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Abstract

It Is typically the case in orthogonal image analysis that
the pattern matrix Is Interpreted in an attempt to define the factors
underlying the observed variablés, 1t is shown that, unlike other
orthogonal factor analytic models, pattern and structure are not the
same In orthogonal Image analysis, The structure for image analysis
Is derived for both the full and deficient rank cases, The differences
between image pattern and structure, as they relate to the interpretation

of factors, are demonstrated in a serlies of numerical examples.



PATTERN AND STRUCTURE IN APPLIED

IMAGE ANALYSIS

The term factor analysis, In the popular usage is generic and
refers to a class of procedures designed to determine the structure
underlying a set of observed variables, In psychological research,
especially In the areas of intelligence and personality assessment,
measurements are taken on a large number of observed variables, and it
may be desfrable to account for the interrelationships among the
observed variables in terms of a fewer number of underlying variables,
If a reduction in the number of variables Is possible, a certain
economy Is obtained in terms of the number of factors needed to account
for a varlety of observed psychological variables.

In the history of factor analysis, the predominant model has
been the common factor analysis model. This model assumes that the
variability of the observed variables can be represented by two parts;
the vartability common to all of the variables, and the variability
which 1Is specific to each variable, The common factor model attempts
to account for the variability of the common parts of the observed
variables in terms of a set of latent variables called factors, It
Is further assumed that since the latent variables form a basis for the

common parts of the observed variables, there are in general fewer
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common factors than orlginal variables,

In order to apply the common factor analysis to data, a
determination of the unique parts of each of the original variables
(the uniquenesses) Is made and these uniquenesses are removed from the
intercorrelations of the original (standardized) variables, The
resultant covarfance matrix (called the reduced correlation matrix) is
then '‘factored' to determine the number ard composition of the underlying
common factors, This model, however, has a very serious limitation,
The assumption that the p original variables may be exactly reproduced
by r common factors (r<p) and p unique factors leads to a system of p
linear equations Involving p+r unknowns, The solution of such a system
of 1inear equations Is not unique (e,g., Searle, 1966, p, 138), This
state of affalrs has been refered to as the indeterminacy problem of
common factor analysis (Guttman, 1955),

A considerable amount of research in the area of factor analysis
has been done on methodology, Much of this research has been involved
with finding methods for determining the uniquenesses of the observed
variables, Other aspects of the research on the common factor analysis
have involved the determination of alternative models which do not
suffer the Indetermlinacy problem,

Image analysis (Guttman, 1953) Is one of the alternative
models, The fundamental theorem of Image analysis involves the
determination of the covariance matrix of those parts of the original

variables which are 1inearly predictable from the remafning variables.
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The predictable parts of the original variables are called images,
and those parts which are not predictable from the other variables are
called anti-images. In this formulation, each of the p original
variables may be reproduced by adding Its respective image and anti-
image, An advantage of the Iimage model is that it is completely
determinate,

Image analysis, In addition to providing an analogous and
determinate alternative to common factor analysis, has also provided
a logical method for determining estimates of the common parts (and
consequently the unique parts) of the observed variables in common
factor analysis. McDonald (1975) has criticized the use of images as
estimates of ''common parts'' and suggests that when images are used,
the same basic problems exist as when the communalities are obtained
by the methods typical of common factor analysis, There is, however,
a difference between employing images as estimates of common parts in
the common factor model and choosing image analysis as the basic model.
This difference exists because the basic assumptions of common factor
analysis and Image analysis are different; the assumptions of the
common factor model lead to the factor indeterminacy problem, whereas
the assumptions of the Iimage model eliminate the indeterminacy problem,

It Is the purpose of this paper to detail the common factor
analytic model with its assumptlions and results and then use it as a
basis for the development of the image analysis model, Based on the

development of an analogy between the two models it is observed that
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there are discrepancies In the way these models are applied to data.
These discrepancies are identified, and a resolution is provided along
with numerical examples, Finally, it Is noted that the method suggested
to resolve the discrepancies in the application of image analysis
posesses certain properties which relate to principal components

analysis, These relationships are developed analytically,

Definition of the Models
Three of the most well known and widely used methods of
determining the structure underlying a set of observed variables are
common factor analysis (e,g., Thurstone, 1947), image analysis (Guttman,
1953), and principal components analysls (Hotelling, 1933), For purposes
of definition and comparison, consider the following formulations of the
models,

Common factor analysis (CFA), The CFA model Is written as

(1 z=c+u=Fx+Uy,
where z Is a px] vector of observed (standardized) variables, ¢ is a
px1 vector of common parts of the original variables and consists of
the product of F, a pxr matrix of unknown common factor loadings
(coefficients) and x, an rx] vector (r<p) of common factors (factor
scores). In (1), u Is a pxl vector of unlque parts of the original
variables and Is the product of U, a diagonal matrix of unknown unique
factor coefficients and v, a pxl vector of unique factors (factor scores),

The orthogonal CFA model makes the following basic assumptions:
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(1 EGx) =1y,

(1) E(w!') = (o)

(111) E(xv') = o,
There are several consequences which result from these basic assumptions.
It Is tmmediately seen that the unique parts are uncorrelated;

(2) E(uu') = EQUwy'U") = u? (diagonal),
The common and unique parts are uncorrelated,

(3) E(cu') = E(Fxv'V*) = 0,
and the common parts have the following covariances

(4) Elcc') = E(Fxx'F') = FF' = R -~ U2,
From these relationships, the correlation matrix of the original
variables may be wrltten

(5) R = E(zz') = FF' + u?,
which has been labelled the fundamental theorem of CFA,

It Is well known that the CFA model has two inherent problems.
The first of these Is referred to as the rotation or identifiability
problem, The identifiability problem may be stated by noting that (5)
may be written

(6) R - U2 = FF' = FTTIF' = FiFxt,
where TT! = T'T = | and F* = FT, Thus, there are infinitely many choices
of welghts F* which satisfy the model, The identifiabllity problem is
not unique to CFA; It Is a problem In all factor analytic models, It
Is usually resolved In practice by choosing a matrix F* which satisfles

Thurstone's simple structure criteria (Thurstone, 1947, p, 335), which,
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in the orthogonal case, is approximated by Kaiser's (1958b) Varimax
criterion,

The second problem in common factor analysis is that the
solution for the common and unique factors Is not unique, The
nonuniqueness of the common and unique factors is referred to as the
indeterminacy problem (Guttman, 1955; Schbnemann, 1971), and arises from
the assumption that the unique factors are uncorrelated, Assumption
(11), in conjunction with (iii), gives rise to the indeterminacy by
requiring that the r common parts, ¢, and the p unique parts, u, be
solved for in a system of p linear equations, It is well known that a
system of p linear equations in p+r unknowns can not have a unique
solution, Indeterminacy Is a serious problem for the CFA model because
there is no known satisfactory resolution of the problem, There are,
however, alternative models which yield determinate derived variables
which are similar to the unobservable, indeterminate common factors.

Two such alternative models are now discussed,

Image analxsfs (1A), The IA model (Guttman, 1953) is written as

(7) z=m+a,
where m is a pxl vector of Images -- the portions of the original variables
linearly predictable from the p-l remaining variables, and a is a pxl
vector of anti-images ~- the portions of the original varliables not
predictable from the p=l other variables, The vector m may, therefore,
be written

(8) m = wz,
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where W Is a pxp matrix of row-wise least squares regression weights
for predicting the jth (j=1,2,...,p) observed variable from the p-I
other variables, Guttman (1940) showed that
@ w=®- R = -5k,
where R is the correlation matrix of the original variables, and
(10) s% = (diag RN,
The vector of anti-images is obtained from
2,1

(1) a=(1-wz=5s%R"z

The matrix of covariances of the images, G, is given by

2 2

(12) 6 = E(m') = E(Mzz'W') = WRW! = R - 257 + s%R""

R™'s2,

Since G Is, In general, non-diagonal, it Is possible to obtain
a set of variables, d, that form an orthogonal basis for the images. A
basis for the images may be expressed as follows:

(13) m = Bd,
where B Is a pxp matrix of coefficients, and d is a pxl orthogonal basis
scaled so that E(dd') = I, Equation (13) implies that

(14) 6 = €(mm') = E(Bdd'B') = BB,
However, a basls for the Images Is not unique since we may write (14) as

(15) G = BB' = BTT'B' = B*Bx!',
where TT! = T'T = |, A logical basis, unique by restriction, is
provided by a principal axes decomposition of the image covariance
matrix G, The coefficients, B, of the images relative to the principal

axes basis are provided by the decomposition

(16) 6 = QDAQ' = BB',
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where Q Is a matrix whose columns are the eigenvectors of G, DA is

a dlagonal matrix whose entries are the eigenvalues of G, and B = QDA%.
The principal axes decomposition of G in (I16) has been suggested and
employed in practice (e.g., Kalser, 1958a, 1963; Mulaik, 1972, p. 191).

Principal components analysis (PCA), A second alternative to

the Indeterminate CFA model is principal components analysis (Hotelling,
1933), The PCA mode! is given by

07) z=1+e=Vy=Vy +e,
where V =[V] | Vz] Is a pxp matrix of welights, and y' =[yl' |y2':] is a
px1 vector of orthogonal principal components scaled so that E(yy') = I,
J Is a px] vector which contains a linear combination of the important
principal components of Vy (i.e,, leq)’ and e represents a px1 vector
containing a linear combination of the trivial components of Vy
(1.e,, V,y,), From this formulation, It can be seen that | and ¢ are
uncorrelated by noting that

. (18) e(1e') = E(V]quz'vz') =0,

because of the definition of y' = LXI'I 12'].
The PCA model provides a decomposition of R as

(19) R = E(z2') = E(vyy'V') = W',
3

where V = LDu , and where L Is a matrix whose columns are the eigen-
vectors of R and Du is a diagonal matrix of eigenvalues of R. Even
though the form of VW' in (19) represents a unique decomposition of R,
there are Infinitely many choices of weights, V¥ = VT (TT' = T'T = 1),

which will satisfy the model, But, as In the preceding two models,
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the partlcular choice of weights are often those which satisfy a

simple structure criterion (e.g,, Varimax),

Comparison of the Models

From the preceding explication of models, several points of
comparison can be made. First, as previously mentioned, all of the
models are subject to the rotation or identifiability problem, The
matrices which satisfy the simple structure criterion, however, are
the usual cholces for the weight matrices, A second point of comparison
involves the nature of the '‘residual" parts in each of the models, In
the CFA codel, the residual parts are the unique parts of the original
variables, and in (2) it was shown that the unique parts are uncorrelated
and that their variance-covariance matrix, Uz, is diagonal and full rank.
It Is precisely this consequence of (ii) which causes the indeterminacy
problem In the CFA model,

In the 1A model, the residual parts are represented by the
anti-images, a, Unlike the unique parts in CFA, the anti-images are
correlated as may be seen from (11), and noting that

(20) Eaa') = E((s%R™12) (z'R7s?)) = s%r71s?,

This covariance matrix, [ike Uz, is full rank under the assumption
that R Is full rank, but is in general non-diagonal,
In PCA, the residuals, e, are correlated, From the partitioning

of V and y, we see that e = V,y,, and

212
(21) E(ee') = E(Vzlzxq'vz') = VZVZ'.
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This covarlance matrix Is deficient in rank, since the rank of V2 is
equal to p-r, the number of rejected {trivial) components of V, Thus,
the relationships among the residual parts in each of the three models
are different, In CFA the residuals are uncorrelated and have a full
rank covariance matrix, In IA the residuals, a, are correlated and
yleld a covarlance matrix that may, or may not be full rank, The
reslduals, e, in PCA are correlated and always have a deficient rank
covarlance matrix, These conditions are sufficient for avoiding an
indeterminacy in 1A and PCA,

A final point of comparison of the three models involves the
relationships between the residual and the nonresidual parts of the
original variables, In CFA, the common and unique parts are uncorrelated.
This relationship was shown in (3) as a consequence of (iii), In IA,
only the image and the anti-image of the jth variable are uncorrelated,
In general, the ith Image and the jth anti-image are correlated. From

(22) E(ma') = E((1 - 2R zz' R7's?)) = s2 - s%R7's2,
it may be seen that the jth Image and the jth anti-image are uncorrelated

“1g2 _

because the diagonal of 52R 52 implying that the diagonal elements

of the covariance matrix Sz - SZR-]S2 are zero, The off-diagonal

elements of S2 - SZR-]S2 are generally non-zero, Finally, regarding
PCA, It was shown in (18) that the linear combinations of the important
and the trivial principal components are uncorrelated (i.e., E(y,y,') = 0).

From the relationships between the non-residual and the residual parts

In each of the models, we see that In CFA, the common and unique parts
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are uncorrelated, the non-residual and residual parts in PCA are also
uncorrelated, but images and anti-images are correlated, These
relationships facilitate a comparison of the structure matrices in

each of the models, This comparison is developed in the next section,

Pattern and Structure Matrices

In the CFA model, the common factor weight matrix, F, which
partially reproduces observed variables as linear combinations of
common factors, is called the factor pattern or the pattern matrix
(Thurstone, 1947; see also Mulaik, 1972, p. 101). The factor structure,
or the structure matrix, Is the matrix of cross-correlations or cross~
covarlances among the observed variables and the (unobservable) common
factors, Although these definitions pertain primarily to the CFA
model, they may be generalized to the IA and PCA models,

In the three models presently under discussion, the pattern
matrices are readily ldentified, From (1), the matrix F in the CFA
mode! s the pattern matrix, From (17) the pattern matrix for
components analysis can be seen to be VI' From these relationships,
it may be Implied from combining (7) and (13) as

(23) z = Bd + a,
that the matrix B Is the pattern matrix for image analysis, Thus,
the pattern matrices for the three models are quite similar. One
might be Justified, however, In questioning the value of pattern

matrices when It comes to the Interpretation of underlying factors,
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We note that the CFA model in (1) may be rewrlitten as

(24) z - u = Fx,
and the PCA model in (17) may be rewritten

(25) z - e = Vyy;.

Thus, we see that the pattern matrices, F and v], are of little
Interpretative value in that they provide the weights on one set of
latent or derived variables which reproduce yet another set of latent
or derived variables, The only redeeming quality these matrices have
Is that in orthogonal CFA and PCA they are also structure matrices.
We may see this by noting that in orthogonal CFA

(26) E(zx') = E((Fx + u)x') = E(Fxx') + E(ux') = F,
and in PCA

(27) E(zy,") = E((V]);I +ey)) = E(Vy v, + Eley,') = V..
An arguement can be made that a pattern only has Interpretive value
when it Is simultaneously a structure,

Indeed, Brogden (1969) discusses pattern and structure in
the context of oblique factor analysis and draws a clear distinction
between the use of pattern and structure in factor identification,
Although Brogden's paper was concerned with oblique factor analysis,
his major point is relevant to any situation where pattern and
structure are distinct, Brogden's major point is that given a
knowledge of the orlginal variables and no knowledge of the underlying
variables (factors), the underlying varlables are best interpreted by

considering the correlations between underiying variables and the
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observed variables, Since the coefficients In the pattern matrix are
weights (specifically, regression weights) on latent variables which
reproduce a portion of the observed variables, they possess dubious
interpretive value. The coefficients in the structure matrix,
however, are directly relevant to the interpretation and/or definition
of the underlying variables since they provide the only direct link
between the observed variables and the underlying variables.

It is easy to show that the pattern and structure are not
the same in image analysis as they are in CFA and PCA, To show this
(23) may be written in the form

(28) z - a = Bd,
Thus, B, the pattern matrix In image analysis, like F and V], is a
matrix of weights on one set of derived variables which reproduce
another set of derived variables, However, it may be shown that B,
unlike F and Vi is not a structure matrix, To show this we use (13)
to derive

(29) E(md') = E(Bdd') = B,
Thus, B, is a matrix which contains covariances (correlations) between
two sets of derived variables, The elements of B can be interpreted
as covarlances; however, the elements are not covariances among observed
and derived variables, and as a result B Is not a structure,

The suggestion that B is not a structure matrix for IA leads
to the development of the Image structure matrix. From (8) and (13)

we may write
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(30) m = Wz = Bd;
hence,

(31) z = W e,
From this we obtain the structure matrix, A, as

(32) A = E(zd') = E(W 'Bad’) = w18,
Because of the scaling assumptions on the variables z and d, the
structure matrix, A, contains the correlations among observed and
derlived varlables, It may be the case, however, that W does not have
an Inverse even when the correlation matrix, R, fs full rank, This
may be seen by noting from (9) that Wl = R(R - SZ)-]. Thus, the
existence of w" depends upon a full rank (R - 52), which may not be
the case even when R is full rank., In the situation where w" does
not exist, we may still obtain the structure matrix, A, for image
analysis, To do this we make use of (13) and (8) to obtain

(33) d = (8'8) 'B'n = (8'B) 'B'uz,
where (B'B)-'B' is the (uniquely determined) left-hand inverse of B.
From this result we may obtain the structure matrix, A, as

(34) A = E(_z_d_'):E(E'W'B(B‘B)-I) = RW'B(8'8) ",

-1
A ]

From (16), B may be written as QDAir and (B'B)-] = DA-%Q'QDA-* =D
Equation (34) then reduces to

(35) A= (R - s%)e0, ",
where DA-I Is a diagonal matrix of reclprocals of the non~-zero eigen~-
values of G, In the case where W and G are not full rank, the structure

matrix, A, may still be obtalned since D, can be restricted to contain

A
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only the non-zero eigenvalues of G, and Q will then be composed of
the elgenvectors of G corresponding to the non-zero eigenvalues,
Therefore, A, In the deficient rank case will have order pxr, where
r is the rank of G (r<p).

At this point there s a further set of relationships which
may be developed for the case of full rank R and G, From (32), (14),

and (12) it may be seen that

1 1 1 1 1 i

(36) AA!' = W 'BB'W' ' =W GW' = W WRW'W' ' =R,
which Implies that A is a Gram factor of the correlation matrix, R,
It was shown In the development of the principal components model,
(19), that V is also a Gram factor of R, From the relationships in
(36) and (19) 1t may be noted that A and V are both matrices of
correlatlons among orthogonal bases and original variables, or
equivalently, A and V are the welght coefflclients for the two different
bases for z, It must therefore be the case that A and V differ by an
orthogonal rotation, That is,

(37 VTI = A,
and

(38) AT2 ay,

11 1 2
The intercorrelation matrix Ryd = E(yd') for the two sets of

[ ] ] ' =
where T,T T,'T, =T T2 = T2 T2 l(p)'

components, y and d, Is a matrix of projections of the principal
component basis, y, on the Image basis, d, and is equal to the ortho-

normal pxp transformation matrix T‘. By similar reasoning the trans-
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WaR, =T,
formation matrix T, can be shown to equal E(dy') Ryd T,'e In

order to obtain the transformation matrices T, and T,, d and y must

2!
be obtained and the expected value of their outer product taken,

From (17) and (3)) we see that

(39) E(yd') = v WlB=vla=T

II
Vle now show that Tl is orthonromal;

™! <y

WA= an”

1 1 1 1

vvive =,

A=Al atla =,

RVI:T' =y

i

w%)nn'=f
(kob) T, 0T, = AT
and that Tl and T2 perform the desired transformations;

(41a) V1, = w'la = A,

! ! ]

(h1b) AT, = AT\ = AA'V'TT = RV = WV =y,

Thus, in the full rank case the structure matrix, V, obtained from
principal components analysis, is linearly related to the structure
matrix, A, obtained from image analysis,

This relatlonship between A and V is of more theoretical
than applied Import because in applied work the researcher is usually
interested In choosing r (r<p) components which satisfactorily account
for the structure underlying the p observed varlables in z. In the
situation where an approximate reduced rank solution is desired, the
relationship between A and V may be examined by partitioning V and A
as follows:

42) va [Yll vé],

and

(43) A= E\' I A2]|
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where V‘ and Al are both pxr and represent the desired approximate
reduced rank solutions, Both V2 and A2 are dimensioned px(p-r) and
represent the rejected components of V and A, Using the partitioning

to rewrite (37) we obtain

(k) V1, = [vl| vz] T, = [A]| A2]
= [u,| v n TIZ=;s\|A
1] 21| T22 [l d

ol SUTRA U U PR A R A AR
where T]l’ T|2, TZI‘ and 722 represent the appropriate partitioning
of the transformation matrix, T]. From these results we see that A]
(the r retained components of the basis, g) depends not only upon the
r components retained from principal components analysis, VI’ but also
on the p-r rejected components, V2. Thus, the r components of V]
cannot be used to perfectly reproduce A] by means of an orthogonal
transformation, Furthermore, the matrix T, in (44) is not guaranteed
to be orthogonal, in which case V]T]] = A]* would not be an orthogonal
rotation of VI' and Al* does not, In general, equal Al'

Although we have argued against the interpretation of B, it
is the matrix which is usually interpreted in practice (e,g., Kaiser,
1963; Mulaik, 1972, p, 191; Veldman, 1967, p, 218), It was pointed
out earlier, (28), that B-is a covariance matrix, Due to the
unbounded nature of covarlances it might be preferable to rescale
the entries of B into correlations if one is interested in interpreting

B, The necessary rescaling of 8 may be accomplished by premultiplying
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B by a diagonal matrix, D, whose jth diagonal entry is the reciprocal
of the multiple correlation coefficient for predicting the jth variable
from the p-1 other variables, Hence,

ws) 0= (1~
and the rescaled matrix, designated B*, is given as

(46) B+ = 0B = (1 - s2)"¥g.

A Numerical Comparison of Pattern and Structure

Because the matrices B and A are different in composition,
1t seems likely that interpretations based on these matrices would be
different, These differences are demonstrated in a series of examples.
In each of the examples, the Image covariance matrix, G, was obtained
from the correlation matrix, R, A principal axes decomposition of G
provided the image pattern matrix B, The rescaled pattern matrix, B%,
and the image structure matrix, A, were then obtained as in (46) and
(32). (Some of the Important matrlces resulting from the intermediate
computational steps are labelled and presented in the Appendix.)
Typically iIn applied factor or principal components analysis, a subset
of the factors obtained are rotated and interpreted, Although there
are many methods for determining how many components to rotate, we
arbitrarlly chose to rotate three, For purposes of interpretation in
applied work, a variable whose correlation with a given factor exceeds
;30 Is generally considered to contribute to the definition of that

factor, This conventional rule was employed in the comparison of the
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varfous matrfces In the examples, Since the purpose of this paper is
to point out the differences between the interpretation of the pafterﬁ"
matrix, B, and the structure matrix, A, the examples focus on these two
matrices, The rescaled pattern matrices, B*, are also provided,

The data employed in example one were the intercorrelations
of the eleven subscales of the Wechsler Adult Intelligence Scale
{Wechsler, 1955, p, 16), These intercorrelations, based on the data

from 150 males and 150 females, are presented in the matrix M in Table 1,

The upper triangular portion of M contains the correlaticns
between the observed variables, The diagonal elements are the squared
multiple correlations for predicting each variable from the remaining
variables (i,e,, | - Sz), and the lower triangular portion contalns the
image covariances, The matrix S2 may be obtained by taking 1 minus the
diagonal elements of M, Thus, Table | contains all of the basic
information necessary to conduct an Image analysis, A principal axes
decomposition of G yielded the matrix B, which was rescaled into B*, and
the matrix A was obtained as in (32), The three matrices resulting
from a Varimax rotation of B, B*, and A are presented in Table 2 and
are subscripted with an r,

insert Table 2 about here
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From Table 2 it may be seen that the entries in Br suggest a solution
which contains two factors (Factors | and l{) which are each defined
by all but one of the variables, and a third factor defined by a small
loading on vartable 9, A solution which contains two general type
factors Is of questionable utility, A considerably different solution

Is obtalned by an examination of Ar' In Ar' Factor | is defined by

all of the variables but 9 and 11, and Factor !l is defined by variables
1, 8, 9, 10, and 11, And, Factor Il is defined by variables 2, 7, 8,
9, and 10,

An examination of Br or Ar suggests that an oblique solution
would probably be needed to obtain simple structure, but the point to
be made here Is that Br and Ar lead to different interpretations
concerning the nature and the composition of the variables underlying
the observed vartables,

The second example was taken from Veldman (1967, p. 222) in
which a traditional image analysis was performed on a set of real,
Self-Report Inventory (Bown, 1961) data (N=16), The upper triangular
portion of the correlation matrix and the lower triangular portion
of the Image covariance matrix, to include the diagonal, are presented
in Table 3 as the matrix, M, As in example one, the matrices 8, B¥,
and A were computed and since Veldman's example contained three rotated
factors, we also rotated three factors to facilltate comparison, The

resultant matrlces, By B*r. and Ar' are presented in Table 4,
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Insert Tables 3 and 4 about here

In Table 4, Factor | in Br is defined by all of the variables except
variables 4, 6, and 7, with variable 2 correlating highest with this
factor, In Ar’ however, variable 1 does not contribute to the
Interpretation of Factor I, There are no noteworthy differences
between the interpretations of Factor 11 given Br and Ar’ This is

not the case wlth Factor I, In Br' Factor Il is defined by variables
3, 4, 5, and 6, In Ar' however, only variables 3 and 7 contribute to
the definition of Factor |ll, The interpretation of Factor |l1, based
on Br is considerabley different from the interpretation of Factor !l
provided by Ar' Additionally, Ar looks '"nicer'' in terms of simple
structure, |In Ar only two variables (3 and 7) load on two or more
factors, whereas in B, 4 of the 8 variables load on two or more of
the factors,

The third and final example was a hypothetical example taken
from Harman (1967, p, 88), As in the preceding two examples, the
correlations and image covariances were obtained and are presented as
M in Table 5, The matrices B, B*, and A were computed and the matrices
Br’ B*r, and Ar' resulting from the rotation of three factors, are
presented in Table 6,

Insert Tables 5 and 6 about here

------- - O 0 -



Pattern
22

It may be noted from Table 6 that Factor | in Br is defined by
meaningful loadings on the first three variables. Factor | in Ar
is defined by the same variables, 1, 2, and 3, with slightly larger
loadings. Regarding Factor Il, in Br we see that it is defined by
all six variables, whereas in A., Factor 1l is defined by variables
1, &4, 5; and 6. Hence, there is a considerable difference in the
interpretation of that factor. Finally, Factor ill in Br and in Ar
is defined by variable 3.

(n this last example there is a difference in the identification

of Factor 11, and as in the second example, A, presents a better

overall appearance cf simple structure than does Br'

Summary and Conclusions

In the present paper we have presented the basic models for
common factor analysis, image analysis, and principal components
analysis. We have emphasized the distinction between pattern (a
matrix of weights on underlying variables which reproduce portions of
the original variables) and structure (a matrix of covariances among
the observed variables and the underlying variables). It is well known
that pattern and structure are the same for orthogonal common factor
analysis and principal components analysis. Therefore, identification
or definition of the factors based on the pattern-structure matrix is
an acceptable practice in these two models. For orthogonal image

analysis, however, the pattern is not simultaneously a structure. An
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image structure matrix was derived, and it was argued that structure,
not pattern, is most appropriate for interpreting the structure of
observed data. Since the pattern and structure are different in

image analysis, it is likely that the interpretations of the

derived variables based on these matrices would also be different.

The differences which result from interpreting image pattern versus
image structure were demonstrated in three numerical examples. In all
of the examples there was an important difference in the interpretation
of at least one of the factors obtained. It is recommended that for
applied image analysis the structure matrix as derived in this paper
be interpreted because only this matrix allows one to determine the
relationships between the derived variables (the image basis) and the
original variables. It was also shown that, in the case of full rank
G and R, the image structure matrix, A, is a Gram factor of the
correlation matrix, and therefore, is linearly related to the principal
components structure matrix (also a Gram factor of the correlation

matrix).
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Table 1

Matrix of Correlations and Image Covariances for

11 WAIS Subscales

51
«39

37

(.35)

.81
.73
.59
T
.51
(.76)
.53
.60
.55
.58

.56
.50
56
39
.61
A48
(.56)
.53
53
.45

.58

.51
\52
.39
.53
47
.62
(.56)
.51
W45

.57
.58
(.54)
m

A5
43
.37
.39
.30
43
Ml
.54
61
52

(.45




Table 2
Rotated Pattern and Structure Matrices for

11 WAIS Subscales

Factor
Matrix Variable

1 H n
1 b Jub W12
2 .65 W32 .24
3 .55 .34 .19
4 .68 .37 .08
5 47 W27 16
Br 6 .75 .38 A7
7 b9 34 25
8 49 .50 .25
9 .38 Sh 33
10 .50 ,50 .15
11 27 .61 .07
1 .84 .50 .13
2 .84 42 .31
3 W79 W49 .27
4 .87 A7 W1
5 .80 46 .28
B*r 6 .86 A3 .19
7 Tk W52 .38
8 .66 .66 .33
9 .51 .72 b
10 .68 .69 .20
n b0 .90 .10
1 .84 34 .21
2 .66 12 .50
3 .61 ,28 .27
b 7 .29 W15
5 .53 .20 .23
A 6 .89 .18 .29
r 7 47 126 48
8 A3 51 49
9 27 W57 64
10 48 .57 30
II '19 '86 ll7



Table 3
Matrix of Correlations and Image Covariances

for Veldman's Data

4o .32 .32 (,56) -,21  -,30
-6 -2t -27  -,15  (,33) ~-.28
-,02 .22 0 -05  -,19 (,56)

31 19 19 18 -0 .02

-,03]




Table &
Rotated Pattern and Structure Matrices for

Veldman's Data

Factor
Matrix Variable
! 11 R
] '33 .66 "100 '
2 .76 .09 .28
3 .36 .33 47
4 .28 a7 .49
B 5 132 ".I‘ .60
r 6 -.02 -.33 -.34
7 =15 .67 .10
8 l35 -.0] .]5
1 43 .85 ~-.00
2 92 .11 W35
3 46 43 .61
[ b4 27 77
B* 5 43 -.15 .80
r 6 -.03 -.58 -.60
7 -.20 .89 .13
8 175 -103 '31
1 15 .90 ,00
2 92 .18 ~-,03
3 59 .36 .52
4 .58 .30 .07
A 5 W77 ~.06 ,02
r 6 -.21 -8 -.02
7 -125 -80 138
8 43 .01 .06



Table 5
Matrix of Correlations and Image Covariances

Harman's Illustrative Example

[(.66)
.64

.38
IBI.
23

72 .75 .49 A2
(.66) .78 2 .36
.61 ~ (.69) .35 .30
37 .39 (.32) b2
.32 .33 .25 (,25)
.22 ,22 ,18 16




Table 6
Rotated Pattern and Structure Matrices for

Harman's 11lustrative Example

Factor
Matrix Variable

| " 1

1 .67 A .20

2 169 .35 W22

3 53 37 53

B, b .23 46 .20
5 .22 42 W

6 e .30 ,06

1 .82 .50 .24

2 .85 43 .27

3 .63 Ak 63

B, 4 40 81 .35
5 W43 84 22

6 W42 .87 18

1 .83 43 -.00

2 .91 21 ,06

3 .80 .16 W57

A 4 120 .83 16
5 .21 7 ,02

6 12 53 ~,01



APPENDIX

INTERMEDIATE COMPUTATIONAL MATRICES



44170

~0.590

-0e750

-0.330

-0.260

-1.450

-0s210

~04700

«Q0e170

-0.169

Q.140

~Ce59C
2.460
c.06C
-0.270
0.080
-0.990
0.23¢C
-C.130
0.000
~C.39¢C

~0.180

-0e752
5.969
1.963

~0.190

04310

~0.112
0.029

~J 4022

-0.28

~0.059

04200

INTERMENDITATE COMPUTAY IONAL MATRIX

-0e.33%

«0.276C

-0.19C

2.52¢C

-N«11C

-0.97¢

-N.210

-0e159

~Ce23C

J3.090

0.080

R INVERSE

FOR 11 WAIS SUBSCALES

~0.260

N.080

-0.310

-0.116

1.550

-C.170

-0.120

D060

-0.C30C

=-N.270

0.030

-1.45C

-0 .99C

-C.11C

=-0.970

~0e17C

4.23C

~0.55C

-0.%90C

C.160

=C433C

Ce090

-C.210

0.232

0.020

~0.210C

~C.120

~C+550

1.780

-0.04C

~-0.090

=-0.2CC

-C 260

=Ce700

=0s130C

-0.220

=Cs150

N+.C60

~0.0%0

-0.048C

2.29C

~0.490

~Cel190

-Ces370

-0.17C

0.C0C
-0.280
-0.230
-C.02¢

0.160
-C.090
-0.490C

2.250
~0.35C

=C.680

~04169

=Ce300

-C.050

0.090

“«Ce270

=0330

-0.200

-0.190

-0 .359

2.150

~0.310

0e¢140

-~Ca.180

04090

0«0R0

C.030

0.090

~0.260

~0.370

-0.680

-C.310

1.820



0.850

Qe740

C.680

04760

d.57¢

04840

0640

07390

€690

0,717

0.580

-0e110

-Le120

-04050

-0.130

-0.060

-0.,16C

0000

0.110

0.230

0.100

0.300

-0,09)

0.072

0,039

=0.,0993

0.020

=-0.029

0.100

0,050

0.122

=04359

-0e1393

INTERMEDIATE COMPUTATIONAL MATRIX

-0.080

~Cs080

c.100

-C.050

C.030

0.130

~-0.070

€. 060

-J.C2¢C

=0.029

0.01C

FOR 11

-0.070
0,050
0.C90
0.030

=-0.070

-0.070
0.050
0.070

-0.110
2,030

0.020

8

WALS SUBSCALES

-0.220

C.060

=-0.260

0.0N00

=0.14C

0.280

-04940

¢.030

0.020

0.030

=0.020

-0 060

-0.C20

0,050

0.C20

C.000

C.9230

=0.040

-0.090

0.070

0.020

J.C10

0.C40

=0.0aC

=N.N40

0.020

0.030

-0.060

04010

=-CeC3C

04030

~0.Ca0

-0.020

=D «C40

0.000

0.C10

C +040

0.C60C

~0.020

~0.C20

0.030

0.C10

04000
0.020
0.C00
-0.020
¢.010
0000
-0.010
-0.010
-0.010
0.030

0.000

0.720

-C."10

0.000

=0.020

0.0C0

0.000

0.010

0.010

=-C.010

0.000

0.000



N.9890

Ne976C

Ne979

Ce970

06950

0.960

Ge970

0.970

Qe92¢C

2980

0.860

-0.120

-~0.160

~0.080C

<0170

~D.109

~0e182

-0.010

0.150

0310

0.130

0.450

-0.109

3.099

0.04)

=-0.129

0057

=0+032

01593

0.362

0.162

=0.070

=-0.202

INTERMEDIATE COMPUTAT IONAL MATRIX

=-0%.C90

-0.112

0.15¢C

=2%.07C

0.069

Qel1EC

-%.11C

0.070

-0.03¢C

=-%2+030

C.010

B STAR

FOR 11 WAIS SU2SCALES

~0.080
2370
0.132
CsC30
~J0.110
~-0.089
0.080
0.090
-Cs150
JeCa0

0.030

«-CeN2C

tl.07C

~0.9090

C.000

-Ce23C

0.100

-~0e.060

0.04cC

c.0%30

C.04¢C

~0.030

-0.020

c.100

-c.C80

=Ce«030

0.%85

¢.020

0.0CO

0.040

-0,050

-0.130

0.110

C.020

f.020

C.06¢C

~040S0

-0.C7¢C

0.020

0.05¢

=0.092

=2.,04C

04050

~0.04C
-0.C30
-0.C6C

o.co0

c.c2¢

C.1C0
-0.C30
-0.03C

0.C4C

0.CIC

=-0.C10

0.03C

CesCCC

~G.C2C

0.c20

0.009

-C 4220

-C.029

=-0.,010

0.030

0.000

0.0n20
-0,010
-0.010
=-C.030

c.n0n

c.010
2.N20
=040222
0.0C0

=-0.C10



d.CO0

Jde 240

Ce380

d.130

Qe172

0340

Q. 120

Ca302

Ce270

0.072

-NH.080

ND.140

0.Cc00

«~0.C30

C.110

~-C.CS50

0.2730

~-%.130

0.26%9

D.189

=-04020

0.209

0.082

S.20)

2232

-0.019

0.010

2,132

0.020

2000

INTERMEDIATE COMPUTATIONAL MATRIX

C.08C

%.110

C.10¢C

0.C00

J3.070

C.230

0.12¢C

0.060

O.1cCC

-0.0acC

~0.G43

FOR 11

0.C60

-0.030

0,162

De040

CecC2

0«C40

0,070

-0.030

0.010

0.1390

-0.010

w

Ce.350C

0.4C0

0060

C.35C

C.110

C.009

03190

C.040

~C.070

0.16C

~C+350

wAlS SUBSCALES

0.050

~0.090

~C.010

~.080

Ce082

0.139

0.C00

C.170C
€.050
0.010
Q.C60C
-C.04C
0.020
0.02C
c.000
f.22¢
0.090

Q«200

d.CaC
c.coc
0e140C
0.C9C
0.C2¢
~0.04C
0.05¢
0.210
fe.COC
C.l16C

Ce370

C.040

0.120

0.030

=-0.040

Ca170

C.080

0.110

0.080

0s160

0.00C

Cal170

-0,030

C.070

0.000

-0.030

-C.020

=04020

0.140

Q.162

0.300

0.140

0000



=2.H89%

2370

34550

S5.160

1.520

0.030

~54100

14790

2.910

-1.19¢C

~0+050

1.400
1.8R0
1960
~4.210
0.259
0.700
~2.999
1.220
~2.189
4.520

=0e750

14662
=-1.559
0159
=2.670
2330
;0.737
—-1e353
2.280
0.229
~0461)

=1.6592

INTERMIZDIATE COMPUTATIONAL MATRIX

3411¢C

=4,3C0C

~0.87C

-2.350

~4.95C

1.650

7.17C

4.55C

-1.430

~5.06C

-C.720

INVERSE

FOR 11 WAIS SUBSCALES

Z.506C

0.160

1.840

-3.040

1.069

0.C40

Ce520

=1+990

-1.C60

3.820

=3 +5C0

0,030

1.200

~1.570

1750

0.10C

=Cel7C

24060

-Ne42C

-Ge97C

0570

~0427C

-2.189

-2.160

-1e220C

54060

C.590

0.870

24520

~1.880

1.530

~1.380

1230

-0.990

1.130

24670

44140

=2 4950

=04230

-2.420

=3.290

44020

-3.210

2.100

1.57¢
=2.0CC
0.250
~1.270
=1.54¢C
-0.510
1.940
3.94C
-1.710
~1.300

0.810

-C.610
34950
~-Ce670
-4 4330
Se31C
0.250
=1.670
-3.,022
-1.240
445690

1789

=920

«0.560

-1.530

~0.520

=0.580

-2.,120

1.260

14670

C.660

1500

-1320



0.910

0780

0.71%

0,800

0.600

Q.89C

0.680

0.780

C.740

0.770

0.630

-0.2C0

—0e2140

~0+080

~-0e220

-0.100

-0.310

0«C70

0.270

0470

Ne.210

Q5490

G100

=0e272

0.000

0.120

-0.022

-0.052

~0.200

-0.089

=-0.190

Oel119

0362

INTERMEDIATE COMPUTAT IONAL MATRIX

0.220

0.060

C.030

0.10¢

O0.13¢C

-0.280

0.100

-0.140C

0.07C

0.000

-%.15¢C

W INVERSE B

FOR 11 WAIS SUBSCALES

J.100

-0e122

~0.360

-0.110

0.C70

0e«100

=-2.170

-0.130

0.300

-0e110

-%.010

Q.02C

0.43C

«C.81C

0.080

-0.29C

0.02¢C

-0.100

0+130

~Cel140

=0e150

0.22¢C

C.0N0
0.210
-0.120
0.090
=0.560
0.059
=0.050
-0.C40
0.080
Ce320

~-0.210

-0.080

-0.110

~0e270

0.240

0.310

-0.040

-0.090

04300

~0.060

0.13C

-0.220

~0e140

~0.050

-0 <290

0.080

0.120

0.C90

0.55C

-0.290

-C+100

0.16C

0.13C

0,010

0.230

~0.050

-0.330

0.280

0.000

-0.210

-0.100

~-%.140

0.420

-0.,010

-0.200

0.180

Ce130

C.300

0.130

=0.010

=-C.290

-0.280

0.1990

0.020

0070



INTERMEDIATE COMPUTATIONAL
R INVERSE

FOR VELDMAN®S DATA

2.570 0920 =10120 =0.260 =~0.970
04920 3,090 =1.580 ~0.950 =1.050
~1.120 -1.580 24560 0400 0.000
«06260 =0.950 0e400 1.690 =0.120
~0+970 =-1.050 0+000 =~0.120 2270
04540 04270 =0.620 0260 0.220
~1e250 =0,250 =0.280 ~0.150 1.330

04280 =0+300 ~0.380 =0,150 0.200

MATRIX

0540

0.270

~0.620

0260

0220

1490

0e 320

0.180

~10280

~0.250

-0.280

-0.150

1.330

0320

2,290

0.100

0.280

=0+300

-~0+380

-~04150

0.200

0.180

0.100

1.280



INTCRMEDIATE COMPUTAT IONAL MATRIX
B8

FOR VELDMAN®S DATA

0e510 <=De460 =0.270 Ne200 04130 =0.070 ~=C.070C CeC10
0.700 N0e290 =C.30°0C 0.020 =0.03C NeD6C Cea090 ~0,.010
04630 =2,03C 0090 =-04260 =0.070 ~0.,270 C.000 C.000
0.560 0.080 Cel60 Ne090 =0.170 0.080 =0.110 =0.010
0.520 Je380 Ce240 0.05¢C 0290 C.030 0.C00 0.000C
~0370 7420C ~0e220 =~0.270 €140 =-0,020 -0.C90 -0.01C
0270 =D4620 CsellO =0.22¢C 0.N70C Nel17C 0.040¢ =-0.010C

04310 2180 =0.120 =-0.180 =0.07¢C 0190 =C.040 0.02¢C



INTERMEDIATE COMPUTAT IONAL MATRIX
B STAR

FOR VELDMAN'S DATA

0.660 =0.580 =0.350 0250 Cel60 =0,080 <~0,080 C.010
0.850 74360 ~04360 0020 =0.040 Ce070 Cell0 =0,020
0eB70 =0.,04C 04110 ~04330 =-0,090 =0.350 0,000 0.000
0.880 04130 06260 0.140 <~0.26°0 0130 ~-C,180 =C.02¢C
Q0.700 7.5C0 04320 0.060 Ce390 0.040 0.C00 0.CON
~0 4650 0350 =0e380 =04470 Ce240 ~0.040 =0,167 =C.020
0+360 =~3.83C Ne150 =-0.300 0.100 0,230 Cs050 =~Ce01leC

04660 34390 =~0e260 <0390 =C.160 0400 =-0.080 0.050



INTERMEDIATE COMPUTATIONAL MATRIX
w

FOR VELDMAN'S DATA

0000 =%54360 Ge44C G.100 0380 =0.210 0.480 =~0,110
-0.3900 D000 CeS1C 0e310 0e340 =04090 0,080 Ce100
0.440 Je620 Ca000 =-0.16C 0.000 0.240C 0.110 C.15¢C
0.1350 0560 =0.240 0.000 0.070 =0.150 0,090 0.090
0.43) Jed690 0.000 0.050 04000 =«04100 <=0CeS580 ~0.090
=0e¢360 =J.180 Ce420 =0.170 =0.150 0.000 =0.,210 =0,120
0550 J.110 Cel120 D070 -0.580 =0.140 Ce 000 =-0.040

-0.229 J.240 Ce300 Cel20 =-0.160 -~0.140 =-0.080 C.000



0s070

04720

9.130

0690

De470

0.772

1250

=4.610

INTERMEDIATE COMPUTAT JIONAL MATRIX

0,870

-1.710

1.170

-1.670

De590

-2.900

-1700

FOR VELDMAN®*S DATA

0.130

Ce370

CeS529

0.250

Ne020

24310

0.770

=1.770

w INVERSE

0450

~0.910

0.160

-44,190

0.550

-5451¢C

-1.01C

74690

0.410

0440

0020

Ce7S0

C«63C

0.440

-0.710

=2 .430

0.45¢C

-1.400

1350

-44870

0.29¢C

~-3.750

-1.580

6. 59C

1110

-14260

0. 690

-1+360

-0.710

=-2+430

~0e6490

~2.300

3.62C

-0,890

S5¢860

~1.370

S5«670

2750

4,900 ~-13.200



J750

0.650

3.590

-0.450

0.310

04370

INTERMEDIATE COMPUTAY IONAL

-%e¢620

3400

=-J.0490

7.090

%4490

2.259

=0e850

0.230

FOR VELDMAN®'S DATA

D.220

Ce070

-Cs410

0.000

-Cs 040

-Ce100

-0e170

-0.060

w INVERSE B

0100

-0.190

-0.43C

0.260

0e510

~0.4840

~0.030

-0,220

0..33C

-Ce190

C.220

-Ce160

C.220

-0.040

-C +35¢C

~0e49C

MATRIX

-0e190

C.03C

~06150

O.440

-0 320

=N«560

~0.050

0.050

Ce110

-0.150

0.020C

044590

=0.040

C.360

-0.110

0.300

-0,080

0.150

=-0,060

Co.280

-0,Ca40

0.310

C.130

~0.650C



INTERMEDIATE COMPUTAT IONAL MATRIX

2,959

-0.690

=-1370

-0.490

-J+330

-0.170

FOR

-Ce6990

24950

-1.640

-0s240

=-Cel60

-0.08C

R INVERSE

HARMAN®*S EXAMPLE

=14370 =0.490 =0.330

-1.640 =C.240 =9.16C

3.200 04170 0.120

0.170 1.47C -0.340

0.120 =0.340 1330

0060 =0417C =0.120

~-0.1702

-0.080

0.060

-Ce.170

-0.120

1.130



INTERMEDIATE COMPUTAT IONAL MATRIX

2.790

N¢790

De 790

7590

0e44C

J2«3CC

FOR

Ce090

04150

€.060
-0.220
-0.200

=-Cel150

B

HARMAN®*S EXAMPLE

-0+4120 =-0.010 =0.100
~0.090 0 .030 0090
Ce240 =04030 =0.010
0.020 0.130 0.000
~0.050 =0e120 0.030

~0,050 =0.,02C =0,010

-0.010

0.000

0.010

~0.03C

0.060



INTERMEDIATE COMPUTATIONAL MATRIX

J.9890

De970

J.95¢C

7.893

D.880

0870

FOR

C.110

Ce190

Ce070

~-0.3890

=0.390

-0.430

B STAR

HARMAN®*S EXAMPLE

~0.150 =0.010 =0.120
-0.120 0.080 0.110
04290 =0.080 =0.010
0.040 0.230 =-0.010
~0.090 =0.,230 0.070

~0+140 =0,060 =0.020

~0.010

C.010

0.010

-0.030

~Ce050

0,170



INTERMEDIATE COMPUTAT IONAL MATRIX

7970

2.230

2.436C

Q433C

0.250

J.150

FOR

C.230

€C.000

Ce510

Qel160

C.120

C.070

w

HARMAN®S EXAMPLE

N.460

0.55C

0.00¢C

~0s120

-J«09C

-0+050

Cel70

c.080

-0.05C

Ce.000C

Ce25C

0e150

0.110

0050

-0,040

0,230

0.020

04100

0.060

0. 030

-0.020

0.120

0+ 090

0.000



INTERMEDIATE COMPUTAT IONAL MATRIX

=-14960

18490

0.550

Je632

Je920

1.810

FOR

1e84C

-1464C

1.160

-0.310

-0.460

-Cs900

w INVERSE

HARMAN®S EXAMPLE

0.600 0.310 O0.410

1.260 =0.16C =0,210

0010 =0.280 =0.370

-0.600 -1.660 1766

-0.880 1.940 =3,220

-1.730 3.820 5.070

-0.350

-0.610

2.940

44300

=10.600



INTERMEDIATE COMPUTAY IONAL MATRIX

2.919

17.890

0.880

0.59C

2.52¢C

Je350

FOR

-0.110

Cell0

Ce450

-Cel440

~Ce450

-~0e360

W INVERSE 8

HARMAN® S EXAMPLE

N.160 Ge040 0.360
0.260 =0.100 ~0.330
-0.130 0.050 04040
-0.450 =0.480 =0.,040
-J%.289 0540 -0.260

-04200 0.130 =0,030

0.050

-0.,030

~0s020

0e140

0.290

~0.830



