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Preface

The approximation method to be discussed and

applied in this paper was orig

inally presented by

1. Aronszajn in his seminar on Hilbert space theory

at Oklahoma A. and ¥, College in the spring of 1950.
Since that time the method has been further discussed
and analyzed and z preliminary report on a forthcoming
paper by N. Aronszajn and the author was presented by

the author before the American Mathematical Society

at the Chicago meeting on April 28, 1951.
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SOME DEVELOPMENTS AND APPLICATIONS OF A NEW APPROXIMATION METHOD

FOR PARTIAL DIFFERENTIAL EIGENVALUE PROBLEMS

by

A. K. Jennings

l, Introduction. We shall consider a differential prob-

lem which is of such a type that we can replace this differential
problem by an equivalent variational problem. The new method to
be discussed here will then be applied to the variational problem =--
in much the same way as the Rayleigh-Ritz and Weinstein methods
are actually applied to an equivalent variational problem (see
[1]). 1. In making the transition from the differential problem
to the variational problem we shall use many of the results pre-
sented by N. Aronszajn in [2], although we shall not always refer
to them explicitly.

To begin with we shall comsider the differential eigenvalue
problem

(1a) Au = yBu in D ,

(1b) Au

where S is the boundary of a domain D in vV-dimensional space, A

0 on S ,

and B are elliptic positive differential operators of orders 2t

and 2t' respectively, t > t', and {}1%} is a system of t linear

l. Numbers in brackets refer to the references at the end of the

paper.
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ecuivelent, in the usual cases, bto the variational problem

where the funclion u ries 1in an appropriate class of admissible
funcitions, usually 2t times cuntinuocusly differentiable and satis-

fyving the boundary conditions {(1b).
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the equivalent wariational nrobilen more preclsely. For this pur~

jose we shall introduce the class JK of functions u & O in

and satisfying thre boundary coenditions Lu = 0 on 8, and in this

class we define the two {hermitian) bilinear form

(2) ﬂ(u,v) = fm, v dw 5 U,v & X R

The variaticonal »nroblem uOuuLlDCd by the above formule is Then the

guadratic forms /T

quotient of the correspondin

(u“-s
considered i the claass J( e 1In the classical problems the mini-
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tenm (1). However there 1s wo reason to suspechk that there will

always be a minimieing function in the class J( s and even when

there is we ray wish to consider an suxilicry nroblem
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pressions which ave 'fermally

cussed in [?] [6] and [ ]

3

(&) ﬂ(u,u) = /2 Iilkul(” dus + /fl_n_alq ds ,
I

(5) L) = [z o 0] dw /Z[@ju/g gs

b S

ers less than or egual 1, the

jam

zL re¢ the cperctors A, arc of or
cperstors B, arve of orders less than or cguald t', and the opesra-
tors £, and C)j are boundary eoverators of orders iless than or

sgual t-1i and L'-1 respectively. The quadralic

and {5) are ecguivalent in J to those correspo

(3) since they differ for any function in { only by boundar
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existence and regularity of a Green's function). We way now con=-
. 2
sider a norm in the space K as defined by ef|” = /T(u,u). With
this gquadratic norm.)( has the charsacter of an 'incomplete' Hil-
—
bert space and we can consider its funcilonal completion X .

OQur purpose in transforming and “r into the representations (4)

and (5) was to enable us to form the funcbional completion of,]( ’

to which () and {(5) can irmediately be extended, The functions
i amm—

of the (complete) Hilbert space K will still satisfy the 'stable!
boundary conditions, i.e. of orders less than or egual t-1, but
they need not satisfy the ‘unstable’ boundary condibtions, il.e. of
orders preater than or ecqual t, {(the bterms 'stable' and 'unstable!
then having an cbviocus significance).

YWe can now say 1in general that the variational problem

© <y

(6) PR ((CH)
X ‘ﬁ(u,u)

is equivalent to the variational problem

Hiv,u)

nin .

‘7? ;(u,u)

-
When the winimizing solutions in K already belong to 7(, as in

3

(7) o=

the usual caves considered, then boih variational problem (6) and

(7) are ecguivalent to the differential problem (1) «- otherwise the

4
El

4]
o
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differential problem needs some clarification as to the gui
regularity of its solutions.
The disappcarance of the unstable beoundary conditions in the
—
complete space Jr can be explained by considering the variational

problem (7). When integrating the first variation by parts to de-

rive Euler's equation {which will be (1lz)) boundary integrals will



arise, Using only the stable boundery counditiocons, which are

satisfied by functions in K , we will then obtain the correspon-

ding ‘natural' boundary conditions which will in fact be our

original unstable boundary conditions. Thus when deriving Buler's

i
s

equation for (6) all boundary conditions are pre aent throughout,

P

and for (7) we start with the stable boundary conditions and the

unstable boundary conditions appear automatically.
We should remark that although the forms given by (2) and

and (5) are eguivalent in the space K they are not
2%
o(2t)

(3) and by (4)

S

&

a
equivalent in X (even for functions in that (2) will

———— 54
ni to ¢l2t)

have meaning). For functiouns in X which belong we could

try to transform (4) (or (5)) back into the form (2) (or (3))

when making this transformabion the boundary integrals which van-

ished in the space K will ne longer vanish unless the funciion wu

,

also satisfies the unstable boundary conditions. (In the bilinear

in

form u must satisfy the unstable boundary conditiocns but v need

o

N

n order to perform this

[¢]

transformation.,) Hereafter when we

f-is

'JL

:&

refer to /T(u,u)znui&f(u,u) we shall mean the expressions given

by (4) and (5).

AL
Our final remark concerns a third space J consisitin ng of all
o " s ~(t) 1.;.0 . e~ SR, U 1 A el . 3 e s
functions u € in D and satisfying the stable boundary con-
A
ditions. Tthis e X will be very useful at times because the

complete space X is often guite diflficult to find explicitly and

) . i . t-
class of all functions belenging to C( 1)

derivatives arve absolutely continuous in each variable

. (2
v and whose t-th derivatives belong to & ).
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ximation m
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Both

3

the Rayleigh

w

same fundamental »ri

rem is based on the

ler class of functi

the original class.

here gives upper

the 'generalized! R

£

the new method is

method. In both

ethods
many
flayleigh=~}

appr

rting with a larger space containing }(

1=-Ritz and

on

aylelgh=Hite methed,

methods

at our disposal for this type of prob-

hese which have been extensively analyszed

applications are the vleigh-Ritz and

[33, [, [5])-
.7((0) of?? is

is explicitly solwable.
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eo fq, ﬁg,

itz method a subspace con=-

hiem

fel o
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oximaticns to the is then

(m=1) i . i
¢ one-dimensional sub=-

sub space X(ﬂ'ﬁ

bounds

adding to
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he problem asgain in this new
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upper
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i iized and the wvariational problem must be solved in eanch

of these subspaces. lowever, in the new Zietnod ithe

tween sach of these subepaces and the preceding subspace will be

dimension; thus the new method gives rise to a se-

approximations which should converge nore rag

o

E N R 3 s 4 i
Cire seouence oL

The new approximation ed in the intro-

duction we shall actually apply method to the
eguivalent variational problem (7). Oue first step in this process
wnctions @ (x s bie )

S L RN VSR 84}1{ 1,1;2, vy v‘y s

must be restricted tc some extent by the boun-

{r)

%

we shall see. We nmext form the subspoces X

nf all functions of

-
L5

() W = E ﬁk(xl,...,xv)fk{x1) ,

1

to vary through an appropriate

must be imposed upon the fuuc=

. e T I
UL E can

. IR . PN,
L sghall mention two of thoses,
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5« It iv often very isportant that we construct subspaces




i) If the stable boundary operalors form & Dirichlel syg=-

tem (i.ee == = 0y 1 = 0,1l,4eeyr for some r < t=1) then we

choose the funcltions ¢k to satisfy these boundary conditions and

\-<

restrict the functions fk only to be sulficiently regulsa

I1) If D is a cylindrical domain with axis in the oy di-
rection and bases given by ¥y = a and Xy = b, if the stable boun-
.dary operators on the lateral surface are independent of Zqs and
if the stable boundary operators on the bases depend only upon Xy
(i.e. they are independent of the particular point of the baseo),

then we can ¢hoose the functions 9

D1 to be independent of z., and

to satisfy these boundary conditions on the lateral surface

4
62}
o
o]
fdo
¢
s
e
[

i
ot

ne functions fb(K]) to satisfy the boundary condl-
s e
tions on the bases.
We now burn to the solution of

pace ]((ﬂ) as given by (&) (or

if Y is not already complete).

represent the minimizing szolution and counsider a va“iaiiam fune=
tion v = Zf'ﬁkg for an arbitrary system of functions gk(xl) {in
the appropriate class). By eguating the {irst variation to zero
(and using the corresponding bilincar forms) we obtain

I,vw) = pglu,v) =0,

which can also be written as

(9) 2[/(( )k Iyﬁanb/f - ﬁiz( ) fL,W’ag’ﬁ)] = O, »f’, = 1,2300.,{;& a
e=1

the forms A and Jf as represceunted in (4) and (5) cen now be in=-

tegrabed with respect to all of the varisbles sxucept ®y which

sive us expressions ol the type
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w{}

B
EE A, (x )L(Q)(x ) x ) d”l = 0, | = lyeeeym ,

KylsPsq
k,p,9 o

where the superscriots p and g refer to derivatives of those
(%)

oin

i

3

orders. While keeping in wmind that the functions Ak

jpe]
s

$ i

-
o &
¢cT
W

me

w

{and their derivatives) may have discontinuities at

(caused by the shape of the boundary, c¢f. Example 1), we next in-~

tegrate each of the above terms by parts g times so as to trans-
fer all derivatives from the g, to the functions Ay . and fk'

1 {34 9PsQ <
S . ) , I . LML) .
8y the usual procedure in each interval where A, g C we then
} £545P5Q

L .

obtain z system of ordinary differential equaticns, at the endpoints
a and B we obtain unstable boundary conditioas, and at the points
of irregularity of one of the functions A (i.e. 2 discon-

kyfspsrd
tinuity of some derivative or order less than or equal t=1) we
obtain unstable linear differential conditions relating the solu-
tion in two adjolning intervals,

In each interval we now solve the sytem of m linear differ~
gntial ecuations of order 2t in the m functions fl,...,fm The
general solutions will each depend linearly upon 2t parsmeters so
that the total number of parameteré will be 2tm in each interval
or 2tmn all together, where n is the number of intervals. To ﬁen
termine these parameters we nmust now apply the boundary conditions.

At each of the endpoints @ and $ we have t boundary conaitions for

us 2tm linear homogenecus eguati

{‘J‘!

each of the m functions givir

3
o

in the parameters. 4L each of the n-1 interiocr points of irregu-
larity we have for each function t conditions of continuity (since

and for all m functions we have tm unstable

conditions for the derivatives. A11 of the zbove conditions
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e
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together zive us 2tun linear homogeneous ecustions in the Zinrn

Daray eneral the coefficients of these equations willi

be transcendental functions of the variable g representing the .

.

. . e . _— . , ™ ,
elgenvalue of the variastional problem in the class J(( ). Siance

thig 1z an eigenvalue problem and the

3

eigenfunction, we are only interested ix

£, do not all vanish identicalliy, i.e

” vhen the 2tmn parameters do

.
e
<y

not all vanish. Thus we know that the determinant (of order 2tnn)
of the above eguations must vanlish and this gives vs a transcendental

equation which determines the eigenvalues ﬁn s which are the dg-

w

sired upper bounds for the eigenvalues yx_.
k il

®

By an avppropriate choice of the {ixed sequenc {@k} the sub=

it} . N
spaces Jk( ) will converge to the space X and the corresponding

will converge to the elgenvalus g :h

F)

s For =a

n

We should also remark at this time that in forming the sub-
spaces ( ) we might have chosen a more general representation,
with arbitrary functions of different variables, such as

v. Mk
u = 2 *’k,g(xl""’xv)ik,&;(xk) )
k=] g=1
but in this generalized case we would obtaln integro=-differential
3 <y

eguaticns with inltegro-differential boundary conditions which

would be much more difficult to handles

Le Example 1. The notched rectangle., As the first example

tc which we shall apply the new appreoximstion method we ghall con=-
sider the differential problem

(10a) A+ gu =90 1in D ,



1%,

Jdu
106 === 0 on &
( ) dn oo
where D 1s the notched rectangular domaln shown in bthe Figure,

Y

with origin taken at the
cenver. Jin this prob- ry

lem we have a second order

eguation (t=1) and the

onne and only boundary -

operator is unstable, |

Thus when we apply the

nnew method we may choose

the functions ¢, to be v
48

V5

arbitrary functions only

of the vavriable x and

~{1
to C(")

A
N
N
¥

but
subject to no boundary conditions, and similarly for the functicns

ing on the othser variable., This would not have boewn

[
3
N
o
S
e
(‘3‘
ko]
@
]
o
=

boundary conditions had been u = 0 on 3

membrane problem) and in this other problem a slightly nore com-

NE

o
=t

Using our previous notation the class K will be composad

boundary conditlion

]
ard
oo
[0

forms wil

jpﬂu vodxdy
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where the positive operator A has been replaced by =4 and the

¥y

operator B is the ildentity operator. Before extending these

dering the complete space we first transform then

’.J-

forms oy cous

m

as mentioned in the introduction to their equivalent representa-
(11) : /((u,v) = (u_ v_ + u_ v ) dxdy ,
X X vy ¥
b

(12) » j (u,v) = fu v odxdy ,
: D

where formula (11) follows immediately from Green's identity

cl

N - . - o . 1
- Hu v dxdy = u. v+ u v dxdy = sy
( f v y /( % Vx 5 2/’) y f an ds ,
D

S

CLr

with subscripts referring to derivatives and the exterior normal
derivative being used., The corresponding variational problem in
the incomplete space ) wounld then be

( Ju 2 + Ja 2 dxdy
_/D[XI fa | °) dxds

oJ
(13) g = inf .
X J([ulz dxdy
D

4

Before we can consider the complete space X and thus put
e voriaticnal problem and metnods on & more rigorous footing we

fyv a point that has fthus far been neglected. in order

[l

LAY

=1
>
L
ct
Q
ot
&
(¥

to form this completion of )( we snould have a proper norm, iL.¢.
tne quadratic form /r(u,u) gnould be positive definite. However

we see immediately from (11) that this form is not definite since

[

it vanishes for a function which is constant. Thus cur original

analysis of

the problem breaks down at this point and we musi go

R

g
.

back and reinterpret the problem in a slightly different manane



-

near forms in terms of the

[

the bi
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[e2]
o
{
o
o
c*‘-"
[l

of defining

shall rewrite equation {(10a)

o

operators =A and I (the identity) w

(10at) “Ahu +Xu=yu'"u in D,
where X is a fixed positive nuwber apd g#' = g + K . We can now

2

"

define the new bilinear forms corresponding to eguation (10al)

i - P ==
(111) gl (u,v) = j.(ux vetouo v+ X uv) dxdy,

' .
(121) 2w = L
iy, P n ) s - k] . - % £3 ) Ne.ol #
Ihe new guadratic form Sl {u,u) will now be positive. definite and
all our methods can be applied to the new variational problenm ,

2 d e
('uy’ + Iuyl ¢ X [ul ©) dxdy

%

and the corresponding problem in the complete space

j.(fuvlz + [u 2y X ’ulg) dxdy
’5"] 49 ",’ N

(1n7) gt = min -
X 2
(= -
‘/ [v] © dxdy
D
shere the completion is now taken with respect to the anorm
a—
”u” /T(u u). Vhen dealing with the complaetion X of ihe

space X we obviously need to consider this auxiliary form

) \ . . , -
ﬂ((uguj but in analyzing the varistional problem itself ws amay

use eilther formula {(14') or the corresponding formula

Sl

(14) go= min = ?

=1 5 ’
A jD Ja} © dxzdy

4

Ju %) axay
o

]

. . o /
represents the completion with resgecm‘ugﬂzﬁuju).

(.‘
o
4
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[}
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Jax]
e
-
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This Freedom Lo use either (14) or (14') is due to the fact thatb

1
onsider the fornlfr(u,u) as nmerely an auxiliary lorm

[¢]

that we use to complete the space =-- actually apalyzing the varia-

»nal problem (14).

[
3
<

fleving discussed the variational problem corresponding to the

differential problem (10) we shall now apply the new approximation

P

5 .

method to thris variational problem (14). Due 1o the symmetry of

.. ©

the domain we can divide the problem into four part problemsg ==

considering fuanctions that are even in X and even 1in y, even in x

and odd in vy, odd in x and even in y, and ocad in x and odd in y.
We shall now analysze the four part problems together and separate

them at the end,

6.

p—
&,
&

i~

irst choose our fixed sequence of functions ¢k(x) =0

E{l) ct

[
P

which belong to in the closed interval -a < x < a but sub

(m) .

to no boundary conditions. The subspace KX is composed of all

n
functions ulx,y) = Efyﬁk(x)fk(y), where the functions fk(y) belong
. X &

1)

A .
to GV in =b <y < b. In order tc follow the method to the end

and not overcomplicate matiters with rnotation we shzll sclve the

. : . . . 1
variational problem only in the firsl subspace JY( ). Conseguent-

ly we may alsc drop the subscriphbs and refer simply to functions
of the form o{(x)f(y).
6. Hore accurately we shall require that ¢, (x) be not identically

t
zerc in the subintervals -2 < % € -0 and ¢ < X < a.
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£
. X 1
To solve the variational problem (14) in the space JC '/

»

we set the first variation ecual to zero and obtain
L2, 2 .
f(lw Tg + g £'gt - ﬂ/@fgfg) dxdy = 0 ,
~(1)
L]

where g(y) is an arbitrary function (belonging to C

(2)

Using

the property that the golution f{v) belongs to € in each of
the intervals =b <y < =B, =5 <y < B, and § <y < b, [ we can

5

now integrate by parts with respect to y in the middle tern

Doding this for the integral over one corner of the domain (by

oz

L s

etry this integral wmust slso vanish) and using the notat

i s e I ] .. & P ¢
ﬁo = ) hl = > K = o A s
f /Q/ “dx j I,[ dz [ ~dx
0 ©
(recalliﬂg that we zre dealing with one of the part problems) we
obtain
15 A A a
4 4~.~ 2 N ?
( ‘)I dy)f { | Tdx )it =p( Jol “dx)f [ g dy
0 D 0 0
i = a &
+ [ [( [ |4 dx)f-(j | &f d;()f"—ff\fl;ol u;§)1]n dy
)

+

[(f /g}/: <) T B-O) (f /r»/ dx ) £1(B+0)fz(B)
O

; </ 6 2@ (b)e(s) = 0,

(/ [#f “ax) £ (0)z(0)




1lé.

which by the classical procedure gives us the systen
£ (y) + (p-n )f(y) =0, 0Ly <§B
0, B

£'(b) = 0, £r{p=0) = K£f'(B+0) = 0 .

A

vy <b,

i

(6) £ (r) + (umRy)E(y)

(Wote that the conditions £'(0)g(0) = 0 is automatically satisfied
due to the restriction to part problems.) The ordinary differen=-
tial system (15) may now be solved easily. Using the boundary con=~
dition f!'(b) = 0 and the restriction of the particular part prob-

lem the solutions must be of the form

f(y'):cl{ng}[ﬁ‘—‘% Y] ’ O§y<ﬁ:
£(y) = C, cos [VE (b-y'_)], B<y<b,

cos . . . . . o
where {' } stands for cosine in the part problems with sven func-
tions of y and sine in the part problems with odd functions of y.
Using the remaining boundary condition of (15) and the continuity
of the functicn at y = § we now obtain a system of two linear
homogeneous equations in the parameters €, and C,. Since @¢f is

- ’ . 1 2
. . . 1 .
an eigenfunction in 7(( ) we know that f 0 and Cl and 02 cannot

both wvanish, which megns that the determinant
IV’M {"F [o mm,] & VmR] s [omp) VT, ]
n.n}[ﬁ V;’:-FJ cos [(b“ﬁ) m]
must vanish. Dividing by the expression {COS} 8 K::E'] Cos[(o- )K;-'1]

(assuming the constants are such that 1t does not wvanish with the

f in each interval, By induction this implies that  belongs teo

-

C and in fact C @ .



17.

determinant) we are left only with the equation

(16) ﬂ:{; {_22‘2 [g m;]-&- K Vimiy tan [ (b-p) }//_-'E;]—s 0 .

ﬁil) which are roots of this equation for each part

(1)

The values
problem are the eigenvalues for the subspace 7( and are thus
the first in the sequence of upper bounds for the eigenvalues i

of the original problen,

5. kxample 2. The clamped rectangular plate. As our second

example we consider the differential eigenvalue problem for the

clamped plate

(17a) ' A"a = pu in D,
(17b) | u = %ﬁ =0 on § ,

where D is the rectangular domain =-~-a < x < a, =-b <y <b, For

this problem the class }( is the class of functions u € C(A> in D

which satisfy the two boundary conditions u = %% = 0 on 8. The
bilinear forms corresponding to the operators in (17) are then

given by

2 —
(18) M(u,v) = f&"u v dxdy = fAu Av dxdy , u,v € 7( >
D b
(19) z(u,v) = /u v dxdy , u,v e K,
D.

where in (18) we have made use of a Torm of Green's identity

fAzu v dxdy = jAu Av dxdy + f(%%l’l v - Au
U D S

15

[al}
o]

) ds ,

using exterior normal derivatives., 1In connection with completing
J{ to form the complete Hilbert space Jk we do nobt have the dif-

ficulty here that we encountered in the first example. The
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gquadratic form Jf(u,u) is posilive definite and the completion may
he carried out as usual, leading to the variational problem

f /t’lu’ dedy
D

mnLn 3
jul © dxdy
x J

(20) o=

In applying the new method to this problem we now choose a
] o : (2)
fixed sequence of functions @k(x) belonging to C (or even
C(h)) in the interval =-a < x < a and satisfying the conditidns
t
¢k<+ 2) = 0. Again, as we did in Example 1, we shall split the
original problem into four part problems by symmetry and in each
of these part problems we shall solve the variational problem {(20)
X s (1) . X ] . . e
in the first subspace JK s which 1is composed of functions of the
form u(x,y) = ¢(x)f(y) (where we have dropped the subscript 1)
2} .
wvith f(y) € c( ) in -b <y <b and f{(xb) = 0.
fow upon eguating the first variation to zZero we cbtain

JCon 2o + g3 £m &+ Bovegn +p) Pingn —pf¢l P2g)dxdy = 0,
b

(2) |

. ) ”
where g(y) is an arbitrary function belenging to C n

-b

A

y

i

b (and of course an even or odd function depending on
the part problem). By using the fact that the solutions f(y)

(4)

belong to C in the interval =-b < y< b (see footnote 7, page 15)
we can integrate by parts the terms containing derivstives of g,
considering the integral only over one corner of the domain where

it will also vanish because of the symnmetry. The eguation then

takes the form
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b a a
( .l 2(‘1‘ ( v\ued )fi|+( ﬂnjv)oiu( ¢ &»)f(l‘*) ﬂ( o
’{J’ ),;) b w )5) ) - jt ’ uh}x Z
o o +]
a
- 'b a b
+ { B! R ) ey T
f” ax)f(yleg'(y) = (foprax)r(y)e(y)
o
o o
; a b
2 . 12,y #(3)
{lgsl dx) £ (y)aXy) | - (el ax)er " (y)aly) =0 .
o C o
The above equation can be simplified by using the relation
8 ) a a a
1 A s 1 (s L a2 s 2
«o" odx e B P dx = ¢ @ - @ dx == = @ ax .
o 0 G o " G
Using the classical prcocoedure at this peint and introducing the
notation
a &
o 2 Cad 2
/ Ig;;'/ dx lg"/ dx
0 : 0
A s B o= s
a a .
2 2
[#] “ax el T odx
o (5]
we obtain the ordinary differential eguation
b 2 , .
(21) O I A SO R T I O I
In this case the terms thalt werc integrated give us no additional
boundary conditicns since for each part problem they vanish auto-
maticelly at both of the values U snd b. The only boundary condi-

tions Lhat we have are those that were originally imposed either by

s
®]
jn]

the symmetry of the part problem or the conditions f(ib) =f'{+b)=0,

The soluticms of eguation (21) are immediately found to be

, - oo cos} . Lo~ cos? .
(22} (y) = ©1 {sin} SCAR {eﬁm} Mo s

cos o .
where the . again refers to the two cases of part problems with
sin - g



)

O

f(v) even and with £(y) odd and the parameters hi and k? are the

ks

two values given by

Rj = i L/Q * Az - Bty = 7%; meﬁ“A + i bVB~ﬁ+A .

Using the two boundary conditicns £(b) = £'(b) = 0 we again obtain

E,J

o

kY

two linear homogeneous equations in the parameters C, and CZ’ and

1ey cannot both vanish this aseans that the determinant .

~asin . -5in -
S 20 A Pom O
’l{ cos} 1 2 cog R
cos coes )
. 2. b . Pon O
{31n} 1 sin 2

must vanlish. This determinant U however can be transformed into a

more conveniént form, DU = 0, then becoulng

) ]+ ’/‘/E-/,c ~A sinh [}/2-‘5 pvu 7 "fA]: 0,

s

where the minus sign is used when f(y) is even, the plus sign when

(1)

° o) a 5 2 e Y » Il
f{y) is odd. T%he solutions o of eqguation (23) thus give us the

for each part problem) of the auxiliary problem in the

1 . 1) . 2 ;
subspace JK( ), these eligenvalues ﬁi ) veing the first in the se-
&L

L

the original
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