SOME DEVELOPMENTS AND APPLICATIONS OF A NEW APPROXIMATION METHOD FOR PARTIAL DIFFERENTIAL EIGENVALUE PROBLEMS

by
A. K. Jennings
4
Bachelor of Science
Stanford University
Stanford, California
1949

Submitted to the Faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College
in Partial Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE
1951

 LIBRARY
 NOV 261951

A. K. Jennings

Raster of Science
1951

Thesis and Abstract Approved:

Preface

The approximation method to be discussed and applied in this paper was originally presented by M. Aronszajn in his seminar on Hilbert space theory at Oklehoma A. and M . College in the spring of 1950 . Since that time the method has been further discussed and analyzed and a preliminary report on a fortheoming paper by N. Aronszajn and the author was presented by the author before the American mathematical Society at the Chicago meeting on April 28, 1951.
pretace..
Section 1. Introduction..
Section 2. Approxiration methods 6
Section 3. She new epproximethon method 7Section 4 . Wranple 1. The notchod rectangle........... 10References... 21

SOME DEVELOPMENTS AND APPLICATIONS OF A NEW APPROXIMATION METHOD FOR PARTIAL DIFFERENTIAL EIGENVALUE PROBLEMS

by
A. K. Jennings

1. Introduction. We shall consider a differential problem which is of such a type that we can replace this differential problem by an equivalent variational problem. The new method to be discussed here will then be applied to the variational problem -in much the same way as the Rayleigh-Ritz and Weinstein methods are actually applied to an equivalent variational problem (see [1]). I. In making the transition from the differential problem to the variational problem we shall use many of the results presented by N. Aronszajn in [2], although we shall not always refer to them explicitly.

To begin with we shall consider the differential eigenvalue problem
(1a)

$$
\begin{align*}
\mathrm{Au} & =\mu \mathrm{Bu} \quad \text { in } \quad D, \\
\Lambda_{i} u & =0 \quad \text { on } \quad S, \tag{lb}
\end{align*}
$$

where S is the boundary of a domain D in $\boldsymbol{\nu}$-dimensional space, A and B are elliptic positive differential operators of orders $2 t$ and $2 t^{\prime}$ respectively, $t>t^{\prime}$, and $\left\{\bigwedge_{i}\right\}$ is a system of t linear 1. Numbers in brackets refer to the references at the end of the paper.
difrerential boundery operators of ordera less than or equat 2t-1. 2. It is well known that the dipecential problem (2) is equivalent, in the usual cases, to the variational problem

$$
\mu=\min \frac{\int_{D} A u \bar{u} d \omega}{\int_{D} B u \bar{u} d \omega},
$$

where the function u varies in an appropriate class of admisable functions, usualy $2 t$ times continuously diperentiable and sathsfyikg the boundary conditions (Ib).

Pom our Puture considesobions it is japortant that wo describe the eguivalent variaticnal problam moze precisely. For this purpose we shall introduce the class \mathcal{K} of functions u e $d^{(2 t)}$ in \bar{D} and adetsfing the boundary conditions $\Lambda_{i} u=0$ on s, and in this class we define the two (homitian) bilinear forms

$$
\begin{equation*}
\boldsymbol{T}(u, v)=\int_{\mathfrak{v}} A x \bar{v} d \omega, \quad u, v \in \mathcal{K}, \tag{2}
\end{equation*}
$$

(3) $\mathscr{L}(u, v)=\int_{D} \bar{v}$ dw, $u, v \in K$.

The variational problem described by the above fomula is then the quotient of the corresponding quadretic iorms $\mathcal{F}(\mathrm{u}, \mathrm{u})$ and $\mathcal{F}(u, u)$ considered in the class \mathcal{K}. In the classical problems the minimam of this quotient is actuaily attancd in the class K and this variational problem is truly equivalent to the aifferantial probe
2. The metnods to be discussed nay also be generalined to inciude any self-adjoint operator B of smanew order than 2t. Theremust also be sone additionai restrictions on the bondery S and the operatore Λ_{i}, whin are analyued mowe muly in [2] - w these conditions are all setisfied in the usual problems considered.
lem (i). Honever there is mo reason to suspect that there will alvays be a minimizing function in the class \mathcal{K}, and even then there is wo may wish to consider an anxiliary problem where this is no longer true.

Beiore we can rigoronsly analyze the vaniat onal proben we must transform the quaratio corms $\boldsymbol{J}(u, a)$ and $\mathcal{H}(u, u)$ into expressions mbich are ' Comally positive' quadratic forms (as discussed in [2], [6], and [7]) 3 .

$$
\begin{equation*}
\sigma(u, u)=\int_{D} \sum\left|A_{k}\right|^{2} d u+\int_{S} \sum\left|\Omega_{j} u\right|^{2} d s \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathscr{L}(u, u)=\int_{D} \sum\left|B_{k} u\right|^{2} d u+\int_{S} \sum\left|\theta_{j} u\right|^{2} d s, \tag{5}
\end{equation*}
$$

where the operators A_{k} are or orders less than or eqwal t, the operwtors E_{k} are of ordere less than or oqual t', and the operators Ω_{j} and $\boldsymbol{\theta}_{j}$ are boundary operators of orders lese than on equal t-i and t'-1 respectively The quadratie foms given by (4) and (5) are oguivalent in K to those corrosponding to (2) and (3) since they differ por any function in $\mathrm{c}^{(2 t)}$ only by bouncary integrals which will vanish rop functions satisifyng all of the boumary conditions. The quadratic form $\boldsymbol{M}(\mathrm{a}, \mathrm{u})$ as given by (1) Will now be positive definite for all functions when satisfy only the boundary conditions of orders less than or equal t-l (this property is discussed in [2] and depends essentially on the
3. These pepresentations are asourod of the assumptions concern ing the operators $A, 3, \Lambda_{i}$, and the boundary S. It should be re-
 operators Λ_{i} are not mentioned oxplicitly but are presented in
existence and regularity of a Green's function). We nay now consider a norm in the space \mathcal{K} as aefined by $\|u\|^{2}=\boldsymbol{N}(u, u)$. With this quadratic norra K has the character of an 'incomplete' Híbert space and we can consider its functional completion $\overrightarrow{\mathcal{K}}$. Oux purpose in transforming $O($ and \mathcal{Z} into the representations (4) and (5) was to erable us to form the functional completion of \mathcal{K}, to which (4) and (5) can immediately be extended. The runctions of the (complete) Hilbert space \bar{K} will still satisty the 'stable' boundary conditions, i.e. Of orders less than or equal t-l, but they need not satisfy the 'unstable' boundary conditions, i.e. of orders greater than or equal t, (the terms 'stable' and 'unstable' then having an obvious significance).

We can now say in general that the variational problem

$$
\begin{equation*}
\mu=\inf _{X} \frac{\sigma(u, u)}{\mathscr{Z}(u, u)} \tag{6}
\end{equation*}
$$

is equivalent to the variational problem

$$
\begin{equation*}
\mu=\min _{\pi} \frac{\mathscr{J}(u, u)}{\mathcal{L}(u, u)} \tag{7}
\end{equation*}
$$

When the minimizing solutions in $\overline{\mathcal{K}}$ already belong to \mathcal{K}, as in the usual cases considered, then both variational problem (6) and (7) are equivalent to the differential problem (I) -- otherwise the differential problem needs some carification as to the required regularity of its solutions.

The disappearance of the unstable boundary conditions in the complete space \bar{K} can be explained by considering the variabional problem (7). When integrating the first variation by parts to dem rive Eulerts equation (which will be (la)) boundary integrals will
arise, Using only the stable boundery conditions, which are satisfied by functions in \bar{K}, we will then obtain the corresponding 'natural' boundary conditions wich will in fact be our original unstable boundary conditions. Thus when deriving Euler's equation for (6) all boundary conditions are present throughout, and por (7) we start with the stable boundary conditions and the unstable boundary conditions appear automatically.

We should remark that although the forms given by (2) and (3) and by (4) and (5) are equivalent in the space K they are not aquivalent in $\overline{\mathcal{K}}$ (even for functions in $\left.{ }^{(2 t}\right)$ so that (2) will have meaning). For functions in $\overline{\mathcal{X}}$ which belong to $\mathrm{c}^{(2 \mathrm{t})}$ we could try to transform (4) (or (5)) back into the form (2) (or (3)) but when making this transformation tho boundary integrals which vanishod in the space K will no longer vanish unless the frunction u also satisries the unstible boundary conditions. (In the bilinear form must satisfy the unstable boundary conditions but v need not in order to perform this transformation.) Hereafter when we refer to $\mathbb{\pi}(u, u)$ and $\mathscr{\mathscr { L }}(u, u)$ we shall mean the expressions given $b_{y}(4)$ and (5).

Our final remark concerns a third space $\tilde{\mathcal{K}}$ consisiting of all functions $u \in \tilde{\mathbb{C}}^{(t)} 4 \cdot$ in \bar{D} and satisfying the stable boundary conditions. This spece $\tilde{\mathcal{K}}$ will be very useful at times because the complete space $\overline{\mathcal{K}}$ is often quite difficult to find explicitly and
4. Dy $\tilde{C}(t)$ we mean the class of all functions belonging to $C^{(t-I)}$ whose t-m th derivatives are absolutely continuous in each variable separetely and whose t-th derivatives bolong to $\mathcal{R}^{(2)}$.
$\tilde{\mathcal{K}}$ approximotes \bar{K} closely enough for most purposes of analysis. The actual relation is this: $\mathcal{K}<\tilde{\mathcal{K}}<\overline{\mathcal{K}}$.
2. Approximation methods. At the present time there are many approximation methods at our disposal for this type of problem (see [6]). Two of these which have been extensively analyzed and are important in many applications are the Rayleigh-Ritz and the Weinstein methods (see [1], [2], [3], [4], [5]). In the 'generalized' Rayleigh-Ritz method a subspace $\mathcal{K}^{(0)}$ of $\overline{\mathcal{K}}$ is considered in which the variational problem is explicitly solvable. A sequence $\mu_{n}^{(m)}$ of approxinations to the eigenvalue μ_{n} is then obtained by successively adding to $K^{(\pi-1)}$ a one-dinensional subspace and then solving the problem again in this new subspace $\mathcal{X}^{(\mathrm{m})}$. The approximations $F_{n}^{(m)}$ form a decreasing sequence of upper bounds for the eigenvalues μ_{n}. In the Weinstein wethod a similar procedure is used, starting with a larger space containing $\overline{\mathcal{K}}$ and producing an increasing sequence of lower bounds for the eigenvalues μ_{n}.

Both the Rayleigh-Ritz and Weinstein methods are based on the same rundamental principle -- the Monotony Theoren. This theoren is based on the simpie property that the minimum over a swaller class of functions will be an upper bound for the minimum over the original class. The new approximation method to be discussed here gives upper bounds for the desired eigenvalues as does the 'generalized' Rayleigh-Hitz method, but beyond the first step the nev method is essentially different from the RayleighRitz method. In both methods an increasing sequence of subspaces
¥a utilinod and the variational problem must be solued in obeh of these subspaces. llowever, in the nev metrod the ditrerenco ben treex each of these subspaces and the preeeding subspace will be of infinite dimension; thus the nem rethod gives rise to a sequente of approximationg maich shoutd converge more repialy than the soguence obtained fron the Fayleigh-Ety rethode
3. The nev approxination metnog. As hentioned in the introduction me shall actually apply the approximation method to the equivaleat variational problem (7). Oux first step in tads process is to choose a fixed sequence oi functions $\boldsymbol{t}_{k}\left(x_{1}, x_{2}, \ldots, x_{\boldsymbol{v}}\right)$, ir $=1,2, \ldots$, when must be restricted , o some extent by bhe boundexy oonditions as we shanl see. We next form the subspaces \mathcal{X} (ra) each conposed of all functions of the form

$$
\begin{equation*}
u=\sum_{1}^{m} \hat{\varphi}_{k}\left(x_{1}, \ldots_{1}, x_{\nu}\right) \hat{I}_{1}\left(x_{1}\right) \tag{8}
\end{equation*}
$$

where the functions fere arlowed bo way through an appopriato class. Whe only mestriction which must be imposed upon the functions \boldsymbol{p}_{k} and I_{k} is that the produet f_{k} must sctistg the oteble boundary conditions (and of course some regulanity conditions) so

There are many koys in whach thbs ean be achieved; rom juhuswathon we shal mention tro or theseo
5. It is ofton vexy inportant bhat we construct subspaces of K
 tionel uroblem (7) mether than (6) so that mo may diseara the wn-
 spply the method in so simple and conveniant a manmer.
I) If the stable bourdary operatozs form a Dirichlet systen (i.e. $\frac{\partial^{i} u}{\partial n^{i}}=0, i=0,1, \ldots, r$ for some $r \leqq t-1$) then we can choose the functions ϕ_{k} to satisfy these boundary conditions and restroct the functions f_{k} only to be sufficientiy regular.
II) If D is a cylindrical domain with axis in the x_{I} direction and bases given by $x_{1}=a$ and $x_{1}=b$, if the stable boundary operators on the lateral surpece are independent of x_{η}, and if the stable boundary operators on the beses depend only upon x_{1} (i.e. they are independent of the particular point of the baso), then we can choose the functions ϕ_{k} to be independent of x_{1} and to satisfy these boundary conditions on the lateral surface mhile restricting the functions $f_{k}\left(x_{1}\right)$ to satinfy the boundamy concitions on the bases.

We now turn to the solution of the varational problean (9) in the subspace $K^{(m)}$ as given by (8) (or in its complecion $\mathcal{K}^{(n)}$ if $\boldsymbol{K}^{(m)}$ is not already complete). We shall let $u=\sum_{\sum_{k}}^{m_{k}}$ represent the minimizing solution and consider a vapation function $v=\sum_{1}^{m} \varphi_{k} g_{k}$ for an arbitrary system of functions $g_{k}\left(x_{l}\right)$ (ix the appropriate class). By equating the fixst variadion to geao (and using the corresponding bilincar forms) we obtain

$$
\sigma(u, v)-\mu \mathcal{L}(u, v)=0
$$

which can also be written as

$$
\begin{equation*}
\sum_{k=1}^{n i}\left[\sigma\left(\left(\phi_{k} f_{k}, \phi_{i} g_{l}\right)-\mu \mathcal{L}\left(\phi_{k} f_{k}, \phi_{l} g_{l}\right)\right]=0, \quad l=1,2, \ldots, k .\right. \tag{9}
\end{equation*}
$$

The rorms of and \mathcal{L} as represonted in (4) and (5) een now be integrated with respect to ail of the varicbles except x_{2} wheh with give us expressions of the type

$$
\sum_{k, p, q} \int_{\alpha}^{\beta} A_{k, \ell, p, q}{ }^{\left(x_{1}\right) f_{k}^{(p)}\left(x_{1}\right) g_{l}^{(q)}\left(x_{1}\right)} d x_{1}=0, \ell=1, \ldots, \mathrm{~m},
$$

where the superscripts p and q refer to derivatives of those orders. While keeping in mind that the functions $A_{k, p, p, q}\left(x_{1}\right)$ (and their derivatives) may have discontinuities at some points (caused by the shape of the boundary, cit. Example l), be next integrate each of the above terms by parts q times so as to transfer all derivatives from the Gq to the functions $A k, k, p, q$ and f_{k}. Wy the usual procedure in each interval where $A k, p, p, q$ e $\mathcal{C}(t)$ we then obtain a system of ordinary differential equations, at the endpoints α and β we obtain unstable boundary conditions, and at the points of irregularity of one of the functions k, k, p, q (ie. a djacontinuity of some derivative or order less than or equal tia) me obtain unstable linear differential conditions relating the solum Lion in two adjoining intervals.

In each interval we now solve the stem of m linear differential equations of order $2 t$ in the m functions $f_{1} \ldots \ldots, f_{m}$ The general solutions will each depend linearly upon $2 t$ parameters so that the total number of parameters will be $2 t m$ in each interval or 2 tm in all together, where in is the number of intervals. To determine these parameters we must now apply the boundary conditions. At each of the endpoints a and β we have t boundary conditions for each of the m functions giving us atm linear homogeneous equations in the parameters. At each of the no interior points of iriegulaxity we have for each function t conditions of continuity (sire $f_{k} \& C^{(t-1)}$) and for all functions we have tm unstable matching conditions for the derivatives. All of the above conditions
together aive us 2tm Iinear homogeneous oquations in the 2bman parameters. In gencral the coefficients of these equations will be transcendental functions of the variable representing the . eigenvalue of the variational problem in the class $\mathcal{K}^{(m)}$. Since this is an eigenvalue problem and the function $\sum_{l}^{m} \phi_{k}{ }_{k}$ is the eigenfunction, we are only interestedin the case when the iunctione f_{k} do not all vanish identicaliy, i.e. When the 2tmanaractena do not all vanish. Thus we know that the doterminant (of order 2 tran) of the above equations must vanish and this gives us a transcendental equation which determines the eigenvalues $f_{n}^{(m)}$, which are the dem sired upper bounds for the eigenvalues μ_{n}.

By an appropriate choice of the fixed sequence $\left\{\phi_{k}\right\}$ the subspaces $\overline{\mathcal{K}^{(m)}}$ will converge to the space $\overline{\mathcal{K}}$ and the corresponding bounds $\mu_{n}^{(r)}$ will converge to the eigenvalue μ_{n}, for each n.

We should also remark at this time that in forming the subspaces $\boldsymbol{K}^{(n)}$ we might have chosen a more genexal representation, with arbitrary functions of different variables, such as

$$
u=\sum_{k=1}^{\nu} \sum_{l=1}^{m_{k}} \phi_{k l}\left(x_{1}, \ldots, x_{2}\right) f_{k l}\left(x_{k}\right)
$$

but in this generalized case we would obtain integro-difereatisl equations with integro-differential boundary conditions which would be much more difficult to hande.
4. Example 1. The notched rectangle. As the first example to which we shall apply the new approximation method we shall considex the differential problen

$$
\begin{equation*}
\Delta u+\mu u=0 \text { in } D, \tag{102}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial x}{\partial n}=0 \text { on } \mathrm{S}, \tag{106}
\end{equation*}
$$

whore D is the notched rectangular donain shom in the figure, with origin taken at the center. In this problen we have a second order equation ($t=1$) and the one and only boundary operator is unstable. Thus when we apply the new method we may choose the functions t_{k} to be arbitrary functions only of the variable x and belonging to $\tilde{\mathbb{C}}^{(1)}$ but
 subject to no boundary conditions, and similarly for the lunctions $\hat{r}_{k}(y)$ depending on the other variable. This would not have been the case if our boundary conditions had been $u=0$ on S (as az the mombrane problem) and in this other problem a slightyy wore comm pircated choice of the functions $\phi_{k}(x, y)$ would be necessary matimg the computations much more involved.

Using our previous notation the class \mathcal{K} will be composed or functions $u \in G^{(2)}$ in \vec{D} and setisfying the boundary condition $\frac{\partial u}{\partial n}=0$ on S. In the class K the bilinear forms mili be decined as

$$
\begin{aligned}
& \boldsymbol{T}(u, y)=-\int_{D} \Delta u \bar{y} d x d y, \\
& \mathcal{L}(u, y)=\int_{D} u \bar{v} d x d y,
\end{aligned}
$$

where the positive operator A has been replaced by - B and the operator B is the identity operator. Before extending these forms or considering the complete space we first transform them as mentioned in the introduction to their equivalent representtrons

$$
\begin{equation*}
\boldsymbol{O}(u, v)=\int_{D}\left(u_{x} \bar{v}_{x}+u_{y} \bar{v}_{y}\right) d x d y, \tag{11}
\end{equation*}
$$

$$
\mathcal{L}(u, v)=\int_{D} u \bar{v} d x d y,
$$

Where formula (11) follows immediately from Green's identity

$$
-\int_{D} \Delta u \bar{v} d x d y=\int_{D}\left(u_{x} \bar{v}_{x}+u_{y} \bar{v}_{y}\right) d x d y-\int_{S} \frac{\partial u}{\partial n} \bar{v} d s
$$

With subscripts referring to derivatives and the exterior normal derivative being used. The corresponding variational problem in the incomplete space \mathcal{K} would then be

$$
\begin{equation*}
\mu=\frac{\inf }{K} \frac{\int_{D}\left(\left|u_{x}\right|^{2}+\left|u_{y}\right|^{2}\right) d x d y}{\int_{D}|u|^{2} d x \alpha y} \tag{13}
\end{equation*}
$$

Before we can consider the complete space $\overline{\mathcal{K}}$ and thus put the variational problem and notnods on a more rigorous footing we must clarify a point that has thus far been neglected. In order to form this completion of K we should have a proper nom, fine. the quadratic form $\mathcal{O}(u, u)$ should be positive definite. However we see immediately from (11) that this rom is not definite since it vanishes for a function which is constant. Thus our original analysis of the problem breaks down at this point and we must go beck and reinterpret the problem in a slightly different manor.

Instead of defining the bilineai foms in tams of the operators $-\Delta$ and I (the identity) we shall rewrite equation (10a) in the form

$$
\begin{equation*}
-\Delta u+\boldsymbol{u} u=\mu^{\prime} \text { u in } D, \tag{1}
\end{equation*}
$$

where \boldsymbol{K} is a fixed positive number and ${ }^{\prime \prime}=\beta+\boldsymbol{K}$. We can now derine the new bilinest forms corresponding to equation (10al)

$$
\begin{equation*}
\boldsymbol{\sigma}^{\prime}(u, v)=\int_{D}\left(u_{x} \bar{v}_{x}+u_{y} \bar{v}_{Y y}+x u \bar{v}\right) d x d y \tag{119}
\end{equation*}
$$

The new quadratic form $\boldsymbol{M}^{\prime}(u, u)$ will now be positive dotinite and all our methods can be applied to the new variational problem,
(13 $\left.3^{2}\right) \quad \inf _{K} \frac{\int_{D}\left(\left|u_{x}\right|^{2}+\left|u_{y}\right|^{2}+x|u|^{2}\right) d x d y}{\int_{D}|u|^{2} d x d y}$
and the corresponding problem in the complete space
(I4 $)^{\prime} \quad \min ^{\prime} \frac{\int\left(\left|u_{x}\right|^{2}+\left|u_{y}\right|^{2}+\mathbf{x}|u|^{2}\right) d x d y}{\int_{D}|u|^{2} d x d y}$
where the conpletion is now taken with respect to the norm $\|u\|^{2}=\boldsymbol{J}^{\prime}(u, u)$. When dealing sith the completion $\overline{\mathcal{X}}$ of the space \mathcal{X} ve obviously need to consider this auxiliney focm $\mathbb{N}^{\prime}($ a, u) but in anclyzing the varietional problem itself we tay use oither fomma (14') or the corresponding formula

$$
\begin{equation*}
y=\frac{\operatorname{nin}}{\frac{K}{K}} \frac{\int_{D}\left(\left|u_{x}\right|^{2}+\left|u_{y}\right|^{2}\right) d x d y}{\int_{D}|u|^{2} d x d y}, \tag{14}
\end{equation*}
$$

where $\overline{\mathcal{K}}$ again represents the completion wth respect to $\boldsymbol{N}^{\prime}(u, n)$.

This preedori to use either (14) or (14') is due to the fact that $\mu^{\prime}=\mu+\mathcal{X}$ and

$$
\frac{\int_{D}\left(\left|u_{X}\right|^{2}+\left|u_{y}\right|^{2}+x|u|^{2}\right) d x d y}{\int_{D}|u|^{2} d x d y}=\frac{\int_{D}\left(\left|u_{x}\right|^{2}+\left|u_{y}\right|^{2}\right) d x d y}{\int_{D}|u|^{2} d x d y}+\boldsymbol{x}
$$

Thus we may consider the form $\boldsymbol{A}^{\prime}(u, u)$ as morely an auxiliary form that we use to complete the space -- actually analyzing the variational problem (14).

Having discussed the variational problem corresponding to the differential problem (10) we shall now apply the nem approximation method to this variationai problem (14). Due to the symmetry of the domain we can divide the problem into four part problems - considering functions that are even in x and even in y, even in x and odd in y, odd in x and even in y, and odd in x and odd in y. We shall now analyze the four part problens tozether and separate them at the end.

We first choose our fixed sequence of functions $\phi_{k}(x) \neq 6$. which belong to $\widehat{C}(1)$ in the closed interval -a $\leqq x \leqq$ a but subject to no boundary conditions. The subspace $\mathcal{K}^{(n)}$ is composed of all functions $u(x, y)=\sum_{l}^{m} \phi_{k}(x) f_{k}(y)$, where the functions $f_{k}(y)$ belong to $\mathcal{C}(I)$ in $-b \leqq y \leqq b$. In order to rollow the method to the end and not overcomplicate matters wth notation we shall solve the variational problem only in the first subspace $\mathcal{K}^{(1)}$. ConsequentIy we may also drop the subscripts and refer simply to functions of the form $\quad(x) f(y)$.
6. More accurately we shall require that $f_{k}(x)$ be not identically sero in the subintervals $-a \leqq x \leqq-\alpha$ and $\alpha \leqq x \leqq a$.

To solve the variational problea (14) in the space $\mathcal{K}^{(1)}$ we set the first variation equal to zero and obtain

$$
\int_{D}\left(|\phi|^{2} f g+|\phi|^{2} \operatorname{l}^{\prime} g^{\prime}-\mu|\phi|^{2} f g\right) d x d y=0,
$$

where $g(y)$ is an arbitrary function (belonging to $\tilde{C}^{(1)}$. Using the property that the colution $f(y)$ belongs to $d^{(2)}$ in each of the intervais $-b<y<-\beta,-\beta<y<\beta$, and $\beta<y<b, 7 \cdot$ we can now integrate by parts with respect to y in the sidale term. Doing this for the integral ovor one corner of the domain (by symetry this integral must also vanish) and using the notation

$$
a_{0}=\frac{\int_{0}^{a}|\phi|^{2} d x}{\int_{0}^{a}|\phi|^{2} d x}, \quad a_{1}=\frac{\int_{\alpha}^{a}|\phi|^{2} d x}{\int_{\alpha}^{a}|\phi|^{2} d x}, \quad K=\frac{\int_{\alpha}^{a}|\phi|^{2} d x}{\int_{0}^{a}|\phi|^{2} d x},
$$

(recalling that we are dealing with one of the part problems) we obtain

$$
\begin{aligned}
& \int_{0}^{\beta}\left[\left(\int_{0}^{\beta}|\phi|^{2} d x\right) f-\left(\int_{0}^{a}|\phi|^{2} d x\right) f^{\prime}-\mu\left(\int_{0}^{a}|\phi|^{2} d x\right) f\right] g d y \\
+ & \int_{\beta}^{b}\left[\left(\int_{\alpha}^{a}\left|\phi^{\prime}\right|^{2} d x\right) f-\left(\int_{\alpha}^{a}|\phi|^{2} d x\right) f^{\prime \prime}-\beta\left(\int_{\alpha}^{a}|\phi|^{2} d x\right) f\right] g d y \\
- & \left(\int_{0}^{a}|\phi|^{2} d x\right) f^{\prime}(0) g(0)+\left[\left(\int_{0}^{a}|\phi|^{2} d x\right) f^{\prime}(\beta-0)-\left(\int_{\alpha}^{a}|\phi|^{2} d x\right) f(\beta+0)\right] g(\beta)
\end{aligned}
$$

$$
+\left(\int_{a}^{a}|p|^{2} d x\right) f(b) g(b)=0
$$

7. This property is obtained in the ucual menner of integrating by parts in the othor direction to obtaja B^{\prime} as a common factor. fhen we obtain f^{\prime} as a constant tines the indefinite integral of

Which by the classical procedure gives us the system
(15)

$$
\begin{aligned}
& f^{\prime \prime}(y)+\left(\mu-i_{0}\right) f(y)=0, \quad 0 \leqq y<\beta, \\
& f^{\prime \prime}(y)+\left(\mu-h_{I}\right) f(y)=0, \quad \beta<y<b, \\
& f^{\prime}(b)=0, \quad f^{\prime}(\beta-0)-K_{f}(\beta+0)=0 .
\end{aligned}
$$

(Note that the conditions $f^{\prime}(0) g(0)=0$ is automatically satisfied due to the restriction to part problems.) The ordinary differenttidal system (15) may now be solved easily. Using the boundary condition $f^{\prime}(b)=0$ and the restriction of the particular part problem the solutions must be of the form

$$
\begin{array}{ll}
f(y)=C_{1}\left\{\begin{array}{l}
\cos \\
\sin
\end{array}\right\}\left[\sqrt{\mu-R_{0}} y\right], & 0 \leqq y<\beta, \\
f(y)=C_{2} \cos \left[\sqrt{\mu-R_{1}}(b-y)\right], & \beta<y<b,
\end{array}
$$

Where $\left\{\begin{array}{l}\cos \\ \text { sin }\end{array}\right\}$ stands for cosine in the part problems with even funcLions of y and sine in the part problems with odd functions of y. Using the remaining boundary condition of (15) and the continuity of the function at $y=\beta$ we now obtain a system of two linear homogeneous equations in tho parameters C_{1} and C_{2}. Since pf is an eigenfunction in $\mathcal{K}^{(1)}$ we know that $\mathrm{f} \neq 0$ and C_{1} and C_{2} cannot both vanish, which means that the determinant

$$
\left|\begin{array}{cc}
\sqrt{1-R_{0}}\left\{\begin{array}{c}
-\sin \\
\cos
\end{array}\right\}\left[\beta \sqrt{\mu-R_{0}}\right] & k \sqrt{\mu-R_{1}} \sin \left[(b-\beta) \sqrt{\mu-R_{1}}\right] \\
\left\{\begin{array}{c}
\cos \\
\sin
\end{array}\right\}\left[\beta \sqrt{\mu-R_{0}}\right] & \cos \left[(b-\beta) \sqrt{\mu-R_{1}}\right]
\end{array}\right|
$$

must vanish. Dividing by the expression $\left\{\begin{array}{c}\cos \\ \sin \end{array}\right\}\left[\beta \sqrt{\mu-R_{0}}\right] \cos \left[(b-\beta) \sqrt{\mu-R_{1}}\right]$ (assuming the constants are such that it does not vanish with the
$f(2)$ each interval ${ }_{(\infty)} B_{y}$ induction this implies that f belongs to $c^{(2)}$ and in fact $c^{(\infty)}$.
determinant) we are left only with the equation (16) $\sqrt{\mu-R_{0}}\left\{\begin{array}{c}\tan \\ -\cot \end{array}\right\}\left[\beta \sqrt{\mu-R_{0}}\right]+K \sqrt{\mu-R_{1}} \tan \left[(b-\beta) \sqrt{\mu-R_{1}}\right]=0$. The values $\mu_{n}^{(1)}$ which are roots of this equation for each part problem are the eigenvalues for the subspace $\boldsymbol{X}^{(3)}$ and are thus the first in the sequence of upper bounds for the eigenvalues μ_{n} of the original problen.
5. Example 2. The clamped rectangular plate. As our second example we consider the differential eigenvalue problem for the clamped plate

$$
(17 \mathrm{~b})
$$

$$
\begin{align*}
& \Delta^{2} u=\mu u \text { in } D, \tag{17a}\\
& u=\frac{\partial u}{\partial n}=0 \text { on } S,
\end{align*}
$$

where D is the rectangular domin $-\mathrm{a}<\mathrm{x}<\mathrm{a},-\mathrm{b}<\mathrm{y}<\mathrm{b}$. For this problem the class K is the class of functions $u \varepsilon C^{(4)}$ in \bar{D} which satisfy the two boundary conditions $u=\frac{\partial u}{\partial n}=0$ on S. The bilinear forms corresponding to the operators in (17) are then given by
(18) $\boldsymbol{\pi}(u, v)=\int_{D} \Delta^{2} u \bar{v} d x d y=\int_{D} \Delta u \overline{\Delta v} d x d y, \quad u, v \varepsilon \mathcal{X}$,

$$
\begin{equation*}
\mathscr{\mathcal { L }}(u, v)=\int_{D} u \bar{v} d x d y, \quad u, v \in \mathcal{K}, \tag{19}
\end{equation*}
$$

where in (18) we have made use of a form of Green's identity

$$
\int_{D} \Delta^{2} u \bar{v} d x d y=\int_{D} \Delta u \overline{\Delta v} d x d y+\int_{S}\left(\frac{\partial \Delta u}{\partial n} \bar{v}-\Delta u \frac{\overline{\partial v}}{\partial n}\right) d s,
$$

using exterior normal derivatives. In connection with completing \mathcal{K} to fora the complete Hilbert space $\overline{\mathcal{K}}$ we do not have the difficulty here that we encountered in the first example. The
quadratic form $\mathcal{O}(u, u)$ is positive definite and the completion may be carried out as usual, leading to the variational problem

$$
\begin{equation*}
\mu=\frac{\min }{\bar{K}} \frac{\int_{D}|\Delta u|^{2} d x d y}{\int_{D}|u|^{2} d x d y} \tag{20}
\end{equation*}
$$

In apnlying the new method to this problem we now choose a fixed sequence of functions $\phi_{k}(x)$ belonging to $\mathbb{C}^{(2)}$ (or even $c^{(4)}$) in the interval $-a \leqq x \leqq a$ and satisfying the conditions $\phi_{\mathrm{k}}^{\prime}(+a)=0$. Again, as we did in Example I, we shall split the original problem into four part problems by symetry and in each of these part problems we shall solve the variational problem (20) in the first subspace $\boldsymbol{K}^{(1)}$, which is composed of functions of the form $u(x, y)=\phi(x) f(y)$ (where we have dropped the subscript 1) with $f(y) \varepsilon \hat{C}^{(2)}$ in $-b \leqq y \leqq b$ and $f(\pm b)=0$. Now upon equating the first variation to zero we obtain
 where $g(y)$ is an arbitrary function belonging to $\tilde{\mathbb{C}}(2)$ in $-b \leqq y \leqq b$ (and of course an even or odd function depending on the part problem). By using the fact that the solutions $f(y)$ belong to $\mathrm{C}^{(4)}$ in the interval $-b \leqq y \leqq b$ (see footnote 7, page 15) we can integrate by parts the terms containing derivatives of g, considering the integral only over one corner of the domain where it will also vanish because of the symmetry. The equation then takes the form

$$
\begin{aligned}
& \int_{0}^{b}\left[\left(\int_{0}^{a}\left|\varphi^{n}\right|^{2} d x\right) f+\left(\int_{0}^{a} \phi^{n} d x\right) f^{\prime \prime}+\left(\int_{0}^{a} \bar{\phi} \phi^{n} d x\right\rangle f^{\prime \prime}+\left(\int_{0}^{a}|\phi|^{2} d x\right) f^{(4)}-\mu\left(\int_{0}^{a}|\phi|^{2} d x\right) f\right] E d y \\
& \left.*\left(\int_{0}^{a} \bar{\phi} \phi^{\prime \prime} d x\right) f(y) g^{\prime}(y)\right|_{0} ^{b}-\left.\left(\int_{0}^{a} \overline{\phi \phi^{\prime \prime}} d x\right) f^{\prime}(y) g(z)\right|_{0} ^{b} \\
& +\left.\left(\int_{0}^{a}|p|^{2} d x\right) f^{\prime \prime}(y) d(y)\right|_{0} ^{b}-\left.\left(\int_{0}^{a}|\phi|^{2} d x\right) e^{(3)}(y) d(y)\right|_{0} ^{b}=0 .
\end{aligned}
$$

The above equation can be simplified by using the relation

$$
\int_{0}^{\overline{\phi^{\prime}}} \overline{\prime \prime} \mathrm{dx}=\int_{0}^{a} \phi^{\phi} \overline{\phi^{\prime}} \mathrm{d} x=\left.\phi \overline{\phi^{\prime}}\right|_{0} ^{a}-\int_{0}^{a} \phi^{2} \mathrm{~d} x=-\int_{0}^{a} \phi^{\prime}{ }^{2} \mathrm{~d} x
$$

Using tho classical procodure at this point and introducing the notation

$$
A=\frac{\int_{0}^{a}|\phi|^{2} d x}{\int_{0}^{a}|\phi|^{2} d x}, \quad B=\frac{\int_{0}^{a}|\phi \eta|^{2} d x}{\int_{0}^{2}|\phi|^{2} d x},
$$

we obtain the ordinary differential equation

$$
\begin{equation*}
f^{(4)}(y)-2 \operatorname{Af}^{(2)}(y) \div(B-\mu) f(y)=0 \tag{21}
\end{equation*}
$$

In this case the tems that werc integrated give us no additional boundary conditions since for each part problem they vanish automatically at both of the values 0 and b. The only boundary conditions that we have are those thet were originaily imposed either by the symmetry of the part problem or the conditions $f(\pm b)=f^{\prime}(\pm b)=0$. The solutions of equation (21) are immediately found to be

$$
f(y)=c_{1}\left\{\begin{array}{c}
\cos \tag{22}\\
\sin
\end{array}\right\} \lambda_{1} y+c_{2}\left\{\begin{array}{c}
\cos \\
\sin
\end{array}\right\} \lambda_{2} y
$$

where the $\left\{\begin{array}{c}\cos \\ \sin \end{array}\right\}$ again reters to the two cases of part problems with
$f(y)$ even and with $i(y)$ odd and the parameters λ_{1} and λ_{2} are the two values given by

$$
\lambda_{0 j}=i \sqrt{A \pm \sqrt{A^{2}-B+\mu}}=\frac{1}{\sqrt{2}}[\sqrt{\sqrt{B-\mu-A} \pm i \sqrt{\sqrt{B-\mu+A}}]}]
$$

Using the two boundary conditions $f^{(b)}=f^{\prime}(b)=0$ we again obtain two linear homogeneous equations in the parameters C_{1} and C_{2}, and sine they cannot both vanish this means that the determinant

$$
\left.\left.D=\left\{\begin{array}{rrr}
\lambda_{1}\left\{\begin{array}{c}
-\sin \\
\cos
\end{array}\right\} & \lambda_{1} b & \lambda_{2}\left\{\begin{array}{c}
-\sin \\
\cos
\end{array}\right\}
\end{array} \lambda_{2} b\right\} \begin{array}{c}
\cos \\
\sin
\end{array}\right\} \lambda_{1} b \quad\left\{\begin{array}{c}
\cos \\
\sin
\end{array}\right\} \lambda_{2} b\right\}
$$

must vanish. Tins determinant D however can be transformed into a more consentient form, $D=0$, then becoming $(23) \mp \sqrt{\sqrt{B-\beta}+A} \sin [\sqrt{2} b \sqrt{\sqrt{B-h}-A}]+\sqrt{\sqrt{B-\mu-A}} \sinh [\sqrt{2} b \sqrt{\sqrt{B-A}+A}]=0$,
where the minus sign is used when fly) is even, the plus sign when $f(y)$ is odd. The solutions $\mu_{n}^{(1)}$ of equation (23) thus give us the eigenvalues (for each part problem) of the auxiliary problem in the subspace $\mathcal{K}^{(1)}$, these eigenvalues ${ }^{(1)}(1)$ being the first in the sequence of upper bounds fox the eigenvalues $\mu_{\text {a }}$ of the original problem.

1 M. Aronseajn. Btudies in Eigenvalue Problems. Technicel Report I. The Rayleigh-Ritz and A. Weinstem aothode row cpproximation of eigenvalues. I. Operators in a Hiloert space. Gkiahoma A and ${ }^{\text {a }}$ Colloge, Stillwater, 1950.

2 - Studies in Lienvalue Problems. Techaical acort 2. Bifiorential operatort. Biillwater, 3950 .
 Report 3. Application of Welnstein's nethod with an amxiliser problem of Typer. Stillwater, 1950.

4 … Studies In ELGenvatuo Probleys. Tochaical Beport 4 . Applicetion on Weinstein's method with an auxiliar problen of qype II. Stillmater, 1950.

5 . Aronszajn and A. Zoichner. Studes in Bigenyajue Problegs. Technical heport 5. A new type of auxiliaxy problen Pon approxinction of gigentalues by heinetein' method. Stilnater, 195 .

Tho above reports issued under contrect with the orfice of Naral Rosearch, Contract Mgonw - 85101, Project WR 041 090 are availdble in mineographed fomm.

6 it. Aronszajn. Approximetion mothods for eigenvalues of completely continuous symotipe operators. Proceedines of the Symposium on Spectral heory and Eiptorential Problems. Stillwater, Oklahoma (1951) pp. 179-203.

7 —_ Green's tunchions mak peproducing kernels. Proceedings of the Symposiun on Spectral macoy ang DisPerential problems. Stillwater, oklehoma (1951) pp. 355-413.

TYPIST PAGB

THESIS TITLE: SOME DEVELOPAENTS AND APPLICATIONS OF A NEW APPROXIMATION METHOD FOR PARTIAL DIFFERENTIAL RIGENVALUE PROBLERS +

MAME OF AUTHOR: A. K. Jennings

THESIS:ADVISOR: N. Aronszajn

The content and form have been checked and approved by the author and thesis advisor. 'Instructions for Typing and Arranging the Thesis' are available in the Graduate School office. Chenges or corrections in the thesis are not made by the Graduate School office or by any comattee. The copies are sent to the bindery just asthey are approved by the author and faculty advisor.

NAME OF TYPIST: SyIvia L. Aronszajn

