=\frac{E_{1}}{\left(r_{0}+r_{1}\right)+f\left(x_{0}+x_{1}\right)} \tag{28}
\end{equation*}
$$

As pointed out already, saturation due to the main flux is negligibly small so that x_{0} may be considered a constant. Usually, x_{0} is much greater than either of the other three parameters. For this reason the magnitude of $I_{l a}$ will change but very little. Due to change in r_{0} and r_{1}, the direction of $I_{l a}$ will change some, but for most practical purposes, $I_{l a}$ may be considered constant.

$$
\begin{equation*}
\alpha=\tan ^{-1}\left(r_{0}+r_{1}\right) /\left(x_{0}+x_{1}\right)-\tan ^{-1} r_{0} / x_{0} \tag{29}
\end{equation*}
$$

The value of α will also change very little. A change in x_{0} or r_{0}, for example, will change $\left(r_{0}+r_{1}\right) /\left(x_{0}+x_{1}\right)$ and r_{0} / x_{0} almost in the same proportion. A change in x_{1} or r_{1} may change the value of α, but not enough to account for any appreciable error in the circle diagram. Usually, the value of α is very small in the first place, from one-half to two degrees.

$$
\begin{equation*}
m=\sqrt{\left(r_{0}+r_{1}\right)^{2}+\left(x_{0}+x_{1}\right)^{2}} / \sqrt{r_{0}^{2}+x_{0}^{2}} \tag{30}
\end{equation*}
$$

Regarding the value of m, a change in x_{0} or r_{0} will change its numerator and denominator almost proportionally, so the net change in the fraction will be negligible. As was said regarding α, a change in x_{1} or r_{1} will change m too, but not enough to account for any appreciable error in the circle diagram.
$3_{\text {Richter }}$ loc. cit.

As the three quantities discussed on page 14 very unlikely can account for the relatively large deviation from the circle diagram sometimes encountered, a change in the quantity $\left(x_{h}+x_{2}\right)$, which appears in the equation for $I_{l b}$, must be the main reason why the current locus forms an ellipse rather than a circle. The quantity $\left(x_{h}+x_{2}\right)$ is approximately equal to and directly dependent upon the quantity ($x_{1}+x_{2}$). Therefore, the primary and secondary leakage reactances must change. It is found in textbooks that x_{2} may decrease due to skin effect. In other words, because of skin effect, x_{2} is less at standstill, when the rotor frequency is equal to that of the machine input, than under normal operating condition when the rotor frequency is only a few per cent of machine input frequency. Within the range of normal operating condition, however, the change in \mathbf{x}_{2} due to skin effect is so little that it can be neglected.

But $\left(x_{1}+x_{2}\right)$ also changes due to saturation. At high value of slips the currents are large in stator as well as in rotor, and they produce high leakage flux which may result in high saturation in the teeth of stator and rotor. For a fixed current high saturation means that the leakage flux (the leakage reactance) is smaller than if there were no saturation. Thus when the load on the machine is small, $\left(x_{1}+x_{2}\right)$ is greater than when the load is large. For this reason, for a certain angle, $\theta_{l b}$, the $I_{l b}$ below standstill will actually be smailer than Ho's circle diagram will show. This fact explains why the current locus will follow some sort of an ellipse rather than a circle, as shown in Fig. 9.

Figure 9. An illustration showing a comparison between Ho's exact circular current locus and the proposed elliptical current locus.

Chapter III
 Elliptical Diagram - The Two Tests Method

A method of determining the current locus from only two tests will be introduced in this chapter. The two tests are the no-load running test and the blocked rotor test. By example problems it will be shown that the elliptical diagrams obtained by the Two Tests Method will follow very closely the current loci as obtained from actual tests.

Derivation of the Polar Equation of an Ellipse

The ellipse shown in Fig. 9 is drawn below:

Figure 10. An elliptical current locus of the polyphase induction machine.

The equation of the ellipse above may be written as follows: ${ }^{1}$

$$
\begin{equation*}
\frac{(x-a)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{31}
\end{equation*}
$$

From Fig. 10 above

$$
\begin{align*}
& x=I_{l b} \sin \theta_{l b} \tag{32}\\
& y=I_{l b} \cos \theta_{l b} \tag{33}
\end{align*}
$$

By substituting the values of x and y as given by equations 32 and 33 into equation 31 above, the following relation is obtained:
$l_{\text {Burington, Handbook of Mathematical Tables and Formulas, }} 2$ Ed. p. 28.

$$
\begin{equation*}
\frac{\left(I_{1 b} \sin \theta_{l b}-a\right)^{2}}{a^{2}}+\frac{I_{1 b^{2}} \cos ^{2} \theta_{1 b}}{b^{2}}=1 \tag{34}
\end{equation*}
$$

Multiplying each side of equation 34 by a^{2} gives:

$$
\begin{equation*}
\left(I_{l b} \sin \theta_{l b}-a\right)^{2}+\frac{a^{2}}{b^{2}} I_{l b}^{2} \cos ^{2} \theta_{l b}=a^{2} \tag{35}
\end{equation*}
$$

Multiplying out the square $\left(I_{1 b} \sin \theta_{l b}-a\right)^{2}$, gives:
$I_{l b}{ }^{2} \sin ^{2} \theta_{l b}-2 I_{l b} a \sin \theta_{l b}+a^{2}+\frac{a^{2}}{b^{2}} I_{l b}{ }^{2} \cos ^{2} \theta_{l b}=a^{2}$
Subtracting a^{2} on each side, gives:

$$
\begin{equation*}
I_{l b}{ }^{2} \sin ^{2} \theta_{l b}-2 I_{l b} a \sin \theta_{l b}+\frac{a^{2}}{b^{2}} I_{l b}^{2} \cos ^{2} \theta_{l b}=0 \tag{37}
\end{equation*}
$$

Dividing through by $I_{l b}$, gives:

$$
\begin{equation*}
I_{l b} \sin ^{2} \theta_{l b}-2 a \sin \theta_{l b}+\frac{a^{2}}{b^{2}} I_{l b} \cos ^{2} \theta_{l b}=0 \tag{38}
\end{equation*}
$$

Solving for $I_{l b}$, gives:

$$
\begin{equation*}
I_{l b}=\frac{2 a \sin \theta_{l b}}{\sin ^{2} \theta_{l b}+\frac{a_{b}^{2}}{b^{2}} \cos ^{2} \theta_{l b}} \tag{39}
\end{equation*}
$$

Substituting ($1-\sin ^{2} \theta_{l b}$) for $\cos ^{2} \theta_{l b}$, gives:

$$
\begin{equation*}
I_{l b}=\frac{2 a \sin \theta_{l b}}{\sin ^{2} \theta_{l b}+\frac{a^{2}}{b^{2}}\left(1-\sin ^{2} \theta_{l b}\right)} \tag{40}
\end{equation*}
$$

Or:

$$
\begin{equation*}
I_{l b}=\frac{2 a}{\left(\frac{a}{b}\right)^{2}-\left[\left(\frac{a}{b}\right)^{2}-1\right] \sin ^{2} \theta_{l b}} \sin \theta_{l b} \tag{41}
\end{equation*}
$$

Determination of the Ratio of the Major Axis to the Minor Axis of the Ellipse.

The equations for the circle and the ellipse shown in Fig. 9 are according to equations 15 and 41 as follows:
For the exact circle,

$$
\begin{equation*}
I_{l b}=\frac{E_{1}}{m^{2}\left(x_{h}+x_{2}\right)} \sin \theta_{l b} \tag{42}
\end{equation*}
$$

For the ellipse,

$$
\begin{equation*}
I_{l b}=\frac{2 a}{\left(\frac{a}{b}\right)^{2}-\left[\left(\frac{a}{b}\right)^{2}-1\right] \sin ^{2} \theta_{l b}} \sin \theta_{1 b} \tag{43}
\end{equation*}
$$

By comparing the two equations which are given above, it is seen that in order for $I_{l b}$ to follow an ellipse rather than a circle, the following relationship must hold true:

$$
\begin{equation*}
\left(\frac{a}{b}\right)^{2}-\left[\left(\frac{a}{b}\right)^{2}-1\right] \sin ^{2} \theta_{l b}=k\left(x_{h}+x_{2}\right) \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
\text { where } k \text { is a proportionality factor } \tag{45}
\end{equation*}
$$

From equation 42, $\quad \sin ^{2} \theta_{l b}=I_{1 b} 2^{2} m^{4}\left(x_{h}+x_{2}\right)^{2} / E_{1}{ }^{2}$
The substituting of equation 45 into equation 44 gives:

$$
\begin{equation*}
k=\frac{\left(\frac{a}{b}\right)^{2}-\left[\left(\frac{a}{b}\right)^{2}-1\right] \frac{I_{1} b^{4}\left(x_{h}+x_{2}\right)^{2}}{E_{1}^{2}}}{\left(x_{h}+x_{2}\right)} \tag{46}
\end{equation*}
$$

Equation 46 contains two unknowns: the proportionality factor k, and the desired ratio a / b. This ratio, namely the ratio between the major and minor axis of the ellipse, can be determined if it would be possible to find two different values of $\left(x_{h}+x_{2}\right)$ and their corresmonding values of $I_{l b}$.

Under blocked rotor condition a certain voltage $E_{i_{s}}$ will
cause a certain current $I_{i_{s}}$ to $f l o w$ and a certain power input W_{g}^{\prime}. From equation 11 the following relation may be derived:

$$
\begin{equation*}
I_{1 b}=I_{1}-I_{1 a} \tag{47}
\end{equation*}
$$

It has been pointed out on page 14 that $I_{l_{a}}$ may be considered constant and be determined by the equation:

$$
\begin{equation*}
I_{l a}=\frac{E_{1}(\text { rated })}{\left(r_{0}+r_{1}\right)+f\left(x_{0}+x_{1}\right)} \tag{48}
\end{equation*}
$$

where r_{1}, r_{0}, x_{1}, and x_{0} are determined according to procedure given below, except for certain cases where a more accurate method of calculation should be followed. ${ }^{2}$

The value of r_{1} may be determined by means of a Wheatstone bridge, or by the voltmeter-ammeter method.

The value of r_{0} may be determined from the no load test according to the equation:

$$
\begin{equation*}
r_{0}=\frac{W_{n}-I_{l n}^{2} r_{1}-F \& W}{I_{l n}^{2}} \tag{49}
\end{equation*}
$$

where, $W_{n}=$ no load input watts per phase

$$
\begin{aligned}
& I_{I_{n}}=\text { no load ohase current in amperes } \\
& \text { F\&W }=\text { friction and windage losses per phase }
\end{aligned}
$$

The value of x_{1} may be determined from the blocked rotor test, preferably at or close to rated current, according to the equation:

$$
\begin{equation*}
x_{1}=\frac{1}{2} \sqrt{\left(E_{I_{g}} / I_{I_{g}}\right)^{2}-\left(W_{g} / I_{I_{s}}^{2}\right)^{2}} \tag{50}
\end{equation*}
$$

where, $E_{l_{g}}=$ blocked rotor phase voltage used
$I_{I_{s}}=$ blocked rotor phase current
$W_{s}=$ blocked rotor input watts per phase

2 Liwschitz-Garik and Whipple, Electric Machinery, II, p. 187.

The value of x_{0} may be determined from no load test according to the equation:

$$
\begin{equation*}
x_{0}=E_{1} / I_{1 n}-x_{1} \tag{51}
\end{equation*}
$$

where:

$$
\begin{aligned}
E_{1} & =\text { rated voltage per phase } \\
I_{l_{n}} & =\text { no load phase current }
\end{aligned}
$$

Having determined $I_{l_{a}}, I_{i b}$ may be found from the equation:

$$
\begin{equation*}
I_{l b}^{\prime}=I_{i_{s}}-I_{l a} \tag{52}
\end{equation*}
$$

The quantity $\left(x_{h}+x_{2}\right)$ ' may be approximately calculated from the equation:

$$
\begin{equation*}
\left(x_{h}+x_{2}\right)^{\prime}=\sqrt{\left(E_{i_{s}} / I_{i_{s}}\right)^{2}-\left(W_{s} / I_{I_{s}}\right)^{2}} \tag{53}
\end{equation*}
$$

where:

$$
\begin{aligned}
& E_{1_{s}}=\text { blocked rotor phase voltage } \\
& I_{i_{s}}=\text { blocked rotor phase current } \\
& W^{W_{s}}=\text { blocked rotor input per phase }
\end{aligned}
$$

By applying a different voltage, $E_{l_{s}}^{\prime}$, under blocked rotor condition, another set of $I_{l b}$ and $\left(x_{h}+x_{2}\right), I_{1 b}^{\prime \prime}$ and $\left(x_{h}+x_{2}\right)$ " can be found. The two sets of $\left(x_{h}+x_{2}\right)$ and $I_{l b}$ should both satisfy equation 46. Therefore, the following relation must hold true:

$$
\begin{gather*}
\frac{\left(\frac{a}{b}\right)^{2}-\left[\left(\frac{a}{b}\right)^{2}-1\right] \frac{I_{1}^{2} m^{4}\left(x_{h}+x_{2}\right)^{2}}{E_{1}^{2}(\text { rated } / p h)}}{\left(x_{h}+x_{2}\right)^{\prime}} \\
\frac{\left(\frac{a}{b}\right)^{2}-\left[\left(\frac{a}{b}\right)^{2}-1\right] \frac{\left.I_{1 b}^{\prime \prime 2} m^{4}\left(x_{h}+x_{2}\right)\right)^{2}}{E_{1}^{2}(\text { rated } / p h)}}{\left(x_{h}+x_{2}\right)^{\prime \prime}} \tag{54}
\end{gather*}
$$

By solving equation 54 , the desired ratio a / b is determined.

From calculation it can be shown that the value of a / b determined by two sets of $I_{I b}$ and $\left(x_{h}+x_{2}\right)$ at currents close to rated current is somewhat different from the a / b ratio determined from two sets of $I_{I b}$ and $\left(x_{h}+x_{2}\right)$ at currents close to rated voltage, blocked rotor current. But since it is of most interest to obtain correct performance characteristics near rated value, a / b should be determined from two sets of $I_{l b}$ and $\left(x_{h}+x_{2}\right)$ near rated current preferably.

Determination of each Axis of the Ellipse separately

It has already been shown how to determine the ratio a / b. The next step will be to find a method whereby a and b can be determined separately.

Figure 1l. Construction procedure for the elliptical diagram.
$I_{l_{s}}$ refers to the blocked rotor, rated voltage current and $\theta_{I_{s}}$ its corresponding power factor angle. For $I_{l a}, \theta_{l a}$, and α see pages 12 and 13, equations 21,22 , and 26 respectively.

The equation for the ellipse shown in Fig. 11 using $X^{\prime \prime}$ and $Y^{\prime \prime}$ for coordinate axes is as follows:

$$
\begin{equation*}
\frac{\left(x_{8}^{\prime \prime}-a\right)^{2}}{a^{2}}+\frac{y_{s}^{\prime \prime 2}}{b^{2}}=1 \tag{55}
\end{equation*}
$$

Substituting $a^{2} /\left(1 / \frac{a}{b}\right)^{2}$ for b^{2} in equation 55 gives:

$$
\begin{equation*}
\frac{\left(x_{s}^{\prime \prime}-a\right)^{2}}{a^{2}}+\frac{y g^{2}}{a^{2},\left(1 / \frac{a}{b}\right)^{2}}=1 \tag{56}
\end{equation*}
$$

Solving this equation for a gives:

$$
\begin{equation*}
a=\frac{\left(x_{s}^{\prime \prime}\right)^{2}+\left(\frac{a}{\bar{b}} y_{s}^{\prime \prime}\right)^{2}}{2 x_{s}^{\prime \prime}} \tag{57}
\end{equation*}
$$

After a has been determined, b may be determined from the equation:

$$
\begin{equation*}
b=a /(a / b) \tag{58}
\end{equation*}
$$

In order to find $x_{s}^{\prime \prime}$ and $y_{s}^{\prime \prime}$ in equation 57, first find the abcissa x_{s} and the ordinate y_{s} for point P_{s} using the coordinate system X, Y.

$$
\begin{align*}
& x_{s}=I_{l_{s}} \sin \left|\theta_{l_{s}}\right| \tag{59}\\
& y_{s}=I_{l_{s}} \cos \left|\theta_{l_{s}}\right| \tag{60}
\end{align*}
$$

where:

$$
\begin{equation*}
\theta_{l s}=\cos ^{-1} \frac{W_{s}}{I_{l s} \cdot E_{l}} \tag{61}
\end{equation*}
$$

For equation 59:
$\mathrm{W}_{\mathrm{s}}=\begin{aligned} & \text { watts input per phase at blocked rotor rated voltage } \\ & \text { condition. }\end{aligned}$
$I_{l_{s}}=$ phase current at blocked rotor rated voltage condition.
$\mathrm{E}_{1}=$ rated voltage.
Next using the coordinate system X^{\prime}, Y^{\prime} find the abcissa x_{s}^{\prime} and the ordinate y_{s}^{\prime} for point P_{s} as follows:

$$
\begin{equation*}
x_{s}^{\prime}=x_{s}-x_{l a} \tag{62}
\end{equation*}
$$

$$
\begin{equation*}
y_{s}^{\prime}=y_{s}-y_{l a} \tag{63}
\end{equation*}
$$

where:

$$
\begin{align*}
& x_{l a}=I_{l a} \sin \left|\theta_{l a}\right| \tag{64}\\
& y_{l a}=I_{l a} \cos \left|\theta_{l a}\right| \tag{65}
\end{align*}
$$

Finally, determine the abcissa $x_{s}^{\prime \prime}$ and the ordinate $y_{s}^{\prime \prime}$ for point P_{s} using the coordinate system $X^{\prime \prime}, Y^{\prime \prime}$.

$$
\begin{align*}
& x_{s}^{\prime \prime}=x_{s}^{\prime} \cos 2 \alpha+y_{s}^{\prime} \sin 2 \alpha \tag{66}\\
& y_{s}^{\prime \prime}=y_{s}^{\prime} \cos 2 \alpha-x_{s}^{\prime} \sin 2 \alpha \tag{67}
\end{align*}
$$

When $I_{l_{a}}, \theta_{l a}, 2 \alpha, a$, and b have been found, everything is known in order to draw the elliptical current locus. Referring to Fig. 11 , first draw $I_{l a}$ at an angle $\theta_{l a}$ with the Y-axis. Next draw the line $O^{\prime \prime} B=2 a$ at an angle 2α with the X-axis. On the middle of this line, point C, draw two circles, one with radius a and one with radius b. From C draw any line $C D$; where this line crosses the outer circle, draw a line DE perpendicular to the $X^{\prime \prime}-a x i s ;$ and where the line $C D$ crosses the inner circle, draw a line FG parallel with the X "-axis. Where the line $D E$ and FG intersect, there is a point on the ellipse. By successful repetitions of this procedure, enough points can be obtained so that the ellipse can be drawn by free hand or with a French curve.

Example Problem I

Machine tested: Westinghouse Lifeline Induction Motor $5-\mathrm{hp}, 1750-\mathrm{rpm}, 220 / 440-\mathrm{volt}, 3$-phase,
60 -cycle, Nema Design A.

All values below refer to phase values if not otherwise designated. No load test gave the following result:

$$
\begin{aligned}
W_{n} & =100 \text { watts } \\
I_{1 n} & =6.00 \text { amps } \\
E_{1} & =127 \text { volts } \\
\text { F\&W } & =20 \text { watts }
\end{aligned}
$$

Blocked rotor test gave the following result:

Primary resistance measurement gave the following result:

$$
r_{1}=.45 \mathrm{ohm}
$$

From equation 49:

$$
\begin{aligned}
& r_{0}=\left(W_{n}-I_{1} n_{n}^{2} r_{1}-F \& W\right) / I_{l n}^{2} \\
& r_{0}=\left(100-6^{2} \times .45-20\right) / 6^{2}=1.79 \mathrm{ohm}
\end{aligned}
$$

From equation 50:

$$
\begin{aligned}
& x_{1}=\frac{1}{2} \sqrt{\left(E_{18} / I_{1 s}\right)^{2}-\left(W_{s} / I_{1 s}^{2}\right)^{2}} \\
& x_{1}=\frac{1}{2} \sqrt{(60 / 34.6)^{2}-\left(1040 / 34.6^{2}\right)^{2}}=.750 \mathrm{hm}
\end{aligned}
$$

From equation 5l:

$$
x_{0}=E_{1} / I_{l n}-x_{1}
$$

$$
x_{0}=127 / 6-.75=20.4 \mathrm{ohm}
$$

From equation 48: $\quad I_{l a}=\frac{E_{1}(\text { rated })}{\left(r_{0}+r_{1}\right)+g\left(x_{0}+x_{1}\right)}$

$$
\begin{aligned}
& I_{1 a}=\frac{127}{(1.79+.45)+j(20.4+.75)} \\
& I_{l_{a}}=5.98 \angle-83.95^{\circ} \mathrm{amps}
\end{aligned}
$$

From equation 13:

$$
\begin{aligned}
& \mathrm{m}^{2}=\frac{\left(r_{0}+r_{1}\right)^{2}+\left(x_{0}+x_{1}\right)^{2}}{r_{0}^{2}+x_{0}^{2}} \\
& \mathrm{~m}^{2}=\frac{(1.79+.45)^{2}+(20.4+.75)^{2}}{1.79^{2}+20.4^{2}}=1.064
\end{aligned}
$$

From equation 14:

$$
\begin{gathered}
\alpha=\tan ^{-1}\left(r_{0}+r_{1}\right) /\left(x_{0}+x_{1}\right)-\tan -1 r_{0} / x_{0} \\
\alpha=\tan ^{-1} \frac{1.79+.45}{20.4+.75}-\tan ^{-1} \frac{1.79}{20.4}=1.01^{0} \\
\text { or } 2 \alpha=2.02^{\circ}
\end{gathered}
$$

Let:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{I}_{\mathrm{s}}}=60 \mathrm{volts} \\
& \mathrm{I}_{\mathrm{is}}=34.6 \mathrm{amps} \\
& \mathrm{~W}_{\mathrm{s}}=1040 \mathrm{watts} \\
& \theta_{i_{\mathrm{s}}}=-59.80
\end{aligned}
$$

And let:

$$
\begin{aligned}
& E_{l_{\mathrm{s}}^{\prime \prime}}^{\prime \prime}=80 \mathrm{volts} \\
& I_{l_{\mathrm{s}}^{\prime}}=48.2 \mathrm{amps} \\
& \mathrm{~W}_{\mathrm{s}}^{\prime \prime}=2110 \mathrm{watts} \\
& \theta_{l_{\mathrm{s}}}^{\prime \prime}=-56.7^{\circ}
\end{aligned}
$$

From equation 53:

$$
\begin{aligned}
& \left(x_{h}+x_{2}\right)^{\prime}=\sqrt{\left(E_{i_{s}} / I_{i_{s}}\right)^{2}-\left(W_{s}^{1 / I} I_{s}^{2}\right)^{2}} \\
& \left(x_{h}+x_{2}\right)^{\prime}=\sqrt{(60 / 34.6)^{2}-\left(1040 / 34.6^{2}\right)^{2}} \\
& \left(x_{h}+x_{2}\right)^{\prime}=1.50 \text { ohms }
\end{aligned}
$$

From equation 52:

$$
I_{i_{b}}=I_{1_{s}}-I_{1 a}
$$

$$
I_{i b}=34.6 \angle-59.8-5.98 \angle-83.95=29.2 \angle-55.0 \mathrm{amps}
$$

Similarly:

$$
\begin{aligned}
& \left(x_{h}+x_{2}\right)^{\prime \prime}=(80 / 48.2)^{2}-\left(2110 / 48.2^{2}\right)^{2}=1.39 \mathrm{ohms} \\
& I_{I b}^{\prime \prime}=48.2 \angle-56.7-5.98 \angle-83.95=43.0 \angle-53.0 \mathrm{amps}
\end{aligned}
$$

Using equation 54:

$$
\begin{aligned}
& \frac{\left(\frac{a}{b}\right)^{2}-\left[\left(\frac{a}{b}\right)^{2}-1\right] \frac{I_{1 b}^{2} m^{4}\left(x_{h}+x_{2}\right)^{\prime 2}}{E_{1}^{2}(\text { rated })}}{\left(x_{h}+x_{2}\right)^{\prime}}= \\
& \left(\frac{a}{b}\right)^{2}-\left[\left(\frac{a}{b}\right)^{2}-1\right] \frac{I_{1 b}^{\prime \prime} m^{4}\left(x_{h}+x_{2}\right)^{\prime 2}}{E_{1}^{2}(\text { rated })} \\
& \left(x_{h}+x_{2}\right)^{n}
\end{aligned}
$$

$$
\frac{\left(\frac{a}{b}\right)^{2}-\left[\left(\frac{a}{b}\right)^{2}-1\right] \frac{29.2^{2} \times 1.064^{2} \times 1.50^{2}}{127^{2}}}{1.50^{2}}=
$$

$$
\frac{\left(\frac{a}{b}\right)^{2}-\left[\left(\frac{a}{b}\right)^{2}-1\right] \frac{43^{2} \times 1.064^{2} \times 1.39^{2}}{127^{2}}}{1.39^{2}}
$$

Solution of this equation gives:

$$
\frac{a}{\bar{b}}=1.54
$$

From equations 59 and 60:

$$
x_{s}=I_{1_{\mathrm{s}}} \sin \left|\theta_{I_{\mathrm{s}}}\right|=85.7 \sin 53.6=69
$$

$$
y_{s}=I_{1 \mathrm{~s}} \cos \left|\theta_{1 \mathrm{~s}}\right|=85.7 \cos 53.6=50.8
$$

From equations 64 and 65:

$$
\begin{aligned}
& x_{l a}=I_{1 a} \sin \left|\theta_{1 a}\right|=5.98 \sin 83.95=5.94 \\
& y_{1 a}=I_{1 a} \cos \left|\theta_{1 a}\right|=5.98 \cos 83.95=.54
\end{aligned}
$$

From equations 62 and 63:

$$
\begin{aligned}
& x_{\mathrm{s}}^{\prime}=\mathrm{x}_{\mathrm{s}}-\mathrm{x}_{\mathrm{la}}=69-5.94=63.06 \\
& \mathrm{y}_{\mathrm{s}}^{\prime}=\mathrm{y}_{\mathrm{s}}-\mathrm{y}_{1 \mathrm{a}}=50.8-.54=50.26
\end{aligned}
$$

From equations 66 and 67:
$x_{8}^{\prime \prime}=x_{g}^{\prime} \cos 2 \alpha+y_{g}^{\prime} \sin 2 \alpha=63.6 \cos 2.02+50.26 \sin 2.02=64.8$
$y_{g}^{\prime \prime}=y_{g}^{\prime} \cos 2 \alpha-x_{g}^{\prime} \sin 2 \alpha=50.26 \cos 2.02-63.6 \sin 2.02=48.1$
From equations 57 and 58:

$$
\begin{aligned}
& a=\frac{\left(x_{s}^{\prime \prime}\right)^{2}+\left(\frac{a}{b} y_{s}^{\prime \prime}\right)^{2}}{2 x_{s}^{\prime \prime}}=\frac{64.8^{2}+(1.54 \times 48.1)^{2}}{2 \times 64.8}=74.6 \\
& b=a /(a / b)=74.6 / 1.54=48.5
\end{aligned}
$$

The elliptical diagram resulting from these calculations is shown in Fig. 12. Also on the same curve sheet is plotted the actual current locus as obtained from test data. Test data points are designated by the symbol, \odot. It is seen that the ellipse follows closely the current locus as obtained from test data. Ho's exact circle diagram, which also is drawn in on Fig. 12, is seen to deviate considerably from actual test performance.

The fact that the elliptical diagram follows closely the actual current locus as obtained from test means that for any

																											+10
					5																						\#
					0										8								,	-	$0{ }^{3}$,
					${ }^{5}$																5	$\stackrel{\sim}{1}$?	O			B
					0																-	$\stackrel{0}{ }$	\bigcirc		0		-
																								,	-		
																							,				H
					\%																		${ }^{\text {x }}$		z		
					-										9								,		"		O
				$\stackrel{H}{\square}$	\%																	<	1	,	$\stackrel{\sim}{c}$		-
																							5				B
					\square																,	0	8		03		
					+																		$\underline{0}$		-		,
															-								4		${ }^{3}$		O
					,										$\xrightarrow{\square}$												
										4													${ }^{\mathrm{N}}$	-	${ }^{\circ} \frac{8}{2}$		-
																											-
				/					1																		
										0																	
																,											
																$\stackrel{5}{4}$											
				,												2											
				,																							
				/												$\underline{\sim}$											
								-					x														
																0											
																,											
									,							3											
																3											
																n											
																W											
													®														
																o											
															\bigcirc)					
															-												
							\bigcirc						-								0	1					
													\checkmark								,						
										dw			N	प8	O			mo									

current the power factor as well as the power input to the motor and the power output of the machine, if used as a generator, will be correct, if determined from the elliptical diagram.

In order to obtain and check torque, power output of the motor (or power input for generator action), slip, and efficiency, the line $O^{\prime \prime} H$ has to be determined. This may be done by finding the distance KH which in ampere units is equal to $\left(\mathrm{r}_{\mathrm{h}} \mathrm{I}_{18}^{2}\right) / 127$. The resistance r_{h} may be found from equation 4 as follows:

$$
r_{h}+j x_{h}=\frac{\left(r_{0}+j x_{0}\right)\left(r_{1}+j x_{1}\right)}{\left(r_{0}+r_{1}\right)+j\left(x_{0}+x_{1}\right)}
$$

$r_{h}+j x_{h}=\frac{(1.79+j 20.4)(.45+j .75)}{(1.79+.45)+j(20.4+.75)}=(.415-j .73) 0 \mathrm{hm}$
Or:

$$
r_{h}=.415 \mathrm{ohm}
$$

When calculating the value for r_{h} above, r_{1} was taken as the direct current primary resistance. Actually, however, the 60cycle value of r_{1} should have been used. Usually, the 60-cycle value of the primary resistance is at least l.l times its direct current value. Thus,

$$
r_{1}(60 \text {-cycle })=1.1 \times .45=.495 \mathrm{ohm}
$$

Calculating r_{h} using $r_{1}=.495$ ohm gives:
$r_{h}+j x_{h}=\frac{(1.79+j 20.4)(.495+j .75)}{(1.79+.495)+j(20.4+.75)}=(.46+j .73) \mathrm{ohm}$
Or:

$$
r_{h}=.46 \mathrm{ohm}
$$

It is seen from the calculation above that r_{h} is approximately equal to the direct current resistance of the primary circuit.

Therefore, to simplify the calculation, r_{h} may be assumed equal to the $r_{l}(d . c$.$) , which in this example was .45 \mathrm{ohm}$. Consequently:

$$
K H=\frac{.45 \times 85.7^{2}}{127}=26
$$

If a reliable measurement can be taken of torque, T_{8}, at blocked rotor, rated voltage condition, then $P_{s} H$ can be calculated as follows:

$$
\begin{align*}
\mathrm{P}_{\mathrm{s}} \mathrm{H}= & \frac{1}{3} \times \frac{\mathrm{T}_{\mathrm{s}}}{\mathrm{E}_{1}} \times \frac{\text { syn. rom }}{7.04} \tag{68}\\
& \text { where, } \mathrm{T}_{\mathrm{s}}=\text { total torque in lb } \times \mathrm{ft}
\end{align*}
$$

The value of $\mathrm{P}_{\mathrm{s}} \mathrm{H}$ may then be used as a check for the value of KH .

PERFORMANCE CHARACTERISTICS FOR A 5-HP, 1750-RPM, 220/440-VOLT, 3-PHASE, 60-CYCLE, WESTINGHOUSE LIFELINE INDUCTION MACHINE, NEMA DESIGN A. AS OBTAINED FROM THE ELLIPTICAL DIAGRAM - THE TWO TESTS METHOD.
Current
at 127

Volt/ph \quad\begin{tabular}{l}
Elect.

power

input

\quad inorque \quad

Mech.

power

output

\quad

Effi-

ciency

\quad

Power

factor
\end{tabular} Slip

AMP KW LBxFT HP
Motor Action:

8	1.975	6.33	2.10	.794	.645	.0273
10	2.915	9.61	3.16	.807	.751	.0394
12	3.735	12.44	4.03	.807	.815	.0506
14	4.490	15.00	4.80	.797	.843	.0637
16	5.220	17.35	5.49	.784	.858	.0746
18	5.940	19.60	6.13	.769	.868	.0864
20	6.630	21.62	6.66	.750	.871	.0990
22	7.290	23.47	7.13	.730	.871	.1120
24	7.950	25.27	7.56	.710	.870	.1245

Generator Action:

	Output KW		$\begin{gathered} \text { Input } \\ \text { HP } \end{gathered}$			
8	1.734	7.99	2.81	. 828	. 626	. 0269
10	2.655	11.86	4.21	. 846	. 700	. 0372
12	3.470	15.60	5.60	. 830	. 760	. 0485
14	4.215	18.87	6.82	. 828	. 792	. 0560
16	4.920	22.13	8.10	. 814	. 808	. 0680
18	5.600	25.43	9.35	. 803	. 817	. 0728
20	6.250	28.73	10.62	. 788	. 823	. 0817
22	6.860	31.83	11.88	. 774	. 824	. 0887
24	7.470	34.83	13.10	. 765	. 821	. 0970

PERFORMANCE CHARACTERISTICS FOR A 5-HP, 1750-RPM, 220/440-VOLT, 3-PHASE, 60-GYCLE, WESTINGHOUSE LIFELINE INDUCTION MACHINE, NEMA DESIGN.

DYNAMOMETER TEST CHARACTERISTICS

$\begin{aligned} & \text { Current } \\ & \text { at } 127 \\ & \text { olt/ph } \end{aligned}$	Elect. power input	Torque	Mech. power output	Efficiency	Power factor	Slip
AMPS	KW	LBxFT	HP			
Motor Action:						
6.00	. 300	0.00	0.00	. 000	. 131	
6.43	1.025	2.15	0.75	. 545	. 418	. 0042
8.45	2.220	6.50	2.12	. 713	. 659	. 0105
11.03	3.450	10.50	3.52	. 760	. 821	. 0170
14.08	4.525	14.70	4.91	. 808	. 843	. 027
17.66	5.825	18.90	6.23	. 797	. 861	. 039
21.50	7.225	23.10	7.56	. 780	. 881	. 043
27.00	8.725	27.30	8.79	. 751	. 847	. 061
33.00	10.700	31.50	9.91	. 691	. 851	. 083
41.50	12.800	35.70	10.72	. 625	. 810	. 122
85.70	19.350		0.00	. 000	. 594	1.000
Brake Action:						
	Input		Input			
	KW		HP			
91.00	20.400	42.0	20.60		. 59	1.43
93.80	21.200	43.6	25.90		. 59	1.73
96.00	21.600	45.2	32.40		. 59	2.09

| GeneratorAction:
 Output | | Input |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | KW

Sample Calculation for Table I

The results shown in Table I were found by drawing an elliptical diagram similar to that shown in Fig. 12, but of larger scale, so that more accurate results could be obtained. Motor Action:

For the last reading, $I_{1}=24 \mathrm{amps}$. With center at the origin, point 0, a circular arc with a radius representing 24 amps. was drawn. Where this arc intersected the motor action side of the elliptical diagram is marked as point P. A line was drawn from origin to this point. The angle between the vertical axis and this line was measured and found to be 29.6 degrees. From point P, two lines were drawn, one perpendicular to the horizontal axis and the other perpendicular to the major axis of the ellipse. The following distances were measured:

$$
\begin{aligned}
& \mathrm{PD}=20.85 \\
& \mathrm{~PB}=17.10 \\
& \mathrm{PA}=14.97 \\
& \mathrm{AB}=2.13
\end{aligned}
$$

Input Power $=3 \times E_{1} / \mathrm{ph} \times \mathrm{PD}=3 \times 127 \times 20.85=7950$ watts $=$ 7.95 KW
$\begin{aligned} \text { Torque } & =\left(3 \times \mathrm{E}_{1} / \mathrm{ph} \times \mathrm{PB}-3 \times \mathrm{F} \& \mathrm{~W} / \mathrm{ph}\right) \frac{7.04}{\text { syn. R.P.M. }} \\ & =(3 \times 127 \times 17.10-3 \times 20) \frac{7.04}{1800}=25.27 \mathrm{lb} \times \mathrm{ft}\end{aligned}$
Output power $=3 \times E_{1} / \mathrm{ph} \times \mathrm{PA}-3 \times \mathrm{F} \& \mathrm{~W} / \mathrm{ph}$
$=3 \times 127 \times 14.97-3 \times 20=5640$ watts Or output power $=5640 / 746=7.56 \mathrm{HP}$

Efficiency $=$ Output power/Input power $=5640 / 7950=.710$

Power factor $=\cos 29.6=.870$
Slip $=A B / P B=.1245$
Generator Action:
For the last reading, $I_{1}=24$ amps. With center at the origin, point 0, a circular arc with a radius representing 24 amps was drawn. Where this arc intersected the generator action side of the elliptical diagram is designated as point Q. A line was drawn from origin to this point. The angle between the vertical axis and this line was measured and found to be 34.80 degrees. From \& two lines were drawn, one perpendicular to the horizontal axis and the other perpendicular to the major axis of the ellipse. The following distances were measured:

$$
\begin{aligned}
\mathrm{QE} & =19.60 \\
\mathrm{QB} & =23.20 \\
\mathrm{QA} & =25.45 \\
\mathrm{AB} & =2.25
\end{aligned}
$$

Output power $=3 \times E_{1} / \mathrm{ph} \times \mathrm{QE}=3 \times 127 \times 19.60=7470$ watts $=$ 7.47 KW

Torque $\quad=\left(3 \times \mathrm{E}_{1} / \mathrm{ph} \times \mathrm{QB}+3 \times \mathrm{F} \& W / \mathrm{ph}\right) \frac{7.04}{\operatorname{syn} . \text { R.P.M. }}$

$$
=(3 \times 127 \times 23.2+3 \times 20) \frac{7.04}{1800}=34.83 \mathrm{lb} \times \mathrm{ft}
$$

Input power $=3 \times \mathrm{E}_{1} / \mathrm{ph} \times Q A+3 \times \mathrm{F} \& W / \mathrm{ph}$

$$
=3 \times 127 \times 25.45+3 \times 20=9760 \text { watts }
$$

$$
\text { Or input power }=9760 / 746=13.10 \mathrm{HP}
$$

Efficiency $=$ Output power $/$ Input power $=7470 / 9760=.765$
Power factor $=\cos 34.8=.821$
Slip $=A B / Q B=2.25 / 23.20=.0970$

																													\bigcirc
																													\cdots
																1													
																品					1)							
																$\underline{2}$						$\stackrel{1}{4}$							2
																													C. 2
																						7							95
																													z
				<	C						\cdots						9												11
					\sim	n																							0
						O					-					+													
			0	-	2	\%					$\stackrel{ }{\circ}$																		
				2													\%												
			2	-	7	0																		1					\cdots
			5	1																									
				$9 \times$	0																								5
			1	O	W	-	$\stackrel{\square}{2}$																				\cdots		2
				,	T	-	$\frac{1}{4}$																	4			4		∞
				Σ	-		(1)																						
				z	θ	0	1									\bigcirc													
				O	-	H	\square																						
					-	H																							
								∞																					
			${ }^{*}$?	,																								
			N	3 -	\bigcirc	+		8																					N
			N	\square		,		${ }_{5}$																					
			N																										
						ω																							
																								\pm					
																		2V]			108								
						\pm																							
																		2	3		13 3								
						\bigcirc				\uparrow	\bigcirc				N									${ }^{+}$				¢	
						L				9					or														
															,	8			30	O8	01								
						\bigcirc																		त				\bigcirc	
											M																		

Derivation of An Analytical Calculating Chart to be used with The Two Tests Elliptical Diagram

In example problem I, the induction machine characteristics were obtained by measuring distances on the elliptical diagram. A rather large diagram had to be drawn for this purpose in order to measure the distances precisely. For this reason it will be in many cases inconvenient to obtain the performance characteristics of the induction machine by measuring distances on the diagram. Therefore, an analytical method of obtaining the performance characteristics will be introduced, followed by an example problem.

Referring to Fig. 15:
The values of $x_{l a}, y_{l a}, x_{s}^{\prime \prime}$, and $y_{s}^{\prime \prime}$ are determined from equations 59-65.

$$
\begin{align*}
K H & =\frac{r_{h} I_{l o}^{2}}{E_{l}(r a t e d) / p h} \text { where: } r_{h} \text { can be taken as } r_{I}(\text { d.c. }) \\
c & =\sqrt{a^{2}-b^{2}} \tag{70}
\end{align*}
$$

$\stackrel{F}{\ddagger}$

FIG. 15. ELLIPTICAL DIAGRAM OF A POLYPHASE INDUCTION MACHINE.

Analytical Calculating Chart for a Three Phase Induction Machine

1. Choose R_{1}, R_{I} being greater than ($a-c$)
2. $R_{2}=2 a-R_{1}$
3. $\varnothing=\cos ^{-1} \frac{R_{2}^{2}-R_{1}^{2}-4 c^{2}}{4 c R_{I}}$
4. $P C=R_{1} \sin \varnothing$
5. $O^{\prime \prime} C=(a-c)-R_{I} \cos \varnothing$
6. $B C=O^{N C} \frac{K H}{x_{S}^{n}}$
7. $\quad A C=O^{\prime \prime} C\left(y_{S}^{\mu} / x_{S}^{\prime \prime}\right)$
8. $P D=y_{l a}+O M C \sin 2 \alpha+P C \cos 2 \alpha$

Motor Action:
9. Output watts $=3 \times \mathrm{E}_{1} / \mathrm{ph} \times(\mathrm{PC}-\mathrm{AC})-3 \times \mathrm{F} \& \mathrm{~W} / \mathrm{ph}$;

$$
\mathrm{HP}=\frac{\text { Output watts }}{746}
$$

10. Input watts $=3 \times \mathrm{E}_{1} / \mathrm{ph} \times \mathrm{PD}$
11. Power factor $=\cos \left(\tan ^{-1} \frac{x_{1 a}+\left(O^{\prime \prime} C-P C \tan 2 \alpha\right) \cos 2 \alpha}{P D}\right)$
12. Phase current $=P D /$ (power factor)
13. Torque $=\left[3 \times \mathrm{E}_{1} / \mathrm{ph} \times(P C-B C)-3 \times \mathrm{F} \& \mathrm{~W} / \mathrm{ph}\right] \frac{7 \cdot 04}{\operatorname{syn} \cdot \mathrm{R} \cdot \mathrm{P} \cdot \mathrm{M}}$.
14. Slip $=(A C-B C) /(P C-B C)$
15. Efficiency $=$ Output watts / Input watts

Generator Action:
16. O OHG $=0$ O $C+P C \tan 2 \alpha$
17. $\mathrm{QE}=\mathrm{PC} / \cos 2 \alpha-\left(\mathrm{OH}^{\prime \prime} \sin 2 \alpha+\mathrm{y}_{12}\right)$
18. Output watts $=3 \times \mathrm{E}_{1} / \mathrm{ph} \times \mathrm{QE}$
19. Input watts $=3 \times E_{1} / \mathrm{ph} \times(\mathrm{PC}+\mathrm{AC})+3 \times \mathrm{F} \mathrm{FW} / \mathrm{ph}$;

$$
\mathrm{HP}=\frac{\text { Input watts }}{746}
$$

20. Power factor $=\cos \left(\tan ^{-1} \frac{x_{1 a}+0^{\prime \prime} G \cos 2 \alpha}{Q E}\right.$)
21. Phase current $=Q E /$ (power factor)
22. Torque $=\left[3 \times \mathrm{E}_{1} / \mathrm{ph} \times(\mathrm{PC}+\mathrm{BC})+3 \times \mathrm{F} \& \mathrm{~W} / \mathrm{ph}\right] \frac{7.04}{\text { syn. R.P.M. }}$
23. Slip

$$
=(A C-B C) /(P C+B C)
$$

24. Efficiency = Output watts / Input watts

Example Problem II

Machine tested: Reliance Type A-A, 5-hp, $1155 \mathrm{rpm}, 220-\mathrm{volt}$, 3 -phase, 60-cycle, induction motor.

All values refer to phase value if not otherwise designated.

No-load test gave the following result:

$$
\begin{aligned}
W_{n} & =58.33 \text { watts } \\
I_{1 n} & =5.25 \text { amps } \\
E_{1} & =127 \text { volts } \\
F \& W & =6 \text { watts }
\end{aligned}
$$

Blocked rotor test gave the following result:

$\begin{aligned} & W_{\text {s }} \\ & \text { watts } \end{aligned}$	$\begin{aligned} & I_{l_{\mathrm{s}}} \\ & \text { amps } \end{aligned}$	$\begin{gathered} \mathrm{E}_{1 \mathrm{l}_{8}} \\ \text { volits } \end{gathered}$	$\begin{gathered} \theta_{\text {ls }} \\ \text { degrees } \end{gathered}$
638	25.0	57.8	- 63.8
1062	33.5	72.7	- 64.15
4450	71.5	127.0	- 60.65

Primary resistance measurement gave the following result:

$$
r_{1}=.355 \mathrm{ohm}
$$

From equation 49:

$$
\begin{aligned}
& r_{0}=\left(W_{n}-I_{1 n}^{2} r_{1}-F \& W\right) / I_{1 n}^{2} \\
& r_{0}=\left(58.33-5.25^{2} \times .355-6\right) / 5.25^{2}=1.54 \mathrm{ohm}
\end{aligned}
$$

From equation 50:

$$
\begin{aligned}
& x_{1}=\frac{1}{2} \sqrt{\left(E_{1 s} / I_{l s}\right)^{2}-\left(W_{s} / I_{1 s}^{2}\right)^{2}} \\
& x_{1}=\frac{1}{2} \sqrt{(57.8 / 25)^{2}-\left(638 / 25^{2}\right)^{2}}=1.036 \mathrm{ohm}
\end{aligned}
$$

From equation 5l:

$$
\begin{aligned}
& x_{0}=E_{1} / I_{1 n}-x_{1} \\
& x_{0}=127 / 5.25-1.036=23.2 \text { ohms }
\end{aligned}
$$

From equation 48:

$$
\begin{aligned}
& I_{l a}=\frac{E_{1}(\text { rated })}{\left(r_{0}+r_{1}\right)+j\left(x_{0}+x_{1}\right)} \\
& I_{l a}=\frac{127}{(1.54+.355)+j(23.2+1.036)}=5.23 \angle-85.52^{0} \mathrm{amps}
\end{aligned}
$$

From equation 13:

$$
\begin{aligned}
& \mathrm{m}^{2}=\frac{\left(r_{0}+r_{1}\right)^{2}+\left(x_{0}+x_{1}\right)^{2}}{r_{0}^{2}+x_{0}^{2}} \\
& m^{2}=\frac{(1.54+.355)^{2}+(23.2+1.036)^{2}}{1.54^{2}+23.2^{2}}=1.1
\end{aligned}
$$

From equation 14:

$$
\begin{array}{r}
\alpha=\tan ^{-1}\left(r_{0}+r_{1}\right) /\left(x_{0}+x_{1}\right)-\tan ^{-1} r_{0} / x_{0} \\
\alpha=\tan ^{-1} \frac{1.54+.355}{23.2+1.036}-\tan \frac{1.54}{23.2}=.68 \text { degrees } \\
\text { or } 2 \alpha=1.36 \text { degrees }
\end{array}
$$

Let:

$$
\begin{aligned}
& E_{i_{s}}=57.8 \text { volts } \\
& I_{i_{s}}^{\prime}=25 \mathrm{amps} \\
& W_{s}^{\prime}=638 \mathrm{watts} \\
& \theta_{i_{s}}^{\prime}=-63.8 \text { degrees }
\end{aligned}
$$

And let:

$$
\begin{aligned}
& E_{I_{\mathrm{s}}}^{\prime}=72.7 \text { volts } \\
& I_{I_{\mathrm{s}}}^{\prime \prime}=33.5 \mathrm{amps} \\
& \mathrm{~W}_{\mathrm{s}}^{\prime \prime}=1062 \text { watts } \\
& \theta_{I_{\mathrm{s}}}^{\prime \prime}=-64.15 \text { degrees }
\end{aligned}
$$

From equation 53:

$$
\begin{aligned}
& \left(x_{h}+x_{2}\right)=\sqrt{\left(E_{i_{s}} / I_{i_{s}}\right)^{2}-\left(W_{s}^{1} / I_{i s}^{1}\right)^{2}} \\
& \left(x_{h}+x_{2}\right) \cdot=\sqrt{(57.8 / 25)^{2}-\left(638 / 25^{2}\right)^{2}}=2.07 \text { ohms }
\end{aligned}
$$

From equation 52:

$$
\begin{aligned}
& I_{l_{b}}=I_{I_{s}}-I_{l_{a}} \\
& I_{I_{b}}^{\prime}=25 \angle-63.8-5.23 \angle-85.52=20.2 \angle-58.3 \mathrm{amps}
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
\left(x_{h}+x_{2}\right)^{\prime \prime} & =\sqrt{(72.7 / 33.5)^{2}-\left(1062 / 33.5^{2}\right)^{2}}=1.955 \mathrm{ohm} \\
I_{1 b}^{\prime \prime} & =33.5 \angle-64.15-5.23 \angle-85.52=28.05 \angle-60.4 \mathrm{amps}
\end{aligned}
$$

From equation 54:

$$
\begin{aligned}
& \frac{\left(\frac{a}{b}\right)^{2}-\left[\left(\frac{a}{\bar{b}}\right)^{2}-1\right] \frac{I 1_{b}^{2} m^{4}\left(x_{h}+x_{2}\right) 1^{2}}{E_{1}^{2}(\text { rated })}}{\left.\left(x_{h}+x_{2}\right)\right)^{\prime}}= \\
& \frac{\left(\frac{a}{b}\right)^{2}-\left[\left(\frac{a}{b}\right)^{2}-1\right] \frac{I_{1 b}^{2} m^{4}\left(x_{h}+x_{2}\right) 1^{2}}{E_{1}^{2}(\text { rated })}}{\left(x_{h}+x_{2}\right)^{\prime \prime}} \\
& \frac{\left(\frac{a}{b}\right)^{2}-\left[\left(\frac{a}{b}\right)^{2}-1\right] \frac{20.2^{2} \times 1.1^{2} \times 2.07^{2}}{127^{2}}}{2.07}= \\
& \frac{\left(\frac{a}{b}\right)^{2}-\left[\left(\frac{a}{b}\right)^{2}-1\right] \frac{28.05^{2} \times 1.1^{2} \times 1.955^{2}}{127^{2}}}{1.955}
\end{aligned}
$$

The solution of this equation gives:

$$
\frac{\mathrm{a}}{\bar{b}}=1.51
$$

From equations 59 and 60:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{s}}=I_{I_{\mathrm{s}}} \sin \left|\theta_{I_{\mathrm{s}}}\right|=71.5 \sin 60.65=62.3 \\
& \mathrm{y}_{\mathrm{s}}=I_{I_{\mathrm{s}}} \cos \left|\theta_{I_{\mathrm{s}}}\right|=71.5 \cos 60.65=35.1
\end{aligned}
$$

From equations 64 and 65:

$$
x_{l a}=I_{l a} \sin \left|\theta_{1 a}\right|=5.23 \sin 85.52=5.22
$$

																																	\square	T]
		60																																
		40												HO^{\prime}		Exac				cle		diag	SA	M										
																			E	W			TS											
																			,				S											
						,																												
		20			\bigcirc	/																												
	$\frac{5}{4}$			\%	\bigcirc																													
				0	-		A																											
				1			+															,												
	E			0°	+	-	${ }^{8}$					1.36		K								,												
				+																														
				,		20				40			60	\bigcirc			80				$\bigcirc 0$				20									
	,			,				OW	IERL	ESS			2RE			MPS																		
	P			¢					-RL	-as			,									,												
	m																				,													
	${ }_{2}$																																	
	e	20																																
	0	,																																
																								wo						84			M	
		40																						F A	$5 \cdot$		115	5-1	RPM		$220=$	- 70		
																															M0	-or		
																											UR	REN			cus			
																								May			51				1 ?	Ster		
		60																													-	sen		

$$
y_{l a}=I_{1 a} \cos \left|\theta_{1 a}\right|=5.23 \cos 85.52=.41
$$

From equations 62 and 63:

$$
\begin{aligned}
& x_{s}^{\prime}=x_{s}-x_{l a}=62.3-5.22=57.18 \\
& y_{s}^{\prime}=y_{s}-y_{l a}=35.1-.41=34.70
\end{aligned}
$$

From equations 66 and 67 :
$x_{s}^{\prime \prime}=x_{g}^{\prime} \cos 2 \alpha+y_{g}^{\prime} \sin 2 \alpha=57.18 \cos 1.36+34.7 \sin 1.36=58.0$ $y_{s}^{\prime \prime}=y_{s}^{\prime} \cos 2 \alpha-x_{s}^{\prime} \sin 2 \alpha=34.7 \cos 1.36-57.18 \sin 1.36=33.3$

From equations 57 and 58:

$$
\begin{aligned}
& a=\frac{\left(x_{g}^{\prime \prime}\right)^{2}+\left(\frac{a}{b} y_{s}^{\prime \prime}\right)^{2}}{2 x_{s}^{\prime \prime}}=\frac{58^{2}+(1.51 \times 33.3)^{2}}{2 \times 58}=50.8 \\
& b=a /(a / b)=50.8 / 1.51=33.6
\end{aligned}
$$

The elliptical diagram resulting from the calculation shown on pages $44-48$ is drawn on Fig. 16. Also on the same diagram sheet is plotted the actual current locus as obtained from test data. Test data points are designated by the symbol, \odot. It is seen that the elliptical diagram follows very closely the current locus as obtained from test data, while Ho's exact circle diagram, which also is drawn in on Fig. 16, deviates considerably from the actual current locus. Accordingly, it is to be expected that more accurate performance characteristics may be predicted from the elliptical diagram than from Ho's circle diagram.

In order to derive the performance characteristics from the elliptical diagram shown in Fig. 16, the analytical calculating chart shown in Table III will be used. First, however, the distance KH , and the distance, c , from the center of the ellipse to
either focus, will be calculated according to equations 69 and 70 respectively:

$$
\begin{aligned}
\mathrm{KH} & =\frac{r_{h} I_{\mathrm{l}}^{2}}{E_{1}(\text { rated }) / \mathrm{ph}}=\frac{.355 \times 71.5^{2}}{127}=14.3 \\
\mathrm{c} & =\sqrt{\mathrm{a}^{2}-\mathrm{b}^{2}}=\sqrt{50.8^{2}-33.6^{2}}=38
\end{aligned}
$$

The results obtained from the analytical calculating chart are shown in Table IV, and rearranged in Table V. Table VI shows actual test performance characteristics.

PERFORMANCE CHARACTERISTICS OF 5-HP, 1755-RPM, 220-VOLT 3-PHASE, 60-CYCLE, RELIANCE TYPE A-A INDUCTION MOTOR AS PREDICTED FROM THE TWO TESTS ELLIPTICAL DIAGRAM.

Following the Analytical Calculating Chart, Table III:

1.	13	14	15	16	18	20
2.	88.6	87.6	86.6	85.6	83.6	81.6
3.	15.7	37.2	48.8	57.9	71.03	80.54
4.	3.52	8.46	11.29	13.54	17.02	19.72
5.	.3	1.65	2.93	4.30	6.95	9.51
6.	.0738	.406	.921	1.058	1.71	2.34
7.	.1722	.947	1.683	2.47	3.99	5.45
8.	3.93	8.91	11.77	14.05	17.59	20.35
9.	1260	2842	3642	4202	4940	5422
10.	1499	3400	4480	5350	6700	7750
11.	.585	.800	.811	.837	.832	.819
12.	6.72	11.13	14.16	16.78	21.10	24.80
13.	7.61	17.90	23.50	27.75	34.10	38.70
14.	.0287	.0672	.091	.113	.149	.179
15.	.840	.836	.813	485	.738	.699
16.	.3836	1.85	3.20	4.62	7.35	9.98
17.	3.10	8.01	10.80	13.03	16.44	19.08
18.	1180	3050	4120	4965	6265	7270
19.	1425	3600	4968	6118	8020	9618
20.	.484	.750	7899	.798	.795	.782
21.	6.4	10.68	13.69	16.33	20.7	24.4
22.	8.13	19.90	26.95	32.70	41.90	49.40
23.	.0274	.061	.0801	.0966	.1218	.141
24.	.828	.847	.829	.812	.782	.756

PERFORMANCE CHARACTERISTICS OF A 56-HP, 1155-RPM, 220-VOLT, 3-PHASE, 60-CYCLE, RELIANCE TYPE A-A INDUCTION MOTOR AS PREDICTED FROM THE TWO TESTS ELLIPTICAL DIAGRAM

Rearrangement of Table IV

Current at 127 volts/ph	Elect. power input	Torque	Mech. power output	Efficiency	Power factor	Slip

AMPS KW Ib x ft HP

Motor Action:

6.72	1.499	7.61	1.69	.840	.585	.0287
11.13	3.400	17.90	3.81	.836	.800	.0672
14.16	4.480	23.50	4.88	.813	.831	.091
16.78	5.350	27.75	5.63	.785	.837	.113
21.10	6.700	34.10	6.62	.738	.832	.149
24.80	7.750	38.70	7.27	.699	.819	.179

Generator Action:

	KW		HP			
	output		input			
6.4	1.180	8.13	1.91	. 828	. 484	. 0274
10.68	3.050	19.90	4.82	. 847	. 750	. 0610
13.69	4.120	26.95	6.66	. 829	. 789	. 0801
16.33	4.965	32.70	8.21	. 812	. 798	. 0966
20.70	6.265	41.90	10.76	. 782	. 795	. 1218
24.40	7.270	49.40	12.90	. 756	. 782	. 1410

Table VI

PERFORMANCE CHARACTERISTICS OF A 5-HP, 1155-RPM, 220-VOLT, 3-PHASE, 60-CYCLE, RELIANCE TYPE A-A INDUCTION MOTOR.

Dynamometer Test Characteristics

Current at 127 volts/ph	Elect. power input	Torque	Mech. power output			Slip
volts/ph	input	Torque	power output	ciency	factor	Slip

AMPS KW lb $\mathrm{xft} \quad \mathrm{HP}$

Motor Action:

5.25	.175	0	0	0	.0875	.0017
5.43	.495	.84	. .191	.288	.239	.0042
6.43	1.272	5.20	1.175	.689	.519	.0117
7.27	1.715	7.88	1.78	.775	.618	.0141
8.37	2.247	10.50	2.37	.786	.705	.0150
9.68	2.788	13.68	3.07	.820	.756	.0171
10.77	3.180	15.75	3.53	.828	.776	.0208
12.33	3.740	18.90	4.21	.840	.803	.0267
14.35	4.450	22.10	4.89	.820	.815	.0333
16.40	5.105	25.20	5.54	.810	.817	.0358
18.53	5.795	28.35	6.22	.801	.821	.0417
21.13	6.475	31.50	6.84	.788	.805	.0508
24.63	7.465	35.70	7.62	.762	.796	.0666
27.80	8.290	38.90	8.17	.736	.782	.0816
32.57	9.385	42.00	8.56	.681	.757	.108
35.76	10.160	44.10	8.81	.647	.747	.125
39.13	10.850	45.20	8.61	.593	.727	.166
71.50	13.350		0	0	.490	1.000

Generator Action

	KW output	HP input				
5.73	.637	4.20	.9665	.885	.292	.0058
6.85	1.344	8.50	1.97	.914	.515	.0125
7.80	1.805	10.82	2.51	.964	.608	.0142
9.22	2.374	14.18	3.30	.963	.676	.0192
10.18	2.756	17.02	3.97	.931	.711	.0208
12.33	3.487	21.35	5.00	.934	.743	.0233
14.20	4.170	26.60	6.25	.893	.771	.0283
15.83	4.635	29.40	6.97	.890	.770	.0366
17.20	5.040	32.40	7.70	.877	.770	.0408
19.83	5.725	37.30	8.91	.862	.762	.0450
22.00	6.285	41.20	9.93	.848	.750	.0525
25.63	7.225	47.60	11.61	.834	.739	.0667
30.50	8.235	57.00	14.05	.785	.708	.0791
34.80	9.025	64.80	16.17	.749	.680	.0917
39.17	9.625	71.90	18.21	.708	.646	.1108
44.13	10.145	79.50	20.50	.663	.601	.1291

																			，	，				\prod																	\square
																									F1	16.	8														
			－														－	RA	CTE	IS	5 T	c	OF	5	5－1	－	15	$55-8$	RPM	？	vo	－	3	As	，						
	2		－			4						6	6				，	，	C．		，	S						5	，		，	－									
																	$0-$	cro	CLE．		YPE	－A－A	A， 1	REL	41 A	ANCE	C 1	INDU	UCT	TON		Mot	OR								
																							GEN	NER	AT	OR	AC	CTIO	ON												
																						TH	E		AM		ETE														
																					ROM	THE	E．T	Wo	TE	Estis	S E	ELl	IPTI			dIAE	GRAM	M							
			5			，															51.	－	－										－								
						0		1.0																														\wedge			
																								\bigcirc																	
																								ENC																	
																							－－	\rightarrow																	
																																							\bigcirc		
	8					6		8		1.0			4																			－	－	\checkmark							
					I																																	－			
																																						\triangle			
																																						A			
	6		\times			2				． 8																			$7-0$					4		1			0		
			1						\square																				1												
					m				0													PO	WER		－		4	0						，							
2					W																							－													
			1		3																		0																		
					0		Z		1														\checkmark										${ }^{\circ}$								
					，		4																																		
			2			8		4		9.6		． 2																													
					，					${ }^{1}$												1																			
4					e																																				
展			9		芷		，																1	1																	
					Σ	仡	H		2	2		0																													
																								7																	
																																		\triangle	－						
																						10	，	\bigcirc									SL1	P							
						4				． 4												0								A											
																						－	－																		
																																							0		
																							－																		
																						－	－																		
																						\bigcirc	0	O																	
						0																																			

Discussion of the Results in Example I and II

The performance characteristics as obtained from the two tests elliptical diagrams of the two machines were plotted together with the performance characteristics as obtained from the dynamometer tests. This was done in order that the results derived from the elliptical diagrams could be checked. Thus Fig. 13 and Fig. 14 show a comparison between the dynamometer test performance characteristics of the 5-hp Westinghouse Lifeline induction machine, motor and generator action respectively, and performance characteristics as obtained from the elliptical diagram of the same machine. In a similar way, Fig. 17 and Fig. 18 show a comparison between the dynamometer test performance characteristics of the 5hp Reliance induction machine, motor and generator action respectively, and performance characteristics as obtained from the elliptical diagram for the same machine.

By observing these curves, it is seen that the dynamometer test performance characteristics fall close together with the performance characteristics as obtained from the two tests elliptical diagrams regarding torque, motor input, generator output, and power factor. Motor output as obtained from the elliptical diagrams is a little smaller than the dynamometer tests show, while generator input as obtained from the elliptical diagrams is a little smaller than the dynamometer tests show. For this reason the efficiency as obtained from the elliptical diagrams is a little smaller than the dynamometer tests show. Slip as obtained from the elliptical diagrams is much greater than the test values. Generally speaking, all performance characteristics as predicted
from the two tests elliptical diagrams, except slip, are fairly close to actual test performances at and near normal operating conditions.

Chapter IV

The Three Tests Elliptical Diagram

As pointed out in Chapter III, fairly reliable results can be predicted from the two tests elliptical diagram except for slip. In order to use the two tests elliptical diagram, only two kinds of tests were necessary to run: namely, the no-load running test and the blocked rotor test. In many cases it is inconvenient to run more than these two kinds of tests. If, however, it would be possible to run a test at full load, for example, the elliptical diagram would in the first place be more easily found, and secondly, all performance characteristics including the slip could be determined accurately.

Using the test data as obtained for the 5-hp Westinghouse Lifeline induction machine and the $5-\mathrm{hp}$ Reliance induction machine, the distances $P B, P A^{\prime}$, and $A^{\prime} B$ and the distances $Q B, Q A^{\prime}$, and $A^{\prime} B$ were calculated following the opposite procedure of that shown on pages 36 and 37 . The results of these calculations are shown in Table VII and Table VIII. These distances were plotted on diagrams Fig. 12 and Fig. 16. The result shows that the line O"H falls together with the one previously calculated. The line o"A'Ps, however, does not fall together with the line $0^{\prime \prime A P_{s}}$. This fact explains the errors encountered on Figs. 13, 14, 17, and 18. The following question arose: Why does not the dotted line O"A'Ps follow the straight line $O^{\prime \prime} A P_{s}$? Any distance, $A^{\prime} B$, between line $O^{\prime \prime} H$ and line $O^{\prime \prime} A^{\prime} P_{S}$ is a function of the secondary resistance, r_{2}.

TRANSFORMATION OF PERFORMANCE CHARACTERISTICS SHOWN IN TABLE II INTO EQUIVALENT DISTANCES ON THE ELLIPTICAL DIAGRAM, FIG. 12

Motor Action:

I_{1}	PB	PA'	$A^{\prime} \mathrm{B}$
8.45	4.51	4.46	. 048
11.03	7.19	7.07	. 122
14.08	10.01	9.74	. 270
17.66	12.84	12.34	. 501
21.50	15.75	15.07	. 677
27.00	18.47	17.34	1.128
33.00	21.30	19.53	1.768
41.50	24.10	21.16	2.940

Generator Action:

I_{1}	QB	QA'	$A^{\prime} B$
7.48	4.01	4.04	.029
10.50	8.30	8.32	.124
13.17	10.78	10.99	.210
14.87	12.53	12.82	.293
16.50	14.29	14.67	.383
18.70	16.75	17.28	.528
21.36	19.50	20.26	.758
24.20	24.40	23.46	1.058
27.33	30.15	26.78	1.230
31.33	35.05	31.91	1.760
36.50	38.65	41.58	2.530
40.00			

TRANSFORMATION OF PERFORMANCE CHARACTERISTICS SHOWN IN TABLE VI INTO EQUIVALENT DISTANCES ON THE ELLIPTICAL DIAGRAM, FIG. 16.

Motor Action:

I_{1}	$P B$	$P A^{\prime}$	$A^{\prime} B$
5.43	.419	.418	.0017
6.43	2.37	2.34	.0277
7.27	3.57	3.52	.0503
8.37	4.74	4.67	.0711
9.68	6.16	6.06	.105
10.77	7.08	6.93	.147
12.33	8.50	8.27	.227
14.35	9.94	9.61	.331
16.40	11.33	10.93	.406
18.53	12.72	12.19	.532
21.13	14.15	13.43	.719
24.63	16.02	14.96	1.065
27.80	17.45	16.02	1.430
32.57	18.73	16.71	2.020
35.76	19.78	17.31	2.470
39.13	21.25	16.89	3.360

Generator Action:

I_{1}	QB	QA'	A'B
5.73	1.88	1.89	.0109
6.85	3.80	3.85	.0476
7.80	4.85	4.92	.0688
9.22	6.35	6.47	.122
10.18	7.61	7.77	.158
12.33	9.56	9.78	.223
14.20	11.90	12.24	.337
15.83	13.15	13.63	.480
17.20	14.50	15.09	.592
19.83	16.70	16.45	.752
22.00	21.40	19.36	.966
25.63	25.45	22.70	1.42
30.50	28.90	27.46	2.01
34.80	32.10	31.55	2.65
39.17	35.50	35.66	3.56
44.13		40.38	4.58

Since the line O"A'P s is curved and falls below the straight line $0{ }^{\prime \prime} \mathrm{AP}_{\mathrm{s}}$, the secondary resistance must change, being less at no-load running condition than a.t standstill. Several factors can explain these circumstances. As the phase current increases from no-load current to blocked rotor current, the frequency of the rotor increases from close to zero cycle per second up to input source frequency. Past standstill, when the machine is running in opposite direction to that of the rotating magnetic field, the frequency of the rotor quickly increases to values several times that of the source frequency.

It is a known fact that the hysteresis losses increase proportionally with the frequency and that the eddy current losses increase with the square of the frequency. ${ }^{1}$ This fact will make the value of the secondary resistance at rated load be less than its value at standstill. Also due to skin effect the secondary resistance will increase with an increase in frequency. According to Elektrische Maschinen by Rudolf Richter, skin effect alone in some cases may cause the resistance of the rotor at 50 cycle per second to be 1.75 times its d.c. value. ${ }^{2}$ However, it would be a hard job, if not impossible, to find the line O"A'P ${ }_{s}$ by trying to determine the influence of hysteresis losses, eddy current losses and skin effect.

As seen from Fig. 12 and Fig. 16, the curved line $O^{\prime \prime} A^{\prime} P_{s}$ is fairly straight from $0^{\prime \prime}$ up to at least $3 / 2$ rated load. This can be explained by the fact that from no-load and up to $3 / 2$ rated

[^3]load the frequency of the rotor is very small compared to the 60cycle source frequency. Thus, in effect, the value of the rotor resistance from no-load up to $3 / 2$ full load may be considered constant and equal to the d.c. value of the rotor resistance.

If, besides the no-load and the blocked rotor tests, it would be possible to run a test at, for example, full load, the straight portion, O"A'L, of the line O"A'P s_{s} may be drawn. In this extra test it would not be necessary to measure the torque, but a dependable measurement should be taken of the slip. ${ }^{3}$

Figure 19. Elliptical diagram for the polyphase induction machine.
${ }^{3}$ Karapetoff and Dennison, Electrical Laboratory Experiments, p. 391.

From the test at full load a point, P_{f}, is located on the current locus, see Fig. 19. In the coordinate system, X", Y", point P_{f} has the abcissa $x_{f}^{\prime \prime}$ and the ordinate $y_{f}^{\prime \prime}$.

Since the point, P_{f}, on the current locus is known, the axes of the ellipse may be determined by a much easier method than was used in Chapter III. By substituting the coordinates $x_{s}^{\prime \prime}, y_{s}^{\prime \prime}$ and $x_{f}^{\prime \prime}, y_{f}^{\prime \prime}$ in turn for x and y in the equation below, two equations with a and b as unknowns are obtained.

$$
\begin{equation*}
\frac{\left(x^{\prime \prime}-a\right)^{2}}{a^{2}}+\frac{y^{\prime \prime 2}}{b^{2}}=1 \tag{71}
\end{equation*}
$$

By solving the resulting equations, a and b may be obtained. An example will clarify the procedure to follow.

Example Problem III

From Table II, page 35, which gives the dynamometer test performance characteristics of the 5-hp, Westinghouse Lifeline induction motor, the following data are obtained:

Current at l27 volts/ph	Watts input	Power factor	Slip
14.08	4525	.843	.027

From page 28:

$$
2=2.02 \text { degrees }
$$

From page 30: $\quad x_{1 a}=5.94$

$$
y_{1 a}=.54
$$

From page 30:

$$
\begin{aligned}
& x_{g}^{\prime \prime}=64.8 \\
& y_{s}^{\prime \prime}=48.1
\end{aligned}
$$

A power factor of .843 for motor action corresponds to an angle of -32.6 degrees.

Following a procedure similar to the one shown on page 26 , $x_{f}^{\prime \prime}$ and $y_{f}^{\prime \prime}$ may be found:

$$
\begin{aligned}
& x_{f}^{\prime}=14.08 \sin 32.6-x_{1 a}=7.58-5.94=1.64 \\
& y_{f}^{\prime}=14.08 \cos 32.6-y_{1 a}=11.89-.54=11.35 \\
& x_{f}^{\prime \prime}=1.64 \cos 2.02+11.35 \sin 2.02=2.04 \\
& y_{f}^{\prime \prime}=11.35 \cos 2.02-1.64 \sin 2.02=11.29
\end{aligned}
$$

By substituting the coordinates $x_{g}^{\prime \prime}, y_{g}^{\prime \prime}$ and $x_{f}^{\prime \prime}, y_{f}^{\prime \prime}$ into equation 71, the following two equations are obtained:

$$
\frac{(64.8-a)^{2}}{a^{2}}+\frac{48.1^{2}}{b^{2}}=1
$$

$$
\frac{(2.04-a)^{2}}{a^{2}}+\frac{11.29^{2}}{b^{2}}=1
$$

The solution of these two equations gives:

$$
\begin{aligned}
& a=74.2 \\
& b=48.5
\end{aligned}
$$

These values check satisfactorily with the values obtained on page 30 by the two tests method. The elliptical diagram can now be drawn in the same way as explained on page 26 . The result is shown on Fig. 20.

The distance KH, which is given on page 33, was set off by a compass. Next the line $O^{\prime \prime} H$ was drawn. Point P_{f} was found by drawing an are with radius equal to 14.08 . From P_{f} a line was drawn perpendicular to the major axis of the ellipse. Where this line crosses the line $O^{\prime \prime} H$, is the point B. The distance $P_{f} B$ can now be measured and the distance $A^{\prime} B$ calculated from the equation $A^{\prime} B=$ slip $x P_{f} B$. $P_{f} B$ was found to be 10.2 ; therefore, $A \cdot B=.027 \times 10.2$ $=.276$. By setting this distance off from B along the line BP_{f}, point A' is located and the auxilliary line O"A'L may be drawn. The performance characteristics can now be derived from the elliptical diagram in the same way as shown in example I, Chapter III, except that A^{\prime} is used instead of A.

Performance characteristics could also be determined from the elliptical diagram by first geometrically determining the distance $M K$, and then substituting this distance for $y_{g}^{\prime \prime}$ in the analytical calculating chart shown on page 42 . In this example, however, the performance characteristics were obtained by measuring the distances on the elliptical diagram. The result is given in Table IX.

PERFORMANCE CHARACTERISTICS OF A 5-HP, 1750-RPM, 220/440-VOLT, 3-PHASE, 60-CYCLE, WESTINGHOUSE LIFELINE INDUCTION MOTOR, NEMA DESIGN A.

Data as obtained from the three tests elliptical diagram.

Current at 127 volts/ph	Elect. power input	Torque	Mech. power output	Efficiency	Power factor	Slip
AMPS	KW	lb xft	HP			
Motor Action:						
8	1.975	6.33	2.14	. 807	. 645	. 0114
10	2.915	9.61	3.24	. 828	. 751	. 0167
12	3.735	12.44	4.17	. 832	. 815	. 0212
14	4.490	14.99	4.98	. 828	. 843	. 0265
16	5.220	17.35	5.84	. 824	. 858	. 0305
18	5.940	19.60	6.47	. 813	. 868	. 0353
20	6.630	21.62	7.09	. 798	. 871	. 0410
22	7.290	23.47	7.66	. 784	. 871	. 0459
24	7.950	25.27	8.21	. 770	. 870	. 0514

Generator Action:

Table X

PERFORMANCE CHARACTERISTICS OF A 5-HP, 1750-RPM, 220/440-VOLT, 3-PHASE, 60-CYCLE, WESTINGHOUSE LIFELINE INDUCTION MOTOR, NEMÁ DESIGN A.

Data as obtained from Ho's exact Circle Diagram, Fig. 12

Current at l27 volts/ph	Elect. power input	Torque	Mech. onwer output	Effi- ciency	Power factor	Slip
AMPS	KW	lbxft	HP			

Motor Action:

8	2.040	6.78	2.27	.831	.668	.0191
10	2.990	10.21	3.40	.847	.785	.0271
12	3.850	13.34	4.41	.854	.840	.0341
14	4.685	16.10	5.27	.839	.871	.0438
16	5.400	18.57	6.03	.833	.887	.0516
18	6.135	21.07	6.79	.826	.896	.0594
20	6.880	23.22	7.45	.807	.903	.0677
22	7.585	25.57	8.07	.795	.906	.0774
24	8.290	27.77	8.72	.783	.908	.0846

Generator Action:

	$\begin{array}{c}\text { KW } \\ \text { output }\end{array}$		HP					
	Input							

						4				，	4										
											－										
													＋								
							－						$1{ }^{\circ}$								
							＋					4									
	\％																	5			
	${ }_{0}{ }^{2}$									W											
	${ }^{3}$		${ }^{\text {a }}$		t			8	\％	\％										\％	
	－		$\stackrel{\square}{4}$		1					12			J		${ }^{3}$					$\stackrel{2}{2}$	
	30	$\stackrel{1}{3}$	9		＋			＋		\cdots	\checkmark		$\stackrel{+}{4}$	＜	${ }^{\circ}$				4	边	
	${ }^{0} 3$	${ }^{\circ}$	－${ }_{\text {－}}$		＇			1		，	\cdots			－	，				＋	1	
	$\stackrel{3}{6}$		${ }^{\text {c }}$		46	，		，		，		\cdots		\cdots	$1+$				3		
	56	${ }_{0}{ }^{*}$	$\stackrel{\square}{3}$		，			1		，				，						2	
n	030	${ }^{4}{ }^{4}$	\cdots		＋	－		，	，	ce		\cdots	－	，	\cdots	，			，	\ldots	
0 －	F90	${ }^{\circ}$	${ }^{3}$		${ }^{4}$	，			4	30			\cdots		＋	4			18	3	
	\cdots	${ }^{-}$	\％		，	\bigcirc			，	${ }^{\text {aci }}$				O		，			1.		
			耑		－4	－				4					\checkmark				＋ 4	品	
	0		\sim_{0}			8															
	305	－	1			告	Q					P				9	\checkmark		1		
	O					4		，											\checkmark		
			2			＊				\bigcirc						－					
	$\stackrel{\circ}{-8}$																				
	y ${ }^{\text {\％}}$																				
			－${ }^{\text {x }}$																		
	㐌 c		i																		
													\bigcirc								
										$\underline{1}$				mPod							
						∞							＋								
												N3：	13	$1 \rightarrow 0$							
													－								
									no					3\＃a							

Fig. 21 and Fig. 22 show graphically the result obtained from the three tests elliptical diagram, together with the performance characteristics as obtained from the dynamometer test. Also performance çharacteristics as obtained by Ho's exact circle diagram are shown on Fig. 21 and Fig. 22. By observing these two figures, it is seen that the performance characteristics as obtained from the three tests elliptical diagram fall so to speak together with the performance characteristics as obtained from the dynamometer test. Performance characteristics as obtained from Ho's exact circle diagram, on the other hand, are seen to deviate considerably from the dynamometer test performance characteristics.

Chapter V

Conclusions

The polyphase induction machine has been subject to considerable amount of study since it first was invented. Different approaches have been made toward obtaining circle diagrams from which the performance characteristios could accurately be predioted. In most cases, however, these circle diagrams fail to be suffioiently aocurate.

Considering all the disorepancies of the exact equivalent olrouit, it is obvious that the oircular locus as developed from the ideal exact equivalent oircuit is bound to deviate from the true ourrent loous.

It 18 seen from Fig, 12 and Fig. 16 that the difference between the aotual current loous and the one formed by the exact circle diagram is relatively large. Instead of following the oiroular loous, the ourrent loous seems to desoribe part of an ellipse. These oiroumstances and also the fact that a circle is just a speoial form of an ellipse were the fundamental reasons why an ellipse rather than a oircle was ohosen to represent the current loous. It was determined that the ourrent loous tends to follow what seems to be an ellipse because of the fact that the leakage reactances change due to saturation.

In Chapter III a method was developed whereby the effects of saturation direotily was used to determine the ellipse. Using only
the no-load running test and the blocked rotor test, an elliptical diagram was obtained. From Fig. 12 and Fig. 16 it is seen that this elliptical diagram almost falls together with the current locus as obtained from actual test. Except for slip the performance characteristics obtained from the "Two Tests Elliptical Diagram" follow closely the performance characteristics as obtained from the dynamometer test at and near rated load.

The fact that the slip as obtained from the two tests elliptical diagram was in great error led to an investigation originally not planned. By converting test data into equivalent distances on the elliptical diagram, it was shown that the value of the rotor resistance is subject to great changes from blocked rotor condition down to normal operating condition. It was found that the rotor resistance at blocked rotor condition, due to hysteresis and eddy current losses and due to skin effect, was approximately twice the rotor resistance at normal operating condition for both machines that were tested. There is, however, no reason that this should be taken as a rule regarding any induction machine.

The rotor resistance at normal operating condition may be assumed equal to the direct ourrent resistance of the rotor, since under this condition hysteresis, eddy current, and skin effect are negligibly small. Unfortunately, the direct current rotor resistance of a squirrel cage rotor cannot be directly measured. For this reason a three tests method was introduced. This method, as the name implies, has the disadvantage of requiring an extra test run, preferably one at or around rated load condition. On the other hand, this method has the advantage of a more satisfactory result including slip.

The two tests as well as the three tests elliptical diagram requires more calculation than the circle diagram method. So even though the result obtained by either of the elliptical diagram methods is better than the result from the circle diagram, it is not expected that any of them will be taken into immediate use. It is hoped, however, that this paper will be of help to those who are interested in trying to find a simple and, at the same time, accurate method of predicting the characteristics of the polyphase induction machine.

BIBLIOGRAPHY

Burington, R. S. Handbook of Mathematical Tables and Formulas, Sec. Ed. Sandusky, Ohio: Handbook Publishers, Inc., 1947.

Cameron, C. F., Webking, H., and Grantham, J. "Induction Motor Characteristics." Stillwater: Oklahoma Engineering Experiment Station Publication of Oklahoma Agricultural and Mechanical College, 1947.

Jeffrey, F. "The Circle Diagram and the Induction Motor." Allis-Chalmers Manufacturing Company, paper \# 05R6393.

Karapetoff, V., and Dennison, Boyd C. Electrical Laboratory Experiments. New York: John Wiley and Sons, Inc., 1948.
Karapetoff, V., and Dennison, Boyd C. Experimental Electrical Engineering, Vol. II. New York: John Wiley and Sons, Inc., 1941.

Liwshitz-Garik, M., and Whipple, C. Electric Machinery, Vol. II. Toronto, New York, London: D. Van Nostrand Company, Inc. 1946.

Puchstein, A. F., and Lloyd, T. C. Alternating-Current Machinery, Vol. IV. New York: John Wiley and Sons, Inc., 1943.

Richter, R. Elektrische Maschinen, Vol. IV. Berlin: Verlag von Julius Springer, 1936.

Steinmetz, C. P. "The Alternating Current Induction Motor." A.I.E.E. Transaction, XIV, (1897).

Thomalen, A. A Test-Book of Electrical Engineering. London: Edward Arnold \& Co., 1925.

THESIS TITLE: Elliptical Diagrams for Induction Machinery

NAME OF AUTHOR: Alf Johan stile

THESIS ADVISER: Charles F. Cameron

The content and form have been checked and approved by the author and thesis adviser. "Instruction for Typing and Arranging the Thesis" is available in the Graduate School office. Changes or corrections in the thesis are not made by the Graduate School office or by ant committee. The copies are sent to the bindery as they are approved by the author and faculty adviser.

NAME OF TYPIST: Barbara Burns

[^0]: 3Allis Chalmer Bulletin \#05R6393, "The Circle Diagram and the Induction Motor.
 ${ }^{4}$ Rudolf Richter, Elektrische Maschinen, IV, p. 53.

[^1]: $1_{\text {Karapetoff }}$ and Dennison, Experimental Electrical Engineering, II, p. 407.

[^2]: ${ }^{2}$ Puchstein and Lloyd, Alternating Current Machines, p. 266.

[^3]: $1_{\text {Puchstein and }}$ Lloyd, op. cit., pp. 160-163.
 $2_{\text {Richter }}$, op. cit., IV, p. 221.

