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Preface 

The approximation method to be discussed and 

applied in this paper was originally presented by 

N. Aronszajn in his seminar on Hilbert space theory 

at Oklahoma A. and M. College in the spring of 1950. 

Since that time the method has been further discussed 

and analyzed and a preliminary report on a forthcomine 

paper by N. Aronszajn and the author was presented by 

the author before the American Mathematical Society 

at the Chicago meeting on April 28, 1951. 
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SOME DEVELOPMENTS AND APPLICATIONS OF A NEW APPROXIMATION METHOD 

FOR PARTIAL DIFFERENTIAL EIGENVALUE PROBLEMS 

by 

A. K. Jennings 

1. Introduction. We shall consider a differential prob-

lem which is of such a type that we can replace this differential 

problem by an equivalent variational problem. The new method to 

be discussed here will then be applied to the variational problem 

in much th~ same way as the Rayleigh-Ritz and Weinstein methods 

are actually applied to an equivalent variational µroblem (see 

[lJ). 1 • In making the transition from the differential problem 

to the variational problem we shall use many of the results pre­

sented by N. Aronszajn in f2J, although we shall not always refer 

to them explicitly. 

To begin with we shall consider the differential eigenvalue 

problem 

(la) 

(lb) 

Au= µBu in D 1 

J\u = 0 on S, 

where Sis the boundary of a domain Din V-dimensional space, A 

and Bare elliptic positive differential operators of orders 2t 

and 2t' respectively, t > t', and {I\~ is a system oft linear 

1. Numbers in brackets refer to the references at the end of the 

paper. 



d:iffer0n.ti, bo opt'lrt,tor·s of orders less than or ec 

') 
L-o. 

") 

2t-lo -• It is ~ell known that the di erential problem (1) is 

equivalent, in the usual cases, to the variational pro em 

fnAu u dLiJ 
_l.i = min II 

JD u dt.u 

~here the function u varies in an appropriate class of admis~i e 

functions, usually 2t times ccntinuously different ble and satis-

inR the boundary conditions (lb). 

For our future considerations it 1a important that we descri 

~se ue shall introduce the class )<. of functions u 

and satisfJing the boundary conditions I\ ,-, ·- 0 r-r, .. ~J, - 1,.) ~ 

1 

1 --' -, • t' t I l • • • ) < • " • r, c ass ue ae11ne ne ·wo llermi~ian oi~inear zorms 

( ') \ <.,) 

( 3) 

F{(u,v) = 

c& (u.,v) = 

J Au 11 dw , 

D 

j Du 11 dw , 

D 

u,v 8 J<. 

u,v 2 X 

' 

• 

(_;; v-ariational probl.er~1, described bv the above formula iG I ,. 

quotient of the corr es ponding quadratic f orras rr ( u, u) s::1nd ;G ( u, u) 

ccasiderod 51. the class J<. .. In the classical problems the mini-

r,mm of this quotient is act ., Jc ·t· ''1 1.' '1 •.Hl ~ n -~ 'i· ·-•. e C 1 !!• c• C• "[/ 
C• Li t;~. J V U. ~L J,... V .;, - <...1, 0 V "' 

vuri&tJonal probles is truly equivalent ta the different prob-

2. The methods to be discussed say also be generalized to elude 

any self-adjoint operator B-of sBaller order than 2t. There must 

also be so1n.e ucidit.i.on restrieti.or:ts 011 ttie bo11nda:eJ- E3 a.r1d t!·1e 

one·,,,:,t O'···,~ /\ '-'rd c}1 0.1"'' a•t·:i1~y-·%e,-i "0"0 ful}y "in [2] -- these con-.t> .... c ... ; ~ t.,,, i ~· ",I .~ -,. '- ' ,.,. - l C.· .. -- . "'-•" ,:!;. .... = - " 

ditions are all satisfied in the usual problems considered. 



3. 

lem (1). However there is >to reason to ;;;uspect that there will 

alwa;y s be a minimizing ±'unction in the class J(. , and even when 

there is we may wish to consider an auxiliar1 problem where this 

is no longer true. 

Before we can rigorously analyze the variat onal problem we 

:must transform the quadratic forms /((u,u) and ~(u,u) into ex-

pressions 1,1Lich are 'formally positive' quadratic forms (as dis-

cus~;ed in (2J, [6], and[?]) 3. 

d'((u,u) = f :£. /Aku/ 2 dw + I z /-11ju/2 ds, 

D s 

( 5) ~(u,u) == ·12.. /nku/ 2 dw + i £ /eju/2 ds , 
D s 

where the oper~tors Ak are of orders le~s than or equal t, the 

oper~tors Bk are of orders less than or equal t', and the opera­

tors .11.j and sj are boundar;y operators of orders less than or 

equal t-1 and t'-1 respectively. The quadratic forms given by (4) 

and ( 5) are ecjuivalent ill. .X to those corresponding to (2) and 

(3) since they differ for any function in c( 2t) only by boundary 

integrals i;,hich will vanish for· functior:s satJ sfxing all of the 

boundary conditions. The quadratic form l'((u,u) as eiven by (h) 

will now be positive definite for all functions which satisfy only 

the boundary conditions of orders less than or equal t-1.(this 

pro_per·ty is discutrned in [2) and depends e:.::aentiully on the 

3. These reµresentations are asJured by the assumptions concern-

ing the operators A, B, /\i, and the boi..mdarj' S. It should be re­

called that some of the aisumptions about the boundary Sand the 

operators /\ i are not mentioned explicitl}' but are presented in [2]. 



• ~-
existence and regularity of a Green's function). We may now con-

sider a norn in the space J< as defined by //u/J2 = /((u,u). vlith 

this quadratic norm J( has the cbar1-1,ct er of an ':incomplete I Hil-

-bert space and we can consider it t, functional co1;1pl et ion J( • 

Our purpose in trc1nsforming H and ,t J.nto the representations (,4) 

and ( 5) was to enable us to form the functional completion of.}(. , 

to tihich (1+) and ( 5) can i;.,mediatel;y be extended. 'l'he functions 

of the ( cow.pl et e) Hilbert space X 1::ill still satisfy the I stable 1 

boundary conditions, i.e. of orders less than or equal t-1, but 

they need not satisfy the 1 unstable 1 boundary conditions, i.e. of 

orders greater than or equal t, (the terms 'stable' and 'unstable' 

then having an obvious significance). 

We can now say in general that the variational problem 

( 6) Ji = inf 
.1( 

.[{ ( u~Jtl 
it( u, u) 

is equivalent to the variational problem 

(7) 

When the . " . ~ 

minJ..mJ_ Z:t.ng 

/l - m.in 

~ 
solutions 

~( u,u1. 
,l, ( u, u) 

in j already belong to 7(, as in 

the usual caoes considered, then both variational problem (6) and 

(7) are equivalent to the differential problem (1) -- otherwise the 

differential problera needs some clarification as to the required 

regularity of its solutions. 

The disappearance of the unstable boundary conditions in the -complete space 1( can be explained by ccnsidoring the variational 

problem (7). When integrating the first variation by parts to de-

rive Euler's equation (which will be (la)) boundary integrals will 



arise. Using only the stable bound2ry conditions, which are 

satisfied functions in JC , i,,e 1°Jill then obtain the correspon-

d.J.ng 1 nntural' boundary conditions Hl1ich will in fa.ct be our 

ori nal unstable boundary conditions. Thus when deriving Euler's 

equation for (6) all boundary conditions arc present throu out, 

and for(?) we start with the stuble boundary conditions and the 

unstable boundary conditions appear automati~ally~ 

We should remark that although the forms given by (2) and 

( 3 ) a. n d b ;~' ( 4 ) a. n d. ( 5 ) are e qui v a 1 en t i. n th e s pa c e .?'( th e y are not 

, . . (2t,)· 
equivalent in :X. ( even for funct,l ons 1.n C so that ( 2) will. 

( ')t,) 
have meaning). For functions in X which belong to C - we could 

try to transform (4) (or (5)) back into the form (2) (or (3)) but 

when making this transformation the boundary integrals which van-

ishcd in the space J( will no longer vanish unless the function u 

also satisfies the unstbble boundary conditions. (In the bilinear 

form u must satisfy the unstable boundary conditions but v need 

not in order to perform this transformation.) Hereafter v!hen we 

refer to/{(u,u) and,&(u,u) we shall m.ean the expressions given 

by CL1) and (5). 

""" Our final remiJ.rk concerns a third space X consisiting of all 

functions u £ C(t) f+. in D and satisfying the stable boun con-

"""" ditionso 'i'bis space 7( will be Very useful at times because the 

c ete space .7( is often quite difficult to find explicitly and 

we mean the class of all functions belonging to C(t-l) 
·~ 11 

whose t-1 "'· deri 01n:1.tives arc absolute continuous in eB.ch variable 
( ') ) 

"'enc,·,a')"'L,··0·1· '' '")nr1 T,ff"!O~e t-t!"1 o"','.:>r·l"'l"t:,·e;O,,cc• 'Jnlor1P tr, _p,tc.. 
<w> !_·~tJ,.J..C--· V,-~,J C,AJ.'Ll •~-. 0 J._ -'---" ...... U'C.:·~ .J.,,lJV\J , ._, . s:-_J ,JV Ol-, • 
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""" X apprcxirnatea X closely eni;mgh for most purposes of analysis. - -
The actual relation is this: X c X <= X. 

2. Appro~imation methods. At the present time there are 

many approximation methods at our disposal for this type of prob­

lem (see ~]). Two of these which have been extensively analyzed 

and are important in many applications are the Rayleigh-Ritz and 

the Weinstein methods ( see (1], [2], [3], (4], [5]). In the 

'generalized' Rayleigh-Hitz method a subspace .X(O) of 5( is con-

sidered in which the variational prob1em is explicitly solvable. 

A sequence 
(m) 

µ 
n 

of approximations to the eigenvalue µn is then 

obtained by successively adding to :X(m-l) a one-dimensional sub­

space and then solving the problem again in this new subspace _x(m). 

The approximations µ(m) form a decreasing sequence of upper bounds n 

for the eigenvaluesµ • In the Weinstein method a similar pro­
n -cedure is used, starting with a larger space containing J( and 

producing an increasing sequence of lower bounds for the eigen-

values 1l< • n 

Doth the Rayleigh-Ritz and Weinstein methods are baaed on 

the same fundamental principle -- the Monotony The,orem.. This 

theorem is based on the simple pro~erty that the minimum over a 

smaller class of functions will be an upper bound for the minimum 

over the origlnal class. The new approximation method to be dis-

cussed here gives upper bounds for the desired eigenvalues as 

does tho 'generalized' Rayleigh-Ritz method, but beyond the first 

step the new method is essentially different from the Rayleigh-

Ritz method. In both methods an increasing sequence of subspaces 



?. 

::.t, utiLLzcd and the VEtriat:i.onal 10roblem must be c.iol,red i 

tkeen each of these subspacGs ani the preceding subsp~ce 11 [)0 

of infinite dimension; thus the ne11 nethod gives rise to a se-

tl1c sco1.1e11ee ot)'.~_,tiined frorz1 t}10 I2a;tleigl1-E.itz rJ.ctbod. 

duction we shall actually apply the approximation mett1od to tho 

equivalent variational problem (7). Our first step in tl1is process 

is to choose , ... ,xv), 

h: =~ 1,2, •• • , 1:hi.cl'1 z:aust be rest:cictc:;d. to sorne ex.ten.t 

ca ditions as we shall see. 

eacn composed of all functions of the form 

m 

(C) u =L ) , 
1 

~h0re the functions fk are allowed to vary through a,, appropri~to 

tions product, f 1, t"tutd~ saLis 
.t· .. 

It io ort~n very 

t e 2uthoti in so aim 



I) 

tem (i.e. 

If the stable boundary operators form a Dirichlet_sys­
i 

al;= o, i = 0,1, ••• ,r for some r ~ t-1) then we can 
an1 

choose the functions ¢k to satisfy these boundary conditions and 

restrict the functions fk only to be sufficiently regular~ 

II) If Dis a cylindrical domain with axis in the x1 ·di­

rection and bases given by x 1 = a and x 1 = b, if the stable boun­

dary operators on the lateral surface are independent of x 1 , and 

if the stable boundary operators on the bases depend only upon x 1 

(i.e. they are independent of the particular point of the base), 

then we can Choose the functions ¢k to be independent of x 1 and 

to satisfy these boundary conditions on the lateral surface while 

restricting the functions fk(x1 ) to satisfy the boundary condi­

tions on the bases. 

We now turn to the solution of the variational problem (7) in 

the subspace ](( m) as given by ( 8) ( or in its completion )( (rn.) 

if ,<..(m) is not already complete). We Ghall let 
m 

L" ' ~ u = ~ a,, I k. _ 
r' !{ 

1 
represent the minimizing solution and consider a variation fanc­

m 
tion v = £. ¢kgk for an arbitrary system of functions gk ( x 1 ) ( i:n 

1 
the appropriate class). By equating the first variation to zero 

(and using the corresponding bilinear forms) we obtain 

/f(u,v) - 11,,:(u.,v) = 0 , 

which can also be written as 

m 

( 9 ) z.. [,r ( v\ f k, ¢ ,f, g 1/, ) - p ,t ( 9\/ k' ¢ ,£ g ,l ) ] = 0 J ,f, = 1, 2 J a •• J m 0 

k=l 

The forms I( and ,;& as represented in ( l+) and ( 5) c&.n noi.r,r be in-

tegrated uith respect to all of' the Yaria.bles except x 1 \':hi.ch r.d..11 

give us expressions of the type 



q , . 
~ (SA. (x )f(p)(x. )~,(.q)(x) dx =: 0 P 1 n z_ J ~• k, .f,, p, q 1 k l 0 ,/;. 1 · 1 J ;~ - · J • • • J .1. J 

k,p,q a 

where the superscripts p and q refer to deriv&tives of those 

orders. While keeping in mind that the functions A1 ,1 • (x1 ) 
•<,1,,P,q 

(and their derivatives) may have discontinuities at some points 

(caused by the shape of the boundary, cf. ~xample 1), ~e next in-

tegrate each of the above te1·ms b;1 parts q times so as to trans-

fer all derive,tives from the gP to the functions Ak v . and 
,i, ... ,,i,,P,q 

the usual nrocedure in each interval where A, , E !(t) ' K,t,P,Q 
obtain a system of ordinary differential equations, at the endpoints 

a 3.nd l3 we obtain unstable boundary conditiots, and at the points 

of irregularity of one of the functions Ak v • 
,1.,,1J,q 

I • 

i. i • e • a diacon-

tinuity of some derivative or order less than or equal t-1) we 

obtain unstable linear differential conditions relating the solu-

tion in two adjoining intervals. 

In each interval we now solve the sytem of m linear differ-

ential equations of order 2t in them functions r 1 , •.. ,f • m The 

general solutions will each depend linearly upon 2t parameters so 

that tl1e total number of parameters will be 2tm in each interval 

or 2tmn all together, where n is the number of intervals. To de-

termine these parameters we must now apply the boundary conditions. 

At each of the endpoints a and p we have t boundary conditions for 

each of them functions giving us 2tm linear homogeneous equations 

in tbe parameters. At each of the n-1 interior points o.f irregu-

lnrity we have for each function t conditions of continuity (since 

( t-1) · 
fk EC ) and for all m functions we have tm unstabli matching 

cond} ti.ans f o .r· the deri v; ti vcs. All of the e bovo conditions 
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to;ether give us 2tmn linear homogeneous equations in the 2tmn 

parameters. In Beneral the coefficients of these equations uill 

be transcendental functions of the variableµ represent the 

eigenvalue of the variational ()roblera in the class .x(m). Since 
m 

this is an eigenvalue problcmand the function £ y)1 fk. is the 
1 ,{ 

eigenfunction, we are only interested in the case when the functions 

fk do not all vanish identically, i.e. when the 2tmn parameters do 

not all vanish. Thus we know that the determinant (of order 2tmn) 

of the above equations must vanish and this gives us a transcendental 

~~,l~~i·o~ ••h~cl~ de+erBin~r t'1e Gl. 0 GY1v~luea ~(m) Which ave +he de-"'·,, a v ,_ {J ".L , , •. u • , - ;, v ,;, 1 · • D ' s u. ~ :, 0 /.•', rt ' - ~ v. v -- • 

sired upo., er bounds for the eigenvalues 1, • 
~ <....;, ;, 11 

By 

sp(1ces 

an appropriate choice of the fixed sequence {v,\] the s3Ub­

Y(( m) 1:dll converge to the space X and tho corresponding 

( ru) 
bounds µn· will converge to the ei~envalue u • ,, , n, for· er1.ch n. 

We should also rema at this time that in forming the sub-

spaces ""'(m) . 
"' we nn t have chosen a more ceneral representation, 

with arbitrary functions of different variables, such as 

but in this generalized ca:Je we would obtain integro-differe 1 

equations with integro-differential boundary conditions which 

would be much more difficult to handle. 

l~. ExamJ~· The notcl1ed rec~angl~. As the first 

to which we shall apply the new approxi:m,1tion .method 1,'lfe shall con-

sider the differential problem 

(10a) 1~U + /.,1 U - 0 in D 
' 



(lOb) au = 0 an on 

where D is the notched rectangL1lar do_main shown in the figure, 

with origin taken at the 

center. In this prob- ' I 

lem we have a second order 

equation (t=l) and the 

one and only boundary 

operator is unstable. 

Thus when we apply the 

I) 

'I ~-z, 2J, - - -

I _j_ 
new method we may choose 

I 
the functions to be 

arbitrary functions only 

of the variable x and 

belonging to t(l) but 

. ct I 
~ 

I,/ 

~ z«~ 

2.a. 

11. 

--
--

r 

subject to no boundary conditions, arid similarly for the functicns 

on the other variable. This would not have bean 

the case if our boundary cor1ditions had been u = 0 on S (aD tor the 

plicated choice of the functions (x,y) would bu necessary, maki 
,:- ' 

the computations much raore involved. 

D sing our previout, notation the class 7( will be compof',ed of 

f'unctior1s u € 

= 0 on s. 

(, ( 2) _·. ·D-
, ::Ltl. and satisfying the 

In the cl.ass J( the 

l"((u,v) -- f /'1 ;-, ._\l 

D 

t...... V J ·1 -.. -

D 

boundary condition 

forms 1;Jill 

' 

~ . 
X 
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whore the positive operator A has been replaced by-~ and the 

operator Bis the identity operator. Defore extending these 

forms or considering the complete space we first transform them 

aa ~cntioned in the introduction to their equivalent representa-

tions 

(11) I( (u,v) = 

(12) ;/- (u,v) = 

V 
X 

+ U V } 
y y 

ju v ctxcty, 

D 

dxdy, 

iihc:,re formula (11) follows immediately from Green's identity 

V dxdy = v + u v) ctxcty· -
X y y J au an V ds , 

s 

with eubscripts referring to derivatives and the exterior normal 

derivative being used. The corresponding variational problem in 

the incomplete space X would then be 

(13) Ji = inf 
X 

/u) 2) 
sf 

j fu/ 2 dxdy 
D 

dxdy 

Defore we can consider the conplete space}( and thus 

the vc,,riational problem and methods on a more rigorous footing 1,re 

must clarify a point that has thus far been neglected. In order 

to form this completion of X vrn si1ould ha..ve a proper norr?t, i.e. 

tne quc1dratic form I(( u,u) should be positive definite_. However 

we see immediately from (11) thut this form is not definite since 

it va ,ishes for a function which is constant. 'l'hu3 our original 

analysis of the problem breaks down at this point and we n1uat go 

back and reinterpret the problem in a slightly different Danner. 
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Instead of defi:oinr~; the bilinec.r forms in L ermn of the 

ooera.tors -t:., and I (the identit:;,,r) we f,l:rnll rewrite equation (10a) 

in the forn1 

(10a 1 ) -6u + ~ u = µ' u in D, 

where~ is a fixed positive number and p' = µ + ~. We can now 

define the new bilinear forms corresponding to equation (10a') 

( 11 1 ) 
I re (u,v) = V :x V 

""}/ 
+ X uv) dxdy, 

D 

(12 1 ) 
I ;& (u,v) = ,,!.(u,v) • 

The 
J 

new quadratic form f( ( u, u) will now be positive dofiDit~ and 

all our methods can be applied to the new variational problem, 

(13 1 ) inf 

f /nl 2 dxdy 
JD 

and the corresponding problem in the complete space 

p' - nn.i:1 

k 

I·rhere the completion is no'\'.J taken uith 1~espect to the norr,1 

? I 
//u/(- = I{ ( u, u) • 1:Jh en d ca 1 inc: 1d th the c 

space X 't"1e obviously need to consider this auxiliary for:rr: 

1(1( u, u) but in ane.ly zing the VDriational problor;, its elf 'ict,s ,~1ay 

use either formula (14 1 ) or the corresponding foruula 

/J = min , 

t.!here .7( again represents the completion Iiith respect, to J'(1(u,u). 



This freedom to use either (14) or (14 1 ) is due to the fact that 

/J, = p + )< and 

= 
j '? 

/u/ •~ dxdy 
D 

1 (1 12 I ,2-n\ UX + Uy ) dxdy 

---------· ---- + J( • 

1 lul 2 dxdy 
D 

I 
Thus kG nay consider tl:!e fo:cm I( ( u, u) as mo rely an auxilia.ry form 

that we use to complete the space -- actually analyzing the varia-

tional problem (14). 

llaving discussed the vari~tioual problem correspondinp to the 

differential problem (10) we shall now apply the new approximation 

method to tl:is varic,tjona1 problem (14). Due to the s~1 mmetry of 

the domnin we can divide the problem into four part problems 

considering function3 that are even in x and even in y, even in x 

and odd in y, odd in x and even in y, and odd in x and odd in y. 

We shall now analyze the four part problems together and separate 

them at tt10 end. 

We first choose our fixed sequence of functions <;\(x.) /*v 6 • 

whlch 
..-,r 1) 

belono· to C' C) in the closed interval -a~ x ~abut subject 

to no boundary conditions. 'l''t· '~ "'U'o"' p ,- C"' "P/( m) _!..., V -V,d ._,""' is composed of all 
m 

functioni:l u(x,y) = 2 11'.>1/x)fk(y), 1/jhere the functions f 1/:v) belone 

,vl l '\ 1 .. . 
to c' 1 in -b ~ y ~ b. In order to follow the method to the end 

and not overcomplicate matterG th notation we sba.11 solve the 

variational problem only in the first subspace :J((l). Consequent-

ly we may also drop the subscripts and refer simply to functions 

of the form ¢(x)f(y)~ 

6. More accurately ~e shall require that (x) be not identically 

zero in the subintervals -a< x < -a and a< x < a. 
= 
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To solve the varin:tional problem (1L1.) in the space X(l) 

we set the first veriation equal to zero nnd obtain 

j ( \;,b 'I 2 .f g + 11; l 2 f I g 1 - µ / ¢ / 2 f g ) dx dy = O , 

D 

arbitrary function (belongin['; ~ -1,( 1) 
'v O v • Using 

the property that the solution f(y) belongs to c< 2 ) in ea ch. of 

the intervals -b < y < -~, -B < y < B, and B < y < b, 7 • VJ6 can 

now integrate by parts witl1 respect toy in the middle term. 

Doing this for the integral over one corner of the domain (by 

symmetry this integral must also vanish) and us the notation 

a 
fa/:;_) 'I fa 2 I iv)'' ~2. 2 

dx dx /¢{ dx 

R 
Ci i{ a. 

K g_ ___ ·-·---- ..,. __ ,_ --· --.,,,_~..,.. = = 
0 la ') , 

.J. l la 0 

, fa ' /v)/,:, dx ,~,, c.. d}[ f¢/ 2dx 
0 a, 0 

(recalling that we are dealing ~ith one of tl1e part problems) we 

obtain 

J[:1 [c !'\., ·} '/ 2d~r)f-( /a ,d,, 2 1 ) '·'' ~ A . ~ QX,l 

0 0 0 

a 

- ( / hb/ 2 dx) f 1 ( 0) g ( 0) 

0 

a 

+ ( 1 ,(p / 2 dx) f I ( b) {'; ( b) -- () 1 

a 

a 

-µcf f,N 2 ax)f]g cty 

0 

dy 

7. This property is obtained in the usual uanner of integrating 
parts in the other direction to obtaL1 g 1 as a commor. fl1ctor. 

Then we obtain f 1 as a constant tirues the indefinite integral of 
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which by the classical procedure gives us the system 

{ 
.f It (y) + (1t-H )f(y) = o, 0 < y < p , 

0 -

(fr) f II ( y) + (µ-R )f(y) = o, ~ < y < b 
' l 

f I ( b) - - o, f I ( ~-Q) - Kf 1 U1+0) = 0 • 

(Note that the conditions f'(O)g(O) - 0 is automatically satisfied 

due to the restriction to part problems.) The ordinary differen-

tial system (15) may now be solved easily. Using the boundary con-

dition f 1 (b) = 0 and the restriction of the particular part prob-

lem the solutions must be of the form 

f(y) C {COSJ [~ YI 0 < y < '3 = 1 sin . jl-rio , , = 

f(y) = C 2 cos [ Vµ-R~ ( b-y 3, f3 < y < b , 

where {c~s, stsnds for cosine in the part problems with even func­
SJ.n 

tions of y and sine in the part problems with odd functions of y. 

Using the remaining boundary condition of (15) and the continuity 

of the function at y = P we now obtain a system of two linear 

homogeneous equations in the parameters c1 and c2 • Since ¢f is 

an eigenfunction in :X(l) we know that f ';/: 0 and c1 and c2 cannot 

both vanish, which meqns that the determinant 

must vanish. Dividing by the 

K }1.,-Rr sin [ ( H) V. p-R~]; 
COS [ ( b- fj ) Vi- it~ ] 

expression [~~~J[t3 yµ-~J cos[(o-[3)ftt-R~] 

(assuming the constants are such that it does not vanish with the 

fin each interval. induction this implies that f belongs to 
( 2 ) ( ) C and in fact Cm. 
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determinant) we are left only with the equation 

( 16) Jfµ,-R: f-~~~} [ P yµ,-i~] + K J/µ-11~ tan [ ( b-f3) fp-n~} = O • 

The values µ(l) which are roots of this equation for each part 
n 

problem are the eigenvalues for the subspace x(l) and a.re thus 

the first in the sequence of upper bounds for the eigenvalues µ 0 

of the original problem. 

5. ~x~rnele 2. The clarrmed .r...,ect angular £late. As our second 

example we consider the differential eigenvalue problem for the 

clamped plate 

(17a) t.2u = pu in D 
' 

u = au 
= 0 on s an ' (l?b) 

where Dis the rectangular domain -a< x < a, -b < y < b. For 

th · 'bl th 1 ~ · tl 1 f functi· ons·~ u i:, C ( 14 ) • D is pro em· e c ass~ is ·ie c ass o - in 

1,rhi ch satisfy the two boundary conditions u = %~ = 0 on S. 'l'he 

bilinear forms corresponding to the operators in (17) are then 

given by 

(lB) l'f(u,v) = L:. U V f 2 

D 

dxdy = j bu 6.v dxdy , 

D 

U 1 V S .?t , 

(19) eC.(u,v) = ju v ctxcty , 

D 
u,v s " 

where in (18) we have made use of a form of Green's identity 

f "2u d w V ·Xdy - jt.u I'.;\T dxdy + Jc:~u V - l\u !~) ds' 

D D S 

using exterior normal derivatives. In connection with completing 

'](. to farm the complete Hilbert space J( we do not h ;.nro the dif-

ficulty here that we encountered in the first example. The 
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quadratic form /((u,u) is positive definite and thG completion may 

be carried out as usual, leading to the variational problem 

(20) p = min -l<. 

f v:rnJ 2 dxdy 
D 

J, Ju( 2 dxdy 
D 

In applying the new method to this problem we now choose a 

fixed sequence of functions ¢k(x) belonging to ~( 2 ) (or even 

c( 4 )) in the interval -a~ x ~ a and satisfying the conditions 

I 
~bk(+ a) = o. Again, as we did in Example 1., we shall split the 

original problem into four part problems by symmetry and in each 

of these part problems we shall solve the variational problem (20) 

in the first subspace .i((l), which is composed of functions of' the 

form u(x,y) = ¢(x)f(y) (where we have dropped the subscript 1) 

with f(y) E !( 2 ) in -b ~ y ~ b and f(~b) = O. 

Now upon equating the first variation to zero we obtain 

Jc,~:i 11 / 2fg + ¢¢" f" g + y)¢ 11fg 11 +/¢/ 2 fttg 11 -p,/¢f 2rg)dxdy = o, 

D 

where g(y) is an arbitrary function beloneing ·to c< 2 ) in 

-b ~ y ~ b (and of course an even or odd function depending on 

the part problem). using the fact that the solutions f(y) 

belong to C( 4) in the interval -b ~ y~ b (see footnote 7, page 15) 

we can integrate by parts the terms containing deriv&tives of g, 

considering the integral only over one corner of the domain where 

it will also vanish because of the symmetry. The equation then 

takes the form 
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"' a a a a 

] f 1> 11 f 2 dx) f + ( J q_';ql II dx) f 11 + ( f :p(/> 11dX) f II + ( 

0 

j ((t,f2 dx)/4>-p.( f fi/';j2dx)f Jg 
0 0 0 0 

+ ( 

a 

f (!)'!) It . Ibo. ,le dx)f(y)g'(y) 
0 

- ( fa - 11 a: X) f I ( 'f ·1 'T ( V' ) {b 
J) J.S c,~ 

0 0 

lb a 

- ( ffc'f2rlv-)r(3)(v)·-s-(F) rj ~__.."'"' " .J.. d c..i , J 

0 0 

a 

+ ( f I ¢ { 2 ctx ) r " ( y ) t1'( y ) 

0 

The above equation can be simplified using the relation 

a 

f 
a 

J: 
a a 

!¢ J 2 I n 
II dx ~:) ti dx (/; ¢' ~{) I dx ¢' 

([, 

d" -- - - - ~"- • 
0 0 0 0 

Us the classical prccoduro at this point and introducing the 

not a ti on 

f a 2 
I"''/ dx y) ..1-

0 ·------f a 2 
f ¢f 'dx 

0 

, B -- a J 1¢12 dx 
0 

, 

we obta the ordinary differential equation 

(21) 

In this case the terms that were integrated give us no additional 

boundary conditions since for each part problem they vanish auto-

natica.lly at both of the values U and b. The only boundary condi-

tions thRt we have arc those that were originally imposed either by 

the symmetry of the part problem or the conditions f(~b) =f'(~b)=O. 

The solutions of equation (21) are immediately found to be 

(22) f(y) = C {cos] t\, v + C {cos}'" 1 sin lu 2 sin 2Y' 

where the{~~:} again refers to the two cases of part problems with 

dy 
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f(y) even and with f(y) odd and the parameters ~land ~ 2 are the 

two values eiven by 

~2 A 

llsing the t1tJO boundary conditions f(b) = f 1 (b) = 0 we again obtain 

two linear homogeneous equations in the parameters c1 and c2 , and 

since they cannot both vanish this ;;.cans that the determinant 

fl~ {-sin} A ' ~') 
{-sin} A,,> b 1 cos /"l 0 .. cos '"' 

D = 

{C~S1 
SJ.n 

f .. l b fcosJ 
sin i\2 b 

must vanish. is determinant D however can be transformed into a 

more conven±6nt form, D = O, then becoming 

-+ 
n 1.11 

where the minus sign is used when f(y) is even, the plus sisn when 

f(y) is odd. 1he solutions µ(l) of 
n 

eigenvalues (for each part problem) of the auxiliary problem in the 

c• 1' h ,, .,, '~ c· e er,,( 1 ) 
V .t1·...,01J-C:b "' ' these 

( 1' 
e:Lgcnvalues Ji ) 

·· r1 
being the first in the se-

quence of upper bounds for the ei~envalues ,u of 
C J1 the original 

problem. 
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