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PREFACE

The purpose of the present paper was to investigate the
influence discontinuous input voltages have on the response
of the various basic filters, Although the literature on
the steady-state response of these filters is very numerous.
scarcely any information could be obtained concerning the
transient response, The attempt was, therefore, made to
compute the transient responses of the basic filters taking
into account losses in the circuit elements, The results have
been obtained by application of the theory of Fourier trans-
formation and Heaviside's theorem,

The author would like to express his thanks to his adviser,
David L, Johnson, for his many valuable ideas and suggestions
and especially the careful reading of the manuscript and for
his advice in questions concerning the languvage.

Special thanks are due to Mrs, Fern B, Hall for the typing

of this thesis with its many formulas,
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Chapter I

The Ideal Band-Pass Filter

The subject of this chapter is to compute the transient that will be ex-
pected at the output of a so called idealized filter; i.e., a filter which
shows neither amplitude nor phase distortion for signals which are composed
of frequencies lying inside the pass band of the filter. In spite of the
fact that this filter is able to transfer any signal of this nature without
distortion (this restriction demands that the signal be periodiec) there will
be a transient at the switching instant, for the theory of Fourier transfor-
mation shows that every switching process inserts a frequency band of infinite
broadness, Because the purpose of the filter is to be frequency discriminative
one would expect a transient at the output of the filter at the switching
instant,

Two poasiblé methods of analysis of the problem are Fourier transfor-
mation and Laplace transformation., Of these the theory of Fourier analysis is
more convenient, The more general theory of Laplace transformation would have
to be specialized in such a way that there would be only a formal difference
in the definitions of these transformations,

@
- W
Fourier transformation £(j@) = .21;. / f(t)e I dat
o
@
Laplace transformation £(s) = [ £(t)e~at

o
The Fourier transformation is much more illustrative for, instead of the

complex factor s which has no physical significance, the parameter @ in the
Fourier transformation has.the significance of a frequenocy, which is a very

familiar concept to engineers and physicists,



The first question that arises now is, 'what are the properties of an
electrical network that shows no distortion at all; i.e., a network that re-
produces any input signal with only a change in amplitude even though the
signal may be composed of frequencies inside a fregquency band extending from
zero to infinity (including discontinuities). According to the Fourier transe

formation theory any input signal of this nature may be written in the follow-

ing way:
@®

£(t) :/f(;]w)ede i i

-

The action of the filtering process is mathematically expressed as a
multiplication of the frequency response and a term expressing the frequency
dependence of the transfer through the filter. Frequency response always in-

cludes both amplitude and phase response,

F,() = F (Jo) 4(j®). A(j) may be complex and may be

written in the form

A(0) = |aw)] I¥@

or A(jw) = XW) 4 JTW),
by PEPR T g tan-lf%).

Eguation 1.1 changes now inte

+@
£, () z / Fl(;}u)l(A)]eJ?(w) e qw . 1.2

-@
If the signal is allowed to have a time delay and an amp” itude distortion

at the output, the form of the output has te he:



+o
fz (t) = K fl (t—to) = K/Fl (jw) e
+ -®

- F, (j4) X eI W gu 23
-

JW(t—'bo) qw

A comparison of equation 1.2 and 1.3 gives:
AzK W) = -wt,

The amplitude characteristic of the filter has to be a constant, and the
phase characteristic has to show a phase delay proportional to frequency, as

shown in Figure 1.

AIAI “\’

Jw

Fig. 1. Amplitude and phase characteristic of an ideal network.

Another property of the ideal network is found very easily., If an
arbitrary phase angle &/, is added to the phase characteristic, the influence
on the output signal consists only of a change in time delay. This can be

proved in the following way:

A(Jw) = K oI WE ¥%) _ g ~IW(t + 2

It is therefore not essential how the phase characteristic is assumed, It



has only to be a straight line and its position in they —Wwplane can be

arbitrary, As a next step the constant-amplitude characteristic shall be

narrowed to a frequency band of the broadness W, = W. There shall be a

2 r %
unit step inserted at the input of this network, The frequency distribution

of the unit step is computed in the following way:

@
S(jw) = %ﬁ. £(t) o~ at £() = U(t) B
[+]
ijt
- L G
=g fme™ @z Ao

0

This voltage inserted on the ideal filter gives the frequency distri-

bution of the output:

S(SW) = %‘, e-jwto

In the exponent appears a negative sign in order to express a time delay,.

The reverse transformation of this expression is
o
-jwbo o JWt
e e
£(t) = -—2%— / S dw
-

In order to consider that the band filter only transfers frequencies from @,
to W o only a part of the whole path of Integration has to be taken. Because
the integration has to be done from —@ to ¢® the frequencies -Ul and -hﬁ
must also be considered. The path of integration consists therefore of the

following two pleces: (Figure 2)

2=

=i, "bl 6 “’1

Fig. 2. Path of integration,
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In all integrals of this form it must be noted whether there are poles of the
integrand on the path of integration. Although the integrand is zero
(for A(jw) = 0) at the point W = 0, this point is critical and determines in a
way the behaviour of the transferred signal., The path of integration must
therefore be interpreted in another way. It shall be split up in the following
WaY e

First path ~th{W < w,

Second path -hﬁ_< w < w,
A subtrgction of these paths gives the same path as was found earlier. The

transformation integral changes now to the following two integrals:

ey )

EX . Jw(t=t,) K jw(t=t,)
t) g [ p—dw ¢ o1 & dw

_g& &U,
This may be written in the following way:

A +u,
wW(t=t Wt
f(t).n.[/l‘”_")dw - /de] 1.
213 w w
-% o

rd

Both of these integrale are of the same kind:
Q

/ Jw(:-to) =

With a transformation of variables this is transformed to

. du
Wltmty) = u dw = el
and with altety) = b
b
Ju
u



' This may be written as

b b
cosu _ . . sinu _
" du } J m du 165
-4 -4

This integral'can be split up and each term treated individvally. The first
term shows a pole at u= 0, It is therefore finite only when the point zero
isrexbluded; i.e.y when the path of integration changes in the following way:

(Fige 3)

. _ -rO4r
w b o/ b

Fig. 3. Path of integration for the first term.

The way excluding zero shall be assumed to be a semicircle, but it could
be another path, as ecan be proved with the aid of the theory of residues.
Because the integrand is an.odd function, the two integrations from -b to ~r

and » to b cancel each other. The integral changes therefore to

»b 1
- . U= e‘]‘f
oS U o 4 €08 U gn 7
T du s lin 224 du = jred¥ay
b I S j
O 1im cos rew_—_- 1

r=0
‘Whereby the path of integration consists only of the following curves

4T




The integral, therefore, transforms intos

N

vy 7 V4
cos u : red? . c—
51 gy = j —dy =3 / ar= 7
u ‘ hk 4
-5 0 re o

Principally there exists another approach to the problem. The function of
complex variasbles gives the following theorem, called Cauchy!'s theorems
" Given a function which is analybtic on a closed path. The so-called

residues of this function are defined as follows:

T Z - 7

Ro L )}éCf(z)dz vhere z_ is the value of z at a point where
o .

-

f(z) has a pole. The value of this residue may be found as the coefficient

of the first negative power of the power series of £(z) developed in the

neighborhood of z = Ze

The theorem of Cauchy states now that the integral once around the closed
contour is ecqual teo the sum of the residues inside this path of integration,
The idea of #he calculus of residues is to change the path of integration

O

along the real axis to the path shown in the figure below. ‘

For most practical applieations it can bé'prﬁved that the integral along the
path ACB tends to zero, as the-radius of the half ecivele approaches infinity,
This path, therefore, g@ntribuﬂas'n@thing to the total integral. According to

Cauchy's theorem the integral from A to B mupt, therefore, be egual to the sum



of the residues on the left half plane, Unfortumately Cauchy's theorem cannot
be applied to this problem, for g prerequisite for the,aﬁplication of Cauchy's
theorem is that the function, the residue of which shall be evaluated, be
analytic on the boundary, This is nof the case for the preSeﬁt'problem, beecause
there.ére twovplaces on the W axis where the integrand shows a discontinuity;
namely, at the frequency limits of the ideal Pilter.

The second term in equation 1,5 is:

b

‘////sin 2 gy
, u
-5

This integral has no pole at u = O since %}2 o Slﬁ z

with the aid of Bernoulli~-Hopital's theorem, which states that

= 1. This may be proved

1im fx - lm f!x

In this case: 1im sin u _ lim gog g

The integrand is an even function and, therefore, the integral may be written:

This integral is known as the "sine-integral®

X
/-S&M dx = Si(x)
» \,

All these integrals inserted into equation 1.4 give:

£) = BE [ 51 (6 = 4,) - 81 (6 = % )]

The glopes of the first term and the second term are

Eai Eaé

T
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As readily seen, the higher the frequency is, the steeper is the slope of these
terms, |

The slope of the combination of the two components is, therefore:

'E Ew
tg?=%’=-—£:£—_(wl-wz) =E Aw

T a
The slope of the curve at the steepest point is only a function of the band
width of the filter and is not dependent on the position of the pass band on
the frequency axis., In order to illustrate this more theoretical derivation
there will be given some épecial cases in Chapter 4.

The response of a high-pass filter can be found when 'wz in equation 1.4
approaches infinity, S:‘Lw2 (t - 'bo) then becomes a step function with the
amplitude g— for positive t and - g_ for negative t. The response of the high~
pass filter is, therefore:

£6) = B [ T 5104 5 - )] 1.6
It must be noted that the computed output of the filter never contains a
direct-current ecomponent, because the chosen path of integration ecarefully
avoided the point Wz 0. In most applications only the shape of the transient

response is interesting, For other cases the function_%§ U(t) must be added

to the output funetion if the frequency wz= 0 is transmitted through the filter,
In the cgl@ulaﬁi@n of the response of the high-pass filter use could be made

of the fact that all the frequencies which have been retained by the.low-pase
filter go through the high-pass filter. The sum of the responses of a high-pass
filter and of & low-pass filter with the same limit-frequencies must, therefore,
be equal to the undisterted transferred imput voltage EXKU(t), or in other

words:
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i"z (’c,)HP - Kfl () - fz (t)LP
£,(t)p = BK[UGt) - %-.Siwl (& -t )] Y
= DL[, t -1 )]

4

This result is equal to equation 1.6 with the exception of the direct current

LXK which was added to it. This way of calculation is valid only for the ideal
2 ) ' -
low-pass and high~pass filters. It may be applied to the ideal band-pass

filter and the idegl band—eliminagtion filter. Bescause the band=elimination
filter tra s the frequency w z 0, a direct current component zf must be

added to the golution oblained with the ald of the conbour integration, In
Chapter / uvee will be made of the relabion between +the bandepass filter and
the bandeelimination filter., This way of compubtation is much simpler and
givee immodiately the correct answer including directecurrent componsnts,
The only discontinulty that was considered unbil now was the unit=step funce
tion., The response of a network to a wnit-step gives the possibility of
calewlating the response of the same network to any other fimetion with a
dlscontinuity; L.e., the sudden application of a sine= or cosine-functilon

atb the inpul terminals of the network, The relation hetween these two re~
gponges ig glven In terms of an expression which is analogous to the superw
posltlon integral 1n the theory of Laplace transformations. The derivation
for the applicabion of the superposltion integral to the Fourler transformem

tlon 16 exactly the same as in the theory of Leplace transformations,

¢
V’z(t? = £ /Vl(t,) vc(t T) 4T
: Q

V,(t) 1e the response of the filter to a sbep function at the input terminals.

The engineer usually contente himgelf with attempting to mske the transient to



a step function as small as possible and assumes that a minimal response to

a step function results in a minimal response to any discontinuous funetion.

11



Chapter II

Transients in T and II Sections

1. Basic Theory of Fourn-Terminal Networks
The common theory of passive linear four-terminal networks shows that
the input voltage and input current are merely linear combinations of out-

put current and output voltage.

Vl = 311?'2 + 31212
2.1
h=anls* 8l
These so-called chain equations are much more adequate for filter pro-
blems, because a connection of two four-terminal networks in cascade re-
sults only in a matrix-multiplication of the two chain equations. The
a, are functions of the nature of the four-terminal network., They ful=-

ik
£111 the relation

a
11 %12

n

8y 85,

If the four-terminal network ies symmetrical; i.e., it does not change
its character at an interchange of input terminals and output terminals,
it will be shown that 811 & 8oo¢ |

As a proof, solve the equations 2,1 for Vz and I Taking into

2'
account the fact that both V, and I2 have the wrong direction when the
four~terminal network is looked at from the output terminals, the result

is:
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‘J’l a.l2
V2= % Bao¥y = Bty
Y
o kL]
Ioe'® e L ke o]
ayn 5
5 I
—-T— —r—-c—
|
Vl} (V2
| |
(5 L]

Fig. 4. Four~terminal network.

The minus signs appear because the currents are flowing away from the
load and into the voltage source. A change in direction of the two cur-

rents changes the equations into the form

12 = azlvl + allIl

A comparison of the equations 2,3 with 2.1 shows that the equation

arp & 8y, must be fulfilled, if the four-terminal network is symmetrical,

2. The T-Type Filter
(a) Network eguations for the T—section.
A T—-section is shown in Figure 5.



&/2 5/2

Fig, 5. T=section.

The loop equations for this network are given by

1= @5 +25) L -5l
Rk
Vy= LTy = G2 + 2) I,
From the second equation the value Il can be computed

11=_J£;[v2+ 3z +z) 1]

This value inserted into the first of the equatioiis 2.4 gives

7 2"2

I oa—bV + (32 +2) 1
1 Z, 2 zzzi i

v, = a}z;(v}zl - zz) v, + -l-(%zl + zz)2 I, =2,1

From these two equations the network parameters are evaluated

in the following way

z 2
ayELY 2z, atlz=%;*zl+zz'zz

2.5
321="ZJ'2— . %02 &8



-
B
ke

(b) Have parameters of g T=section.

As the network parameters show, there are four constants that
determine the nature of any four-terminal network, But in addition
to these four network parameters there are two additional equations
which have to be fulfilled, when the network is symmetrical and
passive, namely, the determinant of the coefficients a, (equation
2.2) must be equal to 1, Furthermore Bqq B 8o '

For the symmetrical and passive four=terminal network there are,
therefore, only two parameters required, In the case of the T=-section
the impedances 2y and Z, may be considered as such parameters, It
is a general oustom to chose two parameters that seem to have more
practioal velue, They are called the wave parameters g and Zye

g 18 called the propagation constant

Zo is called the characteristie impedance
The propagation constant g 1s a messure of the relation between ine
put power and output power. The characteristic impedance Z, is
ddentical with the generally uvsed characteristic impedances The exact
derivation for these and the following relations mgy be found in
textbooke dealing with theory of natworks.l

In tho same weyr as the network parameters a,, were evaluated in
terma of Zl and Zz, they may also be evaluated in terms of g and Z,.
The theory of communication networke glves the following solution:

Vy = Cos (g) Vo # Z, S1n h (@) I,
2.6

v
Ilgs:!.nh(g)-zf- + Cosh (g) I,

8 See forssganple Goldmens Transformation Caloulus and Elsctris
Poe .
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These two equations are the most important equations of the
theory of four-terminal networks, because they relate the network
parameters, which may be measured at any four—-terminal network, with
g and Zo. This measurement consists of a measurement of input voltage
and input current in the case of short circuited output and open cir-
cuited output, Equation 2,1 shows for the different cases:

short circuited outpub: Vz =0

v I
8o = '31" 820 = 'il'
2 2
open circuited output: 12 =0
v E
8y ® =i 8 =
v 1
v,
2 2

The network parameters are therefore:

allgGoah (g) alzgza Sin h (g)
a.zlgﬂiﬂ.z];r_(ﬂl azngosh(g)

And from these equations it is easy to evaluate:

Z, ..-'\/312- 247

_1

Since Gosh(g)-lnall-lgzsinhz (%)

Sin h (8) .\/’.‘JJ.E-_J. e

X
The relation 2 Sin h® (8) = Cos h (x) - 1 may be proved as follows:



k¢

2
2 Stn 12 c-z):z[_ef_-_.g.f_/.%] R LY
> 2
X =
28 208 . - 1 4 Cosh (x) =1

The equations 2,7 and 2,8 are valuable for any four-terminal

network. An application to the T=section gives:

ﬁa , Z
Z
Sin h (g) & iuzb‘-l = \}A_Zi 2,10

(¢) ZIhe characteristic impedance of the T=section.
ﬁealing with these so-called basic filters it is usual at the

and

present time to follow the theory developed by Zobel, A very
essential prerequisite of this theory is that ;122 be real and in-
dependent of frequency. in other words Zl and 22 are reciproecal to
each other with respect to a ohmiec resistance R, It is usual to
write:

27 - R?

LA
Returning to the equation 2,9, it is easily seen that the second

term of the product on the right is the only term that is dependent

upon frequency. With the abbreviation

sk aal
1,

equations 2,9 and 2,10 change into



()

The plot of the function Zy m f£(x) shows the familiar impedance

curve., See Figure 6, Z1
pu;\“sqﬁginary _+puro ':rl:ﬂn:h:__I pure ary
i
|
| |
| R
-1 0 i i

Fig. 6. Characteristic impedance of a T-section,

As far as the compubation goes until now, no assumption was made
with regard to the nature of % and 22. The terminology used gives
the possibility of bringing all sorte of basic filters (low pass,
band pass, high pass and the related eliminators) into a single
scheme, Furthermore, all the formulas have become very simple,

Ihe mabching problem for baslc filters.

Equation 2,9a shows, that the characteristic impedance of a T-
gsection is real inside the pass band., Nevertheless, this resistance
is dependent upon frequency. It is impossible in practice to termin-
ate filters with such frequency dependent ohmic resistances. Usually
the filters are terminated with the value R = lez; i.e., the value
of the characteristic impedance when x m O, It can be shown that this
value corresponds with the value of Z, at the midpoint of the pass band,”

? See Guillemin: Commmnication Networks, p. 321
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(e) The propagation constant g.
The propagation constant g is given in equation 2,10
sinh B) = ix
wherein g may be complex. The left cide can be split up into real and
imaginary terms: =a+ jb

Sin h (g)

Sin h (&-tB)
2

. jb
=Stnh () Gos b () - cos b 3) sinn (5)
a b
=5nh (3) cos (3) = j Cos h @) sin (5)

iz

Only the magnitude shall be considered, Thiz equation iz only
possible if
a b
din h ('2') cos ('2') =0

dosh ) stn G) 5 x

In order to fulfill the firet equation the followlng two cases arve

possibles

Sin h (';f) = 0, This means a m O, But then the second equation
changee into:
Sin (g) = ¥ am0 Coch (0) g1 2,11
In the same wey as in the theory of transmisslon lines
the factor & has the significance of an attenuation

factor, Trom a = 0 it is evident that thie case is
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for frequencies inside the pass band. In order that
equation 2,11 be possible it is necessary to assume

2C1.

cos (g) = 0. This means, for example, b = T but then
Cos h B) = x x>1 2.12

This case is for frequencies outside the pass band,
A plot of the functions a = fl (x) and b = fz(x) shows the follow=

i icture:
s o o alb 5

Fige 7. Phase and attenuation factors of a T-section,

Fig, 7 shows that the phase characteristic as well as the amplitude
characteristic of the Twgection deviates from the ideal case, Chapter
I showed that the phase characteristic would be a straight line and
the amplitude characteristic a rectangwlar function for the ideal
filter, An approach te compute the output of a foureterminal network
ag a raﬁu.l‘b of an arbitrary input in terms of these deviatiopa from
the ideal case is discusged very briefly by Guillemin.3

? Guillemin: Communication Networks, p. 497,



(£)

21

Transient response of T—sections.

In this paragraph the transient response of a T—section will be
computed, It was the intention of the author to keep the derivation
as general as possible; i.e., not to make any assumption with regard
to the nature of the circuit elements Zl and Z2. Proceeding in this
way it was possible to reduce the solution of a sixth-degree equation
to the solution of a third and a second-degree equation. A&s in the
case of the ideal filter there shall be a unit step voltage applied .
at the input terminals of the T-section.

The network equations show:

-
Ty =ag,l, - ah,

Iy = ay¥, =8l
| th & TG T hi I ¥s
and wi he reldtion = which is in this case =
2 Zf RSV

V
Vy =80, + EE &,  and from this

i1

= 55 °1z/zo

Because this relation 1s a result obtained only by application

Yy

of the methode used to obtailn network equations, it is valid for the
transient too, whenp is changed into s, With the assumption
V1 B -%r- and using equations 2,5 for the cireult parameters, the oute

put voltage hecomess

v, (a)
v, L

e e 4 5, 4,

2,13
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With the relation Z g R = 2.122 the denominator of this fraction is:
o
=N x
Duma,, + ..1-»2R3 (52-4-3%)

A division by 2 gives the followlng equation:

'bn:fi'%z-r%;-b%

As a first step the zero points of this denominator are to be found,
2,
With the substitution 2—% = u the roots of the following equation shall

be computed:
weuwrusdeo 2.1

Because the degree of this equation is represented by an odd
number there must be at least one real root which may be found with
the method of Newton.

Tirst epproximation: U o= =,0e5

f(u) = u3 + w? * Wb T m= 0,125 4 0,25 = 0.5 # 0,5 = 0,125

£1(u) 3w ¢ 2udle=075=141g0.75

J:-%--OJS

Second approximation: u ==0,65

£(u) m =0eR74625 & 044225 = 0,65 4 0,5 ==0,002125
mn (u) = 1.2675 -lJ3 41 - 0.9675

§ = 0,002
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Third approximation: w = - 0.648

As a very accurate result W o= ~-0.648 may be chosen, Through an
eliminating process equation 2,14 may now be reduced to a second degree

equation:

2
(u3 * U u+D) i u2 + 0.352u + 0.7'?2!.8

(u + 0.648) Y

-0 .648112
0,352u° + u

= 0,2282u
0.7718 L
The remaining equation is therefore:

" u? 4 0.352u + 0,7718 = 0

The roots of this equation are:

u, = =0.167 + v/ 0.,030976 - 0,7718

= -0.176 + § V/0.7,0884

uz- -00176 + 10'86075

and

u3"' -00176 - j0.86075

equation 2,13 now has the form:

vl(s) Vl(a)

2.21;,'2(11- up) (u = uy) (u= uy)




(g) . Transients in conventional filters.
Low-pass filter:
Figure 8 shows the circuit of a conventional low-pass filter.

Fig. 8. Conventional low-pass filter.

The circuit elements are:

'ﬁ'z]_=LP zz='%c_

The load R may be computed:

R.@:"/Eﬁ'

The frequency band of a filter is a quality which is related only to
the steady-state response of the giyen network, All the formulas de=-
rived from the expressions 2,10 and 2,11 for attenuation and character-
istic impedance are valid only for tﬁe;steady-s‘tate response of the
filter, The factor p in the expressions for Zl and 22 has, therefore,

to be replaced by jw . The frequency limit of any filter is given,
by the relation:

2 g and with 2ol
42
- J_Lzl_c s 1 which means

2= 2 Vs 3WE LB
wlch or 018 %_ % ch



The roots of the denominator of equation 2,13 shall now be computed,
From the last section the zero-points of the third-degree equation

2.14 are known, From

= .-z; = ﬂE - 0, 6
LRapesg-e 2
w = _’EZ.L. = = 0.176 + j0.86075
uy = ng = = 0,176 - j0.86075

the zero-points of the denominator D of equation 2.13 are:

31 = - 0.65 %E e 0065“1

R
8y = = 0,176 7 + J0.86075 & = - 01766 + JO.860754

83 = = 0,176 § = J0,86075 B = - 0,176 - j0.860754
Equation 2,13, therefore, has the following forms

K~ @.52) o5y s

'2 and 53 are conjugates of each other and, therefore, equation

2,15 has the type:

£ - 1——_-—— &
(a) s(s = a)[(s +ot)? +/3q e

o is the real part and @3 is the imaginary part of -s;. Equation
2,16 shows that the solution for the low-pass filter consists of

& damped osocillation and a rising exponential expressed by the pro-
duct 8(s = a) in the denominator. It looks strange that the dissipa-
tionless circuit of Fig, 8 should have a damped oscillation as tran-
sient response, It must nevertheless be noted that the load R is

25
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coupled to the circuit and, therefore, dissipates the energy of the
oscillation. The inverse transformation of equation 2.16 could not
be found in the literature and had, therefore, to be computed with
the aid of Heaviside's theorem.

1 L -at

a@? -4 i a[(a=)? +] i i

F(t) =

pom b @ = aa-foint) - afi- af)cos (a1)
@? +/32)[(a -a)? +ﬁ2]

For the low-pass filter the terms a,«, ﬁ have the values:

a = 0.6480{1

o

/3

For the final solution this function has to be multiplied by a factor

0 .176w1

0.8607561

A, This factor shall now be computed:

Equation 2,13 gives:

v () = L) _ ik 1
2 2D s ¢ v 4 utd) 2s(u—u1)(u—u2)(u-u3)

” 1 wf
(k= ) G = 9) (- w) 2ole - mlls —ngyh o = u)

2s(s = sl) (s = 32) (s - 53)




The factor A is, therefore:

3
- EA0
A= Bz 7

After a lengthy corputation Vé(t) takes the following form:

T,(6) 2 B[1 - 0.8 700" L 0,6 cos (0,864t - ¥ )

when ¥ = tan™(2,82)
For t = zero, Vé(t) must become gero, because the inductances do not
allow a discontinuity to sppear at the loads This relation holds in
equation 2.17 which can be proved by setting © = Os
On the other hand if can be shown that at t = Ojeven the derivae
tive with respect to time is gzero, which means that the response funow
tion has a horizontal tangent at t = O, The response of the low-pass

on a wit step has, therefore, the followlng forme

Fige Qe Response of the low-pass filter to a unit step.

Speeific examples will be given in a later section.

High-pags filter:
The eircuit .of a high-pass filter is shown in Figure 10.
\e ¢
— |
%
Vll 2

|
I
|

l
v
|
I
|

Fig, 10, Conventional high-pass filter.
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For this case the circuit elements are:

-%zl,_.p_lé, Z, = pL

R!‘/%L:

In the same way as for the lowepass the limit frequency may be com-

and

| puted:

X = lg e and, thérefore, .

With u e % - .%5 - i} the roots of the denominator of equation
3 8 8 _

2,13 bécome:
8y = = Leohky
85 = (= 04205 + jO.98)4y

= (= 0.205 - j°°98)“i

The denominator of equation 2.14 has in this case the form:

s(v = ) (u- ué)(uauz) = s(-z}— ul)(-al-ug)(-.-él—ug) 219

When this expression is expanded the result is a function of the

forms:

De 82 ¢ Bt Speer) 2,20
a3 f’i 5 - |

The method developed in the preceding paragraphs gilves the zero points

of this denominator, It must be kept in mind that for this case the



polynomial in the parantheses of equation 2,20 cannot be written in
the product fornm (s = 8) (s = 32) eeve (8 = 8)), where 815 Sy eee 8
are the roots of the equation

D(s) = O 221
This would only be true if all the exponents of s in equation
2,20 were positive or equal to zero. There is nevertheless a possi-
bility of redueing equation 2,19 in such a way that the product form
may be aprlied, The followlng general function may be assumed:

= : 5 n
e esee C_8S
+ ceve Co -+ cls + 023 + ~

' ~n . g=n=1
D(s) = 6,8 to, 48

This function can be written:

2 n-1 n=n
2% c'- 87 eese GOBn + cls sees Cms )

-)iw],

D(s) = fﬁ("-n +c 2%

The expression in the parantheses is e function which contains only
exponents of s which are equal to or greater than zero and may, thero=

fore, be expressed as a product., Because

(¢ + ¢ B % eeve) =0

-n ]

has the same roots as equation 2,21 (multiplication on both sides

wvith -35 it is certain that the zero points of hoth expressions coincide.

The following theorem is, therefore, valid
Any polmomial of the form:
Gup® ™ = o_

ﬂ-lﬂ : oo Oo 013 seee Cms

may be written in the foim:

-EE-’ (6 = 8y) (5 = 82) sbee (e -e,) where sy, 52....;. s, are



the roots of the equation:

-n =]
c _8 + C 18 Ty cO + cls s cmBmz 0

Equation 2,20 shows that the maximal negative power of the ex-
pression inside the parantheses is three, The denominator D(s) has,

therefore, the following form: (The factor ¢, is equal to 1)

RS
| by P M
D(s) = ng-(s - sl) (8 = sz) (s = 83)

Vz (t) is, therefore, the inverse transformation of the expression

Y ) a &

2 (8 = sl) (s = 52) (s = 53)

where 52 and 53 are again conjugates of each other, This may be

written as:

g°

2 2422
(s + a)[ (s +o)? +8?]

where o is the real and /3 is the imaginary part of -s,, and a is equal

to "'810

aul.%l

X = 0,205 1

= 0% 4

The inverse transformation of equation 2,22 may be found in the

litem‘burel* and is:

4

GOldmﬂn, D« ﬁo, Pe 421, Formula 24.
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2 & oA
V,(t) = g omab AT 487 "?23“0 e'“tcosﬁt
: (a =)? =82 (aeof)” +B°
2.23
e ) g
 a=e) 0 =% - 8B gynp
Bla -x)* +3%]
Ingerting the values of a,d,ﬁ gives:
T, (5) = 0.865 &Y 4 0,138670 PN cos 0,984
4 2,24,
- 06127094 510 0,980 %
The response of a high-pass filter shows, therefore, the following
form,
\ e T b
N

Plegidls Response of the highwpass filter to a unit step.

Band=pass filter:

Hl—mm——wm—“fl—'
%
|

e e ——— ——

Fige 124 Conventlonal bandmpass filter.



The circuit elements are:

p+pC_Lo.w+ p) vith @~ =

() L
- 1 I‘C

T

2= 7

.

This is the way the circuit element 22 is usually evaluated., In most
practical problens R is assumed to be 600 ohms, The limit frequencies

are evaluated according to the formula
W -4

= = L'% ! +

- - ki
R

8:!':0

With the abbreviation ‘-;)-I-i-f = ¥ and taldng only positive frequencies
°

inteo account, this equation may be solved for :

a)i=w°[\((1-—i )+ 1]
wzzuo[\/ 1= I:) -%]

It can easily be shown by expansion that wlwz s wo?'; ie€ey &), is the

geometric mean of fdl and wz.

Farthermore from u = 2513 the equation may be derived:

-

uﬂpﬁ--fpﬁc- . Q*p) again with W " = &

With p = s for thetransient response this may be put into the equation:

s?-w s+#° =0 uhen R-%"%E
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which is very often referred to as Q and is nemed quality factor,

The solution of this equation gives:

Bl -_-Uo(nz!— j'\f Elae (%)2

5, 2w, + 5 V1~ (3

When the three zeroes of u:

u,l = =0,648 n2 = =0,176 -J0.86 113 = ~0,176 + j0.86

are inserted into these equations it is readily seen that there must
be 6 zero points of equation 2,14 in the case of the band-pass filter,
The relation between 81 8, and wl, w2 are unfortunately not as simple
as in the case of the'loWw-pass and the high~pass filters. In other
words, the zero pointe of the denominator are a function of R, This
is easy to understand, because a damped resonant circuit has not the
same frequency as the wmdamped circuit with the same capacitance and
Inductance, Because R is not negligible the change in frequency must
be taken into account,
Equation 2,13, therefore, has the following form:

2

£ (s) 5
s 8) (e - 5))(s = 85) (5= 5,) (s~ 5,)(s - 5,)

Becanse always two solutions are the conjugates of each other this

may be written:

2
£(s) = IR .
[(c +et1)% + B,7] [(e +a,)% # B,7] [(= 4 t,)? = B3]



34

The inverse transformation of this expression is a function which is
composed of three terms according to the three brackets in the denon=—

inator. All of these terms are built in the same way and are of the

nature:
(0;2-&2) {[( o(m- 0(::) 2* (énz—p xz)] [ (dn- o‘x) 2+ (ﬁ nz-ecz)] -2{3::2 (dm' o:gc) (dn“ o:Q T
{ﬁx[(f’{m-dx) %(B+R)7 (G- (B-R)?] [(t- )2 (B+£)*] [~ )% (7]

(ot B et =0) [ =) %48 )] # o - o) [ (A -o0)*# (- £7] |
Bl A % A1 (L )P B R)*1 [ B R)° ) [+ (-] }

2e25

(2 d?@:) [ [( dm- dx) 2+ ng-/gxz) ] [(“n-dx) 2+ (ﬁ nz- xz)j _2p::2 (o‘m-ogr) (o‘n- oﬁ'*)}
% {ﬁx[%- )% (848071 [ = )P (B8)°] [(A-o) % (/0% ] [ ) %+ (B )2 ]

2.0 32 { (o) [ (o = k) 3 (B2~ 82)] # (ot [ (f = )% (B%-37) ]
Al P (e D A AL 0 B D71 D> ) }

ot
€ = coﬂA‘t-

There will be three expressions like this one in the final. solution,
The first expression may be evaluated by substituting Xy forof, and
A, andoly for o, and o, For the second expression, substitute )

¢ k3 d fo:rd
for dx andof, and °‘z for of and.og For the third, substitute s 2
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ando(l and 0(2 for o(m and o(n. For all of these expressions, the ﬂ-—
subscripts must be changed in the same way as thed subscripts are.
As soon as there are given numbers inserted into the different terms
they reduce to the form (a sin xt - b cos xt)e™J°, As stated before,
the final solution consists of three damped sinusoidal oscillations
which are superposed, An example will be given in the last chapter,

Band elimination filter:
e

A

po s AT

Tige 13, Band elimination filter,

The procedure for the bandwelimination filter iles basically the same
as for the band~pase filter, The cirovit elements are:

¢ - P, =%,
é—l--p -L%IUOC‘% z

For this u may be computed:

7

1
% Rcw (.. = ‘.‘9.) -G. v

v VP&,

e -
2 % gt R
W, P
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With this and p = 8 for the transient, equation 2,13 has a denominator

of the forms
vedl vs W s W
D(8) = 8(——rmwly) (s = W) (g = 1)
x &2+ W* &+ we  ° s§+u£2 3
° o -

In order to make this denominator a polynomial without negative ex=

ponents of s thif expression must be multiplied by (e* - woz)so

Cquation 2,13 has, therefore, the form:
NG w02)3

: 2426
o[ (o +aty)® A7 [+ °(?.)2 *ﬁzz-”(s + ""3)2 "'ﬁzz]

v, (s)

vhere

2.2
v -\/ U,
o(.iz-.é?.; ﬁ.i.-.- %2-__._41‘;

Thie expression is too complicated to be transformed directly. As
goon ag there are specific nurbers for W, and K and B , the transe
formation is much easier,

Tor the sal® of completeness the expressions for the limit

frequencies shall be given:

Wy = w,( V1-24*§)
‘U2ﬂ ﬁ)a( vl-‘gz-g)

The formulas twm out te be exactly equal to those for the band=
pags filter,
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3. The _T -Type Filter
Equations for the I -section will be developed in the same way as for
the T=-section,.

Fige 14, T =section.

(a) Network equations
The node analysis of the circuit of Fig. 14 gives the equations:

vltfgxl + !2) - v222 = I1

2,27

Vzﬁﬁil + Ié) - leé = - I1

From this the chain equations may be drived:

Y
Vel — e
1% AW, g

R
2 2

Y Y
= T4 RV +(1+§i-)12

2 2
Thie gives the chain parameters:
p 3
TEERS LK

Y
5-21IY1(1+Z§§); azzgall



(b) The wave parameters
Hth the aid of equation 2.7 and 2.8 the wave parameters may be

evaluated:

andagaimdth_l--xz and Y,¥ =.J! this is equal to

2 R
2 = 2
V1. x?
pure imaginary / zo \ pure imaginary
pure ghmic
-1 9 1 g

Fig, 15, Characteristic impedance of a T -section.

In the same way as for the T=gection it can be shown that:
8in h(.g.). = ‘Vfil.lz;l *

This equation looks exactly the same as equation 2,10a. The plot of
the function g = £(x) is, therefore, the seme ae Fige. 7. The pro=-

pagation constant for both T and TF=section are, therefore, identi-
cal,

38



(¢) Transient response of I —section
The frequency response of the output voltage is calculated in the

same way as equation 2,13 was developed. Starting at the equation:

v, = i,
¥ 812
b
o
with 2%z B° = L it nay be shown that
0L,
o S
2 RQIJ_Z

D) 1

The denominator becomes, therefore:
Rvy. 2
R
1
2
Dividing by 2 and with the abbreviation: u = E;l the zero=-points of

this denominator are found as roots of the equation

u2+u+%:0
Ui - %‘I J%

The solution consists, therefore, of a single damped oscillation,
The reason is that the given problem demands that the voltage at the
input of the filter shall be a unit step independent of the input
current, In other words the current 11:ﬁhrough Z, at the input of
the T ~filter shall not influence the input voltage. Under these
circumstances this current 11 has no influence on the output voltage

and the circuit of the I section may be reduced to the following:



Fig. 16. Reduced T -section.
This cir§uit is no longer a. four~terminal netwofl:,‘ and a great part
of the discrimina’bivé quality of the filter has been lost, The
T =section is, therefore, not the best circuit for a voltage source

as energy source. With other words, the TN ~section loses a great

internal res.lstance:o

If the energy sdmréé’haé:a'high internal'reeistance; i.0y o
comparablé'with a éurrenﬁ soﬁrce, the input current may be assumed
to be a um.t—-step eurrenﬁ.s

Then the four—‘berminal ne{mork equa*hicna ares

Uy = ey Ty 4 egply

Iz apyly + 2ynly
With the relation 12 = %2» when the load at the output is R
. - Vy
;= 8yVp # B
Vg =




™

and with B = % the denominatér of this fraetion bscomes:

Y J_‘?‘ o 213 |
D=l 4, o = o Whern this is again divided
2@? G460 |

by 2 and with the abbrevistion Eé-.g u this hecomes:
e+ P susrd

This is exactly the same equation as equation 2,14 When the dew
nom1natcvs of e&uatlon 213 for th@ T=section and 1he'ﬂ-wuection

are ﬁompaxﬂd 1t is rﬁadliy seen that 7 qbaggﬂé ba b and B to G

11he natnre of the tvan51ent reaponsa xnvth»‘iuS@v on aﬁd in the )

The +rans1evt of thu 1_;seetlon

ﬂ'wsectlon isy thereszeg the sama“
may be derived from the tzanSAent of +he TuSeLtLon by qlmply TO-

piaelng Zl by Ylvand R by &o



Chapter III
The Influence of Losg Resistance

Again the relation Z,Z, = R shall be fulfilled. In this paragraph will be
shown what consequences this condition has on the choice of the circuit elements.
The most complicated case is the one in which Zl is represented by a resonant

circuit,
Zl = Bl + .'J("&-l "u-)%z)

)

T =06y + j(wGZ"sz

From 2’.122 - R2 there may be derived:

R -
R + j(le a6 = R [ G, + jwC, 6%;)]

A comparison of the real parts on both sides and of the coefficients of w and -‘%-

gives the following three equations:

& LR Los uR
%_ﬂ% L, = R2C, & Rt

If the quality factor of ¥, is computed it may be shown that:

%, = %{'{?‘ o %_H;l = Wy00%
2 R
But the expression W, CR is known as the quality factor of a series resonance
circuit, The consequence of the condition ZyZ, = R? is, therefore, that the
quality factors of all circuit elements are the same., It is today cormon use
to design filters according to this, even if there must be inserted artificial
loss resistances in the form of lumped ohmic resistances,
From this derivation it may be seen that equation 2,14 is still valid

for a filter which includes losses. The only assumption concerning the circult
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elements made when this equation was developed was that Z._.LZ2 = R%, This is the
second big advantage this form of analysis has over any other. The gzero points

of equation 2,13 may be found by substituting Z;(s) into the formule for u:
U= 2% and solving for s.

Low-pass filter:

EEERE

U = ﬁ - sl solved for s gives:
-~ R R ,
s zuw - -k 3.1
) 1. |

Equation 2.14 gave 3 solutions for u, among which one was real, The inflﬁenée
of the losses is expressed by the last term on the right of equation 3.1,
Because this term is always real, there is no influence of the loss upon the
frequency of the osecillation. The only influence consists in an increase of

the damping factor and a decrease in amplitude of the whole solution,

and from this again

u ¢

and again the influence is only upon the real part.

Band-pass filter:

3, s R Fplb L
and | -
bh = Ry a .., e R1 - Ru. -

1C



by

In-this case there is an influenece of Bl upon ‘the frequency of the oseillatione
The example in Chapbter 4 will show thab this influence is negligitle.:
A similar derivation eould be‘~madé» for the«-‘band-elimineti‘on ‘filter, A4l1

these cases show that there is no essentlal dlfferencs 1n the transient of a-

- (

bas1c filter ‘whether there 1s 1oss or not, A4ll the transformation formnlas
remain ‘the sameu The dlfference consists only in a slightly 1ncreased damplng:?

factor of the oscilla:bions°

&7
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Chapter IV

Application of the Theory and Conclusions

1. The trangsient response of the low=pass filter

(a)s The idesl filter
Chapter I furnished the following final formula for the ideal

band-pass filter:

Vo(t) = [ stuy(t - bo) - St (% - t,)] £
In the case of the low~pass filter the angular frequency « 1 must

be set equal to zero and W, represents the limit frequency.

Equation 4,1 then changes into:

L
V(%) = 5 Siw,(t = )
For the transient response the time delay t, is of no interest,

Thus the final solution takes_ the form:

0 = F st

Figure 17 represents the transient of en ideal low-pass filter
with the limiting frequency f, = 1000 cps; i.e., &, = 6280 sec ",
The product IX is assumed to be equal to 1.
(b). The physical low-pass filter without loss
The transient response of a physical low=pass filter without
losses shall now be computed according to the theory developed in
Chapter IT vhich lead to formula 2,18, |
The following data for the low=pass filter shall be given:
1im1t frequency: f£. = 1000 cps

1
i Sy wl = 6280 580-1
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load at output terminals
R géOOohma

The circuit elements are determined according tec the formula

Wq =% and, therefore,
L=XR - 600 _0.0055~ 0.1 h
i 780 = 0.0955 .1 henry
and from lez - % = R?

C=L _0.,28uF
RR 7

If the value of &)1 is inserted into equation 2,18 the final form of

the transient is:

LOTot -1110%

Vy(t) =1~ 0.8 0.6 e cos(810t -¢)

Y = 70°40' = 1.23 radians
Figure 18 shows a plot of this function vs, time,
It is readily seen that the most essential difference between the
ideal filter and the physicnl filter without losses consists of an
oscillation at negative time at the output of the ideal filter, It
seems to be a paradox that the output of the ideal filter already
shows an oscillation before the signal at the input is applied,
The reason for this is that the amplitude and phase characteristic
of the ideal filter have been assumed to be independent of each
other, In other words the ideal filter is not physically realizable,
There exists a very definite relation between phase and amplitude

characteriatic.5

5

Goldman: op, cit., Page 128,
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(¢)o. The low=pass filter with losses

Chapter ITI showed that the only difference between a filter
without losses and a filter with losses is a change of the real
parts of the roots of equation 2.14. The low-pass filter showed
the following change in s:

physical filter without loss 8 = uai

physical filter with loss S = utr-:’L - %

where R‘_L is the series loss resistance of the inductance, Even at
very low and moderately high frequencies it is possible to build
induetances with time constant % smaller than%—. >

The assumed filter shall have the same data as the low-pass
filter without losses and % , which represents the quality factor
of the inductance, shall be assumed to be 0.2,

51 = W = 5.0 = 0.648(6280) ~ 5.0 = 4070 - 5.0

Sy = Ul = 5.0 = 0.176(6280) - 5.0 -30.86(6280)

S3 m Uglh = 5.0 = 0.176(6280) - 5.0 -j0.86(6280)
The computation shows that the influence on the real part is
smaller than one half of a percent,

2. The transient response of the high-pass filter
(a). The ideal high-pass filter
From equation 1.6 there may be derived in the same way as for

the low-pass filter the equation:

f£(t A
(t) = X (.g' 814 t)
Figure 19 shows a plot of the transient of the ideal high-pass

filter, Again the product EX is assumed to be equal to 1.



(b).

(e)e
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The physical high-pass filter without losses
The following data shall be given:
f1 = 1000 cps

Wy = 6280 sec L

Again the output terminals shall be connected to a resistance of
600 ohms,
Circuit elements:

w L
1% %6

and, therefore: (- S g
'y UlR =0 274/[.F

and again from %;%, = B = L
c

L = R°C = 0.36(0.274)m 0.099 henry

Equation 2.2 gives with &, z 6280 sec™:

V() = 0.865 6 9700% 4 0,62 ™20 cos(6150t 4 )

p = T7°20!

Figure 20 shows a plot of the transient of a physical high-pass
filter without loss.
Again the response of the ideal filter shows an oscillation for
negative time, The reason is the same as for the lowepass filter,
The high-pass filter with losses

Chapter I gave the following equation for the roots of equation
2.14:

8= a-)ul - Ecl when Gy 1s the shunt loss admittance of the con-

denser. The temm . is the time constant and represents again the
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quality factor of the condenser, Condensers have usually quality
factors which are well above 0.2, Because Z, is an inductance which
has to have the same quality factor as the condenser this factor will
be assumed to be equal to 0.2.

The numerical values for u, , u, and Uy inserted into the
equation for s shows that again the influence of the losses upon the
transient response is negligible,

3. The transient response of the band-pass filter
(a). The ideal band-pasgs filter
The following data shall be assumed:
£, = 4000 cps f2 = 8000 cps

Wy = 25000 sec™l w, = 50000 sec™L

Neglecting a time delay, equation 4.1 then gives

2(8) = & (siwpt - swt)
Figure 21 shows this function under the assumption K = 1,
(b). Ihe physical bend-pasg filter
Chapter II showed that the resonant frequency of the resonant

circuits is equal to the geometrical mean of the two limit frequencies.

2 8
0. s, = 12,5 x 10° = L
s A LG

Either Iy or C; can be freely chosen., Usually Ll is made as small
as possible because the greatest part of the losses of the resonant
circuit are inecluded in the inductance, The favorable choice of 11
is one of the problems in the design of filters which needs most

experience and knowledge of the materials which are available, If

11 is very small the influence of temperature and wiring capacities
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relative to L, is great, Furthermore, it is difficult to manufacture
small inductance in mass production with good accuracy. On the other
hand it is difficult to maintain a low value in loss resistance as
soon as Ll is very big, because big 11 requires big iron cores which
in return inserts losses as the result of eddy current and hysteresis.
A careful choice of the core material can keep these losses amall,
As an example I, will be chosen 0.085 henry, which is obtained with
a medium size ring coll of about 2 inches diameter,

Ll = 0,085 henry C; = 0,01 LF

L, = 3201 = 0,0035 henry C, m 0,235/ F
The computation of the transient response of the high-pass filter
according to the theory developed in ChapterIl gives the following

three terms:

2300t

Vz(t) = 0,35 g- sin 35400t

-0.107 =2 70% cos(38100t - 88°101)

6T

=0,0985 cos(32000t - 87°311)

A plot of this function is given in Figure 22, The computation of
this response function is a very tedious work, It is readily seen
that the main part of the output consists of the first term of the
above expreasion, The second and the third term are much smaller,
Thelr essential purpose is to bring the derivative of the output
voltage with respect to time to zero at the time t g 0.

The influence of the losses may be computed according to the
formulas developed in Chapter ITI, Again the influence will be
found to be negligible,
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The given examples show that it is possible to substitute an
ideal filter for the physical filter, when only the transient
response is considered provided the following changes are made:

1., All the oscillations for negative time are to be eliminated,

2. The tangent of the transient response at the time t = O must
be horizontal in the case of the low-pass filter and the bande
pass filter,

3, The response of the high~pass filter for negative t must be
eliminated.

The given examples show that under these assumptions the ideal
filter is a very good approximation, For the band-elimination fi]l-
ter ‘it can be said that the same approximation must be allowed,
because of the relation between ideal and physical band-pass and
ideal band-pass and ideal band-elimination filter, When the ideal
band-pass filter is a good approximation for the physiecal band=pass
filter, the ideal band-elimination filter must be a good approx-

imation for the physical band-elimination filter,

Conclusions

The final conclusions that may be derived from the present paper

are the following:

(a)o

The ideal filter as defined in Chapter I is for most practical
application a good approximation.

It can be said that for the m-derived filters this approx-
imation is even better, because these filters have a phase and
an amplitude characteristic which approaches the characteristics

of the ideal filter closer than the basie filters do.

54
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(b). The influence of losses in the circuit elements are negligible fozf
the transient response of the basie filters,

_ For the steady-state response of the filter the losses have to
be kept so small that they have no influence on the transient
response, It is, therefore, impossible to insert losses in order
to keep the transient response small without disturbing at the

same time the discriminative quality of the filter,
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