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PREFACE 

The purpose of the present paper was to investigate the 

influence discontinuous input voltages have on the response 

of the various basic filters. Although the literature on 

the steady-state response of these filters is very numerous ~ 

scarcely an:y information could be obtained concerning the 

transient response. The attempt was, therefore, made to 

compute the transient responses of the basic filters taking 

into account losses in the circuit elements. The results have 

been obtained by application of the theory of Fourier trans

formation and Heaviside's theorem. 

The author would like to express his thanks to his adviser, 

David L. Johnson, for his many valuable ideas and suggestions 

and especially the careful reading or the manuscript and for 

his advice in questions concerning the language. 

Special thanks are due to Mrs. Fern B. Hall for the typing 

of this thesis with its many formulas. 
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Chapter I 

The Ideal Band-Pass Filter 

The subject of this chapter is to compute the transient that will be ex

pected at the output of a so called idealized filter; i.e., a filter which 

shows neither amplitude nor phase distortion for signals which are composed 

of frequencies lying inside the pass band of the filter. In spite of the 

fact that this filter is able to transfer any signal of this nature without 

distortion (this restriction demands that the signal be periodic) there will 

be a transient at the switching ,instant, for the theory of Fourier transfor

mation shows that every switching process inserts a frequency band of infinite 

broadness. Because the purpose of the filter is to be frequency discriminative 

one wuld. e~ect a transient at the output of the filter at the switching 

instant. 

Two possible methods of analysis of the p;roble:rn are Fouriel' transfer-, 

mation and Laplace transformat;ion. Qf' theS,e the theory of li'ourier analysts is 

more conven;J.fmt. Tlle :mere general theory of Laplace transformation would hc1.ve 

to be sp e1alized in ~uch a we;y that there wo'Uld be only a formal difference 

in the definition~ of these t r ansformations, 
~ 

ourior tranafo,..,..tion f (j"1) : ~I t (t)o-j"'t dt 

t.aplacs trl!lloformation f (a) ;
0
~~t)o·•tdt 

Tne FQ'!U' er t~~~fe;rroatign i§ ~ugh mere illu§trative for, instead of the 

gemple~ fg@tgr § whi@h has no ~hy§ieal significanoe, the parameter w 1n the 

Ftn.tPier t~rurn!'emation h s .. the e· !nif:1eano ef a £reciueney1 whieh is a very 

~ligr @@n@ept te en!ineers ru,,d phy§io1~ts, 



The first question that arises now is, 'what are the properties of an 

electrical network that shows no distortion at all; i.e., a network that re-

produces any input signal with only a change in amplitude even though the 

signal may be composed of frequencies inside a frequency band extending from 

zero to infinity (including discontinuities). According to the Fourier trans-

formation theory any input signal of this nature may be written in the fol101~ 

ing way: 

J <» ·wt, 

f (t) -= f (jW )eJ dW 

The action of the filtering process is mathematically expressed as a 

multiplication of the frequency response and a term expressing the frequency 

dependence of the transfer through the filter. Frequency response always in-

eludes both amplitude and phase r esponse. 

F 2 (jw) : F1 (jw) A (jW). A (jw) may be complex and may be 

written in the form 

A(jw) = IA(W) I ej'f(W) 

or A(jt,J) : X((A)) f jY(t.J) ., 

where 

Equation l .1 changes now into 

and 'f = tart1 (X) • 
X 

1.2 

2 

If' the signal is al,101.-,ed, to have a t.ima delay and an amp~ i tude distortion 



+<D 

f 2 (t) : K fl (t-t0 ) : K /Fl (jW) ejW(t-to) duJ 
tU) -a,l J 

= fF1 (jl..l) K e-jwto ejwt dW 1 .3 
- a, 

A comparison of equation 1.2 and 1.3 gives: 

A:K 

The amplitude characteristic of the filter has to be a constant, and the 

phase characteristic has to show a· phase delay proportional to frequency, as 

shown in Figure 1. 

IAI jY 

jt.o 

Fi g. l. Amplitude and phase characteristic of an ideal network. 

Another property of the ideal netwrk is found vecy easily. · If an 

arbitrary phase angleW0 ~s added to the phase oharacteristio, the influence 

on the output signal consists only of a change in time deley. This can be 

proved in the; following way: 

It is therefore not essential how the phase characteristic is assumed. It 

3 

X 



4. 

has only to be a str aight line and its position in the 'f-Wplane can be 

arbitrary. As a next step the constant-amplitude characteristic shall be 

narro,,,ed to a frequency band of the broadness w2 - w1 ~- There shall be a 

unit step inserted at the input of this network . The frequency distribution 

of the unit step is computed in the following way: 

(Z) 

S(jW) - 1.._(r(t) e- jwt dt - 2'irj -
0 

if a:, ·wt 
: ]._ EeJ dt - _1_ E 

2'if - 2i"jW 
() . 

f(t): u(t) E 

This voltage inserted on the ideal filter gives the frequency distri~ 

bution of the output: 

In the eJcponent appears a negative si gn in order to express a time del ay. 

The reverse transformation of this expression is 
+a, 

EK ; e- jwto ej&llt d W 
27rj w 

-oo 

f (t). 

In order to consider that the band filter only transfers frequencies from "' 1 

to W 2 only a part of the whole path of integration has to be t aken. Because 

the integration has to be done from - a, to +a> the frequencies -4i and - tu2 

must also be considered. The path of integration consists t herefore of the 

following two pieces: (Figure 2) 

. I 

-w. l 

Fig. 2. 

0 

Path of integration. 
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In all integrals of this form it must be noted whether there are poles of the 

integrand on the path of integration. Although the integrand is zero 

(for A(jW): 0) at the point w • o, this point is critical and determines in a 

way the behaviour of the transferred signal. The path of integration must 

therefore be interpreted in another way. It shall be split up in the following 

wa:y • 

First path -W2(W ( W2 

Second path -~ < IJ) < (.ell 

A subtraction of these paths gives the same path as was fo.und earlier. The 

transformation integral changes now to the following two integrals: 

-~ "i 

- .' EI~/·. ejw(t-to) EK I ejcu(t-to) d w 
t(t) _ 2f('jrr. w dw + 2,-j IIJ 

-~ ~ 
This may be written in the following w~: 

+w, +w, 

. t{t) • ff; [ I .,JW~ol dw • I ,J"''.:""to) d"' ] 1.4 

•((J, -'4 
Both ot these intepals are ot the same ldndz 

a 

I jw(t-t0 ) 

' dtu 
•ti w 

With a transtormation of variables this is transformed to 

and with 

W(t-t0 ) : u 

cz(t-t0 ) = b 

di.Cl = .ll. 
t-t0 



This may be written as 

lo5 

This integral can be split up and each term treated individually. 'rhe first 

t.erm shows a pole at t1. = o. · It is therefore finite only when the point zero 

is e,mluded; i.e., when the path of integration changes in the folloiiling way: 

(Fig. 3) 

- r O + r 
- b 

Fig. 3. Path of integration for the first termo 

The wey excluding zero shall be assmned to be a semicircle, but it could 

be another path, as can be proved with the ,aid of the theory of. residues. 

Because the integrand is an odd function, the two integrations from -b to -r 

and r to b cancel each other. The integral changes therefore to 

I CC>@ U du 
u 

u--

u: r ej'f 

du :: jrej'f d If 

lim 
r,;,:;O 

· Whereby the path of integration consists only of the following curve i 

... r . + r 

6 



The integral,therefore, transforms into: 
+~ u 

/
cos u du = j /re1; d'f = 

u · reJ 
-/, 0 

Principally there exi.sts another approach to the problem.. The function of 

complex variables gives the following theorem, called Cauchy's theorem: 

Given a function which is analytic on a closed path. The so-called 

residues of this function are defined as follows: 

R : .i./r{ z) d~ ·where z0 is the value of z at a point where 
2l/"j Z - z0 

f(z) has a pole. The value of this residue may be found as the coefficient 

of the first negative power of the power series of f(z) developed in the 

neighborhood of Z • z0 • 

7 

The theorem of Cauchy states now that the integral once around the closed 

contour is equal to the sum of the residues inside this path of integration. 

The idea of 1the cal.cul.us of residues is to change the path of integration 

along the relill axis to the path sho'tm in the figure below .. 

Ji'pr JJIQst, p1i?.ctical 13,ppl;i,cEi;l;i:1,on,i;,1 it GQ.n "b@· 1:rrovf;ld th~t the integr@l a1Png the 
-· ... I 

· :p~t4 AQB tends to ~!;l;ro, q,S th§nni.clius @f the half c;t:l;'ole 1;1;ppx-o/:l.ohes i1.1.finity~ 

This p§:th, th!:l:refo~e, goP,t:riP'l,:!;iHJl=J nothing to the tot~ integ:ral~ Aocording to 

Ogµghy' s th!:il@re.:m tl+e ;b°'tteg;ti?,l ;fx,om A to '.B mt:ist, therefore, be eqtial to the sv.m 



of the residues on the left half plane. Unfortunately Cauchy's theorem ca1111ot 

be applied to this problem, for a prerequisite for the. application of Cauchy's 

theorem is that the function, the residue or which shall be evaluated, be 

analytic on the boundary. This is not the case for the present problem, because 

there are tvJO places on the u. axis where the integrand shows a discontinuity; 

namely, at the frequency limits of the ideal filter. 

The second term in equation 1.5 is: 
.,.I, 

-.6 
/•i: n du 

This integral has no pole at u = 0 since 1i;;; 0 si: u = 1. This may be proved 

with the aid of Bernoulli-Hopital 1 s theorem, which states that 

In this case: 

lim 
x~o 

lim 
ttc o 

.f (:x) _ lim ·. f. • ~:x~ i'rxr - :x = 0 g' :x 

sin u - lim cos n = l u -u:o l 

The integrand is an even function and, ·cherefore, the integral may be written: 
. . Ii . u 

f s;n.... u d:n = 2 f'si'JJ. u du u . 1::. tl 
~u Q 

This integral is known as the "sine-integraln 

All these :integrals inserted :into equl!l.t,ion 1.4 give: 

The slopes of the first term and the second term are 

EW1 EW2 
-71 EUld rr 
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As readily seen, the higher the frequency is, the steeper is the slope of these 

terms. 

The slope of the combination of the two compone~ts is, therefore: 

The slope of the curve at the steepest point is only a function of the band 

width of the filter and is not dependent on the position of the pass band on 

the frequency axis. In order to illustrate this more theoretical derivation 

there will be given some special cases in Chapter 4. 

The response of a high-pass filter can be found when 412 in equation 1.4 

approaches infinity. Siw2(t - t) then becomes a step function with the 
I 0 

~ r--

amplitude~· for positive t and - f for negative t. The response of the high-

pass filter is, therefore: 

f ( t) :;: L. K r J[. - si· f!J. .. · (t - t )J 'iT 2 ··-1 o 

It must be noted that the computed output of the filter never contains a 

¢1.;trect...<:ri~rrent Qomponent, because the chosen path of integration carefully 

In most applications only the shG.pe of the transient 

EK For other eases th.e function ·z'"' U(t) must be added 

to the 01-1:tpm fw:i,ct,i,Ql'.l if the f:requen9y w ';;, Q is tr@sm:i.. tted thro1Jgh the filter. 

in tbe Pi:!lcntla;l;;;t©n of the ;respon,;:1e qf the high ... pass filter use col,l,ld b!3- :ma.de 

of th!3 fget thsi;t ~l the f:reqU$P.C:ies which have been ret~ined by the ,J,ow,.pass 

filt~:r ~9 th~µ~h the J:+:f.gh,,.pt:1.ss fil'ter. 'rhe i'mm of the responses of a h:tgn,,..pass 

filt~r Md.. o;f; ~ l©~PMl=l f:ilte:r v,;i,th the same l.imit .... f:requencies nm.st, th.erefore, 

be eq~ tq the PT:J,Qist@;J;rteo, t;r~sfe:rred input voltage EKU(t) 1 or in other 
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:r2 (t)HP : Kf1 (t) - r2 (t)LP 

f2 (t)BP .i;::. EK[U(t) - ~ Siwl (t - to) 1 

EY'[,._ ( ) ] : 7F II - Si'1 t - t 0 

This result is equal to equation 1.6 t·rl th the exception of the direct current, 

fili which was added to it. This way of calcu1ation :i.s valid o:nly for the ideal 
2 

low,,,,pass and high-pass filters. It may be applied to the ideal band-pass 

filter and the ideal band-eliminatio11 filter. Because the band-elintination 

""K filter transfers the frequency w : o, a a.ire ct ct1-'l'.Tent corrrponent ~ must be 
2 

added to the solution obtained ivlth the aid of the contour integra:t:ton. In 
e 

Chapter 4 use will be made of ·!:,he :relation between the band-pass filter and 

the b~,nd-elirr1ination filt.er. Th:i.s ·way of co:mputa:t,ion is much simpler and 

gives immediately the correct answer including direct-cur1·ent components. 

The only discont:i.11.uity that was considered tttrhil now was the unit-step func-

tion. '11he :response of a netwo:rk to a tuut-step gives the possibility of 

discontinuit;n i.e., ·the sudden. appliaatio:o. of a s:ine- or oos:i.ne-fm1ct:l.on. 

t 

·v.,(t) = -.~.- J v1 (t) v (t -t) i;1 r 
,g, • dt 0 

f) 

ot the filter to a st®p f'tmotfon at the input '\:.e:m:n.:1.:nalso 



a step function as small as possible and assumes that a minimal response to 

a step function results in a minimal response to any discontinuous funetion. 

11 
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Chapter II 

Transients in T and II Sections 

1. Basic Theory Qi: ~Terminal Netwrks 

The common theory of passive linear four-terminal networks shows that 

the input voltage and input current are merely linear combinations of out-

put current and output voltage. 

2.1 

These so-called chain equations are much more adequate for filter pro

blems, because a connection of two four-terminal networks in cascade re-

sults only in a matrix-multiplication of the two chain equations. The 

aik are functions of the nature of the four-terminal network. They ful

fill the relation 

a a 
11 12 

;: 1 2.2 

If th~ foux-te;rminal netwo~k is symmetrical; i,e,, ~t doee not change 

its cha.;re,ctar at an interQhMge of input te:nn:tnals and output terminals, 
) 

it will be sAewn th~t a11 : azi' 
As ~ proe)f 1 solve the eq,uations 2 ,l fo:r V 2 and r2• Ta.king into 

aoepunt tne f~Qt that beth v2 and Iz have tha wron€ direction when the 

fpu:r,.,tominal network 1:1 looked at t.rom the output terminals, the reeult 

i1n 
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-I - -2 -

Fig. 4. Fo~tern,.inal network. 

The minus signs appear because the currents are flowing away from the 

load and into the voltage source. A change in direction of the tw c~ 

rents changes the equations into the form 

2.3 

A comparison of the equations 2.3 uith 2.1 shows that the equation 

a11 : a22 must be fulfilled, if the fo~terminal net1,iork is symmetrical. 

2. The T-Type Filter 

(a) Network equations ~ ~ T-section. 

AT-section is shown in Figure 5. 



~/2 ~/2 
I 

I I 
I I 
IV1 
I 

z2 f2 
I I 
I I 

Fig. 5.' T-section. 

The loop equations for this network are given by 

From the second equation the value I1 can be computed 

\ : + [ V 2 + (tZi + Z2) !2] 
2 

This value inserted into the first of the equations 2.4 gives 

From these tw equations the network parameters are evaluated 

in the following -way 

\ 
~l: l + 2Z 

2 
2.5 



(b) Wave parameters Qf. ~ T- section . 

As the net·work parameters show, there ar e four constants that 

determine the nature of any fo'Ul:\-terminal net work. But in addition 

to these four network parameters there are two addit ional equations 

which have to be fulfilled, when the network is symmetrical and 

passive , namely, the determinant of the coefficients aik (equation 

212) mu~t be equal to l . Furt.hemn.ore °':Ll = ~zz• 

15 

For the symmetrioal and paeeive four-te:rminal network there are, 

therefore, cnJ.1 twc paramotere reqt'lired. In the oase of the T-aeotion 

the impod.anoee ~ and z2 mey be considered as suoh parameters. It 

ie ~ general oustom to chose two parameters that seem to have m.ore 

praotioal value . They are oalled the wave parameters g and Z0 • 

g is oalled the propagation constant 

Z0 is called the oharaoteri3tio impedanoe 

Tho propagation oonetant g is a me~stu-e of the relation between in

put power a.nd output power. The oharaoteristic impedance Z0 is 

identioal with the genars.D.y i.1.eed characteristic impedance . The exact 

derivation £or thaee and tho following relations may be fol.Uld in 
. 1 

textbooks dee.lina w1 th theory of netvJOrks . 

In tho same wcry as the network parameters a.1 t were evaluated :tn 

terms of z1 e.nd z;? , t h®y 1'lUcy' also 'be ovsluated in t ern.s of g and Z0 • 

The theory of oommunioa.tion networks cives t he following solu·!:.ion: 

(r,) vz '} ( ) I1 : Sin h e __.... + Cos h g I2 
0 

1 See for exa.n\')le Goldman: Tra.nsf'orme.tion 91':!:l.0.1-1.1.us ~ Eleo·tr~ 
Trs,n;ients, P• .;99. 

2.6 



These tw equations are the most important equations of the 

theory of fo~terminal networks, because they relate the network 

parameters, which may be measured at any four-terminal network, with 

16 

g and Z • This measurement consists of a measurement of input voltage 
0 

and input current in the case of short circuited output and open oil'\"" 

cuited output. Equation 2.1 shows for the different cases: 

short circuited output: v2 : 0 

open circuited output: 

V 
a.. = ...:l.. J.l V 

2 

The net-work parameters are therefore: 

8:ti = Cos h (g) 

~l III S.; ~ ,it 
z., 

z ~ .. r:s;:. 
0 rv~ 

2l 

e. - Z Sin h. (g) 12 ... Q 

~:? 11 Co~ h (g) 

~ing~ Col:? 1'J. (~) - l • . 8'.ll "" l : 2 Sin h~ (i, 

Sin h c!, • ..Jaµ - • I 

2 

'l'h@ relation 2 Sin h2 (f) ;; Co h (x) • l may be preved ae fol.lows; 
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2 

[e-x/2 - e--x/2] ex - 2 + e-x 
: 2 : 2 ---------

2 4 

X -x 
-- e + e - - - 1 • Cos h (x) - 1 

2 

The equations 2~ 7 and 2.8 are valuable for any four-terminal 

network. An application to the T-section gives: 

and 

2.10 

(c) ~ characteristic impedance .QI the T-section. 

Dealing with these so-called basic filters it is usual at the 

present time to follow the theory developed by Zobel. A very 

essential prerequisite of this theory is that Z:i_ z2 be real and in

dependent of frequency. In other words z1 and z2 are reciprocal to 

each other with respect to a ohmic resistance R. It is usual to 

write: 

2 
Z Z - R 12-

Returning to the equation 2.9, it is easily seen that the second 

term of the product on the right is the only t~rm that is dependent 

upon frequency. With the abbreviation 

equations 2.9 and 2.10 change into 
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2.9 a 

2 .10: 

The plot of the function Z0 .. f (x) shows the familiar impeda..11ce 

curve. o · See Figure 6.. . I z 
~__,~ag_i_n_ary __ ~_-,l'ur_e__,~hmi-=--=--c-+--_.__~~--r·-"'-~~~~~ 

Fig. 6. 

I 
I 
I 

Characteristic impedance of a T- section . 

X 

As far as the computation goes until now, no assumption was made 

with regard to the nature of 41. and z2• The terminology use gives 

the possibility of bringing all sorts of basic filters (low pass~ 

band pass , high pass and the related eliminators) into a single 

scheme . Furthermore , all the formulas have become very simple . 

Equation 2 . 9a shows, that the characteristic impedance of a T-

section is real inside the pass ba.~d. Nevertheless, this resistance 

is dependent upon frequency . It is impossibl e in practice t.o. termin·-

ate filters with such frequency dependent ohllrl.c resistances . Usua11y 

the filters are tel'lllinated with the value R •Y4:1.Z;; i.e ., the value 

of the c,haraeter5.stio impedance 1,Jhen :x • 0. I t can be sho.,m that this 

vw.ue oorresponds with the value of Z0 at the midpoint of the pass ba..11.d. 2 

2 See Guillemin: Cgmmunication Networks , p. 321. 
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(e) The propagation constant g. 

The propagation constant. g is given in equation 2 .10 

Si n h (~) = . jx 

wherein g may be compl ex. The l eft side can be split up into real and 

imaginary terms: g : a + jb 

Si n h (~): Sin h (a t jb) 
2 

a .b 
:;:; Sin h c-) Cos h dr) - Cos h (~) Sin h 2 2 

a b (' : Sin l1 (~) cos (-) ... j Cos h ~) sin 2 

Only tlJ.e ~gnitu.de shall be eonside:rad. TM,:;, ~quation is only 

pos~ible :tf 
a b Sin h (2) ~s (2) ;; 0 

Cos h (!:) b 
ain (~) = .. X 

2 

b 
(~) 

In c:>rcier to f'Ulf::lll thE1 .f'irwt equ.ation the f'ollow:1.r:i. ' two oase:ci a..'t'e 

pos~iblei I 

Sin h Ci) : o. ':t'hi.s mtl~S a : o. Eut thGn the second equatio~'l 

chro,.ges into : 

jb 
(2) 

'b 
Sin (z) • ~ a • 0 Oos h (o) = l 2.11 

In the r=Jl;l,l'!le wey a~ in the theo:ry or tro.n~mission lines 

the f aotor ll has. the signifioanoe of an attenu.atio11 

!'~cto:r. F:roni a :: O it is evident that this cMe :ls 
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for frequencies inside the pass band. In order that 

equation 2.11 be possible it is necessary to .assume 

x(l. 

This means, for example, b : 7i but then 

Cos h (~) = x 
. 

x)l 2.12 

This case is for frequencies outside the pass band. 

A plot of the function~ a= f 1 (x) and b = f 2 (x) shows the ·follow

ing picture~ 
a b 

b 

1 X 

Fig. 7, Phase and attenuation factors of a T-section. 

Fis, 7 shew::: that th$ phase clw.raot eristic as well as the amplitude 

cl1a:t1agtertst;f,c of th~ T .... seoti~n deviates f:r<'m the ;lqea.l ease, Chapte:tt 

fil te,;,, A.n ~preAob. t~ oomput(:3 the ou;t:.:pu.t oi' a four-temn:LnaJ. network 

~~ ~ :re:rult ot' an arbitrary inpm in tem~ of. these dev:Lati\'.ms from 
j, 

tbe i@~ ea.:,e :Lei di~emrned veey brieny by Gu.Ulernin.' 



(r) Transient response of T-sections. 

In this paragraph the transient response of a T-section will be 

computed. It was the intention of the author to keep the derivation 

as general as possible; i.e., not tq make any assumption with regard 

to the nature of the circuit elements z1 and z2• Proceeding in this 

way it was possible to .reduce the solution of a sixth-degree equation 

to the solution of a third and a second-degree equation. As in the 

case of the ideal filter there shall be a unit step voltage applied 

at the input terminals of the T-seetion. 

The network equations show: 

and from this 

V 
V • 1 2'... . 

a,.,. ... °'U/Zc, 

Beoause this relation ia a result obtained only by application 

of the :rn.ethodP uaed to obtain network equations, it is valid for the 

t:ra.n$:l.ent too, when p is ohanged into s. With the a.ssUlllption 

21 

v1 = ..l... and miing equations 2.; for the oirouit parameters, the out
cs 

put voltage 'becomes: 
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With the relation Z0 c R: ~ the denominator of this fraction is: 

A division by 2 gives the following equation: 

As a first step the zero points of this denominator are to be found. 
z 

With the substitution ..l = u the roots of the following equation shall 
. 2R 

be computed: 

u3 + u2 t u + t = O 2.14 

Becauee the degree of this equation is represented by an odd 

nu..mber there must be at least one real root which !!UlY· be found with 

the method of Newton. 

First approximation: i,_ = -.o.; 

f (u) = J + u2 + u + t: - 0.12; + 0.25 - 0.5 + o.·5 : 0.125 

fl (u) • 3u2 + 2u + 1 = 0.75 - 1 + 1 = o.75 

- d : • ~ • - 0.15 

Se nd approximation:. ~ :·0.65 

f(u) = •0.274625 + 0.422; - 0.65 + 0.5 :·0.002125 

f l (u) • 1.2675 - 1.3 + l: 0.9675 

J = 0.002 
' ' fl ' 



2.3 

Third approximation: ~ : - 0.648 

f(u) = - 0.00018 

As a very accurate result ~ = -0.648 may be chosen. Through an 

eliminating process equation 2.14 may now be reduced to a second degree 

equation: 

(u3 + u4 + u + t) 2 -- cu·-.-0~648) _ : u + o.J52u + o .. 7718 

-0.648u2 
-- -

a.3;2u2 + u 

- o,22e2u 
o.ms + t 

The remaining equation is therefore: 

. u2 + 0~352u + o.ms : 0 

The roots of this equation are: 

U2 : -0.167 + ·y 0.030976 - 0.7718 I 

: -0.176 + j y 0.740864 1 

and 

_ °, • -0.176 - jO.S607; 

equation 2 .13 now ha:, the form: 
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(g), Transients in conventional filters. 

LoR:pass filter: 

Figure 8 shows the circuit of a conventional low-pass filter. 

L L 

I 
I 

Vl 

I 
C I v2 

I 
I 

Fig~ 8. Conventional lo'W-pass filter. 

The circuit elements are: 

tZ:J.: Lp 

The load R may be computed: 

R •~ :{if 
C 

The frequency band of a filter is a quality which is related only to 

the steady-state response of the given network. All the formulas de-
( 

rived from the expressions 2.10 and "a.ii for attenuation and characte:r-
, J -

istio impedance are valid only for the steady-state response of' the 

filter. The factor pin the expressions for Zi and~ has, therefore, 

to be replaced by jw • The frequency limit of' any filter is given. 

ey the relation; 

,t, : l 

- .1 Lj C D l 
2 

wi - .z.. 
1 - LC 

and with 

which means 



The roots of the denominator of equation 2.13 shall now be computed. 

From the last section the zero-points of the third-degree equation 

2 .14 are lmown. From 

~ : ~ = !J2: = - O. 65 
2R R 

. Si, 
n,.. = - - - 0.176 + j0.86075 --.G R -

u3 = ~: - 0.176 - j0.86075 

the zero-points of the denominator D of equation 2.13 are: 

e1 : ... o.65 f = - o.65"'1 

132:: ... 0.176 f + j0.86075 f: - 0.176t.i + j0-86075'1. 

~, = M 0.176 f - j0.86075 f • - 0.176~ - j0.86075'1 

E~UAtion Z,lJ, therefore, hae the following form: 

2 and s3 are oonjugates of each other and, therefore, equation 

2.1s hae th tn,e: 

2.16 

c:it ie the real part and (3 is the imaginary part of -s2, Equation 

2,16 6how~ that the aolution for the lo~pass filter consists of 

A damped ocoillation and a rising exponential e,q,ressed by the pro

duot n(1 - a) in the denominator. It looks strange that the dissipa

tionless oi~o\.Ut of Fig. S should have a daq,ed osoillation as tran-

1ient %'0ffPons~. It mu~t nevertheless .be noted that the l~ad R is 
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coupled to the circuit and, therefore, dissipates the energy of the 

oscillation. The inverse· transformation of equation 2.16 could not 

be found in the literature and had, therefor~, to be computed with 

the aid of Heaviside's theorel!l. 

F(t) • ,, l 
a~2-/) 

1 -at - .... · e 
a [(a--a)2 +p J 2.17 

- t +e (a.2· - aa.-J/) sin >6t) (2d./3 - aft) cos (fit) 

· (cx2+/32)[(a-~)2+~2] • 

For the lowo-pass f.iiter the terms a, o< ,/3 have the values: 

a :::: o.648'1 

(3 ;:: 0 .8607541_ 
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For the final solution this function has to be multiplied by a f actor 

A. This factor shall now be co~uted: . 

Equation 2.13 gives: 

V (t) : Vl (s) : . . . l 1 
2 .. 2tD 2s(u3 + u?, + u + } ) 2s(u - ~) (u - u2) (u - l1_3) 



·~ 

The factor A is, therefore: 

A - E-5-tµ 3 
- 2 1 

After a lengthy conq-,ut:.a.tion V 2 (t) takes the following form: 

when f: tan-1(2.s2) 

2'/ 

Fort: zero, v2 (t) must become zero, because the inductances do not 

allow a discontinuity to appear at the load. This relation holds in 

equation 2.17 which can be proved by setting t = O.:' 

On the other hand it ean be shown that at t = o;even,the deriva

tive with respect to time is zero, which means that the response func

tion has a horizontal tangent at t: o. The response of the low-pass 

on a unit step has, therefore, the following form. 

Sp@o1fic e~l@li.l will be given in a later section. 

The circuit iOf et. high-tHa.sis filter is shown in FigUN 10. 

L 
I 

V I 11 
I 
I 

21 e I c 

L 

t 



2S 

For this case the circuit elements are: 

~. = pL 

and 

In the same wa:y as for the low-pass the limit frequency ma.y be com-

puted: 

2 . 
X : l,: 1 

2J?10 
a.tld1 the ref Ore I · · 

, .. -~rr = i · _wl-"'1210 RC 

With u • :L • ...1... r: ~ the roots of the denominator of equation 
2R sRO s 

2 .1.3 become: 

s1 : - 1._54ki 

132 : . (- 0.20, + j0.98)4i 

The denominator of equation 2.14 has in this caae the form.: 

Wllen_ this e;iq:iression is e~anded the result is a function of' the 

fem: 

The method a.eveloped itt the preceding paragraphs gives the zero points - --- . --· - --· - ··-· ' . --

of this denofflinati;rr. lt must be kept in mind that for this -case the 



polynomial in the parantheses of equation 2.20 cannot be written in 

the product form (s - s1) (s - s2) •••• (s - sn), where sl' s2 ••• sn 

are the roots of the equation 

D(s): 0 2.21 

This would only be true if all the exponents of sin equation 

2.20 were positive or equal to zero. There is nevertheless a possi-

bility of reducing equation 2.19 in such a way that the product form 

may be awlied. The following general function may be assumed: 

•••• • ••• 

Thi s function can be written: 

D(s) = .l..(e n + c ..,_ls~ o 2s2 •••• o sn + c..sn-1 •••• c sm-n) n - -~,,... -n- o .1. m s 

The expression in the parantheses is a function which contains only 

exponents of s which are _equal to or greater than zero and may, there

fore, be expressed as a product . Because 

(o + c 1s + •••• ) = O -n -n-

has the same ~oots ae equation 2.21 (multiplicati on on both sides 

with .l. it 16 certain that the zero points of both expressions coincide. 
on 

The following .theorem is, ;,.the ref ore , valid 

Any polyi.'lonu.al of the forms 

a 3•n • 0 ~-n-1 • 0 e C em 
•n -n-1'"' . • • • • o - 01"' • • • • m"" 

roey be written in the f'o:rnu · 

where 
' ' 



the roots of the equation: 

C S-n + C S-n-l • •• • c0 + ~ S • •• ·• cmsm c 0 -n -n-1 ·.1 

Equation 2.20 shows that the maximal negative power of the ex

pression inside the parantheses is three~ The denominator D(s) has, 

therefore, the following form: (Th~ factor en is equal to 1 . -= 1) 
Ul Uz U3 

v2 (t) _is, therefore, the inverse transformation of the expreision 

S2 
V 2 (s) : --------

(s - s1) (s - s2) (s - s3) 

whe:re e4 and sJ are again conjugates of each other. This may be 

witteri a131 

where °' ici the real and rs is the ima.ginary part of -av and a ia equal 

to .. e1• 

a ;: 1.54 1 

~ : 0.205 l 

(! : o,9e 1 

The i11v r:3e t:rt,,m,formation of equation 2 , 22 ma,y 'be f'ou11d. in the 

l teraturek @d ie: 

4 Goldme.n, m;,, ~., p, 421, Formula 24. 



a2 - at o< 2 +f - 2ao( -d't :Rt e + 2 2 e co1_ 
(a -o< )2 -(3 2 (a- - o<) +f., -

2 . 2.3 

Inserting the values of a ,ri,(3 gives: 

V 2 (t) :: Q.865 e- l . 5M'it + O.l.38e-0•205~ t cos 0.98~ t 

6 - 0.2054L. t . 8 - o. 12e l sin o.9 'it 

T1e response of a high- pass filter shows, therefore, the following 

orm. 

Fi . 11. Response of the high- pass filte~ to a unit step . 

Band-pQSS £ilter: 

Fig. 12 . 

~ 
I 
I 
I 
I 
I 

Conventional band-pass filter . 



The circuit elements are: 

1z L 1 L "D We) 2 · : P + - : W •. ~ + -1 pC o 6Jo p 
? 

with ~ - :: l. 
o LC 

This is the way the circuit element z2 is usually evaluated. In most 

practical problems R is assumed to be 600 oh.ms . The limit frequencies 

are evaluated according to the formula 

With t he abbreviation ..!.. : v and taldng only positive frequencies 
4.'oL 

into account , this equation may be solved for . . 

geometric mean of ev1 and w2 • 

Furthermore from u: ~ the equation :mey be derived~ 
. 2R 

u = ~ + ....L : fAloL (~ + ~) 
R pRC R W0 p 

2 1 again with tu0 = LC 

With p = s for thetransient response this may be put into the equation: 

s2 - UV S + /JI 2 - 0 
0 0 -

when '1oL : l.:: J. .. ff' 
R v RVc 



which is very often referred to as Q and is named quality factor. 

The solution of this equation gives: 

When the three zeroes of u: 

u2 c -0.176 -jO.S6 u3 : -0.176 + jO .• S6 

are inserted into .these equations it is readily seen that there must 

be 6 zero points of equation 2.14 in the case of the band-pass filter . 

The relation between a., a and W , W a.re unfortunately not as si.7Uple 
.I.· 2 1 2 

as in the case of the:110..-pass and the high-pass filters. In other 

tJOrds, the zero points of the denominator are a function of R. This 

is easy to understand, because a damped resonant circuit has not the 

same frequency as the undan;,ed circuit with the same capacitance and 

inductance. Because R is not negligible the change in frequency must 

be taken into ~ccou.nt . 

Equation 2.1.3, therefore, has ~che following form: 

Beoa~se al~s two solutions are the conjugates of each othe~ this 

~ be wri-tten: 

33 
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The inverse transformation of this e:xpression is a f unction which is 

composed of three terms according to the three brackets in the denon-

inator. AL1 of these t erms are built in the same way and are of the 

nature: 

f ( r1.x2_fJ./l {[<~-~-/+<~2-/3/)j [<o1n-o<xl2+(f3n 2_~2) J-213x2c"i"1/ <"',,-<>Qt 

1/3x((~rn~""t) 2.,_ (flm+/3x)2] f ("b-1)2+(!3m-/3)2J [(~-1)2+{(3n + {3x)2] [(o<n-~)2+ ((t-@2 J 

2.25 

f (2ot ,Al{ ( ( ",.-«,,ft· C/3m 2-f /) ] f ( °'n -"',/+ <,s/-p/) J -213/ <as.-°ltl ( o<,,-o<,J J 

- l f.>x[(~-~)2.,.CAt~)2] [('\- ~)2+,vt-13)2] f(<1i-0Q2+ <(1n+(i)21f<Ofi-~2+(fn-,P)21 

-°' t :x: A e cos t • . ,. ~· 
There will be throe expNatio:rus like thie one in the fiMJ..,. ~olution. 

The ti:rot Ct,q)S'Ollie>n ffi1t1 bQ oveluatod ~ . substituting o(l ter;r ()( ~ ~ti 

o(~ ivutc.'3 to:r °'m u4 o<n• J'o:r the·. 11oond exprea&Sion, csubl!ltitute c:<2 , 

for d,r. @d oi1 Md oc'2 to:r ~ Md G\. :ror the th!rd, tmbetitute o<3 forof.x 



and ol1 and o( f o,r d a:nd ol. • For all of these e:xpre s sions, the /3-
2 m n 

subscripts must be changed in the same way as the o( subscripts are . 

As soon as there are given numbers inserted into the different terms 

they reduce to the form (a sin xt - b cos xt)e-yt. As stated before, 

the final solution consists of three damped sinusoidal oscillations 

,mich are sttpel1)osed, An exa;!!1!)le will be given in the last chapter. 

I 
I 
I 
1. 

I 
I 
I 

C 

Band elimination filter. 

Th0 prooedu:re for the band-elimination filter ie basioally the same 

aa for the band,,opaes filter. The oirouit elements ares 

~ • pO - J.. • tu O (!.. • ~) 
~ Lp O ~ p 

For thim u ~ be oomputed, 

and with c~n. n-{f • • 
. V 
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With this and p = s f'or the transient , equation 2 ol.3 has a denominator 

of the form: 
. ' ~ ,· /_ 

_ D(s) 
vs 6J vs W VS W 

;: s ( , o - ·:i1) ( 2 o 2 - u,,) ( 2 o ,., - u.3) 
s2 + (Jj'2 s • + w "' s + w "' 

O · 0 o . 

' 
In order to make this denominator a poly-.a.omia.l without n~gative e»

p6nents of s thi~ expres~ion must be mul tiplied by (s2 - w0
2)3• 

where 

This e:,q,reesion is too .oon;,J.ioated to be tral:'lsformed directl y . · As 
' . 

so on as there are spe oif'i o n\unbere .for fAJ O and o< . and j.3 , the trans-

.format, ion is much eas:!.er.· 

For the ea.la, o.f oomplErteness the e:,q:,r essione .for the limit 

frequencies shall be given: 

'rho tol."mu.'l.o.n tu.~~ out to 'be emotlr equal to thooe fer the ban~ 

po.oa filto:r . 
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3. ~ 'iT' -Type Filter 

Equations for the ,r -section will be developed in the same wa:y as for 

the T-seoti.on. 

I l l I 
I I 
I Y1/2 Y1/~ I 
I I 
I 

~ il l I I 
I I 

Fi'g •. 14·. 1i -section. 

(a) Netwrt egJ,1ation1 
The node analysis of the circuit of Fig. 14 gives the equations: 

v1(tY1 + Y2) - V2Y2 : I1 

V2(tYl + Y2) • VlY2: • Il 

· From this the chain equations may be dri ved: 

Thii iives the chain parameters: 
y 

°'J.1=l+~; 

~l • Y1(l + 4~J,, ); 
. 2 

2.27 
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(b) ~ ~parameters 

With the aid of eq_uaticn 2 . 7 and 2 . 8 the wave parameters may be 

evaluated: 

z -0 -
1 

this is equal to 

Z - R 
o ":" 'Vl _ x2 I 

pure imaginary pure imaginary 

p'UI' 8 hrni C 

- 1 ' 0 1 

Fig. 15. Characteristic impedance of a 1T -section , 

In the ea.me way as for the T-seotion it can be shown that: 

Sin h(!). • ,f 811 .. 'J.
1 

.. {!i. = jx 
2 2 .. 4Y2 

This equation looks exactly the same as equation 2. lOa.. The plot of 

the funotion g • f(x) im, therefore, the ea.me as Fig. 7. The pro

pagation constant for both T and Tf•aection are, therefo~, identi-

cal. 

:c 
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(c) Transient response g.t: Tr -section 

The frequency response of the output voltage is calculated in the 

same way as equation 2 .13 was developed. Starting at the equation: 

V 
V - 1 2 -

8i1 ... ~ 
0 

V V _ 1 (s) 
2 - ~ 2 

1 R~l RY +-+ 1 
2 

The denominator becomes, therefore: 

Dividing by 2 and with the abbreviation: U • RY1 the i t f zero-pons o 
2 

this denominator lµ"e fotind as roots of the equation 

u2 + u + .l. ... 0 
. . 2 ·-

u;;-t:!:Jt 

The solution consists, there!ore, of a single damped oscillation. 

The reason is that the given problem demands that the voltage at the 

input of the filter shall be a unit step independent of the input 

current. In other words the current :11 through Z;i_ at the input of 

the 1f -filter shall not influence the input voltage . Under these 

eireumstanees this current 1i has no influence on the output voltage 

and the circuit of the '7rsection may be reduced to the following : 



I 
I I 
I I 

v1 I Y1/2 1v2 

I I 
;...,..I ....,....,.,.,.___,,.,...___,....... ............... ......-.--..................... 1 

Fig. 16. Reduced Tr -section .. 

This circuit is no longer a four-terminal network,· and a great part 

of the discriminative quality of the filter has been lost. The 

'ff-section is, therefore, :not the best circuit for a voltage source 

as el.1ergy source. With other words, the if' -section loses a great 

l)art of its filtering qu.alitr when the energy-source has a small 

If the energy sc,ur<M> 'hs,r;t a high :tnter11.al res:t.stanceJ i.e., :Ls 

comparabl~ idth a ow:rent sottto~, the input CU1"rent may be asstltll~d 

to be /Jl. mi'!;..step ouxweri1h 

Then the f'o~t1,9tIJli11/iJl t'letwowk ~qt~tions ,re t 

vl = ~va + ~~x2 

11 ~ ~~1v4 + ~~xz 

With the tr., , .- . , J. J.. J. .I. 
r@lei.tion I">.. = ~.·-. · whll}i:l th~ load av ohe ou(jpu\, ·;,;. , R -

·- .. ··.... . V;a 
rl ~· ~1Vz:+ a22T 



and with R .. ! the denominato,r of this fraction becomes* 
- - G 

When thi.s is again divide.d 

- . y 
by 2 and with the 'abb1"'eviation ~·lt: ti this becomes& 

2G. 

Tb.is is exactly the same aqim.tio:n as· equation 2.,14., When the de.a 

nominators of equation Zol.3 for th.wt T~sect:to:p. a.1.1d t.he.1f-seqtion 
. . ·~··· , 

are compa:t'ed it is readily seen that :z qj:Ia.,,'1.ged ·to J anq. R t.o G .. 
,, •• -";>,., ... ' ._., .-, 

. .. ' . : ' ' . :: . ' ··. ' ' ' ' ,· p._:,. ,· . .) .. ,:'':,';-:'. ·~:'/\ -.· ' 1 

The natt.U'e ·Of the transient respo,µs~ .;l.n<'~. T ... se~!trr.o:n, a.nd in the 

Tr-section is, theref,01·e,; the s~~ The. t:rans:ieni of the ir-seqtion 

may be de:ri ved from the tr·a.ns:.tent of', the T~SE;3cti®n ~ si~l;r re,.. 

41··. 



Chapter III 

The Influence of Loss Resistance 

Again the relation z1z2 = R2 shall be fulfilled. In this paragraph will be 

shown what consequences this condition has on the choice of the circuit elements. 

The most complicated case is the one in which z1 is represented by a resonant 

circuit. 

zl = .~ + j (w1:i_ - w3 ) 
1 

y2 : G2 + j (WC2 - it- ) 
' 2 

2 From z1z2 = R there may be derived: 

Rl + j (wLl - 1(,1~1 = R2 l G2 + j (tJC2 - wt) J 
,:. 

A comparison of the real parts on both sides and of the coefficients ofw and ~ 
gives the following three equations: 

If the quality f actor of Y2 is computed it may be shown that: 

w L w. a2c R-
Q2 = ..sL2, = tu L G = o 1--1. = W C R 

R2 o 2 2 R2 o l 1 

But the expression W0 CR is known as the quality factor of a series resonance 

circuit. The consequence of the condition Z:i_ z2 : R2 is, therefore, that the 

quality factors of all circuit elements are the same. It is today coIIl!llon use 

to design filters according to this, even if there must be i nserted artificial 

loss resistances in the form of l umped ohmic r esistances . 

From this derivation it may be seen that equation 2.14 is still valid 

for a filter which includes losses. The only assumption concerning the circuit 

• 
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elements made when this equation was developed was that z1z2 = R2 • This is the 

second big advantage this form of analysis has over any other. The zero points 

of equation 2.13 may be found by substituting Zi(s) into the formula for u: 

Lov,-pass filter: 

and solving for s. 

~: .}\ - sL 

· u = ~ - s~ solved for s gives: 
. R R 

R 
s - u'1.. - -=1 - J. t 

Equation 2 .. 14 gt;J.Ve 3 solutions for u, among which one was real., The influence 

of the losses is expressed by the last tern1 on the right of equation 3.1. 

Because this term is always real, there is no influence of the loss upon the 

frequency of the oscill&:tio:n. The only influence consists in an increase of 

the damping factor and a decrease in amplitude of the whole solution. 

/ 



· In··tl'lis case there is an influence of R:r_ upon the frequency of' the o~c:µIatic>n. 

The exa.nIJ?le in Chapter ·4 will ,ep.ow th~t tlrl.s influel;\9e· is ·negl:ig!ble .• :· 

A sim,ilar derivati~ '.~'.lil.4, be•·Jnade fo~ tJ;i~ .. ban~e+i:n,lination -,filter. All 

' ~hes·e oas~s show that the:i'e it:I ~o e.ssential d.i:f'ferep.oe in the. transient ot a. ' 
I··::_!' 

'. basic filter '.whether tbe:re .is. .;J.oss or not. All the t:rant;ii'ormation f'QrmulU 
, . , . . .,·. , . , , , . . , . I ' 

·~e•in · the same·. The dif~e1'$Xl~ :consists ol,iLy in a $l~ghtly !nci;as~a· cl.aq,~ng, 
' • • • ·, • : • • • • b 'I •. •' ' '::·., 

taotor or the o$cillat.iqilso 

,, 

/ 

, . 



Chapter IV 

Application of the Theory and Conclusions 

1. The transient response of the lo~pass filter 

(a). The ideal filter 

Chapter I furnished the following final formula for the ideal 

band-pass filter: 

4.1 

In the ease of the lo""""pass filter the angular frequency4J 1 must 

be set equal to zero and W 2 represents the limit frequency. 

Equation 4.1 then changes into: 

For the transient response the time delay t 0 is of no interest. 

Thus the final solution takes ·the form: 

Figure 17 represents the transient of en ideal low-pass filter 

-1 with the limiting frequency r2 : 1000 cps; i.e., tu2 = 6280 see • 

The product EX is a.ssUJlled to be equal to 1. 

(b). Ih§ physical low-pass filter without 12.§! 

The transient response of a physical low-pass filter without 

losses shall now be computed according to the theory developed in 

Chapter II which lead to formula 2.18. 

The following data for the low-pass filter shall be given: 

limit frequency: r1 : 1000 ~s 

i .. e., w1 : 6280 sec-1 

45 



load at output terminals 

R a (i)Q ohms 

The circuit elements are determined according to the formula 

fJJ 1 = E and, therefore, 
L 

L = ll = (i). O - O 0955 ~ 0 1 henry 
4J 6280 - • • 
1 

and from Z:i_ Z') : 1 : R2 
. ~ C 

46 

If the value of l.u 1 is inserted into equation 2.18 the final form of 

the transient is: 

~4070t -lllOt v2(t) • 1 - o.B e - o.6 e cos(810t -'f) 

'f = 70° IJJ' • 1.23 radians 

Figure 18 shows a plot or this function vs. time. 

It is readily seen that the most essential difference between the 

ideal filter and the physie~1 filter 'Without losses consists of an 

oscillation at ·negative time at the output of the ideal filter. It 

seems to be a paradooc .that the output of the ideal filter already 

shows an oscillation before the signal at the input is applied. 

The reason for this is that the amplitude and phase characteristic 

of the ideal filter have been assumed to be independent · of each 

other. In other words the ideal filter is not physically realizable. 

There exists a very definite relation between phase and amplitude 

characteristic.5 

5 Go1~-A-·. ·t P 128 uwcw. op, ci ., age • 
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(c). The low-pass filter with losses 

Chapter m showed that the only difference between a f ilter 

without losses and a filter with losses is a change of the real 

parts of the roots of equation 2.14. The lo~pass filter showed 

the following change ins: 

physical filter without loss 

physical filter with loss s • u({) - R:J. 
1 L 

where 1,_ is the series loss resistance of the inductance. Even at 

very low and moderately high frequencies it is pos sible to build 

inductances with time constant 1 smaller than 1 . 
R 5 

The assumed filter shall have the same data as the low-pass 

filter without losses and 1 , which represents the quality factor 
R 

of the inductance, shall be assumed to be 0.2. 

s1 • ~w1 - 5.0 = 0.648(6280) - 5.0 • -4070 - 5.0 

S2 • u2"i - 5.0: 0.176(6280) - 5.0 -j0.86(6280) 

S3 • U31Li - 5.0: 0.176(6280) - 5.0 -j0.86(6280)' 

The co:m.putation shows that the influence on the real part is 

smaller than one half of a percent. 

2. ~ transient response 2f. ]h! high-pass filter 

(a). ~ ideal high-pass filter 

From equation 1.6 there may be derived in the same way as for 

the low-pass filter the equation: 

f(t) = ~ (Jl - Sitclt) 
'Ir 2 l 

Figure 19 shows a plot of the transient of the ideal high-pass 

filter. Again the product EK is assumed to be equal to 1. 



(b). The physical high-pass filter without losses 

The following data shall be given: 

f1 = 1000 cps 

w1 • 6280 sec-1 

Again the output terminals shall be connected to a resistance of 

600 ohms. 

Circuit elements: 

and, therefore: C : -1.... = 0.274fLF 
tJlR 

and again from 7.j_ z2 = rf- : 1 
C 

2 L: RC: 0.36(0.274)• 0.099 henry 

Equation 2.24 gives with tv1 : 6280 -1 sec : 

V 2( t) = o.865 e-9700t + o.62 e-i29ot cos(6150t + y>) 

'f = 'r1°20• 

Figure 20 shows a plot of the transient of a physical high-pass 

filter without loss. 

Again the response of the ideal filter shows an oscillation for 

negative time. The reason is the same as for the lo-w-pass filter. 

(c). !h! high-pass filter~ losses 

49 

Chapter lll gave the following equation for the roots of equation 

2.14: 

s = ~ - ~ when r... is the shunt loss ad.mi ttance of the con-u C -.1 

denser. The tei-m &.. is the time constant and represents again the 
~ 
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quality factor of the condenser. Condensers have usually quality 

factors which are well above 0.2. Because z2 is an inductance which 

has to have the same quality factor as the condenser this factor will 

be assumed to be equal to 0.2. 

The numerical. values for~, u2 , and~ inserted into the 

equation for s shows that again the influence of the losses upon the 

transient response is negligible. 

3. Th,! transient response .Qf. the band-pass filter 

( a) • The ideal band-pass filter 

The following data shall be assumed: 

f 1 • 4000 cps 

411 • 25000 sec-1 

r2 • 8000 cps 

w 2 = 50000 see-1 

Neglecting a time delay, equation 4.1 then gives 

Figure 21 shows this function under the assumption EX= 1. 

(b). 1h2 physical band-pass filter 

Chapter II showed that the resonant frequency of the resonant 

circuits is equal to the geometrical mean of the two limit frequencies. 

E:t ther Li or C:J_ can be freely chosen. Usually L is made as small 
1 

as possible because the greatest part of the losses of the resonant 

circuit are included in the inductance. The favorable choice of~ 

is one of the problems in the design of filters which needs most 

experience and knowledge of the materials miich are available.·. If 

1i_ is very small the influence of temperature and wiring capacities 
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relative to 11 is great. Furthermore, it is difficult to manufacture 

small inductance in mass production v:tth good accuracy. On the other 

hand it is difficult to maintain a low value in loss resistance as 

soon as 1:i_ is very big, because big 1i requires big iron cores which 

in return inserts losses as the result of eddy current and hysteresis • . 
A careful choice of the core material can keep these losses small. 

As an example 11 will be chosen 0.085 henry, which is obtained with 

a medium size ring coil of about 2 inches diameter. 

1:i_: 0.085 henry 

_ L2 : R2c1 • 0.00.35 henry 

c1 • 0.01,,u, F 

c2 • 0. 2.3 5 j,l F 

The computation of the transient response of the high-pass filter 

according to the theory developed in Chapter JI gives the following 

three terms: 

() -2.300t v2 t • 0 • .35 ~ sin .35400t 

-0.107 e-570t cos(.38100t - 88P10•) 

-0.0985 e-677t cos(.32000t - 8?°.31 1 ) 

A plot of this function ia given in Figttre 22. The computation or 

thii, r,1pon1e t\motion ia a very tedious wrk. It ie readily IHn 

that the main part of the output oon1i1ta of the tirst term ot the 

above expreaeion. The 1eoond and the third term are much ernaller. 

Their eaeential purpo1e is to bring the derivative of the output 

voltage w1 th reapeot to time to zero at the time t • O •· 

The influence ot the loHes may be computed according to the 

to~ae developed · in Chapter m. ~ain the influence will be 

tound to be negligible. 



S3 

.... 
~ ...... 

LI' I - ,. l'I 

' I .J 

f , _ a ,,. . 

-'--- .... 
[7 I'-

i .J ' "' r ... 
r", ,,,,. 

l .._ I I ,~ 

L' :, , .. .., ..1. u LI J...11:1 ., ., • ll '" l .. 

,_ 

' 

i., I 

" ... i., , .. 
,. I~ 

.. 



The given examples show that :i, t is possible to substitute an 

ideal filter for the physical filter, when only t he transient , 

response is considered provided the following changes are made: 

. 1. All the oscillations for negative time are to be eliminated. 

2. The tangent of the transient response at the time t • 0 must 

be horizontal in the case of the low-pass filter and the band

pass filter. 

3. The response of the high-pass filter for negative t must be 

eliminated. 

The given examples show that under these a~sumptions the ideal 

filter is a very good approximation. For the band-elimination fil

ter 'it can be said that the same approximation nrust be allowed, 

because of the relation between ideal and physical band-pass and 

ideal band-pass and ideal band-elimination filter. When the ideal 

band-pass filter is a good approximation for the physical band-pass 

filter, the ideal band-elimination filter must be a good approx

imation for the physical band-elimination filter. 

4. Conclusions 

The final conclusions that may be derived from the present paper 

are the following: 

(a). The ideal filter as defined in Chapter I is for most practical 

application a good approximation. 

It can be said that for them-derived filters t his approx- . 

imation is even better, because these filters have a phase and 

an amplitude characteristic which approaches the characteristics 

of the ideal filter closer than the basic filters do. 
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(b). 'l'he influence of losses in the circuit elements are negligible ror 

the transient response of the basic filters. 

. For the steactJi-sta.te response of ~he filter the losses have to 

be kept so small that they have no influence on the transient 

response. It is, therefore, impossible to insert losses in order 

to·keep the transient response small without disturbing at the 

same time the discriminative quality of the filter. 

1 
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